305506 |
Issue 1

ATsT 3B2 Computer
UNIX™ System V Release 2.0 :

 Utilities — Volume 1

a

NOTICE

The information in this document is subject to change without notice. AT&T assumes no
responsibility for any errors that may appear in this document.

Copyright© 1985 AT&T
All Rights Reserved
Printed in U.S.A

TRADEMARKS

The following is a listing of the trademarks that are used in these three
volumes:

s APS — Trademark of Autologic, inc

DIABLO — Registered Trademark of XEROX Corporation
« DOCUMENTER’S WORKBENCH — Trademark of AT&T

« Dimension is a Trademark of AT&T.

» HP -— Trademark of Hewleti-Packard, Inc

Hayes is a Trademark of Hayes Microcomputer Products, Inc.

?

e Micom is a Registered Trademark of Micom Systems, inc.

]

Penril is a Registered Trademark of Penril Corporation, Inc.

L]

Rixon is a Registered Trademark of Rixon, Inc.

TEKTRONIX — Regist'ered Trademark of Tektronix, Inc

TELERAY - Trademark of Research Incorporated

?

TELETYPE — Trademark of AT&T

o UNIX — Trademark of AT&T

Ventel is a Registered Trademark of Ven-Tel, inc.

?

Versatec — Registered Trademark of Tektronix, Inc.

ORDERING INFORMATION

Additional copies of this document can be ordered by calling
1-800-432-6600 inside the U.S.A.
OR
1-317-352-8557 Outside the U.S.A.
OR by writing to:

AT&T Customer Information Center (CIC)
Attn: Customer Service Representative
P.0O. Box 19901

Indianapolis, IN 46219

Replace this
page with the
INTRODUCTION

tab separator.

Chapter 1

INTRODUCTION

The Utilities Guides for thirteen utilities are packaged in these three-
volumes, titled AT&T 3B2 Computer Ultilities - Volume 1 through 3.

Security Administration capability and supporting documentation is
restricted to United States customers only. The Security Administration
Utilities Guide will be provided to United States customers as a stand-alone
document. Instructions at the beginning of the stand-alone guide tell you
to place the guide, and the TAB provided, in Volume 3 of the AT&T 3B2
Computer Utilities.

Source Code Control System (SCCS) Utilities are optional utilities. If
ordered, you will receive an SCCS Utilities Guide. Instructions at the
beginning of the SCCS Utilities Guide tell you to place the guide, and the
TAB provided, anywhere you wish in the three-volume Utilities Guide.

The overall index, located at the end of Volume 3, includes keyword entries
from the Security Administration and the SCCS documents.

IN 1-1

INTRODUCTION

The Manual Pages for each utilities are located in the “AT&T 3B2
Computer User Reference Manual,”’ the "AT&T 3B2 Computer

Programmer Reference Manual,' or the “AT&T 3B2 Computer System
Administration Reference Manual,”’ whichever is appropriate.

The three-volume set contains the following:

INTRODUCTION

BASIC NETWORKING

Volume 1 | CARTRIDGE TAPE

DIRECTORY AND FILE MANAGEMENT
EDITING

GRAPHICS
Volume 2 HELP
INTER-PROCESS COMMUNICATION

LINE PRINTER SPOOLING
PERFORMANCE MEASUREMENTS
SPELL

Volume 3 | TERMINAL FILTERS

TERMINAL INFORMATION

USER ENVIRONMENT

INDEX

IN 1-2

INTRODUCTION

The Index for all utilities are located at the end of Volume 3. The index will
have the Item Name, Utilities Code, Chapter Number, and Page Number.

The Utilities Codes are:

UTILITIES NAME UTILITEES CODE
Basic Networking BN
Cartridge Tape CT
Directory and File Management DF
Editing ED
Graphics GR
Help HP
Inter-Process Communication IP
Line Printer Spooling LP
Performance Measurements PM
Security Administration SA
Source Code Control System (SCCS) SC
Spell SP
Terminal Filters TF
Terminal Information Ti
User Environment UE

An example would be:
ACU; problemscccococveeun.... BN 6-2

This means you can find ACU problems under the BASIC NETWORKING
TAB in Chapter 6 on Page 2, or page BN 6-2.

IN 1-3

INTRODUCTION

Another example would be:
Joining Lines in vi ... ED 4-21

Here, if you turn to the TAB marked EDITING, go to the page marked ED
4-21, you will find information on joining lines using the vi editor.

GUIDE BASELINE

This three-volume set contains sample displays that will help you
understand described procedures. The sample displays in this document
and the displays on your terminal screen may differ slightly due to
improvements in the product after this three-volume set was finalized.
Therefore, use the displays in the various utilities as samples of the type of
data available. However, the data displayed on your terminal screen
accurately reflects the sofware on your computer.

IN 1-4

Replace this
page with the
BASIC NETWORKING

tab separator.

rO
.M.VZ,
5 @
sl
md
o o
CV,m
e <
2m o,m
B,qu
DLl
= <9
mmumnl
zZ3z
L>5mD

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

NS o2 wDdhE

CONTENTS

INTRODUCTION
OVERVIEW
ADMINISTRATION

SIMPLE ADMINISTRATION
DIRECT LINKS
MAINTENANCE
COMMAND DESCRIPTIONS

Chapter 1

INTRODUCTION
PAGE
GENERALottt ettt et e et et et e e e et ettt 11
GUIDE ORGANIZATIONttt ittt ettt e e et a et e e e e e e aeaanaannns 1-2

DEFINITION OF TERMSttt ananaaasneanaannnnnannnnneas 1-3

Chapter 1

INTRODUCTION

GENERAL

This guide describes the operation, administration, and command format
(syntax) of the Basic Networking Utilities. Most of the material discussed
is intended to be used by a sophisticated user who needs to know how to
administer and maintain the utilities. Lower level (Novice) users may find
the tutorial information (Chapter 7) helpful in understanding how the
various commands are used to communicate with other machines.

Refer to the AT&T 3B2 User Reference Manual for UNIX* System V
manual pages supporting the commands described in this guide.

* Trademark of AT&T

BN 1-1

INTRODUCTION

GUIDE ORGANIZATION

This guide is structured so you can easily find information without having
to read the entire text. The remainder of this guide is organized as
follows:

« Chapter 2, “OVERVIEW,” contains an overview of the Basic
Networking Utilities. It discusses the hardware and software
associated with the operation of the networking system. After the
hardware and software are introduced, a description of how the
various programs work together to communicate with other
machines is presented.

» Chapter 3, “ADMINISTRATION,” discusses the administration of the
Basic Networking Utilities. The discussion includes the files
associated with the everyday operation of the system, supporting
data base files, and administrative tasks.

» Chapter 4, “SIMPLE ADMINISTRATION,” describes the Simple
Administration feature of the Basic Networking Utilities (uucpmgmt).

» Chapter 5, “DIRECT LINKS,” contains information on establishing a
direct link from your AT&T 3B2 Computer to another 3B Computer.
This includes some general information, as well as the specifics
needed to set up the Basic Networking software and establish the
direct link.

» Chapter 6, "MAINTENANCE,” contains information on the
maintenance of the Basic Networking Utilities. This includes some
suggestions on debugging and a listing of error messages.

e Chapter 7, “COMMAND DESCRIPTIONS,” describes the command
format (syntax) of each command in the command set. The
descriptions include the purpose of the command, a discussion on
the command syntax and options, and examples of using the
command.

BN 1-2

INTRODUCTION

DEFINITION OF TERMS

There may be terms used in this guide that you are not familiar with.
Below is a list of such terms:

local machine

remote machine

active machine

passive machine

network

node

UuUCP

Refers to the machine on the ‘‘near’” end of a
communication link; normally, your 3B2 Computer.

Refers 1o a machine on the “far” end of a
communication link; normally, a machine that your
3B2 Computer calls.

A machine with the Basic Networking Utilities and the
hardware required to establish communication links
(i.e. Auto Dial Modem).

A machine that has the Basic Networking Utilities, but
does not have the hardware required to establish
communication links.

A group of machines that are set up to exchange
information and resources.

A terminating point (machine) on a network.

This term (all caps) is used to show a group of
programs and files that allow “‘unix-to-unix copy’’
capability between UNIX Systems. In general, it
refers to all Basic Networking Utilities except the cu
and ¢t programs. If “uucp’ is shown in the text with
boid type (uucp), this is referring specifically to the
uucp program or login 1D.

BN 1-3

Chapter 2

OVERVIEW

PAGE

WHAT IS BASIC NETWORKIMG ittt nnnenncnnnsaoannnnneennnnnn 2-1
WHAT HARDWARE IS NEEDED oo iiasnmnnnnanaananaaaanaasnannnns 2-2
THE BASIC NETWORKING SOFTWARE it enn i inanaaaannannannn 2-4
The Directories and Their PUNPOSE o i i nnnnnnncn i iennnaneannnns 2-4

The Software Programs and Their Purpose i iininnninnns 25

The UUCP Daemons and Their PUrpPosSe iinr i innnnnnsanennnnnn 2-7

The Supporting Data Base Files and Their Purpose. i 2-8

HOW BASIC NETWORKING OPERATES i mencnananennnannnnnn 2-9
ct-ConmectaTerminal. inn it i sannae e 2-10
cu-Call a UNIX Systemot ineinn e eaanensnaaancsanannnanan 2-10

uucp - UNIX-to-UNIX System COPY . . v oo v innannnnnanannnaaannnnnens 2-11

uuto - Public UNIX-to-UNIX System Copy . . . v n v i i i i i i anecennaann 2-12

uux - UNIX-to-UNIX Systern Execution iiriinninnnnnnnn. 2-13

Chapter 2

OVERVIEW

This chapter contains an overview of the Basic Networking Utilities. The
hardware and software of the utilities is introduced before discussing how
it operates.

WHAT IS BASIC NETWORKING

The Basic Networking Utilities allow machines using the UNIX System to
communicate with one another. The utilities allow you to:

» Transfer files and send electronic mail to other UNIX System
machines as background processes.

o Interactively communicate with UNIX System machines and possibly
non-UNIX System machines.

e Execute commands (restrictive) on a remote machine without
logging in.

BN 2-1

OVERVIEW

» Call a remote terminal and allow the user of the terminal to log in on
your 3B2 Computer.

The later part of this chapter discusses the variety of ways information is
transferred from one machine to another. It also discusses how
commands are executed remotely, and how your 3B2 Computer can be
requested to call a remote terminal. But first, you should become familiar
with the hardware and software associated with the Basic Networking
Utilities.

WHAT HARDWARE IS NEEDED

Before your 3B2 Computer can communicate with a remote machine, a
communication link must be established to the remote machine. There
are three types of hardware used to establish a communication link to
another machine. The first is a direct link from a serial port on the 3B2
Computer to a serial port on the other machine. This type of connection
is useful when two machines communicate with each other on a regular
basis. Direct links allow data to be transferred at rates as high as 19200
bits per second (bps). Even though the RS-232 standard recommends
that direct links be limited to 50 feet or less, two machines may be
separated by several hundred feet if noise on the direct link does not
become a problem. If noise becomes a problem or greater distance is
needed between the two machines, the transfer rate may need to be
decreased or limited distance modems placed at each end of the
connection.

The Basic Networking Utilities does not contain the hardware needed to
link your 3B2 Computer directly to remote machines. However,
information on establishing a direct link to another machine and the parts
needed can be found in Chapter 5, “'DIRECT LINKS."”

The second type of communication link uses the telephone network. In
this type of link, the machine that establishes the connection (local
machine) must have an automatic call unit (ACU). The ACU dials the
specified phone number on request from the Basic Networking Utilities.

BN 2-2

OVERVIEW

The called (remote) machine must have a telephone modem capable of
answering incoming calls so other machines can contact it through the
telephone network. If you wish to use the telephone network for
establishing communication links, contact your AT&T Service
Representative or authorized dealer for information on the AT&T
Automatic Dial Modem.

The third type of communication link is established through a Local Area
Network (LAN). Here, the 3B2 Computer must be a node on a LAN switch.
This will allow the 3B2 Computer to establish a link to any machine
connected to that LAN.

f a machine can establish a link to and request communication with
another machine, it is considered an ‘‘active machine.”” Active machines
must be able to establish links using one of the type of hardware
mentioned above. A ‘‘passive machine’’ cannot establish a link to (call) a
remote machine. However, a connection can be established fo a passive
computer if the passive computer has:

e A telephone modem that can automatically answer a call, or

« A direct link dedicated to serving incoming calls.

Note: If a machine is connected to a LAN, it is considered to be a
active machine since it can call other machines on the LAN.

When a passive machine is called by an active machine, this is referred to
as “‘polling.”” Polling passive machines is discussed later in more detail.

BN 2-3

OVERVIEW

THE BASIC NETWORKING SOFTWARE

The Basic Networking Utilities is composed of software programs, daemons
(background routines), and a supporting data base. The supporting data
base contains support files that store information such as telephone
numbers, location of the devices (hardware) used to establish links,
security restrictions, etc. The software programs and a skeleton data base
is supplied on the Basic Networking Utilities floppy diskette that comes
with this guide. Since each 3B2 Computer will have an uncommon
supporting data base for Basic Networking, the files that make up this data
base are empty (except for comments) when they are loaded onto the
hard disk. The Basic Networking Simple Administration feature is used to
create unique entries in some of these files. The Simple Administration
subcommands are discussed in Chapter 4, ““'SIMPLE ADMINISTRATION.”

The Directories and Their Purpose

There are several directories that contain the programs and support files
of Basic Networking. Some of these directories are uncommon to Basic
Networking, while others are common to the UNIX System and the 3B2

Computer. The directories used by Basic Networking are listed below:

/usr/bin This directory is used by the UNIX System to store
executable programs and is used by Basic
Networking for the same purpose.

/usr/admin/menu This directory contains the Simple Administration
subcommands for certain utilities. The
subcommands for the Basic Networking Utilities are
in the directory
/usr/admin/menu/packagemgmt/uucpmgmt,

/usr/lib/uucp This directory is the *“HOME'" directory for the
uucp administrative log in. It contains the files of
the supporting data base and some executable
programs.

BN 2-4

OVERVIEW

/usr/spool/locks This directory contains the lock (LCK) files for the
Basic Networking hardware devices. Lock files are
discussed in Chapter 3.

/usr/spool /uucp This directory is the ‘‘spool directory’ for “‘work”
that is to be processed by the Basic Networking
Utilities. It contains a tree-like structure of
subdirectories associated with remote machines
that your 3B2 Computer wishes to communicate
with (has communicated with recently). These
subdirectories are also used for administrative
purposes such as storing log and status
information.

/usr/spool /uucppublic This directory is the “‘public’” directory for UUCP
transfers. The public directory is used to store files
that have been sent to your 3B2 Computer. Some
remote machines may be restricted to placing files
in this directory, while others may have permission
to place files elsewhere.

The Software Programs and Their Purpose

There are several types of programs associated with the Basic Networking
Utilities. Some of these programs are used by normal users to transfer
data and obtain status information, while others are used for
administrative purposes, or are executed internally. The following
paragraphs contain a brief description of the programs and their purpose.

User Programs

eu: Connects your 3B2 Computer to a remote machine and allows you to
be logged in on both machines at the same time. This allows you to
transfer files or execute commands on either machine without dropping
the link.

BN 2-5

OVERVIEW

ct: Connects your 3B2 Computer to a remote terminal and allows the
user of the remote terminal to log in. The user of a remote terminal may
call into the 3B2 Computer and request that the 3B2 Computer call the
remote terminal back. Here, the 3B2 Computer drops the initial link so
that the modem will be available when it is called back.

uuep: Performs all the preliminary work in queuing file transfers to
remote machines. It creates “work’ files that contain the instructions for
transferring the queued file(s). Depending on the options specified, it may
create a copy of the file to be transferred in the spool directory. These
files are called ‘‘data’ files. Once the "‘work’ and ‘‘data’ files have been
created, uuep calls the uueico daemon that in turn attempts to contact
the remote machine.

wuto: This program works similar to the uuecp program. It calls the uucp
program to create “work’ and “‘data’’ files. The main difference between
uuto and uucp is the way the transferred files are placed on the remote
machine. With uucp, you can specify a path name on the remote machine
where you want the files to be placed. With uuto, all transferred files are
placed in the uucppublic directory under /usr/spool/uucppublic/receive.

uupick: When files are transferred to a machine using uuto, uupick can
he used to retrieve the files placed under fusr/spool/uucppublic/receive.

uux: This program creates “‘work’ files, “data’’ files, and “execute’ files
for executing commands on a remote machine. The “work’’ file contains
the same information as those created by uucp and vuto. The “execute’”
files contain the command string to be executed on the remote machine

and a list of the “‘data” files. The ‘‘data’’ files are those files required for
the command execution.

uustat: This program displays status information for requested transfers
(uucp, uuto, or uux). It also provides you with a means of controlling
queued transfers.

BN 2-6

OVERVIEW

Administrative Programs

uulog: This program displays the contents of a specified machine’s log file.
Individual log files are created for each remote machine your 3B2
Computer communicates with using the uucp, uute, and uux programs.

uucleanup: This program has several functions that are all associated with
the cleanup of the spool directory. It is normally executed out of a shell
script called uudemon.cleanu that is started by cron.

Uutry: This program is a shell script that is used to test call processing
capabilities with a moderate amount of debugging. It invokes the uucico
daemon to establish the cermmunication link between your 3B2 Computer
and the specified machine.

uucheck: This program checks for the presence of Basic Networking
directories, programs, and support files. It is also capable of checking
certain parts of the Permissions file.

Internal Programs

uugetty: This program is similar to the getty program, except it permits a

line (port) to be used in both directions. The uugetty allows users to log in
on your 3B2 Computer and, if the line is not in use, it will allow uucico, cu,
or ¢t to use it for dialing out. If one of these programs attempts to dial out
when the line is busy, uugetty will deny the requester permission and echo
a message indicating that the device is unavailable. Uugetty is executed as
a function of the init program.

The UUCP Daemons and Their Purpose

There are three daemons that are part of the Basic Networking Utilities.
These daemons are routines that run as background processes to handle
file transfers and command executions.

uucico: This daemon is referred to as the transport program for UUCP
requests. It selects the device used for the link, establishes the link to the

BN 2-7

OVERVIEW

remote machine, performs the required log in sequence, performs
permission checks, transfers ‘'data’” and “execute' files, logs results, and
notifies specified users of transfer completions via mail. When the local
uucico daemon calls a remote machine, it “‘talks’” to the uucico daemon
on the remote machine during the session. The uucico daemon is
executed by several methods. It is started by the uucp, uuto, and uux
programs to contact the remote machine after all the required *'data’’,
“work’’, and /or “‘execute’ files have been created. It is also started by
the uusched and Uutry programs.

uuxqt: This daemon is the execution program for remote execution
requests. It searches the spool directory for “execute’” files (X.) that have
been sent from a remote machine. When an X. file is found, uuxqt opens it
to get the list of data files that are required for the execution. it then
checks to see if the required data files are available and accessible. If the
files are present and can be accessed, uuxqt checks the Permissions file
to verify that it has permission to execute the requested command. The
uuxgt daemon is executed out of the uudemon.hour shell script that is
started by cron.

uusched: This daemon schedules the queued work in the spool directory.
Before starting the uucico daemon, uusched randomizes the order in
which remote machines will be called. Uusched is executed out of a shell
script called uudemon.hour that is started by cron.

The Supporting Data Base Files and Their Purpose

As mentioned earlier, several of the Basic Networking programs require
information contained in support files. These support files are located in
the /usr/lib/uucp directory. The cu, ct, uucico, and uuxqt programs
require supporting information from the following files:

Devices This file contains information about the location and line
speed of the automatic call unit, direct links, and possibly
network devices.

BN 2-8

OVERVIEW

Dialers

Systems

Dialcodes

This file contains character strings required to negotiate
with network devices (automatic calling device) in the
establishment of connections to remote computers (non
801-type dialers).

This file contains information needed by the uucico
daemon (and possibly the cu program) to establish a link
to a remote machine. it contains information such as the
name of the remote machine, the name of the connecting
device associated with the remote machine, when the
machine can be reached, telephone number, login ID,
password, etc,

This file contains dial-code abbreviations that may be used
in the phone number field of Systems file entries.

Permissions This file defines the level of access that is granted to

machines when they attempt to transfer files or remotely
execute commands on your 3B2 Computer.

There are several other files that may be considered part of the supporting
data base, but these files are not directly related to the process of
establishing a link and transferring files. So, discussion of these files are
reserved for Chapter 3, “ADMINISTRATION.”

HOW BASIC NETWORKING OPERATES

This section briefly describes the operation of the Basic Networking
Utilities. There are five programs that allow your 3B2 Computer to
communicate with remote machines. The following paragraphs briefly
describe what happens when you execute these programs.

BN 2-9

OVERVIEW

ct - Connect a Terminal

The ct program instructs your 3B2 Computer to begin a call to a remote
terminal and issue a getty to that remote terminal. The command line of
the ¢t command must contain the telephone number of the remote
terminal. Of course, the remote terminal must be attached to a modem
that will automatically answer the call.

When the ¢t command line is issued, the ¢t program will search for an
automatic dialer in the Devices file with a transfer rate that matches what
was specified in the command line. If no transfer rate was specified, it
defaults to 1200 bps. When ¢t finds the dialer to be used, it attempts to
dial the phone number specified in the command line. If no dialer is
available, ct asks if it should wait for an available dialer and if so, how
many minutes should it wait. An option is available to override this
dialogue.

When the modem at the remote terminal answers the call from your 3B2
Computer, it is issued a getty (login) process. At this point, the user at the
remote terminal may attempt to log in.

The user at a remote terminal may call your 3B2 Computer, log in, and
request that the 3B2 Computer call the remote terminal back using the et
command. [f this scenario is used, the remote user issues a ¢t command
and the link from the remote terminal is dropped. After ¢t finds an
available dialer in the Devices file, it will call the remote terminal back.

cu - Call a UNIX System

The cu command enables you to call another machine and log in as a
remote user. The telephone number or node name of the remote machine
is required in the command line. If the phone number is specified, it is
passed on to the automatic dial modem. If a system name is specified, the
phone number is obtained from the associated Systems file entry. If an
automatic dial modem is not used to establish the connection, the line
(port) associated with the direct link to the remote machine can be
specified in the command line.

BN 2-10

OVERVIEW

if an automatic dial modem is used, the cu program will search for an
automatic dialer in the Devices file with a transfer rate that matches what
was specified in the command line. If no speed is specified, the first dialer
listed (if available) is used regardless of its transfer rate. After the link is
established and you have successfully completed the log in process, you
will be logged in on both computers. This will allow you to execute
commands on either computer and/or transfer ASCIl coded files from one
computer to another. After you end the connection, you will still be logged
in on your 3B2 Computer (calling computer). This command can only be
executed by an active computer.

uucp - UNIX-to-UNIX System Copy

The uucp command will aliow you to transfer file(s) to a remote computer
without knowing any details of the connection. All that you are required to
know is the name of the remote computer and possibly the login ID of the
remote user to whom the file(s) is being sent. The details of the
connection are kept in the Systems file.

When you enter a uuep command, the uucp program creates a “‘work’ file
and possibly a ““data’’ file for the requested transfer. The “‘work’’ file
contains information required for transferring the file(s). The ‘‘data’ file is
simply a copy of the specified source file. After these files are created in
the spool directory, the uucico daemon is started.

The wucico daemon attempts to establish a connection to the remote
machine that is to receive the file(s). It first gathers the information
required for establishing a link to the remote machine from the Systems
file. This is how uucico knows what type of device to use in establishing
the link. Then, uucico searches the Devices file looking for the devices
that match the requirements listed in the Systems file. After uucico finds
an available device, it attempts to establish the link and log in on the
remote machine.

When uucico logs in on the remote machine, it starts the uucico daemon
on the remote machine. The two uucico daemons then negotiate the line
protocol to be used in the file transfer(s). The local uucico daemon then

BN 2-11

OVERVIEW

transfers the file(s) to the remote machine and the remote wucico places
the file in the specified path name(s) on the remote machine. After your
3B2 Computer completes the transfer(s), the remote machine may send
files that are gueued for your 3B2 Computer. The remote machine can be
denied permission to transfer these files with an entry in the Permissions
file. If this is done, the remote machine must establish a link to your 3B2
Computer to do the transfers,

If the remote machine or the device selected to make the connection to
the remote machine is unavailable, the request remains queued in the
spool directory. Each hour (default), uudemeon.hour is started by cron
that in turn starts the uusched daemon. When the uusched daemon
starts, it searches the spool directory for the remaining “work™ files,
generates the random order in which these requests are 1o be processed,
and then starts the transfer process (vucico) described in the previous
paragraphs.

The transfer process described generally applies to an active machine. An
active machine (one with calling hardware and Basic Networking software)
can be set up to “‘poll’” a passive machine. A passive machine can queue
file transfers (because it has Basic Networking software) but, it cannot call
the remote machine because it does not have the required hardware. The
Poll file (fusr/lib/uucp/Poll) contains a list of machines that are to be
polled in this manner. For additional information, refer to the discussion
on the Pell file and uudemon.poll in Chapter 3, “ADMINISTRATION."”

uuto - Public UNIX-to-UNIX System Copy

The uuto program uses the uucp program to build “work’ files and *‘data’
files in the spool directory for requested transfers. The difference is that
the uuto command will not allow you to specify a path name as a
destination for the file. The uute command automatically puts the file in a
directory under fusr/spool/uucppublic/receive. Once the transfer is
complete, mail is sent to the appropriate user indicating that a file has
arrived and was placed in the public area. That user can then use the
uupick command to retrieve that file. The wupick command will search
the public area for files destined to the user and allow the user to
interactively delete, print, or move the file to a named directory.

BN 2-12

OVERVIEW

uux ~ UNIX-to-UNIX System Execution

The vux command allows commands to be executed on a remote
machine. It gathers files from various computers and executes the
specified command on these files and sends the standard output to a file
on the specified computer. This can be useful when some of the required
resources (commands and/or files) are not present on your 3B2
Computer. Remote mail is implemented using the uux program, but its
execution is embedded in the standard mail command. For security
reasons, many machines will limit the list of commands that can be
executed via uux to the defauit, receipt of mail.

When the uux command is issued, the uux program creates an ‘‘execute”
(X.) file that contains the names of the files required for execution, your
log in name, the destination of the standard output, and the command to
be executed. Uux also creates “work’ (C.) files that are used to gather
the files required for execution. These files are then sent to the remote
machine, along with the “‘execute’ file, by the uucico daemon and placed
in the remote spool directory. Periodically, the uuxgt daemon on the
remote machine is started to search for X. files in the spoo! directory. On
finding an X, file, the uuxqt daemon checks to see if all the required data
files are available and accessible. It then checks the Permissions file to
verify that the command(s) listed can be performed. After execution,
uuxqt sends the standard output to a file on the specified computer.

BN 2-13

Chapter 3

ADMINISTRATION

ADMINISTRATIVE FILES i it i i i i it cnram et inaanneanenns
TM -temporarydatafile i et inen e naeaans
LCK -lock file it e i
Work (CYFile . .o i it aaennannneanacsaamsnasnnasanns
Data (D) Filet i e e et nnnnan e anaanaaanaanns
Execute (X)) File. . ..ot i i cannennanaaaonannsanannaann
Machine Log Filesottt i ininanaansaaannanannannenn

SUPPORTING DATA BASE . .. ot annnanenansnnanaansnannnnns
Devices File it it i n e n e n e
Dialers Fileot i e e e et aa e
Systems File i i i naana e
Dialcodes File. i i e et a e n s
Permissions File i i it ena e
e T -
Maxuuxgts Flle .. . i e i n e a e
Maxuuscheds File ittt neaanannnamasaannnannas
remote UNKIBWI . . L. . i it i sa it e a e n e e e ann

ADMAINISTRATIVE TASKS it it it iiaaasnnannaacntnnasnncanansnans
Cleanup of Undeliverable Jobs it aneannnenn
Cleanup of the Public Areaottt iianncasnansannnnaaaan
Compaction of Log Filesttt e tamaanaansnnnnnns
Cleanup of sulog and Cron 10g iiannsannn e annnanans

LUCRP AND CRONttt aaasn e e anananaanncannnann
uudemon.admin e am e aaaa
MUDEeMON.CIEANMttt ittt i i aamannanonanannanannnanonnnaenenas
MdemOn. hOUr . . i aea e
BUAEMON. PO . L et n e n s

NI T AB ENTRIES i ittt inntansnaanannancassannaansannns

Chapter 3

ADMINISTRATION

This chapter discusses the files and tasks associated with the operation of
the Basic Networking Utilities. The amount of effort required to administer
the Basic Networking Utilities depends on the amount of ““traffic’ that
enters or leaves your 3B2 Computer. For an average computer, little if
any intervention with the automatic cleanup functions is required. A
computer with a large amount of traffic may require more attention as
problems arise.

By now, you have probably realized that the *"UUCP facilities’”” make up the
bulk of the Basic Networking Utilities. The UUCP facilities could generally
be defined as all the programs and support files in Basic Networking except
the et and cu programs.

Refer to the AT&T 3B2 User Reference Manual for UNIX System V manual
pages supporting the commands described in this guide.

BN 3-1

ADMINISTRATION

ADMINISTRATIVE FILES

TM - temporary data file

These data files are created under the spool directory (i.e.
/usr/spool /uucp /XXXX) when receiving a file from another machine. The
directory “XXXX'' has the same name as the remote machine that is
sending the file. The temporary data file names have the format:

TM.pid.ddd
Where:
pid is a process-id,
ddd is a sequential three-digit number starting at zero.

After the entire file is received, the TM. file is moved to the path name
specified in the command line. If the file was sent via the uuto program,
the file is automatically moved to the public area. If processing is
abnormally ended, the TM. file may remain in the ""XXXX'" directory.
These files should be periodically removed.

LCK - lock file

Lock files are created in the /usr/spool/locks directory for each device in
use. lLock files prevent duplicate conversations and multiple attempts to
use the same calling device. The file name has the format

LCK.str

where stris either a device or computer name. The files may be left in the
spool directory if runs abort (usually on computer crashes). The lock files
will be ignored (reused) after the parent process is no longer active.

BN 3-2

ADMINISTRATION

Work (C.) File

Work files are created in a spool directory when work (transfers or remote
command executions) has been queued for a remote computer. Their
names have the format:

C. SySNxxxx

where sys is the name of the remote computer, nis the ASCII character
representing the grade (priority) of the work, and xxxx is the four-digit job
sequence number assigned by UUCP.

Work files contain the following information:

« Full path name of the file to be sent or requested.

o Full path name of the destination or "user /file name.
e User log in name.

« List of options.

o Name of associated data file in the spool directory. If the -¢ or -p
option was specified, a dummy name (D.0) is used.

» Mode bits of the source file.

» Remote user’s log in hame to be notified on completion of the
transfer.

Data (D.) File

Data files are created when it is specified in the command line to copy the
source file to the spool directory. Their names have the following format:

D . sysnxxxx

BN 3-3

ADMINISTRATION

where sys is the name of the remote computer, nis the character
representing the grade (priority) of the work, and xxxx is the four-digit job
sequence number assigned by UUCP. The four-digit job sequence number
may be followed by a subjob number that is used when there are several
D. files created for a work (€.) file.

Execute (X.) File
Execute files are created in the spool directory before remote command

executions. Their names have the following format:

X . SYySnxxxx

where sys is the name of the remote computer, nis the character
representing the grade (priority) of the work, and xxxx is the four-digit
sequence number assigned by UUCP.

Execute files contain the following information:

Requester’s log in and computer name.

Name of file(s) required for execution.

Input to be used as the standard input to the command string.

Computer and file name to receive standard output from the
command execution.

L]

» Command string.

e Option lines for return status requests.

BN 3-4

ADMINISTRATION

Machine Log Files

Log files are created for each remote machine with which your 3B2
Computer communicates. Each machine may have four log files, one for
uucico, uuxqgt uux, and /or uucp requests depending on the type of
communication that has taken place. The log files are kept in the
directory /usr/spool/uucp/.Log. Each day, these log files are combined
and stored in the directory /usr/spool/uucp/.0ld when uudemon.cleanu
is executed. The combined files are kept three days before they are
removed. If space is a problem, the administrator may consider reducing
the number of days the files are kept by changing the uudemon.cleanu
shell file.

SUPPORTING DATA BASE

The data base that supports the Basic Networking Utilities is composed of
several support files. These support files contain information required by
the uucico and uuxqt daemons during file transfers or remote command
executions. All the support files are located in the /usr/lib/uucp
directory.

Devices File

The Devices file (/usr/lib/uucp/Devices) contains the information for all
the devices that may be used to establish a link to a remote machine. It
contains information for both automatic call units, direct links, and network
connections. Although provisions are made for several types of devices,
only the AT&T Automatic Dial Modem and Direct Links are supported by
AT&T. The management of this file is supported by the Simple
Administration subcommand devicemgmt.

This file works closely with the Dialers, Systems, and Dialcodes files. It
may be beneficial to become vaguely familiar with these files before
attempting to gain an understanding of the Devices file.

BN 3-5

ADMINISTRATION

Each entry in the Devices file has the following format:

Type Line Line2 Class Dialer-Token-Pairs

where each field (separated by a space) is defined in the following

paragraphs.

Type: This field may contain one of four keywords:

Direct

ACU

Network

System-Name

BN 3-6

This keyword shows a Direct Link to another
computer (for cu connections only).

This keyword shows that the link to a remote
computer is made through an automatic call unit
(Automatic Dial Modem). This modem may be
connected either directly to the 3B2 Computer or
indirectly through a Local Area Network (LAN) switch.

This keyword shows that the link is established
through a LAN switch where Network is replaced with
either micom or develcon. These two LAN switches
are the only ones that contain caller scripts in the
Dialers file (discussed a little later). Other switches
may be used if caller scripts are constructed and
placed in the Dialers file.

This keyword shows a direct link to a particular
machine where System-Name is replaced by the
name of the particular computer. This naming
scheme is used to convey that the line associated
with this Devices entry is for a particular machine.

ADMINISTRATION

The keyword used in the Type field is matched against the third field of
Systems file entries, shown below:

Devices: ACU contty - 1200 penril

Systems: eagle Any ACU 1200 3-2-5-1 ogin: nuucp ssword: Oakgrass

Line: This field contains the device name of the line (port) associated with
the Devices entry. For instance, if the Automatic Dial Modem for a
particular entry was attached to the /dev/contty line, the device name
would be contty.

Line2: If the ACU keyword was used in the Type field and the ACU is an
801-type dialer, this field would contain the device name of the 801 dialer.
Noted that 801 type ACUs do not contain a modem. Therefore, a separate
modem is required and would be connected to a different line (defined in
the Line field). This means that one line would be allocated to the modem
and another to the dialer. Since the 3B2 Computer will not normally use
this type of configuration, this field is ignored, but must contain a pseudo
entry as a placeholder (use a """ as a placeholder).

Class: If an ACU keyword is used, this may be just the speed of the device.
It may contain a letter and speed (e.g. C1200, D1200) to differentiate
between classes of dialers (Centrex or Dimension PBX). This is necessary
because many larger offices may have more than one type of telephone
network. One network may be dedicated to serving only internal office
communications while the other handles the external communications.
Therefore, it is necessary to distinguish what line(s) should be used for
internal communications and what should be used for external
communications. The same distinction must be made in the Systems file
because a match is made against the fourth field of Systems file entries,
shown below:

Devices: ACU contty - D1200 penril

Systems: eagle Any ACU D1200 3-2-5-1 ogin: nuucp ssword: Oakgrass

BN 3-7

ADMINISTRATION

Some devices can be used at any speed, so the keyword ““‘Any’ may be
used in the Class field. If “Any’’ is used, the line will match any speed
requested in a Systems entry. If this field is “*Any" and the Systems Class
field is ““Any’’, the speed defaults to 1200 bps.

Dialer-Token-Pairs: This field contains pairs of dialers and tokens. The
“dialer’” portion may be an automatic dial modem, LAN switch, or “'direct”
for Direct Link devices. The '‘token’ portion may be supplied immediately
following the “‘dialer’” or if not present, it is taken from the Systems file.
This field has the format:

dialer-token dialer-token

where the last pair may or may not be present, depending on the
associated device (dialer). Usually, the last pair will contain only a “‘dialer”
and the “token’ and is retrieved from the Phone field of the Systems
entry.

The Dialer-Token-Pairs (DTP) field may be structured four different ways,
depending on the device associated with the entry:

1. If a direct link is established to a particular computer, the DTP field of
the associated entry would contain the keyword *‘direct.”” This is true
for both types of direct link entries, Direct and System-Name (refer to
discussion on the Type field).

2. If an automatic dialing modem is connected directly to a 3B2
Computer port, the DTP field of the associated Devices entry will only
have one pair. This pair would normally be the name of the modem.
This name is used to match the particular Devices entry with an entry
in the Dialers file. Therefore, this ‘“‘dialer’” must match the first field of
a Dialers file entry, shown below:

Devices: ACU contty - 1200 ventel

Dialers: ventel =&-% "" \r\p\r\c $ <K\T%%\r>\c ONLINE!

BN 3-8

ADMINISTRATION

Notice that only the “‘dialer’” (ventel) is present in the DTP field of the
Devices entry. This means that the ““token’ to be passed on to the
dialer is taken from the Phone field of a Systems file entry.

If an automatic dialing modem is connected to a LAN, the 3B2
Computer must first access the switch and the switch will make the
connection to the automatic dialing modem. This type of entry would
have two pairs. The ‘‘dialer’” portion of each pair (fifth and seventh
fields of entry) is used to match entries in the Dialers file, shown
below:

Devices: ACU ttyl4d - 1200 develcon vent ventel

Dialers: ventel =&-% "" \r\p\r\c $ <K\T%%\r>\c ONLINE!
Dialers: dewelcon "™ "™ \pr\ps\c est:\007 \E\D\e \007

in the first pair, develcon is the "'dialer’” and vent is the “‘token’ that
is passed to the Develcon switch to tell it what device (ventel modem)
to connect to the 3B2 Computer. This token would be uncommon for
each LAN switch since each switch may be set up differently. Once
the ventel modem has been connected, the second pair is accessed
where ventel is the *'dialer’”” and the ‘'token’ is retrieved from the
Systems file.

If a machine to which you wish to communicate is on the same local
network switch as your 3B2 Computer, the 3B2 Computer must first
access the switch and the switch can make the connection to the
other machine. In this type of entry, there is only one pair. The
“dialer’” portion is used to match a Dialers entry, shown below:

Devices: develcon ttyl3 - 1200 develcon \D

Dialers: develcon ™" "" \pr\ps\c est:\007 \E\D\e \007

This shows that the “‘token’ is left blank that indicates that it is
retrieved from the Systems file. The Systems file entry for this
particular machine will contain the token in the Phone field that is
normally reserved for the phone number of the machine (refer to

BN 3-9

ADMINISTRATION

““‘Systems File”’, Phone field). This type of DTP contains an escape
character (\D) which ensures that the contents of the Phone field will
not be interpreted as a valid entry in the Dialcodes file.

There are two escape characters that may appear at the end of a DTP
field:

\T This shows that the Phone (token) field should be translated
using the Dialcodes file. This escape character is normally
placed in the Dialers file for each caller script associated with an
automatic dial modem (penril, ventel, etc.). Therefore, the
translation will not take place until the caller script is accessed.

\D This shows that the Phone (token) field should not be translated
using the Dialcodes file. If no escape character is specified at
the end of a Devices entry, the \D is assumed (default). A\D is
also used in the Dialers file with entries associated with network
switches (develcon and micom).

Dialers File

The Dialers file (/usr/lib/uucp/Dialers) is used to specify the initial
handshaking that must take place on a line before it can be made available
for transferring data. This initial handshaking is usually a sequence of
ASCII strings that are transmitted and expected, and is often used to dial a
phone number using an ASCH dialer (such as the Automatic Dial Modem).
Shown in the above examples, the fifth field in a Devices file entry is used
as an index into the Dialers file. Here an attempt is made to match the
Devices field with the first field of each Dialers entry. In addition, each odd
numbered Devices field starting with the seventh position is used as an
index into the Dialers file. The management of this file is not supported by
Simple Administration. Therefore, changes must be made using the
editors ed or wvi.

If the match succeeds, the Dialers entry is interpreted to start the dialer
negotiations. The first field matches the fifth and additional odd numbered
fields in the Devices file. The second field is used as a translate string: the

BN 3-10

ADMINISTRATION

first of each pair of characters is mapped to the second character in the
pair. This is usually used to translate = and - into whatever the dialer
requires for “‘wait for dialtone' and “pause.”

The remaining fields are ‘‘expect-send’’ strings. Below are some character
strings distributed with the Basic Networking Utilities in the Dialers file.

penril =W-P "" \d > s\p9\c }-W\p\r\ds\p9\c-) y\c : \E\TP > 9\¢c OK
ventel =&-% "™ \r\p\r\c $ <K\T%%\r>\c ONLINE!

hayes =,-, "" \dAT\r\c OK\r \EATDT\T\r\c CONNECT

rixon =&-% "" \d\r\r\c $ s9\c)-W\r\ds9\c-) s\¢ : \T\r\c $ 9N\c LINE
vadiac =K-K "" \005\p *-\005\p-*\005\p-* D\p BER? \E\T\e \r\c LINE

develcon ™" "" \pr\ps\c est:\007 \E\D\e \007
micom "™ """ \s\c NAME? \D\r\c GO
direct

The meaning of some of the escape characters (those beginning with “\"’)
used in the Dialers file are listed below:

\p pause (about Y to 2 second)

\d delay (about 2 seconds)

\D phone number or token without Dialcodes translation
\T phone number or token with Dialcodes translation
\K insert a BREAK

\E enable echo checking (for slow devices)

\e disable echo checking

\r tarriage return

\C no new-line

BN 3-11

ADMINISTRATION

\n send new-line

\nnn send octal number.

Additional escape characters that may be used are listed in the section
discussing the Systems file.

The penril entry in the Dialers file is executed as follows. First, the phone
number argument is translated, replacing any “'="" with a (pause). The
handshake given by the remainder of the line works as follows:

e Wait for nothing.

\d Delay for 2 seconds.
> Wait for a “>."
s\p9\c Send an ‘s, pause for Y second, send a 2, send no

terminating new-line

)-WAP\r\ds\p8\c-) Wait for a **).” If it is not received, process the string
between the -7 characters as follows. Send a “W'",
pause, send a carriage-return, delay, send an *‘s"",
send a 9", without a new-line, and then wait for the

oy
vy\C Send a ''y.”

Wait for a *":."
\E\TP Enable echo checking. (From this point on, whenever

a character is transmitted, it will wait for the
character to be received before doing anything else.)
Then, send the phone number followed by a pause
character (P). The \T means take the phone number
passed as an argument and apply the Dialcodes
translation and the modem function translation
specified by field humber 2 of this entry.

BN 3-12

ADMINISTRATION

> Wait for a “'>."
9\c Send a "9 without a new-line.
OK Waiting for the string “'OK.”

Systems File

The Systems file (/usr/lib/uucp/Systems) contains the information
needed by the uucico daemon to establish a communication link to a
remote machine. Each entry in the file represents a machine that can be
called by the 3B2 Computer. In addition, Basic Networking can be
configured to prevent any machine that does not appear in this file from
logging in on your 3B2 Computer (refer to “‘remete.unknown’’). More
than one entry may be present for a particular machine. The additional
entries represent alternate communication paths that will be tried in
sequential order. The management of this file is supported by the Simple
Administration subcommand systemmgmt.

Each entry in the Systems file has the following format:
System-Name Time Type Class Phone Login
where each field is defined in the following paragraphs.
System-name: This field contains the node name of the remote machine.

Time: This field is a string that shows the day-of-week and time-of-day
when the remote machine can be called. The day portion may be a list
containing some of the following:

Su Mo Tu We Th Fr Sa

Wk for any week-day

BN 3-13

ADMINISTRATION

Any for any day

Never for a passive arrangement with the remote machine. Here, the
3B2 Computer will never start a call to the remote machine.
The call must be started by the remote machine. The 3B2
computer is in a passive mode with the remote machine. (See
discussion of Permissions file.)

The time should be a range of times such as 0800-1230. If no time
portion is specified, any time of day is assumed to be allowed for the call.
Note that a time range that spans 0000 is permitted. For example, 0800-
0600 means all times are allowed other that times between 6 a.m. and 8
a.m. An optional subfields available to specify the minimum time (in
minutes) before a retry, following a failed attempt. The subfield separator
is a semicolon (;). For example, Any;9 is interpreted as call any time; but,
wait at least 9 minutes before retrying after a failure occurs.

Type: This field contains the device type that should be used to establish
the communication link to the remote machine. The Devices file is
searched for the device type listed and the device found is used to
establish the connection (if available). The following keywords may appear
in this field:

ACU This keyword shows that the link to a remote computer
is made through an automatic call unit (automatic dial
modem). This modem may be connected either
directly to the 3B2 Computer or indirectly through a
Local Area Network (LAN) switch.

Network This keyword shows that the link is established through
a LAN switch where Network is replaced with either
micom or develcon. These two switches are the only
ones that contain caller scripts in the Dialers file
(discussed a little later). Other switches may be used if
caller scripts are constructed and placed in the Dialers
file.

System-Name This keyword shows a direct link to a particular
machine where System-Name is replaced by the name

BN 3-14

ADMINISTRATION

of the particular computer (should be same as field
one).

The keyword used in this field is matched against the first field of Devices
file entries, shown below:

Systems: eagle Any ACU D1200 3-2-5-1 ogin: nuucp ssword: Oakgrass

Devices: ACU contty - D1200 penril

Class: This field is used to show the transfer speed of the device used in
establishing the communication link. It may contain a letter and speed
(e.g. C1200, D1200) to differentiate between classes of dialers (refer to
the discussion on the ‘‘Devices File,” Class field). Some devices can be
used at any speed, so the keyword ““Any’’ may be used. This field must
match the Class field in the associated Devices entry, shown below:

Systems: eagle Any ACU D1200 3-2-5-1 ogin: nuucp ssword: Oakgrass

Devices: ACU contty - D1200 penril

Phone: This field is used to provide the phone number (token) of the
remote machine for automatic dialers (LAN switches). The phone number
is made up of an optional alphabetic abbreviation and a numeric part. The
abbreviation must be one that is listed in the Dialcodes file. In this string,
an equal sign (=) tells the ACU to wait for a secondary dial tone before
dialing the remaining digits. A dash in the string (-) instructs the ACU to
pause four seconds before dialing the next digit.

If your 3B2 Computer is connected to a LAN switch, you may access other
machines that are connected to that switch. The Systems entries for
these machines will not have a phone number in the Phone field. Instead,
this field will contain the “token’ that must be passed on to the switch so
it will know what machine the 3B2 Computer wishes to communicate with.
The associated Devices entry should have a \D at the end of the entry to
ensure that this field is not translated using the Dialcodes file.

BN 3-15

ADMINISTRATION

Login: This field contains the log in information given as a series of fields
and subfields of the format:

expect send

where expect is the string that is received and send is the string that is
sent when the expect string is received.

The expect field may be made up of subfields of the form:

expect[-send-expect]...

where the send is sent if the prior expect is not successfully read and the
expect following the send is the next expected string. For example, with
“login--login’’, UUCP will expect ““login.” If UUCP gets “login,’ it will go on
to the next field. If it does not get login, it will send nothing followed by a -
new line, then look for login again. If no characters are initially expected
from the remote machine, the characters " " (null string) should be used in
the first expect field. Note that all send fields will be sent, followed by a
new-line unless the send string is stopped with a \c.

There are several escape character that cause specific actions when they
are a part of a string sent during the log in sequence. The following escape
characters are useful in UUCP communications:

\N Send a null character.
\b Send a backspace character.
\C If at the end of a string, suppress the new-line that is

normally sent. (lgnored otherwise.)

\d Delay two seconds before sending or reading more
characters.

BN 3-16

ADMINISTRATION

\p Pause for about % to Y2 second.

\Nn Send a new-line character.

\r Send a carriage-return.

\S Send a space character.

A\t Send a tab character.

A\ Send a \ character.

EOT Send EOT character (actually EOT new-line is sent twice).

BREAK Send a break character.
\ddd Collapse the octal digits (ddd) into a single character and

send that character.

Dialcodes File

The Dialcodes file (/usr/lib/uucp/Dialcodes) contains the dial-code
abbreviations used in the Phone field of the Systems file. Each entry has
the format

abb dial-seq

where abb is the abbreviation used in the Systems file (Phone field) and
dial-seq is the dial sequence that is passed to the dialer when that
particular Systems entry is accessed.

The entry
jt 9=847-

would be set up to work with a Phone field in the Systems file such as

BN 3-17

ADMINISTRATION

jt7867. When the entry containing jt7867 is encountered, the sequence
9=847-7867 would be sent to the dialer.

The management of this file is not supported by Simple Administration.
Therefore, changes must be made using the editors ed or vi.

Permissions File

The Permissions file (/usr/lib/uucp/Permissions) is used to specify the
permissions that remote machines have with respect to login, file access,
and command execution. Options are provided for restricting the ability to
request files and the ability to receive files queued by the local site. In
addition, an option is available to specify the commands that a remote site
can execute on the local machine. The management of this file is not
supported by Simple Administration. Therefore, changes must be made
using the editors ed, vi.

How Entries are Structured

Each entry is a logical line with physical lines ending with a \ to show
continuation. Entries are made up of “white space’ delimited options.
Each option is a name /value pair. These are constructed by an option
name followed by a ‘‘="" and the value. Note that no white space is
allowed within an option assignment.

Comment lines begin with a “'#'’ and they occupy the entire line up to a
newline character. Blank lines are ignored (even within multi-line entries).

There are two types of Permissions entries:

LOGNAME Specifies permissions that take effect when a remote
machine logs in on (calls) your 3B2 Computer.

MACHINE Specifies permissions that take effect when your 3B2
Computer logs in on (calls) a remote machine.

BN 3-18

ADMINISTRATION

LOGNAME entries will contain a LOGNAME option and MACHINE entries will
contain a MACHINE option.

Considerations

The following items should be considered when using the Permissions file
to restrict the level of access granted to remote machines:

1. All login IDs used by remote machines to log in for UUCP type
communications must appear in one and only one LOGNAME entry.

2. Any site that is called whose name does not appear in a MACHINE
entry, will have the following default permissions /restrictions:

« Local send and receive requests will be executed.

« The remote machine can send files to your 3B2 Computers
/usr/spool /uucppublic directory.

» The commands sent by remote machine for execution on your
3B2 Computer must be a default command, usually rmail.

Options

This section provides the details of each option, specifying how they are
used and their default values.

BN 3-19

ADMINISTRATION

REQUEST

When a remote machine calls your 3B2 Computer and requests to receive
a file, this request can be granted or denied. The REQUEST option
specifies whether the remote machine can request to set up file transfers
from your 3B2 Computer. The string

REQUEST=yes

specifies that the remote machine can request to transfer files from your
3B2 Computer. The string

REQUEST=no

specifies that the remote machine cannot request to receive files from
your 3B2 Computer. The “‘no’’ string is the default value. It will be used if
the REQUEST option is not specified. The REQUEST option can appear in
either a LOGNAME (remote calls you) entry or a MACHINE (you call
remote) entry.

SENDFILES

When a remote machine calls your 3B2 Computer and completes its work,
it may attempt to take work your 3B2 Computer has queued for it. The
SENDFILES option specifies whether your 3B2 Computer can send the
work queued for the remote machine. The string

SENDFILES=yes

specifies that the 3B2 Computer may send the work that is queued for the
remote machine as long as it logged in as a name in the LOGNAME option.
This string is mandatory if the 3B2 Computer is in a ‘passive mode’ with
respect to the remote machine.

BN 3-20

ADMINISTRATION

The string
SENDFILES=call

specifies that files queued in your 3B2 Computer will only be sent when the
3B2 Computer calls the remote machine. The call value is the default for
the SENDFILE option. This option is only significant in LOGNAME entries
since MACHINE entries apply when calls are made out to remote
machines. If the option is used with a MACHINE entry, it will be ignored.

READ and WRITE

These options specify the various parts of the file system that uucico can
read from or write to. The READ and WRITE options can be used with
either MACHINE or LOGNAME entries.

The default for both the READ and WRITE options is the uucppublic
directory, shown in the following strings:

READ=/usr /spool /uucppublic WRITE=/usr /spool /uucppublic
The strings
READ=/ WRITE=/

specify permission to access any file that can be accessed by a local user
with “other’” permissions.

BN 3-21

ADMINISTRATION

The value of these entries is a colon separated list of path names. The
READ option is for requesting files, and the WRITE option for depositing
files. A value must be the prefix of any full path name of a file coming in or
going out. To grant permission to deposit files in /usr/news as well as the
public directory, the following values would be used with the WRITE option:

WRITE= /usr /spool /uucppublic: /usr /news

It should be pointed out that if the READ and WRITE options are used, all
path names must be specified because the path names are not added to
the default list. For instance, if the /usr/news path name was the only
one specified in a WRITE option, permission to deposit files in the public
directory would be denied.

BN 3-22

ADMINISTRATION

NOREAD and NOWRITE

The NOREAD and NOWRITE options specify exceptions to the READ and
WRITE options or defaults. The strings

READ=/ NOREAD=/etc WRITE= /usr/spool/uucppublic

would permit reading any file except those in the /ete directory (and its
subdirectories - remember, these are prefixes) and writing only to the
default /usr/spool/uucppublic directory. NOWRITE works in the same
way as the NOREAD option. The NOREAD and NOWRITE can be used in
both LOGNAME and MACHINE entries.

CALLBACK

The CALLBACK option is used in LOGNAME entries to specify that no
transaction will take place until the calling system is called back. The
string

CALLBACK=yes

specifies that your 3B2 Computer must call the remote machine back
before any file transfers will take place.

The default for the COMMAND option is

CALLBACK=no

The CALLBACK option is rarely used. Note that if two sites have this
option set for each other, a conversation will never get started.

BN 3-23

ADMINISTRATION

COMMANDS

Warning: The COMMANDS option can be hazardous to the
security of your system. Use it with extreme care.

The uux program will generate remote execution requests and queue them
to be transferred to the remote machine. Files and a command are sent
to the target machine for remote execution. The COMMANDS option can
be used in MACHINE entries to specify the commands that a remote
machine can execute on your 3B2 Computer. The string

COMMANDS=rmail

tells the default commands that a remote machine can execute on your
3B2 Computer. If a command string is used in a MACHINE entry, the
default commands are overridden, For instance, the entry

MACHINE=owl:raven:hawk:dove \
COMMANDS=rmail:rnews:|Ip

overrides the COMMAND default such that the command list for machines
owl, raven, hawk, and dove now consists of rmail, rnews and Ip.

In addition to the names as specified above, there can be full path names
of commands. For example,

COMMANDS=rmail: /usr /Ibin /rnews: /usr /local /Ip

specifies that command rmail uses the default path. The default paths for
the 3B2 Computer are /bin, /usr/bin, and /usr/lbin. When the remote
machine specifies rnews or /usr/lbin/rnews for the command to be
executed, /usr/lbin/rnews will be executed regardless of the default path.
Likewise, /usr/local/lp is the Ip command that will be executed.

BN 3-24

ADMINISTRATION

Including the “ALL" value in the list means that any command from the
remote machine(s) specified in the entry will be executed. If you use this
value, you give the remote machine full access to your 3B2 Computer.

The string
COMMANDS= /usr /lbin /rnews:ALL: fusr /local /Ip

illustrates two points. The ALL value can appear anywhere in the string.
And, the path names specified for rnews and Ip will be used (instead of the
default) if the requested command does not contain the full path names
for rmews or Ip.

The VALIDATE option should be used with the COMMANDS option
whenever potentially dangerous commands like cat and uucp are specified
with the COMMANDS option. Any command that reads or writes files is
potentially dangerous to local security when executed by the UUCP remote
execution daemon (uuxqgt).

YALIDATE

The VALIDATE option is used with the COMMANDS option when specitying
potentially dangerous commands. It is used to provide a certain degree of
verification of the caller’'s identity. The use of the VALIDATE option
requires that privileged machines have a different login/password for
UUCP transactions. An important aspect of this validation is that the

login /password associated with this entry be protected. If an outsider
gets that information, that particular VALIDATE option can no longer be
considered secure.

BN 3-25

ADMINISTRATION

Much consideration should be given to providing a remote machine with a
privileged login and password for UUCP transactions. Giving a remote
machine a special login and password with file access and remote
execution capability is like giving anyone on that machine a normal login
and password on your 3B2 Computer. Therefore, if you cannot trust
someone on the remote machine, do not provide that machine with a
privileged login and password.

The LOGNAME entry
LOGNAME=uucpfriend VALIDATE=eagle:owl:hawk

specifies that if a remote machine that claims to be eagle, owl, or hawk
logs in on your 3B2 Computer, it must have used the login uucpfriend. As
can be seen, if an outsider gets the uucpfriend login /password,
masquerading is trivial.

But what does this have to do with the COMMANDS option, which only
appears in MACHINE entries? It links the MACHINE entry (and
COMMANDS option) with a LOGNAME entry associated with a privileged
login. This link is needed because the execution daemon is not running
while the remote machine is logged in. It is an asynchronous process with
no knowledge of what machine sent the execution request. Therefore, the
real question is how does your 3B2 Computer know where the execution
files came from?

Each remote machine has its own ‘‘spool’ directory on your 3B2
Computer. These spool directories have write permission given only to the
UUCP programs. The execution files from the remote machine are put in
its spool directory after being transferred to your 3B2 Computer. When
the uuxqt daemon runs, it can use the spool directory name to find the
MACHINE entry in the Permissions file and get the COMMANDS list, or if
the machine name does not appear in the Permissions file, the default list
will be used.

BN 3-26

ADMINISTRATION

The following example shows the relationship between the MACHINE and
LOGNAME entries:

MACHINE=eagle:owl:hawk REQUEST=yes \
COMMANDS=ALL \
READ=/ WRITE=/

LOGNAME=uucpz VALIDATE=eagle:owl:hawk \
REQUEST=yes SENDFILES=yes \
READ=/ WRITE=/

These entries provide unlimited read, write, and command execution for
the remote machines eagle, owl, and hawk. The ALL value in the
COMMANDS option means that any command can be executed by either
of these machines. Using the ALL value gives the remote machine
unlimited access to your 3B2 Computer. Files that are only readable or
writable by user “‘uucp’ (like Systems or Devices) can be accessed using
commands like ed. This means a user on one privileged machine can write
in the Systems file as well as read it!

In the first entry, you must make the assumption that when you want to
call a machine listed, you are really calling either eagle, owl, or hawk.
Therefore, any files put into a eagle, owl, or hawk spool directory is put
there by one of those machines. If a remote machine logs in and says that
it is one of these three machines, its execution files will also be put in the
privileged spool directory. You therefore have to validate that the
machine has the privileged login “‘uucpz.”

BN 3-27

ADMINISTRATION

MACHINE Entry for “Other’’ Systems

You may want to specify different option vaiues for the machines your 3B2
Computer calls that are not mentioned in specific MACHINE entries. This
may occur when there are many machines calling in, and the command
set changes from time to time. The name “OTHER’ for the machine
name is used for this entry, shown below:

MACHINE=0OTHER \
COMMANDS=rmail:rnews: /usr /Ibin /Photo: /usr /Ibin /xp

Al other options available for the MACHINE entry may also be set for the
machines that are not mentioned in other MACHINE entries.

Combining MACHINE and LOGNAME Enitries

It is possible to combine MACHINE and LOGNAME entries into a single
entry where the common options are the same. For example, the two
entries

MACHINE=eagle:owl:hawk REQUEST=yes \
READ=/ WRITE=/

LOGNAME=uucpz REQUEST=yes SENDFILES=yes \
READ=/ WRITE=/

share the same REQUEST, READ, AND WRITE options. These two entries
can be merged into one entry as shown.

MACHINE=eagle:owl:hawk REQUEST=yes \
LOGNAME=uucpz SENDFILES=yes \
READ=/ WRITE=/

BN 3-28

ADMINISTRATION

Sample Permissions Files

Example 1

This first example represents the most restrictive access to your
computer.

LOGNAME=nuucp
It states that login “‘nuucp’’ has all the default permissions /restrictions:

¢ The remote machine can only send files to uucppublic.

» The remote machine cannot request to receive files (REQUEST
option).

+ No files that are queued for the remote machine will be transferred
during the current session (SENDFILES option).

e The only commands that can be executed are the defaults.

This entry alone is enough to start communications with remote machines,
permitting files to be transferred only to the /usr/spool/uucppublic
directory.

BN 3-29

ADMINISTRATION

Example 2

The next example is for remote machines that log in, but have fewer
restrictions. The login and password corresponding to this entry should
not be distributed to the general public; it is usually reserved for closely
coupled systems where the Systems file information can be tightly
controlled.

LOGNAME=uucpz REQUEST=yes SENDFILES=yes \
READ=/ WRITE=/

This entry places the following permissions /restrictions on a machine that
logs in as “uucpz’’:

s Files can be requested from your 3B2 Computer (REQUEST option).

e Files can be transferred to any directory or any file that is writable
by user “‘other.”” That is a file /directory that is writable by a local
user with neither owner nor group permissions (WRITE option).

o Any files readabie by user “‘other’ can be requested (READ option).

¢ Any requests queued for the remote machine will be executed during
the current session. These are files destined for the machine that

has called in (SENDFILES option).

+ The commands sent for execution on the local machine must be in
the default set.

BN 3-30

ADMINISTRATION

Example 3

The two previous examples showed entries that referred to remote
machines when they log into your 3B2 Computer. This example is an
entry used when calling remote machines.

MACHINE=eagle:ow!:hawk:raven \
REQUEST=yes READ=/ WRITE=/

When calling any of the systems given in the MACHINE list, the following
permissions prevail:

« The remote machine can both request and send files (REQUEST
option).

» The source or destination of the files on the local machine can be
anywhere in the file system.

« The only commands that will be executed for the remote machine
are those in the default set.

Any site that is called that does not have its name in a machine entry will
have the default permissions as stated in Example 1, with the exception
that files queued for that machine will be sent (the SENDFILES option is
only interpreted in the LOGNAME entry).

BN 3-31

ADMINISTRATION

Poll File

The Poll file (/usr/lib/uucp/Poll) contains information for polling specified
Machines. Each entry in the Poll file contains the name of the remote
machine to call, followed by a TAB character, and finally the hours the
machine should be called. The entry

eagle 0481216 20

will provide polling of machine eagle every four hours.

Note: |t should be understood that uudemon.poll does not
actually do the poll, it merely sets up a polling work (C.) file in the
spool directory that will be seen by the scheduler, started by
uudemon.hour. Refer to the discussion on uudemon.polil.

Maxuuxgts File

The Maxuuxqts (/usr/lib/uucp/Maxuuxqts) file contains an ASCIlI number
to limit the number of simultaneous uuxgt programs running. This file is
delivered with a default entry of one. This may be changed to meet local
needs. If there is much traffic from mail, it may be advisable to increase
this number to reduce wait time. However, keep in mind that the load on
the system increases with the number of uuxqt programs running.

Maxuuscheds File

The Maxuuscheds (/usr/lib/uucp/Maxuuscheds) file contains an ASClI
number to limit the number of simultaneous uusched programs running.
Each uusched running will have one uucico associated with it; limiting the
number will directly affect the load on the system. The limit should be less
than the number of outgoing lines used by UUCP (a smaller number is
often desirable). This file is delivered with a default entry of one. Again,
this may be changed to meet the needs of the local system. However,
keep in mind that the load on the system increases with the number of
uusched programs running.

BN 3-32

ADMINISTRATION

remote.unknown

The remote.unknown program (/usr/lib/uucp/remote.unknown) is a shell
file that is executed when a remote site that is not in the Systems file calls
in to start a conversation. The shell script will append the name and time
information to the file /usr/spool/uucp/.Admin/Foreign. Sinceitis a
shell, it can be easily modified. For example, it can be set up to send mail
to the administrator. The contents of this file, as delivered, is as follows:

FOREIGN=/usr/spool /uuncp/.Admin/Foreign
echo " ‘date*: call from system $1" >>$FOREIGN

If you want to permit unknown machines to converse, you may change the
mode of the remote.unknown file to unexecutable (444).

ADMINISTRATIVE TASKS

There is a2 minimum amount of maintenance that must be applied to your
3B2 Computer to keep the files updated, to ensure that the network is
running properly, and to track down line problems. When more than one
remote machine is involved, the job becomes more difficult because there
are more files to update and because users are much less patient when
failures occur between machines that are under local control. The uustat
program provides you with information about the latest attempts to
contact various machines and the age and number of jobs in the queue for
remote machines. The following sections describe the routine
administrative tasks that must be performed by someone acting as the
UUCP administrator or are automatically performed by the UUCP daemons
(demons).

The biggest problem in a dialup network like UUCP is dealing with the
backlog of jobs that cannot be transmitted to other machines. The
following cleanup activities should be routinely performed.

BN 3-33

ADMINISTRATION

Cleanup of Undeliverable Jobs

The wustat program should be invoked regularly to provide information
about the status of connections to various machines and the size and age
of the queued requests. The uudemon.admin shell should be started by
cron at least once per day. This will send the administrator the current
status. Of particular interest are the age (in days) of the oldest request in
each queue, the number of times a failure has occurred when attempting
to reach that machine, and the reason for failure. In addition, the age of
the oldest execution request (X. file) is also given.

The uudemon.cleanu shell file is set up to remove any jobs that have been
queued for several days and cannot be sent. Leftover data (D.) and work

(C.) files are removed after seven days, and execute (X.) files are removed
after two days. It also provides feedback to the user indicating when jobs

are not being done and when these jobs are being deleted.

Cleanup of the Public Area

To keep the local file system from overflowing when files are sent to the
public area, the uudemon.cleanu procedure is set up with a find command
to remove any files that are older than seven days and directories that are
empty. This interval may need to be shortened by changing the
uudemon.cleanu shell file if there is not enough space to devote to the
public area.

Since the spool directory is dynamic, it may grow large before transfers
take place. Therefore, it is a good idea to reorganize its structure. The
best way to do this on your 3B2 Computer is to put some code in the
/ete/re.d file to execute whenever the system is booted.

BN 3-34

ADMINISTRATION

The following is an example of such code:

Clean up /usr/spool/uucp

Most cleanup is now done by uudemon.cleanu
so just copy out and back.
#

echo " UUCP SPOOL DIRECTORIES CLEANUP STARTED"
#

cd /usr/spool/uucp

mkdir ../nuucp

chown uucp ../nuucp

chgrp uucp ../nuucp

find . -printicpio -pdmi .. /nuucp

cd ..

mv uucp ouucp

mv nuucp uucp

rm -rf ouucp

#

chown uucp /dev/culal]*

chgrp uucp /dev/cufal]*

chmod 0666 /dev/cul*

chmod 0222 /dev/cua*

echo " UUCP SPOOL DIRECTORIES CLEANUP FINISHED"

Compaction of Log Files

This version of Basic Networking has individual log files for each machine
and each program (e.g. machine eagle has a logfile for uucico requests
and a logfile for uuxqt execution requests). The uulog program gives the
user access to the information in these files by machine name. These files
are combined and stored in directory /fusr/lib/uucp/.0ld whenever
uudemon.cleanu is executed. This shell script saves files that are two
days old. The two days can be easily changed by changing the appropriate
line in the uudemon.cleanu shell. If space is a problem, the administrator
might consider reducing the number of days the files are kept.

BN 3-35

ADMINISTRATION

Cleanup of sulog and cron log

The /usr/adm/sulog and /usr/lib/cron/log files are both indirectly
related to UUCP transactions. The sulog file contains a history of the su
command usage. Since the uudemon entries in the /usr/lib/cron/root
file each use the su command, the sulog could become large over a period
of time. The suleg should be periodically purged to keep the file at a
reasonable size.

Similarly, a history of all processes spawned by /etc/cron are recorded in
Jusr/lib/cron/log. The cron log file will also become large over a period
of time and should be periodically purged to limit its size. The AT&T 3B2
System Administration Utilities Guide contains information on the purging
of these files.

UUCP AND CRON

The eron daemon is a tool that proves to be useful in the administration of
UNIX Systems. When the 3B2 Computer is in run state 2 (multi-user),
cron scans the /usr/spool/cron/crontab/root file every minute for entries
that contain “‘work’ scheduled to be executed at that time. Itis
recommended that the UUCP administrator make use of cron to aid in the
administration of the Basic Networking Utilities.

As delivered, the Basic Networking Utilities contain four entries in the root
crontab file. Each one of these entries execute shell scripts that are used
for various administrative purposes. These shell scripts can be easily
modified to meet the needs of your system.

uudemon.admin

The uudemon.admin shell script mails status information to the UUCP
administrative login (uucp) using uustat commands with the -p and -q
options.

BN 3-36

ADMINISTRATION

The uudemon.admin shell script should be executed daily by an entry in
the root crontab file. The default root crontab entry for uudemon.admin
is as follows:

48 8,12,16 * * * /hin/su uucp -c¢ " /usr/lib/uucp /uudemon.admin™ > /dev/null

uudemeon.cleanu

The uudemon.cleanu shell script cleans up the Basic Networking log files
and directories. Archived log files are updated so that no log information
over three days old is kept. Log files for individual machines are taken
from the /usr/spool/uucp/.Log directory, merged, and placed in the
/Jusr/spool /uucp/.0ld directory along with the older log information. Files
and directories that are no longer needed in the spool directories are
removed. After clean up is performed, the UUCP administrative login
(uucep) is mailed a summary of the status information gathered during the
current day.

The uudemon.cleanu shell script should be executed by an entry in the
root crontab file. It can be run daily, weekly, or whenever, depending on
the amount of UUCP traffic that enters and leaves your 3B2 Computer.
The default root crontab entry for uudemeon.cleanu is as follows:

45 23 * * * ulimit 5000; /bin/su uucp -c¢ " /usr /lib /uucp /uudemon.cleanu” > /dev/null 2>&1

if log files get large, the ulimit may need to be increased.

uudemon.hour

The uudemon.hour shell script is used to call UUCP programs on an hourly
basis. The uusched program is called to search the spool directory for
work files (C.) that have not been processed and schedule these files for
transfer to a remote machine. The uuxqt daemon is called to search the
spool directory for execute files (X.) that have been transferred to your
3B2 Computer and were not processed at the time they were transferred.

BN 3-37

ADMINISTRATION

The uudemon.hour shell script should be executed by an entry in the root
crontab file. If the amount of traffic leaving and entering your 3B2
Computer is large, it may be started once or twice an hour. If itis small, it
may be started once every four hours or so. The default root crontab
entry for uudemon.hour is as follows:

41,11 * * * * v /Jugr /lib /uucp /uudemon.hour > /dev/null

uudemon.poll

The uudemon.poli shell script is used to poll the remote machines listed in
the Poll file (/usr/lib/uucp/Poll). It creates work files (C.) for machines
according to the entries listed in the Poll file. It should be set up to run
once an hour just before uudemon.hour so that the work files will be
present when uudemon.hour is called.

The uudemon.poli script should be executed by an entry in the root
crontab file. The exact times it runs should be dependent on the
scheduling of uudemen.hour. The default root crontab entry for
uudemon.poll is as follows:

1,30 * * * ** fysr/lib /uucp /uudemon.poll > /dev/null

Note how uudemon.poll is scheduled to run eleven minutes before
uudemeon.hour runs.

BN 3-38

ADMINISTRATION

INITTAB ENTRIES

The /etc/inittab file contains information for the processes to be spawned
on the 3B2 Computer devices, including the ports. This file should
normally be managed by the uucpmgmt Simple Administration
subcommand portmgmt. Ports that are used by Basic Networking are
normally bidirectional ports. Bidirectional ports can be used to receive
incoming calls, as well as place outgoing calls. The uugetty program is
used in place of getty for those bidirectional ports associated with Basic
Networking. For additional information on the inittab entries associated
with Basic Networking, refer to the Simple Administration subcommand
portmgmt.

BN 3-39

ADMINISTRATION

UUCP LOGINS AND PASSWORDS

There are two login |Ds associated with the Basic Networking Utilities: one
is the UUCP administrative login uucp, and the other is an access login
(nuucp) used by remote computers to access your 3B2 Computer. These
log ins should not be changed from their default settings of uucp and
nuucp.

The uucp administrative login is the owner of all the UUCP object and
spooled data files. The following is a sample entry in the /etc/passwd file
for the administrative login:

uucp:zAvLCKp:5:1:UUCP.Admin: /usr /lib /uucp:

The nuucp access log in allows remote machines to log in on your 3B2
Computer. The following is a sample entry in the /etc/passwd file for the
access login:

nuucp:zaaAA:6:1:UUCP.Admin: /usr /spool /uucppublic: /usr /lib /uucp /uucico

Note that the standard shell is not given to the nuucp login. The shell that
nuucp receives is the uucico daemon that controls the conversation when
a remote machine logs into your machine.

The assigning of passwords for the uucp and nuucp logins is left up to the
administrator. The passwords should be at least six to eight characters
with a rich alphabet. Only the first eight characters of the passwords are
significant. If the password for the access log in is changed for security
reasons, make certain that the remote machines that are a part of your
network are properly notified of the change.

BN 3-40

Chapter 4

SIMPLE ADMINISTRATION

PAGE

INTRODPUCTIOM iiieanenaanneanannnnnsnasnanenanaennanensasnanas 4-1
FUOMCTIONALITY ...ttt i it inan e e e anaanaaananssasaanannanannnnnnnanne 4-2
Common Functionality aaaaaaaaaaan 4-3
SUBCOMMANDS . . oot m e m e amaanaaa e naamansnaeannneeenassnansnnnssnnon 4-4
SYSEEMMIEME . ..ot i a e s e 4-4

B Lo LY P 4-5

Lo =2 4-6
POFIMEME L L o et i i aannnonannernnacannaannaaaanen e s 4-7

ASSUMPTIOMNS it iennonrannnmareanannrasnaaaaasnnanccnnensssna 4-8

Chapter 4

SIMPLE ADMINISTRATION

INTRODUCTION

The Basic Networking Utilities Management (uucpmgmt) package is a set
of Simple Administration scripts used to maintain certain support files of
the Basic Networking Utilities. The support files provide information that
enables your 3B2 Computer to contact remote machines for sending and
receiving mail and files, as well as executing commands on remote
machines. There are four uucpmgmt subcommands that add, deiete, list,
and change the contents of certain Basic Networking Utilities support files.

The support files managed by uucpmgmt are listed below:

o Systems (/usr/lib/uucp/Systems): This file contains the names
and calling information for the communication program, permitting it
to call and converse with remote machines. This file is managed
using the systemmgmt subcommand.

BN 4-1

SIMPLE ADMINISTRATION

e Devices (/usr/lib /uucp/Devices): This file contains a list of the
devices that may be used to call remote machines. Device type,
speed, port name (such as /dev/contty) are some of the
information contained in the Devices file. This file is managed using
the devicemgmt subcommand.

» inittab (etc/inittab): Information in this file controls the direction of
traffic on the ports used by the Basic Networking Utilities. Ports can
be appointed as incoming, outgoing, or bidirectional. This file is
managed using the portmgmt subcommand.

e Poll (/usr/lib/uucp /Poll): This file contains a list of the machines
to be polled by your 3B2 Computer, and the times they are to be
polled. This file is managed using the polimgmt subcommand.

FUNCTIONALITY

The uucpmgmt menu is located under the packagemgmt menu of simple
administration (sysadm). In order for uucpmgmt to appear in the
packagemgmt menu, the Basic Networking Utilities must first be loaded
from the floppy disk. For each subcommand, you can select the operation
to be performed by entering either the associated number or the name of
the subcommand.

The subcommands are organized as a series of questions and answers.
Answers take the form of either an entry from a list, a y/n response, and a
name or a number depending on the question. At any point, the user can
type a “'q"’ to quit the operation. When shown as a possible default
choice, entering a carriage return (<CR>) selects the default entry. If the
selection list includes a "*?"’, entering a *'?"’ outputs the associated help
message and then returns the user to the question.

BN 4-2

SIMPLE ADMINISTRATION

Common Functionality

The following paragraphs discuss the common functions of each
uucpmgmt subcommand.

Required Files Test: Common to the list, delete, and modify operations is
a test for the existence of the file(s). If that file does not exist, the user is
advised about the appropriate operations to be performed. After the
advice message has been displayed, the operation is ended, returning the
user to the uucpmgmt menu.

List Operation: On entry to the list operation, a summary list of all the
names known to the Basic Networking Utilities is presented. For the
systemmgmt subcommand, the summary information is the list of systems
in the Systems file. For devicemgmt, it is the list of ports; for polimgmt,
the systems being polled; and for portmgmt, the list of ports listed in the
Devices file. You are then asked to enter the name you want 1o see in
detail. Only names that appear on the summary list are permissible
responses. When a valid name is entered, the line(s) for that name is
presented. You are then asked if you would like to see another entry. If

[XI E]

an ‘‘n'’ response is given, the operation is exited, returning you to the

uucpmgmt menu. A "y’ response again presents the summary list and
prompts you to input the appropriate name for the detailed output.

Delete Operation: For the delete operation, you are presented the current
list of available names from which deletions can be made. After you are
asked to specify what name should be deleted, the line(s) corresponding to
the name is displayed and you are then prompted whether you want to
delete the entry(ies). An "'y’ response removes the line(s), a “‘n”’
response does not. This is followed by a question, asking if you would like
to delete another entry. A 'y response again displays the current list of
names from which deletions can be made. An “‘n” response returns you to

the uucpmgmt menu.

BN 4-3

SIMPLE ADMINISTRATION

Add Operation: The add operation prompts you for data required to make
the individual entries. After all the data has been input, the generated
line(s) is presented, followed by a request asking if you want to add the
entry. A '"'v” response adds the line(s) to the file. An “n"’ response takes
you back to the uucpmgmt menu.

Modify Operation: The only modify operation is in the portmgmt
subcommand. It is later described in the portmgmt section.

SUBCOMMANDS

This section contains a detailed description of each of the four
subcommands; systemmgmt, devicemgmt, portmgmt, and polimgmt.

systemmgmt

This subcommand manages the Systems file (/usr/lib /uucp/Systems). it
permits four operations; add, delete, call, and list.

add: For the add operation, the Systems file is checked for read and write
permission; failure causes the operation to end with a message. After a
brief introduction to the subcommand, you are prompted for the fields
needed to make entries in the file. The contents of these fields are listed
below:

» Node name of system you want to call (e.g. eagle)

Type of device used to originate call (e.g. acu)

2

Speed at which call is placed (e.g. 1200)

» Phone number of machine or token used to access connection
device through a switch (e.g. 9=847-7867)

Type of equipment you are dialing into (e.g. dialup)

?

BN 4-4

SIMPLE ADMINISTRATION

e Login ID at remote machine (e.g. nuucp)

« Password entry at remote machine. (e.g. Oakgrass).

After the above information has been supplied, an entry for the Systems
file is constructed and the contents of the entry are displayed on the
screen for verification. You are then prompted to enter yes or no to add
the entry to the Systems file. After y/n response is received, you are

XX

asked if another entry is to be made to the Systems file. Again, an “n

response returns you to the uucpmgmt menu and a *'y"’ response takes
you back to the beginning of the add option.

delete: As described in the "*Common Functionality’ section.
list: As described in the “Common Functionality’’ section.

call: This option is used to call a remote machine that has been properly
entered in the Systems file. It is a test to ensure that all necessary entries
have been entered into the Systems file correctly.

devicemgmt

This subcommand manages the Devices file (/usr/lib /uucp /Devices). It
permits three operations; add, delete, and list.

add: The Devices file is checked for read and write permission. Failure
returns you to the uucpmgmt menu. You are prompted for the name of a
device (port) used to make the call (e.g. contty). The name entered is
checked against the current Devices file and if it exists, you are asked if
other entries are to be added. For each entry, you are prompted for the
following additional data:

s Device type (e.g. penril, ventel, develcon, micom)
s Speed (e.g. 1200).

BN 4-5

SIMPLE ADMINISTRATION

Note: If one modem is selected, the procedure will automatically
generate two entries, one at 1200 bps and one at 300 bps without
prompting for speed.

After all the requested data has been provided, one or more entries are
created for the Devices file and the contents of the entries are displayed
on the screen for verification. You are then prompted to enter yes or no
to add the entry to the Devices file. After a y/n response is received, you
are asked if another entry is to be made to the Devices file. Again, an ‘'n”’

response returns you to the uucpmgmt menu and a “'y’’ response takes
you back to the beginning of the add operation.

delete: As described in the ““Common Functionality”” section.

list: As described in the “Common Functionality” section.

polimgmt

This subcommand manages the Poll file (/usr/lib/uucp/Poll). It permits
three operations: add, delete, and list.

add: You are prompted to enter the name of the system to be polled. If
the system name already exists in the Poll file, a message advising that no
duplicates are permitted is output. You have the opportunity to add
another system or to end the operation. If the system name does not
appear in the Systems file, you are warned and asked whether to continue.
If a *'y"”’ response is received, the process continues. If an ‘‘n’’ response is
receive, you are asked about making other poll entries.

If a potential system name is entered, you are asked for a space separated
list of hours for polling. Each hour entered must be an integer in the range
of O through 23. Invalid responses will result in a message describing the
list of hours. The default value for this question causes the specified
system to be polled every hour.

BN 4-6

SIMPLE ADMINISTRATION

On successful input of the hours list, the Poll entry (consisting of the
system name followed by the polling hours) is displayed on the screen for
verification. You are then prompted to enter yes or no to add the entry to
the Poll file. After a y/n response is received, you are asked if another
entry is to be made to the Poll file. Again, an '‘n’’ response returns you to

the uucpmgmt menu and a *'y’’ a response takes you back to the
beginning of the add option.

delete: As described in the **Common Functionality’ section.

list: As described in the ““Common Functionality’” section.

portmgmt

This subcommand manages the /etc/inittab file. It permits two
operations, modify and list. The only ports from inittab that are accessible
are those that appear in the Devices file.

modify: For a valid port, the direction of the port is printed. You are
prompted for the desired direction (incoming, outgoing, or bidirectional)
and speed (default is current speed). This data is used to change the
inittab entry and the modified entry is displayed on the screen for
verification. You are prompted to tell whether the modified entry is
correct. After a y/n response is received, you are asked if another inittab

YLl

entry is to be modified. Again, an 'n’’ response returns you to the

uucpmgmt menu and 2 'y’ response takes you back to the beginning of
the modify option.

If the direction is set to bidirectional, this sets up the inittab entry up to
respawn uugetty on the port. If incoming is specified, the entry is set up
to respawn getty on the port, and for outgoing, respawn is turned off.

list: As described in the **Common Functionality” section.

BN 4-7

Chapter 5

DIRECT LINKS

GENERAL

This chapter discusses how to directly link
» Two 3B2 Computers

e A 3B2 Computer to a 3B5 Computer

« A 3B2 Computer to a 3B20 Computer.
Direct links would be beneficial only when:

» [t is not possible to link the machines together through a Local Area
Network (LAN).

e The two machines transfer large amounts of data on a regular basis.

s The two machines are located no more than several hundred cable
feet apart.

BN 5-1

DIRECT LINKS

The amount of cable used to link two machines is dependent on the
environment in which the cable is run. The standard for RS-232
connections is b0 feet or less with transmission rates as high as 19200 bits
per second (bps). As the cable length is increased, noise on the lines may
become a problem. If noise becomes a problem the transmission rate must
be decreased or limited distance modems be placed on each end of the
line. Normally, you should not use more than 1000 cable feet to connect
the two machines. This link should operate comfortably at 9600 bps in a
clean (noise free) environment.

The configuration used to hardwire two 3B Computers together uses two
8-wire cables (available in lengths of 7-, 14-, 25-, and 50-feet) and two RS-
232 connectors. The ordering information is provided in Figure 5-1.

BN 5-2

DIRECT LINKS

Cable

DESCRIPTION COMCODE NUMBER
7-Foot Shielded 403-60-09-68
Cable
14-Foot Shielded 403-60-09-76
Cable
25-Foot Shielded 403-60-09-84
Cable
50-Foot Shielded 403-60-09-92

ACU /Modem Connector

232-21-25-005

Terminal /Printer
Connector

232-22-25-006

Figure 5-1. Part Numbers for Hardware Used in Directs Links

BN 5-3

DIRECT LINKS

If the link is established using the parts listed in Figure 5-1, the machines
could not be separated by more than 100 cable-feet (two 50-foot cables
connected together) because the longest cable available is 50 feet.

If the two machines are separated by more than 100 cable-feet, a null-
modem cable must be constructed as follows:

Pinltol

Pin 2 to 3

Pin 3to 2

Strap pin 4 to 5 in the same plug
Pin 6 to 20

Pin 7 to 7

Pin 8 to 20

Pin 20 to 6

Pin 20 to 8.

BN 5-4

DIRECT LINKS

HOW THE DIRECT LINK IS CONNECTED

3B2 Computer to 3B2 Computer Direct Link

Using the parts listed in Figure 5-1, the establishment of a direct link
between two 3B2 Computers is simple. The following steps will guide you
in establishing a direct link between two 3B2 Computers (also, refer to
Figure 5-2).

1. Connect one end of the first shielded cable to the selected port on
your 3B2 Computer. Be sure to attach the ground connector.

2. Connect the other end of the first shielded cable to the ACU/Modem
Adapter. (If it is desired to connect the two computers over a
distance greater than 100 feet, substitute the ACU/Modem Adapter
with a Terminal /Printer Adapter attached to a null modem cable of
the appropriate length.)

3. Connect the Terminal/Printer Adapter to the ACU/Modem Adapter.
4. Connect the second shielded cable to the Terminal /Printer Adapter.

5. Connect the other end of the second shielded cable to the appropriate
port on the remote 3B2 Computer.

BN 5-5

DIRECT LINKS

382 COMPUTER TO 382 DIRECT LINK

(:) FOR DISTANCE LESS THAN 100 FT.

3B2 3B2
COMPUTER COMPUTER

ACU MODEM TERMINAL /PRINTER
ADAPTER ADAPTER

FOR DISTANCE GREATER THAN 100 FT.

/" 3B2
‘ COMPUTER /)

TERMINAL /PRINTER NULL TERMINAL /PRINTER
ADAPTER MODEM ADAPTER
CABLE

—| 3B5/
—| 3B20

TERMINAL /PRINTER
ADAPTER NULL
MODEM

CABLE

Figure 5-2. Examples of Direct Links

BN 5-6

DIRECT LINKS

3B2 Computer to 3B5 Computer or 3B2 Computer to 3B20
Computer Direct Link

Establishing a direct link between a 3B2 Computer and a 3B5 Computer or
between a 3B2 Computer and a 3B20 Computer is simple. The following
steps will guide you in establishing a direct link between a 3B2 Computer
and a 3B5 Computer or between a 3B2 and a 3B20 Computer (also, refer
to Figure 5-2).

Note: The same parts are used for either link.

1. Connect one end of a shielded cable to the selected port on your 3B2
Computer. Be sure to attach the ground connector.

2. Connect the other end of the shielded cable to a Terminal/Printer
Adapter.

3. Connect a null modem cable to the appropriate port on the remote
3B5 Computer or 3B20 Computer.

BASIC NETWORKING SOFTWARE AND DIRECT LINKS

Ideally, systems that have a direct link should run common and current
releases of the UNIX System to have the full set of capabilities available.
(Bidirectional ports that is supported by the uugetty program was
introduced with UNIX System V Release 2.0 Version 1.) However, lack of
commonality does not prevent use of the Basis Networking feature. This
section describes the software files that must be modified on your 3B2
Computer to accommodate a direct link connection. You may want to
consult the documentation provided with your machine if you're linking
directly to a remote machine other than a 3B2 Computer.

BN 5-7

DIRECT LINKS

The following support files must be updated to reflect the presence of a
Direct Link:

« /usr/lib/uucp/Devices
« /etc/inittab

o /usr/lib/uucp/Systems.

Ali additions /modifications to the above files can be done by using the
uucpmgmt Simple Administration subcommands.

Making Entries into the Devices File

The Devices file contains the information about the location (line) and
transmission rate of the link. Entries can be added to the Devices file
using the uucpmgmt devicemgmt subcommand. The operation to be
performed under devicemgmt is the add operation. The add operation
prompts you for the following information:

o Port name (for /dev/tty21 - tty21)
» Device type to call on (direct)

s Speed at which you want to call (3600 or 19200).

BN 5-8

DIRECT LINKS

To access the devicemgmt subcommand and add entries in the Devices
file, enter:

-

sysadm devicemgmit<CR>

Running subcommand 'devicemgmt’ from menu 'uucpmgmt’,
BASIC NETWORKING UTILITIES MANAGEMENT

Note: After a brief introduction to the devicemgmi
subcommand, the procedure interactively prompts you for
the information listed above.

Making Changes to the /etc/inittab File

The differences between the two versions of Basic Networking (UUCP) are
reflected in the /etc/inittab file. The newest version allows for
bidirectional log in capability, as well as communication by respawning
uugetty instead of getty. This means that if two machines (both using
uugetty) were connected via a direct link, either of these machines could
request communication with the other. This would not be true if only one
machine was capable of respawning uugetty.

If the direct link is connecting your 3B2 Computer with a machine that has
the new version of Basic Networking, the /etc/inittab files on both
machines should be set up to allow “‘bidirectional’ traffic on the
associated lines. This means that the lines used must respawn uugetty on
each end of the link. This would allow either machine to request
communication with (cali) the other.

If the direct link is connecting your 3B2 Computer with a machine that
does not have the new version of Basic Networking, the /etc/inittab file
would be set up differently on each system. The inittab file on each
machine would be set up to allow either "incoming’’ or “‘outgoing’ traffic
on its line. If one machine allows incoming traffic, the other must allow
only outgoing traffic. A uugetty could not be used on either machine in
this case.

BN 5-9

DIRECT LINKS

A machine’s inittab entry would be respawning getty for “incoming”’
traffic, or have respawn turned off for “‘outgoing’ traffic. In order for this
type of link to work, one machine must be set up to “poll”’ the other. If
the remote machine is allowing only incoming traffic, you must set up your
3B2 Computer to poll the remote machine (uucpmgmt subcommand
polimgmt). If the remote machine is allowing only outgoing traffic on the
link, the remote machine must poli your 3B2 Computer.

Entries in the /etc/inittab file can be changed using the uucpmgmt
portmgmt subcommand. The operation to be performed under portmgmt
is the modify operation. The modify operation prompts you for the
following information:

» Port name you want to modify (for /dev/tty21 - tty21)
» Direction of traffic on port (bidirectional, incoming, or outgoing)

e Transmission speed of the link (9600 or 19200).

The procedure will display the ports that are currently dedicated for use by
UUCP (listed in Devices file). The port name to be modified must be one
that is listed.

To access the portmgmt subcommand and modify entries in the
/etc/inittab file, enter:

-

sysadm portmgmt<CR>

Running subcommand 'portmgmt’ from menu 'uucpmgmt’,
BASIC NETWORKING UTILITIES MANAGEMENT

Note: After a brief introduction to the portmgmi
subcommand, the procedure interactively prompts you for
the information listed above.

BN 5-10

DIRECT LINKS

Making Entries into the Systems File

An entry must be made into the Systems file for the machine associated
with the direct link. This can be done using the systemmgmt subcommand
and the add operation. The add operation will prompt you for the
following information:

« Node name of system
» Type of device to call on (direct)
« Transmission speed of link (9600 or 19200)

Device port used with link (for /dev /tty21 - tty21)

» Login ID used to log in on system (nuucp)

s Password used by above log in.

In order for the direct link to operate properly at high speeds, you must
insert pauses (\p) between the characters being sent out for the login ID
and the password. For instance, instead of nuucp, you should enter

M\ pu\pu\pc\p\pp when prompted for the login ID. Do not select the
default by pressing RETURN (<CR>). The same applies for the password
assigned.

BN 5-11

DIRECT LINKS

To access the systemmgmt subcommand and add entries in the Systems
file, enter:

sysadm systemmgmt<CR>

Running subcommand 'systemmgmt’ from menu "'uucpmgmt’,
BASIC NETWORKING UTILITIES MANAGEMENT

Note: After a brief introduction to the systemmgmi
subcommand, the procedure interactively prompts you for
the information. listed above.

On completion of the add operation, a new entry is added to the Systems
file for the remote machine and an additional entry was created for the
Devices file. When you use devicemgmt to create an entry for the link, it
creates an entry similar to the one shown below.

Direct tty21 - 9600 direct

As discussed in Chapter 3, this type of entry is used only with the cu
command. The UUCP programs require that the first field of a Devices
entry be System-Name when associated with a direct link to another
machine. This is why the add operation of systemmgmt wants to know
the device port that will be used in the link to the remote machine. After it
receives the port name, it creates a second entry for that port similar to
the following:

Direct tty21 - 9600 direct
eagle tty21 - 9600 direct

The first entry will be used whenever the cu command is used to call
“eagle,”” and the second entry will be used by uucico to call “eagle.”

BN 5-12

Chapter 6

MAINTENANCE

PAGE

GEMERAL . ..ottt e e e snmemnnaanaecannnscnannerooanaasnannonneensnsnsaann 6-1
COMMON PROBLEMS it amn e camancennnnnnnnsaonanananaasanannraans 6-1
QU OF SPACE . . o ot meeea e cm e a e a s 6-1
Faulty Automatic Call Units and Modemso iniiniinnnn.n 6-2
Administrative Problems ot e aa e n e aa s 6-2
DEBUGGINGottt i e e mmemmma e anansasannanannanannanenenannsssnnansn 6-2
ERROR MESSAGES ... iin s annennaannannannassannaenonscnaanannnnaeannaas 6-3
ASSERT Error MeSSagZeS8. . . o o oo oo nnee e mmnannanaaananannsaneananensnnaa 6-3

Status Error ME@SSAZeS . . o oo v v nivananananannnnnnansanannacnanaansanas 6-7

Chapter 6

MAINTENANCE

GENERAL

This chapter discusses the maintenance of the Basic Networking Utilities.
It discusses some of the common problems associated with the utilities
and how to use the Uutry program for debugging. Also, included is a list of
error messages and their probable causes.

COMMON PROBLEMS

Out of Space

The file system used to spool incoming or outgoing jobs can run out of
space and prevent jobs from being sent or received. Not heing able to
receive jobs is the worse of the two conditions. When file space does
become available, the 3B2 Computer will be flooded with the backlog of
traffic. The shell script uudemon.cleanu should keep the spool directory
(/usr/spool/uucp) from becoming large. This script should be started by
cron once a day.

BN 6-1

MAINTENANCE

Faulty Automatic Call Units and Modems

The automatic dial modems and/or incoming modems occasionally cause
problems that make it difficult to contact other computers or receive files.
These problems are usually readily identifiable since the status files
accessed by uustat give counts and reasons for contact failure. If a bad
line is suspected, the cu command may be useful in trying to call another
computer using the suspected line.

Administrative Problems

Sometimes it can be difficult to keep your Systems file up to date. This is
because of changing telephone numbers, login IDs, and passwords on
remote computers. This can be a costly problem since the automatic dial
modem will be tied up calling a computer that cannot be reached. Be sure
to contact the administrators of remote machines whenever you change
your telephone number, login, or password and request that they show
you the same consideration.

DEBUGGING

To verify that a computer on the network can be contacted, the uucico
daemon can be invoked directly from a terminal. A shell script, Uutry, is
provided for this purpose in the fusr/lib/uucp directory. This directory is
normally not listed in most users’ command search path. It must
therefore be moved to an appropriate place if it is to be used by all users.
If the person using the uucp login will be the only one using Uutry, it can
be left where it is, since the HOME directory for the uucp login is

Jusr/lib /uucp.

The command line
Untry eagle

will start the transfer daemon (uucico) with a moderate amount of
debugging output. Uutry redirects the output into a temporary file

BN 6-2

MAINTENANCE

(/tmp/eagle) and executes a tail -f command on the file. This way, you
can hit a " BREAK" to get back to the shell, and come back later to look at
the output in /tmp/eagle.

If Uutry does not isolate the problem, you can attempt to transfer a file
while watching the debugging output as follows:

uwucp -r some-file eagle!”/some-name

The -r option will queue a job, but will not start the transfer daemon. Now
proceed as before using Uutry. If any of these steps fail, support
personnel may be needed to diagnose the problem. It will be much easier
to diagnose the problem if the debugging output saved in the temporary
file is available.

ERROR MESSAGES

This section lists the error messages associated with Basic Networking
Utilities. There are two types of error messages. ASSERT errors are
recorded in the /usr/spool/uucp/.Admin/errors file. STATUS errors are
recorded in individual machine files found in the /usr/spool/uucp/.Status
directory.

ASSERT Error Messages

When a process is aborted, ASSERT error messages are recorded in
/usr/spool /uucp/.Admin/errors. These messages include the file name,
sccsid, line number, and the text listed below. Usually, these errors are
the result of file system problems. The " errno" (when present) should be
used to investigate the problem. If " errno" is present in a message, it is
shown as () in the following list.

CAN'T OPEN An open() or fopen() failed.

BN 6-3

MAINTENANCE

CAN'T WRITE

CAN'T READ

CAN'T CREATE

CAN'T ALLOCATE

CAN'T LOCK

CAN'T STAT

CAN'T CHMOD

CAN'T LINK

CAN'T CHDIR

CAN'T UNLINK

WRONG ROLE

CAN'T MOVE TO
CORRUPTDIR

CAN’T CLOSE

BN 6-4

A write(), fwrite(), fprint(), etc. failed.
A read(), fgets(), etc. failed.

A create() call failed.

A dynamic allocation failed.

An attempt to create a LCK (lock)
file failed. Usually, this is a fatal
error.

A stat() call faited.

A chmod() call failed.

A link() call failed.

A chdir() call failed.

A unlink() call failed.

This is an internal logic problem.

An attempt to move some bad C. or
X. files to the
/usr/spool/uucp/.Corrupt directory
failed. The directory is probably
missing or has wrong modes or

owner.

A close() or fclose() call failed.

MAINTENANCE

FILE EXISTS

No uucp server

BAD UID

BAD LOGIN_UID

ULIMIT TOO SMALL

BAD LINE

FSTAT FAILED IN
EWRDATA

SYSLST OVERFLOW

The creation of a C. or D. file is
attempted, but the file exists. This
occurs when there is a problem with
the sequence file access. Usually
shows a software error.

A tcp/ip call is attempted, but there
is no server for UUCP.

The uid cannot be found in the
/etc/passwd file. The file system is
in trouble, or the /etc/passwd file is
inconsistent.

Same as previous.

The ulimit for the current user
process is too small. File transfers
may fail, so transfer is not
attempted.

There is a bad line in the Devices
file; there are not enough arguments
on one or more lines.

There is something wrong with the
ethernet media.

An internal table in gename.c
overflowed. A big/strange request
was attempted. Contact your AT&T
Service Representative or authorized
dealer.

BN 6-5

MAINTENANCE

TOO MANY SAVED C
FILES

RETURN FROM fixline

ioctl

BAD SPEED

PERMISSIONS file: BAD

OPTION

PKCGET READ

PKXSTART

SYSTAT OPEN FAIL

TOO MANY LOCKS

XMV ERROR

BN 6-6

Same as previous.

An ioctl, which should never fall,
failed. There is a system driver
problem.

A bad line speed appears in the
Devices /Systems files (Class field).

There is a bad line or option in the
Permissions file. Fix it immediately!

The remote machine probably hung
up. No action need be taken.

The remote machine aborted in a
non-recoverable way. This can
generally be ignored.

There is a problem with the modes
of /usr/lib/uucp/.Status, or there is
a file with bad modes in the
directory.

There is an internal problem!
Contact your AT&T Service
Representative or authorized dealer.

There is a problem with some file or
directory. It is likely the spool
directory, since the modes of the
destinations were suppose to be
checked before this process was
attempted.

MAINTENANCE

CAN'T FORK

Status Error Messages

An attempt to fork and exec failed.
The current job should not be lost,
but will be attempted later (uuxqt).
No action need be taken.

Status error messages are messages that are stored in the
/usr/spool/uucp/.Status directory. This directory contains a separate file
for each remote machine that your 3B2 Computer attempts to
communicate with. These individual machine files contain status
information on the attempted communication, whether it was successful or
not. What follows is a list of the most common error messages that may

appear in these files.
0K

NO DEVICES AVAILABLE

WRONG TIME TO CALL

TALKING

Things are OK.

There is currently no device available
for the call. Check to see that there
is a valid device in the Devices file
for the particular system. Check the
Systems file for the device to be
used to call the system.

A call was placed to the system at a
time other than what is specified in

the Systems file.

Self explanatory.

BN 6-7

MAINTENANCE

LOGIN FAILED

CONVERSATION FAILED

DIAL FAILED

BAD LOGIN/MACHINE
COMBINATION

DEVICE LOCKED

ASSERT ERROR

SYSTEM NOT IN
Systems

BN 6-8

The log in for the given machine
failed. It could be a wrong
login/password, wrong number, a
slow machine, or failure in getting
through the Dialer-Token-Pairs
script.

The conversation failed after
successful startup. This usually
means that one side went down, the
program aborted, or the line (link)
was dropped.

The remote machine never
answered. It could be a bad dialer or
the wrong phone number.

The machine called us with a
login/machine name that does not
agree with the Permissions file. This
could be an attempt to masquerade!

The calling device to be used is
currently locked and in use by
another process.

An ASSERT error occurred. Check
the /usr/spool/uucp/.Admin/errors
file for the error message and refer
to the section ASSERT Error
Messages.

The system is not in the Systems file.

MAINTENANCE

CAN'T ACCESS DEVICE

DEVICE FAILED

WRONG MACHINE NAME

CALLBACK REQUIRED

REMOTE HAS A LCK
FILE FOR ME

REMOTE DOES NOT
KNOW ME

REMOTE REJECT AFTER
LOGIN

The device tried does not exist or
the modes are wrong. Check the
appropriate entries in the Systems
and Devices files.

The open of the device failed.

The called machine is reporting a
different name than expected.

The called machine requires that it
calls your 3B2 Computer.

The remote site has a LCK file for
your 3B2 Computer. They could be
trying to call your machine. If they
have an older version of Basic
Networking, the process that was
talking to your machine may have
failed leaving the LCK file. If they
have the new version of Basic
Networking, and they are not
communicating with your 3B2
Computer, then the process that has
a LCK file is hung.

The remote machine does not have
the node name of your 3B2
Computer in its Systems file.

The log in used by your 3B2
Computer to log in does not agree
with what the remote machine was
expecting.

BN 6-9

MAINTENANCE

REMOTE REJECT,
UNKNOWN MESSAGE

STARTUP FAILED

CALLER SCRIPT FAILED

BN 6-10

The remote machine rejected the
communication with your 3B2
Computer for an unknown reason.
The remote machine may not be
running a standard version of Basic
Networking.

Login succeeded, but initial
handshake failed.

This is usually the same as " DIAL
FAILED.” However, if it occurs often,
suspect the caller script in the
Dailers file. Use Uutry to check.

Chapter 7

COMNAND DESCRIPTIONS

COMMAND SUMMARY . .. i i ennanecemaaaaannaanaaanns
HOW COMMANDS ARE DESCRIBED i einaannn

USER COMMIAND S ittt it cnana e aaas s tnenaeanannsennnen
ct — Generate a getty Process to a Remote Terminal
cu -~ Call Another UNIX System it it n e inenannn
uucp - UNIDX-to-UNIX System Copyo ittt it e em e e
uuto - Public UNIX-to-UNIX System Copy it i i e e e et
vupick - uuto File Retrieval i i
uux - UNIX-to-UNIX System Command Execution.
uulog -UJUCP Log INQUIrY it iia e it eie it eean
uustat - WUCP Status Inquiry and Job Control
uuname - UUCP Network Node Names i iiiinineneann

ADMINISTRATIVE COMMANDS it it enntnannnnnnenanans
uucleanup - UUCP Spool Directory Cleanup iiiiiiineennann
Uutry - Try to Contact a Machine With Debugging On
uucheck - Check UUCP Directories and Permissions File

Chapter 7

COMMAND DESCRIPTIONS

COMMAND SUMMARY

This chapter describes the commands of the Basic Networking Utilities.
The commands are grouped into two categories:

» User Commands

o Administrative Commands.

In addition to the command descriptions, the format and options of the
commands are discussed. Then, a sample usage of each command is
presented to give you an idea of how the command is used. User
commands are invoked during attempts to communicate with remote
computers or obtain status information. A summary of these commands is
shown in Figure 7-1.

BN 7-1

COMMAND DESCRIPTIONS

COMMAND DESCRIPTION

ct Calls and connects a remote terminal
to your 3B2 Computer.

cu Calls a remote computer and allows
you to log in on the called computer
without logging off the 3B2 Computer.

uucp Queues a file transfer to the specified
path name on a remote computer.

uuto Queues a file transfer to the public
directory on a remote computer.

uupick Searches the spool directory for files
destined to the person initiating the
command.

X Sets up a remote command execution to
be executed on a specified computer.

uulog Displays information stored in a
specific computers log file.

uustat Provides you with status information
on gqueued transfers.

uuname Provides you with the names of the
computers that are part of the network.

BN 7-2

Figure 7-1. User Commands

COMMAND DESCRIPTIONS

Administrative commands are used to do administrative tasks on the
UUCP facility. Some are invoked automatically via eron while others may
be invoked manually if you are logged in as root or uucp. A summary of
the administrative commands is shown in Figure 7-2.

COMMAND DESCRIPTION

uucheck Checks for the presence of the required
UUCP files and directories. Also checks
for errors in the Permissions file.

uucleanup Removes specific files from the spool
directory that are more than a
specified number of days old.

Uutry Invokes the transfer daemon (uucice)
to call a specified machine with
a moderate amount of debugging.

Figure 7-2. Administrative Commands

BN 7-3

COMMAND DESCRIPTIONS

HOW COMMANDS ARE DESCRIBED

A common format is used to describe each of the Basic Networking
commands. The format is as follows:

o General: The purpose of the command is defined. This includes any
uncommon or special information about the command.

» Command Format: The basic command line format (syntax) is
defined and the various arguments and options are discussed.

» Sample Command: Example command line entries and responses
are presented to show you how to use the command.

in the command format discussions, the following symbology and
conventions are used to define the command syntax:

» The basic command is shown in bold type.
For example: command

e Arguments that you must supply to the command are shown in an
italic type.
For example: command argument

« Command options and arguments that do not have to be supplied
are enclosed in brackets [].
For example: command [arguments]

» The pipe symbol (}) is used to separate arguments when one of

several forms of an argument can be used.
For example: command [argumentl | argumentZ]

In the sample command discussions, user inputs and 3B2 Computer
response examples are shown as follows.

BN 7-4

COMMAND DESCRIPTIONS

-

This style of type is used to show system generated
responses displayed on your screen.

This style of bold type is used to show inputs
entered from your keyboard that are displayed on your
screen.

These bracket symbols, < > identify inputs from the
keyboard that are not displayed on your screen, such

as: <CR> carriage return, <CTRL d> control d, <ESC g>
escape g, passwords, and tabs.

This style of italic type is used for notes that
provide you with additional information.

Also, in the sample command discussion, the dollar sign ($) is used as the
system prompt. The system prompt could be the number symbol (#). In
either case, you should not enter the prompt.

BN 7-5

COMMAND DESCRIPTIONS

USER COMMANDS

ct — Generate a getty Process to a Remote Terminal

General

The et command attempts to connect a remote terminai to your 3B2
Computer by dialing the phone number of the modem attached to the
terminal. This modem must be able to automatically answer the call when
it is received. When ¢t detects that the call has been answered, it issues a
getty (login) process and allows the user of the remote terminal to log in
on the 3B2 Computer. A user at a remote terminal may call your 3B2
Computer, log in, and issue a ¢t command to request that the 3B2
Computer hang up the current line and call the remote terminal back.

If ¢t cannot find an available dialer, it shows that the dialer(s) are busy and
asks if it should wait until one becomes available. If you respond yes, it
asks how long it should wait for one.

Command Format

The ¢t command has the format
ct [options] telno

where telno is the telephone number of a remote terminal with equal signs
(=) for secondary dial tones and dashes (-) for delays.

The ¢t command has the following options:

-h Prevents ¢t from disconnecting the current line and
allowing the 3B2 Computer to call the remote terminal
back.

BN 7-7

COMMAND DESCRIPTIONS

W

-sspeed

Requests that a running narrative of the attempt to
contact the remote terminal be displayed on the screen.

Overrides the dialogue where et asks if it should wait for a
dialer. nis the number of minutes that et should wait for a
dialer.

Selects the transmission rate of the modem attached to
the remote terminal where speed is expressed in baud
(default 1200).

Causes debugging output to be displayed on the screen
where nis a single-digit (0 through 9) indicating the level of
debugging; 2 being the highest level of debugging.

Sample Command Usage

If you are logged in on the 3B2 Computer through a local terminal, and
you want to connect a remote terminal to your 3B2 Computer, you may

enter:

[$ ct -h -w5 -s1200 9=9323497 <CR>

that calls the modem connected to 932-3497 using a 1200 baud dialer. If
a dialer is not available, the -w5 option causes ¢t to wait 5 minutes for a
dialer to become available before it quits. The ~h option tells ¢t not to
disconnect the local terminal (terminal used to input the command) from
the 3B2 Computer.

BN 7-8

COMMAND DESCRIPTIONS

If you are at a remote terminal some distance away from your 3B2
Computer and you do not want to get billed for long distance charges, you
can call the 3B2 Computer initially, log in, and enter the following ct
command line:

$ ct-s1200 9=9323497 <CR>

If no device is available at the time, the following dialogue is received:

1 busy dialer at 1200 baud
Wait for dialer?

If you reply no (n), the ¢t command exits. If you reply yes (y), you are
prompted to show how long to wait:

[Time, in minutes?

BN 79

COMMAND DESCRIPTIONS

If a dialer is available, ¢t responds with:

[Allocated dialer at 1200 baud

this indicates that it found a dialer. In any case, ct asks if you want the
line connecting your remote terminal to the 3B2 Computer to be dropped:

[Confirm hangup?

If you enter yes (y), you are logged off and ¢t calls the remote terminal
back if a dialer was, or becomes, available. If you enter no (n) the ct
command exits and you are still logged onto the 3B2 Computer.

BN 7-10

COMMAND DESCRIPTIONS

cu - Call Another UNIX System

General

The eu command calls a remote computer and links your 3B2 Computer to
the called computer. The ecu command can use either direct links, the
telephone network, or Local Area Networks (LAN) to establish a connection
to a remote computer. Once the connection is made, the called computer
will prompt you to log in on the computer. After you are logged in on the
called computer, you can transfer ASCII coded files from one computer to
another and execute commands on either computer.

MNote: The cu command does not have error detection /correction
capability. Therefore, it is possible that some loss or corruption of
data may occur during file transfers.

Command Format

The cu command has the format:
cu [options] telho | systemname

Where:

telno is the telephone number of a remote computer with equal
signs (=) for secondary dial tones and dashes (-) for four
second delays.

systemname is a UUCP system name that appears in the Systems file.
Here, cu will obtain the telephone number and baud rate
from the Systems file and search for a dialer to use for the
connection. So, the ~s, -n, and -l options should not be
used with systemname. The uuname command will display
the machines listed in the Systems file.

BN 7-11

COMMAND DESCRIPTIONS

The eu command has the following options:

-sspeed Specifies the transmission rate of the device to be used in
the connection where speed is the transmission rate
(usually 300 or 1200); 300 is the default value.

~Mine Used if a specific device is to be used in the connection
where Jine is the name used to reference a specific line
(port) to which the device is connected. This is useful
when calling a computer that is hardwired to your 3B2
Computer.

~h Used to emulate local echo when the called computer
expects terminals to be in the half-duplex mode.

-t Used when dialing an ASCII terminal set up with automatic
answer.

-d Causes diagnostic traces to be printed.

-e (-0) Designates even (odd) parity to be generated and sent to

the remote computer.

-n Shows that cu will prompt you for the telephone number
instead of taking it from the command line.

Once the connection is made and you are logged in on the remote
computer, any standard (keyboard) input is sent to the remote computer.
Figure 7-3 shows the strings that you can execute while you are connected
to a remote machine through cu.

BN 7-12

COMMAND DESCRIPTIONS

STRING INTERPRETATION

-, Terminates the conversation.

) Escape to the local system (3B2 Computer)
without dropping the link. To get back to the
remote machine, CTRL-d.

“lemd Execute cmd on the local system (3B2
\ Computer).
“$cmd Execute cmd on the 3B2 Computer and send

its output to the remote computer.

“%cd path Change the directory on the local system
where path is the path name or directory
name.

“%take from [to] | Copy file named from (on the remote
computer) to file named to on the 3B2
Computer. If fo is omitted, the from
argument is used in both places.

“%put from [to] Copy file named from (on 3B2 Computer) to

file named to on the remote computer. If to

is omitted, the from argument is used in both
places,

Send the line "... to the remote computer.

“%break Transmits a BREAK to the remote machine
(can also be specified as "%b).

Figure 7-3. cu Command Strings (Sheet 1 of 2)

BN 7-13

COMMAND DESCRIPTIONS

STRING INTERPRETATION

“%nostop | Turn off the handshaking protocol for the
remainder of the session. This is useful when
the remote computer does not respond
properly to the protocol characters.

“%debug Toggles the -d debugging option on or off
(can also be specified as "%d).

“t Displays the values of the terminal 1/0

(termio) structure variables for your terminal
(useful for debugging).

Displays the values of the termio structure
variables for the remote communication line
(useful for debugging).

Figure 7-3. cu Command Strings (Sheet 2 of 2)

Note 1: The use of "%put requires stty and cat on the remote

machine. It also requires that the current erase and kill characters
on the remote machine be identical to the current ones on the 3B2

Computer.

Note 2: The use of "%take requires the existence of echo and cat
on the remote machine. Aiso, stty tabs mode should be set on the

remote machine if tabs are to be copied without expansion.

BN 7-14

COMMAND DESCRIPTIONS

Sample Command Usage

To communicate with the remote computer eagle, enter:

[&; cu -s1200 9=847-7867 <CR>

where eagles phone number is 847-7867. The -s1200 option forces cu to
use a 1200 baud dialer to call eagle. If the -s option is not specified, cu
uses the default speed, 300 baud. When eagle answers the call, messages
similar to the following appear on the screen:

connected

login:

At this point, you should enter your login 1D and password.

Suppose you want a copy of a file named proposal from the remote
computer. If proposal is located in the current directory (on remote
computer), the following string copies the file proposal from the remote
computer to the 3B2 Computer and places it in the current directory (on
local computer) under a file named proposal:

|/$'%take proposal<CR>

BN 7-15

COMMAND DESCRIPTIONS

To send a file named minutes (in the current directory) on your 3B2
Computer to the remote computer, enter:

[$ “%put minutes minutes. 9-18<CR>

This copies the file minutes over to the remote computer and places it in a
file named minutes.9-18.

BN 7-16

COMMAND DESCRIPTIONS

uucp - UNIX-to-UNIX System Copy

General

The uucp command will queue a file transfer as described in Chapter 2.
The uucp transfer is one that is transparent to the user. Once the
command is entered, you may continue with other processes while the
UUCP programs attempt to do the transfer.

Command Format

The uucp command has the format
uucp [options] source-file systemldestination-file

where the source-file and destination-file may contain the prefix system-
name!, which shows the computer where the file resides or where it will be
copied. If system-name is omitted, the local machine is assumed. The
system-name argument must be one that UUCP knows about. in other
words, it must be listed in the Systems file (see uuname).

Usually, the source-file and destination-file will be a specified path name on
a given computer. If a shell metacharacter is used in the path name, it will
be expanded on the remote computer. Path names may be as follows:

o A full path name.

s A path name preceded by “user where user is a login on the
specified computer and is replaced by that users HOME directory.

» A path name preceded by ~/destination where destination is
appended to /usr/spool/uucppublic. This destination will be
treated as a file name unless more than one file is being transferred,
or if the destination is already a directory. To ensure that
destination is a directory, follow it with a ** /'’ (*/destination/).

BN 7-17

COMMAND DESCRIPTIONS

« Anything else is prefixed by the current directory.

If destination-file is a directory, the last part of the source-file name is
used. The various ways to specify path names are shown in “‘Sample

Commands."

The uucp command has the following options:

-f

~ggrade

i

-m

~sfile

-nuser

BN 7-18

Use the source file when copying out to the remote
computer rather than copying the file to the spool
directory {default).

Copy the source file to the spool directory.

Make ail necessary directories for the file copy
(default).

Do not make intermediate directories for the file copy.

The grade is a single letter /number. Lower ASCII
sequence characters will cause the job to be
transmitted earlier during a particular conversation.

Output the job identification number on the screen.
This is an ASC!l sequence that UUCP assigns to each
job. It can be used with the uustat command to obtain
status information or stop a job.

Send mail to the requester when the copy is completed.

Report status of the transfer in fife. Note that file must
be a fuil path name.

Notify user on the remote computer that a file was
sent.

Queue the job, but do not start the transfer daemon
(uucico) and attempt to transfer the job.

COMMAND DESCRIPTIONS

-xdebug Jevel Produces debugging output on the screen where
debug_level is a number between 0 and 9; higher
numbers give more detailed information.

Sample Command Usage

To send the file named minutes to the remote computer eagle, you could
enter:

$ uucp -s -C -j -ngws minutes eagle!/usr/gws/minutes<CR>
ecagleN3f45
$

This sends the file minutes (located in current directory on 3B2 Computer)
to the computer eagle and places it under the path name /usr/gws in a
file named minutes. When the transfer is complete, the user gws on the
remote computer receives mail indicating that a file has been received.
You also receive mail indicating a successful or failed transfer as requested

by the -s option. The -j option requested that the job ID (eagleN3f45) be
displayed.

The previous example uses a full path name to provide the destination-file.
There are two other ways the destination-file can be specified:

1. The log in directory of gws can be specified through use of the ~
character shown below:

eagle!"gws/minutes
would be interpreted as
eagle! /usr/gws/minutes

BN 7-19

COMMAND DESCRIPTIONS

2. The uucppublic area is referenced by a similar use of the prefix ~
preceding the path name. For example:

eagle!” /gws/minutes

is interpreted as

/usr/spool /uucppublic /gws/minutes

BN 7-20

COMMAND DESCRIPTIONS

uuto - Public UNIX-to-UNIX System Copy

General

The uuto command uses the same processes as the uuep command when
transferring a file to a remote computer. The only difference is that the
uuto command will always send the file to the public area on the remote
computer. The person to whom the file was sent will be notified by mail
when the transfer is complete.

Command Format

The uuto command has the format
uuto [options] source-file destination
where the source-file can be any of the following:

o A full path name

» A file located in the current directory.
Destination has the format
systemiuser

where system is the name of the remote computer and user is the login
name of the user to which the file is being sent, When the transfer is
complete, the transferred file(s) wili be placed under

/usr/spool/uucppublic/receive/user,/my3b2 /files

where user is the remote user’s login hame as specified in the uuto
command and my3b2 is the name of your 3B2 Computer.

BN 7-21

COMMAND DESCRIPTIONS

The uute command has the following options:

~m Causes mail o be sent to you (sender) when the transfer is
complete.

~p Causes the source-file to be copied to the spool directory on
your 3B2 Computer before transmission to the remote
computer.

Sample Command Usage

To send the file minutes to user gws on the remote computer eagle, you
can enter:

$ uuto -m -p minutes eaglelgws<CR>

$

This makes a copy of the file minutes (from the current directory) in the
spool directory before the transfer. After the transfer is complete, you will
receive mail indicating the completion of the transfer and the remote user
gws, receives mail indicating that a file has been received from the remote
computer my3b2. The file is placed on the remote computer under

/usr /spool/uucppublic/receive/gws/my3b2 /minutes

BN 7-22

COMMAND DESCRIPTIONS

uupick ~ uuto File Retrieval

General

The uupick command is used with the uuto command. After a file is sent
tc you via the uuto command, that file resides in the public area under a
directory that has the same name as your login ID. The uupick command
will search the public area to see if a directory exists that matches your
login ID. If this check is true, uupick waits for you to tell it what to do with
the file(s) located in that directory.

Command Format

The uupick command has the format
uupick [-s system)]

where the -8 option tells uupick to search for files sent only from the
remote computer system.

If uupick finds a directory that matches your log in name, it will respond
with:

from sys: [file file-name] [dir directory-name]

at which point you should tell uupick what you want to do with the file(s).
The permitted options are shown in Figure 7-4,

BN 7-23

COMMAND DESCRIPTIONS

COMMAND INTERPRETATION
<CR> Go to next entry.
d Delete the entry.

m [dir] Move the entry to the directory dir.
If dir is not a full path name, a
destination relative to the current
directory is assumed. If dir is not
specified, the current directory is
assumed.

a [dir] Same as m except a moves all files
sent from sys.

P Print the contents of the file.
q Stop.
Ycommand { Escape to the shell and execute
command.
* Print a command summary.

Figure 7-4. uupick Options

Samplie Command Usage

You are user gws on the computer eagle. You log in on eagle and receive
mail indicating that you have received a file from the my3b2 computer.
You can then enter the following command line.

BN 7-24

COMMAND DESCRIPTIONS

[$ uupick -s my3b2<CR>

and wait for uupick to prompt you with

[from my3b2: file minutes?

At this point, you can look at the file minutes by entering:

[p<CR>

This will display the file minutes on the screen. After the file has been
displayed, the question mark reappears and uupick waits for further

instructions. If you want to save the file, move it to your log in directory
by entering:

m $SHOME<CR>
4 blocks
$

After the file is moved, the number of blocks taken up by the file is
displayed, and you are returned to the sheii.

BN 7-25

COMMAND DESCRIPTIONS

uux - UNIX-to-UNIX Systemm Command Execution

General

The uux command is used to execute UNIX System command strings on
remote computers. The uux command will gather files from various
computers, execute a command on a specified computer, and send the
standard output to a file on a specified computer. The execution of certain
commands may be restricted on the remote machine (Permissions file).
Uux will notify you by mail if the requested command was disallowed.

Command Format

The uux command has the format
uux [options] command-string

where command-string is made up of one or more arguments. All special
shell characters such as " <>!" must be quoted either by quoting the
entire command-string or quoting the character as a separate argument.
Within the command-string the command and file names may contain a
system-name! prefix. All arguments that do not contain a systemname is
interpreted as command arguments. File names may be as follows:

e A full path name

» Anything prefixed by the current directory (local machine).
The uux command has the following options:

- Shows that the standard input for command-string is
taken from the standard input of the uux command.

~aname Use name as the user ID, replacing the user ID.

BN 7-27

COMMAND DESCRIPTIONS

-b

-G

-ggrade

J

-n

~sfile

-xdebug_level

~Z.

BN 7-28

Return standard input to the command if the exit status
is non-zero.

Do not copy local files to the spool directory for
transfer to the remote machine (default).

Force the copy of local files to the spool directory for
transfer.

The grade is a single letter /number. Lower ASCH
sequence characters will cause the job to be
transmitted earlier during a particular conversation.

Qutput the job identification number on the screen.
This is an ASCH sequence that UUCP assigns to each
job. It can be used with the vustat command to obtain
status information or to end a job.

Shows that no notification is to be sent to the remote
user.

Same as .

Do not start the file transfer daemon (uucico), just
queue the job.

Report the status of the transfer in file.
Produces debugging output on the screen where
debug_level is a number between 0 and 9; higher

numbers give more detailed information.

Send success notification to the local user.

COMMAND DESCRIPTIONS

Sample Command Usage

If your 3B2 Computer is hardwired to a larger host computer you can use
uux to get printouts of files that reside on your 3B2 Computer by entering:

$ pr minutesiuux -p hostlip<CR>
$

This command line queues the file minutes to be printed on the area
printer of the computer host.

BN 7-29

COMMAND DESCRIPTIONS

uulog - UUCP Log Inquiry

General

The uulog command is used to display the contents of machine log files
associated with a specific remote machine. Each machine will have log
files for uucico and uuxqgt processes that have been attempted. These log
files reside in the /usr/spool/uucp/.Log directory.

Command Format

The uulog command has the format
uulog [options]
where the following options are available:

~$SyS indicates to print the contents of the Log files for the
remote machine sys.

-fsys Performs a tail -f on the file transfer log for machine sys.

The two options below can be used with the two previous options that can
only be used one at a time:

X Displays the uuxqt log file for the specified machine.

~-number Shows that the tail command should be performed with
number lines.

BN 7-31

COMMAND DESCRIPTIONS

Sample Command Usage

If you want to print the current log information associated with the remote
computer eagle, you can enter:

o~

$ uwulog -seagle<CR>

uucp eagle (07/19-1:41:47,1798,0) SUCCEEDED (call to eagle)

uucp eagle (07/19-1:41:54,1798,0) OK (startup)

uucp eagle (07/19-1:41:56,1798,0) OK (conversation complete contty 51)
uucp eagle (07/19-2:11:47,1824,0) SUCCEEDED (call to eagle)

uucp eagle (07/19-2:11:56,1824,0) OK (startup)

uucp eagle (07/19-2:11:57,1824,0) OK (conversation complete contty 52)
uucp eagle (07/19-2:41:48,1846,0) SUCCEEDED (call to eagle)

uucp eagle (07/19-2:41:58,1846,0) OK (startup)

uucp eagle (07/19-2:42:00,1846,0) OK (conversation complete contty 55)
uucp eagle (07/19-3:11:47,1872,0) SUCCEEDED (call to eagle)

uucp eagle (07/19-3:11:58,1872,0) OK (startup)

uucp eagle (07/19-3:12:00,1872,0) OK (conversation complete contty 55)
$

BN 7-32

COMMAND DESCRIPTIONS

uustat - UUCP Status Inquiry and Job Control

General

The uustat command is used to display general status information of
queued jobs (transfers or executions). It also gives you a means of
controlling jobs that have been queued, monitoring the size of job queues,
and the status of the last attempt to contact all machines.

Command Format

The uustat command has the format

uustat [options]

where only one of the following options can be requested at a time:

~a

-m

P

List the jobs that are queued.

Report the success /failure status of the last attempt to
communicate with all machines listed in the Systems file.

Executes a ps -flp for each process ID that has an
associated lock (LLCK.) file. This displays detailed
information on the UUCP jobs that are currently being
processed.

List the jobs queued for each machine. If a status file
exists for a machine, its date, time, and status information
are displayed. If a number appears in () next to the
number of C. or X. files, it is the age in days of the oldest
C. or X. file for that machine. The *'Retry’’ field represents
the number of hours until the next possible call. The
“Count’’ field is the number of failure attempts. For
machines with a moderate amount of outstanding jobs, this
could take 30 seconds or more (real-time).

BN 7-33

COMMAND DESCRIPTIONS

~rjobid Rejuvenate the job whose ID is jobid. This prevents the
cleanup daemon from deleting the job until the jobs
modification time reaches the limit imposed by the
daemon.

There are two options that can be requested by themselves or together:

~§5yS Display the status of all UUCP requests for the remote
computer sys.

~uuser Dispiay the status of all UUCP requests issued by user.

Sample Command Usage

One useful form of the uustat command is used to display the status of
queued transfers. Suppose that you requested a file transfer to the
remote computer eagle, you can display the status of your requested
transfer(s) by entering:

$ uustat<CR>
eagleN3f67 07/19-4:58 S unix chp 374 /usr/chp/minutes
$

If you decide not to send minutes to eagle, you can kill the request using
the -k option by entering:

$ uustat -keagieN3f67 <CR>
Job: eagleN3f67 successfully killed
$

where eagleN3f87 is the job ID of the requested transfer.

BN 7-34

COMMAND DESCRIPTIONS

uuname - UUCP Network Node Names

General

The uuname command is useful in determining the names of those
computers that are part of your network.

Command Format

The uuname command has the format
uuname [-/]

where -/ will display only the name of the local computer.

Sample Command Usage

To display the names of all the remote computers that are part of your
network, enter:

[SB uuname<CR>

This displays the names of those remote computers you can communicate
with using the UUCP facilities.

To display the node name of your 3B2 Computer, enter:

[$ uuname -l<CR>

BN 7-35

COMMAND DESCRIPTIONS

ADMINISTRATIVE COMMANDS
uucleanup - UUCP Spool Directory Cleanup

General

The uucleanup command is used to clean-up the UUCP spool directory
(/usr/spool/uucp). This is usually executed automatically by
uudemeon.cleanu, but the command can be invoked manually to clean-up
certain files in the spool directory. The uuecleanup command will inform
owners of send /receive requests of machines that cannot be reached,
return mail that cannot be delivered, and delete or execute rnews for:
rnews type files. Also, can warn users of requests that have been waiting
for a given amount of days. You must log in as uucp or root to invoke the
uucleanup command.

Command Format

The uucleanup command has the format
/usr/lib/uucp/uucleanup [options]
where the following options are available:

-Ctime Any C. (work) files greater or equal to time days old will be
removed with appropriate information sent to the owner
(default 7 days).

-Dtime Any D. (data) files greater or equal to time days old will be
removed. An attempt will be made to deliver mail
messages and execute rnews when appropriate (default 7
days).

~-Wtime Any C. (work) files equal to time days old (default 1 day)
will cause a mail message to be sent to the owner warning
about the delay in contacting the remote. The message

BN 7-37

COMMAND DESCRIPTIONS

-Xtime

-mstring

~otime

~SSystemn

includes the JOBID, and the mail message. The
administrator may include a message line telling who to
call to check the problem (-m option).

Any X. (execute) files greater or equal to time days old will
be removed. The D. files are probably not present (if they
were, the X. would have been executed). But if there are
D. files, they will be taken care of by D. processing
(default 2 days).

String will be included in the warning message generated
by the -W option. The default line is

See your local administrator to locate the problem.

Other files whose age is more than time days will be
deleted (default 2 days).

Execute for the directory system in the spool directory.
The directory system is the spool directory for the specific
computer.

Sample Command Usage

The foliowing uucleanup command line is the one that executes out of
uudemon.cleanup:

[/usr/lib/uucp/uucleanup -D7 -C7 -X2 -02 -Wl

This deletes all " work” and " data" files equal or greater than 7 days old.
Any other files (including " execute”) are removed if they are equal or
greater than two days old. The -W1 option sends a message to the user
when the file remains in the spool for one day.

BN 7-38

COMMAND DESCRIPTIONS

Uutry - Try to Contact a Machine With Debugging On

General

The Uutry program is used to invoke uucico -ssystemname (with a
moderate amount of debugging output) to try contacting the specified
machine. The debugging output is placed in /tmp/systemname, as well as
displayed on the screen. A RUBOUT or BREAK will return the terminal
back to the shell while uucice continues to run, putting its output in
/tmp/systemname. The minimum retry time for a machine that is busy or
does not answer is 5 minutes. The uustat -m output will show if a machine
is busy or does not answer. You cannot attempt a Uutry as long as a
"retry" exists for the particular system. Notice that Uutry is initial
capped.

Command Format

The Uutry command has the following format:

/Jusr /lib fuucp /Uutry [options] systemname
where systemname is the name of the remote machine to be called.
The Uutry command has the following options:

-xdebug level Overrides the default debugging level (5). The
debug level is a single-digit (0 through 9) number with
higher numbers providing more debugging output.

-r Allows you to input a Uutry command before the retry
time has expired.

BN 7-39

COMMAND DESCRIPTIONS

Sample Command Usage

If you have experienced problems in communicating with a remote
machine, use the Uutry command to aid in the resolution of the problem,
shown below:

r$ Jusr/lib/uucp/Uutry eagle<CR>
conn(eagle)

Device Type ACU wanted

expect: ("")

got it

sendthem (DELAY

M)

expect: (>)

"M JAT&T ACU/Modem "M 11200 BPS ™M J>got it
sendthem (PAUSE

<NO CR>)

expect: (E)

9"M JSUREgot it

sendthem (<NO CR>)

expect: (3)

? (Y/N)y M"INO.:got it
sendthem (ECHO CHECK ON
3P2P5P1P™M)

expect: (>)

MM J>got it

sendthem (9<NO CR>)

expect: (OK)

"M JDIALING: 3251 "M JOKgot it
gettoret

expect: (in:)

"MJ S M JEAGLE login:got it
sendthem (M)

expect: (word:)

"M J>nuucp M JPassword:got it
sendthem (M)

Login Successful: System=eagle
wmesg 'U'g

Proto started g

wmesg 'H’

wmesg 'H'Y

send OO 0,Conversation Complete: Status SUCCEEDED
$

S

Additional debugging output can be obtained by using the -x option (i.e.
~Xx9).

BN 7-40

COMMAND DESCRIPTIONS

uucheck - Check UUCP Directories and Permissions File

General

The uucheck command is used to check for the presence of files and
directories required by UUCP. It also checks for obvious errors in the
Permissions file.

Note: A root or uucp log in is required to execute uucheck.

Command Format

The uucheck command has the format
/usr /lib /uucp /uucheck [options]
where the following options are available:

Y Provides a detailed explanation of how the UUCP
programs will interpret the Permissions file.

xdebug_level Produces debugging output where debug levelis a

single-digit (O through 9) number with higher numbers
providing more debugging output.

BN 7-41

COMMAND DESCRIPTIONS

Sample Command Usage

To see a detailed explanation of how the UUCP programs would interpret
your Permissions file, enter:

-
/usr/lib/uucp/uucheck -v<CR>

uucheck: Check Required Files and Directories
uucheck: Directories Check Complete

#¥* yucheck: Check /usr/lib/uucp/Permissions file
** L OGNAME PHASE (when they call us)

When a system logs in as: (nuucp)
We DO ailow them to request files.
We WILL send files queued for them on this call.
They can send files to

/

They can request files from

Myname for the conversation will be my3b2.
PUBDIR for the conversation will be /usr/spool/uucppublic.

** MACHINE PHASE (when we call or execute their uux requests)

When we call system(s): (eagle) (raven) (hawk)
We DO NOT allow them to request files.
They can send files to
/usr /spool/uucppublic (DEFAULT)
Myname for the conversation will be my3b2.
PUBDIR for the conversation will be /usr/spool/uucppublic.

Machine(s): (eagle) (raven) (hawk)
CAN execute the following commands:
command (rmail), fullname (rmail)
command (Ip), fullname (ip)
command (uuxqt), fullname (uuxgt)

* uucheck: /usr/lib/uucp/Permissions Check Complete

BN 7-42

Replace this
page with the

CARTRIDGE TAPE

tab separator.

o ©
..Qlu.g
=g
Qo
me
ST
CMe
Zm ,.w,m
BSTHW
580
=z 20
mmm,m
Z &=
<585

L

== ATlal

CONTENTS

Chapter 1. INTRODUCTION
Chapter 2. COMMAND DESCRIPTIONS

Appendix: CARTRIDGE TAPE UTILITIES ERROR
MESSAGES

GENERAL

Chapter 1

INTRODUCTION

GUIDE ORGANIZATION . ..ot i it tiir i i nnnnaannnaannamssansnssarasassnss

Chapter 1

INTRODUCTION

GENERAL

This guide describes command syntax and use of the Cartridge Tape
Utilities available with your AT&T 3B2 Computer.

The commands and procedures described in this guide are for use by

sophisticated users who have a cartridge tape drive, and would like to do
the following:

» Create a backup cartridge tape.

« Load files from a backup cartridge tape.

» Obtain information about a cartridge tape.
s Format a cartridge tape.

» Use the cartridge tape as an intermediate device to reorganize a file
system.

CT1-1

INTRODUCTION

e Copy file archives to the cartridge tape.

e Copy file archives from the cartridge tape.
To use these commands the following utilities must be installed:

» Cartridge Tape Utilities

e System Administration Utilities.

In addition, if your 3B2 Computer is configured with a AT&T /XM, the
following prerequisites must also be met:

1. 3BZ2/XM Administration Utilities must be installed on the 3B2
Computer

2. An AT&T /XM containing a cartridge tape drive must be connected to
the 3B2 Computer.

Before proceeding with this guide, be sure you have read the AT&T /XM
Manual.

Some of the commands described in this guide appear to accomplish the
same result. They copy data from the disk to the cartridge tape. Each
command, however, has advantages and disadvantages. When you become
familiar with each command, you will know what command to use for
different circumstances.

CT 1-2

INTRODUCTION

GUIDE ORGANIZATION

This guide is structured so you can easily find desired information without
having to read the entire text. The remainder of this guide is organized as
follows: -

Chapter 2, "COMMAND DESCRIPTION,” describes the
command formats (syntax) for each command in the Cartridge
Tape Utilities. The descriptions include the purpose of the
command, a discussion of the command syntax and options,
and examples of using each command,

Appendix, “ERROR MESSAGES,"” contains the UNIX* System
Error Messages pertaining to the Cartridge Tape Utilities.

* Trademark of AT&T

CT 1-3

Chapter 2

COMMAND DESCRIPTIONS

COMMAND SUMMARY .. ittt it ettt et et an e

HOW COMMANDS ARE DESCRIBEDottt et st ieaans
cmpress — Reorganizes a File System to Improve Access Time..............
ctcepio — Copies File Archives to and from Cartridge Tape
ctefmt — Format Cartridge Tapeo n i ine ettt e eeaaana
ctecinfo — Display Information About a Cartridge Tape or Tape
L T
finc — Incremental Backup nini e s
frec — Recover Files from a Backup Tapeo inmn e e e nanneannns
tar — Tape File Archiver ittt et e e e e

Chapter 2

COMMAND SUMMARY

The Cartridge Tape Utilities provide seven UNIX System commands. These
commands allow you to do various operations on the cartridge tape drive.
A summary of these commands is provided in Figure 2-1.

CT 2-1

COMMAND DESCRIPTIONS

COMMAND DESCRIPTION

cmpress Improves disk performance by cleaning up
fragmentation of a disk file system.

ctcepio Copies file archives to and from a cartridge
tape using streaming mode.

ctefmt Formats or reformats a cartridge tape.

ctcinfo Displays information about a cartridge tape
drive or a cartridge tape.

finc Does an incremental backup on a cartridge
tape.

frec Recovers files from a backup cartridge tape.

tar Saves and restores files on a cartridge tape.

Figure 2-1. Cartridge Tape Utilities - Command Summary

CT 2-2

COMMAND DESCRIPTIONS

HOW COMMANDS ARE DESCRIBED

A common format is used to describe each of the commands. The format
is as follows:

« General: The purpose of the command is defined. Any uncommon
or special information about the command is also provided.

» Command Format: The basic command format (syntax) is defined
and the various arguments and options are discussed.

» Sample Command Use: Example command line entries and system
responses are provided to show you how to use the command.

In the command format discussions, the following symbology and
conventions are used to define the command syntax.

e The basic command is shown in bold type. For example: command
is in bold type

» Arguments that you must supply to the command are shown in a
special type. For example: command argument

» Command options and arguments that do not have to be supplied
are enclosed in brackets ([]). For example: command
[optional arguments]

» The pipe symbol (1) is used to separate arguments when one of
several forms of an argument can be used for a given argument
field. The pipe symbol can be thought of as an exclusive OR
function in this context. For example:
command [argumentl | argumentZ]

CT 2-3

COMMAND DESCRIPTIONS

In the sample command discussions, the lines that you input are ended
with a carriage return. This is shown by using <CR> at the end of the
lines.

Refer to the AT&T 3B2 User Reference Manual for UNIX System V manual
pages supporting the commands described in this guide.

Refer to the Appendix for the UNIX System Error Messages that pertain to
the Cartridge Tape Utilities.

The following conventions are used to show your terminal input and the
system output:

This style of type is used to show system generated
responses displayed on your screen.

This style of bold type is used to show inputs
entered from your keyboard that are displayed on your
screen.

These bracket symbols, < > identify inputs from the
keyboard that are not displayed on your screen, such

as: <CR> carriage return, <CTRL o> control d, <ESC g>
escape g, passwords, and tabs.

This style of italic type is used for notes that
provide you with additional information.

CT 2-4

COMMAND DESCRIPTIONS

cmpress — Reorganizes a File System to Improve Access
Time

General

The cmpress command is a shell script that internally reorganizes the free
space to improve access time. The empress command works by first
writing the named file system onto a formatted cartridge tape. Then, the
original copy of the file system is removed from the hard disk, and the free
block list is sorted into sequential order. Finally, the file system is copied
from the tape back onto the hard disk in such a way that free space
previously scattered throughout the file system are collected together.

Since the file system is destroyed during the compression process, it is
recommended that an up-to-date backup of the file system be available
before compressing.

All file systems can be compressed except root and /usr through the
sysadm tapemgmt commands. Refer to the AT&T /XM Manual, under
Chapter " Using Your AT&T /XM." The root file system cannot be
compressed using the empress command., Compressing the /usr file
system is more complex because the sysadm facilities reside in the /usr
file system. A scheme for compressing /usr is given in the following Sample
Commands.

The empress command requires the user to be logged in on the console
terminal as root. This command should only be executed when adequate
time is available, such as during off hours. Execution time depends on the
size of the file system being compressed.

Command Format

The empress command has the following format:

empress ctape? (where ? is the ctape drive number)

CT 2-5

COMMAND DESCRIPTIONS

Sample Commands

The following steps shows the various commands it will take to compress
the file system /usr, using the empress command.. At the end of the step
procedure is a screen display of the commands as they were entered.

Step 1. See how /usr is mounted, by entering the mount command. Make
note of the /dev/dsk/c?d?s? information for /usr. This will be used
several times in this example. The ? will vary according to the partitions
and mount point.

Step 2. Take the system down to a single user mode by entering the
shutdown command.

Step 3. Mount the /usr file system by using the /dev/rdsk/c?d?s?
information from the mount command in Step 1.

Step 4. Compress the file system by entering the cmpress command and
the cartridge tape drive to be used.

Step 5. When compression is complete, unmount /dev/rdsk/c?d?s? by
entering the umount command.

Step 6. Now bring the system back to the multi-user mode by entering the
init 2 command.

COMPRESSING THE USR FILE SYSTEM IS COMPLETE.

CT 2-6

COMMAND DESCRIPTIONS

-
mount<CR>

/ on /dev/dsk/c?d?s? read/write on Fri July 19 06:30:22 1985

/ usr on /dev/dsk/c?d?s? read/write on Fri July 19 06:32:22 1985

/ usr2 on /dev/dsk/c?d?s? read/write on Thu July 18 08:47:22 1985
shutdown -il<CR>

Several messages will appear, ending with:
INIT: SINGLE USER MODE

#mount /dev/rdsk/c?d?s? /usr<CR>

cmpress ctapel<CR>

Mounted file systems available for compression:

/usr /usr2

Enter the file system you want to compress [q]: /usr<CR>

Insert tape into ctapel drive, wait for re-tension pass to complete,
and press the <RETURN> key when ready [q]:<CR>

Copying file system to tape

Verify pass begins.
Verify pass complete.

(number) blocks

Copy to tape complete.

Removing file system.

Consolidating the freelist to reorganize the space

/dev/dsk/c?d?s?
File System: usr Volume: 1.1

** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames

** Phase 3 - Check Connectivity

** Phase 4 - Check Reference Counts
** Phase 5 - Check Free List (Ignored)
** Phase 6 - Salvage Free List

2 files 2 blocks 9918 free

*#% FILE SYSTEM WAS MODIFIED #**#*
Copying file system back from tape

(number) blocks

File system copy from tape completed
umount /dev/rdsk/c?d?s?<CR>

init 2<CR>

Several messages will appear, ending with:

Console Login:
\

CT 2-7

COMMAND DESCRIPTIONS

ctccpio — Copies File Archives to and from Cartridge Tape

General

The cteepio command is used to copy file archives to and from a cartridge
tape. The cteepio command uses the streaming feature of the cartridge
tape controller. Any cartridge tape that has data placed on it by the
command cteepio can not be appended to.

Command Format

The cteepio command has the following format:

[file(s)] } ctcepio -0 [avVK] -T cartridge_tape_device

cteepio -i [dmrtuvVi] -T cartridge_tape_device [pattern]

The file(s) is the standard input; such as file, files, directories, or path
names, that are piped (1) to the ctcepio command. The file(s) can use
commands like find or Is (see FIND (1) and LS (1)). If the file(s) starts
with (/), the directories will be placed under the root directory when
extracted from the tape.

The -0 argument (copy to) reads the standard input, to obtain the path
names and status information, then copies this data onto the tape device
specified by the argument -T cartridge_tape_device. Any data stored on
the cartridge_tape_device will be overwritten.

The -i argument (copy from) extracts the data from the cartridge tape
device, created by the ctecpio -0 command, then copies the data to the

current directory.

The pattern option is used to select a file or files you want extracted from
the tape. The default for patternis * (i.e., select all files).

CT 29

COMMAND DESCR!IPTIONS

The options for ctecpio -0 are:

Reset access times of input files after they have been copied.

Verbose causes a list of file names to be displayed as they are
copied out to tape.

Prints a dot (.) for each file copied instead of the file name.

Performs a verify pass on output to tape. It is recommended that
the K option always be used with the ~o option.

The options for ctcepio -i are:

d

m

Directories are to be created as needed.

Retains previous file modification time.

Interactively renames files. The system will ask you to rename the
files as they are written to hard disk. If you do not want the file
written in, enter a <CR> and the system will skip that file.

Prints a table of contents of the input. No files are created.
Copies unconditionally.

Verbose causes a list of file names to be printed. When used with
the t option, the table of contents looks like the output of an ls -
command.

Prints a dot (.) for each file copied instead of the file name.

Copies all files from the cartridge tape except those in pattern.

CT 2-10

COMMAND DESCRIPTIONS

Sample Commands

The following example shows how to archive all files and subdirectories, of
the directory usr/old, out to the tape device /dev/rSA/ctapel with the
file names displayed and verified:

p
cd /<CR>

find usr/old -print | ctccpio -ovKT /dev/rSA/ctapel <CR>
usr/old/junk /chapterl

usr /old /junk /chapter2

usr /old /junk/chapter3

usr /old /junk /chapterd

usr /old /bin /vikeys

usr/old/sample

Verify pass begins.
Verify pass completed.

12 blocks
#

CT 2-11

COMMAND DESCRIPTIONS

The next example shows how to retrieve the data stored on the tape from
the previous example, place it in another directory, rename the files, then
see what was copied to the new directory with the Is command.

.

mkdir lastexp<CR>
cd lastexp<CR>

cteepio ~irT /dev/rSA/ctapel<CR>
Rename <chapter2>
newchapterl<CR>
Rename <chapterd>
newchapter2<CR>
Rename <chapter6>
newchapter3<Cf>
Rename <chapter8>
newchapterd<CR>

10 blocks
#ls<CR>
newchapterl
newchapter2
newchapter3
newchapterd
#

CT 2-14

COMMAND DESCRIPTIONS

ctcfmt — Format Cartridge Tape

General

The ctefmt command is used to format or reformat a cartridge tape.
Formatting typically takes about ten minutes to complete. The cartridge
tape can be formatted by using the device specified by the rawdevice
parameter. Formatting a tape can be verified to make sure it is formatted

properly.

Note: Once formatting has started, it can not be stopped.

Command Format

The ctefmt command has the following format:
ctefmt [-v] [-p passct] -t rawdevice

The -v option specifies that you want to verify the format. Verifying a tape
takes an additional ten minutes, but it could save you time and loss of data
if a problem were to occur. The decision of whether to use this option
should be based on the importance of the data to be placed on the tape
and whether you have had recent problems with cartridge tape defects. It
is recommended that verification be made to make sure the tape is
formatted properly and all blocks are readable,

The -p passct option specifies the maximum amount of tape passes
allowed for the tape. This number is used to warn the user that the tape is
nearing the end of its expected life and should be replaced to avoid the
loss of data. If this option is not specified, a defauit value of 4000 is used.
If the cartridge tape is going to be used for a file system, the pass count
should be lowered to 3000.

The -t rawdevice argument specifies what device you are using to format a
cartridge tape: /dev/rSA/ctapel for the first cartridge tape drive or
/dev/rSA /ctape2 for a second cartridge tape drive that may be added.

CT 2-15

COMMAND DESCRIPTIONS

Sample Commands

The following example shows how to format a cartridge tape, with
verification, and set the pass count to default (4000):

ctefmt -v -t /dev/rSA/ctapel<CR>

Insert tape, wait for re-tension pass to complete,
and press the <RETURN> key when ready [q]:<CFR>
Format completed successfully.

#

The following example shows how to format a cartridge tape and set the
pass count to 3500:

ctefmt -v -p 3500 -t /dev/rSA/ctapel<CR>
Insert tape, wait for re-tension pass to complete,
and press the <RETURN> key when ready [ql:<CR>
Format completed successfully.

#

CT 2-16

COMMAND DESCRIPTIONS

ctcinfo — Display Information About a Cartridge Tape or
Tape Drive

General

The cteinfo command is used to display information about a cartridge tape
drive and any cartridge tape that is inserted in the drive. The drive you
want information about must be specified in the command line.

Command Format

The cteinfo command has the following format:
cteinfo [options] rawdevice
The options for ctcinfo are:

The -v option prints the volume table of contents for the tape in the
specified tape drive.

The -d option prints the device type.

The -t option prints the current tape pass count.

The -m option prints the maximum tape count.

The -u option prints the current tape drive usage count.
The -c¢ option prints the number of cylinders.

The -x option prints the number of tracks per cylinder.
The -s option prints the humber of sectors per track.
The -b option prints the number of bytes per sector.

The -a option prints the total bytes on the device.
CT 2-17

COMMAND DESCRIPTIONS

The -B option prints the total blocks on the device.

The -r option resets the tape drive usage count back to 0 and will stop
issuing warning messages about using a dirty tape drive.

Warning: The -r option should only be used to inform the system
that the tape drive has just been cleaned, when in fact it has been
cleaned.

Using the -r option when the tape drive has not been cleaned creates the
possibility of losing data from any tapes that are run through the tape
drive when it needs cleaning. If data is lost, it cannot be recovered unless
you have retained another copy of it.

The rawdevice argument is the name of the tape drive you want

information about. For example: /dev/rSA/ctapel identifies cartridge
tape drive 1.

CT 2-18

COMMAND DESCRIPTIONS

Sample Commands

The following examples show how to print all the information about tape
drive 1.

cteinfo -vdtmucxsbaB /dev/rSA /ctapel<CR>

Tape Drive Usage:
1 hours 4 minutes since last cleaning
18 hours 55 minutes until next cleaning

For device named /dev/rSA/ctapel:
VOLUME TABLE OF CONTENTS
VOLUME NAME: ctctape VERSION: 1 POSSIBLE NUMBER OF PARTITIONS: 16

PARTITION TAG FLAG SECTORSTART SIZE IN SECTORS

0 2 0 5272 8928
1 3 1 126 5146
2 4 0 14200 31341
3 0 1 2 45539
6 5 1 0 45541
7 1 1 (¢ 126

Device type is 6 Stream Floppy Tape
Tape Pass Count: 148

Maximum Allowed Tape Pass Count: 4000
Cylinders: 6

Tracks per cylinder: 245

Sectors per track: 31

Bytes per sector: 512

Total available bytes: 23315968

Total available blocks: 45539

#

CT 2-19

COMMAND DESCRIPTIONS

finc — Incremental Backup

General

The finc command selectively copies the input file system to the output
tape. This is a slow process. The tape must already be formatted by the
command ctcfmt or the Simple Administration command format. Also, the
tape must be labeled by the /abelit command. The selection is controlled
by the selection-criteria described below. Only one option should be used
at a time.

Before executing fine, you should execute the ff command and save the
output in a file as an index of the tape contents. Files on the tape can be
recovered with the frec command.

Note: You should mount the input file-system as read-only to
insure an accurate backup, although acceptable results can be
obtained in the read-write mode. The fine command copies the file
system one block at a time.

The labelit command requires that you specify the desired cartridge tape
drive in the raw mode and use the -n option to skip label checking.

Command Format

The finc command has the following format:

finc [selection-criteria] file-system raw-tape

CT 2-21

COMMAND DESCRIPTIONS

The selection-criteria for fine are:

The -a n option specifies to only copy the file, if the file has been accessed
in n days.

The -m n option specifies to only copy the file, if the file has been modified
in n days.

The -c¢ n option specifies to only copy the file, if the i-node has been
changed in n days.

The -n file option specifies to copy any file that has been modified more
recently than the argument file.

The file-system argument specifies what file system you want to backup.

The raw-tape argument specifies where you want the file-systemn copied.

Note: The n argument for options a, m, and ¢ must be a whole
decimal number, where +n means more than n, -n means less than
n, and n means exactly n. A day is defined as a 24-hour period.

CT 2-22

COMMAND DESCRIPTIONS

Sample Commands

To copy a file system to the output tape, the first command would be to
enter mount to see what is available. Next run the ff command to list the
i-nodes and directories of the special file you want copied. Then you can
run the finc command.

The following examples show how to copy to a tape all files for file system
/mnt that were modified in the last 48 hours. The /mnt file system is
actually a file system on the integral floppy diskette that has been
mounted as /mnt.

-

mount<CR>
/ on /dev/dsk/c1d0sO read/write on Fri July 19 07:43:55 1985
/usr on /dev/dsk/cl1dOs2 read/write on Fri July 19 07:45:51 1985
/usrd on /dev/dsk/cldls2 read/write on Fri July 19 08:36:35 1985
/mnt on /dev/SA/diskettel read/write on Fri July 19 08:45:56 1985
£f -m -1 /dev/SA/diskettel<CR>
ff: /dev/SA/diskettel: f: 5 files selected

2

./awa 3
./awa/junkl 4
./awa/junk2 5
.awa/bin 9

labelit /dev/rmt/ctapel tapel4d tapeld -n<CR>

Skipping labe! check!

NEW fsname =tapel4, NEW volname =tapel4 - - DEL if wrong!!

finc -m -1 /dev/rSA /diskettel /dev/rmt/ctapel<CR>

finc: /dev/rSA/diskettel-> /dev/rmt/ctapel: 5 files (7 blocks) selected
finc: /dev/rSA/diskettel-> /dev/rmt/ctapel: datacopy done

#

CT 2-23

COMMAND DESCRIPTIONS

frec — Recover Files from a Backup Tape

General

The frec command recovers files from the specified backup tape. The
tape must have been written by finc. To recover a file, you need to give
the i-numbers for that file. The output for each recovery request will be
written into the file specified by name.

Command Format

The frec command has the following format:
frec [-p path] [-f reqgfile] raw-tape i-number:name...

The -p option allows you to specify a default prefixing path different from
your current working directory (./). This path will be prefixed to any
names that are incomplete. For example: any names that do not begin

with /or ./.

The -f option specifies a file that contains recovery requests. The format
is:

i-number:newnarme
The file can only contain one request per line.
The raw-tape argument identifies the tape you want to recover data from.

The j-number:name... argument identifies the file you want to recover and
where you want the file saved.

CT 2-25

COMMAND DESCRIPTIONS

Sample Commands

The following example shows how to recover a file hamed chapl and place
it in the current working directory. Chapl has an i-number of 9 and is
located on a tape labeled csave.

frec /dev/rSA/ctapel 9:chapl<CFR>
frec: /dev/rSA/ctapel: Finc of csave (reel 1 /1) made on Fri July 19 09:08:55 1985
#

The following example shows how to recover files setup and Rlist.ctc that
have i-numbers of 7 and 6, respectively. The files are recovered from a
tape that was labeled tapel4 and placed in the usr3 directory instead of
the current working directory.

frec -p /usr3 /dev/rSA/ctapel 7:setup 6:Rlistic.ctc<CR>
frec: /dev/rSA/ctapel: Finc of tapel4 (reel 1/1) made on Fri July 19 14:33:00 1985

CT 2-26

COMMAND DESCRIPTIONS

tar — Tape File Archiver

General

The tar command saves and restores individual files on a cartridge tape.
Its actions are controlled by the key arguments.

Command Format

The tar command has the following format:
tar [key] [device] [files]

The key argument tells what actions you want the tar command to take.
The key argument must have one, but no more than one, function letter.
it must have at least one function meodifier, but may have several, if
desired. The f modifier must be used to specify the cartridge tape drive
(/dev/rSA/ctapel).

The function letters are listed below:

r The named files are written at the end of the data stored on the
tape. Data is not overwritten using the r function letter.

¥ The named files are extiracted from the tape. If a directory name is
given instead of a file name, the entire directory will be extracted.
If no files argument is given, the entire contents of the tape is
extracted. If several files with the same name are on the tape, the
last one overwrites all earlier ones.

t The names of the specified files are listed each time they occur on
the tape. If no files are specified, all the names on the tape are

listed.

u The named files are added to the tape if they are not already there
or if they have been modified since last written on the tape.

CT 2-27

COMMAND DESCRIPTIONS

¢ Creates a new tape. Writing begins at the beginning of the tape
instead of after the last file. The ¢ function letter overwrites all data
stored on the tape.

The function modifiers are listed below:

0..,7 This modifier selects the drive on which the tape is mounted. The
default is 1.

v Causes tar to type the name of each file it treats, preceded by the
function letter. When used with the t function, v will give more
information about the tape entries than just the name.

w Causes tar to print the action to be taken, followed by the name
of the file, and then waits for the users confirmation. If a word
beginning with " y" is given, the action is performed. Any other
input means " no."

f Causes tar to use the next argument as the name of the device to
use instead of /dev/mt?. If the name of the file is -, tar writes to
the standard output, or reads from standard input, whichever is
appropriate. Thus, tar can be used as the head or tail of a
pipeline. The tar command can also be used to move hierarchies
with the command:

cd fromdir; tar cf - . | (cd todir; tar xf -)<CR>
b Causes tar to use the next argument as the blocking factor for
tape records. The default is 1, the maximum is 20. The block size

is determined automatically when reading tapes (function letters x
and t).

I Tells tar to complain if it cannot resolve all the links to the files
being dumped. If I is not specified, no error messages are printed.

m Tells tar not to restore the modification times. The modification
time of the file will be the time of extraction.

CT 2-28

COMMAND DESCRIPTIONS

The files argument specifies what files are to be dumped or restored. If a
directory name is used instead of file names, all the files and subdirectories
under that directory are specified.

Sample Commands

The following example will write out all the files and any subdirectories in
directory /mnt that end with .c, then list each file as it is transferred, and
start saving the files at the start of the tape:

cd /mnt<CR>

tar cvf /dev/rSA/ctapel *.c<CR>
a chapter.c 8 blocks

a moreinfo.c 7 blocks

#

The next example shows how to write the file addinfo.h at the end of the
data stored on the tape:

tar rvf /dev/rSA/ctapel addinfo.h<CR>
a addinfo.h 2 blocks
#

CT 2-29

COMMAND DESCRIPTIONS

To see what has been stored on the tape, enter:

e
tar tvf /dev/rSA/ctapel<CR>
Tar: blocksize = 20

FW-mnmmmn 0/1 3590 July 19 11:18 1985 chapter.c
FWnmmemem 0/1 3328 July 19 11:16 1985 moreinfo.c
FW--rmmmm 0/1 955 July 19 12:15 1985 addinfo.h

Note: The file addinfo.h was stored at the end
of the data on the tape.
#

The next example shows how to retrieve the files from the previous tar
command and place them in another directory:

-
cd /usr2/awa<CR>

tar xvf /dev/rSA/ctapel<CR>
Tar: blocksize = 20

x chapter.c 8 blocks

x moreinfo.c 7 blocks

x addinfo.h 2 blocks

#ls -l<CR>

W--—emmn 0/1 955 July 19 12:15 1985 addinfo.h
FW-1W---- 0/1 1093 July 19 10:14 1985 chapterl
rW-r W 0/1 1006 July 19 01:28 1985 chapter2
rW-rW--mn 0/1 5554 July 19 03:06 1985 chapter3
W= 0/1 3590 July 19 11:18 1985 chapter.c
FWammmmmem 0/1 3328 July 19 11:16 1985 moreinfo.c

Note: The three chapters (1, 2, and 3) already existed
wn the directory awa.

CT 2-30

Appendix

ERROR MESSAGES

This appendix contains the error codes that are created and displayed by
the Cartridge Tape Utilities. The error codes are stored in the file
susr/include /sys/ct.h. They are in addition to those found in
susr/include /sys/errno.f. Information on the errno.h error codes can be
found in the intre(2) manual page of the AT&T 3B2 Computer Programmer
Reference Manual.

The following is an example of an error messages that will appear on the
console terminal.

NOTICE: CTC Access Error: Consult the Error Message Section of the
3B2 Computer Cartridge Tape Utilities Guide (error num=215)

Page 1

Appendix

The following tables show the error CODE number and NAME, a
DESCRIPTION of the error, and what ACTION must be taken to correct
the error. The ACTION statement " See CTC RECOVERY PROCEDURE" is
at the end of the tables.

CODE NAME DESCRIPTION — ACTION

200 EUSRSPL Access to device is blocked because a special
control function (ioct! - open) has exclusive
access. This condition will occur if the tape
unit is being used to do a backup /restore or
format operation. — Wait for either of these
operations to complete, then retry.

201 ENOSGEN | This condition occurs when the CTC board
fails to complete its initialization and is left in
an insane state. — See CTC RECOVERY
PROCEDURE.

202 EBRDDWN | This condition occurs when it is detected that
the CTC board is not operating properly and
is then marked unavailable. — See CTC
RECOVERY PROCEDURE.

203 ENOCONF | This condition occurs when an attempt is
made to do an operation on the CTC sub-
device (such as, cartridge tape drive or floppy
disk drive) that is not connected to the CTC
board. — Check hardware configuration for
proper sub-devices.

204 EFWCBAD This condition shows that a software routine
failed to execute properly. — See CTC
RECOVERY PROCEDURE.

Page 2

Appendix

CODE NAME DESCRIPTION — ACTION

205 ENOTOPN | This condition shows that read /write access
from the CTC board to the sub-device is
blocked. This condition will not occur under
normal operating conditions. — See CTC
RECOVERY PROCEDURE.

206 EROPART Cartridge tape in sub-device is write
protected or mounted read-only. — Remove
write protection from media or mount in
read/write mode.

207 EPRTOVR | This condition occurs when attempts are
made to write to a cartridge tape that has

run out of available space. — Retry on
cartridge tape with adequate space. (See
ctcinfo.)

208 EBDVTOC | The volume table of contents (vtoc) on the
cartridge tape is not detected as sane. This
may be a result of the cartridge tape needing
to be re-tensioned. — Remove tape from
drive and reinsert tape into drive and wait for
re-tensioning pass to complete. Retry
operation. If failure condition reoccurs,
reformat cartridge tape.

Warning: Reformatting tape will
destroy data stored on the cartridge
tape.

Page 3

Appendix

CODE

NAME

DESCRIPTION — ACTION

209

EBDPSEC

The physical descriptor sector on the
cartridge tape is not detected as sane. This
may be a result of the cartridge tape needing
to be re-tensioned. — Remove tape from
drive, reinsert tape into drive, and wait for
re-tensioning pass to complete. Retry
operation. If failure condition reoccurs,
reformat cartridge tape.

Warning: Reformatting tape will
destroy data stored on the cartridge
tape.

210

ENSLOPN

This condition occurs when a software
routine fails to function properly. This
condition will not occur under normal
operating conditions. — See CTC RECOVERY
PROCEDURE.

211

ENTSUSR

This condition occurs when an attempt is
made to access the CTC board while a
cartridge tape is being formatted. — Wait for
format operation to complete then retry.

212

ETIMOUT

This condition occurs when the CTC board
failed to complete a task in the time allotted.
— See CTC RECOVERY PROCEDURE.

213

EHDWERR

This condition shows a CTC board hardware
failure. — See CTC RECOVERY PROCEDURE.

Page 4

Appendix

CODE NAME PESCRIPTION — ACTION

214 ENOTRDY | The device was not ready for access. — Try
again.

215 ERWERR Attempt to read or write to cartridge tape
has failed. — Try again. If repeated failures
occur, re-tension cartridge tape by removing
and reinserting cartridge tape into the tape
drive. If condition persist, it may be because
of a bad cartridge tape.

216 EWRTPRT | This condition occurs when an attempt is
made to write to a write protected cartridge
tape. — Remove write protection from
cartridge tape.

217 EBDJSIZ This condition occurs when a stream request
exceeds the 15.5 Kilobyte limit. This
condition will not occur under normal
conditions. — See CTC RECOVERY
PROCEDURE.

218 EBDOFLG This condition occurs when the software
detects a bad open flag and can not
determine the read/write direction. This
condition will not occur under normal
conditions. — See CTC RECOVERY
PROCEDURE.

219 ENOMED This condition occurs when an attempt is
made to do an operation on media that is not
present in the sub-device. — Put cartridge
tape in tape drive.

Page 5

Appendix

CTC RECOVERY PROCEDURE

In the normal course of using the Cartridge Tape Utilities you may
encounter problems interfacing with the CTC or its sub-devices. These
problems may be characterized by various error messages or simple no
response at all. What follows is a general recovery procedure that may
clear the source of your problem. This procedure requires the user to be
logged in as root on the console terminal.

Repump the CTC firmware using the following command:

Jetc/pump /dev/rSA/ctape? /lib/pump/ctc<CR>
#

Note: The (?) is the number of the CTC (such as,
ctapel for the first CTC).

The system should respond with the root prompt. Check to see if error
condition still exists. If the error condition continues to exist, remove and
reinstall the Cartridge Tape Utilities software. If the error condition still
exists, it may require the attention of your AT&T Service Representative or
authorized dealer.

Page 6

Replace this
page with the

DIRECTORY AND FILE MANAGEMENT

tab separator.

3B2 Computer
UNIX™ System V Release 2.0
Directory and File Management

Utilities Guide

AT&T

)8 A R EEEEEE
E KX B I
b -
) 39 4
¥)
4 3 .,
. 2a%"
)4 O)-8
enesesere
DO
IR p 4
g W g
) & 4 ®, .-
___ o2
) &

o

Mhn Imkﬂ”n ate £ s e L nmmmmmn MHMIM

L

LGN)
t)

a
a o
a
L]
n
L]
L]
L]
n
n
"
)
"
a
L)
L)
L]
L]
o
a
"
a
o
L]
L]
L]
L]
L]
o
n
o
)
a
a
L]
L)
L]
n
n
"
n
@
a
a
L]
[
n
L]
L]
L]
L]
]
L]
@
L]
L]
L]
a
O]
a
L)
L]

CONTENTS

Chapter 1. INTRODUCTION
Chapter 2. COMMAND DESCRIPTIONS

GENERAL

Chapter 1

INTRODUCTION

GUIDE ORGANIZATION . .. i it e it m i mmmmmmmmam e e anmamenaannnnn

Chapter 1

INTRODUCTION

GENERAL

This guide describes command formats (syntax) and use of the Directory
and File Management Utilities provided with your AT&T 3B2 Computer.
The commands and procedures described in this guide can be used by
anyone who has a need for enhanced file and directory manipulation on
the 3B2 Computer.

Directory and File Management Utilities are software tools to aid in
managing your directories and files. With one-step commands, you can
skillfully do any of the following:

e Search directories and files
o Compare their contents

o Manipulate file data.

DF 1-1

INTRODUCTION

GUIDE ORGANIZATION

The remainder of this guide, Chapter 2 -- “COMMAND DESCRIPTIONS,”
describes the command formats (syntax) for each command in the
Directory and File Management Utilities. The descriptions include the
purpose of the command, a discussion of the command syntax and
options, and examples of using each command.

DF 1-2

Chapter 2

COMMAND DESCRIPTIONS

PAGE

COMMAND SUMMARYt iittinannaeeanearenaanaanaaannnannn 2-1
HOW COMMANDS ARE DESCRIBED i nnnenannn 2-5
COMM ANDS i ittt ittt ittt it iaaaaaa e e 2-7
“ar” — Archive and Library Maintainer for Portable Archives 2-7
“awk’’ — Pattern Scanning and Processing Languagecc0..... 2-13
“bdiff’ — Big Differential File Comparator iietiennn 2-29

“bfs” — Big File Scanner Editor. i 2-33
“comm’ — Select or Reject Common Lines0ca.. 2-47
Yesphit” — Context Split. e, 2-51

“cut’’ ~— Output Selected Fieldsof aFileot 2-55
“diff3"” — 3-Way Differential File Comparator 2-59
“dircmp’” — Directory Comparisont 2-63
“egrep,” ‘‘fgrep’” — Search a FileforaPattern 2-67

“file” — Determine File Typeo i it e i ennnnnaaenn 2-73
“join”’ — Relational DataBase Operator. it ininnnennnnn 2-77
“newfoerm’” — Change the Formatof a TextFile 2-79

“nl” — Line Numbering Filter et 2-83

fod — Octal DUmp (et 2-87
“pack” — Compress Files i e i, 2-91
“paste’”” — Side-by-Side File Merge e 2-95
“pcat’”’ ~— Concatenate and Print Packed Files 2-99

“pg” — Command Description. 2-101
“sdiff’’ — Side-By-Side Difference Program 2-107
“split” — SplitaFilento Piecescciiinerennnonnnnnannnnns 2-111
“sum” — Print Check Sum and Block CountofaFile.................... 2-113

“tail” — Output End of aFile it ittt i eaa e 2-115

“tr’ — Translate Characters.t eniaaeeinianaannn 2-119
“‘uniq”” ~— Report Repeated LinesinaFile iirinennn 2-123

“unpack” — Expand Files et 2-127

Chapter 2

COMMAND SUMMARY

The Directory and File Management Utilities Package provided with the
3B2 Computer includes twenty-seven UNIX* System commands. These
commands with a brief description are listed in Figure 2-1.

* Trademark of AT&T

DF 2-1

COMMAND DESCRIPTIONS

Commands Description

ar Maintains groups of files that are part of a
single archive file.

awk Searches input lines for a matching pattern and
performs specific actions.

bdiff Finds what lines should be changed for two
files to agree.

bfs A read-only editor, similar to the ed
editor, that is used to scan big files.

comm Selects or rejects lines common to two sorted
files.

csplit Splits a file into parts as specified.

cut Cuts out selected fields of data on each line
of a file.

diff3 Compares three versions of a file.

dircmp Compares two directories.

egrep Searches a file for an egrep pattern,

that is, a full regular expression.

fgrep Searches a file for an fgrep pattern,
that is, a fixed string.

Figure 2-1. Directory and File Management Commands (Sheet 1 of 3)

DF 2-2

COMMAND DESCRIPTIONS

Commands Description

file Determines information about a file.

join Joins two sorted files.

newform Reads lines from a file or the standard input
and reproduces those lines in a reformatted
form on the standard output.

nl Numbers lines in a file.

od QOutputs data in octal, decimal, ASCIl, or
hexadecimal formats.

pack Stores file data in a compressed form.

paste Merges the lines of two or more files in a
side-by-side fashion.

pcat Unpacks a compressed file for viewing only.

pg Allows you to view a file, one page at a time on
a video display terminal.

sdiff Compares two files to produce a
side-by-side listing of different lines.

split Splits a file into parts of equal length.

Figure 2-1. Directory and File Management Commands (Sheet 2 of 3)

DF 2-3

COMMAND DESCRIPTIONS

Commands Description

sum Calculates the checksum and blocks of a file.

tail Copies a file or portion of a file to standard output.
tr Filters a file by translating specified

characters to other characters.

uniq Reports file lines that are repeated.

unpack Stores a compressed file in uncompressed form.

Figure 2-1. Directory and File Management Commands (Sheet 3 of 3)

DF 2-4

COMMAND DESCRIPTIONS

HOW COMMANDS ARE DESCRIBED

A common format is used to describe each of the commands. This format
is as follows:

o General: The purpose of the command is defined. Any special or
uncommon information about the command is also provided.

» Command Format: The basic command line format (syntax) is
defined and the various arguments and options discussed.

» Sample Command Use: Example command line entries and system
responses are provided to show you how to use the command.

In the command format discussions, the following symbology and
conventions are used to define the command syntax.

» The basic command is shown in bold type. For example, command
is in bold type.

» Arguments that you must supply to the command are shown in a
special type. For example: cemmand argument.

» Command options and fields that do not have to be supplied are
enclosed in brackets ([]). For example: command [optional
arguments].

e The pipe symbol (1) is used to separate arguments when one of
several forms of an argument can be used for a given argument
field. The pipe symbol can be thought of as an exclusive OR
function in this context. For example: command [argumentl |
argumentZ2]

DF 2-5

COMMAND DESCRIPTIONS

In the sample command discussions, user inputs and 382 Computer
response examples are shown as follows:

This style of type is used to show system generated
responses displayed on your screen.

This style of bold type is used to show inputs
entered from your keyhoard that are displayed on your
screen.

These bracket symbols, < > identify inputs from the
keyboard that are not displayed on your screen, such

as: <CR> carriage return, <CTRL d> control d, <£5C g>
escape g, passwords, and tabs.

This style of italic type is used for notes that
provide you with additional information.

Refer to the AT&T 3B2 Computer User Reference Manual for UNIX System
V manual pages supporting the commands described in this guide.

DF 2-6

COMMAND DESCRIPTIONS

COMMANDS

"ar”’ — Archive and Library Maintainer for Portable Archives

General

The ar command is used to maintain groups of files that are part of a
single archive file. The ar command is mainly used to create and update
library files that are used by the link editor (ld command), but it can be
used for any similar purpose. Refer to the AT&T 3B2 Computer User
Reference Manual for information on the Id command. When the ar
command creates an archive, the archive file is put into a format with
headers that are portable across all computers that are compatible with
your AT&T 3B2 Computer. These headers are placed at the beginning of
each archive and have the following format:

#define ARMAG " <ar>”
#define SARMAG 4

struct ar_hdr {/* archive header */

char ar_magic[SARMAG]; /* magic number * /

char ar_name[16];/* archive name */

char ar_date[4];/* date of last archive modification * /
char ar_syms{4}],/* number of ar_sym entries ¥ /

|5

The header is followed by an archive symbol table which is included in
each archive that has common object files. This symbol table is
automatically created by the ar command. The archive symbol table is
used by the link editor to determine what archive members must be
loaded during the link edit process.

DF 2-7

COMMAND DESCRIPTIONS

There may be more than one archive symbol table. The number of symbol
table entries is shown in the header under the ar_syms variable. Each
archive symbol table has the following format:

struct ar_sym {/* archive symbol table entry */
char sym_name(8);/* symbol name, recognized by Id * /
char sym_ptr[4];/* archive position of symbol * /

15

The archive symbol table is rebuilt each time the ar command is used to
create or update the contents of an archive.

The archive symbol table is followed by the archive file members. A file
member header precedes each file member. The file member header has
the following format:

struct arf_hdr {/* archive file member header */
char arf_name[16];/* file member name * /

char arf_date[4];/* file member date * /

char arf_uid[4];/* file member user identification * /
char arf_gid[4];/* file member group identification * /
char arf_mode[4];/* file member mode * /

char arf_size[4];/* file member size * /

b

All the information in the archive header, the archive symbol table, and the
archive file member headers is stored in a machine (computer)
independent fashion. Because of this, an archive file may be used on a
computer that is compatible with the 3B2 Computer.

DF 2-8

COMMAND DESCRIPTIONS

Command Format

The general format of the ar command is as follows:
ar key [posname] afile hame(s)

The key argument uses the following options:

Note: Options v, u, a, i, b, ¢, 1, or s must be used in combination
with at least one of options d, r, q, t, p, m, or x.

d Delete name(s) from the archive file.

r Replace name(s) in the archive file using the following options:

u Replace only those files that have modified dates
later than the archive files.

a Place new files after posname.

bori Place new files before posname.

The posname argument must be specified. {f you do
not specify where to place new files, they will be
placed at the end.

q Quickly append the named files to the end of the archive file. The
positioning options under the r option will not work if used with
this option. The ar command does not check to see if the added
members are already in the archive.

% Print a table of contents of the archive file. If name(s) is specified,
only that file(s) will be placed in the table of contents. If name(s)
is not specified, all files in the archive will be placed in the table of
contents.

DF 2-9

COMMAND DESCRIPTIONS

p Print the contents of name(s) in the archive file.

m Move name(s) to the end of the archive. The positioning options
under the r option can be used to place the file in a specific place.

X Extract name(s). If name(s) is not specified, extract all files in the
archive. This option will not alter the archive file.

\' Verbose. When making a new archive from an old archive and the
constituent files, a file-by—file description of the process is given.
When this option is used with the t option, a long listing of all
information about the files is given. When this option is used with
the x option, each file is preceded by its name.

C Create afile. Normally, the ar command will create afile when it
needs to. The normal message that is produced when afile is
created will not appear when this option is specified.

| Place temporary files in the local directory. If this option is not
specified, temporary files will be placed in /tmp.

s Regenerate the archive symbol table even if the ar command is
invoked with an option that will not change the archive contents.
This option is useful to restore the archive symbol table after the
strip command has been used on the archive.

The posname argument is used to determine the position of a file that is
being moved: either before or after posname. posname is the name of a
file in the archive. The posname argument must be used when using the
positioning options listed under the r option of the key argument.

The afile argument is the name of the archive file.

The name(s) argument is the name of the constituent files in the archive
file. Take caution not to list name(s) twice. If name(s) is mentioned twice,
it may be put in the archive twice.

DF 2-10

COMMAND DESCRIPTIONS

Sample Commands

The following command line entries and system responses show you how
to create an archive. The Is command is used to show you the files that
will be placed in the archive. The ar command used with the q option
shows you how to create an archive named archivel.

~

$ Is<CR>

cars

cities

people

states

streets

$ ar q archivel cars cities people states streets<CR>
ar: creating archivel

$

The following command line entry and system response show you how to
print a table of contents of the archive that was created in the previous
example:

-~

$ ar t archivel<CR>
cars

cities

people

states

streets

$

DF 2-11

COMMAND DESCRIPTIONS

The following command line entry and system response show you how to
print the contents of a file in an archive:

$ ar p archivel cars<CFH>
Camero

Ferrari

Jaguar

Mustang

Porsche

$

The following command line entry and system response show you how to
print a long listing of the table contents in an archive:

p
$ ar tv archivel<CR>
FW--—--—- 5516/ 5500 38 July 19 13:29 1985 cars
rW-----—- 5516/ 5500 51 July 19 13:33 1985 cities
rW-----=- 5516/ 5500 29 July 19 13:27 1985 people
rW-----mn 5516/ 5500 51 July 19 13:48 1985 states
FW--rmms 5516/ 5500 60 July 19 14:16 1985 streets
$

DF 2-12

COMMAND DESCRIPTIONS

“awk’ — Pattern Scanning and Processing Language

General

The awk command is used to search lines of input data for defined
patterns and to do specified actions on the lines or fields when a match is
found. Lines that do not contain a matching pattern are ignored.
Conversely, a line that contains more than one matching pattern can be
operated on and output several times. One primary use of awk is for the
generation of reports. Input data is processed to extract counts, sums,
and other pertinent information. The processed information is then output
in a specified format.

The awk command has its own programming language for defining patterns
and their corresponding actions. The language is designed to simplify the
task of information retrieval and text manipulation. Initially, the novice
user will find awk difficult to use and understand. Your understanding of
awk will increase as you spend more time using (and experimenting with)
the capabilities provided by the command. Remember that the use of this
command is task oriented; you must establish a purpose for using the
command. For example, the awk command can be used to output tabular
material in a different sequence of columns. Certain basic arithmetic
functions can also be performed on desighated fields.

Input Data Characteristics

Input data is normally taken from files of data. The variable called
FILENAME contains the name of the current input data file. Input data is
divided into records with each record ended by a record separator. The
record separator is stored in a variable named RS. The default record
separator is a new-line character. This means that by default, awk reads
and processes data on a line—by-line basis. The record separator can be
redefined by setting the variable RS equal to the desired character. When
the RS is empty (undefined), a blank line is used as the record separator.
In addition, the field separators are defined as blanks, tabs, and new-lines.
The novice user should not arbitrarily redefine the RS variable. The
number of the current record (current line) is stored in a variable named
NR.

DF 2-13

COMMAND DESCRIPTIONS

Each input record (line) is divided into fields. Each field, except the last
field, is ended by a field separator. The field separator is stored in a
variable named FS. The default field separator is white space: blanks or
tabs. The field separator can be redefined by setting the variable FS equal
to the desired character. The novice user should not arbitrarily redefine
the FS variable. Each field is identified by an uncommon variable. The
variables are $1, $2, $3, and etc. The first field is named $1. The entire
record (line) is named $0. The number of fields in the current record is
maintained in a variable named NF.

Command Language Format

The instructions that tell the awk command what to do to the input data
can be specified directly as an argument to the command, or the
instructions can be read from a file. In either case, these instructions
constitute an awk program. An awk program is a sequence of statements
that are in the following form for each statement. Note that an action
must be enclosed in braces to distinguish it from a pattern. Additional
command format information is provided later in this description. The
general form of each statement is as follows:

pattern { action }

The awk command operates on one record (line) of input data at a time.
Each line of input data is tested against each of the command lines defined
in an awk program. When a pattern match is found, the associated action
is executed. When a command line defines a pattern without an
associated action, then the input data record is cutput when a match is
found. When a command line defines an action without an associated
pattern, then the action is performed for all input lines (records). After all
program command lines have been tested against the current record
(line), the next record (line) is read and the process repeated until all
records are read.

DF 2-14

COMMAND DESCRIPTIONS

Patterns

A pattern is an expression that determines whether the associated action
is to be performed. When a command line defines a pattern without an
associated action, then the input data record is output when a match is
found. A variety of expressions can be used as patterns. Patterns can be
regular expressions as used with ed or grep, relational expressions, or
special expressions. Combinations of these types of expressions can be
used to define a pattern by using Boolean operators to connect each
expression. The Boolean operators are OR (), AND (&&), and NOT ().
Conventional arithmetic operators are also provided. The arithmetic
operators are add (+), subtract (-), multiply (*), divide (/), and modulus
(%). Also, included are the increment (++) and decrement (-) operators.

Regular Expressions: Regular expressions, in their simplest form, are
context search patterns in the form used by the ed or grep commands.
The awk language adds operators to the regular expression to specify
whether the corresponding action is to be executed if the pattern matches
(") or does not match (I"). For example, the following pattern outputs all
records in which the first field does not contain the word *‘operates’’.

$1 " /operates/

Relational Expressions: Relationships are statements that express
conditions such as greater than (>), less than (<), greater than or equal
to (>=), less than or equal to (<=), equal to (==, and not equal to (I=).
For example, the following relational expression selects lines that begin
with any letter that is equal to or greater than the letter s: All lines
beginning with the letters s through z are matched by this pattern.

$1 >= " svv

Special Expressions: Two special expressions named BEGIN and END are
provided. The BEGIN expression defines a special pattern that matches
the beginning of the input data before the first record is read. The END
expression defines a special pattern that matches the end of the input data
after the last record has been processed. These special expressions

DF 2-15

COMMAND DESCRIPTIONS

provide the means to establish initial and post-processing conditions.
When BEGIN is used, it must be the first pattern in the awk sequence of
commands (program). The END must be the last pattern in the program.
The following example shows a typical structure. In this example, the field
separator (FS) is set to a colon at the beginning of the program; the
number of each record (NR) is output at the end of the program.

BEGIN { FS =" }
...body of program...

END { print NR }

Two patterns, separated by a comma, can be used to control the
execution of an action over a range of records. The action is executed for
each record, starting with the match of the first pattern and continuing
until the match of the second pattern, inclusive of the record containing
the second pattern. The following example shows the general construction
for a pattern range that controls an action:

/patternl/, /pattern2/ { action }

Actions

An action specifies a function that is to be executed. When an action is
associated with a pattern, then the action is executed only when the
current record (line) matches the associated pattern. An action that does
not have a corresponding pattern is executed for each input record (line).

DF 2-16

COMMAND DESCRIPTIONS

The various action terms recognized by the awk command are as follows:

exp
index(sl,s2)

int

length

log

print

printf(" f* .el,e2,..))

split(s,array,” sep™)

sprintf(" f* ,el,e2,...)
sqrt

substr(s,m,n)

Each of these action terms are described in the following paragraphs.

exp: The exp function computes e (2.7182818) raised to the x power,
where x is a field argument. For example, when combined with the print
function, the following statement outputs the value of X for each record,
where x is the value of third field:

{ print exp($3) }

index(s1,s2): The index function is used to obtain the starting position of
a string (s2) within another string (s1). A zero is returned when s2 does
not exist within s1. When combined with the print function, the following
statement outputs the starting character position of a string Smith within
the first field of each record:

{ print index($1,” Smith") }

DF 2-17

COMMAND DESCRIPTIONS

int: The integer function converts irrational numbers to rational numbers
for a specified field; numbers expressed to some fractional quantity are
converted to whole numbers. The function DOES NOT round off numbers.
Fractional quantities are deleted. For example, the number 3.984 would
be converted to the number 3. When combined with the print function,
the following statement outputs the fifth field of each record expressed as
whole numbers (integers):

{ print int($5) }

length: The length function computes the length of a string of
characters. When combined with the print function, the following
statement outputs the length of each record (line):

{ print length($0) }

The following statement outputs the length of each record, followed by the
record:

{ print length($0), $0 !

The length function can also be used to output records (lines) that are
within a specified length range. For example, the following statement
outputs all records that are less than 20 and greater than 10 characters in
length. The I is the Boolean OR function.

{ length > 10 ! length < 20 }

DF 2-18

COMMAND DESCRIPTIONS

The following statement outputs all records that are outside the 10 to 20
character range:

{ length < 10 } length > 20 }

log: The log function computes logarithms to the base e. When
combined with the print function, the following statement outputs the
logarithm of fifth field for each record:

{ print log($5) }

print: The simplest action provided is the print function. For example,
the following statement outputs the first two fields of each record in
reverse order (field 2 followed by field 1):

{ print $2, $1 }

The output of a print statement can be directed to a file. For example, the
following statement cutputs the first field to filel and the second field to
file3 for each record:

{ print $1 >> " filel" ; print $2 >> " file3" }

The output of a print statement can be directed to another program. For
example, the following statement outputs the fifth field of each record to
the sert command: The output of the sort command is directed to a file
named file5.

{ print $5 ! " sort -o file5" }

DF 2-19

COMMAND DESCRIPTIONS

printf(" f' ,el,e2,...): The printf converts, formats, and prints its
arguments on the standard output. This function is exactly like the C
Language printf function. The f argument specifies the format. The
expressions to be formatted are specified by the e arguments. For
example, the following statement prints the third field of each record as a
floating point number that is ten digits wide with two decimal places. The
fifth field is printed as a ten-digit long decimal number, followed by a new-

line (\n).

{ printf(" %8.2f %10id\n", $3, 35) |

Remember that with this print function, you must specify the output field
separators; no field separators are automatically output.

split(s,array,” sep”): The split function is used to automatically divide a
string into fields. The sep argument, if provided, defines the field
separator. The F$ variable is used as the field separator if the sep
argument is omitted from the statement. The string s is divided into fields
defined by the array argument. For example, the following statement
divides the second field of a record into elements of an array named z
based on the dash as the field separator. Each element of the array (field)
is individually identified. The first element is named z[1]; the fifth element
is z[B]. In the following example, the print function is used to output the
fifth field of the array z:

(split($2,z,” " };print z[5]}

sprintf(" ' ,el,e2,...): The string print function is used to place formatted
output in a character array pointed to by a single character name. The
sprintf converts, formats, and outputs its arguments to a string name. For
example, the following statement sets x equal to the formatted result of
the third and fifth field. The third field of each record is formatted as a
floating point number that is ten digits wide with two decimal places.

DF 2-20

COMMAND DESCRIPTIONS

The fifth field is formatted as a ten-digit long decimal number followed by a
new-line (\n). Thus, the variable x is set to the string produced by
formatting the values of fields $3 and $5. The variable x can be used in
other statements to express these values as a formatted expression.

{ x = sprintf(" %8.2f %10ld\n", $3, $5) }

sqrt: The square root function computes the second root of a specified
item. When combined with the print function, the following statement
outputs the square root of the first field for all records:

{print sqrt($1)}

substr(s,m,n): The substring function is used to obtain a specified part of
a string. The m argument defines the starting character position of the
substring. The beginning of the string is character position number 1. The
m argument defines the number of characters to be included in the
substring. If the n argument is omitted, the substring is defined from the
beginning position m to the end of the string s. When combined with the
print function, the following statement outputs part of the third field for all
records. The portion of the field that is selected is the fifth character
position to the end of the field.

{ print substr($3,5) !

Assigning Variables

Variables are assigned as either floating point numbers or as string values.
Unlike C Language, variables DO NOT have to be declared at the beginning
of a program. For example, the following sets x equal to the string word:

x =" word"

DF 2-21

COMMAND DESCRIPTIONS

The following sets x equal to the number 100:

x =" 100"

Arrays

Arrays are used to hold fields of data that are called elements. Each
element or field in the array is identified by its sequential position. Array
elements can also be named by nonnumeric values, which provides an
associative type of memory. For example, the following awk program
counts the number of times the patterns apple and orange occur. The
results are stored in an array named z. The accumulated counts for each
of these patterns is output at the end of the program. Note that the ++
operator increments the count by one each time it is called.

/apple/ {z[" apple"]++}
/orange/ {z[" orange" |++}
END {print z[" apple”], z[" orange" |}

The following example does the same function as the previous program.
The only differences are that numeric designators are used for the
elements of the array as opposed to associative names, and that the
names are output to identify the counts.

/apple/ {z[1]++}
Jorange/ {z[2]++}
END {print " apple =" z[1]" orange =" z[2]}

Control Flow Statements

The awk programming language provides the following basic control flow
statements: if-else, while, and for. Also provided are the following control
statements: break, continue, and next. The break statement causes an
immediate exit from an enclosing while or for construction. The continue
statement causes the next cycle of a loop to begin. The next statement
causes awk to immediately skip to the next record and begin processing.

DF 2-22

COMMAND DESCRIPTIONS

Control flow constructions are exactly like that of the C Programming
Language. For example, the following construction outputs all fields on a
separate line using a while statement:

i=1

while (i<=NF) {
print $i
i

The following example construction outputs all fields on a separate line
using a for control statement:

for (i=1;i<=NF;-++i)
print $i

Commenting Programs

In general, the awk programs that you write are done so in files. Only the
simplest of awk functions are done by specifying patterns and actions
directly to awk as arguments. When writing a program, the importance of
adeqguately providing comments that show what vou are doing at various
stages in the program cannot be over emphasized.

Comments are entered by preceding the comment with a pound symbol
(#). The comment ends with the end of the line. When more than one line
is used for a comment, each comment line must begin with the pound
symbol. Remember that if your erase character is the pound symbol, you
must precede the pound with a backslash (\) to enter the symbol. This is
referred to as escaping the special meaning of the character. The
following shows how you enter comments into a program:

print x, y # Print results
This is a continued or new comment line.

DF 2-23

COMMAND DESCRIPTIONS

Command Format

The general format of the awk command is as follows:

awk [-f source l’cmds’] [parameters] [file]

The instructions that tell the awk command what to do can be directly
expressed to the command as arguments or they can be entered into a file
that is then read by the command. When instructions are expressed as
arguments, they are in the form ‘cmds’. Note that instructions that are
expressed as arguments must be enclosed in single quotes. When
instructions are placed in a file, the file is specified to the awk command in
the form ~f file. Note that the file name can be expressed as a full path
name.

The parameters argument is used to identify the value of variables. The
argument is: x=... y=..., and so on. Note that a space is used to separate
each variable statement.

The files argument identifies the input data file. The file name can be
expressed as a complete path name.

Sampfle Command Use

The following examples are based on a file named list. This file contains a
list of names, addresses, and phone numbers as follows. Note that the
format of each line of this file is name(tab)address(tab)phone.

-

$ cat list<CR>

Nancy 1080 Route 3, Farmington, NC 27015 919-736-2437
John 4589 Breckenridge, Clemmons, NC 27012 919-828-7512
Sam 2700 Route 67, Winston-Salem, NC 27106 919-234-1940
doctor 4100 First St, Winston-Salem, NC 27102 919-727-1111

$

DF 2-24

COMMAND DESCRIPTIONS

The first example uses the awk command to output selected names and
addresses from the list file in a format suitable for mailing labels. The
program is in a file called labelsprgm and follows:

$ cat labelsprgm<CR>

BEGIN{FS="\t" }
$17/Nancy /i$17 /Sam / {split($2,x,” ")

printf(" %s\n%s\n%s\n%s\mM\n" ,$1,x[1],x[2],x[3])}
$

The second example uses the awk command to output selected names and
phone numbers from the list file. The program is in a file called numbers
and follows:

$ cat numbers<CR>

BEGIN{FS="\t" }

$17/Nancy /4$17/Sam / {printf(" %s\t%s\n" ,$1,$3)}
$

The following command line entry and system responses show the use of
the labelsprgm:

DF 2-25

COMMAND DESCRIPTIONS

-
$ awk -f labelsprgm list<CR>
Nancy

1080 Route 3

Farmington

NC 27015

Sam

2700 Route 67
Winston-Salem
NC 27106

$

The following command line entry and system responses show the use of
the numbers program:

$ awk -f numbers list<CFR>
Nancy 919-736-2437

Sam 919-234-1940

$

The following example is based on a file named gaintbl. This file is a table
containing columns of measured data, input and output voltage (Vi and
Ve), and blank columns for new data.

-~

$ cat gaintbl<CR>
Vi Vo Vo /Vi Log+Av Av(dB)

DF 2-26

COMMAND DESCRIPTIONS

In this example, the awk command performs several arithmetic operations
on the data in gaintbl. The measured data and the resulting new data are
output in a table format. Since the field separators of gaintbi are spaces,
a BEGIN statement is not required. The program is in a file called
calcprgm and follows:

-~

$ cat caleprgm<CR>

#

PRINT TABLE HEADING

$17/Vi/isl~/-/{

printf " %s\t%s\t%s\t%s\t%s\n" ,$1,$2,$3,$4,$5}
#

CALCULATE & PRINT DATA
$117/Vi/8&S1"/--/{$3=($2/$1);$4=l0g($3);$5=20%$4;
printf * %21d\t%21d\t%3.3\1%3.4f\1%3.3f\n" |\
$1,$2,$3,$4,$5}

$

The following command line entry and system responses show the use of
the calcprgm:

-
$ awk -f calecprgm gaintbl<CR>

Vi Vo Vo/Vi Log+Av Av(dB)
2 5 2.500 0.9163 18.326
8 15 1.875 0.6286 12.572
10 18 1.800 0.5878 11.756
$

DF 2-27

COMMAND DESCRIPTIONS

“bdiff’’ — Big Differential File Comparator

General

The bdiff command operates much like the diff command covered later in
this chapter. It compares two files and outputs instructions that tell what
must be changed to bring the two files into agreement. The purpose of
bdiff is to compare files that are too large for diff to process. It splits the
files being compared into segments and performs diff on each segment.
The output is identical to that of diff, except the line numbers are adjusted
to account for the previous segments.

Command Format

The general format for the bdiff command is as follows:
bdiff filel file2 [n] [~s]

If no options are specified, bdiff ignores the lines that are common to the
beginning of both files and splits the remainder of each file into 3500-line
segments. The diff command is then performed automatically on the
segments. The output will be the lines of the first named file followed by
the lines of the second named file that are different. The less-than symbol
(<) precedes the lines of the first named file. The greater-than symbol (>)
precedes the lines of the second named file.

The optional third argument, n, is used to specify the number of lines to be
contained in the file segments. If n is given in humeric form, the files are
split into n-line segments instead of the 3500-line default count. These
n—line segments are useful where the 3500-line segments are still too large
for diff to handle.

The -s option will suppress any diagnostics that would be displayed by
bdiff. However, any diagnostics output by diff will still be displayed.

DF 2-29

COMMAND DESCRIPTIONS

if both the n and -s options are specified, they must be specified in the
order shown in the command format, that is, the numeric value for n is
entered before the -s option.

If a dash (—) is entered instead of filel or file2, the file that is named will
be compared to what is input from the terminal. The input is entered
exactly as it is to be compared to the named file. A “control d”’ is used to
show the end of the input.

Sample Command Use

The following command line and system response shows how to output the
differences between chapterl.l and chapterl.2:

-

$ bdiff chapterl.l chapterl.2<CFR>

23c23

< designed for Release 1.1 of the software.

> designed for Release 1.2 of the software.

104c104

< with update considerations for Release 1.2 compatibility.

> with update considerations for Release 1.3 compatibility.

$

DF 2-30

COMMAND DESCRIPTIONS

The following command line and response show how to split the files into
1000-line segments:

p
$ hdiff filel file2 1000<CR>
2124c2124

< is a sample of the command.

> is an example of how to use the command.

$

Note: The difference between the two files was found in the
second segment, but bdiff adjusts the line count to specify the
correct line number for the original file.

The following example shows how to format chapl and compare the
formatted file to OLDchapl. The format program for this example is called

form.

-
$ form chapl ! bdiff OLDchapl—<CR>
72c72

< will not be displayed on the screen.

> will be displayed on the screen.

$

Note: in this example, OLDchapl lines will be displayed first. The
order may be reversed if the filename and — are reversed.

DF 2-31

COMMAND DESCRIPTIONS

*bfs”’ — Big File Scanner Editor

General

Note: This command does not follow the same format as the other
commands in this Utilities Guide.

This part of the chapter describes the bfs (big file scanner) editor used on
the 3B2 Computer. The bfs editor is similar to the ed editor, except that it
is read-only. Since bfs cannot be used to change a file, commands such
as: insert, append, substitute, delete, and move will not execute.

Bfs works with the file instead of a copy placed in a buffer (temporary
memory). It is normally used for processing files that are too large for
conventional editing. Bfs can access files up to 1024 kilobytes (maximum
size) and 32,000 lines--with up to 255 characters per line.

The bfs editor is useful for identifying sections of a large file where the
commands csplit or split can be used to divide it into more manageable
pieces for editing. The csplit and split commands are included in this
Utilities Guide.

This editor description assumes that you know how to log in to the 3B2
Computer. If you do not, refer to the AT&T 3B2 Computer
Owner /Operator Manual.

Refer to the AT&T 3B2 Computer User Reference Manual for UNIX System
V manual pages supporting the commands described in this guide.

DF 2-33

COMMAND DESCRIPTIONS

Current Line Definition

&

Throughout this chapter, the term *‘current line" is used to identify what
line in the file you are currently on. To display the current line, enter:

p<CR>

Any commands you execute will use this line as a reference point.

Getting Started

The bfs editor can only be used on existing files. To create a new file by
inputting data directly, you must use another editor. However, bfs can be
used to create a new file if you need to copy part of an existing file into
another file. Commands to do this are discussed later in this chapter.

To execute the bfs editor, you must first be logged in to the 3B2
Computer. Once you are logged in, the UNIX System prompt ($ or #)
should be displayed. You are now ready to begin working with the bfs
editor.

Accessing a File

To scan a file using the bfs editor, you will need to type bfs followed by a
space, and then the name of the file you wish to scan. Execute the
command by entering a carriage return <CR>. For example:

$ bfs filename<CR>

will execute the bfs editor against the file “'filename’. If you entered the
command correctly, the response will be a number that represents the
number of characters in the edited file.

if you do not enter the command correctly, you will receive a usage
message indicating an incorrect syntax was used. When this occurs, verify
the name of the file; make sure you are in the right directory; and reenter
the command correctly.

DF 2-34

COMMAND DESCRIPTIONS

If you do not want the editor to display the size of the file, enter:
$ bfs - filename<CR>

where filename is the name of the file you want to access. The 3B2
Computer will not display a response.

Once you are in the bfs editor, you may begin scanning the file. To begin
displaying lines in the file, you must enter a line number (for example: 1)
followed by a carriage return. The editor will use the line as a reference
point. After you display a line, any of the commands described in this
chapter can be used.

Displaying a Prompt

The bfs editor does not display a prompt unless you request one. At
times, absence of a prompt can be confusing. Most users find it easier to
use the editor with the prompt (*) displayed. To display the prompt,
enter:

P<CR>

Receiving Error Messages

When the prompt is not requested, any editor error message displayed wiill
simply be “?'". To receive self-explanatory error messages, the prompt
must be turned on. See the previous discussion on “‘Displaying a Prompt™.

Getting File Information
There are two editor commands that can be used to obtain information
about the file you are editing. To display how many lines are in the file,
enter:

=<CR>

To display the name of the file, enter:

f<CR>

DF 2-35

COMMAND DESCRIPTIONS

Quitting the Editor
Because the bfs editor is read-only, it will allow you to quit without warning
you to write the file. To quit the editor, enter:

a<CR>

The 3B2 Computer will return you to the UNIX System.

Displaying Lines in the File

As previously discussed in “Current Line Definition™, the current line is
always displayed whenever you move through the file. However, you can
display more than one line by using the print command (p). An example of
the print command would be:

1,10p<CR>

that would display lines 1 through 10. This form of the print command can
be used to display as much of the file as you wish. The end of file symbol
(%) can also be used with the print command to display lines. For
example:

250,8p<ChR>
will display lines 250 through the end of the file. As you become familiar
with the editor, you will find that the lines will be displayed even if you
leave the p off the end of the command. For example:

250,%$<CR>

will disptay from line 250 to the end of the file.

~ The print command can aiso be used with other commands, such as
searches and marks. These uses of the print command are discussed in
the explanation of the individual commands.

DF 2-36

COMMAND DESCRIPTIONS

Basic Movement Commands

As previously discussed, one way to move through a file is to use the
carriage return. You can also use the + and - commands with the carriage
return to move you forward or backward through the file. With these
commands, you can move to an adjacent line in the file.

To move in larger steps, you can use numbers with the + and - commands.
For example:

+15<CR>

will move you forward in the file 15 lines, and display the current line.
Likewise,

~15<CR>

will move you backward 15 lines and then display the current line.

Each line in the file has a line number associated with it, although it is not

displayed. The bfs editor allows you to move across large areas of the file

by just entering a line number followed by a carriage return. For example:
375<CR>

will make 375 the current line and display the line.

Another movement command that is useful on large files is the $. If you
enter:

$<CR>

bfs will move you to the last line of the file and display the line.

DF 2-37

COMMAND DESCRIPTIONS

Forward and Backward Searches

If you do not know a specific line humber, but you do know an exact
pattern of characters on a line in the file, the quickest way to locate that
line is with a search. The pattern must be on one line. There are several
types of searches. The type you should use depends on your specific
application.

Searches With Wrap-Around

When entering a command, the bfs editor interprets the character **/"" as
meaning ‘‘search for this pattern”. The search command '*/"’ searches
from the current line forward through the file for the first occurrence of
the pattern. When the end of the file is reached, the search will wrap-
around to the beginning of the file and continue searching until the pattern
is found or it reaches the line where the search started. If the pattern is
found, the line will be displayed and will become the current line. An
example of a forward search command would be:

/learning the bfs editor /<CR>

that will search for the first occurrence of a line containing the pattern
*learning the bfs editor’’, make it the current line, and display the line. If
the pattern is not found, the message:

" learning the bfs editor not found"

will be displayed. This means the pattern you searched for is not on one
line in the file, and the current line does not change. Check to see if you
entered the command correctly, or if it included any characters with a
special meaning (see “'Special Search Characters’’).

The character *?"’ also executes a search when used in a command. It
works the same as the "'/’ search character, except that it searches
backward through the file from the current line. This search will wrap-
around to the end of the file and continue searching until the pattern is
found or it reaches the line where the search started. An example of a
backward search command would be:

?learning the bfs editor? <CR>
DF 2-38

COMMAND DESCRIPTIONS

Searches Without Wrap-Around

Another set of search commands can be used that do not wrap-around the
end of the file. These commands are similar to the wrap-around searches,
except that they stop at the beginning or end of the file. The forward
search command “*>"" searches for the first occurrence of the specified
pattern until it reaches the end of the file. An example of this type of
forward search command would be:

>learning the bfs editor><CFR>

If the pattern is found, the line will be displayed and will become the
current line. if the pattern is not found, the message:

" learning the bfs editor not found"

will be displayed and the current line will not change.

The character ‘<’ also executes a search. It works the same as the “>"’
search, except that it searches from your current position backwards until
it reaches the beginning of the file. An example of this type of backward
search command would be:

<learning the bfs editor<<CR>

Repeating a Search

Often when searching for a pattern, the first occurrence is not the one you
were actually looking for. You could repeat the entire search command,
but there is a much easier way. The editor remembers the last search
pattern entered. If you enter the command:

//<CR>

a forward search will look for the remembered pattern. The commands
?2? >>, and << will also repeat searches. The type of search repeated
depends on the command used. The repeated search does not have to be
the same type as the original search.

DF 2-39

COMMAND DESCRIPTIONS

Global Searches

The bfs editor also allows you to do global searches on the file. A global
search is used to find all the occurrences of a specified pattern in a file.
This type of search is useful when scanning for a pattern that occurs in
several places. The two types of global searches that can be executed use
the g and v commands.

The global search that uses the g command locates all the lines that
contain a specified pattern. An example would be:

g/sample pattern/p<CR>

that will search for and display all lines containing the words
“sample pattern”’. The current line will be the last line displayed.

The global search that uses the v command locates all lines that do not
contain a specified pattern. An example would be:

v/sample pattern/p<CR>

that will search for and display all lines that do not contain the words
“sample pattern.” The current line will be the last line displayed.

Special Search Characters

Several characters have special meaning when used in specifying searches.
These characters will work with all types of searches. They can be used
to: match repetitive strings of characters, turn off special meanings of
characters, or denote the placement of characters in the line. These
characters are: ““.’, “®" N\ “[]”, “$", and .

The period matches any single character except the newline
(carriage return) character. For example:

/bfs edit.r /<CR>

will search for a pattern such as “‘bfs editor’, "‘bfs editxr’’, or with

Y]

any other character on a line between ‘‘bfs edit”, and “'r’".
DF 2-40

COMMAND DESCRIPTIONS

The asterisk matches any string of characters except the first ., \,
[, or " in that group. For example:

/the x* editor/<CR>
will search for a pattern such as *‘the xxx editor’’,
““the xxxxxx editor’’, or a pattern with any amount of *'x”’
characters on a line between ‘'the’” and “‘editor’’.
The backslash is used to nullify the meaning of the special
characters. It should be placed immediately before the character it
is to nullify. For example:

/This is a\$/<CR>

will search for the pattern ““This is a $’, instead of interpreting the
““$’" as meaning ‘“‘at end of line'".

Brackets are used to enclose a variable string. For example:
/Search for file[23]/<CR>

will search for the patterns "*Search for file2'or ‘*Search for file3"
and stop at the first occurrence of either pattern.

The dollar sign is interpreted by the editor to mean “‘end of the
line”. It is used to identify patterns that occur at the end of a line.
For example:

/last character$/<CR>

will search for the next occurrence of a line ending in ““last
character’’, and make it the current line.

DF 2-41

COMMAND DESCRIPTIONS

The circumflex (caret) works like “$"" except it looks for the pattern
at the beginning of the line. For example:

/ First character/<CR>

will search for the next occurrence of the pattern “First character”
at the beginning of a line and makes it the current line.

To search for the characters ., *,\, [,], $, or *, you must precede the
characters with a backsiash. This will nullify the characters special
meaning.

Marking Lines

The bfs editor gives you the ability to set marks in the file. Marks are
useful when you are planning on moving around in the file and you want to
set some reference points. They can save you from having to search for
the same address several times.

Marks are set by moving to the line where you want the mark set and
using the k command. The mark must be a single, lower case letter. For
example, if you wanted to identify a line with the mark "a’’, you would
move to that line and enter the command:

ka<CR>

To move to that marked line from anywhere in the file, enter the
command:

‘a<CR>

The marked line will become the current line. To set another mark, repeat
the k command using a different letter.

DF 2-42

COMMAND DESCRIPTIONS

To change an existing mark, move to the line where you want the mark
and use the k command with the existing mark. The new position will
replace the previous one.

The n command will display a list of the active marks. For example, if the
active marks in a file were a, b, and c, you could display them by entering:

n<CR>
The system response would be:

a
b
¢

Notice that only the marks are displayed and not the lines.

Note: All marks are removed if you quit the editor using the q
command. However, if you leave the editor by using the e
command and then return to the file with the e command, all
marks are saved. See " Changing Files While Using the ** bfs "’
Editor.”

Writing to Another File

The bfs editor allows you to copy all or part of the file you are editing to
another file. To copy the whole file to another file, use the w command
and the name of the file you want to create. For example:

w newfile<CH>
will create a copy of the file you are editing and name it “*newfile’’. The

number of characters in the new file will be displayed to show that the new
file was created.

DF 2-43

COMMAND DESCRIPTIONS

Caution: Be careful when naming the new file. If you use an
existing filename, the text in that file will be overwritten by the
new fext.

If you only want to write part of the file, you must specify the beginning
and ending lines you want to write. For example:

50,220w newfile<CR>

will create a file named “newfile’” which will contain lines 50 through 220
of the file you are editing.

Changing Files While Using the "'bfs’’ Editor

When using the bfs editor, only one file can be scanned at a time.
However, the ‘e’ command allows you to change files without quitting the
editor. For example, if you are scanning filel with the bfs editor and want
to change to file2, you would use the command:

e file2<CR>

This will cause the editor to leave filel and enter file2. To reenter filel,
you would need to use the e command again. Using the quit (q) command
will cause you to leave the file you are now in and return you to the UNIX
System.

Issuing UNIX System Commands
The bfs editor allows you to execute a single UNIX System command by
entering a command of the form:

Icmd<CR>

where ““‘cmd’ represents the command you want to execute. The system
will then execute the command. When finished, bfs will display an f and
then return you to the current line in the file. You can then continue
editing or issue another ! command.

DF 2-44

COMMAND DESCRIPTIONS

If you need to execute more than one UNIX System command, enter the
command:

Ish<CR>

When you are finished executing UNIX System commands, enter a
control-d (depress and hold the CONTROL ““CTRL" key and simultaneously
depress the “d" key). The editor will display an ! and return to the current
line in the file.

High-Level “'bfs”” Commands

A “command file'’ is an executable file that contains editor commands.
Command files may be set up and run against other files with the bfs
editor. When executing command files, the output is directed to another
file.

DF 2-45

COMMAND DESCRIPTIONS

"comm’ — Select or Reject Common Lines

General

The ecomm command compares two files and produces an output showing
the differences and similarities between them. The contents of the two
files should be in alphabetical order, that is, in order according to the ASCII
collating sequence. The output is formatted into three columns. The first
column lists those lines found only in the first named file, the second
column lists those lines found only in the second named file, and the third
column lists those lines that are common to both files.

Command Format

The general format for the comm command is as follows:
comm [— [123]] filel file2

The — [123] option suppresses the column corresponding to the number
specified. For example, if —1 is specified, the first column of the output is
not displayed. Thus, only those lines uncommon to the second named file
and those lines common to both named files are displayed.

If a dash (—) is entered in place of a file name, the standard input from
the terminal is read. The comm command compares the input with the
file and produces the three-column output as before.

DF 2-47

COMMAND DESCRIPTIONS

Sample Command Use

The examples provided are based on the contents of two files nhamed listA
and listB. The contents of these two files are as follows:

listA: birds listB: birds
cats cats
dogs horses
horses mice
mice mules
snakes pigs

The following command line and system response shows how to compare
the two lists and receive all columns of the output:

r
$ comm listA listB<CR>

birds
cats
dogs
horses
mice
mules
pigs
snakes

$

DF 2-48

COMMAND DESCRIPTIONS

The following command line and system response shows how to compare
the two lists and output only those lines that are common to both files:

-

$ comm -12 listA listB<Cf>
birds

cats

horses

mice

$

DF 2-49

COMMAND DESCRIPTIONS

The following example shows how to alphabetize a file named list and
compare it to listB with the same command line. The file list is:

birds
mice
dogs
cats
pigs

The command line uses sort to alphabetize the file list.

$ sort list | comm - listB<CR>
birds
cats
dogs
horses
mice
mules
pigs

DF 2-50

COMMAND DESCRIPTIONS

“csplit”” — Context Split

General

The esplit command splits a file into sections using input arguments as the
boundaries of the sections. The sections are suffixed with a number
starting with 00 and may go up to 99. The first section (00) will contain
from the beginning of the file up to, but not including, the line defined by
the first argument. The second section (01) will contain the line defined by
the first argument up to, but not including, the line defined by the second
argument. The last section will contain the line defined by the last
argument through the end of the original file. The original file is not
affected.

Command Format

The general format for the csplit command is as follows:
csplit [-s] [-k] [-f prefix] filename argl [arg2 ... argn]

The esplit command normally outputs the character count of each section
as the section is created. The -s option will suppress the printing of these
character counts. The process is complete when the system response is
returned.

If an error occurs during the csplit operation, the sections that have been
created are removed. The -k option overrides the removal of previously
created files. However, the process will halt at the point the error
occurred. The current section and the remainder of the original file will
not be processed.

The created files are normally named xx00 thru xxnn. If the -f prefix
option is used, the files are named prefix00 through prefixnn.

The filename is the name of the original file that is to be split. The
command wili start at the beginning of the file and search for the first

DF 2-51

COMMAND DESCRIPTIONS

argument. That section is then written into a file, and the argument is
used as the beginning for the next section. The arguments for the csplit
command can be any combination of the following:

/string/

Y% string%

zZZ

{num}

DF 2-52

A file will be created from the current line up to, but not
including, the line containing the character string string.
This string may be followed by a +n or -n where nis a line
number. For instance, if your file should contain Page 5
and the three lines that follow it in the original file, the
expression would be /Page 5/+3. If the character string
has blanks or other significant characters to the command,
the string must be enclosed in quotes.

This argument acts exactly like /string/ except that no file
will be created for the section from the current line to the
line containing %string%.

A file will be created from the current line up to, but not
including, line number zzz. The line numbered zzz would
then become the current line, that is, the first line in the
next section.

The argument that appears before {num} will be repeated
num times. If the argument is a string type argument, that
argument is searched for num more times. By using
{num} after the zzz argument, you can split a file num
times every zzz lines. !t is a good idea to use the -k option
with this argument because if the {num} number is too
high, you will receive an error message and lose the files
that have already been created.

COMMAND DESCRIPTIONS

Sample Command Use

The following example shows how to split the file basic into three pieces,
bas00, bas01, and bas02. The first line of bas01 will contain the string
test procedures. The first line of bas02 will contain the string 2.05.

$ csplit -f bas basic " /test procedures/" /2.05/<CR>
2345

1068

297

$

The following example shows how to split the file doc into pieces of 100
lines each. To be sure that the entire file is split, an arbitrary number, 99
has been used for the number of times to split the file. Any lines over

10,000 will not be split. The -s option is used to suppress the character
counts of each 100-line file.

$ csplit ~s -k doc 100 {99} <CR>
$

The 100-line files would be named xx00 through xxnn.

The following example shows how to save the last piece of the file mail.

The saved file, xx00, contains the text from the line MISC to the end of the
file.

$ csplit mail %MISC%<CR>
$

DF 2-53

COMMAND DESCRIPTIONS

“cut’” — Output Selected Fields of a File

General

The cut command is used to output selected columns or fields from a line
of data. The lines of data operated on by the cut command can be from
one or more files, the output of another command, or from the terminai
(standard input).

Command Format

The general format of the cut command is as follows:

cut ~¢list [file(s)]

cut flist [-dchar] [-s] [file(s)]

The ~¢l/ist argument identifies the character positions in each line that are
to be output. Individual character positions are identified by integers. A
comma (,) is used to separate each position identifier. Ranges are
specified by using a dash between the starting and ending number in the
range. For example, character positions 1, 5, and 7 through 10 are
identified as follows:

-¢1,5,7-10

The ~flist argument identifies the field positions of each line that are to be
output. A comma (,) is used to separate each field identifier. Ranges are
specified by using a dash between the starting and ending number in the

range. For example fields 1, 5, and 7 through 10 are input as follows:

-£1,5,7-10

The -s option is used with the -flist argument to prevent lines that do not
contain field delimiters from being output.

DF 2-55

COMMAND DESCRIPTIONS

The -dchar argument identifies the field delimiter. The default field
delimiter is the tab character. For example, the argument -d: defines a
colon as the field delimiter. Delimiter characters that have a special
meaning to the shell must be either placed in single quotes or escaped by
preceding the character with a backslash (\). For example, the space can
be defined as a field delimiter by the following:

_d! ?

The file(s) argument identifies the name or names of the files that are to
be operated on by the command.

Sample Command Use

The following sample command line entries and system responses show
you how to output the character positions 5 through 10 and 15 from each
line of a file named list. In this example, the cat command is first used to
display the contents of the list file.

-~

$ cat list<CR>
ABCDEFGHIJKLMNOPQRSTUVWXYZ
11111111111222222
12345678901234567890123456
$ cut ~¢5-10,15 list<CR>
EFGHIJO
11
5678905
$

DF 2-56

COMMAND DESCRIPTIONS

The following sample command line entries and system responses show
you how to output the second and fifth fields from a file hamed table. The
field separator (delimiter) is a colon (:). Note what happens when the
delimiter is defined as a space by the -d’ ’ argument. Also, note that the
sequence in which you define the fields (5,2 verse -f2,5) does not change
the sequence in which they are output. The selected fields are output in
the order that they appear in the data, from left to right. In this example,
the cat command is used to display the contents of the table file.

-

$ cat table<CR>

field 1:field 2:field 3:field 4:field 5:field 6
field 1:field 2:field 3:field 4:field 5:field 6
field 1:field 2:field 3:field 4:field 5:field 6
$ cut -f2.5 -d: table<CR>

field 2:field 5

field 2:field 5

field 2:field 5

$ cut -f5,2 -d’:’ tabie<CR>

field 2:field 5

field 2-field 5

field 2:field 5

$ cut ~f2,5 ~d’ * tabie<CR>

1:field 4:field

1:field 4:field

1:field 4:field

$

DF 2-57

COMMAND DESCRIPTIONS

“'diff3"”” — 3-Way Differential File Comparator

General

The diff3 command compares three files and outputs information showing
the range of lines that differ between the files. The information is
separated by a string of equal signs (====) to signify that the files are
different. If the string of equal signs is alone, this shows that all files differ.
If the string of equal signs is followed by a number, the number signifies
what file is different. For example, ====2 would show that the second
named file is different and the information following the ====2 would
show the differences.

The range of lines that are different are shown in the format “‘f:in ed”
where;

f = the number of the file as it was entered in the command line.
In = the line humber that is different. This could be a range of lines.

ed = the editor command that needs to be performed to bring the
files into agreement with each other. If the ¢ (change) operation is
shown, the original contents of the file will be shown immediately
after the range of lines information.

Command Format

The general format for the diff3 command is as follows:
diff3 [-ex3] filel file2 file3

The -e or -x options publish a script file with the editor commands needed
to make the first named file agree with the third named file. The script file
contains all the commands necessary to make the proper changes and
may be applied directly to the file.

DF 2-59

COMMAND DESCRIPTIONS

Sample Command Use

The sample commands used in this section are based on the usage of
three files named a, b, and €. The contents of the three files are shown

below:

a A bB o C
B C D
C D E
D E A
E A B

The following command and system response show how to compare the
three files and have the standard output displayed:

‘

diff3 a b c<CR>

Il
il

= oee

N
O

N
9]

I N W N -
DPRPoul 0B -TO> |
K SIS H

I

w
2]
o]

Rl

DF 2-60

COMMAND DESCRIPTIONS

The following command line and system response show how to compare
the three files and receive an editor script file that will make a agree with
C:

e

$ diff3 e abc<CR>

The script file that is produced can be applied directly to the file being
changed. This can be done on the same command line as the diff3
command. The following command line shows how to compare the three
files and apply the script file to a. There will be no output from this
command, completion is shown with the system promipt.

$ diff3-eabcled-a<CR>
$

DF 2-61

COMMAND DESCRIPTIONS

"“dircmp’’ — Directory Comparison

General

The diremp command compares two directories and outputs information
about the names and contents of the files in each directory. The output is
paginated to list those files that are uncommon to each directory and then
those files that have common file names. The files common to both
directories are compared, and the output includes whether the contents
are the “‘same’ or ‘“‘different’.

Command Format

The general format for the diremp command is as follows:
dircmp [-d] [-s] dirl dir2

The -d option makes a comparison of the files common to both directories
and gives information on what must be done to bring the two files into
agreement. The format for the output is identical to the format of the diff
command covered previously in this chapter.

The -s option will suppress any messages about identical files. That is, the
output will only contain information on the files that are different from
each other.

DF 2-63

COMMAND DESCRIPTIONS

Sample Command Use

The examples provided in this section are based on the contents of the
two directories dirl and dir2. The contents of the two directories follow:

dirl: appendix dir2: appendixA

chapl appendixB
chap2 chapl
chap3 chap2
chap4 chap3
index chap4
table index

toc toc
trademarks trademarks

DF 2-64

COMMAND DESCRIPTIONS

The
dirl

following command line and system response show how to compare
and dir2;

-

$ dircmp dirl dir2<CR>
July 19 09:02 1985 ../dirl only and ../dir2 only Page 1

./ appendix ./ appendixA
./table ./ appendixB

July 19 09:02 1985 Comparison of ../dirl ../dir2 Page 1

directory

same ./chapl
different ./chap2
different ./chap3
different ./chap4

same ./index

different ./toc

same ./trademarks
5

Note: The output used in this example contains only the text of
the output. The output is paginated with “white space’ separating
the uncommon files in each directory from the section displaying
the common file hames.

DF 2-65

COMMAND DESCRIPTIONS

The following command line shows how to compare the files in dirl
and dir2 and output information that tells what must be done to
bring the files into agreement:

p

$ dircmp -d dirl dir2<CR>

Note: The first part of the output would appear
the same as in the previous example. The
last part of the output would be in the
format identical to that of the diff
command.

DF 2-66

COMMAND DESCRIPTIONS

“egrep,’”’ "‘fgrep’’ — Search a File for a Pattern

General

The egrep and fgrep commands search files or input lines for matching
character patterns. These commands are similar to the grep
command explained in the AT&T 3B2 Computer User Reference
Manual.

The input data to be searched can be the output of another command,
one or more specified files, or the input from the terminal. When more
than one file is searched, the file name is printed along with the
matching input lines. The character patterns are regular expressions
or fixed strings of characters in the style of the text editor (ed). Be
careful when using the characters that have special meaning to the
editor shell. In general, the pattern should be enclosed in single quotes
('pattern’) to remove any special character meaning.

The expression grep (egrep) searches for full regular expressions. The
egrep command accepts the following conventions for defining
expressions:

e A pattern followed by a plus sign (+) matches one or more
occurrences of the pattern.

« A pattern followed by a question mark (?) matches O or 1
occurrences of the pattern.

s Multiple patterns can be defined by separating each pattern by a
pipe symbol (}) or by a new-line (carriage return). When a new-
line is used, the secondary system prompt () is displayed.

Each pattern is entered on a separate line following the prompt.
The last pattern is entered on the same line as the remainder of
the command. The command outputs matches for any or all
patterns.

DF 2-67

COMMAND DESCRIPTIONS

» Patterns can be grouped by enclosing the pattern in

parentheses.

The fast grep (fgrep) command searches for fixed patterns. This
command is fast and compact.

Command Format

The general format for each of these commands is as follows:

egrep [options] [expression] [file(s)]

fgrep [options] [string(s)] [file(s)]

The options recognized by these commands are explained as follows:

-b

-e expression

-f file

-V

DF 2-68

Outputs the block number of the matching line.
Each line is preceded by the number of the data
block containing the line.

Outputs only the number of lines that match the
pattern.

Same as a simple expression argument, but is useful
when the expression contains a —.

The pattern (expressions or strings) is read (taken)
from the specified file.

Outputs only the names of the files that contain
matching lines.

Each line is preceded by its relative line number in
the file.

Outputs the lines that DO NOT contain the defined
pattern.

COMMAND DESCRIPTIONS

-X Outputs the lines that match the pattern exactly
and entirely. This option is used with the fgrep
command only.

The expression and string arguments define the search pattern or
patterns. The file(s) argument is used to identify the file or files that
are to be searched. Note that the file names are separated by a
space.

Sample Command Use

The following command line and system response show how you can
search two files (listl and list2) for lines containing one of several
patterns. The patterns to be searched for are eggs and bacon. The -n
option is used to display the line number of the matching line.

$ egrep -n 'eggsibacon’ listl list2<CR>
listl:2:eggs

list2:1:bacon

list2:3:eggs

$

Note: The semicolon () is used to separate each field of the
output of the egrep command. The first field is the file name.
The second field is the line number of the matched pattern in
the named file. The last field is the line containing the
matching pattern.

DF 2-69

COMMAND DESCRIPTIONS

The following command line and system response show you how to
enter the previous example using a new-line (carriage return) to
separate the patterns instead of a pipe symbol ():

$ egrep -n ‘eggs<CR>
> bacon’ listl list2<Cf>
listl:2:eggs

list2:1:bacon

list2:3:eggs

$

The following command line and system response show how you can
search multiple files for lines that DO NOT contain a specified pattern.
The -v option causes all lines that DO NOT match the specified
patterns to be output. The -n option is used again to output the line
number of the matching line.

’

$ egrep -nv 'eggsibacon’ listl list2<CR>
listl:1:milk

listl:3:toast

listl:4:ham

list2:2:milk

list2:4:juice

list2:5:bread

$

DF 2-70

COMMAND DESCRIPTIONS

The following example shows how you can use a file containing a list of
patterns to search a group of files. The file to search from is named
words and contains the following patterns: 570ab[3-7], 448hj2,
747bg32. The first line of the words file defines a pattern beginning
with 570ab and ending with 3, 4, 5, 6, or 7. The egrep command will
search all files in the current directory that begin with the characters
serials.

-

$ egrep -f words serials*<CR>
serialsnet:570ab4
serialsnet:570ab5
serialsold:747bg32
serialsnew:570ab3
serialsnew:570ab7
serialsnew:448hj2

$

DF 2-71

COMMAND DESCRIPTIONS

*file”” — Determine File Type

General

The file command is used to determine the contents of one or more
specified files. The command examines the contents of the first block
of data (1024 bytes) of each file and attempts to classify the data. A
file called /etc/magic is used by the file command to classify files
containing certain special numeric or string constants. If you enter
cat /etc/magic, an explanation of the magic file format is displayed.

Some of the file-types that can be classified are:

3b2/3bb executable

3b2/3b5 executable not stripped
ASCI! text

¢ program text

commands text

data

directory

empty

English text

[nt]roff, tbl, or egn input text

Note: The file must have read permission before a
classification can be made.

DF 2-73

COMMAND DESCRIPTIONS

Command Format

The general format of the file command is as follows:

file [-c] [-f ffile] [-m mfile] name(s)

The -¢ argument causes the command to check the magic file for
format errors. No file classification is done with this function.

The -f ffile option is used to specify the name of a file that contains a
list of file names that are to be examined. The ffile argument identifies
the name of the file containing the list of file names to be examined.

The ~m mfile option is used to specify an alternate magic file. The
mfile argument identifies the name of an alternate magic file.

Sample Command Use

The following command line entry and system responses show how you
can determine the classification of a given file:

$ file /f1/house/bills/electric<CR>
/11 /house /bills /electric: ascii text

DF 2-74

COMMAND DESCRIPTIONS

The following command line entries and system responses show how
you can determine the classification of several files. A file named list is
first created that contains a listing of the files to be examined. The file
command is then executed with the -f option to classify the files
identified in the list file.

-

$ ed list<CR>

?list

a<CR>

/f1/house/bills /electric< CR>

/f1 /house/bills /water<CR>

/f1 /house /bills /gas<CR>

/11 /house/bills /telephone <CR>
<CR>

w<CR>

94

q<CR>

$ file -f list<CR>

/1 /house /bills /electric: ascii text
/f1/house /bills /water: ascii text
/f1 /house /bills /gas: ascii text

/f1 /house /bills /telephone: ascii text
$

DF 2-75

COMMAND DESCRIPTIONS

“join”” — Relational Data Base Operator

General

The join command is used to join a common field of two files. The
results are printed on your terminal screen. The fields that are to be
joined must be sorted in an increasing ASCIi collating sequence.
Normally, the first field in each line is the field to be joined. A blank,
tab, or new-line usually separates the fields. Multiple separators will be
counted as one, and leading separators are discarded.

One line of output is generated for each pair of lines in the files that
have identical join fields. The output line normally consists of the
common field followed by the rest of the line from the first file,
followed by the rest of the line from the second file.

Command Format

The general format of the join command is as follows:
jein [options] filel file2
The following options exist:

~an In addition to the normal output, a line is produced for
each unpairable line in file n (where nis 1 or 2).

-8 s Replace empty output fields by string s.

-inm Join on the mth field of file n. If nis missing, use the mth
field in each file.

-0 list Each output line includes the fields specified in /ist and

each element of /ist has the form n.m (where nis a file
number and m is a field number).

DF 2-77

COMMAND DESCRIPTIONS

-tc Use character ¢ as a separator (tab character). Every
appearance of ¢ in a line is significant.

The filel and file2 arguments are the names of the files that are to be
joined.

Sample Command Use

The following command line entries and system responses show the
basic operation of the join command. The cat command is used to

display the contents of filel and fiile2. The join command is used to
join an inventory of red and blue items.

cat filel<CR>
. red balls (7)
. red bicycles (3)
. red cars (5)
. red ink pens (10)
. red shoes (2 pair)
% cat file2<CR>
1. blue balls (4)
2. blue bicycles (2)
3. blue cars (3)
4. blue ink pens (5)
5. blue shoes (3 pair)
6. blue pants (2 pair)
$ join -a2 filel file2<CR>
. red balls (7) blue balls (4)
. red bicycles (3) blue bicycles (2)
. red cars (5) blue cars (3)
. red ink pens (10) blue ink pens (5)
. red shoes (2 pair) blue shoes (3 pair)
. blue pants (2 pair)

QO WN—= ¥

N0 A WN =

DF 2-78

COMMAND DESCRIPTIONS

"newform’ — Change the Format of a Text File

General

The newform command is used to read lines from a file or the
standard input, reformat those lines, and reproduce the lines on the
standard output. The format is selected through the command line
options listed under *“Command Format’’.

Command Format

The general format of the newfoerm command is as follows:

newform [-s] [-itabspec]
[~otabspec][-bn]

[-en][-pn]
[-an i[-f] [-echar]
[Fin][file(s)]

where:

-itabspec This option expands tabs into spaces. The tabspec
part of this option uses the same tab specifications
used with the tab command. Tab specifications may
be found on the first line of the standard input. Here,
use a double minus sign (--)as the tabspec. If tabspec
is not specified, -8 is used. If -0 is given as the
tabspec, there should not be any tabs in the text. If
tabs are found in the text, they are treated as -1.

-otabspec This option will replace spaces with tabs. The tabspec
part of this option uses the same tab specifications as
the tabspec part of the -itabspec option. If tabspec is
not specified, -8 is used. If a tabspec of -0 is specified,
spaces will not be converted to tabs.

DF 2-79

COMMAND DESCRIPTIONS

DF 2-80

The effective line length is set to n characters. If this
option is not specified, the effective line length is 80
characters. If -l is specified without n, the effective line
length is set to 72. Tabs and backspaces are
considered to be one character. Remember, tabs may
be expanded to spaces by the itabspec option.

Shorten the beginning of the line by n characters when
the line length is greater than the effective line length
set by the ~In option. If nis not specified, the line will
be shortened by the amount of characters necessary
to obtain the effective line length set by the -in option.
It is a good idea to specify ~ln as ~I1 when using this
option. That way, you will be sure that this option will
be started, because the effective line length will be
shorter than any line in the file.

This option works the same as the -bn option except
that characters are removed from the end of the line.

Change the prefix character (see -pn option) and/or
the append character (see -an option) to k.

Prefix n characters to the beginning of a line when the
line length is less than the effective line length set by
the -ln option. Spaces will be the prefix if the -ck
option is not specified. If nis not specified, the
number of characters necessary to obtain the effective
line length will be the prefix number.

This option is the same as the -pn option except that
characters are appended to the end of a line.

Write the tab specification format line on the standard
output before printing the output. The ~otabspec
option determines what tab specification format line is
printed. If the tabspec part of the -otabspec option is
not specified, the line printed will be the default
specification of -8.

COMMAND DESCRIPTIONS

-

files(s)

Shears the leading characters off each line up to the
first tab. Up to eight of the sheared characters are
placed at the end of the line. If more than eight
characters are sheared, the eighth character is
replaced by an * and the rest are discarded. The first
tab is always discarded.

There must be a tab on each line of the file. If there is
not a tab on each line, an error message and a
program exit will occur. The characters sheared off
are saved internally until all other options specified are
applied to that line. These characters are then added
at the end of the processed line.

The name of the file(s) that is to be read.

The command line options may appear in any order, may be repeated,
and may be mingled with file(s). However, if you use the -s option, it
must be the first option specified.

Sample Command Use

The following command line entries and system responses show you a
typical newform command output. The cat command is used to
display the contents of testfile. The newform command is used to
display the contents of testfile while removing the first three
characters of each line and keeping the same column definition.

DF 2-81

COMMAND DESCRIPTIONS

$ cat testfile<CR>
RENTAL ITEM DATE RENTED DATE RETURNED

1. ladder 7/15/85 7/16/85
2. lawn mower 7/16/85 7/17/85
3. spraygun 7/17/85 7/18/85
4. tiller 7/18/85 7/19/85

5. weed eater 7/19/85 7/22/85

$ newform -i -11 -b3 testfile<CFH>

RENTAL ITEM DATE RENTED DATE RETURNED

ladder 7/15/85 7/16/85
lawn mower 7/16/85 7/17/85
spray gun 7/17/85 7/18/85

tiller 7/18/85 7/19/85
weed eater 7/19/85 7/22/85
$

The following command line entry and system response show how to
display the contents of testfile without the last column:

$ newform -i -I1 -e13 testfile<CR>
RENTAL ITEM DATE RENTED

. ladder 7/15/85

. lawn mower 7/16/85
.spray gun 7/17/85

. tiller 7/18/85

. weed eater 7/19/85

O WN

DF 2-82

COMMAND DESCRIPTIONS

*nI”” — Line Numbering Filter

General

The nl command is used to read lines from a file or the standard input.
The lines that are read are numbered and printed on your terminal
screen. The way the lines are numbered depends on the options you
select.

The nl command views the text it reads in terms of logical pages. A
logical page contains three sections: a header, a body, and a footer
secticn. You can have empty sections. The options for numbering
lines can be different for each of the three sections. In order for the
three sections to be recognized, the following delimiter character(s)
must be included in the input lines:

LINE CONTENTS | START OF

\N\G\: header
o\ body
\: footer

Note: There must not be any other input on the lines
containing the delimiter character(s).

The nl command assumes the text being read is a single, logical page
body unless you select other options.

Command Format

The general format of the nl command is as follows:

DF 2-83

COMMAND DESCRIPTIONS

ni [-htype] [-btype | [-ftype] [-vstartf] [-iincr] [-p] [-lnum]
[-ssep] [-wwidth] [-nformat] [-ddelim] file

where:

-htype Used to specify what logical page header lines are
to be numbered. The recognized types are:

a Number all lines

t Number lines with printable text
only

n No line numbering

pstring Number only the lines that contain
the regular expression specified in
string.

The default type for the logical page header is n.

-btype Used to specify what logical page body lines are to
be numbered. The recognized types are the same
as -htype. The default type for the logical page
body is t.

-ftype Used to specify what logical page footer lines are to
be humbered. The recognized types are the same
as -htype. The default type for the logical page
footer is n.

~vystart# The initial value used to number the logical page
lines. Default is 1.

-iincr The increment value used to number the logical
page lines Default is 1.

DF 2-84

COMMAND DESCRIPTIONS

-p Do not restart numbering at the logical page
delimiters.
~lnhum The number of blank lines to be considered as one.

The appropriate -ha, -ba, and -fa option must be set.
A -12 results in only the second adjacent blank line
being numbered. Default is 1.

~ssep The character(s) used in separating the line humber
and the corresponding text line. Default is a tab.

~-Wwidth The number of characters to be used for the line
number. Default is 6.

~-nformat The line numbering format. The recognized values
are:

In Left justified with no leading zeros
rn Right justified with no leading zeros

rz Right justified with leading zeros.

Default is rn.

~ddelim Used to change the delimiter characters. If oniy
one character is entered, the second character
remains the default character (:). If you wish to use
a backslash (\) as a delimiter character, you need
to enter two backslashes (\\).

file The name of the file that is read by the ni
command.

The options can be specified in any order and can be mingled with an
optional file name. However, when intermingling options with a file,
only one file can be moved.

DF 2-85

COMMAND DESCRIPTIONS

Sample Command Use

The following command line entries and system responses show the
basic operation of the nl command. The cat command is used to show
the contents of filel. The nl command is used with several options to
show how the command is input and the system response.

7~

$ cat filel<CR>

AN\
THIS IS THE HEADER SECTION

A\
This is the body section.

\:
THIS IS THE FOOTER SECTION

$ nl -ha -fa -v5 -i5 -nrz filel<CR>

000005 THIS IS THE HEADER SECTION
000010 ...

000015 This is the body section.
000020 ...
000025 ...
000030 ...
000035 ...

000040 THIS IS THE FOOTER SECTION
000045 ...

000050 ...

$

DF 2-86

COMMAND DESCRIPTIONS

*od’’ — Octal Dump

General

The od command is used to output data in octal, decimal, ASCII, or
hexadecimal formats. The name of the command, octal dump, is
derived from the default output. Input can be from a named file, the
output of another command, or from the standard input.

Command Format

The general format of the od command is as follows:

od [-bedoscx] [file] [[+]offset].][b]]

The meaning of the various format options are as follows:

-b

~C

-8

X

Interpret bytes in octal (base 8).
Interpret bytes in ASCH.
Interpret words in unsigned decimal (absolute value).

Interpret words in octal. This is the default when no option
argument is supplied.

Interpret 16-bit words in signed decimal.

Interpret words in hexadecimal (base 16).

The file argument identifies the name of the file to be output. If the file
argument is omitted, input is taken from the standard input.

The offset argument identifies where the output is to start. This
argument is normally expressed as the number of octal bytes to be
skipped before data is output. If a period (.) is appended to the offset

DF 2-87

COMMAND DESCRIPTIONS

argument, the argument is interpreted as a decimal number of bytes.
If a letter b is appended to the argument, the argument is interpreted
as the number of blocks to be skipped before data is output. If the file
argument is omitted, the offset argument must be preceded by a plus
sign (+) to identify what follows as being the offset argument.

Sample Command Use

The following command line entries and system responses show how
you can output the contents of a file named listl using the default
form of the od command. This form of the command outputs octal
words. The cat command is first used to display the normal ASCH
contents of the file.

p
$ cat listl<CR>

eggs

bread

milk

butter

meat

$ od listl<CR>

0000000 062547 063563 005142 071145 060544 005155 064554 065412
0000020 061165 072164 062562 005155 062541 072012

0000034

$

DF 2-88

COMMAND DESCRIPTIONS

The following command line entries and system responses show how
you can output the contents of a file named listl using the -b option of
the command. This form of the command outputs the octal value for
each character (byte). An offset of 27 bytes is used in this example.
This offset causes the output to start at the last line of the file in this
example. The cat command is first used to display the normal ASCII
contents of the file. You need to refer to an octal map of the ASCII
character set to make sense out of the output. For example, the letter
“m’ is octal 155; the letter e’ is octal 145; a new-line character is
octal 012,

-
$ cat listl<CR>

eggs

bread

milk

butter

meat

$ od -b listl 27 <CR>

0000027 155 145 141 164 012 000
0000034

$

DF 2-89

COMMAND DESCRIPTIONS

“"pack’” — Compress Files

General

The pack command is used to compress and store files. Text files can
be reduced between 60% and 75% of their original size. Load modules
that use a larger character set and have a more uniform distribution of
characters can be reduced to about 90% of their original size. The
original file is removed and the compressed data is stored in a file with
the same file name, except that a .z is added to the end of the file
name. For example, if you compressed a file named filel, the
compressed data will be stored in filel.z. The access modes, access
and modified dates, and owner will remain the same as the original file.
The compressed file can be restored to its original form using the pcat
or unpack command.

How much a file is compressed depends on two things. They are:

1. The size of the input file

2. The character frequency distribution.

Usually, it is not worthwhile to compress files smaller than three blocks
of data because a decoding tree is placed at the beginning of the
compressed file. However, if the character frequency distribution is
skewed, you may wish to compress the file even if the file is less than
three blocks. Some reasons for the character frequency distribution
being skewed are printer plots, pictures, or tables in the file.

The pack command will not work if:

1. The file appears to be already compressed.

2. The file name has more than 12 characters.

DF 2-91

COMMAND DESCRIPTIONS

3. The file is linked to another file.

4. The file is a directory.

5. The file cannot be opened.

6. No disk storage blocks will be saved by compression.
7. A file called name.z already exists.

8. The .z file cannot be created.

9. An input/output error occurred during processing.

The pack command returns a value that is the number of files that it
failed to compress.

Command Format

The general format of the pack command is as follows:

pack [-] name ...

where:

- Used to set an internal flag that causes the number
of times each byte is used, its relative frequency,
and the code for the byte to be printed on the
standard output. Additional occurrences of -in
place of name will cause the internal flag to be set
and reset.

name The name of the file to be compressed.

DF 2-92

COMMAND DESCRIPTIONS

Sample Command Use

The following command line entries and system responses show the
basic operation of the pack command. The Is -l command is used to
show what are the file sizes. The pack command is used to show how
the command is inputted and the response you will receive. The ls -
command is used again to show the size of the files after they are
compressed.

-

$ lIs -l<CR>

total 109

A W=mmmm 1 cec other 29727 July 19 13:14 filel
~FW----m-- 1 cec other 24355 July 19 13:15 file2

$ pack - filel file2<CR>
pack: filel: 36.2% Compression
from 29727 to 18980 bytes
Huffman tree has 15 levels below root
90 distinct bytes in input
dictionary overhead = 112 bytes
effective entropy = 5.11 bits/byte
asymptotic entropy = 5.08 bits/byte
pack: file2: 36.2% Compression
from 24355 to 15530 bytes
Huffman tree has 15 levels below root
85 distinct bytes in input
dictionary overhead = 107 bytes
effective entropy = 5.10 bits/byte
asymptotic entropy = 5.07 bits/byte

$ s -l<CR>

total 73

-FW--—-m-- 1 cec other 18980 July 19 13:14 filel.z
-rW--—- 1 cec other 15530 July 19 13:15 file2.z
$

DF 2-93

COMMAND DESCRIPTIONS

“'paste’’ — Side-by-Side File Merge

General

The paste command is used to combine two or more files of data in a
side-by-side fashion. Each file of data is treated like a column of data
in a table. The output of the paste command can be displayed on the
terminal, redirected to a file, or redirected to another command.

Command Formats

Three general forms of the paste command are provided. These forms
are as follows:

paste file(s)
paste -d’list’ file(s)

paste -s [-d /ist’]} file(s)

The file(s) argument identifies the names of the files that are to be
pasted together. The hyphen (-) can be used as a file name to read a
fine from the standard input. There is no prompting associated with
the use of the hyphen.

The -s option is used to merge several lines from each input file as
opposed to one line from each input file.

The -dl/ist argument option is used to define the delimiter(s) that is
used between the merged lines. The tab character is the default
delimiter. The /ist argument identifies what is to replace the tab
delimiter. The items (characters) identified in the /ist argument are
used in sequence until the end of the list. Then, the listed delimiters
are reused in the same sequence. [n general, the list argument shouid
be in double quotes.

DF 2-95

COMMAND DESCRIPTIONS

For example, to get one backslash, use -d"\\" as the argument; use -d"’
as the argument to define a space as the delimiter. Special characters
are defined by escape sequences. These include the following:

» \n for new-line character

» \t for tab character

« \\ for the backslash character

o \0 for an empty siring.

Sample Command Use

The following examples are based on the use of two files named listl
and list2. The contents of these two files are as follows:

listl:

listl:
listl:
fistl:
listl:
listl:
listl:
listl:

The following command line entries and system responses show how
you can merge the contents of two files using the simplest form of the
paste command. This form of the command requires no options. The
named files are merged in a side-by-side fashion with a tab character
as the delimiter between the lines of the files. The output of the paste
command is redirected to a file named save. The cat command is used

item1
item?2
item3
item4
item5
item6
item7

fist2:

list2:
fist2:
list2:
list2:
list2:
list2:
list2:

to display the contents of the resulting file.

DF 2-96

item1
item2
item3
item4
itemb
item6
item7

COMMAND DESCRIPTIONS

f

$

item1
item2
item3
item4
item5
item6
item?7

list2:
list2:
list2:
list2:
list2:
list2:
list2:

$ paste listl list2 > save<CR>
$ cat save<CR>
listl:
listl:
listl:
listl:
listl:
listl:
listl:

item1
item2
item3
item4
itemb
item6
item7

The following command line entries and system responses show how
you can merge the contents of two files using the form of the paste -
dlist command. The named files are merged in a side-by-side fashion
with a slash (/) character as the delimiter between the lines of the file.
The output of the paste command is redirected to a file named save.
The cat command is used to display the contents of the resulting file.

4

$

item1 /list2:
item2 /list2:
item3/list2:
item4 /list2:
itemb /list2:
item6 /list2:
item7 /list2:

$ paste -d’/’ listl list2 > save<CR>
$ cat save<CR>
listl:
listl:
listl:
listl:
listl:
listl:
listl:

item1
item?2
item3
item4
itemb
item6
item7

DF 2-97

COMMAND DESCRIPTIONS

“pcat’’ — Concatenate and Print Packed Files

General

The peat command is used to concatenate and print files that have
been compressed by the pack command. The compressed file is
expanded and printed on your terminal screen in its original form.

The peat command will not work if:

1. The file name (exclusive of .z) has more than 12
characters.

2. The file cannot be opened.

3. The file does not appear to be the output of the pack
command.

The pecat command returns a value that is the number of files that it
failed to expand.

Command Format

The general format of the pcat command is as follows:
pcat name ...

The name argument identifies the name of the file that needs to be
expanded. The .z at the end of the file name does not need to be
inputted when specifying name.

The standard output of the pcat command can be redirected to a file.
You will have two files: one that contains the compressed data
(name.z) and one that contains the original data.

DF 2-99

COMMAND DESCRIPTIONS

The general format when redirecting the output of the pcat command
follows:

pcat name > new.file

where:
name Identifies the name of the file that needs to be
expanded.
new.file Identifies the name of the file that contains the

expanded data.

Sample Command Use

The following command line entries and system responses show the

basic operation of the pcat command. The Is -l command is used to
display the compressed files before the pcat command is given. The
pcat command is used to show you how the command is input using
the redirection method. The Is -l command is used again to display

the results of executing the peat command.

-

$ Is -l<CR>

total 71

-FW--—mnee 1 cec other 18980 July 19 13:14 filel.z
- W--—men 1 cec other 15530 July 19 13:15 file2.2

$ pcat filel > new.filtel<CR>
$ pcat file2 > new.file2<CR>

$ s Al<CR>

total 181

SFW=mee 1 cec other 18980 July 18 13:14 filel.z
-FWemmme 1 cec other 15530 July 18 13:15 file2.z
SPWeenman 1 cec other 29727 July 19 07:47 new. filel
SW=-mmeean 1 cec other 24355 July 19 07:48 new.file2
$

DF 2-100

COMMAND DESCRIPTIONS

**pg’”’ — Command Description

General

The pg command is a filter that will allow you to view a file one page at
a time on a soft-copy terminal screen. A prompt (:) is displayed after
every page. If a carriage return is entered after the prompt, another
page is displayed. Other options, listed in this section, may be chosen.
What makes the pg command different from other similar commands is
that the pg command allows you to back up and review something that
has already passed. The pg command scans the terminfo data base
for your terminal type to determine the terminal attributes. The
variable TERM specifies your terminal type. If TERM is not specified,
the terminal type dumb is assumed. Refer to the AT&T 3B2 Computer
Programmer Reference Manual for information on the terminfo data
base.

A pause will occur after each page is displayed and the prompt is given.
There are three categories of responses that can be given when the
prompt is displayed. The three categories are those that cause further
perusal, those that search, and those that change the perusal
environment.

Commands that cause further perusal normally take a preceding
address. The address is an optionally signed number that indicates the
point from which further text should be displayed. The address can be
given in pages or lines. A signed address specifies a point relative to
the current page or line. An unsigned address specifies an address
relative to the beginning of the file.

The perusal commands are as follows:

<newline> or <blank>
Display the next page. If a signed address is used, the pg
command goes forward (+) or backward (-) the numbered
amount of pages specified and displays that page on your
terminal screen. If an unsigned address is used, the page

DF 2-101

COMMAND DESCRIPTIONS

dorD

,or L

number specified will be displayed.

Scroll one line forward. If a signed address is used, the pg
command simulates scrolling the screen, forward (+) or
backward (-), the number of lines specified. If an unsigned
address is used, the pg command prints a screenful
beginning at the line humber specified.

Simulates scrolling half a screen forward (41 address) or
half a screen backward (-1 address).

The next two perusal commands do not use addresses.
Causes the current page to be redisplayed.

Displays the last window (page) in the file. If the inputis a
pipe, use with caution.

The following commands are available for searching for specific
patterns of text. These commands must be ended by a <newline>,
even if the -nn option is specified. You may use the regular expressions
of the ed command. Refer to the AT&T 3B2 Computer User Reference
Manual for information about the ed command.

i/pattern/ Search forward for the ith (default is /=1)

DF 2-102

occurrence of pattern. Searching will begin after
the current page and will continue until the end of
the file is reached. If the entire pattern is not on
the same line, pattern will not be found.

COMMAND DESCRIPTIONS

i?pattern? or | pattern

Search backward for the ith (default is /i=1)
occurrence of pattern. Searching will begin before
the current page and will continue until the
beginning of the file is reached. Use i pattern” if
using an Adds 100 terminal.

The line found at the top of the screen will be displayed after the
search has ended. By appending m or b to the search command, you
can display the line at the middle of the window or the bottom of the
window. The suffix t can be used to restore the original file.

You can change the perusal environment with the following commands:

P

s filename

qorQ

fcommand

Begin perusing the ith next file in the command line.
If /is not specified, 1 is used.

Begin perusing the ith previous file in the command
line. If jis not specified, 1 is used.

Display another window of text. If jis present, set
the window size to /.

Save the current file that is being perused in
filename. This command must be ended by a
<newline>, even if the -n option is specified.

Help command. An abbreviated summary of
available commands is displayed.

Quit the pg command.

The command is executed by the shell. if the
SHELL environment variable is set, that shell is
used. If the SHELL environment variable is not set,
the default shell is used. This command must be
ended by a <newline>, even if the -n option is
specified.
DF 2-103

COMMAND DESCRIPTIONS

You can stop sending output to the terminal at any time by depressing
the quit key (normally control-\) or the interrupt (break) key. The
prompt will appear and you may then enter commands in the normal
manner. Unfortunately, some output is lost when you stop the output.
This happens because any characters waiting in the terminal output
queue are flushed when the quit signal occurs.

The pg command acts like the cat command if the standard output is
not a terminal screen. The only difference is that a header is printed
before each file if there is more than one file. Refer to the AT&T 382
Computer User Reference Manual for information about the cat
command.

Execution of the pg command is stopped if BREAK, DEL, or is
depressed while the pg command is waiting for terminal input. If you
are between prompts, these signals interrupt the current task and will
place you in the prompt mode. Use the interrupt signals with caution
when the input is coming from a pipe, since the interrupt is likely to
stop the other commands in the pipeline.

There are a couple of bugs that you need to know about. The first one
is that the terminal tabs should be set to every eight positions or you
may get undesirable results. The second one is that when using the pg
command as a filter with another command that changes the terminal
input/output options, terminal settings may not be restored correctly.

Command Format

The general format of the pg command is as follows:
pg [-number][-p string] [~cefns | [+linenumber]| +/pattern/ 1| file(s)]
where:

-number The size (number of lines) of the window. If the size
is not specified, the default value is one line less

DF 2-104

COMMAND DESCRIPTIONS

than the total number of lines that can be displayed
on your terminal screen.

-p string Causes string to be used as the prompt. If %d
appears in string, the first occurrence of %d in the
prompt is replaced by the current page number
when the prompt is issued.

~C Take cursor to the home position and clear the
screen before displaying a page. If clear_screen is
not defined in the terminfo data base, this option
will be ignored.

-e Normally, a pause will occur at the end of each
page and at the end of each file. This option
eliminates the pause at the end of each file.

-f Normally, if a line is longer than the terminal screen
width, it is split into two lines. However, there are
times when some sequences of characters in the
text generate undesirable results; such as escape
sequences for underlining. Here, you can use the
option to inhibit the pg command from splitting
lines.

-n Normally, commands must be ended by a
<newline> character. This option causes the
command to end as soon as a command letter is
entered.

-S Causes all messages and prompts to be printed in
the standout mode (usually inverse video).

+linenumber Start up at linenumber.

+/pattern/ Start up at the first line containing the pattern
specified.

DF 2-105

COMMAND DESCRIPTIONS

file(s) The name of the file to be examined. If file(s) is not
specified or if a minus sign (-) is specified, the pg
command reads the standard input.

Sample Command Use

The following command line entry and system response show the basic
operation of the pg command. The pg command along with the news
command is used in a pipeline to read the system news.

-

$ news ! pg -p " (Page %d):" <CR>

Note: The first page of the news will appear next.

(Page 1): Note: This is the prompt. It will appear
after each page with the number of the page
you are on. You may now enter a
command that manipulates the text or enter
q to quit.

DF 2-106

COMMAND DESCRIPTIONS

“'sdiff’’ — Side-By-Side Difference Program

General

The sdiff command uses the output of the diff command (discussed
earlier in this chapter) to produce a side-by-side listing of two files. If
the lines are identical, each line of the two files are printed side-by-side
with a blank gutter between the two files. If the line exists only in filel,
a less than (<) symbol is in the gutter. If the line exists only in fileZ, a
greater than (>) is in the gutter. If the line exists in both files and they
are different, a pipe symbol ({) is in the gutter.

For example:

x | y

a a

b <«

c <

d d
> C

Command Format

The general format of the sdiff command is as follows:
sdiff [options ...] filel file2

The following options exist:

W n Use the next argument (n) as the width of the output
line. If nis not specified, the line length wili be 130
characters.

- Only print the left side of any lines that are identical.

DF 2-107

COMMAND DESCRIPTIONS

~S

-0 output

Do not print identical lines.

Use the next argument (output) to create a third file
that will let you control the merging of filel and file2.
All identical lines of filel and file2 are copied to the
output file. All different lines of filel and file2 are
printed on your terminal screen. After the different
lines are printed, you will receive a prompt (%). After
the prompt (%) is received, enter one of the following
commands:

el

eb

Append the left column to the output file.
Append the right column to the output file.

Turn the silent mode on; do not print identical
lines.

Turn the silent mode off.
Will let you edit the left column.
Will let you edit the right column.

Will let you edit the concatenation of the left
and right columns.

Will let you edit a new file.

Exit from the program.

When you exit from the editor, the resulting file is
concatenated on the end of the output file.

The arguments filel and file2 are the files that are being compared.

DF 2-108

COMMAND DESCRIPTIONS

Sample Command Use

The following command line entries and system responses show the
basic operation of the sdiff command. The cat command is used to
display the contents of filel and file2. The sdiff command is then used
to display a side-by-side comparison of filel and file2.

-
$ cat filel<CR>
1000

2000

4000

8000

16000

32000

64000

128000

$ cat file2<CR>
500

1000

2000

3000

8000

16000

34000

64000

> 500
1000 1000
2000 2000
4000 |+ 3000
8000 8000
16000 16000
32000 ! 34000
64000 64000
128000 <
$

b

$ sdiff -w 30 filel file2<CR>

DF 2-109

COMMAND DESCRIPTIONS

“'split’”’ — Split a File Into Pieces

General

The split command is used to read a file and write it in n number of
lines onto a set of output files, Default is 1000 lines per file. The name
of the first output file is name with aa through zz appended. The
output file will be appended with aa, then ab, then ac, and so forth until
zz is reached. A maximum of 676 files can be created using the split
command. There must not be more than 12 characters in name. If no
output name is given, x is default.

Command Format

The general format of the split command is as follows:

split [-n] [file[name]]

where:
-n The number of lines that are to be written onto each
output file.
file The name of the file to be split.

name The name of the output file.

If no input file is given or if - is given, the standard input is used.

DF 2-111

COMMAND DESCRIPTIONS

Sample Command Use

The following command line entries and system responses show the
basic operation of the split command. The eat command is used to
display the contents of filel. The split command is used to split filel
into 3 lines per output file. The Is -l command is used to display the
new files that are created. The cat command is used again to display
the contents of each new file.

o

$ cat filel<CR>
This will be the first line of the first output file.

This will be the first line of the second output file.
'.I'his will be the first line of the third output file.

$ split -3 filel new.filel<CR>

$ Is [l<CR>

total 5

~FWemnmemm 1 cec other 187 July 19 10:52 filel
SFWamenen 1 cec other 62 July 19 10:53 new filelaa
W 1 cec other 63 July 19 10:53 new.filelab
W -meemee 1 cec other 62 July 19 10:53 new. filelac

$ cat new.filelaa<CR>
This will be the first line of the first output file.

é cat new.filelab<CR>
This will be the first line of the second output file.

i.cat new.filelac<CR>
This will be the first line of the third output file.

DF 2-112

COMMAND DESCRIPTIONS

Ysum’ — Print Check Sum and Block Count of a File

General

The sum command is used to calculate and output a 16-bit checksum
for a specified file. Typically, the command is used to look for bad
data or to validate a file transmitted over a communications interface.
The number of blocks in the specified file is also output.

To use the sum command to validate transmitted data, the checksum
is executed on the file before transmission and the results are sent to
the destination. At the destination, the sum command is again
executed on the received data. The before and after checksums are
then compared. Matching checksums show a successful transfer of
data and a mismatch shows a problem. Note that you must know
whether to use the -r option when validating transferred data or not.
You must use the same form of the command to calculate the
checksum at the source and destination to be able to validate the
transmitted data.

Command Format

The general format of the sum command is as follows:
sum [-r] file

The -r option causes the command to use a different rationale
(algorithm} in computing the checksum. The file argument identifies
the name of the file to be processed. Note that the file name can be
expressed as a complete path name.

DF 2-113

COMMAND DESCRIPTIONS

Sample Command Use

The following command line entries and system responses show you a
typical sum command output. The first field output is the checksum,
followed by the number of blocks (1), followed by the name of the file
(listl).

$ sum listl<CR>
2496 1 listl

$ sum -r listl<CR>
55792 1 listl

$

DF 2-114

COMMAND DESCRIPTIONS

*'tail’’ — Output End of a File

General

The tail command is used to output the last portion of some data. The
source data operated on by the command can be from a file, the
output of another command, or from the terminal. Options are
provided to tell the command at what point from the beginning or end
of the input data to start passing data to the output. The start can be
expressed in the number of lines, blocks, or characters from the
beginning or end of the data.

Command Format

The general format of the tall command is as follows:
tail [= [number][Ibc[f]]] [file]

The number argument identifies the number of units from the
beginning or from the end of the input where the output is to begin. A
plus sign preceding the number means from the beginning of the input
data. A minus sign preceding the number means from the end of the
input. The units used for the number argument are lines (I), blocks (b),
or characters (¢). The unit identifier immediately follows the number
argument (no space).

The -f option is used to continuously read data from a file. The option
provides the ability to monitor the growth of a file that is being written
by some other process. The -f option is not applicable when data is
being piped to the tail command,

The file argument identifies the name of the source file. Note that the
file name can be expressed as a complete path name.

DF 2-115

COMMAND DESCRIPTIONS

Sample Command Use

The following examples are based on the contents of a file named
sample. The contents of this file are as follows:

line 1
line 2
line 3
line 4
line 5
line 6
line 7
line 8
line 9
line 10
line 11
line 12

The following command line entries and system responses show how
you can output the end of a file of data using the simplest form of the
tail command. This form of the command outputs the last ten lines of
the contents of the sample file. The default of the number argument is
-101.

(-‘B tail sample<CR>
fine 3
line 4
line 5
line 6
line 7
line 8
line 9
line 10
line 11
line 12
$

DF 2-116

COMMAND DESCRIPTIONS

The following sample command lines and system responses show you
how to output the contents of the sample file starting 45 characters
from the beginning of the file:

$ tail +45c sample<CR>
ne 7

line 8

line 9

line 10

line 11

line 12

$

DF 2-117

COMMAND DESCRIPTIONS

*tr’’ — Translate Characters

General

The tr command is used as a filter to change data that is passed
through it on a character basis. The command functions like a stream
editor. Repeated occurrences of a character in succession can be
reduced to a single occurrence of the character. Characters can be
identified by ASCH letter or octal value. Octal values are preceded by a
backslash (\). Ranges of characters are identified by enclosing the
range in brackets. For example, [a-¢] represents the letters a, b, and
c. The entire lower case ASCII range is identified by [a-z]. Multiple
occurrences of a character is represented by an expression [x*n],
where the x is any character and the n is the number of repetitions of
x. The number is treated as an octal number if the most significant
digit is a zero. The number is treated as a decimal number if the most
significant digit is other than a zero.

Command Format

The general format of the tr command is as follows:
tr [~eds] [stringl [string2]]

The -¢ option reverses the meaning of stringl. The stringl argument
identifies the characters that ARE NOT to be translated. The
characters identified in the stringl argument pass unchanged to the
output. When the -¢ option is omitted, stringl characters are
translated to string? characters.

The -d option causes the characters identified by stringl to be deleted
from the output. The string2 argument is not used with the -d option.
If the string2 argument is provided, it will be ignored.

DF 2-119

COMMAND DESCRIPTIONS

The -s option causes multiple occurrences of the characters identified
by string2 to be replaced by a single occurrence of the characters. |If
only one string argument is given, then stringl defines the character(s)
to be operated on by the command.

The stringl argument identifies input characters that are to be
operated on by the command. When a string2 argument is also
provided, the characters found in stringl are mapped to the
corresponding character in string2.

Sample Command Use

The following command line entries and system responses show how
you can change all lower case letters in a file named listl to upper
case letters. The cat command is used to display the contents of listl.
The output of the tr command is redirected to a file named LIST.

-
$ cat listl<CR>

eggs

bread

milk

butter

meat

$ tr " [a-z]" " [A-Z]" < listl > LIST<CR>
$ cat LIST<CR>

EGGS

BREAD

MILK

BUTTER

MEAT

$

DF 2-120

COMMAND DESCRIPTIONS

The following command line entries and system responses show how
you can use the tr command to reduce multiple consecutive
occurrences of a space character to a single occurrence throughout a
file of data. The cat command is used to display the contents of the
files.

$ cat list3<CR>

This file contains lines

with multiple spaces between words.
$tr-s™ " < list3 > newlist<CR>

$ cat newlist<CR>

This file contains lines

with multiple spaces between words.

$

The following command line entries and system responses show how
you can use the tr command to put each word in a file on a separate
line. The cat command is used to display the contents of the sample
file. The output of the tr command is displayed on the terminal in this
example.

-

$ cat file<CR>

This file contains one line of text.

$ tr-cs " [A-z]" " [\012*]" < file<CR>
This

file

contains

one

line

of

text

$

DF 2-121

COMMAND DESCRIPTIONS

"uniq’’ — Report Repeated Lines in a File

General

The unig command is used to read an input file while comparing
adjacent lines. The second and succeeding copies of repeated lines
are removed in the normal output mode and the remaining lines are
written on the output file. Repeated lines must be adjacent to be
found. The input and output files must have different names.

Command Format

The general format of the unigq command is as follows:

where:

+n

uniq [-udc|[+n][-n]][input| output]]

The lines that are not repeated in the input file are written
on the output file.

Only one copy of just the repeated lines is written on the
output file,

The output file is generated in the normal output mode
with a count of the number of times each line occurs.
This option supersedes -u and -d.

n amount of characters are ignored. Fields are skipped
before characters. A field is defined as a string of
nonspace, nontab characters separated by tabs and
spaces from its neighbors.

The first n amount of fields together with any blanks
before each fieid are ignored.

DF 2-123

COMMAND DESCRIPTIONS

input The name of the input file.

output The name of the output file.

The normal output mode is the union of the -u and -d options.

Sample Command Use

The following command line entries and system responses show the
basic operation of the unigq command. The cat command is used to
display a grocery list. The sort command is used to alphabetize the
grocery list. To learn more about the sort command, refer to your
AT&T 3B2 Computer User Reference Manual. The cat command is
used again to display the alphabetized grocery list. The uniq command
is used to remove the repeated lines and to count the number of times
each item was listed. The cat command is used again to display the
results. This is shown in the next example.

DF 2-124

COMMAND DESCRIPTIONS

-

$ cat filel<CR>
bread
milk
butter
ice cream
meat
milk
vegetables
potato chips
drinks
orange juice
bread
vegetables
% sort filel > file2<CR>
$ cat file2<CR>
bread
bread
butter
drinks
ice cream
meat
milk
mitk
orange juice
potato chips
vegetables
vegetables
$ unig -c file2 file3<CR>
$ cat file3<CR>
2 bread
1 butter
1 drinks
1 ice cream
1 meat
2 milk
1 orange juice
1 potato chips
2 vegetables

DF 2-125

COMMAND DESCRIPTIONS

“unpack’” — Expand Files

General

The unpack command is used to expand files created by the pack
command. The compressed data is expanded to its original form. The
compressed file is removed and the expanded data is placed in a file
with the same file name, except that the .z is dropped. For example, if
you expanded a file named filel.z, the expanded data will be placed in
filel. The access modes, access and modified dates, and owner will
remain the same as the compressed file.

The unpack command will not work if:

1. The file name (exclusive of .z) has more than 12
characters.

2. The file cannot be opened.

3. The file does not appear to be the output of the pack
command.

4. A file with the “unpacked’’ name already exists.

5. The unpacked file cannot be created.

The unpack command returns a value that is the number of files that it
failed to expand.

DF 2-127

COMMAND DESCRIPTIONS

Command Format

The general format of the unpack command is as follows:
unpack name ...

The name argument identifies the name of the file that needs to be
expanded. The .z at the end of the file name does not need to be
input when specifying name.

Sample Command Use

The following command line entries and system responses show the
basic operation of the unpack command. The Is -l command is used to
display the character size of the compressed files before they are
expanded. The unpack command is used to expand the compressed
files. The Is -l command is used again to display the character size of
the expanded files.

3
$ Is-I<CR>

total 71

~FW--mmmo- 1 cec other 18980 July 19 13:14 filel .z
[Wonmamnm 1 cec other 15530 July 19 13:15 file2.z

$ unpack fitel file2<CR>
unpack: filel: unpacked
unpack: file2: unpacked

$ Is ~I<CR>

total 110

~FWemmmnne 1 cec other 29727 July 19 13:14 filel
SF W 1 cec other 24355 July 19 13:15 file2
$

DF 2-128

Replace this
page with the
EDITING

tab separator.

GGG I I N

-

CIIOOICIOCIICICICICIC)

™,
S

PO H O PR B O DM an n s
)

%)
*

3B2 Computer
™ System V Release 2.0

ng Utilities Guide

n

n

AT&T
UNI
Ed

EEEREEGCEEEERRKEERGCHAEE

o
"
%
e
Al

m R

E & ﬂh
E B & € EEEEE CoLaCRCIS U |
(3

m
G
m_m
mm
L]

€ E 6 EECEEEE

o
m
CIC)
amem
" m
EICICNG]
L)
LK)
LK)
m
o m
n
LI
"
L)
o
L)
n
LI
)
"M
L]
L]
]
]
m

LI
LG
]
L)
L)
mm
LU
L)
a m
mm
LN
m 0
LI
mn
m m
L)
am
L)
L
moa
mm
L]
LI
LI
5 @
L)
LI
ma
LI
L)
LI
L)
LR
B
LI
L)
L)
LI
amn
m @
L)
a'm
L)
mn e
a m
LX)
LI
m o
L)
LI
LI
LI
noe
n

n
L]
]
]
n
®
L]
@
]
L]
a
L]
o
®
L]
L]
"
L)
"
n
L]
n
L]
n

n
m
]

"

)

L)
a
3
L]
n
]
n
o
n
L]
n
a
C]
"
n
)
@
]
L]
(3
m
o
[
a
L]
o

o
®
)
L3
a
mn

"
n'm

a

L)

L)

L)

L)

L)

Eh e MR ARMOANRAMDS SR

a'nm

mm

L]

a

n

o

L)

a

a

"

a

)

L]
a

o
L3
o
[
a
@
»
o
a
L)
L)
)
)
L)
o
)

”
L]
a
n n
n
ERCICIN]
L]
o menen
n
B o e
n
L)
L)

ceeceEeEceES8CC oo
€ e €6 E &L CEEEEECEEECEE D
€ €% 6 €6€CECGEEEREEER

a

o
L]
[
a n
e
)

o P aamaane
@
o

LGN)

a

Chapter
Chapter
Chapter
Chapter

A

CONTENTS

INTRODUCTION
EDIT EDITOR

EX EDITOR

VISUAL EDITOR (vi)

Chapter 1

INTRODUCTION

GENERAL

This guide describes the command format and use of the Editing Utilities.
The commands and procedures described in this guide are for use by all
users.

The UNIX* System contains a file system that is used to store user
information. Changing files by adding or deleting information can only be
done using UNIX System Editor Commands. The editing utilities give the
user an easy way to create, read, and change information in these files.

The edit, ex, and vi editors are based on a consistent set of text editor
commands. These commands serve as the fundamental building blocks for
increasing text editing proficiency.

* Trademark of AT&T

ED 1-1

INTRODUCTION

The editing utilities allows the user to do two types of editing:

» Basic editing allows the casual user to use basic commands to do
text editing.

o Visual editing allows the user to view several lines of the file at a
time and use screen oriented display editing based on basic editor
commands.

The editing utilities consists of three text editors designed to meet the
needs of the novice user, while allowing the experienced user to use more
complex and powerful editing tools. These editors are actually three
versions of the ex editor.

The ex editor is an interactive editor that normally accesses only one line
of the file at a time. Many of the ex commands are similar to the ed editor
commands. The advantage of using the ex editor is the large amount of
options available in it.

The edit editor is the simplified version of ex editor and is normally used by
novice users. Messages displayed on the screen after an invalid command
are more descriptive than with ex or vi. Edit contains fewer commands
and most beginners should pick it up quickly. All commands that execute
in the edit editor will also execute in the ex editor.

The vi editor is actually the visual mode of editing within the ex editor. Vi
is the most complex of the three editors, because there are so many
commands that do the same function. However, it is the easiest to use
once you understand the basic movement and editing commands. With
the vi editor, you can view several lines of the file at one time, and you can
move the cursor to any character in the file. Most ex commands can be
invoked separately from vi by first entering a *':"" and then the ex
command. To execute the command, depress the carriage return.
Experienced users often mix their use of ex command mode and vi
command mode to speed the work they are doing.

ED 1-2

INTRODUCTION

RESTRICTIONS

The limits of the editors are as follows:

e 1024 characters per line

e 256 characters per global command list

» 128 characters per file name

« 100 characters per shell escape command
e 63 characters in a string valued option

e 30 characters in a tag name

¢ 128 characters in the previous inserted or deleted text in (open) or
(visual) mode

» 250000 lines in a file.

If you try to use these editors on a file and you receive a message stating
that the file is too large, you can either split the file into smailer files or use
a different editor. To split the file, you can use the split or csplit
commands contained in the AT&T 3B2 Computer Directory and File
Management Utilities. If you want to use another editor, you can use the
bfs editor (big file scanner) contained in the AT&T 3B2 Computer Directory
and File Management Utilities or the sed (stream) editor contained in the
Essential Utilities.

ED 1-3

INTRODUCTION

SPECIAL PURPOSE KEYS

There are several special purpose keys that are used by the vi editor.
These keys are important and will be used throughout the document.
Their descriptions are as follows:

ESCAPE This key is sometimes labeled <ESC> or <ALT>. ltis
normally located in the upper left corner of your keyboard.
When you are in the editor, depressing the <ESC> key
causes the editor to ring the bell indicating that it is in an
inactive state. On smart terminals where it is possible, the
editor will quietly flash the screen rather than ring the bell.
Partially formed commands are canceled with the <ESC>
key. When you insert text in the file, text insertion is ended
with the <ESC> key. This is a harmless key to use, so you
can depress it whenever you are not certain what state the
editor is in.

CR The <CR> key refers to the RETURN key and is used to start
execution of certain commands. It is normally located on
the right side of the keyboard.

DELETE This key is sometimes labeled , <RUBOUT>, or
<BREAK>. It generates an interrupt that tells the editor to
stop what it is doing. This is a forceful way of making the
editor return to the inactive state if you do not know or like
what is going on.

CONTROL This key is often labeled <CTRL>. It is used with other keys
to do various functions. It will be represented in this
document by the <CTRL> symbol. The associated key will
be represented by an uppercase letter. To execute a control
function, both keys must be depressed at the same time. An
example of this will be represented as follows:

<CTRL d>

The function illustrated will cause the screen to scroll down
when in the vi editor.

ED 1-4

INTRODUCTION

HOW TO INTERPRET COMMANDS

The following conventions are used to show your terminal input and the
system output in screens and command lines:

p
This style of type is used to show system generated
responses displayed on your screen.

This style of bold type is used to show inputs
entered from your keyboard that are displayed on your
screen.

These bracket symbols, < > identify inputs from the
keyboard that are not displayed on your screen, such
as: <CR> carriage return, <CTRL d> control d, <ESC g>

escape g, passwords, and tabs.

This style of italic type is used for notes that
provide you with additional information.

Refer to the AT&T 3B2 Computer User Reference Manual for UNIX System
V manual pages supporting the commands described in this guide.

ED 1-5

INTRODUCTION

GUIDE ORGANIZATION

This guide is structured so you can easily find desired information without
having to read the entire text. The remainder of this document is
organized as follows:

« Chapter 2, “EDIT EDITOR,” provides instructions on how to use the
edit editor.

e Chapter 3, “EX EDITOR,” provides instructions on how to use the ex
editor.

o Chapter 4, *VI EDITOR,"’ provides instructions on how to use the
visual (vi) editor.

ED 1-6

Chapter 2

EDIT EDITOR

INTRODUCTION ittt nin e mecaseneanannaanmaaraanaanaeannnnss
CURRENT LINE DEFINITIONt h i iiminnnnnnannamannanaaeaacnnnnnn

GETTING STARTED . .ot iiiiie i st s s st nmmeeeannanansnnananannennanns
Creating aNew File it iinenananernnnannaannannnn
Entering Text.ttt
Leaving the Input Mode i e
Writing the Buffer Intothe File i i ianan s
Quitting the Editort aiinncetnnenn e anaananann
Editing an Existing File i i i i i

DISPLAYING LAINES IN THE FILE i i an i s caaanaanasans

MOVING AROUND IN THE FILE i ann e
Basic Movement Commands oo v inennneacasnnnonnanrnsononennnn
Forward and Backward Search Commands 0t tinenonnnnnn
Repeating Searchesttt i e e e
Global Searcheso i it e aan e b e
Special Search Characterst aannananananannnnenans

MAKING CORRECTIONS TO THE FILE i innneannannnns
Appending Textot i et e
INSerting TeXtt in i in et annan s anananonnenanasanaaasssan
Changing Text ittt n s annacasanannnan s
Deleting TeXt . .o it i ettt nn i aac e n e a e
Substituting Text. i
Special Substitution Characterst innnnnnnannnnnan
Global SUbSEIRULESo h it i it na e e a e
LT o T T =) S
MOVINg TeXt . . . it i i i i eimnnn s sneaenasannnaaannnaasnannnnnenan

FILE MANIPULATION i it it i e snmanaaaoaannnasnanaaananasanns
Writing the Buffer to Another File. it it i nnanennan

PAGE

2-1

Reading Another File Into the Buffer it iiiniininininennenn 2-21

Obtaining Information About the Buffer i nrinennnnnnan 2-22
ISSUING UNIX SYSTEM COMMANDS ittt nnnnnnnnannnnas 2-23
RECOVERING LOST TEXT ..ttt ittt ettt e ettt e mam e emnna e esaneeaanannnn 2-24

Undoing the Last Command i inienaannnn 2-24

Recovering Lost Files. it i et en e nanannnannanennennnns 2-24

Chapter 2

EDIT EDITOR

INTRODUCTION

This chapter describes the edit editor used on the 3B2 Computer. Editis a
simplified version of the ex editor, and it is recommended for new or
casual users. Messages displayed on the screen after an invalid command
are more descriptive than with the other editors.

When using the edit editor, all commands must be entered on a command
line. The command line is identified by a colon **:"" on a line by itself.
Commands entered on the command line can affect the line you are on in

the file (current line), a specified set of lines, or the entire file.

Most edit editor command names are English words that can be
abbreviated. When an abbreviation conflict is possible, the more
commonly used command has the shorter abbreviation. For example,
since substitute is abbreviated by s, set is abbreviated by se.

ED 2-1

EDIT EDITOR

The edit editor does not directly change the file being edited. Instead, it
works on a copy of the file stored in a temporary memory location called
the buffer. The edited file is not changed until you write the changes from
the buffer to the edited file.

This editor description assumes that you know how to log on to the
computer. If you do not, refer to the AT&T 3B2 Computer
Owner /Operator Manual.

For additional information on the edit editor, refer to the AT&T 3B2
Computer User Reference Manual for UNIX System V manual pages.

CURRENT LINE DEFINITION

The term “‘current line’' is referred to throughout this chapter. The
current line is the line in the file you are now on. Each time you move to a
different line in the file, that line becomes the current line. Whenever a
command is given, the current line is used as a reference point. Any
command that is not directed at any specific line is executed against the
current line.

GETTING STARTED

The edit editor can be used to create a new file or to change an existing
file. To execute edit you must be logged onto the computer. After the $
or # prompt is displayed, you can begin working with the edit editor.

ED 2-2

EDIT EDITOR

Creating a New File

To create a new file, you will need to type edit followed by a space and
then the name of the file you wish to create. Execute the command by
depressing the carriage return <CR>. For example:

$ edit filenmame<(CR>
" filename" [New file]

If you did not enter the command correctly, you will receive a usage
message indicating an incorrect command syntax was used. You will need
to re-enter the command correctly.

If you entered the edit command without a filename, the editor will still
create a new file. However, when you decide to write the file into memory
you will be prompted for a filename. See “*Writing the Buffer Into the File."”

ikry

When the edit command is executed, a colon *:" is displayed. The colon
identifies the command line and indicates that the edit editor is ready to
accept your input commands.

Entering Text

The edit editor commands have two forms: a word that describes what
the command does and an abbreviation of the word. You can use either
form. Many beginners find the full command name easier to remember,
but after some practice use the abbreviation. The command to input text
is append, that may be abbreviated a. Enter append after the colon on the
command line and then depress the carriage return.

;append<CR> or :a<CR>

ED 2-3

EDIT EDITOR

Edit is now in the text input mode (append mode). The colon is no longer
displayed on the command line, and this is your signal that you may begin
entering lines of text. Anything that you type on your terminal, except a
period on a line by itself, is entered into the buffer. If the message:

Not an editor command

is displayed, check to see what you entered incorrectly and then enter the
command again.

Note: The computer considers a blank space to be a character.
Be careful not to input blanks into lines of text unless you mean for
them to be there.

Leaving the Input Mode

To leave the input mode, simply enter a period *'.” on a line by itself and
depress the carriage return. This is the signal that you want to stop
inputting text. After receiving a period on a line by itself, edit will re-enter

higry

the command mode and display the command line prompt """,

The text just entered is now stored only in the buffer. If you wish, you can
make changes to the text. Making changes is discussed throughout the
remainder of this chapter.

Writing the Buffer Into the File

The buffer is only temporary storage for the file. Now that you have
entered text in the buffer, you need to write the buffer to the file. This is
the only way to save new text from one editing session to another. To
write the contents of the buffer to the file, use the write command
{(abbreviated w).

write<CR> or :w<CR>

Edit will then copy the buffer into the file. If the file does not yet exist, a
new file will be created and a message will be given indicating that it is a

ED 2-4

EDIT EDITOR

new file. The newly created file will be given the name specified when you
entered the editor, ““filename’’. To confirm that the file has been
successfully written, the editor will repeat the filename and give the
number of lines and the total number of characters in the file. The buffer
remains unchanged, so you can make further changes if you want to.

Edit must have a filehame to use before it can write a file. Therefore, if
you did not specify the name of the file when you began the editing
session, edit will issue the message:

No current filename

when you give the write command. If this happens, simply re-enter the
write command and specify the filename. Here you would enter:

‘write filename<CR> or :w filename<CR>

This will write the buffer to a file named “‘filename’".

Quitting the Editor

When you have finished editing the file and you are ready to return to the
UNIX System, enter the quit command (abbreviated q).

quit<CR> or :q<CR>
This returns you to the UNIX System unless you forget to write the buffer
to the file. The system will issue a message reminding you to write the file.
A quick way to write and quit the edit editor is with the single command:
wg<CR>
If you do not want to save the changes, enter the command:

q!<CR>

This will quit edit and leave the file unchanged from the last write
command. '

ED 2-5

EDIT EDITOR

Editing an Existing File

To edit the contents of an existing file named *‘filel,”” you begin by issuing
the command:

$ edit filel<CR>
" filel" 150 lines, 4285 characters

This places a copy of the file in a buffer, and displays how many lines and

characters are in the file. A colon “:"" will then be displayed at the
command line.

Nete: If you do not give a filename, edit will create a new file
instead of editing the file you want.

iy

After the file description and the colon are displayed, enter a 1 on the
command line followed by a carriage return. This will make the first line in
the file the current line. The editing process is described throughout the
remainder of this chapter.

The procedure for saving changes to the buffer is described in ""Writing the
Buffer Into the File.”” The procedure for quitting the editor is described in
“Quitting the Editor.”

ED 2-6

EDIT EDITOR

DISPLAYING LINES IN THE FILE

When editing a file, you should always display the current line before
making changes. This is important since most commands are executed on
the current line. After making any changes, display the lines again to make
sure you are happy with the changes. If you do not like the changes, you
can use the undo command described in ““RECOVERING LOST TEXT."”

To display a line, all you need to do is depress the carriage return. This
will display the current line in the editor. Each time you depress the
carriage return, the next line is displayed, and it becomes the current line.

If you want to display the entire contents of the buffer, enter the
coemmand:

‘1, $print<CR> or 11, $p<CR>

The “‘1"" stands for line 1 of the buffer, the “‘$" is a special symbol
designating the last line of the buffer, and the "‘p"" is the command to print
from line 1 to the end of the buffer. After displaying the buffer, the last

line becomes the current line.

QOccasionally, characters that do not appear on your terminal screen are
contained in a line of text. These characters are normally calied *'control
characters’ because the control key was depressed when they were
entered. To display all the characters in a line, including control
characters, you can use the list command instead of the print command.
For example:

'5,201ist<CR> or :5,201<CR>
will display any character contained in that line regardless of what type it

is. The list command executes exactly the same way the print command
does.

ED 2-7

EDIT EDITOR

MOVING AROUND IN THE FILE

Basic Movement Commands

Edit accepts “~'" and “‘+"’ as movement commands. As you would expect,
- moves the current line backwards and + moves the current line forwards.
With these commands you can move to adjacent lines in the buffer.

You can move more than one line at a time by using numbers with the +
and ~ commands. For example:

~B<CR>

moves the current line backwards 5 lines from its current position and
displays the line. Likewise,

+28<CHR>
moves the current line forwards 25 lines from its current position and
displays the line. This makes it much easier to move to the line you want
to work on. Another useful command is:

$<CR>

that moves the current line to the last line in the buffer and displays the
line.

Fach line in the file has a line number associated with it, although they are
not displayed. Edit allows you to move across large areas of the buffer by
entering the line number and a carriage return. For example:

43<CR>

makes 43 the current line and displays the line.

ED 2-8

EDIT EDITOR

Forward and Backward Search Commands

If you are not sure where a line you want to change is, but you know an
exact pattern of characters on the line, you can search for that pattern.
The pattern must be on one line. The command line interprets the
character ‘‘/"" as meaning ‘‘search for this pattern.” The search
command ** /" searches from your present position forward through the
buffer for the first occurrence of the pattern. For example, if you know
the pattern “‘learning to use edit’” is somewhere in the buffer, you can find
it by executing the command:

:/learning to unse edit/p<CR>

This will make the line containing this pattern the current line and display
the line. If you leave the “'p"’ off the command, edit will still search for the
pattern and make it the current line, but will not display the line. Always
include the p as part of the search command. The pattern may be used
more than once in the buffer.

If you execute a search, but edit cannot find the pattern, the message:
Pattern not.found

will be displayed. This means the pattern you searched for is not in the
buffer and the current line does not change. Check to see if you correctly
entered the search command or if it included any characters with special
meanings. (See Special Search Characters.)

The character *‘?'" also executes a search when used on the command
line. It works the same as the '/’ search character, except that it
searches backwards from your present position in the buffer.

ED 2-9

EDIT EDITOR

Repeating Searches

When searching for a pattern, the first occurrence is not the one that you
are actually looking for. You could repeat the search command, but there
is a much easier way. The editor remembers the last search pattern
entered. If you enter the command:

/I <CR>

a forward search will look for the remembered pattern. The backwards
search command ?? will also repeat searches. The repeated search does
not have to be the same type as the original search.

Global Searches

The edit editor also allows you to do global searches on the file. A global
search is used to find all the occurrences of a specified pattern in a file.
This type of search is useful when scanning for a pattern that occurs in
several places. The two types of global searches that can be executed use
the g and v commands.

The giobal search that uses the g command locates all the lines that
contain a specified pattern. An example would be:

‘g/sample pattern/p<CR>

This will search for and display all lines containing the words
“sample pattern”. The current line will be the last line displayed.

The global search that uses the v command locates all lines that do not
contain a specified pattern. An example would be:

v/sample pattern/p<CR>

This will search for and display all lines that do not contain the words
“sample pattern’’. The current line will be the last line displayed.

ED 2-10

EDIT EDITOR

Special Search Characters

Several characters have special meaning when used in specifying searches.
These characters will work with all types of searches. They can be used
to: match repetitive strings of characters, turn off special meanings of
characters, or denote the placement of characters in the line. These
characters and their use are explained below:

The period matches any single character except the newline
(carriage return) character. For example, if a line in your file
contains the words “‘edit editor’’, or a pattern with any other
character between "‘edit edit”” and *'r’’, you could find the line by
entering the command:

- /f(BB/edit edit.r/<CR>

The asterisk matches any repeated characters except the first ., \,
[, or "in that group. For example, if a line in your file contains the
pattern ‘“‘the xxxx editor’’, you could search for the line by
entering the command:

/the x* editor/<CR>

Brackets are used to enclose a variable set of characters. For
example, if a line in your file contains the patterns*‘file2’’, **file3"",
and ‘‘filed”’, you could search for the first occurrence of these
patterns by entering the command:

:/file[2-4]/<CR>

The doliar sign is interpreted by the editor to mean

“end of the line’’. It is used to identify patterns that occur at the
end of a line. For example, if a line in your file ends in the pattern
‘last character” you could find the line by entering the command:

:/1last character$/<CR>

The circumflex (caret) works like “$"" except it looks for the
pattern at the beginning of the line. For example, if a line in your

ED 2-11

EDIT EDITOR

file begins with the pattern “'First character’ and you could find
the line by entering the command:

:/AFirst characterx [<CR>

The backslash is used to cancel the meaning of the special
characters. It should be placed immediately before the character
it is to nullify. For example, if a line in your file contains the
pattern “This is a $’' you could search for it by entering the
command:

:/This is a \$/<CR>

The character $ will be searched for instead of interpreting it as
meaning ‘‘end of the line.”

To search for the characters ., *, \, [,], $, or A, you must precede the
characters with a backsiash. You can also combine these special
characters in one search command. For example, .* can be used to
search for any string of characters.

ED 2-12

EDIT EDITOR

MAKING CORRECTIONS TO THE FILE

There are several edit commands you can use to make corrections to a
file. These commands are: append, input, delete, substitute, change,
move, and copy.

Appending Text

The append command (abbreviated a) is used to input text in the buffer
after the current line. It places edit in the text input mode. While in this
mode, the colon prompt on the command line is not displayed. Anything
you type, except a period on a line by itself, will be entered on lines of text
in the buffer. To leave the text input mode, simply enter a period “."" on a
line by itself and depress the carriage return. Edit will then return to the

Lhry

command mode and display the command line prompt *:"".

As previously discussed in “GETTING STARTED,"” the append command
can be used to input text when the buffer is empty. The append command
can also be used to input text anywhere in an existing file. The following
steps outline how to append text to the current line:

1. Move to the place in the buffer where you want to append text. This
can be done using movement commands or a search command.
The line you select becomes the current line.
2. Enter the command:
:append<CR> or ;a<CR>
The colon prompt will no longer be displayed on the command line.

3. Enter any text you like using as many lines as you like.

4. To leave the text input mode and return to the command mode,
enter a period “'.”" on a line by itself and depress the carriage return.

5. The command line prompt “*:"" will reappear. This indicates that you
may enter another edit command.

ED 2-13

EDIT EDITOR

Inserting Text

The insert command (abbreviated i) works similarly to the append
command. The only difference is that text is inserted before instead of
after the current line. To insert text in the buffer, enter:

rinsert<CR> or :i<CR>

on the command line. You may now begin inserting text. To return to the
command mode, simply enter a period ‘.”" on a line by itself and depress
the carriage return. The command prompt will be displayed on the screen.

Changing Text

There may be instances when you want to delete one or more lines and
insert new text in their place. This can be done easily with the change
command (abbreviated ¢). The change command instructs edit to delete
specified lines and then switch to text input mode to accept text to replace
the lines. The number of lines you insert does not have to match the
number deleted. For example, if you want to change the current line,
enter:

:change<CR> or :e<CR>
The colon prompt will no longer be displayed. You may begin inserting as

many lines of text as you want. To return to the command mode, enter a
period *.”" on a line by itself and depress the carriage return.

If you want to replace lines 25 through 34 with some new text, you would
enter:

125,34c<CR>
Edit will respond with:
10 lines changed

The colon prompt will no longer be displayed. The procedure for entering
text and for returning to the command mode is the same as for changing

ED 2-14

EDIT EDITOR

one line. By default, if five or fewer lines are changed, edit will not display
the number of lines being changed. (See report option given in Chapter 4.)

Deleting Text

The delete command (abbreviated d) is an easy command to execute.
This command can also be disastrous if you are not careful when using it.
To delete the current line, all you have to do is enter:

delete<CR> or :d<CR>

This will delete the line and display the next line which becomes the
current line.

[T E]

Note: You can use the undo command “'u’’ to retrieve deleted
lines as long as you have not executed any other commands that
changed the buffer. (See “‘Recovering Lost Text.’")

if you know the line number of a line you want to delete, you can enter the
line humber followed by delete or d. For example:

15d<CR>

will delete line 15. You can also delete a range of lines by using commands
such as 2,3d to delete lines 2 and 3, or 2,8d to delete lines 2 through &.

When one or more lines are deleted, the numbers of all following lines are
changed. When deleting different groups of lines from a file, it is easier to
start with the higher line numbers and work toward the lower line
numbers.

If you do not know the line number, you can search for the line and then
delete it. Searching for text is discussed in ““Forward and Backward
Search Commands.”

ED 2-15

EDIT EDITOR

Substituting Text

To change any characters on an existing line without replacing the whole
line, you can use the substitute command (abbreviated s). The substitute
command searches for a specified pattern and then changes the pattern
accordingly. The substitute command normally executes on the current
line.

Mote: The global option can be used with the substitute command,
but you must be careful, (See “‘Global Substitutes.”)

Using the substitute command can sometimes be confusing to a novice
user. However, if you think about the parts of the command, it is really
easy. The format of the command is:

:s [old-pattern]| new-pattern/p

The *'s™ is the substitute command. The "' /old-pattern/" tells edit to
search the current line for the pattern. The “‘new-pattern/’ tells edit
what to substitute for “*old-pattern” and *'p”’ tells edit to display the new
form of the current line. For example, if the current line is

“Substituting is very confusing.”” and we want to change it to

“Substituting is very easy.”’, we would use the command:

s fconfusing/easy/p<CR>

If you want to delete the word “very’ from the new sentence, you could
use the substitute command and not put a pattern where the new pattern
should be.

sfvery [[p<CR>

Your new sentence would be "*Substituting is easy.”” Notice that a blank
space was also removed because edit considers it a character.

ED 2-16

EDIT EDITOR

Special Substitution Characters

All the special search characters given in “'Special Search Characters’ are
also special characters in the search portion of substitution commands.
However, there are two characters that have special meaning when used
in the replacement portion of substitute commands. These characters are
& and ",

& The ampersand (&) character is used to save you from having to
repeat the search portion of the substitute command when you are
only adding characters. For example, if a line in your file contains
the pattern ““The game is tonight'” and you wanted to change it to
“The game is tonight at eight”” you could use the following
substitute command:

:5/The game is tonight/& at eight/p<CR>

The tilde () character works similar to the ampersand (&)
character, except that it also repeats previous substitution
commands.

To turn off the special meaning of the & and the " in the substitution
command, it must be preceded by a backslash (\). These special
characters will work with all types of substitution commands.

Global Substitutes

A global substitute is similar to a regular substitute, except that instead of
only working on the current line it works on every line in the buffer.
Before trying to understand global substitutes, be sure you understand
regular substitutes. (See ‘‘Substituting Text.”")

ED 2-17

EDIT EDITOR

You must be careful when using global substitutes. There may be an
occasion when you want to use a global substitute, but the pattern you
want to search for may not be unique. If you think a line you want left
alone might change, first do a global search and display all the lines. You
may be able to find a pattern that is unique only to what you want
changed. The format of a global substitute is as follows:

:g/old-pattern/s[old-patternf new-pattern/gp

In this example, the *‘g/old-pattern/’ instructs edit to search for every
occurrence of “old-pattern’’. The *“'s/old-pattern/new-pattern/’’ instructs
edit to substitute “new-pattern’’ for every occurrence of “‘old-pattern’.
The *'g'" after the substitute command instructs edit to execute the
substitution for every occurrence on each line if “‘old-pattern’ is on a line

more than one time. The “p"’ tells edit to display all the lines where
substitutions were made.

Note: The "g”’ at the end of the command should be omitted if
you only want the first occurrence of the pattern on each line to
change.

When using a global substitute command where the pattern you search for
is the same as the pattern you want to change, you can use an
abbreviated version of the command. For example, the command:

:gfold-pattern/s [[new-pattern] gp

will execute the same as the previous example. This saves you from
having to input the pattern (old-pattern) in twice.

ED 2-18

EDIT EDITOR

Edit also allows you to execute a global substitute within a range of lines.
For example:

:35,75g/ old-pattern /s / /new-pattern /gp<CR>

would only do the substitutions from line 35 to line 75. All other lines
would not be affected. This option allows you a much greater flexibility
when using global substitutes.

If you decide you do not like what happened when you used the global
substitute you have two choices. You can either try the undo command or
you can quit the editor without writing the buffer into the file. (See
“RECOVERING LOST TEXT.")

If you are not sure whether you want to keep the changes; you can write
the buffer to a new file, and then either use the undo command or quit
without writing. This way you can review both files before deciding which
one to keep. (See "Writing the Buffer to Another File.”)

Copying Text

Edit allows you to create a copy of specified lines in the buffer and insert
them where you want by using the copy command. The original lines will
remain unchanged. The copy command has the same format as the move
command. For example:

:14,19copy<CR> or :14,19%co<CR>
would create a copy of lines 14 through 19 and place it at the end of the

buffer. The original lines 14 through 19 will stay the same. When the
command has finished executing, the lines are automatically renumbered.

Note: The abbreviation for the copy command is e¢o. The ¢
command is to change lines of text.

ED 2-19

EDIT EDITOR

Moving Text

Edit aliows you to move lines of text from one location to another in the
buffer by using the move command (abbreviated m). You are allowed to
move as many lines as you want. For example,

2m15<CR>

would move line 2 to the position after line 15, and then renumber the
lines. If you wanted to move a block of text, you could use the command:

12,20m25<CR>

This would move lines 2 through 20 to the position after line 25.

When using the move command, you can specify the end of the buffer by
using the $ character instead of the line number. This is often much
easier than looking to see what is the last line humber. Two examples of
using the $ in a move command are:

15, $m10<CR> and :1,20m$<CR>

The first example would move lines 15 through the end of the buffer to the
position after line 10.

The second example would move lines 1 through 20 to the end of the
buffer.

ED 2-20

EDIT EDITOR

FILE MANIPULATION

Writing the Buffer to Another File

The write command (abbreviated w) allows you to write all or part of the
buffer to a new file. This allows you to keep copies of the buffer in various
states of change. To write the whole buffer to another file, simply use the
write command and the name of the file. For example:

‘write filename<CR> or :w filename<CR>

Be careful when naming the file. If you use an existing filename, the editor
will display the message:

"filename" File exists - use "w! filename" to overwrite

When this occurs, you can either use a different filename, or use the w!
command to overwrite the file. If you overwrite the file, the information
being overwritten is no longer accessible.

If you only want to write part of the buffer to another file, you must specify
the beginning and ending lines you want to write. For example:

85, %w save<CR>

will write lines 85 through the end of the buffer to the file named save.
The write command does not change the buffer.

Reading Another File Into the Buffer

The read command (abbreviated r) allows you to input the contents of
another file into the buffer without destroying the text already there. To
use the read command, first move to the line where you want the file
appended. Then enter the read command using the following format:

‘read filename<CR> or :xr filemame<CR>

ED 2-21

EDIT EDITOR

Edit will append a copy of the file after the current line, and issue a
message stating the name of the file, the number of lines, and the number
of characters that were inserted.

Obtaining Information About the Buffer

Edit maintains a record of the current information about the buffer. To
access this information, enter the file command (abbreviated f). Edit
displays the filename, your current position, and the number of lines in the
buffer. If the contents of the buffer have been changed since the last time
the file was written, the editor will tell you that the file has been modified.
It also displays what per cent of the way you are through the buffer. For
example, enter the command:

H<CR>
The computer will respond with a message such as:

" filename" [Modified] line 15 of 75 --20%--

Note: After you save the changes by writing the buffer to the file,
the buffer will no longer be considered modified.

ED 2-22

EDIT EDITOR

ISSUING UNIX SYSTEM COMMANDS

Edit allows you to execute a single UNIX System command by entering a
command of the form:

Hemd<CR>
where ““cmd’’ represents the command you want to execute. The system
will then execute the command. When finished, edit displays an ! and then

reissues the command line prompt “*:”". You can then continue editing or
enter another UNIX System command.

If you need to execute more than one UNIX System command, enter the
command:

sh<CR>

When you are finished executing UNIX System commands, enter <CTRL
d>. The editor will then display the message:

[Hit return to continue]
After depressing the carriage return, the editor will display the command

line prompt.

Caution: Be sure to write the buffer into the file before escaping
to the UNIX System. The editor will normally save the buffer, but
it will issue a message to remind you,

ED 2-23

EDIT EDITOR

RECOVERING LOST TEXT

Undoing the Last Command

The undo command (abbreviated u) is able to reverse the effects of the
last command executed that changed the buffer. This enables you to
restore the buffer after making an editing mistake. To execute the undo
command enter:

undo<CR> or m<CR>

The undo command only works on commands such as append, insert,
delete, change, move, copy, and substitute. You can also undo an undo if
you decide to keep the change. Commands that do not affect the buffer
such as: write, edit, and print cannot be undone.

Recovering Lost Files

If the system crashes, you can recover the contents of the buffer by using
the recover command. The recover command cannot be abbreviated.
You will normally receive mail the next time you log in, giving you the
name of the file that was saved for you. You should then change to the
directory containing the file being edited when the system crashed. Then
access the file by entering:

edit filename<CR>

replacing “'filename’” with the name of the lost file. Once in the editor,
enter:

‘recover filemame<CR>
Recover is sometimes unable to save the entire contents of the buffer, so

always check the contents of the saved buffer before writing it back to the
original file.

ED 2-24

EDIT EDITOR

If something goes wrong with the editor when you are using it, do not
leave the editor. You may be able to save your work by using the preserve
command (abbreviated pre). This saves the buffer as if the system had
crashed.

If you are writing the buffer into the file and you get the message:
Quota exceeded

you have tried to use more disk space than you are allotted. When this

happens, it is likely that only part of the buffer was written into the file.

When this happens you should escape to the UNIX System using the sh

command and remove some files you do not need. Then, try writing the

file again. If this is not possible, enter the command:

‘preserve<CR>

and then get help from the person who is administrating the system. Do
not quit the editor or your buffer will be lost,

After using the preserve command and then finding the cause of your
problem, you can use the recover command again.

ED 2-25

Chapter 3

EX EDITOR

PAGE

INTRODUCTION it iieaenannnncnananainnaaaaansnsansnanannnns 3-1
CURRENT LINE DEFINITION iieniinnnnannannnnnnnsansonnsnanann 3-2
GETTING STARTEDccnvnne f e mm e aaa e aa e e 3-3
Creating aMNew File ittt isensnensnnannaansaaanannan 33
Entering Texho it in i iaenacancnanananaansnannansansnnrnean 3-4
Leaving the INput Mode.ttt nenininninaansannannnanacnsnsancnnn 3-4
Writing the Bufferinfothe File i i it i e cnnnaananns 3-5
Quitting the EditOor ianannacnnnnnanannasaenansanas 35
Editing an Existing File iiuininiunnonnnnnnnesncenannanns 36
DISPLAYING LINES IN THE FILE it iinnnnncnnnnncncnanscacnnnn 37
MOVING AROUND IN THE FILE i iinnannaanaannananaacaananns 37
MAKING CORRECTIONS TO THE FILE . . Lt iiii i anaaananacaannananannn 37
FILE MANIPULATION ittt et nentasanasnnnannannannannasoannanoa 3-8
Writing the Bufferto Another Fileot iiiineannnananan 3-8
Reading Another FileInto the Buffer i ininnnnnnn 3-8
Obtaining Information Aboutthe Buffer i iiiiinnnn. 39
Read-Only Mode. it iinnannaanaaanacnnnnaannnannnna 3-9
Editing More Than One Filet e i ntneranncncanannanna 3-10
Editing Mulitiple Files and Using Named Buffers. 3-10
ISSUING UNIX SYSTEM COMMANDS, . innnannnsrncnnsarnasnannna 3-11
RECOVERING LOST TEXT iiiiiinainnnnnannanarnannnnsnananassannannns 312
Undoing the Last Commandc.ncunsinannanancnnonanennsn 3-12
Recovering Lost Flles it inntnnnnanansnnaanocnsnenonas 3-12
Recovering from Hang-ups and Crashescc.nsuunnrusnooncananns 3-13
Errors and Interruptso .o innne i ninnnananaa o e 3-14
COMMENT LINES i iniuennnoncancaannannnaananansaaceanncaeanans 3-14

MULTIPLE COMMANDS PER LINE i iinnrnnnennanannannsnnnn 3-14

Chapter 3

EX EDITOR

INTRODUCTION

This chapter describes the ex editor used on the 3B2 Computer. Ex
provides the advanced user a wide range of commands and options, but
can also be used by new or casual users who only need a simple editor.

When using the ex editor, all commands must be entered on a command
line. The command line is identified by a colon *:"" on a line by itself.
Commands entered on the command line can affect the line you are on in

the file (current line), a specified set of lines, or the entire file.

Most ex editor command names are English words, that can be
abbreviated. When an abbreviation conflict is possible, the more
commonly used command has the shorter abbreviation. For example,
since substitute is abbreviated by s, set is abbreviated by se.

The ex editor doés not directly change the file being edited. Instead, it
works on a copy of the file stored in a temporary memory location called
the buffer. The edited file is not changed until you write the changes from
the buffer to the edited file.

ED 3-1

EX EDITOR

This editor description assumes that you know how to log on to the
computer. If you do not, refer to the AT&T 3B2 Computer
Owner/Operator Manual.

For additional information on the ex editor, see the manual pages in the
AT&T 3B2 Computer User Reference Manual.

CURRENT LINE DEFINITION

The term *‘current line" is referred to throughout this chapter. The
current line is the line in the file you are now on. Each time you move to a
different line in the file, that line becomes the current line. Whenever a
command is given, the current line is used as a reference point. Any
command that is not directed at any specific line is executed against the
current line. You should always know what line is the current line, or you
could mess up the file.

ED 3-2

EX EDITOR

GETTING STARTED

The ex editor can be used to create a new file or to change an existing file.
To execute ex, you must be logged onto the computer. After the $ or #
prompt is displayed, you can begin working with the ex editor.

Creating a New File

To create a new file, you will need to type ex followed by a space and then
the name of the file you wish to create. Execute the command by
depressing the carriage return <CR>. For example:

$ ex filename<CR>
" filename" [New file]

If you did not enter the command correctly, you will receive a usage
message indicating an incorrect command syntax was used. You will need
to re-enter the command correctly.

If you entered the ex command without a filename, the editor will still
create a new file. However, when you decide to write the file into memory
you will be prompted for a filename. See ‘‘Writing the Buffer Into the File.”

When the ex command is executed, a colon '+’ is displayed. The colon
identifies the command line and shows that the ex editor is ready to
accept your input commands.

ED 3-3

EX EDITOR

Entering Text

Most ex commands have two forms: a word that describes what the
command does and an abbreviation of the word. You can use either form.
Many beginners find the full command name easier to remember, but after
some practice use the abbreviation. The command to input text is
append, that may be abbreviated a. Enter append after the colon on the
command line and then depress the carriage return.

rappend<CR> or :a<CR>

The ex editor is now in the text input mode (append mode). The colon is
no longer displayed on the command line, and this is your signal that you
may begin entering lines of text. Anything that you type on your terminal,
except a period on a line by itself, is entered into the buffer. If the error
message:

Not an editor command

is displayed, check to see what you entered incorrectly and then enter the
command again.

Note: The computer considers a blank space to be a character.
Be careful not to input blanks into lines of text unless you mean for
them to be there.

Leaving the Input Mode

To leave the input mode, simply enter a period *.”” on a line by itself and
depress the carriage return. This is the signal that you want to stop
inputting text. After receiving a period on a line by itself, ex will re-enter
the command mode and display the command line prompt *:"",

The text just entered is now stored only in the buffer. If you wish, you can
make changes to the text. Making changes is discussed throughout the
remainder of this chapter.

ED 3-4

EX EDITOR

Writing the Buffer into the File

The buffer is only temporary storage for the file. Now that you have
entered text in the buffer, you need to write the buffer to the file. This is
the only way to save new text from one editing session to another. To
write the contents of the buffer to the file, use the write command
(abbreviated w).

write<CR> or :w<CR>

Ex will then copy the buffer into the file. If the file does not yet exist, a
new file will be created and a message will be given indicating that it is a
new file. The newly created file will be given the name specified when you
entered the editor, “filename’’. To cenfirm that the file has been
successfully written, the editor will repeat the filename, and give the
number of lines and the total number of characters in the file. The buffer
remains unchanged, so you can make further changes if you want to.

Ex must have a filename to use before it can write a file. Therefore, if you
did not show the name of the file when you hegan the editing session, ex
will issue the message:

No current filename

when you give the write command. If this happens, simply re-enter the
write command and specify the filename. Here you would enter:

‘write filemame<CR> or :w filemame<CR>

This will write the buffer to a file named '‘filename’’.

Quitting the Editor

When you have finished editing the file and you are ready to return to the
UNIX System, enter the quit command (abbreviated q).

quit<CR> or :q<CR>

This returns you to the UNIX System unless you forget to write the buffer
ED 3-5

EX EDITOR

to the file. When this happens, you will receive a message reminding you
to write the file. A quick way to write and quit the ex editor is with the
single command:

wg<CR>

If for some reason you do not want to save the changes, enter the
command:

q!<CR>

This will quit ex and leave the file unchanged from the last write command.

Editing an Existing File

To edit the contents of an existing file named “filel”’, you begin by issuing
the command:

$ ex filel<CR>
"filel" 150 lines, 4285 characters

This places a copy of the file ih a buffer, and displays how many lines and

characters are in the file. A colon *;"" will then be displayed, this is the
command line.

Note: If you do not give a filename, ex will create a new file instead
of editing the file you want.

After the file description and the colon ‘i’ are displayed, enter a 1 on the
command line followed by a carriage return. This will make the first line in
the file the current line. The editing process is described throughout the
remainder of this chapter.

ED 3-6

EX EDITOR

The procedure for saving changes to the buffer is described in “*Writing the
Buffer Into the File.”” The procedure for quitting the editor is described in
“Quitting the Editor."”

DISPLAYING LINES IN THE FILE

The procedures for displaying lines of a file when using the ex editor are
the same as for the edit editor. Refer to the procedures given in
Chapter 2.

MOVING AROUND IN THE FILE

The procedures for moving around in a file when using the ex editor are
the same as for the edit editor. Refer to the procedures given in
Chapter 2.

MAKING CORRECTIONS TO THE FILE

The procedures for making corrections to a file when using the ex editor
are the same as for the edit editor. Refer to the procedures given in
Chapter 2.

ED 3-7

EX EDITOR

FILE MANIPULATION

Writing the Buffer to Another File

The write command (abbreviated w) allows you to write all or part of the
buffer to a new file. This allows you to keep copies of the buffer in various
states of change. To write the whole buffer to another file, use the write
command and the name of the file. For example:

write filenmame<CR> or :w filename<CR>

Be careful when naming the file. If you use an existing filename, the editor
will display the message:

"filename" File exists - use "w! filename" to overwrite

When this occurs, you can either use a different filename, or use the w!
command to overwrite the file. If you overwrite the file, the information
being overwritten is no longer accessible.

If you only want to write part of the buffer to another file, you must specify
the beginning and ending lines you want to write. For example:

85, %w save<CR>

will write lines 85 through the end of the buffer to the file named save.
The write command does not change the buffer.

Reading Another File Into the Buffer

The read command (abbreviated r) allows you to input the contents of
another file into the buffer without destroying the text already there. To
use the read command, first move to the line where you want the file
appended. Then enter the read command using the following format:

‘read filename<CR> or :r filename<CR>

Ex will append a copy of the file after the current line, and issue a message
ED 3-8

EX EDITOR

stating the name of the file, the number of lines, and the number of
characters that were inserted.

Obtaining Information About the Buffer

Ex maintains a record of the current information about the buffer. To
access this information, enter the file command (abbreviated). Ex
displays the filename, your current position, and the number of lines in the
buffer. If the conhtents of the buffer have been changed since the last time
the file was written, the editor will tell you that the file has been modified.
It also displays what per cent of the way you are through the buffer. For
example, enter the command:

f<CR>
The computer will respond with a message such as:

"filename"” [Modified] line 15 of 75 --20%--

Note: After you save the changes by writing the buffer to the file,
the buffer will no longer be considered modified.

Read-Only Mode

if you want to look at a file you have no intention of changing, you can
execute ex in the read-only mode. This mode protects you from
accidentally overwriting the file. The read-only option can be set by using
the -R command line option, by the view command line invocation, or by
setting the read-only option. It can be cleared by setting the noreadonly
mode. (See "OPTION DESCRIPTION.'") It is possible to write, even while in
the read-only mode, by writing to a different file or by using the :w!
command.

ED 3-9

EX EDITOR

Editing More Than One File

The ex editor is normally used to edit the contents of a single file, whose
name is recorded in the current file. However, if you want to access
another file without quitting ex, you can use the e command. For example:

e file2<CR>

where “file2" is the name of the second file. This allows you easy access
to both files. The current file is always the one currently being edited.
The alternate file is the other file you have access to.

When you want to change to the alternate file, use the e command with
the filename. Each time you use the e command to change files, the file
you name becomes the current file and the file you leave becomes the
alternate file.

When using the e command within the editor, normal shell expansion
conventions such as “f*1’" for ““filel”” may be used. In addition, the
character % can be used in place of the current filename, and the
character # in place of the alternate filename. For example:

e #<CR>

will cause the alternate file to become the current file, and the current file
will become the alternate file. This makes it easy to deal alternately with
two files and eliminates the need for retyping the filename.

Editing Multiple Files and Using Named Buffers

When you have several files that you want to edit without actually leaving
and re-entering the ex editor, you can list these files in your ex command.
After receiving the command line prompt *“:"", you can edit filel as
described in this chapter. The remaining arguments are placed with the
first file in the argument list. To display the current argument list, enter
the args command on the command line. To edit the next file in the
argument list, enter the next command on the command line. The

following example shows how to enter three files with the ex command,

ED 3-10

EX EDITOR

how to display the argument list, and how to change to the next file to be
edited:

-

$ ex filel file2 file3<CR>
3 files to edit

"filel" xxx lines, xxxx characters
args<CR>

[filel] file2 file3

next<CR>

" file2" xxx lines, xxxx characters

The argument list can be changed by specifying a list of filenames with the
next command. These names are expanded with the resulting list of
names becoming the new argument list, and ex edits the first file on the
list.

For saving blocks of text while editing, and especially when editing more
than one file, ex has a group of named buffers. These are similar to the
normal buffer, except that only a limited amount of operations are
available on them. The buffers have names a through z. It is also possible
to refer to A through Z; the uppercase buffers are the same as the
lowercase, but commands append to named buffers rather than replacing
if uppercase names are used.

ISSUING UNIX SYSTEM COMMANDS

The procedure for issuing UNIX System commands from the ex editor is
exactly the same as for the edit editor. Refer to the procedure given in
Chapter 2.

ED 3-11

EX EDITOR

RECOVERING LOST TEXT

Undoing the Last Command

The undo command (abbreviated u) is able to reverse the effects of the
fast command executed that changed the buffer. This enables you to
restore the buffer after making an editing mistake. To execute the undo
command enter:

undo<CR> or :u<CR>

The undo command only works on commands such as; append, insert,
delete, change, move, copy, and substitute. You can also undo an undo if
you decide to keep the change. Commands that do not affect the buffer
such as: write, edit, and print cannot be undone.

Recovering Lost Files

If the system crashes, you can recover the contents of the buffer by using
the recover command. The recover command cannot be abbreviated.
You will normally receive mail the next time you log in giving you the name
of the file that was saved for you. You should then change to the
directory containing the file being edited when the system crashed. Then,
access the file by entering:

ex filemame<CR>

replacing “‘filename’ with the name of the lost file. Once in the editor,
enter:

‘recover filename<CR>

Recover is sometimes unable to save the entire contents of the buffer, so
always check the contents of the saved buffer before writing it back to the
original file.

If something goes wrong with the editor when you are using it, do not
leave the editor. You may be able to save your work by using the preserve

ED 3-12

EX EDITOR

command (abbreviated pre). This saves the buffer as if the system had
crashed.

If you are writing the buffer into the file and you get the message:
Quota exceeded

you have tried to use more disk space than you are allotted. When this
happens, it is likely that only part of the buffer was written into the file.
When this happens, you should escape to the UNIX System using the sh
command and remove some files you do not need. Then, try writing the
file again. If this is not possible, enter the command:

preserve<CR>

and then get help from the person who is administrating the system. Do
not quit the editor or your buffer will be lost.

After using the preserve command and then finding the cause of your
problem, you can use the recover command again.

Recovering from Hang-ups and Crashes

If a hang-up signal is received and the buffer has been modified since it
was last written, or if the system crashes, either the editor (in the first
case) or the system (after it reboots in the second case) will attempt to
preserve the buffer. The next time you log in you should be able to
recover the work you were doing, losing at most a few lines. To recover a
file you can use the -r option. For example: If you were editing the file
“filename'’, you should change to the directory where you were when the
crash occurred, and give the command:

ex ~r filename<CFR>

After checking that the retrieved file is good, you can write it over the
previous contents of the file.

ED 3-13

EX EDITOR

You will normally get mail from the system telling you when a file has been
saved. The command ex ~r will print a list of the files that have been saved
for you.

Errors and Interrupts

When errors occur, ex rings the terminal bell (or flashes the terminal
screen) and prints an error message. If the primary input is from a file,
editor processing will end. If an interrupt signal is received, ex will display
the message:

Interrupt

and returns to its command level. If the primary input is a file, ex will exit.

COMMENT LINES

It is possible to give editor commands that are ignored. This is useful
when making complex editor scripts for which comments are desired. The
comment character is the double quote, " . Any command line beginning
with " is ignored. Comments beginning with " may also be placed at the
end of commands except in cases where they could be confused as part of
the text (shell escapes, substitute commands, and map commands).

MULTIPLE COMMANDS PER LINE

More than one command may be placed on a line by separating each pair
of commands with a{ character. However, global commands, comments,
and the shell escape (I) must be the last command on a line, as they are
not ended by a l.

ED 3-14

EX EDITOR

OPTION DESCRIPTION

The options that you can set when using the ex editor are the same as for
the vi editor. For a listing and a description of these options, see
Chapter 4.

Ex Command Line Options

Instead of just entering the standard ex editor, you can use many options
that are sometimes helpful. An example of a command line showing the
proper format for using options is shown below.

ex [-][-v][-t tag][-r][-wn][-R][+command] filename

These options are given in the following list, along with a short description
of their function.

- The -~ command line option suppresses all interactive-user
feedback and it is useful in processing editor scripts in command
files.

-v The ~v option is equivalent to using vi rather than ex.

-t The -t option is equivalent to an initial tag command, editing files
containing tag and positioning the editor at its definition.

-r The ~r option is used in recovering after an editor or system crash,
retrieving the last saved version of the named file, or, if no file is
specified, typing a list of saved files.

-w The -w option sets the default window size to n and is useful on
dial-ups to start in small windows.

-R The -R option sets the read-only option at the start.

+command
An argument of the form +command tells the editor to begin by
executing the specified command. If +command is omitted, ex
will make the last line of the first file the current line.

ED 3-15

EX EDITOR

filename
The filename arguments show the file to be edited. More than
one filename can be given if several files are to be edited. See
“FILE MANIPULATION" for further information on editing multiple
files.

ED 3-16

Chapter 4

VISUAL EDITOR (vi)

PAGE

INTRODUCTION . . oottt i i te s teeammanmmcanan s asnaacanaannnn. 4-1
Relations Between vi and ex Editors i e, 4-3
GETTING STARTED ittt it ettt ettt nanaenenaaanennns 4-4
Defining Your Terminal it i er et it men e annaeannenaans 4-4
Setting Up Your Terminal Configuration.0 iiiiinnann.. 4-4
Creating a New File i i it e i tmanntaneenanannann 4-5
Entering TeXt . . oo it ittt i e i ae s mmtamaean e na e a e 4-6
Leaving the Text Insertion Mode 0 i iinnenananns 4-6
Writing the Buffer into the File i i ennetneeanns 4-6
Quitting the Editor i it et atenmaaanaeannnanaaans a4-7
Editing an Existing File i e 4-8
Reading an Existing File it ina e tannanaaanncnnn 4-9
MOVING AROUND IN THE FILE ittt et i e e i eeeeaaanns 4-10
Scrolling and Paging Through the Screen. i iniennnen. 4-10
Cursor Movementsttt e aan e aa e 4-11
Searching Through the File i i i ienenn 4-15
Repeating Searches i i it 4-16
Special Search Characters i iinieenaannn 4-17

Go To, Find, and Previous Context Commands ennnnnnnn 4-18
MAKING SIMPLE CHANGES it et eaaaananann 4-20
Inputting Text i 4-20
RemMoOVINg Tt . .o it e in e i aa e e 4-22
Changing TeXtt n i it natennnaanneaannaannanaranann 4-23
COPYING TEXT & it it e e et e e anmae tmennannanaanaanananananesanennnann 4-25
The Conceptof Yank and Put i it irneeennnannnn 4-25
CopYiNg ObJeCtsttt a e e 4-26
MOVING TEXT . . it ettt ettt e e e et e e et e e e naaaannnnn 4-30

Global Substitutes e e e e e 4-33
REPEATING ACTIONS WITH THE . COMMAND itcnrrnnnnnnnnnn 4-34
FILE MANIPULATION ittt it nn e n s n e e saannannann 4-35

Writing the Buffer to Another File. e 4-35

Reading Another File into the Buffer M eeaanaa e 4-36

Reading the Output From UNIX System Commands into the Buffer 4-37

Changing Fites in the Editor i i i inniinnnann 4-38

Editing Multiple Files and Using Named Buffers 4-39

Read-Only Mode.t i iinnanenanns 4-40

Obtaining Information about the Buffero, 4-41
ISSUING UNIX SYSTEM COMMANDSttt inennntsinanaaanns 4-42
RECOVERING LOST TEXTninnnneneiaaennnnaanaannaean, PN 4-43

Undoing the Last Commandt iinininnnnennoosnnnnn 4-43

Recovering Lost Lines inneannnanannann 4-43

Recovering Lost Files. i e 4-44
MARKING LINESt iiimintn i ata s unan e aaaaananaaeanananasnns 4-45
WORD ABBREVIATIONSttt ittt ettt tne s i inaaanannaaaannnn 4-46
ADJUSTINMG THE SCREENttt ii it e e mnninaaaaaaennnaanasans 4-46
LINE REPRESENTATION IN THE DESPLAY ittt it e e i cneansnnnanannns 4-47

Line Numbers i i it 4-47

List All Charactersona lime e iiinnenannnnnnn 4-47
MACROS ittt ianmn et a et n e a e, 4-48
L0 L L 4-50

SettiNg OPIIONS . . . oottt a e e 4-50

List of Oplions e 4-51

CHARACTER FUNCTIONS SUMMARYt iiinenernaennnenaannaannns 4-58

Chapter 4

VISUAL EDITOR (vi)

INTRODUCTION

This chapter describes the visual editor (vi)* used on the 3B2 Computer.
Vi is an interactive text editor that uses the screen of your terminal as a
window into the file you are editing. Any changes you make to the file are
reflected on the screen.

The vi editor does not directly change the file you are editing. Instead, it
makes a copy of the file in a buffer and remembers the file’s name. You
do not affect the contents of the original file unless you write the changes
made back into the original file.

Most vi commands move the cursor around in the buffer. A small set of
operators such as d for delete and ¢ for change alter the text in the buffer.
Some of these commands and operators are combined to form operations

* The visual editor (vi) was developed by the Electrical Engineering and Computer Science
Department of the University of California, Berkeley Campus.

ED 4-1

VISUAL EDITOR (vi)

such as *'delete a word’’ or “‘change a paragraph.” the mnemonic
assignment of commands to keys makes the editor command set easy to
remember and use.

There are normally several different vi editor commands you can use to
get the same results. If you are trying to use vi for the first time, pick a
few commands and use them until you no longer have to look them up.
Then, gradually try using new commands. You will eventually find more
efficient ways of doing the same things. The ""CHARACTER FUNCTIONS
SUMMARY’ at the end of this chapter provides a complete list of vi
commands.

This editor description assumes that you know how to log on to the
computer. If you do not, refer to the AT&T 3B2 Computer
Owner /Operator Manual.

For additional information on the vi editor, see the manual pages in the
AT&T 3B2 Computer User Reference Manual.

ED 4-2

VISUAL EDITOR (vi)

Relations Between vi and ex Editors

The vi editor is actually one mode of editing within the ex editor. When
you are running vi, you can escape to the line-oriented editor (ex) by giving
the @ command. Most ex commands can be invoked separately from vi by
first entering a : and then the ex command. To execute the command,
depress the carriage return.

In rare instances, an internal error may occur in vi. Here, you will get a
diagnostic and be left in the command mode of ex. You can then save
your work and quit, if you wish, by entering the command:

X<CR>
If you would want to re-enter vi, you can enter the command:

wi<CR>

Experienced users often mix their use of ex command mode and vi
command mode to speed the work they are doing. The ex editor is
described in Chapter 3.

ED 4-3

VISUAL EDITOR (vi)

GETTING STARTED

Defining Your Terminal

To use the vi editor, your 3B2 Computer needs to know what type of
terminal you are using. The file /etc/terminfo contains the parameters of
various terminals. Each type of terminal has a unique code assigned to it.
To access the information in /etc/terminfo, you need to set the variable
“TERM’' to the code for your terminal and then export the variable. For
example, to tell the computer you are using a TELETYPE* Model 5620
terminal, you would need to enter the following commands:

$ TERM=5620<CR>
$ export TERM<CR>
$

Setting Up Your Terminal Configuration

Vi will work on many types of video display terminals, and new terminal
types can be added to a terminal description file. Before vi can be used on
some terminals, the terminal setup parameters will need to be changed.
The changes will vary depending on the terminal. For example, the
TELETYPE Model 5410 terminal has a settable parameter called
“RCVD'LF” that should be set to “INDEX'. For instructions on how to
change settable parameters, see the manual supplied with the terminal.

Note: For more information on setting up your terminal, see the
AT&T 3B2 Computer Owner/Operator Manual.

* Trademark of AT&T

ED 4-4

VISUAL EDITOR (vi)

Creating a New File

To create a new file, you will need to type vi followed by a space and then
the name of the file you wish to create. Execute the command by
depressing the carriage return <CR>. For example:

$ vi filename<CR>

will create a file named ‘‘filename’’, clear the screen, and place the cursor
at the top of the screen.

T S S T R A |

" filename" [New file]

Once the vi command is executed, proceed to “Entering Text."” If you did
not enter the command correctly, you will receive a usage message
indicating an incorrect command syntax was used. Reenter the command
correctly.

Another problem that can occur is if you gave the system an incorrect
terminal code (see GETTING STARTED). The editor may mess up your
screen because vi sends control codes for one type of terminal to some
other type of terminal. Here, enter the command:

gq<CR>

This should get you back to the UNIX System shell. Make sure you
entered the correct terminal type and then try again.

ED 4-5

VISUAL EDITOR (vi)

Entering Text

To begin inputting text in a file, you must enter the text insertion mode.
To do this you will need to enter either an a, an i, or an o (not followed by
a carriage return). Since these are vi commands, they will not be
displayed on the screen. After entering the fext insertion mode, any
characters you type are entered into the buffer.

Note: The computer considers a blank space to be a character.
Be careful not to input blanks into lines of text unless you mean for
them to be there.

Leaving the Text Insertion Mode

To leave the text insertion mode, simply depress the <ESC> key. The
computer response should be to backspace one character. This will return
you to the command mode.

Returning to the command mode does not destroy the text in the buffer.
You must return to the command mode to change any other type of editor
command.

Writing the Buffer into the File

The buffer is only temporary storage for the file you are editing. Once you
have entered text in the buffer, you need to write the buffer to the file.
This is the only way to save new text from one editing session to another.
To write the contents of the buffer to the file, use the write command
(abbreviated w).

cwrite<CR> or :w<CR>

Vi will then copy the buffer into the file. If the file does not yet exist, a
new file will be created, and a message will be given indicating that it is a
new file. The newly created file will be given the name specified when you
entered the editor, “filename’’. To confirm that the file has been
successfully written, the editor will repeat the filename, and give the

ED 4-6

VISUAL EDITOR (vi)

number of lines and the total number of characters in the file. The buffer
remains unchanged, so you can make further changes if you want to.

Note: The :w command should be used every few minutes if you
are happy with the changes you have made. This will keep you
from losing all of your changes if you mess up the file or decide you
do not like the changes you have made since the last time you
wrote the file. ’

Vi must have a filename to use before it can write a file. If you did not
show the name of the file when you began the editing session, vi will not
write the file when you give the write command. If this happens, simply
reissue the write command and specify the filename. Here you would
enter:

:write filename<CR> or :w filename<CR>

This will write the buffer to a file named ‘“filename’.

Quitting the Editor

When you have finished working in the file and you are ready to return to
the UNIX System, there are several methods you can use. If you have
already written the buffer to the file, enter the command:

:q<CR>

To write the contents of the buffer back into the file you are editing and
then quit the editor, enter the command:

:wq<CR>, :x<CR>, or ZZ (without depressing <CR>)

If for some reason you do not want to save the changes, enter the
command:

q'<CR>

ED 4-7

VISUAL EDITOR (vi)

This will quit vi and leave the file unchanged from the last write command.

Editing an Existing File

To edit the contents of an existing file named “‘filename’’, you begin by
issuing the command:

$vi filename<CR>

This places a copy of the file in a buffer. The screen should clear and the
text of your file should appear on the screen. For example:

This is the first line in the file.

This is the second line in the file.

When a tilde (") is displayed on a line by
itself, it normally means "end-of-the-file" .

L

"filename" 4 lines, 161 characters

If the editor printed a ““New file’’ message, you either gave the wrong
filename or you are in the wrong directory. Here, you should enter
:q<CR> to get you out of the editor. Check what directory you are in and
try entering the command again.

If the editor makes a mess out of your screen, perhaps you gave the
system an incorrect terminal type. Here, enter :q<CR> to get you back
to the command level interpreter. If the editor does not respond, try
sending an interrupt to it by depressing the , <BREAK>, or
<RUBOUT> key on your terminal. Then try entering :q<CR> again.
Figure out what you did wrong and try again.

ED 4-8

VISUAL EDITOR (vi)

Once you have executed the vi command and you are in the buffer, you
may begin moving the cursor around and change the file. Procedures for
saving the changes to the buffer are described in “'Writing the Buffer into
the File.”” Procedures for quitting the editor are described in *‘Quitting the
Editor.”

Reading an Existing File

if you only want to use the editor to look at a file rather than to make
changes, use the command:

$ view filename<CR>
This will set the read-only option that will prevent you from accidentally
overwriting the file. Commands that move the cursor or change the file
will execute. However, if you try to use the write command, you will
receive the message: ‘

"filename" File is read only

If you decide that you do want to change the file, you can still write the
buffer to the file by entering the command:

swl<CR>

ED 4-9

VISUAL EDITOR (vi)

MOVING AROUND IN THE FILE

The vi editor has many commands for moving around in a file. These
commands allow you to: scroll through the file; search for a string of
characters; or move from page to page, line to line, or character to
character. Most of these commands can be preceded by a number to
make movement in the file easier. A simple example would be to depress
the 5 key and then the return key, this will move the cursor down 5 lines
in the file.

Note: Searching for a string of characters will not work when
preceded by a number.

While reading through this chapter, you will notice that commands such as
<CTRL D>, <CTRL >, or <CTRL H> are used. This refers to commands
where it is necessary to depress the control key and one other key at the
same time. These are referred to as control characters. This may cause
some confusion at first, but should not be a problem when you actually
start using the vi editor.

Note: When using the vi editor, be careful not to leave the caps
lock key locked down. Capital letter commands are different from
lowercase letter commands and you could accidentally mess up
your file. If you do execute the wrong command, you can either
use the undo command or quit without writing. (See
“RECOVERING LOST TEXT."")

Scrolling and Paging Through the Screen

Scrolling and paging are two of the ways to move through a file. The
main difference is that it is easier to read through a file while scrolling
because the screen rolls up or down one line at a time. Paging causes
the screen to be blanked each time a new page is displayed.

ED 4-10

VISUAL EDITOR (vi)

Scrolling

Scrolling allows you to continuously read through the file you are
editing. <CTRL D> allows you to scroll down through the file until you
release the keys. You can also scroll up through the file by using the
<CTRL U> command. Some terminals cannot scroll up at all.
Depressing <CTRL U> clears the screen and refreshes it with a line
farther back in the file at the top.

If you want to see more of the file below where you are, you can
depress <CTRL E> to expose one more line at the bottom of the
screen, leaving the cursor where it is. The <CTRL Y> command is
similar to the <CTRL E> command, except that it exposes one more
line at the top of the screen.

Paging

Paging is a way to move forward or backward through a file a page at a
time. The <CTRL F> command will move forward a page, keeping a
couple of lines of continuity between screens so that it is possible to
read through a file. The <CTRL B> command is similar to the <CTRL
F> command, except that it will move backward a page.

Cursor Movements

Moving Within a Line

Some commands move the cursor one position at a time, and others
move the cursor a word at a time. Preceding numbers may be used
with all these commands. Keys that move the cursor a word at a time
will wrap around the end of the line to the next line.

ED 4-11

VISUAL EDITOR (vi)

These commands are described in the following list:

<CTRL H>

backspace

spacebar

Moves the cursor to the beginning of the previous word
Moves the cursor to the end of the next word

Moves the cursor one position to the left

Moves the cursor one position to the right

Moves the cursor to the beginning of the next word

Moves the cursor to the beginning of the previous word
without stopping at punctuation marks

Moves the cursor to the beginning of the next word
without stopping at punctuation marks

Control character that moves the cursor one position
to the left

Moves the cursor one position to the left

Moves the cursor one position to the right.

Note: On some terminals, the arrow keys will also move the
cursor around on the screen. Most experienced users of vi
normally prefer the h, j, k, and | keys because they are usually
right beneath their fingers.

ED 4-12

VISUAL EDITOR (vi)

Moving To Different Lines

There are several commands you can use to move the cursor to a
different line on the screen. All these commands except H, L, and M
take preceding numbers and act on them. These commands are
described in the following list:

j
k
RETURN

+

<CTRL N>

<CTRL P>

Moves the cursor down
Moves the cursor up
Moves the cursor to the first position on the next line

Moves the cursor to the first nonwhite position on the
next line

Moves the cursor to the first nonwhite position on the
previous line

Moves the cursor to the top line of the screen
Moves the cursor to the middle of the screen
Moves the cursor to the last line of the screen

Control character that moves the cursor down a line in
the same column

Control character that moves the cursor up a line in
the same column.

ED 4-13

VISUAL EDITOR (vi)

Moving Through a File

When working with a file containing text, it is often easier to work in
terms of sentences, paragraphs, and sections. The following list
describes some useful commands for working with text. Preceding
numbers may be used with sentence and paragraph commands.

{ Moves the cursor to the beginning of the previous sentence.

) Moves the cursor to the beginning of the next sentence.
Note: A sentence is definedtoendata., !, or ?, andis
followed by the end of the line or two spaces. Any
number of), }, ", and ’ closing characters may appear
after the ., 1, or ?, and before the spaces or end of line.

{ Moves the cursor to the beginning of the previous paragraph.

} Moves the cursor to the beginning of the next paragraph.
Note: A paragraph begins after each empty line and also
at each paragraph macro specified in the paragraphs
option. The .bp request is also considered to start a
paragraph.

[[Moves the cursor to the beginning of the previous section.

]1 Moves the cursor to the beginning of the next section.
Note: Sections begin after each macro in the section
option and each line with a form feed <CTRL L[> in the

first column. Section boundaries are always line and
paragraph boundaries.

ED 4-14

VISUAL EDITOR (vi)

Searching Through the File

Another way to position yourself in the file is by having the editor
search for a specific string of characters on one line. Type the
character / followed by a string of characters for which you want to
search. To execute the search, depress the carriage return. For
example:

/character string<CH>
The editor will search from the current position toward the last line in
the buffer for the first occurrence of ‘‘character string’’ on one line.

The editor will also search backward if you use the ? character instead
of the / character.

If the character string you search for is not present in the file, the
editor will display the message:

Pattern not found

on the last line of the screen and the cursor will return to its initial
position.

A search will normally wrap around the end of the file and continue
searching until the string is found or the position where the search
started is reached. The wrap-around scan feature can be disabled by
entering the command:

:set nowrapscan<CR> or :set nows<CR>

You cah have the editor ignore whether letters are uppercase or
lowercase in searches by entering the command:

:set ignorecase<CR> or :set ic<CR>

The command :set noic<CR> turns this option off.

ED 4-15

VISUAL EDITOR (vi)

Repeating Searches

If the first pattern found by the search command is not the one you
were searching for, you can search for the next occurrence of the
pattern by entering the command:

The m command works with forward and backward searches.

Another way to repeat a search without re-entering the entire
command is to enter the search command character (/) or (?)
followed by a carriage return. The direction of the search is
determined by the search character you enter,

ED 4-16

VISUAL EDITOR (vi)

Special Search Characters

Several characters have special meanings when used in specifying
searches. These characters will work with all types of searches. They
can be used to: match repetitive strings of characters, turn off special
meanings of characters, or denote the placement of characters in the
line. These characters and their uses are explained below:

The period matches any single character except the newline
(carriage return) character. For example, if a line in your file
contains the words ‘‘vi editor’’, or a pattern with any other

character between ‘‘vi edit’’ and *‘r"’, you could find the line by
entering the command:

:/vi edit.x/<CR>

The asterisk matches any repeated characters except the first
.\, [, or " in that group. For example, if a line in your file
contains the pattern “‘the xxxx editor’, you could search for
the line by entering the command:

:/the x* editor/<CR>

Brackets are used to enclose a variable set of characters. For
example, if you have a file containing the patterns*‘file2’’,
“file3”’, or ‘‘file4’” you could search for the first occurrence of
these patterns by entering the command:

:/file[2-4]/<CR>
The dollar sign is interpreted by the editor to mean
“end of the line’’. It is used to identify patterns that occur at
the end of a line. For example, if a line in your file ends in the
pattern‘‘last character’’, you could find the line by entering the

command:

:/last character$/<CR>

ED 4-17

VISUAL EDITOR (vi)

The circumflex (caret) works like “‘$’" except it looks for the
pattern at the beginning of the line. For example, if a line in
your file begins with the pattern *‘First character”, you could
find the line by entering the command:

: /AFirst character/<CR>

\ The backslash is used to cancel the meaning of the special
characters. It should be placed immediately before the
character it is to nullify. For example, if a line in your file
contains the pattern “This is a $"', you could search for it by
entering the command:

:/This is a \$/<CR>

The character $ will be searched for instead of being
interpreted as meaning ‘‘end of the line".

To search for the characters ., *,\, [,], $, or , you must precede the
characters with a backslash. You can also combine these special
characters in one search command. For example, .* can be used to
search for any string of characters.

L

Go To, Find, and Previous Context Commands

The go to (G) command allows you to move the cursor to a specific
line in the file by using line numbers. For example:

32G

will move the cursor to line 32 in the file. If a line number is not used
with the G command, the cursor will move to the last line in the file.

ED 4-18

VISUAL EDITOR (vi)

The find (fx) command locates the next x character to the right of the
cursor in the current line. For example, to find the next occurrence of
the letter t you would enter the command:

ft

The ; command repeats the last find command for the next instance of
the same character. By using the f command and then a sequence of
;'s, you can often get to a particular place in a line much faster than
with a sequence of word motions or spaces. There is also an F
command, that works like f, but searches backward. The ; also
repeats the F command.

The previous context ™ (two back quotes) command allows you to
move back to the previous position in the file after a motion command,
such as /, ?, or G. This command is often more convenient than using
the G command or performing a search because no advance
preparation is required.

Note: If you are near the last line of the file, and the last line is
not at the bottom of the screen, the editor will place a ~
character on each remaining line to show the end of the file.

ED 4-19

VISUAL EDITOR (vi)

MAKING SIMPLE CHANGES

Inputting Text

The vi editor uses append, insert, and open commands to input text
into a file. First, use the movement commands described earlier to
move the cursor to the position in the file where you want to input
text. Then depress the input command you want to use (see list
below). Now any characters you type are entered into the buffer. If
you are entering more than one line, depress a carriage return
whenever you want to start a new line. You can also use the autowrap
option discussed in "'OPTIONS."” To stop inputting text, depress the
<ESC> key. All the commands for inserting text are described in the
following list:

a Appends everything you type after the current position of the
cursor

A Appends everything you type to the end of the line

i Inserts everything you type before the current position of the
cursor

1 Inserts everything you type before the first nonblank on the
line (inserts before the first character on the line)

o Opens a new line below the position of the cursor

0 Opens a new line above the position of the cursor.

Erasing Inserted Text

While inserting text, you can use the <CTRL H> or # character to
backspace over (erase) the last character typed. To erase the text
you have input on the current line, depress the @, <CTRL X>, or
<CTRL U> characters. The <CTRL W> will erase a whole word and
leave you after the space following the previous word. It is useful for
quickly backing up in an insert.

ED 4-20

VISUAL EDITOR (vi)

While inserting text, the following conditions should be noted:

» When you backspace during an insertion, the characters you
backspace over are not erased. The cursor moves backward
and the characters remain on the display. This is often useful if
you are planning to type in something similar. The characters
disappear when you depress <ESC>. If you want to get rid of
the characters immediately, depress <ESC> and then a again.

e You cannot erase characters that you did not insert, and you
cannot backspace around the end of a line. If you need to back
up to the previous line to correct something, depress the <ESC>
key, move the cursor back to the previous line, and then make
whatever corrections you want.

Continuous Text Input

When you are typing in large amounts of text, it is convenient to have
lines broken near the right-hand margin automatically. You can cause
this to happen by entering the command:

:set wm=10<CR>

This causes all the lines to be broken at a space at least ten columns
from the right-hand edge of the screen. The number 10 can be
replaced by any number you wish to use.

Joining Lines

If the editor breaks a line and you wish to put it back together, you can
teil it to join the lines with the J command. You can give the J
command a count of the amount of lines to be joined (such as 3J to
join 3 lines). The editor supplies white space, if appropriate, at the
juncture of the joined lines and leaves the cursor at this white space.

If you do not want white space, you can kill it with the x command.

ED 4-21

VISUAL EDITOR (vi)

Removing Text

The vi editor allows you to remove text from a file with several versions
of the delete command. The commands listed below let you remove
any object that the editor recognizes (characters, words, lines,
sentences, and paragraphs). You do not need to use the <CR> or
<ESC> keys with these commands. To delete more than one object at
a time, you can use numbers with these commands. For example, 5dd
removes five lines of text.

dd
dw
db
d)

d(

d}

d{

ED 4-22

Delete the current line.

Delete the current word.

Delete the preceding word.

Delete the rest of the current sentence.

Delete the previous sentence if you are at the beginning of the
current sentence, or delete the current sentence up to your
present position if you are not at the beginning of the current
sentence.

Delete the rest of the current paragraph.

Delete the previous paragraph if you are at the beginning of
the current paragraph, or delete the current paragraph up to
your current position if you are not at the beginning of the

current paragraph.

Delete the rest of the text on the current line and leave the
cursor on a blank line.

Delete the current character.

Delete the character before the cursor.

VISUAL EDITOR (vi)

Note: To recover text that was accidentally deleted, see
“‘Recovering Lost Text."”

Changing Text

The vi editor allows you to use several different commands to change
text in a file. With the commands listed below you can change any
object that the visual editor recognizes (characters, words, lines,
sentences, and paragraphs). All these commands, except r, are ended
by depressing the <ESC> key. Numbers can be used with these
commands to determine how many of the objects to change. For
example, the command 2cw removes two words and then changes to
the input mode so new words can be inserted.

cC

CcwW

e(

Change a whole line.

Change the specified word to the following word.

Change the rest of the current sentence.

Change the previous sentence if you are at the beginning of
the current sentence, or change the current sentence up to
your current position if you are not at the beginning of the
current sentence.

Change the rest of the current paragraph.

Change the previous paragraph if you are at the beginning of
the current paragraph, or change the current paragraph up to
your present position if you are not at the beginning of the
current paragraph.

Change the rest of the current line.

Replace a character.

Replace the following characters.

ED 4-23

VISUAL EDITOR (vi)

s Replace a character with a string.

S Replace the current line with a new line.

When you type a change command, the end of the text to be changed
is marked with the $ character to show that a change is now expected
up to the $ character. You are now placed in the insert mode so that
anything you type is entered into the buffer. You end the insert mode
by depressing <ESC>. To summarize, change commands in the visual
editor deletes text objects and then places you in the insert mode.

The simplest change that you can make is to change one character.
The r and the s commands can be used for this. If the character is
incorrect and is to be replaced by a single character, correct the
character by giving the rx command, where x is the correct character.
If the character is to be replaced by a string of characters, give the s
(string) <ESC> command that substitutes a string of characters for the
incorrect character. The s command can be preceded with a count of
the amount of characters to be replaced.

You can also give a command like ¢k to change all the lines up to and
including the last line on the screen, or ¢3L to change through the
third line from the bottom line. Using the ¢/string command allows
you to change characters from the current position to the first
occurrence of the search string.

Note: To recover text that was accidentally changed, see
“Recovering Lost Text.”

ED 4-24

VISUAL EDITOR (vi)

COPYING TEXT

The Concept of Yank and Put

Vi provides a method of making a copy of text and placing this copy in
another location in the file. This method is called *‘yank and put.”” The
y operator yanks a copy of any specified object (word, line, sentence,
or paragraph) into a specially reserved space called a register. The
text can then be put back in the file from the register with the
commands p and P; the p command puts the text after or below the
cursor, while P puts the text before or above the cursor.

If the text you yank forms a part of a line or is an object such as a
sentence that partially spans more than one line, then when you put
the text back, it will be placed after the cursor (or before the cursor if
you use P). If the yanked text forms whole lines, whole lines will be put
back without changing the current line.

The ¥ command is used to create a copy of a line. The cursor can
then be moved to any character on another line, and the p used to
place the yanked line following the current line. The P command places
the copied line above the current line. The YP command makes a
copy of the current line and places it before the current line. The
cursor is placed on the first character of this copy. The command Y is
a convenient abbreviation for yy. The command Yp will also create a
copy of the current line and place it after the current line. You can
give ¥ a count of lines to yank and thus duplicate several lines.

Vi has a single unnamed register where the last yanked text is saved.
Each time a yank command is performed that uses the unnamed
register, the previous yank command is lost. To prevent the loss of
this text, the editor has a set of named registers [(a) through (z)] that
can be used to save copies of text. The general format of the yank
command using named registers is

" xyobject

ED 4-25

VISUAL EDITOR (vi)

where x is the name of the register [(a) through ()] into which an
object is copied. The following procedure copies a line into a new
location in a file.

1. Enter the command:

w ayy

This yanks a line from where the cursor is into the named register
a.

2. Move the cursor to the eventual resting place of this line.
3. Enter the command:
"ap or" aP

This puts the line at the new location.

Copying Objects

The yank and put commands can be used to copy characters, words,
lines, sentences, or paragraphs. All the object commands can be
preceded by a number, that allows you to copy more than one object.
This is especially useful when copying characters. Each of the
following objects should be experimented with so you understand what
happens during a yank and put.

Characters can be copied by typing the yank command and then
typing the following object commands:

spacebar Yanks one character in forward direction.
backspace Yanks one character in backward direction.
h Yanks one character in backward direction.

ED 4-26

VISUAL EDITOR (vi)

I Yanks one character in forward direction.

fx Yanks all characters from cursor up to x in forward
direction.

Fx Yanks all characters from cursor up to x in backward
direction.

tx Yanks all characters from cursor up to and including

x in forward direction.

Tx Yanks all characters from cursor up to and including
x in backward direction.

Words can be copied by typing the yank command and then typing the
following objects:

w Yanks one word in forward direction (punctuation counts as
word).
W Yanks one word in forward direction (punctuation does not

count as word).

b Yanks one word in backward direction (punctuation counts
as word).
B Yanks one word in backward direction (punctuation does not

count as word).

e Yanks one word in forward direction up to last character in
word (punctuation counts as word).

Lines can be copied (in addition to yy and Y) by typing the yank
command and then typing the following objects:

$ Yanks one line from cursor to end of line.

ED 4-27

VISUAL EDITOR (vi)

<CR> Yanks one line plus line cursor is on in forward direction.

j Yanks one line plus line cursor is on in forward direction.
+ Yanks one line plus line cursor is on in forward direction.
k Yanks one line plus line cursor is on in backward direction.

- Yanks one line plus line cursor is on in backward direction,

H Yanks line cursor is on through top line on screen.

M Yanks line cursor is on through middle line on screen.

L Yanks line cursor is on through bottom line on screen.

G Yanks line cursor is on through last line in file. If a number
precedes G, yanks through that line in forward or reverse
direction.

/ Yanks from where cursor is up to “‘searched for" string in

forward direction.

? Yanks from where cursor is through “*searched for’ string in
backward direction.

Sentences can be copied by typing the yank command and then typing
the following objects:

) Yanks from cursor to end of sentence in forward direction.
(Yanks from cursor to beginning of sentence in reverse
direction.

Paragraphs can be copied by typing the yank command and then
typing the following objects.

ED 4-28

VISUAL EDITOR (vi)

}
{

Yanks from cursor to end of paragraph in forward direction.

Yanks from cursor to beginning of paragraph in reverse
direction.

ED 4-29

VISUAL EDITOR (vi)

MOVING TEXT

The blocks of text that can be moved around in the file are:
characters, words, lines, sentences, and paragraphs. To move blocks
of text from one location to another, use the following procedure:

1. Delete (or change) the information you need to move with one
command. It will be saved in an area and appointed to a register.

2. Move the cursor to the location you wish to insert the text just
deleted and put it back in the file with the commands p or P. The
p command puts the text after or below the cursor while P puts
the text before or above the cursor. An example of a delete and
put command is:

xp

The x deletes the character the cursor is on; the cursor moves to
the next character to the right. The p puts the deleted character
back following the character the cursor is on. The result is two
characters have swapped positions.

3. If the text you delete forms a part of a line or is an object such as
a sentence that partially spans more than one line, then when you
put the text back it will be placed after the cursor (or before if you
use P). If the deleted text forms whole lines, they will be put back
as whole lines without changing the current line.

4. You may wish to place the text you are to move into a specific
location. The editor has a set of named registers [(a) through (z)]
that you can use to save copies of text. The general format of the
delete command using named registers is

" xdelete object
or
" xchange object

where (x) is the name of the register [{(a) through (2)] into which
an object is deleted.

ED 4-30

VISUAL EDITOR (vi)

The following procedure moves a line to a new location in a file.

1. Enter the command:
" add

This deletes the line the cursor is on into the named register (a).
2. Move the cursor to the eventual resting place of this line.
3. Enter the command:

"ap or"aP
This puts the line at the new location. You can also do the same
with a change operation. After the new text is entered and the

<ESC> key pressed, the deleted text can be “put’” at another
location in the file.

ED 4-31

VISUAL EDITOR (vi)

GLOBAL COMMANDS

Global Searches

When you need to locate all the occurrences of a specific pattern on a
line in your file, the global command (:g) and a search command (/ or
?) can be used. The global search command can be used in any of the
following formats:

(1) :[m],[n]g/text
(2) :[m],[n]g/text/p
(3) :[m],[n]g/text/nu

The [m] represents the line number where the search will start. The
[n] represents the line number where the search will stop, or $ that

causes the search to continue to the end of your file. If no numbers
are entered, all lines in the file will be searched.

» When (1) is entered, the cursor will move to the last occurrence of
“text’.

o When (2) is entered, all the lines containing “‘text’’ are displayed
on the screen.

e When (3) is entered, all the lines containing *“‘text” are displayed
on the screen. Line numbers will be displayed with each line.

In global searches, a ? substituted for the / will have the same affect.
The special characters described in “*Special Search Characters’ can
be used in global search commands.

ED 4-32

VISUAL EDITOR (vi)

Global Substitutes

The global substitute command can be used when the same change
needs to be made in several places in the file. The command can be
executed against a range of lines or against the whole file. The
following formats can be used for global substitutes:

(1) :[m],[n]g/text/s//newtext

(2) :[m],[n]g/text/s//newtext/p
(3) :[m],[n]g/text/s//newtext/c

The [m] represents the line number where the search will start. The
[n] represents the line number where the search will stop. $ can be
used to represent the end of your file. If no numbers are entered, all
lines in the file will be searched.

o When (1) is entered, “‘newtext’” will be substituted for *‘text’” at
the first occurrence on each line requested in the command.
The cursor will be placed at the last occurrence of the changed
“newtext’’.

o When (2) is entered, ‘‘newtext’’ will be substituted for “‘text’” at
the first occurrence on each line requested in the command.
The lines containing all occurrences of “‘newtext’’ substitutions
are displayed on the screen.

» When (3) is entered, you are in a “‘prompt’”’ mode. The
“prompt’”’ mode will allow you to decide if you want to make the
substitution. The line with the first occurrence of “text” is
displayed at the bottom of the screen. Each of the characters in
“text”” will be replaced by (caret). If you type a y followed by
a <CR>, "'newtext’’ will be substituted for “text’ in the file. The
next line containing ‘‘text’” will then be displayed with s
replacing “text’’. If you decide not to make the substitution,
type a <CR> and the next line with ““text’” will be displayed. The
line displayed may appear as follows:

AnAn

The of this sentence needs to be changed.

ED 4-33

VISUAL EDITOR (vi)

The special characters described in ““Special Search Characters’ can
be used in the search part of the global substitution command.

REPEATING ACTIONS WITH THE . COMMAND

Vi provides a timesaving command, called the “‘dot”” command. The
“dot’ command allows you to repeat the last command that changed
the buffer by placing the cursor at the location you wish to repeat the
command and entering a:

The actions that can be repeated using the . command are append,
insert, open, delete, change, and put. An example of how to use the
dot command would be to insert a line of text in a file and then
depress the <ESC> key. Then move the cursor to a different location
in the file and enter a . “‘dot”’. Vi will repeat the previous insert
command and insert the line of text here also.

If you want to place text at another location that is in a named register
after doing a put, you can save time by using the . command.
However, if you executed a put command that is associated with an
“unnamed’’ register, the . command should not be used. This is
because the text in the unnamed register may not be the same.

ED 4-34

VISUAL EDITOR (vi)

FILE MANIPULATION

Writing the Buffer to Another File

The write command (abbreviated w) allows you to write all or part of
the buffer to a new file. This allows you to keep copies of the buffer in
various states of change. To write the whole buffer to another file,
simply use the write command and the name of the file. For example:

cwrite filemame<CR> or :w filenmame<CHR>

Be careful when naming the file. If you use an existing filename, the
editor will display the message:

"filename" File exists - "w! filename” to overwrite
When this occurs, you can either use a different filename, or use the w!

command to overwrite the file. If you overwrite the file, the
information being overwritten is no longer accessible.

If you only want to write part of the buffer to another file, you must
specify the beginning and ending lines you want to write. For example,

185, %w save<CR>

will write lines 85 through the end of the buffer to the file named save.

The write command does not change the buffer. The editor will display
the name of the file ““save’ that you have copied into, the number of
lines, and the number of characters entered into the file “‘save’’. If ho
numbers are entered, the entire file you are in will be copied to the
filename entered.

ED 4-35

VISUAL EDITOR (vi)

Sometimes it is necessary to append information onto the end of a file
that already exists. For example, if you wanted to append several lines
to the file “'save’’, you could use the command:

:12,25w >>save<CR>

The editor will display the name of the file “‘save’, the number of lines,
and the number of characters added to the file.

Reading Another File into the Buffer

While using vi, it may be necessary to copy another file into the file you
are editing. This can be done using the :r command. To copy a file
into your file, enter the :, a line number that you desire the new text to
foliow, the r, and the name of the file you wish to copy. The format for
this command is:

:[n]read filename<CR> or :[n}r filename<CR>

[n] can be any line number in your file. If you enter a 0, the copied file
will be added before line 1 in your file. If you enter a $, the copied file
will be added to the end of your file.

When the file is added, the editor will display at the bottom of the
screen the name of the file you copied, the number of lines in that file,
and the number of characters it contains. If you do not enter a
number in the above command, the file to be copied will be added
following the line your cursor was on when you entered the command.
For example, if you wish to write a file named '‘test’ to follow line 10
in your file, enter the command:

:10r test<CR>

ED 4-36

VISUAL EDITOR (vi)

Reading the Output From UNIX System Commands into
the Buffer

There are two commands that you can use to put the output from a
UNIX System command into a file. The only difference between the
two commands is that one inserts the text between lines and the other
replaces the current line with the text.

To insert the output from a UNIX System command between two lines,
position the cursor where you want the text and execute the
command:

:r temd<CR>

where “‘cmd’’ is the UNIX System command. The inserted text will be
displayed on the screen. This command will also allow you to use a
line number instead of positioning the cursor where you want the text
inserted.

If you want to replace a line in the buffer with the output of a UNIX
System command, position the cursor on that line and execute the
command:

! 1emd<CR>
where “‘cmd’’ is the UNIX System command. Only the current line will

be replaced by the inserted text. The inserted text will be displayed on
the screen.

ED 4-37

VISUAL EDITOR (vi)

Changing Files in the Editor

The vi editor is normally used to edit the contents of one file, whose
name is recorded as the current file. However, you can edit a different
file without leaving the editor by using the command:

e filename<CR>

where “‘filename’’ is replaced by the name of the file to which you
want to change. This command allows you easy access to both files,
because vi does hot have to be executed again.

When you are accessing two files, the file you are editing is always
considered the current file, and the other file is considered the
alternate file. When you want to change to the alternate file, use the e
command with the filename. Each time you use the e command to
change files, the file you name becomes the current file and the file
you leave becomes the alternate file.

When using the e command within the editor, normal shell expansion
conventions, such as “f*1'’ for “'filel’’, may be used. In addition, the
character % can be used in place of the current filename and the
character # in place of the alternate filename. For example:

e #<CR>

will cause the alternate file to become the current file and the current
file will become the alternate file. This makes it easy to deal
alternately with two files and eliminates the need for retyping the
filename.

If you have not written the current file, the editor will display the
message:

No write since last change (:edit! overrides)

and delay editing the other file. You can either give the :w command
to write the file or :e! filename if you want to discard the changes to

ED 4-38

VISUAL EDITOR (vi)

the current file and begin editing the next file. To have the editor
automatically save the changes, you should include set autowrite in
your EXINIT and use the :n command instead of the :@ command.

If you want to edit the same file (start over), give the :e! command.
These commands should be used carefully because once the changes
are discarded they cannot be recovered.

Editing Multiple Files and Using Named Buffers
When you have several files that you want to edit without actually
leaving and re-entering the vi editor, you can list these files in your vi
command. For example, if you enter the command:

vi filel file2 file3<CR>

the computer will respond with a message such as:

3 files to edit
"filel" xxx lines, xxxx characters

The current file “*filel” can now be edited. The remaining arguments
are placed with the first file in the argument list. To display the
current argument list, enter the command:

rargs<CR>
The computer will respond with the message:

[filel] file2 file3d

The next file in the argument list may be edited by entering the
command:

inext<CR> or :n<CR>

ED 4-39

VISUAL EDITOR (vi)

If you have already written the buffer to the file, the computer will
respond with a message such as:

o
"file2" xxx lines xxxX characters

If you use the next command regularly, you may want to set the
autowrite option.

The argument list can be changed by specifying a list of filenames with
the next command. These names are expanded with the resulting list
of names becoming the new argument list, and vi edits the first file on
the list.

For saving blocks of text while editing, and especially when editing
more than one file, vi has a group of named buffers. These are similar
to the normal buffer, except that only a limited amount of operations
are available on them. The buffers have names a through z. It is also
possible to refer to A through Z; the uppercase buffers are the same as
the lowercase, but commands append to named buffers rather than
replacing if uppercase names are used.

Read-Only Mode

If you want to look at a file that you have no intention of changing, you
can execute vi in the read-only mode. This mode protects you from
accidentally overwriting the file. The read-only option can be set by
using the R command line option, by the view command line
invocation, or by setting the read-only option. It can be cleared by
setting the noreadonly mode. (See "OPTIONS.”) It is possible to write,
even while in the read-only mode, by writing to a different file or by
using the :w! command.

ED 4-40

VISUAL EDITOR (vi)

Obtaining Information about the Buffer

You can determine the state of the file by using the <CTRL G>
command. The editor will show you the name of the file, the number
of the current line, the number of lines in the buffer, and the
percentage of the way through the buffer that the cursor is located. A
sample response would be:

"filename" [Modified] line 1048 of 3096 --33%--

Note: After you save the changes by writing the buffer to the
file, the buffer is no longer considered modified.

ED 4-41

VISUAL EDITOR (vi)

ISSUING UNIX SYSTEM COMMANDS

Vi allows you to execute UNIX System commands by entering
commands of the form

:temd<CR>

where ““cmd’’ represents the command you want to execute. Once
the command has executed, the computer will issue the message:

[Hit return to continue]

You can then depress the carriage return to continue editing or enter
the :! command to issue another UNIX System command.

If you need to execute more than one UNIX System command enter:
:sh<CR>

The computer will respond with the shell prompt ($). When you have
finished executing UNIX System commands, enter a <CTRL d>. This
will return you to the vi editor.

Caution: Be sure to write the buffer into the file before
escaping to the UNIX System. The editor will normally save
the buffer, but it will issue a message to remind you.

ED 4-42

VISUAL EDITOR (vi)

RECOVERING LOST TEXT

Undoing the Last Command

The undo command (abbreviated u) is able to reverse the effects of
the last command executed. Undo can often rescue the buffer from a
disastrous mistake. To execute the undo command enter:

:undo<CR> or :u<CR>

The undo command only works on commands that change the buffer,
such as — append, insert, delete, change, move, copy, and substitute.
You can also undo an undo command if you decide to keep the
change. Commands such as write, edit, and print cannot be undone.

The U command works like the u command, except that it returns the
current sentence to its original state.

Recovering Lost Lines

You might have a serious problem if you delete text and then regret
that it was deleted. The editor saves the last nine deleted blocks of
text in a set of numbered registers [1 through 9]. (Text consisting of a
few words is not saved in these registers.) You can get the nth
previous deleted block of text back into your file by the command:

" np

The " tells that a register name is to follow, nis the number of the
register you wish to try, and p is the put command that puts text in
the register after the cursor. If this does not bring back the text you
wanted, type u to undo this command and repeat the command using
a different numbered register. You can repeat this procedure until you
find the correct deleted text.

An easier way to search for the correct register can be to use the .
(dot) command to repeat the put command. In general, the .

ED 4-43

VISUAL EDITOR (vi)

command will repeat the last change. As a special case, when the last
command refers to a numbered text register, the . command
increments the number of the register before repeating the put
command. Thus, a sequence of the form

"lpu.u.u

will, if repeated long enough, show all the deleted text that was saved.
Omit the u commands and place all the text in the humbered registers
at one location. Stop after any . command to put just the then-
recovered text at one location. The command P can also be used
rather than p to put the recovered text before instead of after the
cursor.

Recovering Lost Files

If the system crashes, you can recover most of the work you were
doing. You will normally receive mail the next time you log in giving
you the name of the file that has been saved for you. To recover the
file, change to the directory where you were when the system crashed
and give a command of the form:

$ ex -r filename<CR>

replacing ‘filename’ with the name of the file that you were editing.
This will recover your work almost at the point where you left off.

You can get a listing of the files that are saved for you by giving the
command:

$ ex -r<CR>
If there is more than one instance of a particular file saved, the editor
gives you the newest instance each time you recover it. Therefore,

you can get an older saved copy back by first recovering the newer
copies.

ED 4-44

VISUAL EDITOR (vi)

For the “‘recover lost file”” command to work, vi must be correctly
installed and the mail program must exist to receive mail.

MARKING LINES

The vi editor allows you to mark lines in the file with single letter tags
and return to these marks later by naming the tags. For example,
mark the current line with an a by entering the command:

ma

Then, move the cursor to a different line using any commands you like
and enter the command:

‘a

The cursor will return to the place you marked. Marks last only until
you edit another file.

When using operators such as d and referring to marked lines, it is
often desirable to delete whole lines rather than deleting to the exact
position in the marked line. Here, use the form ’x rather than ‘x. Used
without an operator, "x will move to the first nonwhite character of the
marked line. The " moves to the first nonwhite character of the line
containing the previous context mark .

ED 4-45

VISUAL EDITOR (vi)

WORD ABBREVIATIONS

Word abbreviation allows you to type a short word and have it
expanded into a longer word or words. The commands are:

:abbreviate (or :ab)
and
:unabbreviate (Or :una)

and have the same syntax as :map. For example:
:ab ecs Engineering and Computer Sciences<CR>

causes the word “‘ecs’’ to always be changed into the phrase
“Engineering and Computer Sciences.”” Word abbreviation is different
from macros in that only whole words are affected. If “ecs’” were
typed as part of a larger word, it would be left alone. Also, the partial
word is echoed as it is typed. There is no need for an abbreviation to
be a single keystroke as it should be with a macro.

ADJUSTING THE SCREEN

If the screen image is messed up because of a transmission error to
your terminal or because some program other than the editor wrote to
your terminal, use the <CTRL L> command to refresh the screen.

If you want to place a certain line on the screen at the top, middle, or
bottom of the screen, you can position the cursor to that line and use

the z command followed by its argument. The following list describes
the three possible uses of the z command:

zz Places the line at the top of the screen
Z. Places the line at the center of the screen

zZ- Places the line at the bottom of the screen.

ED 4-46

VISUAL EDITOR (vi}

LINE REPRESENTATION IN THE DISPLAY

The editor folds long logical lines onto many physical lines in the
display. Commands that advance lines, advance logical lines and will
skip over all the segments of a line in one motion. The | command
moves the cursor to a specific column and may be useful for getting
near the middle of a long line to split it in half. Try 80} on a line that is
more than 80 columns long.

The editor puts only full lines on the display. If there is not enough
room on the display to fit a logical line, the editor leaves the physical
line empty, placing only an @ on the line as a place holder. When you
delete lines on a dumb terminal, the editor will often clear just the lines
to @ to save time (rather than rewriting the rest of the screen). You
can always maximize the information on the screen by giving the
<CTRL > command.

Line Numbers

Vi allows you to place line numbers before each line on the display. To
set the line number option, enter the command:

:set nu<CR>
To remove the line number option, enter the command:

:set nonmu<CHR>

List All Characters on a Line

You can have tabs represented as "} and the ends of lines shown with
$ by entering the command:

:set list<CR>
To remove the display of tabs and ends of lines enter the command:

1set nolist<CR>

ED 4-47

VISUAL EDITOR (vi)

Lines consisting of only the ™ character are displayed when the last line
of the file is in the middle of the screen. These represent physical lines
that are past the logical end of the file.

MACROS

The wi editor aliows you to create macros so that when you enter a
single keystroke the editor wili act as though you had entered a longer
sequence of keystrokes. You can do this if you find yourself typing the
same sequence of commands (keystrokes) repeatedly.

There are two types of macros:

» One type, you put the macro body in a buifer register such as x.
You can then type @x to invoke the macro. The @ may be
followed by another @ to repeat the last macro.

~ You can use the map command from the wi editor (typically in
your EXINIT) with a command of the form:

smap /hs rhs<CR>

mapping /hs into rhs. There are restrictions: /hs should be one
keystroke (either one character or cne function key). It must be
entered within 1 second (unless notimeout is set, in which case
you can type it as slowly as you wish, and wi will wait for you to
finish before it echoes anything). The /hs can be no longer than
ten characters, the rfis no longer than 100. To get a space, tab,
or newline into /hs or rhs you should escape them with a <CTRL
v> (it may be necessary to double the <CTRL v> if the map
command is given inside vi rather than in ex). Spaces and tabs
inside the rhs need not be escaped. To make the g key write
and exit the editor, enter:

cmap q woq<CTRL v><CTRL v ~CR> <CR>

this means that whenever you type q, it will be as though you
ED 4-48

VISUAL EDITOR (vi)

had typed :wq<CR>. A <CTRL v> is needed because without it
the <CR> would end the : command rather than becoming part
of the map definition. There are two <CTRL v>'s because from
within vi, two <CTRL v>'s must be typed to get on. The first
<CR> is part of the rhs, the second ends the : command.

Macros can be deleted with

cunmap /hs

If the /hs of a macro is #0 through #9, the particular function key is
mapped instead of the 2-character # sequence. So that terminals
without function keys can access such definitions, the form #x will
mean function key x on all terminals (and need not be typed within 1
second). The character # can be changed by using a macro in the
usual way:

:map <CTRL v><CTRL v><CTRL i> #

to use tab, for example. This will not affect the map command, that
still uses #, but affects the invocation from visual mode.

The undo command will reverse all the changes made by a macro call
as a unit.

Placing an ! after the word map causes the mapping to apply to text
input mode rather than command mode. Thus, to arrange for <CTRL
t> to be the same as four spaces, type

:map <CTRL t><CTRL v>bppi

where B is a blank. The <CTRL v> is necessary to prevent the blanks
from being taken as white space between the /hs and rhs.

ED 4-42

VISUAL EDITOR (vi)

OPTIONS

Setting Options

There are three kinds of options: numeric, string, and toggle. Numeric
and string options are set by a statement of the form:

1 set optlion=value<CR>
Toggle options can be set or not set by statements of the forms:
1set option<CR>
and
:set nooption<CR>
These options can be piaced in your EXINIT in your environment or

given while you are running vi by preceding them with a : and following
them with a <CR>.

You can get a list of ail options that you have changed with the
command:

1set<CR>
or the value of a single option with the command:
sset option ?<CR>

A list of ali possible options and their values is generated by the
command:

:set all<CR>

Set can be abbreviated se. Multiple options can be placed on one line,
for example:

:se ai aw nu<CR>

ED 4-50

VISUAL EDITOR (vi})

Options set by the set command last only while you stay in the editor.
It is common to want to have certain options set whenever you use the
editor. This can he done by creating a list of ex commands that are to
be run every time you start ex, edit, or vi (all commands that start
with : are ex commands). A typical list includes a set command and
possibly a few map commands. Since it is advisable to get these
commands on one line, they can be separated with the | character; for
example:

set ai aw tersel map @ ddi map # x

this establishes the set command options autoindent, autowrite, terse,
makes @ delete a line (the first map), and makes # delete a character
(the second map). One way to have the commands execute every
time you enter the vi editor is to put the line in the file .exrc in your
home directory. Another way to execute the commands automatically
is to place the string in the variable EXINIT in your environment. Using
the shell, put these lines in the file .profile in your home or working
directory: A

EXINIT=set ai aw tersel map @ ddi map # x
export EXINIT

Of course, the particulars of the line would depend on the options you
want to set.

List of Options

The editor has a set of options that can be useful. Some of these
options have been mentioned earlier. They are as follows:

autoindent, ai (default: noautoindent)
Can be used to ease the preparation of structured program text.
At the beginning of each append, change, or insert command or
when a new line is opened or created by an append, change,
insert, or substitute operation, the editor looks at the line being
appended after, the first line changed, or the line inserted before,
and calculates the amount of white space at the start of the line.

ED 4-51

VISUAL EDITOR (vi)

Autoindent then aligns the cursor at the level of indentation so
determined.

If the user then types in lines of text, the lines will continue to be
justified at the displayed indenting level. If more white space is
typed at the beginning of a line, the following line will start
aligning with the first nonwhite character of the previous line. To
back the cursor to the preceding tabstop, type <CTRL d>. The
tabstops (going backwards) are defined as multiples of the
shiftwidth option. You cannot backspace over the indent except
by sending an end-of-file with a <CTRL d>.

Specially processed in this mode is a line with no character added
to it, that turns into a completely blank line (the white space
provided for the autoindent is discarded). Also, specially
processed in this mode are lines beginning with a and
immediately followed by a <CTRL d>. This causes the input to be
repositioned at the beginning of the line while retaining the
previous indent for the next line. Similarly, a O followed by a
<CTRIL d> repositions at the beginning without retaining the
previous indent.

The autoindent option does not happen in glebal commands or
when the input is not a terminal.

autoprint,ap (default: autoprint)
Causes the current line to be printed after each delete, copy,
join, move, substitute, t, undo, or shift command. This has the
same effect as supplying a trailing p to each such command. The
autoprint is suppressed in globals, and only applies to the last of
many commands on a line.

autowrite,aw (default: noautowrite)
Causes the contents of the buffer to be written to the current file
if you have modified it and enter a next, rewind, tab, or |
command, or a <CTRL 1> (switch files) or <CTRL J> (tag goto)
command in visual,

ED 4-52

VISUAL EDITOR (vi)

Mote: The command does not autowrite. In each case,
there is an eguivalent way of switching when the autowrite
option is set to avoid the autowrite (ex for next, rewind!
for rewind, tag! for tag, shell for !, and :e # and a :tal
command from within wisual).

beautify, bf (default: nobeautify)
Causes all control characters except tab, newline, and formfeed
to be discarded from the input. A complaint is registered the first
time a backspace character is discarded. The beautify option
does not apply to command input.

directory, dir (default: dir=/tmp)
Specifies the directory in which ex places its buffer file. if this
directory is not writable, then the editor will exit abruptly when it
fails to be able to create its buffer there.

edeompatible (default: noedcompatible)
Causes the presence or absence of g and ¢ suffixes on substitute
commands to be remembered and to be toggled by repeating the
suffixes. The suffix r makes the substitution similar to the ~
command instead of like the & command.

errorbells,eb (defauli: noerrorbells)
Error messages are preceded by a bell. Bell ringing in open and
visual mode on errors is not suppressed by setting noeb. If
possible, the editor always places the error message in a standout
mode of the terminal (such as inverse video) instead of ringing
the bell.

flash, fl (default: flash)
Errors or illegal inputs respond by flashing the screen instead of
ringing the bell in the terminal. On terminals that do not have

flash capability, the bell will still ring.

ED 4-53

VISUAL EDITOR (vi)

hardtabs, ht (default: hardtabs=8)
Gives the boundaries on what terminal hardware tabs are set (or
on what the system expands tabs).

ignorecase,ic (default: noignorecase)
All uppercase characters in the text are mapped to lowercase in
regular expression matching. In addition, all uppercase
characters in regular expressions are mapped to lowercase
except in character class specifications.

list (default: nolist)
All printed lines will be displayed showing hidden characters such
as tabs and end-of-lines.

magic (default: magic)
If nomagic is set, the amount of regular expression
metacharacters is greatly reduced with only and $ having
special effects. In addition, the metacharacters ™ and & of the
replacement pattern are treated as normal characters. All the
normal metacharacters may be made magic when nomagic is set
by preceding them with a \.

mesg (default: mesg)
Causes write permission to be turned off to the terminal while in
visual mode, if nomesg is set.

rumber nu (default: nonumber)
Causes all output lines to be printed with line numbers. In
addition, each input line will be prompted for by supplying the line
number it will have,

optimize, opt (default: optimize)
Throughput of text is expedited by setting the terminal not to do
automatic carriage returns when printing more than one (logical)
line of output, greatly speeding output on terminals without
addressable cursors when text with leading white space is printed.

ED 4-54

VISUAL EDITOR (vi)

paragraphs, para (default: para=IPLPPPQPP LIpplpipbp)
Specifies the paragraphs for the { and } operations in open and
visual mode. The pairs of characters in the option's value are the
names of the macros that start paragraphs.

prompt (default: prompt)
Command mode input is prompted for with a colon (z).

readonly (default: noreadonly)
Sets the editor so you cannot accidentally change the file.

redraw (default: noredraw)
The editor simulates (using great amounts of output) an intelligent
terminal on a dumb terminal (for example, during insertions in
visual, the characters to the right of the cursor position are
refreshed as each input character is typed). This option is useful
only at high speeds.

remap (default: remap)
If on, macros are repeatedly tried until they are unchanged. For
example, if 0 is mapped to O, and O is mapped to I; then if remap
is set, @ will map to I; but if noremap is set, it will map to 0.

report (default: report=>5)
Specifies a threshold for feedback from commands. Any
command that changes more than the specified amount of lines
will provide feedback on the scope of its changes. For commands
such as global, open, undo, and visual, that have potentially
more far-reaching scope, the net change in the number of lines in
the buffer is presented at the end of the command, subject to
this same threshold. Thus, notification is suppressed during a
global command on the individual commands performed.

scroll (default: scroll=% window)
Determines the amount of logical lines scrolled when an end-of-
file is received from a terminal input in command mode, and
determines the amount of lines printed by a command mode z
command (double the value of scroll).

ED 4-55

VISUAL EDITOR (vi)

sections (default; sections=NHSHH HUnhsh)
Specifies the section macros for the [[and]] operations in open
and visual modes. The pairs of characters in the option’s value
are the names of the macros that start paragraphs.

shell, sh (default: shell=/bin/sh)
Gives the path name of the shell forked for the shell escape
command ! and by the shell command. The default is taken
from SHELL in the environment, if present.

shiftwidth, sw (default: shiftwidth=8)
Gives the width a software tabstop used in reverse tabbing with
<CTRL d> when using autoindent to append text and by the shift
commands.

showmatch, sm (default: noshowmatch)
In open and visual modes when a) or } is typed, it moves the
cursor to the matching (or { for one second if this matching
character is on the screen.

slowopen, slow (terminal dependent)
Affects the display algorithm used in visua/ mode, holding off
display updating during input of new text to improve throughput
when the terminal in use is both slow and unintelligent.

tabstop, ts (default: tabstop=8)
The editor expands tabs in the input file to be on tabstop
boundaries for the purposes of display.

taglength, tl (default: taglength=0)
Tags are not significant beyond this many characters. A value of
zero (the default) means that all characters are significant.

tags (default: tags=tags /usr/lib/tags)
A path of files to be used as tag files for the tag command. A
requested tag is searched for in the specified files, sequentially.
By default, files called tags are searched for in the current
directory and in Jusr/lib (a master file for the entire system).

ED 4-56

VISUAL EDITOR (vi)

term (from environment TERM)
The terminal type of the output device.

terse (default: noterse)
Shorter error diagnostics are produced for the experienced user.

timeout (default: notimeout)
Set a time limit for the execution of an editor command.

ttytype=
Terminal type defined to system for visual mode. Can be defined
before entering visual editor by TERM=type.

warn (default: warn)
Warn if there has been “[No write since last change]'’ before a !}
command escape.

window (default: window=speed dependent)
The amount of lines in a text window in the visual command. The
default is eight at slow speeds (600 baud or less), 16 at medium
speed (1200 baud), and the full screen (minus one line) at higher
speeds.

w300, w1200, w9600
These are not true options, but set window only if the speed is
slow (300), medium (1200), or high (9600), respectively. They
are suitable for an EXINIT and make it easy to change the
8/16 /full screen rule.

wrapscan, ws (default: wrapscan)
Searches that use regular expressions in addressing will wrap
around past the end of the file.

wrapmargin, wm (default: wrapmargin=0)

Defines a margin for automatic wrapover of text during input in
open and visual modes.

ED 4-57

VISUAL EDITOR (vi)

writeany, wa

(default: nowriteany)

Inhibit checks normally made before write commands, allowing a
write to any file that the system protection mechanism will allow.

CHARACTER FUNCTIONS SUMMARY

This summary shows the uses that the vi editor makes of each
character. Characters are presented in their order in the ASCII
character set: control characters first, most special characters, digits,
uppercase characters, and then lowercase characters.

Each character is defined with a meaning it has as a command and any
meaning it has during an insert. If it has meaning only as a command,
then only this is discussed. Usually, uppercase and lowercase <CTRL>
characters do the same action.

<CTRL @> Not a command character. If typed as the first character

<CTRL a>

<CTRL b>

<CTRL c>

<CTRL &>

ED 4-58

of an insertion, it is replaced with the last text inserted;
and the insert ends. Only 128 characters are saved from
the last insert; if more characters have been inserted, the
mechanism is not available. A <CTRL @> cannot be part
of the file owing to the editor implementation.

Unused.

Backward window. A count specifies repetition. Two lines
of continuity are kept, if possible.

Unused.

As a command, it scrolls down a half window of text. A
count gives the amount of (logical) lines to scroll and the
count is remembered for future <CTRL d> and <CTRL u>
commands. During an insert, it backtabs over autoindent
white space at the beginning of a line. This white space
cannot be backspaced over.

VISUAL EDITOR (vi)

<CTRL e>

<CTRL >

<CTRL g>

Exposes one more line below the current screen in the
file, leaving the cursor where it is, if possible.

Forward window. A count specifies repetition. Two lines
of continuity are kept, if possible.

Equivalent to :f <CR>, printing the current filename,
whether it has been modified, the current line number,
the number of lines in the file, and the percent of the way
through the file.

<CTRL h> (BS)

Same as left arrow (see h). During an insert, it eliminates
the last input character backing over it but not erasing it.
The character remains so you can see what you typed if
you wish to type something slightly different.

<CTRL i> (TAB)

Not a command character. When inserted, it prints as
some amount of spaces. When the cursor is at a tab
character, it rests at the last of the spaces that represent
the tab. The spacing of tabstops is controlled by the
tabstop option.

<CTRL j> (LF)

<CTRL k>

<CTRL &>

Same as Down arrow. It moves the cursor one line down
in the same column. If the position does not exist, vi
comes as close as possible to the same column.
Synonyms include j and <CTRL rn>.

Unused.

The ASCII form feed character that causes the screen to
be cleared and redrawn. It is useful after a transmission
error, if characters typed by a program other than the
editor scramble the screen, or after output is stopped by
an interrupt.

ED 4-59

VISUAL EDITOR (vi)

<CTRL m> (<CR>)

<CTRL m>

<CTRL o>

<CTRL p>

<CTRL g>

<CTRL r>

<CTRL s>

<CTRL t>

<CTRL u>

ED 4-60

A carriage return advances to the next line, to the first
nonwhite position in the line. Given a count, it advances
that many lines. During an insert, a <CR> causes the
insert to continue onto another line.

Same as Down arrow. It moves the cursor one line down
in the same column. If the position does not exist, vi
comes as close as possible to the same column.
Synonyms include j and <CTRL j>.

Unused.

Same as Up arrow. It moves the cursor one line up. A
synonym is k.

Not a command character. In text input mode, <CTRL g>
quotes the next character, the same as <CTRL v>, except
that some TELETYPE drivers will delete the <CTRL g> so
that the editor never sees it.

Redraws the current screen eliminating logical lines not
corresponding to physical lines (lines with only a single @
character on them). On hardcopy terminals in open
mode, retypes the current line.

Unused. Some TELETYPE drivers use <CTRL s> to
suspend output until <CTRL ¢> is invoked.

Not a command character. During an insert with
autoindent set and at the beginning of the line, it inserts
shiftwidth white space.

Scrolls the screen up (inverse of <CTRL d>). A count
gives the amount of (logical) lines te scroll, and the count
is remembered for future <CTRL d> and <CTRL u>
commands. The previous scroll amount is common to
both. On a dumb terminal, <CTRL u> will often reguire
clearing and redrawing the screen further back in the file.

VISUAL EDITOR (vi)

<CTRL v>

<CTRL w>

<CTRL x>

<CTRL y>

<CTRL z>

Not a command character. In text input mode, it quotes
the next character so that it is possible to insert
nonprinting and special characters into the file.

Not a command character. During an insert, it backs up
as b would in command mode; the deleted characters
remain on the display (see <CTRL h>).

Unused.

Exposes one more line above the current screen leaving
the cursor where it is, if possible. There is no mnemonic

value for this key; however, it is next to <CTRL u>.

Unused.

<CTRL [> (<ESC>)

<CTRL e>

<CTRL |~

<CTRL 1>

Cancels a partially formed command (such as a z when no
following character has yet been given), ends inputs on
the last line (read by commands such as :, /, and ?), and
ends insertions of new text into the buffer. If an <ESC> is
given when in the command state, the editor rings the bell
or flashes the screen. Therefore, you can press <ESC> if
you do not know what is happening until the editor rings
the bell. If you do not know if you are in insert mode,
type <ESC a> and then the material to be input; the
material will be inserted correctly whether or not you
were in insert mode when you started.

Unused.

Searches for the word that is after the cursor as a tag. It
is equivalent to typing :ta, this word, and then a <CR>.

Equivaient to e #<CR>, returning to the previous position
in the last edited file, or editing a file that you specified if
you got a “‘No write since last change’’ diagnostic and do
not want to have to type the file name again. You have to
do a :w before <CTRL 1> will work in this case. If you do

ED 4-61

VISUAL EDITOR (vi)

<CTRL >

SPACE

not wish to write the file, enter :e! #<CR> instead.

Unused. Reserved as the command character for the
TEKTRONIX* 4025 and 4027 terminals.

Same as right arrow (see I).

An operator that processes lines from the buffer with
reformatting commands. Follow ! with the object to be
processed, and then the command name ended by <CR>.
Doubling ! and preceding it by a count causes count lines
to be filtered; otherwise, the count is passed on to the
object after the 1. Thus 21} fmi<CR> reformats the next
two paragraphs by running them through the program
fmt. To read a file or the output of a command into the
buffer use :r. To simply execute a command use :!.

Precedes a named buffer specification. There are named
buffers (1 through 9) used for saving deleted text and
named buffers (a through z) into which you can place text.

The macro character, when followed by a number, will
substitute for a function key on terminals without function
keys. In text input mode, if this is your erase character, it
will delete the last character you typed and must be
preceded with a \ to insert it since it normally backs over
the last input character you gave.

Moves to the end of the current line. If the :se list<CFR>
command is used, then the end of each line will be shown
by printing a $ after the end of the displayed text in the
line. When a count is used, the cursor advances to the
end of the line following the count. For example, 2%
advances the cursor to the end of the following line.

* Registered Trademark of Tektronix, Inc.

ED 4-62

VISUAL EDITOR (vi)

%

Moves to the parenthesis (()) or brace ({}) that precedes
or follows the parenthesis or brace at the current cursor
position.

A synonym for :&<CR>, analogous to the ex & command.

When followed by a’, the cursor returns to the previous
context at the beginning of a line. The previous context is
set whenever the current line is moved in a nonrelative
way. When followed by a letter (a through 2), it returns to
the line that was marked with this letter with an m
command at the first nonwhite character in the line.
When used with an operator such as d, the operation
takes place over complete lines; if you use ', the operation
takes place from the exact marked place to the current
cursor position within the line.

Retreats to the beginning of a sentence. A sentence ends
ata., 1, or ? followed by either the end of a line or by two
spaces. Any amount of closing characters (),],", and ")
may appear after the ., !, or ?, and before the spaces or
end of line. Sentences also begin at paragraph and
section boundaries (see { and [[). A count may be used
before (to advance more than one sentence.

Advances to the beginning of a sentence. A count repeats
the effect. See (for the definition of a sentence.

Unused.
Same as <CR> when used as a command.

Reverse of the last f, F, t, or T command, looking the
other way in the current line. Especially useful after
typing too many ; characters. A count repeats the search.

Retreats to the previous line at the first nonwhite
character. This is the inverse of + and <CR>. If the line
moved to is not on the screen, the screen is scrolled or

ED 4-63

VISUAL EDITOR (vi)

ED 4-64

cleared and redrawn. If a large amount of scrolling would
be required, the screen is also cleared and redrawn with
the current line at the center.

Repeats the last command that changed the buffer.
Especially useful when deleting words or lines; you can
delete some words/lines and then type . to delete more
and more words /lines. Given a count, it passes it on to
the command being repeated. Thus, after a 2dw, a 3.
deletes three words.

Reads a string from the last line on the screen and scans
forward for the next occurrence of this string. The search
begins when you press <CR>, and the cursor moves to
the beginning of the last line to show that the search is in
progress. The search may be ended with a or
<RUB>, or by backspacing when at the beginning of the
bottom line returning the cursor to its initial position.
Searches normally wrap end-around to find a string
anywhere in the buffer.

When used with an operator, the enclosed region is
normally affected. By mentioning an offset from the line
matched by the pattern, you can force whole lines to be
affected. To do this, give a pattern with a closing / and
then an offset +n or -n.

To include the / character in the search string, you must
escape it with a preceding \. A ! at the beginning of the
pattern forces the match to occur at the beginning of a
line only; this speeds the search. A $ at the end of the
pattern forces the match to occur at the end of a line
only. More extended pattern matching is available.
Unless you set nomagic in your .exrc file, you will have to
precede the characters ., [, ¥, and ~ in the search pattern
with a \ to get them to work as you would expect.

Moves to the first character on the current line. Also
used, when forming numbers.

VISUAL EDITOR (vi)

1-9

Used to form numeric arguments to commands.

A prefix to a set of commands for file and option
manipulation and escapes to the system. Input is given on
the bottom line and ends with a <CR>, and the command
is then executed. If you accidentally type :, you can
return to where you were by typing or <RUB>.

Repeats the last single ‘‘character find’’ that used f, F, t,
or T. A count iterates the basic scan.

An operator that shifts lines left one shiftwidth, normally
eight spaces. Like all operators, it affects lines when
repeated, as in < <. Counts are passed through to the
basic object, thus 3<< shifts three lines.

An operator that shifts lines right one shiftwidth, normally
eight spaces. Affects lines when repeated as in >>.
Counts repeat the basic object.

Scans backward, the opposite of /. See the / description
for details on scanning.

A macro character. Since this is the kill character, you
must escape it with a \ to type it in during text input
mode. It normally backs over the input given on the
current line.

Appends at the end of line, a synonym for $a.

Backs up a word, where words are composed of nonblank
sequences, placing the cursor at the beginning of the
word. A count repeats the effect.

Changes the rest of the text on the current line; a
synonym for c$.

Deletes the rest of the text on the current line; a synonym
for d$.

ED 4-65

VISUAL EDITOR (vi)

ED 4-66

Moves forward to the end of a word, defined as blanks and
nonblanks, like B and W. A count repeats the effect.

Finds a single following character, backwards in the
current line. A count repeats this search a specified
amount of times.

Goes to the line number given as preceding argument or
the end of the file if no preceding count is given. The
screen is redrawn with the new current line in the center,
if necessary.

Same as Home arrow. Homes the cursor to the top line
on the screen. If a count is given, then the cursor is
moved to the count’s line on the screen. In any case, the
cursor is moved to the first nonwhite character on the
line. If used as the target of an operator, full lines are
affected.

Inserts at the beginning of a line.

Joins lines together, supplying appropriate white space:
one space between words, two spaces after a ., and no
spaces at all if the first character of the joined on line is).
A count causes that many lines to be joined rather than
the default two.

Unused.

Moves the cursor to the first nonwhite character of the
last line on the screen. With a line count number, moves
the cursor to the first nonwhite character of the indicated
line from the bottom. Operators affect whole lines when
used with L.

Moves the cursor to the middle line on the screen at the
first nonwhite position on the line.

VISUAL EDITOR (vi)

Scans for the next match of the last pattern given to / or
?, but in the reverse direction. N is the reverse of n.

Opens a new line above the current line and inputs text
there up to an <ESC>. A count can be used on dumb
terminals to specify a number of lines to be opened; this is
generally obsolete as the slowopen option works better.

Puts the last deleted text back before /above the cursor.
The text goes back as whole lines above the cursor if it
was deleted as whole lines; otherwise, the text is inserted
between the characters before and at the cursor. The P
character may be preceded by a named buffer
specification " x to retrieve the contents of the buffer.
Buffers 1 through 9 contain deleted material, buffers a
through z are available for general use.

QUits from vi to ex command mode. In this mode, whole
lines form commands and end with a <CR>. You can give
all the : commands; the editor supplies the : as a prompt.

Replaces characters on the screen with characters you
type (overlay fashion). End with an <ESC>.

Changes whole lines; a synonym for ¢¢. A count
substitutes for that many lines. The lines are saved in the
numeric buffers and erased on the screen before the
substitution begins.

Takes a single following character, locates the character
before the cursor in the current line, and places the
cursor just after that character. A count repeats the
effect. Most useful with operators such as d.

Restores the current line to its state before you started
changing it.

Unused.

ED 4-67

VISUAL EDITOR (vi)

4

ED 4-68

Moves forward to the beginning of a word in the current
line where words are defined as sequences of
blank /nonblank characters. A count repeats the effect.

Deletes the character before the cursor. A count repeats
the effect, but only characters on the current line are
deleted.

Yanks a copy of the current line into the unnamed buffer
to be put back by a later p or P; a synonym for yy. A
count yanks that many lines. May be preceded by a
buffer name to put lines in that buffer.

Exits the editor (same as :x<CR>). If any changes have
been made, the buffer is written out to the current file.
Then, the editor quits.

Backs up the previous section boundary. A section begins
at each macro in the sections options, normally a .NH or
.SH, and also at lines that start with a form feed <CTRL
I>. Lines beginning with { also stop [[; this makes it useful
for looking backwards, a function at a time, in C programs.

Unused.

Forwards to a section boundary. See [| for a definition.
Moves to the first nonwhite position on the current line.
Unused.

When followed by a ', returns to the previous context.
The previous context is set whenever the current line is
moved in a nonrelative way. When followed by a letter (a
through z), the cursor returns to the position that was
marked with this letter. When used with an operator such
as d, the operation takes place from the exact marked
place to the current position within the line. If you use’,
the operation takes place over complete lines.

VISUAL EDITOR (vi)

Appends arbitrary text after the current cursor position;
the insert can continue to multiple lines by using <CR>

within the insert. A count causes the inserted text to be
replicated, but only if the inserted text is all on one line.
The insertion ends with an <£SC>.

Backs up to the beginning of a word in the current line. A
word is a sequence of alphanumerics or a sequence of
special characters. A count repeats the effect.

An operator that changes the following object, replacing it
with the following input text up to an <ESC>. If more
than part of a single line is affected, the text to be
changed is saved in the numeric named buffers. If only
part of the current line is affected, the last character to
be changed is marked with a $. A count causes that many
objects to be affected, thus both 3¢) and €3) change the
foliowing three sentences.

An operator that deletes the following object. If more
than part of a line is affected, the text is saved in the
numeric buffers. A count causes that many objects to be
affected; thus 3dw is the same as d3w.

Advances to the end of the next word, defined as for b
and w. A count repeats the effect.

Finds the first instance of the next character following the
cursor on the current line. A count repeats the find.

Unused.

Same as Left arrow. Moves the cursor one character to
the left. Like the other arrow keys, either h, the left
arrow key, or the synonyms (<CTRL h>) has the same

effect. A count repeats the effect.

Inserts text before the cursor; otherwise, like a.

ED 4-69

VISUAL EDITOR (vi)

ED 4-70

Same as Down arrow. Moves the cursor one line down in
the same column. If the position does not exist, vi comes
as close as possible to the same column. Synonyms
include <CTRL /> (linefeed) and <CTRL n>.

Same as Up arrow. Moves the cursor one line up. <CTRL
p> is a synonym.

Same as Right arrow. Moves the cursor one character to
the right. SPACE is a synonym,

Marks the current position of the cursor in the mark
register that is specified by the next character a through
z. Return to this position or use with an operator using *

or’,
Repeats the last / or ? scanning commands.

Opens new lines below the current line; otherwise, like O.
Puts text after /below the cursor; otherwise, like P.
Unused.

Replaces the single character at the cursor with a single
character you type. The new character may be a <CR>;
this is the easiest way to split lines. A count replaces each
of the following count characters with the single character
given; see R above, this is usually the more useful iteration
of r.

Changes the single character under the cursor to the text
that follows up to an <ESC>; given a count, that many
characters from the current line are changed. The last
character to be changed is marked with $ as in c.

Advances the cursor up to the character before the next
character typed. Most useful with operator such as d and
¢ to delete the characters up to a following character.

VISUAL EDITOR (vi)

You can use . to delete more if this does not delete
enough the first time.

Undoes the last change made to the current buffer. If
repeated, will alternate between these two states; thus, is
its own inverse. When used after an insert that inserted
text on more than one line, the lines are saved in the
numeric named buffers.

Unused.

Advances to the beginning of the next word, as defined by
b.

Deletes the single character under the cursor. With a
count, deletes that many characters forward from the
cursor position, but only on the current line.

An operator that yanks the following object into the
unnamed temporary buffer. If preceded by a named
buffer specification, " x, the text is placed in that buffer
also. Text can be recovered by a later p or P.

Redraws the screen with the current line placed as
specified by the following character:

<CR> Specifies the top of the screen
Specifies the center of the screen

- Specifies the bottom of the screen.

A count may be given after the z and before the following
character to specify the new screen size for the redraw. A
count before the z gives the amount of the line to place in
the center of the screen instead of the default current
line.

ED 4-71

VISUAL EDITOR (vi)

{ Retreats to the beginning of the preceding paragraph. A
paragraph begins at each macro in the paragraphs
option-- normally .IP, .LP, .PP, .QP and .bp. A paragraph
also begins after a completely empty line and at each
section boundary (see []).

! Places the cursor on the character in the column specified
by the count.

} Advances to the beginning of the next paragraph. See {
for the definition of paragraph.

: Switches character from lowercase to uppercase and vice
versa.

<CTRL ?> ()
Interrupts the editor returning it to command-accepting
state.

ED 4-72

