305506 |
Jssue1

ATsT 3B2 Computer ‘ |
UNIX™ System V Release 2.0 ,;

Utilities -~ Volume 2

NOTICE

The information in this document is subject to change without notice. AT&T assumes no
responsibility for any errors that may appear in this document.

Copyright® 1985 AT&T
All Rights Reserved
Printed in U.S.A

Replace this
page with the
GRAPHICS

tab separator.

UNIX™ System V Release 2.0
Graphics Utilities Guide

AT&T 3B2 Computer

=— ATl

L3
_u 5 x
”” e 9 JCR
.D
(]
|
X
x 2O
& lx % oeee ®,
o
)) 4
t _ X
o .
()
)
e
o
”Q.)
.‘
PR
-a.n
—l ()
&
)
3
N 3% -4 HIH B] 4 I“
R e e

Chapter
Chapter
Chapter
Chapter
Chapter

LA

CONTENTS

INTRODUCTION

OVERVIEW

Stat - A TOOL FOR ANALYZING DATA
GRAPHICS COMMAND DESCRIPTIONS
GRAPHICS EDITOR

GENERAL

Chapter 1

INTRODUCTION

GUIDE ORGANIZATION it i aaanmannnsaassaanasananassnanan

Chapter 1

INTRODUCTION

GENERAL

This guide describes command formats (syntax) and use of the Graphics
Utilities available with your AT&T 3B2 Computer. The numerical and
graphical commands described in this guide are used to build and edit
numerical data plots and hierarchical charts. This guide is designed for
individuals experienced in using the UNIX* Operating System. Although
these individuals are not expected to know UNIX System Shell
Programming Language to use this guide, it would be helpful in
understanding the examples at the end of Chapter 3.

* Trademark of AT&T

GR 1-1

INTRODUCTION

GUIDE ORGANIZATION

This guide is structured so you can easily find information without having
to read the entire text. The remainder of this guide is organized as
follows:

« Chapter 2, “OVERVIEW,” gives a general description of the basic

concepts of the Graphics Utilities and how to get started using the
Graphics Utilities.

Chapter 3, “STAT- A TOOL FOR ANALYZING DATA,” describes
routines that can be interconnected using the UNIX System shell to
form numerical processing networks.

Chapter 4, “COMMAND DESCRIPTIONS,” describes the formats
(syntax) for each command in the Graphics Utilities. The
descriptions include the purpose of the command, a discussion of
the command syntax and options, and examples of using each
command.

Chapter 5, ““GRAPHICS EDITOR(ged),"" describes an interactive
editor used to display, edit, and build drawings on a TEKTRONIX
AQ14* display terminal.

%

Registered Trademark of Tektronix, Inc.

GR 1-2

Chapter 2

OVERVIEW
PAGE
INTRODUCTION . L .ottt tnn s nanacannarasasnaaannesannnn 2-1
INTERFACEING THE 5620 DMD TO THE 3B2 COMPUTERcnuennn.. 2-2
HOW COMMANDS AREDESCRIBED neiinnananneaannananns 2-3
ACCESSING THE GRAPHICS UTILITIES ittt et enaaaaaiannnn 2-5
BASIC CONCEP TS i iiinetntnarmnaannrnsasaanasnanenaannsnnn 2-6

Chapter 2

OVERVIEW

INTRODUCTION

The Graphics Utilities is a collection of numerical and graphical commands
used to build and edit numerical data plots and hierarchical charts. This
chapter will help a user get started when using the Graphics Utilities. The
best way to learn about graphics is to log onto the 3B2 Computer and use
it. The examples below assume that the user is familiar with the UNIX
System.

GR 2-1

OVERVIEW

INTERFACING THE 5620 DMD TO THE 3B2
COMPUTER

To display drawings from the Graphics Utilities, you must use a graphics
display terminal. The recommended graphics display terminal for the 3B2
Computer is the TELETYPE* 5620 Dot-Mapped Display (DMD) terminal.
This terminal can emulate a TEKTRONIX 4014, a HPt 2621, and an APS%t
5. Unless otherwise noted, capabilities in this guide pertains to a 5620
DMD connected to a 3B2 Computer.

To interface the 5620 DMD to the 3B2 Computer, the following steps
should be compieted.

1. Interconnect the 5620 DMD to the 3B2 Computer.

2. Install the 5620 DMD Core Utilities. Instructions on how to install this
utilities can be found in the 5620 Dot-Mapped Display Administrator
Guide.

3. Log on the system and create a layer. Instructions on how to do this
can be found in the 5620 Dot-Mapped Display User Guide.

4. Load the TEKTRONIX 4014 program in the layer you just created. The
strap options G/Ncount -g -u must be entered so that the graphics
editor (ged) will operate on a four-stage position instead of a two-stage
position. Instructions on how to do this can be found in the 5620
Dot-Mapped Display User Guide.

* Trademark of AT&T
T Trademark of Hewlett-Packard, inc
1+ Trademark of Autologic, Inc

GR 2-2

OVERVIEW

HOW COMMANDS ARE DESCRIBED

A common format is used to describe each of the commands. This format
is as follows:

e General: The purpose of the command is defined. Any uncommon
or special information about the command is also provided.

e Command Format: The basic command line format (syntax) is
defined and the various arguments and options discussed.

s Sample Command Use: Example command line entries and system
respenses are provided to show you how to use the command.

In the command format discussions, the following symbology and
conventions are used to define the command syntax.

» The basic command is shown in bold type. For example: cemmand
is in bold type.

+ Arguments that you must supply to the command are shown in a
special type. For example: command argument

« Command options and arguments that do not have to be supplied
are enclosed in brackets ([]). For example;
command [optional arguments]

+ The pipe symbol (1) is used to separate arguments when one of
several forms of an argument can be used for a given argument
field. The pipe symbol can be thought of as an exclusive OR
function in this context. For example:
command [argumentl | argumentZ2]

GR 2-3

OVERVIEW

In the sample command discussions, user inputs and 3B2 Computer
response examples are shown as follows: ‘

This style of type is used to show system generated
responses displayed on your screen.

This style of boid type is used to show inputs
entered from your keyboard that are displayed on your
screen.

These bracket symbols, < > identify inputs from the
keyboard that are not displayed on your screen, such

as: <CR> carriage return, <CTRL d> control d, <ESC g>
escape g, passwords, and tabs.

This style of italic type is used for notes that
provide you with additional information.

Refer to the AT&T 3B2 Computer User Reference Manual for UNIX System
V manual pages supporting the commands described in this guide.

GR 2-4

OVERVIEW

ACCESSING THE GRAPHICS UTILITIES

To access the graphics ccmmands when logged in on the 3B2 Computer,
type graphics. The shell variable PATH will be altered to include the
graphics commands, and the shell primary prompt will be changed to’.

$graphics<CR>

Any command accessible before typing graphics will still be accessible;
graphics only adds commands, it does not take any away. Once in
graphics, a user can find out about any of the graphics commands using
whatis. Typing whatis by itself on a command line will generate a list of all
the commands in graphics along with instructions on how to find out more
about any of them.

All the graphics commands accept the same command line format:

o A command is a command-name followed by argument(s).
e A command-name is the name of any of the graphics commands.

An argument is a file-name or an option-string.

s A file-name is any file name not beginning with —, or a — by itself to
reference the standard input.

s An option-string is a — followed by option(s).

e An option is a letter(s) followed by an optional value. Options may
be separated by commas.

GR 2-5

OVERVIEW

The graphics commands can be removed from the user's PATH by typing
an end-of-file indication (<CTRL-d> control-d on most terminals) or by
typing exit. This will put you in the UNIX System shell.

~exit<CR>

BASIC CONCEPTS

Note: Many of the basic concepts of the Graphics Utilities will be
explained in this chapter by using some of the graphics commands.
It is not necessary now to fully understand these commands.
However, if you need a more detailed explanation of a command,
refer to Chapter 4, " Command Descriptions."

The basic approach taken with graphics is to generate a drawing by
describing it rather than by drafting it. Any drawing is seen as having two
fundamental attributes: its underlying logic and its visual layout. The
layout contains one representation of the logic. For example, consider the
y=x? for the value of x being between 0 and 10:

» The logic of the plot is the description as just given, namely y =x2,
for the value of x being between 0 and 10.

+ The layout consists of an x-y grid, axis labeled perhaps 0 to 10 and O
to 100, and lines drawn connecting the x-y pairs 0,0 to 1,1 to 2,4
etc.

The way to generate a drawing in graphics is:

GR 2-6

OVERVIEW

1. Gather Data
2. Transform the Data
3. Generate a Layout

4. Display the lLayout.

The following is an example of generating a drawing of y=x?, for the value
of x being between 0 and 10 and displaying it on a TEKTRONIX 4014
display terminal.

e« The gas command is used to gather the data. The gas command
generates a sequence of numbers, in this case start at O and
terminating at 10.

e The af command is used to transform the data. The af command
performs general arithmetic transformations.

e The plot command is used to generate a layout. The plot command
builds x-y plots.

» The td command is used to display the layout. The td command
displays drawings on TEKTRONIX 4014 display terminal.

The command line format to generate the drawing for y=x? would be:

[Agas ~s0,t10 | af "x'2" | plot | td<CR>

The results of the drawing is shown in Figure 2-1.

GR 2-7

OVERVIEW

100

60

40

20

what is wanted. There are two ways to influence the layout. The first way
+o influence the layout is to use the plot command options. For instance,

GR 2-8

OVERVIEW

in the previous example, it may be desired to have the x-axis labels show
each of the numbers plotted and not have any y-axis labels at all. To
achieve this the plot command would be changed to:

{”gas -s0,810 | af "x *'2" | plot ~xil,ya | td<CR>

The results of the drawing is shown in Figure 2-2.

The second way to influence a layout is by editing it directly at a display
terminal using the graphical editor, ged. To edit a drawing really means to
edit the computer representation of the drawing. For graphics, the
representation is called a graphical primitive string or GPS. All the drawing
commands (for example plot) write GPS, and all the device filters (for
example td) read GPS. Ged allows manipulation of GPS at a display
terminal by interacting with the drawing that the GPS describes (see
Chapter 5.)

GR 2-9

OVERVIEW

17 1T T 1 1° 1 1 ‘|
I e P
%—L—J——l—-#—ler -4 —
[e e A R e
I I T O I R O
[|
I |
— —t— - — I
I |
R N S O I S <6 H R
I | [
b [
— —F— = T 71—
I N
N AU A N N
1] 1 2 3 4 5 6 7 8 8 10

Figure 2-2. Plot of gas -s0,t10} af " x 2" ! plot -xil,ya | td

The GPS describes graphical objects drawn within a Cartesian plane (Figure
2-3). The Cartesian plane has 65,534 units on each x and y axis. The
plane, known as the universe, is partitioned into 25 equal-sized square
regions. Multi-drawing displays can be produced by placing drawings into
adjacent regions and then displaying each region. This will be shown in

Chapter 5 (graphics editor).

GR 2-10

OVERVIEW

65,534
UNITS

Y-AXIS

21 22 23 24 25

18 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5
65,534
UNITS

X-AXIS

Figure 2-3, Cartesian plane

GR 2-11

OVERVIEW

EXAMPLES OF WHAT YOU CAN DO

Numerical Manipulation and Plotting

Stat is a collection of numerical and plotting commands. All these
commands operate on vectors. A vector is a text file that contains a
sequence of numbers separated by a delimiter and where a delimiter is
anything that is not a number.

For example:

12345, and
hhh tty47 July 19 09:52

are both vectors. The vectors are:

First Vector=123 45
Second Vector = 47 19 09 52

Here is an easy way to generate a Celsius-Fahrenheit conversion table
using gas to generate the vector of Celsius values:

[~gas ~50,t100,i10 | af " C,9/5+C+32" <CR>

GR 2-12

OVERVIEW

The results are:

10

30
40
50
60
70
80
90
100

where:

32
50
68
86
104
122
140
158
176
194
212

» gas —s0,1t100,i10 generates a sequence that starts at O, terminates
at 100, and the increment between successive elements is 10.

o af " C,9/5+C+32" generates the table. Arguments to af are
expressions. Operands in an expression are either constants or file
names. If a file name is given that does not exist in the current
directory, it is taken as the name for the standard input. In this

example, C references the standard input.

Here is an example that illustrates the use of vector titles and makes a

multi-line plot:

~gas | title —v" first ten integers” >N<CR>

“root N >RN<CR>

“root ~r3 N >R3N<CR>

"root —r1.5 N >R1L.5N<CR>
Aplot ~FN,g N R1.5N RN R3N | td<CR>

GR 2-13

OVERVIEW

where:

» title —v" name” associates a name with a vector. Here, the first ten
integers are associated with the vector output by gas. The vector is
stored in file N.

» root —rn outputs the nth root of each element on the input. If —rn
is not given, then the square root is output. Also, if the input is a
titled vector, the title will be transformed to reflect the root
function.

o plot —FX g Y(s) generates a multi-line plot with Y(s) plotted versus
X(s). The g option causes tick marks to appear instead of grid lines.

The results of the plot is shown in Figure 2-4.

11

10 |~

FIRST TEN INTEGERS (solid)

root 3 FIRST TEN INTEGERS (dashed)

root 2 FIRST TEN INTEBERS (dot dashed)
rootl.5 FIRST TEN INTEGERS (dotted)

1 2 3 4 5 8 7 8 8 10 11
FIRST TEM INTEGERS

Figure 2-4. Some Roots of the First Ten Integers

GR 2-14

OVERVIEW

The next example generates a histogram of random numbers:

~rand ~n100 | title —v" 100 random numbers" | gsert |
bucket | hist | td<CR>

where:

« rand -~n100 outputs random numbers using rand(3C). Here, 100
numbers are output in the range 0 to 1.

o title -v" name" associates a name with a vector. in this case, 100
random numbers is associated with the vector output by gas.

« gsort sorts the elements of a vector in ascending order.

o bucket breaks the range of the elements in a vector into intervals
and counts how many elements from the vector fall into cach
interval, The output is a vector with odd elements being the interval
boundaries and even elements being the counts.

e hist builds a histogram based on interval boundaries and counts.

e td command displays drawings on TEKTRONIX 4014 display
terminal.

The output is shown in Figure 2-5.

GR 2-15

OVERVIEW

24
22
20
18
16
14

oo T L% T R~ - * < B ==

Figure 2-5. Histogram of 100 Random Numbers

0.02810.1685 0.301 0.438 0.574 0.71
100 RANDOM NUMBERS

Drawings Built From Boxes

There is a large class of drawings composed from boxes and text.
Examples are structure charts, configuration drawings, and flow diagrams.
In graphics, the general procedure to build such box drawings is the same
as that for numerical plotting; namely, gather and transform the data, build

and display the layout.

GR 2-16

0.847 0.983

OVERVIEW

As an example, for hierarchical charts, the command line

~dtoc | vioc | id<CR>

outputs drawings representing directory structures.

» The dioc command outputs a table of contents that describes 2
directory structure (Figure 2-6). The fields from left to right are
level number, the directory name, and the number of ordinary
readable files contained in the directory.

the

o The wioc command reads a (textual) table of contentis and outpuis a
visual table of contents, or hierarchical chart (Figure 2-7). Input io
wkoc consists of a sequence of entries, each describing a box t
drawn. An entry consists of a level number, an optional style field, a
text string to be placed in the box, and a mark fieid to appear abe
the top right-hand corner of the box.

» The td command displays the drawing on a TEKTRONIX terminal.

6}
0
N
e
S|

OVERVIEW

GR 2-18

"source"
"glib.d"
"gpl . d"
"gsl.d”
"gutil.d"
"cvrtopt.d"
"gtop.d”
"ptog.d”
"stat.d"
"tek4000.4"
"ged.d"”

4. "td.d"
"toc.d"”
"ttoc.d"
2. "vtoc.d”
"whatis.d"

W b2 — DN e

—

DD UT AR B R WNNNDN = =0
—

22
108

Figure 2-6. Output of dioc Command

61-C 49

a. 2

SOURCE

2 8 3 54 14, | 5 5. l
C

.) 3
!sum.u}] STAT.D ‘ ‘TEKADUO.D’ [T0C.D | [WHATIS.D]
1. 12ve] 14 o2 |7 22| 8 23| s 0.1 8744 8 54| 3 52|
BPL.D IGSL,DI Icvmom.n] 510D |Pms.u|]GED.U] | .0 l [Tmc.n] |vmc.n|

Figure 2-7. OQutput of vioc Command

MIIAYIAO

Chapter 3

STAT - A TOOL FOR ANALYZING DATA

PAGE

INTRODUCTION . .. oottt i s s e aen i eenan s nananacacnnansnanonsnaeennnns 3-1
NODE DESCRIPTION S . . oo it it ittt i ttnan i aa s cnaanaancaannannaneeennnn 3-2
RT3 T - 33
Transformer Node it i aannnnanannnannnnasnasnes 3-3

Lo T T T - 3-6
Summarizers Node it it eanannan e 3-6
Building Networks oottt casneasnnannnannanaasnonnnnnss 3-8
Command Substitution i e 39
Generator Mode i i e a e a e 3-10
Translators Node it it it n et 3-14
EXAMPLES itin et e 3-20
125 - T 1T - T 3-20

[T 1Y o1 - 3-21
o3 T 0T o) - S 3-23

EXample 4 . . . a e an e e e e n e aa e aaa e 3-25

INTRODUCTION

Stat is a collection of command level functions (nodes) that can be
interconnected using the UNIX System shell to form processing networks.
Iincluded within stat are programs to generate simple statistics and pictorial
output.

This chapter introduces stat concepts by using a few commands through a
collection of examples. A complete definition of all stat commands with
examples is discussed in Chapter 4.

Much of the power for manipulating text in the UNIX System comes from
well-defined, text-processing programs such as the DOCUMENTER'S
WORKBENCH?* software text processing utilities. These processing
programs can be readily interfaced to one another. The general interface

* Trademark of AT&T

GR 3-1

STAT - A TOOL FOR ANALYZING DATA

is an unformatted text string, and the interconnection mechanism is
usually the UNIX System shell. The programs are independent of one
another, so new functions can easily be added and old ones changed.
Because the text editor operates on unformatted text, arbitrary text
manipulation can always be performed even when the more specialized
routines are insufficient.

Stat uses the same mechanisms to bring similar power to the manipulation
of numbers. It consists of a collection of numerical processing routines
that read and write unformatted text strings. It includes programs to build
graphical files that can be manipulated using a graphical editor. And since
stat programs process unformatted text, they can readily be connected
with other UNIX System command-level (that is, callable from shell)
routines.

It is useful to think of the shell as a tool to build processing networks in the
sense of data-flow programming. Command-level routines are the nodes of
the network, and pipes and tees are the links. Data flows from node-to-
node in the network via data links.

NODE DESCRIPTIONS

Stat nodes are divided into four classes. These classes are:

» Transformer
e Summarizer
s Translator

» Generator.

GR 3-2

STAT - A TOOL FOR ANALYZING DATA

All these nodes accept the same command-line format:

e A command is a command-name followed by zero or more
arguments.

s A command-name is the name of any stat node.

An argument is a file-name or an option-string.
+ An option-string is a — followed by one or more options.

e An option is one or more letters followed by an optional value.
Options may be separated by commas.

s A file-name is any name not beginning with a —, or a — by itself (to
reference the standard input).

Each file argument to a node is taken as input to one occurrence of the
node. That is, the node is executed from its initial state once per file. If
no files are given, the standard input is used. All nodes, except generators,
accept files as input.

Vector(s)

All numerical data in stat are stored in text files. These text files are
vectors, where a vector is a sequence of numbers separated by delimiter
and a delimiter is anything that is not a number. These vectors are
processed by command-level routines called nodes.

Transformer Node
A transformer is a node that reads an input element, operates on it, and

outputs the resulting value. For example, suppose vector A contains

12345

GR 3-3

STAT - A TOOL FOR ANALYZING DATA

then the command:

[A root A<CR>

produces the square root of each input elements.

{1 1.41421 1.73205 2 2.23607

Af, for arithmetic function, is a particularly versatile transformer. s
argument is an expression that is evaluated once for each complete set of
input values. A simple example is:

[~af " 2+A"2" <CR>

that produces

[2 8 18 32 50

twice the square of each element from A. Expression arguments to af are
surrounded by quotes since some of the operator symbols have special
meaning to the shell.

The following is a list of all transformer commands that are discussed in
detail in Chapter 4:

GR 3-4

STAT - A TOOL FOR ANALYZING DATA

abs, absolute value

af, arithmetic function

ceil, ceiling function

cusum, cumulative sum function
exp, exponential function

floor, floor function

gamma, gamma function

list, list vector

log, logarithm function

mod, modulus function

pair, pair element group

power, power function

root, root function

round, rounded value

siline, generate a line given slope and intercept
sin, sin function

subset, generate a subset.

GR 3-5

STAT - A TOOL FOR ANALYZING DATA

Parameters

Most nodes accept parameters to direct their operation. Parameters are
specified as command-line options. Root, for example, is more general
than just square root, any root may be specified using the r option. For
example:

Ii root —r3 A<CR>

produces

[1 1.25992 1.44225 1.5874 1.70998

the cube root of each element from A.

Summarizers Node

A summarizer is a node that calculates a statistic for a vector. Typically,
summarizers read in all the input values; then, calculates and outputs the
statistic. For example, using the vector A from the previous example,

A=12345

[A mean A<CR>

GR 3-6

STAT - ATOOL FOR ANALYZING DATA

produces

[3

The following is a list of all summarizer commands that are discussed in
detail in Chapter 4:

bucket, generates buckets and counts

cor, ordinary correlation coefficient

hilo, finds high and low values

Ireg, linear regression

mean, mean function

peint, empirical cumulative density function point
prod, product function

gsort, quick sort

rank, rank of vectors

total, sum total

var, variance function.

GR 3-7

STAT - A TOOL FOR ANALYZING DATA

Building Networks

Nodes are interconnected using the standard UNIX System shell concepts
and syntax. A pipe is a linear connector that attaches the output of one
node to the input of another. As an example, to find the mean of the cube
roots of vector A is:

[Aroot -r3 A | mean<CR>

that produces

[1.39991

Often the required network is not so simple. Tees and sequence can be
used to build nonlinear networks. The tee is a pipe fitting that transcribes
the standard input to the standard output and makes a copy in a file. To
find the mean and median of the transformed vector A is;

[Aroot —r3 A | tee B | mean; total B<CR>

that produces

1.39991
6.99955

GR 3-8

STAT - A TOOL FOR ANALYZING DATA

Beware of the distinction between the sequence operator (;), and the
linear connector, the pipe (I). The pipe (1) takes the output from one
command and inputs it to the other command. Each command is run as a
separate process; the shell waits for the last command to end. The
sequence operator semicoln (;) allows you to put more than one command
on a command line. The output is not directed unless otherwise specified.

Command Substitution

There is a special case of nonlinear networks where the result of one node
is used as command-line input for another. Command substitution makes
this easy. For example, to generate residuals from the mean of A is simply

A=12345
mean A= 3

[Aaf " A~Enean ANl <CR>

that results in

[———2 -1 0 1 2

This example shows that command substitution does the operation in
grave accents (") first, then substitutes that value for the expression in the
grave accents. Here it takes the mean of A that is 3. It then substitutes the
value 3 for mean A in the grave accents. Then, the arithmetic expression
in quotation marks is completed.

GR 3-9

STAT - A TOOL FOR ANALYZING DATA

Generator Node

Thus far, vectors have been used but not created. One way to create a
vector is by using a generator. A generatoris a node that accepts no
input, and outputs a vector based on definable parameters. Gas is a
generator that produces additive sequences. One parameter to gas is the
number of elements in the generated vector. As an example, to create the
vector A that we have been using is:

[A gas —nS<CR>

that produces

I/l 2 3 4 5

To name the vector A, you can direct the output to A.

[Agas -n5 > ACCR>

GR 3-10

STAT - ATOOL FOR ANALYZING DATA

Vectors are, however, merely text files. Hence, the text editor can be
used to create and change the same vector.

$vi A<KCR>
<a> 1<CR>
2<CR>
3<CR>
4<CR>
5<CR>
<ESC>
<Z7>

A useful property of vectors is that they consist of a sequence of numbers
surrounded by delimiters, where a delimiter is anything that is not a
number. Numbers are constructed in the usual way

[sign](digits)(.digits)[e[sign]digits]

where fields are surrounded by brackets and parentheses. All fields are
optional, but at least one field surrounded by parentheses must be
present.

An example of entering the number 2.7x10° in a text file T would be:

“vi T<CR>

<a> +2.7e+-06<CR>
<ESC>

<ZZ7>

GR 3-11

STAT - A TOOL FOR ANALYZING DATA

Thus, vector B could also be created by building the file B in the text editor
as

$vi B<CR>

<a> lpartridge,2tdoves,3frhens,4cbirds,5gldnrings<CR>
<ESC>

<ZZ>

Note: Remember that a vector is separated by a delimiter. A
delimiter is anything that is not a number.

that, when read by

I’Alist B<CR>

produces

l/l 2 3 4 5

The following is a list of all generator commands that are discussed in
detail in Chapter 4.

s gas, generate additive sequence

e prime, generate prime numbers

GR 3-12

STAT - A TOOL FOR ANALYZING DATA

s rand, generate random sequence.

A Simple Example: Interacting with a Data Base

When used with the UNIX System tools for manipulating text, stat provides
an effective means for exploring a humerical data base. Suppose, for
example, there is a subdirectory called data containing data files that
include the lines:

path length = nn (nnis any number)
node count = nn

To access the value for node count from each file, sort the values into
ascending order, store the resulting vector in file C, and get a copy on the
terminal by typing

~grep " node count" data/+ | gsort | tee C<CR>
17 19 22 32 39
50 68 78 125 139

The slash (/) in the above example was used because we were in our
home directory when this command was entered. This will scan all files in
the subdirectory data.

If some of the data files have numbers in their name, we must protect
those numbers from being considered data. Using cat, this is easy:

~cat data/+ | grep " node count” | gsort | tee C<CR>

GR 3-13

STAT - A TOOL FOR ANALYZING DATA

To get a feel for the distribution of node counts, sheli iteration can be used
to an advantage. In this example, we will generate the lower hinge, the
median, and the upper hinge of the sorted vector A.

—
for iin .25 .5 .75<CR>
do point -p$i A<CR>
done<CR>
24.5
44.5
75.5

Translators Node

Translators are used to view data pictorially. A translator is a node that
produces a stream of a different structure from what it consumes.
Graphical translators consume vectors and produce pictures in a language
called GPS, for graphical primitive string. A GPS is a format for storing a
picture. A picture is defined in a Cartesian plane of 64K points on each
axis. The plane, or universe, is divided into 25 square regions numbered 1
to 25 from the lower left to the upper right (see Figure 2-3.) Various
commands exist that can display and edit a GPS.

The following is a list of all translator commands that are discussed in
detail in Chapter 4.

» bar, build a bar chart

hist, build a histogram

» pie, build a pie chart

plot, plots a x-y plot.

GR 3-14

STAT - A TOOL FOR ANALYZING DATA

For example:

Hist is a trans/ator that produces a GPS that describes a histogram from
input consisting of interval limits and counts. The summarizer bucket
produces limits and counts, thus:

~bucket A | hist | tdCR>

generates a histogram of the data of vector A and displays it on a display
terminal (Figure 3-1). Td translates the GPS into machine code for
TEKTRONIX 4014 display terminals.

A wide range of X-Y plots can be constructed using the translator plot. For
example, to build a scatter plot of path length with node count (Figure 3-
2) is:

~grep " path length” data/x | title —v" path length" >A<CR>
grep " node count” data/* | title —v" node count”
| plot ~FA,dg ! td<CR>

A vector may be given a title using title. When a titled vector is plotted,
the appropriate axis is labeled with the vector title. The plot -FA,dg uses
the A vector for the x-axis and standard input for the y-axis.

GR 3-15

STAT - A TOOL FOR ANALYZING DATA

When a titled vector is passed through a transformer, the title is altered to
reflect the transformation. Thus, in a graph of log node count versus the
cube root of path length, such as

~grep " node count" | title —v"' node count" | log >B<CR>
root —3 A | plot ~F—,dg B | td<CR>

the axis labels automatically agree with the vectors plotted (Figure 3-3).
The plot -F-,dg B uses the B vector as the y-axis and standard input for the
X-axis.

GR 3-16

STAT - ATOOL FOR ANALYZING DATA

[e e s e e e e e e e e]
-4+ — — —— — — — e e s e e]
— 4 — — — —] — e e] ————— e L s s —] |— —

17 47.5 78 109 138

Figure 3-1. bucket A | hist | td

GR 3-17

STAT - ATOOL FOR ANALYZING DATA

140

=]

120

100 —

MODE COUNT
o

20 1T
. | l | | |

0 50 100 150 200 250 300
PATH LENGTH

Figure 3-2. Scatter Plot

GR 3-18

STAT - ATOOL FOR ANALYZING DATA

log NODE COUNT

0
N S N S SN N N

2 25 3 385 4 45 5 5.5
root3 PATH LENGTH

Figure 3-3. Transformed Scatter Plot

6

6.5

7

GR 3-19

STAT - A TOOL FOR ANALYZING DATA

EXAMPLES

Example 1

Calculate the total value of an investment held for many years at
an interest rate compounded annually.

SOLUTION

p
~Principal=1000<CR>
“echo Total return on $Principal units compounded annually<CR>
“echo " rates:\t\t\c" ; gas —s.05,t.15,i.03 | tee rate<CR>
“for Years in 1 3 5 8<CR>
“do echo " $¥ears year(s):\t\c" ; af " $Principal+(L+rate) $Years" <CR>
"done<CR>

Total return on 1000 units compounded annually rates:
0.05 0.08 0.11 0.14

1 year(s): 1050 1080 1110 1140

3year(s): 1157.62 1259.71 1367.63 1481.54
5year(s): 1276.28 1469.33 1685.06 1925.41
8 year(s): 1477.46 185093 230454 285259

Note:

Notice the distinction between vectors and constants as operands
in the expression to af. The shell variables $Principal and $Years

are constants to af, while the file rate is a vector. Af executes the
expression once per element in rate.

GR 3-20

STAT - A TOOL FOR ANALYZING DATA

Example 2
PROBLEM

Three ordered vectors (A, B, and €) of scores from many tests are
given. Each vector is from one test-taker, each element in a vector
is the score on one test. There are missing scores in each vector
shown by the value —1. Generate three new vectors containing
scores only for those tests where no data is missing.

GR 3-21

STAT - A TOOL FOR ANALYZING DATA

SOLUTION

o~

~echo Before:<CFR>
"gas —nMank AMl| tee N | af " label,A,B,C" <CR>

“foriin N B C A<CR>

“do subset —FA,l-1 $i >s$i; done<CR>
foriin N A C B<CR>

"do subset —FsB,1-1 s$i | yoo s$i; done<CR>
“foriin N ABC<CR>

“do subset —FsC,I-1 s$i | yoo s$i; done<CR>
“echo " \nAfter:" <CR>

“af " sM,sA,sB,sC" <CR>

Before

1 5 6 -1
2 7 10 10
3 -1 10 9
4 10 ~1 8
5 6 5 -1
6 5 7 5
7 -1 7 8
8 -1 -1 8
9 3 -1 8
10 6 10 i0
11 7 5 7
After:

2 7 10 10
6 5 7 5
10 6 10 10
11 7 5 7
Notes:

1. The approach is to eliminate those elements in all vectors that
correspond to —1 in the base vector. Each of the three vectors takes
a turn at being the base. It is important to subset the base last. The
command yoo (see gutil in the AT&T 3B2 Computer User Reference
Manual) takes the output of a pipeline and copies it into a file used in
the pipeline. This cannot be done by redirecting the output of the
pipeline as this would cause a concurrent read and write on the same
file.

GR 3-22

STAT - ATOOL FOR ANALYZING DATA

2. The printing of the "Before’” matrix illustrates a useful property of af.
The first name in an expression that does not match any name in the
present working directory is a reference to the standard input. In this
example, label references the input coming through the pipe.

Example 3

PROBLEM

Generate a bar chart of the percent of execution time consumed
by each routine in a program.

SOLUTION

~prof | cut —c1-15 | sed —e 1d —e ™" / 0.0/d" —e " s/ *//" >P<CR>
echo These are the execution percentages; cat P<CR>
“title P —v" execution time in percent’ | bar —xa —yl0,

yh100 | label ~br—45,FP | td<CR>

These are the execution percentage:

_fork 32.9
_creat 14.3
_sbrk 14.3
_read 14.3
_open 14.3
_prime 9.9

Note:

Prof is a UNIX System command that generates a listing of execution
times for a program (see prof(1)). Cut and sed are used to eliminate
extraneous text from the output of prof. (Because verbiage can get in the
way, stat nodes say little.) Notice that P is a vector to title, while it is a
text file to cat and label.

GR 3-23

STAT - ATOOL FOR ANALYZING DATA

Figure 3-4 shows the output of these commands.

a8
91
84
77
70
63
58
49
42
35

EXECUTION TIME IN PERCENT

28
21

14

GR 3-24

Figure 3-4. Bar Chart Showing Execution Profile

STAT - A TOOL FOR ANALYZING DATA

Example 4

PROBLEM

Plot the relationship between the execution time of a program and
the number of processes in the process table.

SOLUTION

The first program generates the performance data

~for i in Mkas —n12CR>

"do<CR>

“ps —ae | we — >>Procs&<CR>

time prime ~n1000 > /dev/null 2>>Times<CR>
sleep 300<CR>

"done<CR>

The second program analyzes and plots the data

GR 3-25

STAT - A TOOL FOR ANALYZING DATA

~for i in real user sys<CR>
"do<CR>
“grep $i Times | sed "s/$i//" |
awk —F: " { If(NF==2) print \$1+60-+\%$2; else
print }* | title —v" $i time in seconds” >$i<CR>
“siline —Mreg —~o0,FProcs $i MProcs > $i.fit<CR>
"done<CR>
“title ~v" number of processes” Procs | yoo Procs<CR>
“plot —dg,FProcs real —rl2 >R12<CR>
“"plot —ag,FProcs real fit —12 >>R12<CR>
"plot —dg,FProcs sys —r13 >R13<CR>
“plot —ag,FProcs sys.fit —r13 >>R13<CR>
“plot —dg,FProcs user —r8 >R8<CR>
“plot —ag,FProcs user.fit —r8 >>R8B<CR>
"ged R12 R13 R8<CR>

Notes:

1. The performance data is the execution time, as reported by the UNIX
System time command, to generate the first 1000 prime numbers.
Times outputs three times for each run:

s The time in system routines
» The time in user routines
» Total real time.

2. The output of the time command is saved in the file Times. Each of
these types of time is treated separately by the analysis program.

3. In the file Procs are the number of processes running on the system
during each execution of prime. The short awk program converts
“minutes:seconds’ format to “seconds.’”’ Lreg does a linear regression
of the time vectors on the size of the process table. Siline generates
a line based on the parameters from the regression. One plot is
generated for each type of time. Each plot is put into a different
region so that they can be displayed and manipulated simultaneously
in ged.

GR 3-26

STAT - A TOOL FOR ANALYZING DATA

4. Figure 3-5 shows the output of these commands.

w 110 2.4
2 100 2 2.2
< 90 a3 2
“ g % o1.8
70 Z 1,
g 80 w 1.4
— 50 H 1.2
= 40 w 1
& 30 » 0.8
20 0.6 o o
10 L i I} L 1 0.4 i J. 4 L 1.
10 15 20 25 30 35 40 10 15 20 25 30 35 40
NUMBER OF PROCESSES NUMBER OF PROCESSES
@ 8.4
_—
S g2l
th
= 81
[]
w 7.81
5
~ 7.6F
o-
w74}
oo }
7.2}
7 .

i] | i
10 15 20 25 30 35 40
NUMBER OF PRDCESSES

Figure 3-5. Relationship Between Execution Time and Number of
Processes

GR 3-27

Chapter 4

COMMAND DESCRIPTIONS

ceil — Celling FUNCtion ittt inee e e annnenn
cor — QOrdinary Correlation Coefficient
cusum — Cumulative SuUm L. e
cvrtopt — Options Converter e e
dtoc — Directory Table of Contents ineennnn.
erase — Erase Character. it it
exp — Exponential Function
floor — Floor Function it et e e e
gamma — Gamma Function i i
gas — Generate Additive Sequence. e
B GPS UMD . . ot it e e e
ged — Graphical Editor. e
graph — Draw a Graph i i i i e e
graphics — Access Graphical and Numerical Commands
gtop — GPS to Plot(5) Formatt
hardcopy — Sends Make Copy Characteriinsneenannnn
hilo — High and Low Valuesttt et e e e et
hist — Build a Histogram
hpd — Display GPS on a HP 7221A Graphics Plotter
label — Label the Axisof aDataPlot iiniiiininnnnnn.
List— List Vector oo i ittt
log—lLogarithm f e amaaaa e A e
Ireg — Linear Regression it enameeeanannnnn

MEAN ~— AN ot i h i mn e nn st en s a e e e 4-75

mod — Moduto FUnction i n i nianaansanana s 4-77
pair — Pair Element Group i 4-79
pd — Plot(B) Format DUmMP oottt i it n s natanna e 4-81
pie—BuildaPieChart it iriiiinininannneanens 4-83
plot—Plotan X-¥ Graph i 4-87
point — Empirical Cumulative Density Function Point 4-91
power — Power Funclion e 4-93
prime — Generate Prime Numbers. 0t iiiiieian 4-95
prod — Product e 4-97
ptog — Plot(5) Format to GPS Format i e 4-99
gsort — QUICK SOt e e 4-103
quit — Terminate Sessionm. i it i e r i 4-105
rand — Generate Random Sequencettt iana e 4-107
rank — RanXkX of Vector i i et 4-109
remcom — Remove Commentsttt 4-111
root — ROOE FUNCHION i i i it c e e a i ianan 4-113
round — Rounded Value i n it e 4-115
siline — Generate a Line Given Slope and Intercept 4-117
Sin — Sine FUNCHION it it inem et 4-121
spline — Interpolate Smooth Curve it ieennsannnannn 4-123
subset — Generate aSubset e i e 4-127
td — Display GPS on a TEKTRONIX 4014 i eiinnannnnn 4-129
tekset — Send Reset Character for TEKTRONIX 4014 Display

=T 1Y 1T A 4-131
title — Title aVector or GPS.o i i 4-133
total — SUM Total. i e it a e a e 4-137
tplot — Graphics FIter ittt i en i te e e naaenaaansaan 4-139
ttoc — Make Textual Table of Contentsttt nnnnn. 4-141
VAr— Varianceo i e e e e A 4-145
vioc — Visual Tableof Contentsttt inennnennn 4-147
whatis — Brief Online Documentation 4-149

COMMAND SUMMARY

The Graphics Utilities provide 60 UNIX System commands. A summary of
these commands are provided in Figure 4-1.

COMMAND DESCRIPTION

abs Absolute value, its output is the absolute value for each
element of the input vector(s).

af Arithmetic function, its argument is an expression that is
evaluated once for each complete set of input values.

Figure 4-1. Graphics Utilities—COMMAND SUMMARY (Sheet 1 of 8)

GR 4-1

COMMAND DESCRIPTIONS

COMMAND

DESCRIPTION

bar

Bar chart, its output is a GPS that describes a bar chart
display.

bel

Bel, causes most terminals to sound an audible tone, a
useful nonvisual signal.

bucket

Bucket, breaks the range of a vector into intervals and
counts how many elements from the vector fall into each
interval. The output is a vector with odd elements being the
interval boundaries and even elements being the counts.

ceil

Ceiling function, its output is a vector with each element
being the smallest integer greater than the corresponding
element from the input vector(s) (rounds up to the next
integer).

cor

Ordinary correlation coefficient, its output is the ordinary
correlation coefficient between a base vector and another
vector.

cusum

Cumulative sum, its output is a vector that calculates the
sum of all the elements found in the input vector.

Figure 4-1. Graphics Utilities—COMMAND SUMMARY (Sheet 2 of 8)

GR 4-2

COMMAND DESCRIPTIONS

COMMAND

DESCRIPTION

cvrtopt

Cvrtopt, it reformats the arguments (usually the command
line arguments of a calling shell procedure) to improve
processing by shell procedures.

dtoc

Directory table of contents, its output is a list of all readable
subdirectories beginning at a specified directory or the
current directory.

erase

Erases the screen of the TEKTRONIX 4014 displiay terminal.

exp

Exponential function, its output is a vector with elements e
raised to the x power, where e is about 2.71828, and x are
the elements from the input vector(s).

floor

Floor function, its output is a vector with each element
being the largest integer less than the corresponding
element from the input vector(s) (rounds down to next
integer).

gamma

Gamma function, its output is the gamma value for each
element of the input vector(s).

gas

Generate additive sequence, its output is a vector of number
elements determined by the parameters s (start), t
(terminate), and i (interval).

gd

Gd, prints a human readable listing of GPS.

Figure 4-1. Graphics Utilities—COMMAND SUMMARY (Sheet 3 of 8)

GR 4-3

COMMAND DESCRIPTIONS

COMMAND DESCRIPTION

ged Graphical editor, allows displaying and editing of GPS.

graph Graph, it takes pairs of numbers from the standard input as
abscissas and ordinates of a graph. Then, it draws a straight
line connecting successive points.

graphics Graphics, puts the 3B2 Computer into the graphics mode.

gtop Gtop, it transforms a GPS into plot(b) format displayable by
the tplot command.

hardcopy |{When issued from a TEKTRONIX 4014 display terminal with a
hard copy unit (printer), it generates a screen copy on the
unit.

hilo Hilo, its output is the high and low values found across all
the input vector(s).

hist Hist, its output is a GPS that describes a histogram display.

hpd Display GPS on a HP 7221A Graphics Plotter, its output is
scope coded for a HP 7221A Plotter.

label Label, it appends the axis labels from a label file to a GPS of
a data plot (like that produced by hist, bar, and plot).

list List, its output is a listing of the elements of the input

vector(s).

Figure 4-1. Graphics Utilities—COMMAND SUMMARY (Sheet 4 of 8)

GR 4-4

COMMAND DESCRIPTIONS

COMMAND DRESCRIPTION

log Logarithm, its output is the logarithm for each element of
the input vector(s).

ireg Linear regression, its output is the slope and intercept from
the least squares linear regression of each vector on a base
vector.

mean Mean, its output is the mean of the elements in the input
vector(s).

maod Modulo function, its output is a vector with each element

being the remainder of dividing the corresponding element
from the input vector(s).

pair Pair element groups, its output is a vector with elements
taken alternately from a base vector and from a vector.

pd Pd, prints a human readabile listing of plot(b) format.

pie Pie, its output is a GPS that describes a pie chart.

plot Plot, its output is a GPS that describes an x-y graph.

point Empirical cumulative density function point, its output is a

linearly interpolated value from the empirical cumulative
density function (e.c.d.f) for the input vector.

Figure 4-1. Graphics Utilities—COMMAND SUMMARY (Sheet 5 of 8)

GR 4-5

COMMAND DESCRIPTIONS

COMMAND

DESCRIPTION

power

Power function, its output is a vector with each element
being a power of the corresponding element from the input
vector(s).

prime Generate prime numbers, its output is a vector of number
elements determined by the parameters low and high.

prod Product, its output is the product of the elements in the
input vector(s).

ptog Ptog, transforms plot(5) format into a GPS.

gsort Quick sort, its output is a vector of the elements from the
input vector in ascending order.

quit Quit, ends the current terminal session.

rand Generate random sequence, its output is a vector of number
elements determined by the parameters low, high, multiplier,
and seed.

rank Rank, its output is the number of elements in each input
vector.

remcom Remove comments, the input is copied to its output, with

the comments removed.

Figure 4-1. Graphics Utilities——COMMAND SUMMARY (Sheet 6 of 8)

GR 4-6

COMMAND DESCRIPTIONS

COMMAND

DESCRIPTION

root

Root function, its output is a vector with each element being
the root of the corresponding element from the input
vector(s).

round Rounded value, its output is the rounded value for each
element of the input vector(s).

siline Siline, it generates a line given slope and intercept.

sin Sine, its output is the sine for each element of the input
vector(s).

spline Interpolate smooth curve, it takes pairs of numbers from the
standard input as abscissas and ordinates of a function.

subset Generates a subset, its output is elements selected from the
input based on a key and option(s).

td Td, it displays a GPS on a TEKTRONIX 4014, its output is
scope coded for a TEKTRONIX 4014 terminal.

tekset Tekset, clears the display screen, sets the display mode to

alpha, and the characters to the smallest font.

Figure 4-1. Graphics Utilities—COMMAND SUMMARY (Sheet 7 of 8)

GR 4-7

COMMAND DESCRIPTIONS

COMMAND

DESCRIPTION

title

Title, it appends a title to a vector or it appends a title to a
GPS.

total Total, its output is the sum total of the elements in the input
vector(s).

tplot Tplot, it reads plotting instructions from the standard input
for a particular terminal.

ttoc Ttoc, its output is the textual table of contents generated by
the .H macro of the nroff or troff raw data of the Document
Workbench Utilities.

var Var, it finds the difference between the slope point and the
outer point.

vtoc Visual table of contents, its output is a GPS that describes a
Visual table of contents (vtoc or hierarchical chart) of the
Textual Table of Contents (TTOC) entries from the input.

whatis Brief online documentation, prints a brief description of each
command given. If no command is given, then the current
list of description commands are printed.

yoo Yoo, is a piping primitive that deposits the output of a

pipeline into a file used in the pipeline.

Figure 4-1. Graphics Utilities—COMMAND SUMMARY (Sheet 8 of 8)

GR 4-8

COMMAND DESCRIPTIONS

COMMAND DESCRIPTIONS

abs — Absolute Value

General

The absolute value (abs) is a transformer node that is used to find the
absolute value of each element of the input vector(s). If no vector is given,
then the standard input is assumed.

Command Format

abs [-option] [vector(s)]

Option:

cn n is the number of output elements per line. By default,
c = b,

GR 4-9

COMMAND DESCRIPTIONS

Command Example

The following example will output the absolute value of each element of
the vector A, two per line.

A=23-4455-6670

~abs -c2 A<CR>
23 44

55 66
70

GR 4-10

COMMAND DESCRIPTIONS

af — Arithmetic Function

General

The arithmetic function (af) is a particularly versatile transformer node. Its
argument is an expression that is evaluated once for each complete set of
input values. The input values comes from vectors specified by an
expression. The expression consists of an operand and an operator.

An operand is either a vector, function, or constant.

Expression operands are:

Vectors:

Functions:

Constants:

Filenames with the restriction that they must begin with
a letter and be composed only from letters, digits, '_’,
and ".". The first unknown filename (one not in the
current directory) references the standard input. A

warning will appear if a file cannot be read.
The name of a command, followed by the command
arguments in parentheses. Arguments are written in

command-line format.

Floating point or integer (but not E notation) number.

The operators are listed below in order of their decreasing precedence.

The x; (v;) represents the start element from X (V) for the expression.

o 'Y —reference y;.;. Y41 is consumed; the next value from Yis Viio.
Yis a vector.

e X—Y— x; raised to the Yi power, negation of y;. Association is left
to right. X and Y are expressions.

GR 4-11

COMMAND DESCRIPTIONS

o XY X/Y X%Y— x; multiplied by, divided by, modulo y;.
Association is left to right. X and Y are expressions.

e X+Y X—-Y— x; plus, minus y;. Association is left to right. X and
Y are expressions.

o X,Y—vyields x;, y;. Association is left to right. Xand Y are
expressions.

Note: Parentheses may be used to alter precedence. Because
many of the operator characters are special to the shell, it is good
practice to surround expressions in quotes.

Command Format

{af [-option(s)] expression(s)

Options:
en n elements per line in the output
t output is titled from the vector on the standard input
v verbose mode, function expansions are echoed.

GR 4-12

COMMAND DESCRIPTIONS

Command Example

The following example will solve the expression y=3(A)? for each element
of vector A, two per line.

A=12345

~af -c2" 3%A 2" <CR>
3 12

27 48
75

GR 4-13

COMMAND DESCRIPTIONS

bar — Build a Bar Chart

General

The bar command is a translator node thats output is a GPS that describes
a bar chart. The input is a vector of counts that describes the y-axis. By
default, x-axis will be labeled with integers beginning at 1; for other labels,
see label. If no vector is given, then the standard input is assumed.

Command Format

[bar [-option(s)] [vector(s)]

Options:

rn

Wi

xn (yn)

Suppress axis

Plot bar chart with bold weight lines; otherwise, use
medium.

Do not build a frame around plot area.
Suppress background grid.

Put the bar chart in GPS region n, where nis between 1
and 25, inclusively. The default is 13.

nis the ratio of the bar width to center-to-center
spacing expressed as a percentage. Default is 50, giving

equal bar width and bar space.

Position the bar chart in the GPS universe with x-origin
(y-origin) at n.

GR 4-15

COMMAND DESCRIPTIONS

xa (ya) Do not iabel x-axis (y-axis).
yin nis the y-axis low-tick value.
yhn n is the y-axis high-tick value,

Command Example

The following example will show how to create a bar chart of the vector C.

=1236789

~bar Gl td<CR>

where

» bar C output is a GPS describing a bar chart.

» td command displays the drawing on a TEKTRONIX 4014 display
terminal.

See Figure 4-2 for a result of the drawing.

GR 4-16

COMMAND DESCRIPTIONS

—_— — —

—_—

Y S

—— e —— e]

Figure 4-2. Plot of bar C | td

GR 4-17

COMMAND DESCRIPTIONS

bel — Bell Character

General

The bel command causes most terminals to sound an audible tone, which
is a useful nonvisual signal.

GR 4-19

COMMAND DESCRIPTIONS

bucket — Generate Buckets and Counts

General

The bucket command is a summarizer node that breaks the range of a
vector into intervals and counts. The output is a vector with odd values
being bucket limits (in parentheses) and even values being the number of
elements from the input within the limits. Input is assumed to be sorted. If
no input vector(s) are given, the standard input is assumed.

Command Format

bucket [-option(s)] [sorted vector(s)]

Options:

an
cn
Fvector

hn

Choose limits such that nis the average count per bucket.
n elements per line in the output.

Take limit values from vector.

n is the highest limit.

n is the interval between limits.

n is the lowest limit.

n is the number of buckets.

GR 4-21

COMMAND DESCRIPTIONS

Command Example

The following example will determine the intervals and counts of the vector
D, by using the bucket command.

D =10 20 30 40 50

~bucket D<CR>

(10) 2 (23.333) 1 (36.6667) 2 (50)

where

o The first bucket interval is between 10 and 23.3. The bucket count
is 2, composed of elements 10 and 20.

» The second bucket interval is between 23.3 and 36.6. The bucket
count is 1, composed of element 30.

» The third bucket interval is between 36.6 and 50. The bucket count
is 2, composed of elements 40 and 50.

GR 4-22

COMMAND DESCRIPTIONS

ceil — Ceiling Function

General

The ceiling function (ceil) is a transformer node. The output is a vector
with each element being the smallest integer greater than or equal to the
corresponding element from the input vector(s). If no vector is given, then
the standard input is assumed.

Command Format

[ceil [-option] [vector(s)]

Options:

cn n is the number of output elements per line.

GR 4-23

COMMAND DESCRIPTIONS

Command Example

The following example will find the ceiling function of each element of the
input vector E.

E=10.5-20.53040.6 50

~ceil E<CR>

11 -20 30 41 50

GR 4-24

COMMAND DESCRIPTIONS

cor — Ordinary Correlation Coefficient

General

The ordinary correlation coefficient (cor) is a summarizer node that
determines if a base vector and another vector are related. The base
vector is specified by using the F option. If the base or vector is not given,
it is assumed to come from the standard input. Each vector is compared
to the base. Both base and vector must be of the same length.

Command Format

[cor [-option] [vector(s)]

Option:

Fvector vector is the base.

GR 4-25

COMMAND DESCRIPTIONS

Command Example

The following is an example of finding the correlation coefficient between
the base vector A and another vector B.

A =10 20 30 40 50
B = 20 30 40 50 60

~cor -FA B<CR>

®
o
il

vector(s) are independent.

®
—_
Il

vector(s) are related.

+ -1 = vector(s) are inverse related.

Note: The ordinary correlation coefficient does not have to be only
0,1,-1. It could be .9, .3, ..etc.

where
.9 shows a strong relationship between vectors.
3 shows a weak relationship between vectors.

GR 4-26

COMMAND DESCRIPTIONS

cusum — Cumulative Sum

General

The cumulative sum (eusum) is a transformer node that calculates the
running sum of all the elements found in the input vector. If no input
vector is given, then the cusum implements a running accumulator. The
data is then entered by the keyboard until an end-of-file command is given.
On most terminals, the end-of-file command is control-d (<CTRL-d>).

Command Format

[cusum [-option] [vector(s)]

Option:

cn nis the number of output elements per line.

GR 4-27

COMMAND DESCRIPTIONS

Command Example

The following example finds the cumulative sum of all the elements of
vector F, two per line.

F =20 3040 50 60

~cusum ~¢2 F<CR>

20 50
90 140
200

The following example uses a running accumulator for the standard input in
finding the cumulative sum of the values.

-~

~eusum< CR>
20<CR>

20 30<CR>
50 40<CR>
90 50<CR>
140 60<CR>
200
<control-d>

GR 4-28

COMMAND DESCRIPTIONS

cvrtopt — Options Converter

General

The cvrtopt command reformats arguments (usually the command line
arguments of a calling shell procedure) to improve processing by shell
procedures. An argument is either a filename (a string not beginning with a
7 or a’ by itself) or an option string (a string of options beginning with a
). Qutput is of the form:

-option -option . . . filename(s)

All options appear singularly and preceding any filenames. Option names
that take values (e.g., -r1.1) or are two letters long must be described
through options to cwrtept. Output is to the standard output.

Cvrtopt is usually used with set, in the following way, as the first line of a
shell procedure:

set - ‘cvrtopt [-option(s)] $@°

Set will reset the command argument string ($1,$2,...) to the output of
cvrtopt. The minus option to set turns off all flags so that the options
produced by cvrtopt are not interpreted as options to set.

GR 4-29

COMMAND DESCRIPTIONS

Command Format

cvrtopt [-option(s)] arg(s)

s String accepts string values.
f String accepts floating point numbers as values.
i String accepts integers as values,

t String is a two letter option name that takes no value.

Note: String is a one or two letter option name,

Command Example

The following example shows how the cvrtopt command breaks up the
option string (-lds).

~cvriopt -lds<CR>

-A-d-s

GR 4-30

COMMAND DESCRIPTIONS

dtoc — Directory Table of Contents

General

The dtoc command outputs a table of contents that describes a directory
structure. It lists all readable subdirectories beginning at directory. If no
directory is given, the list begins at the current directory. The output is as
a textual table of contents (TTOC) readable by vtoc. The number of
nondirectory files in each directory is shown in the marked field of the
table of contents. The fields from left to right are level number, directory
name, and the number of ordinary readable files contained in the
directory.

Command Format

[dtoc [directory]

Command Example

The following is an example of using the dtoc command to describe the
directory mtp.

~dtoc<CR>

0. "mtp" 13

GR 4-31

COMMAND DESCRIPTIONS

where

» 0. is the level number.
» mtp is the directory name.

o 13 is the number of files in that directory.

GR 4-32

COMMAND DESCRIPTIONS

erase — Erase Character

General

The erase command erases the screen of the TEKTRONIX 4014 display
terminal.

GR 4-33

COMMAND DESCRIPTIONS

exp ~—— Exponential Function

General

The exponential function (exp) is a transformer node. The outputis a
vector with elements e raised to the _x power, where e is about 2.71828,
and _x are the elements from the input vector(s). If no vector is given,
then the standard input is assumed.

Command Format

l/exp [-option] [vector(s)]

Option:

cn nis the number of output elements per line.

Command Example
The following is an example of finding the exponential function of each
element of vector G, the values are printed out two per line.

G =10 20 30 40 50

GR 4-35

COMMAND DESCRIPTIONS

rexp -c2 G<CR>
22026.5 4.85165e+08

1.06865e+13 2.35385e+17
5.18471e+21

GR 4-36

COMMAND DESCRIPTIONS

floor — Floor Function

General

The floor function (floor) is a transformer node. The output is a vector
with each element being the largest integer less than the corresponding
element from the input vector(s). If no vector is given, then the standard
input is assumed.

Command Format

{floor [-option] [vector(s)]

Option:
cn n is the number of output elements per line.

Command Example

The following example will find the floor function of each element of the
input vector E.

E = 10.5-20.5 30 40.6 50

~floor E<CR>

10 -21 30 40 50

GR 4-37

COMMAND DESCRIPTIONS

gamma — Gamma Function

General

The gamma function (gamma) is a transformer node. The output is the
gamma value for each element of the input vector(s). If no vector is given,
then the standard input is assumed.

Command Format

[gamma [-option] [vector(s)]

Option:
cn n is the number of output elements per line.

Command Example

The following example will find the gamma function of each element of the
input vector A. The output will be placed three per line.

A =10 20 30 40 50

~gamma -¢3 A<CR>

367880 1.21645e+17 8.84176e+30
2.03979%e+46 6.08282e+62

GR 4-39

COMMAND DESCRIPTIONS

gas — Generate Additive Sequence

General

The Gas command is a generator node that produces additive sequences.
A generator is a node that accepts no input, and outputs a vector based on
definable parameters. These parameters are s (start), t (terminate), and i
(interval). These parameters are set by command options.

Command Format

gas [-option(s)]

Options:

cn n elements per output line.

in n defines interval. If not given, interval = 1.

nn n = number. If not given, number = 10, unless
terminate is given, then number = (terminate - start)
divided by the interval.

s$n n = start. If not given, start = 1.

thn n = terminate. If not given, terminate = positive infinity.

The default value of number usually terminates
generation before positive infinity is reached.

GR 4-41

COMMAND DESCRIPTIONS

Command Example

The following example will generate a vector that has values starting at 0,
incremented by 10, and terminated at 100.

~gas -s0,1100,i10<CR>

10 20 30 40 50 60 70 80 90 100

GR 4-42

COMMAND DESCRIPTIONS

gd — GPS Dump

General

The Gd command prints a human readable listing of GPS. If no file is given,
the standard input is used.

Command Format

gd [GPS file(s)]

Command Example

The following is an example of creating a GPS of the expression y=x? and
printing the GPS in readable form.

-~

lines
text
text
text
text
text
text
text

~gas|af "x'2" { plot >A<CR>
gd A<CR>

col O fon 16 tsz200 tro
col O fon 16 tsz200 tro
col O fon 16 tsz200 tro
col O fon 16 tsz200 tro
col O fon 16 ts2200 tro
col O fon 16 tsz200 tro
col O fon 16 tsz200 tro

(All data not shown.)

0

0
0
0
o
0
0

comment 37777700002 37777771037 37777771037
col0 wtl st0 -3553 -3553

5554 -3553
-3553-3833 0
-2642 -3833 1
-1732-3833 2
-821 -3833 3
90 -3833 4
1001 -3833 5
1911 -3833 6

GR 4-43

COMMAND DESCRIPTIONS

ged — Graphical Editor

General

The graphical editor (ged) allows displaying and editing of the GPS. The
graphics editor will not be discussed in detail at this point. Chapter 5 has
been devoted to the graphics editor.

R Invoke the editor in a restricted shell environment.

e Do not erase screen before initial display.

rn Window on GPS region n, n between 1 and 25,
inclusively.

u Window on the entire GPS universe.

Command Example

The following is an example of how to enter the graphics editor.

~ged<CR>
E3

GR 4-45

COMMAND DESCRIPTIONS

graph — Draw a Graph

General

The graph command, with no options, takes pairs of numbers from the
standard input as abscissas and ordinates of a graph. Successive points are
connected by straight lines. The graph is encoded on the standard output
for display by the tplot command.

If the coordinates of a point are followed by a non-numeric string, that
string is printed as a label beginning on the point. Labels may be
surrounded with quotes (*), in which case they may be empty or contain
blanks and numbers; labels never contain new-lines.

Command Format

[graph [-options]

Options:

a Supply abscissas automatically (they are missing from
the input); spacing is given by the next argument
(default 1). A second optional argument is the starting
point for automatic abscissas (default O or lower limit
given by -x).

b Break (disconnect) the graph after each label in the
input.

c Character string given by next argument is default label

for each point.

GR 4-47

COMMAND DESCRIPTIONS

Next argument is grid style, O no grid, 1 frame with
ticks, 2 full grid (default).

Next argument is labeled for graph.

Next argument is mode (style) of connecting lines: O
disconnected, 1 connected (default). Some devices give
distinguishable line styles for other small integers (such
as the TEKTRONIX 4014 2=dotted, 3=dash-dot,
4=short-dash, 5=long-dash).

Save screen, do not erase before plotting.

If 1is resent, x axis is logarithmic. Next 1 (or 2)
arguments are lower (and upper) x limits. Third
argument, if present, is grid spacing on x axis. Normally
these quantities are determined automatically.

Similarly for y.

Next argument is fraction of space for height.

Similarly for width.

Next argument is fraction of space to move right before
plotting.

Similarly to move up before plotting.

Transpose horizontal and vertical axis. (Option -x now
applies to the vertical axis.)

Note: A legend indicating grid range is produced with a grid unless
the -s option is present. If a specified lower limit exceeds the upper
limit, the axis is reversed.

GR 4-48

COMMAND DESCRIPTIONS

Command Example

The following is an example of plotting an x-y graph using the input vector
A.

A=00
12
34
56
79

1011

~graph A | tplot<CR>

Note: The output of graph A is a plot(5) format that requires the
tplot command to draw on a display terminal.

The results of the drawing is shown in Figure 4-3.

GR 4-49

COMMAND DESCRIPTIONS

Figure 4-3. Plot of graph A | tplot

GR 4-50

COMMAND DESCRIPTIONS

graphics — Access Graphical and Numerical Commands

General

The graphics command prefixes the path name /usr/bin/graf to the
current $PATH value, changes the primary shell prompt to ~, and executes
a new shell. The directory /usr/bin/graf contains all the graphics
subsystem commands. To restore the environment that existed before
issuing the graphics command, type EOT (<CTRL-¢> control-d on most
terminals). To log off from the graphics environment, type quit. If the -r
option is given, access to the graphical commands is created in a
restricted environment; that is, $PATH is set to

: /usr /bin /graf: /rbin: /usr /rbin and the restricted shell, rsh, is invoked.

Command Format

;$graphics< CR>

GR 4-51

COMMAND DESCRIPTIONS

gtop — GPS to Plot(5) Format

General

The gtop command transforms a GPS into plot(5) format. The plot(5)
format can be displayed on the 5620 DMD display terminal by using the
tplot command. Input is taken from a file, if given; otherwise from the
standard input. GPS objects are translated if they fali within the window
that circumscribes the first file unless an option is given. Output is to the
standard output.

Command Format

[gtop [-option(s)] [GPS file(s)]

Options:
rn Translate objects in GPS region n.
u Translate all objects in the GPS universe.

GR 4-53

COMMAND DESCRIPTIONS

Command Example

The following is an example showing the differences between displaying a
drawing with a GPS and displaying a drawing with a plot(5) format.

With a GPS the command line is:

[Agas taf"x'2" | plot! td<CR>

With a plot(5) format the command line is:

[Agas laf " x'2" ! plot! gtop ! tplot<CR>

where

o The output of plot is a GPS.
» td command displays a GPS on a TEKTRONIX 4014,
» gtop transforms the GPS into plot(5) format.

» tplot command can display plot(5) format on such devices as a DASI
300, DASI 300s, DASI 450, TEKTRONIX 4014, Versatec* D12200A.

* Registered Trademark of Tektronix, Inc.

GR 4-54

"COMMAND DESCRIPTIONS

hardcopy — Sends Make Copy Character

General

When issued from a TEKTRONIX 4014 display terminal with a hard copy
unit (printer), hardcopy generates a screen copy on the printer.

Command Format

[A hardcopy

GR 4-55

COMMAND DESCRIPTIONS

hilo — High and Low Values

General

The hilo command is a summarizer node. The output is the high and low
values across all the input vector(s). If no vector is given, then the
standard input is assumed.

Command Format

|/hilo [-option(s)] [vector(s)]

Options:
] Only output high value.
| Only output low value.
0 Output high, low values in " option" form (see plot).
ox Output high, low values with x prepended.
oy Output high, low values with y prepended.

Command Example

The following is an example of finding the high and low values of vector A.

A =10 20 304050

GR 4-57

COMMAND DESCRIPTIONS

~hile A<CR>

low = 10 high = 50

GR 4-58

COMMAND DESCRIPTIONS

hist — Build a Histogram

General

The hist command is a translator node that generates a GPS that
describes a histogram. The input vector for the hist command must be
made up of intervals and counts. If the input is not as intervals and counts,
you must use the bucket command to put the input vector in that form. If
no vector is given, then the standard input is assumed.

Command Format

[hist [-option(s)] [vector(s)]

Options:

rn

xn(yn)

xa (ya)

Suppress axes.

Plot histogram with bold weight lines, otherwise use
medium.

Do not build a frame around the plot area.
Suppress background grid.

Put the histogram in GPS region n, where nis between
1 and 25, inclusively.

Position the histogram in the GPS universe with x-orgin
(y-orgin) at n.

Do not label x-axis (y-axis).

GR 4-59

COMMAND DESCRIPTIONS

yin nis the y-axis low-tick value,

vhn nis the y-axis high-tick value.

Command Example

The following example will produce a histogram of the input vector F.

F=11213237922647070.4

EAqsort F | bucket | hist | td<CFR>

« gsort F, the vector F must be sorted for the bucket command.
o bucket, breaks the vector F into intervals and counts.
» The output of hist is a GPS that describes a histogram.

» td command displays drawings on TEKTRONIX 4014 terminal.

The results of the drawing is shown in Figure 4-4.

GR 4-60

COMMAND DESCRIPTIONS

o e e e e i s — G e e i b iy eme e o b b v At i | bl ol

e, it smem i et it e, iy i il bt st bdeian s e o, et i et e}

s e i e sl o i s i s i b i e o o i i, i miesied

e — i ik i b o et i e e s aiiee e i]

18.4

35.7 53

Figure 4-4. Plot of gsort F | bucket | hist | td

70.4

GR 4-61

COMMAND DESCRIPTIONS

hpd — Display GPS on a HP 7221A Graphics Plotter

General

The output is scope coded for a HEWLETT PACKARD 7221A Plotter. A
viewing window is computed from the maximum and minimum points in
the GPS file(s) unless the r or u option is provided. if no file is given, then
the standard input is assumed.

Command Format

[hpd [-option(s)] [GPSfile(s)]

Options:

cn Select character set n, n between 0 and 5 (see the
HEWLETT PACKARD 7221A Plotter Operating and
Programming Manual and the AT&T 3B2 Computer User
Reference Manual).

pn Select pen numberedn, n between 1 and 4, inclusively.

rn Window on GPS region n, n between 1 and 25,
inclusively.

sn Slant characters n degrees counterclockwise from the
vertical.

u Window on the entire GPS universe.

xdn Set x displacement of the viewports lower left corner to
ninches.

GR 4-63

COMMAND DESCRIPTIONS

XVi Set width of viewport to ninches.

ydn Set y displacement of the viewports lower left corner to
n inches.

yvn Set height of viewport to ninches.

Command Example

The following is an example of displaying a drawing on a HEWLETT
PACKARD 7221A Graphics Plotter.

lAgas taf " x'2" | plot! hpd<CR>

where the output of the plot command is a GPS that the hpd command
displays that GPS on a HP 7221A Graphics Plotter.

GR 4-64

COMMAND DESCRIPTIONS

label — Label the Axis of a Data Plot

General

The label command is a translator node that labels the axis of a data plot.
The label command attaches the axis with a label by appending a label file
to a GPS of a data plot (like that produced by hist, bar, and plot). Each
line of the label file is taken as one label. Once the label has been
appended to the GPS drawing, the label may not be in the appropriate
position. The graphics editor (ged) can be used to position the label
correctly. For plot labels, be sure to include x il on the plot command line
(see plot). Blank lines yield null labels. Either the GPS or the label file, but
not both, may come from the standard input.

Command Format

[Iabel [-option(s)] GPS file(s)

Options:
b Assume the input is a bar chart.
c Retain lower case letters in labels; otherwise, all letters
are upper case.
Ffile file is the label file.
h Assume the input is a histogram.
p Assume the input is an x-y plot. This is the default.
rn l.abels are rotated n degrees. The pivot point is the first

character.

GR 4-65

COMMAND DESCRIPTIONS

X Label the x-axis. This is the default.

Xu Label the upper x-axis (example, the top of the plot).

y Label the y-axis.

yr Label the right y-axis (example, the right side of the
plot).

Command Example

The following is an example of appending a label to the y-axis of a GPS
drawing:

1. Create your label file by using a text editor.

~vi lab<CR>

<a>Frequency of Random Numbers
<ESC>

<ZZ>

2. Create a GPS drawing and direct it to a file.

[Arand -n1000 | gsort | bucket | hist >Randplot<CR>

3. Use the label command to append the label file to the GPS and dispiay
it on a TEKTRONIX 4014.

GR 4-66

COMMAND DESCRIPTIONS

[Alabel -Flab,h,r90,y Randplot | td<CR>

See Figure 4-5 for a result of the drawing.

120 o o o e e e e e e —— ——— e
10 .] L - —— —
100 . o e e] e e e e e e e e
so__r———™m__pF—™—™ - -4 —}-—4 — - 4 —
0 __} ¥V _ B & @ e 4
o g - e —
o V¢ & v __q__ 1 ¢ |
50___________i___.______ —_———— — —
40 _ 3y 1 - 1 ¥ — 4 — —}—
w

a3

)

o

_ 4+ 4 1 ¥ P _}+__|-
=

=

i L

- JY I DU EN DU ENPUION U (N DU NP S
o

.

=]

w_ - r 41 -4t — 4
[+

=

i

=]

i

e 50.101 0.201 0.301 0.4 0.5 0.8 a.7 0.799 0.899 0.999

Figure 4-5. Plot of label -Flab,h,r90,y Randplot | td

GR 4-67

COMMAND DESCRIPTIONS

List — List Vector

General

The list command is a transformer node that list vectors. The output is a
listing of the elements of the input vector(s). If no vector is given, then the
standard input is assumed.

Command Format

{Iist [-option(s)] [vector(s)]

Options:
cn n is the number of output elements per line. Five is the
default value.
dstring The characters in string serve as delimiters. Only

elements that are delimited by these characters will be
listed. The white space, characters space, tab, and
newline are always delimiters.

Note: If d is not specified, then any character that is not part of a
number is a delimiter. If d is specified, then the white space
characters (space, tab, and new-line) plus the character(s) of string
are delimiters. Only numbers surrounded by delimiters are listed.

GR 4-69

COMMAND DESCRIPTIONS

Command Example

The following is an example of using the list command to display the A
vector.

A =10 20 30 40 50

~list A<CR>

10 20 30 40 50

GR 4-70

COMMAND DESCRIPTIONS

log — Logarithm

General

The log command is a transformer node that takes the logarithm for each
element of the input vector(s). If no vector is given, then the standard
input is assumed.

Command Format

[Iog [-option(s)] [vector(s)]

Options:
bn n is the logarithm base. If not given, 2.71828... is used.
cn n is the number of output elements per line.

Command Example

An example of finding the logarithm function of the vector A follows:

A =1020 304050

~log A<CR>

2.302 299 3.4 3.688 3.912

GR 4-71

COMMAND DESCRIPTIONS

Ireg — Linear Regression

General

The linear regression (lreg) is a summarizer node. The output is the slope
and intercept from a least squares linear regression of each vector on a
base vector. The base vector is specified using the F option. If the base is
not given, it is assumed to be ascending positive integers from zero.

Command Format

[Ireg [-option(s)] [vector(s)]

Fvector vector is the base.

i Only output the intercept.

0 Output the slope and intercept in " option" form (see
siline).
s Only output the slope.

GR 4-73

COMMAND DESCRIPTIONS

Command Example

The following is an example of finding the linear regression of the vectors A
and C: A is the base vector (x-axis) and € is the y-axis.

A =10 20 304050
C=3040506070

~Ireg -FA,C<CR>

intercept=20 slope=1

GR 4-74

COMMAND DESCRIPTIONS

mean — Mean

General

The mean command is a summarizer node. The output is the mean of the
elements in the input vector(s). The input may optionally be trimmed. If no
vector is given, then the standard input is assumed.

Command Format

[mean [-option(s)] [vector(s)]

Options:
fn Trim (1 /n)*r elements from each end, where r is the
rank of the input vector.
pn Trim n*r elements from each end, n is between 0 and
0.5.
nn Trim n elements from each end.

Command Example

The following is an example of finding the mean of the vector A.

A =10 20 30 40 50

GR 4-75

COMMAND DESCRIPTIONS

~mean A<CR>

30

GR 4-76

COMMAND DESCRIPTIONS

mod — Modulo Function

General

The modulo function (mod)is a transformer node. The output is a vector
with each element being the remainder of dividing the corresponding
element from the input vector(s) by the modulus. If no vector is given,
then the standard input is assumed.

Command Format

[mod [-option(s)] [vector(s)]

Options:
cn n is the number of output elements per line.
mn n is the modulus. If not given, 2 is used.

GR 4-77

COMMAND DESCRIPTIONS

Command Example

The following is an example of finding the modulo function of vector G.

G=123456789

~mod -m3 G<CR>

120120120

GR 4-78

COMMAND DESCRIPTIONS

pair — Pair Element Group

General

The pair command is a transformer node. The output is a vector with
elements taken alternately from a base vector and a vector. The base
vector is specified either with the F option, or else it comes from the
standard input. Vector(s) are specified either on the command line or else
one may come from the standard input. If both the base and vector come
from the standard input, base precedes vector.

Command Format

[pair [-option(s)] [vector(s)]

Options:
cn n is the number of output elements per line.
Fvector vector is the base.
Xn n is the number of elements taken from the base for

each one element taken from vector.

Command Example

The following is an example of finding the pair element group of vectors A
and C.

A =10 20 30 40 50
C =3040 5060 70

GR 4-79

COMMAND DESCRIPTIONS

~pair -FA,C<CR>

10 30 20 40 30
50 40 60 50 70

GR 4-80

COMMAND DESCRIPTIONS

pd — Plot(5) Format Dump

General

The pd command prints a human readable listing of plot(5) format. If no
file is given, then the standard input is assumed.

Command Format

pd [plot(5) file(s)]

Command Example

The following is an example of printing a human readable listing of a plot(5)
format.

1. Create a plot(5) format and direct it to a file.

I{Agas taf"x'2" | plot! gtop >Y

GR 4-81

COMMAND DESCRIPTIONS

2. Print a readable listing of plot(5) format.

-
~“pd ¥Y<CR>

erase

space 13461 13351 19765 19655
jump 13461 13351

text ;

jump 14607 14607

cont 19160 14607

cont 19160 18660

cont 14607 18660

cont 14607 14607

jump 14607 14467

text 0
jump 15062 14467
text 1

junp 15517 14467

(All data not shown.)

GR 4-82

COMMAND DESCRIPTIONS

pie — Build a Pie Chart

General

The pie command is a translator node. Its output is a GPS that describes
a pie chart. The input is a text file that has the data form:

[<control>] value [label]

The control field specifies the way that slice should be handied. Legal
values are:

i The slice will not be drawn, although a space will be left

for it.
e The slice is " exploded,"” or removed from the pie.
f The slice is filled. The angle of fill lines depends on the

color of the slice.
ccolor The slice is drawn in color rather than the default black.

Legal values for color are 'b’ for black, 'r' for red, 'g’ for
green, and 'u’ for blue.

The pie is drawn with the value of each slice printed inside and the label
printed outside. If no file is specified, the standard input is assumed.

Command Format

[pie [-option(s)] [file(s)]

GR 4-83

COMMAND DESCRIPTIONS

Options:

ppn

pnn

Fn

xn (yn)

GR 4-84

Draw pie chart in bold weight lines; otherwise, use
medium

Output value as a percentage of the total pie
Only draw n percent of a pie

Output value as percentage, but total of percentages
equals n rather than 100. pnl0Q0 is equivalent to p

Do not output the values
Output values around the outside of the pie

Put the pie chart in region n, where nis between 1 and
25, inclusively

Position the pie chart in the GPS universe with x-origin
(y-origin) at n.

COMMAND DESCRIPTIONS

Command Example

The following is an example of creating a pie chart.

1. Create the input text file.

Note: The following sample commands show the /, e, and f
enclosed in brackets. These brackets and the corresponding
control field must be entered by the user. This is an exception
to the rule on “HOW COMMANDS ARE DESCRIBED ' in Chapter
2.

s

~vi piedata<CFR>
<a><i> 1 a<CR>
<e> 2 b<CR>
<f> 3 c<CR>
4<CR>

<ESC>

<727>

2. Create the pie drawing and display it on a TEKTRONIX 4014.

[Apie -p piedata | td<CR>

See Figure 4-6 for a result of the drawing.

GR 4-85

COMMAND DESCRIPTIONS

Figure 4-6. Plot of pie -p piedata ! td

GR 4-86

COMMAND DESCRIPTIONS

plot — Plot an X-Y Graph

General

The plot command is a translator node that describes an x-y graph. Input
is one or more vector(s). Y-axis values come from vector(s), x-axis values
from the F option. Axis scales are determined from the first vector(s)
plotted. If no vector is given, then the standard input is assumed.

Command Format

plot [-option(s)] [vector(s)]

Options:

cchar(s)

d

Fvector

Suppress axis.

Plot graph with bold weight lines; otherwise, use
medium.

Use char(s) for plotting characters, implies option m.
The first character of char(s) is used to mark the first
graph, the second is used to mark the second graph,
etc.

Do not connect plotted points, implies option m.

Use vector for x-values, otherwise the positive integers
are used.

Suppress background grid.

GR 4-87

COMMAND DESCRIPTIONS

n

xn (yn)

xa (ya)
xin (yin)
xIn (yln)
xhn (yhn)

xnn (ynn)

xt (yt)

Mark the plotted points.

Put the graph in GPS region n, where nis between 1
and 25, inclusively.

Position the graph in the GPS universe with x-origin (y-
origin) at n.

Omit x-axis (y-axis) labels.

n is the x-axis (y-axis) tick increment.

nis the x-axis (y-axis) low-tick value.

n is the x-axis (y-axis) high-tick value.

nis the approximate ticks on the x-axis (y-axis).

Omit x-axis (y-axis) titie.

Command Example

The following is an example of creating an x-y graph by using the plot

command.

B=12345678910

~gas ! af " x'2" | plot -F-,dg B | td<CR>
Note: The plot -F-,dg B uses the B vector as the
y-axis and uses the standard input for the x-axis.

See Figure 4-7 for a result of the drawing.

GR 4-88

COMMAND DESCRIPTIONS

0 0

9l 0

8| 0]

7

i

5 |

‘- o

®-0

219

1 | | | [|
1 21 a1 81 81 101
Figure 4-7. Plot of gas ! af "x 2" ! plot -F-,dg B ! td

GR 4-89

COMMAND DESCRIPTIONS

point — Empirical Cumulative Density Function Point

General

The point command is a summarizer node. The output is a linearly
interpolated value from the empirical cumulative density function (e.c.d.f)
for the input vector. By default, point returns the median (50 percent(%)
point). If no vector is given, the standard input is assumed.

Command Format

{point [-option(s)] [vector(s)]

Options:
fn Return the (1 /m*100 percent point from the e.c.d.f.
pn Return the n *100 percent point
nn Return the nth element
[3 The input is assumed to be sorted.

GR 491

COMMAND DESCRIPTIONS

Command Example

The following is an example of finding the empirical cumulative density
function point of vector A.

A = 1020 30 40 50

~point -p.25 A<CR>

20
“point -p.50 A<CR>

30
point -p.75 A<CR>

40

GR 4-92

COMMAND DESCRIPTIONS

power — Power Function

General

The power function is a transformer node. The output is a vector with
each element being a power of the corresponding element from the input
vector(s). If no vector is given, the standard input is assumed.

Command Format

[power [-option(s)] [vector(s)]

Options:
cn nis the number of output elements per line
pn Input elements are raised to the nth power. If not given,

2 is used.

Command Example

The following is an example of finding the 4th power of the input vector A.

A = 1020 30 40 50

GR 4-93

COMMAND DESCRIPTIONS

~power -p4 A<CR>

10e+03 160e+03 810e+03 2.56e+06 6.25e+06

GR 4-94

COMMAND DESCRIPTIONS

prime — Generate Prime Numbers

General

The prime command is a generator node that generates prime numbers.
The output is a vector of number elements determined by the parameters
low and high. The parameters are set by command options.

Command Format

{prime [-option(s)]

Options:
cn n elements per output line
hn n = high
in n = low. If not given, low = 2.

Command Example

The following is an example of generating prime numbers from 5 through
20.

~prime -15,h20<CR>

5711131719

GR 4-95

COMMAND DESCRIPTIONS

prod — Product

General

The prod command is a summarizer node that finds the product of each
element in the input vector(s). If no vector is given, then the standard
input is assumed.

Command Format

[prod [vector(s)]

Command Example

The following is an example of finding the product of the input vector A.

A =10 20 30 40 50

~prod A<CR>

1.2e+07

GR 4-97

COMMAND DESCRIPTIONS

ptog — Plot(5) Format to GPS Format

General

The ptog command transforms plot(5) format into a GPS. Input is taken
from the file, if given; otherwise, it is taken from the standard input.
Output is to the standard output.

Command Format

[ptog [plot(b) file(s)]

Command Example

The following is an example of transforming a plot(5) format into a GPS.

1. Create a plot(5) format and direct it to a file.

[Agas taf "x"2" | plot ! gtop > B<CR>

GR 4-99

COMMAND DESCRIPTIONS

2. Use ptog command to transform the plot(5) format to a GPS and
display it on 2a TEKTRONIX 4014.

~ptog B td<CR>

See Figure 4-8 for a result of the drawing.

GR 4-100

COMMAND DESCRIPTIONS

_ _ | [
_ _ _ _
N D |
_ “ _ .

| N A H R |

10

Figure 4-8. Plot of ptog B | td

GR 4-101

COMMAND DESCRIPTIONS

gsort — Quick Sort

General

The gsort command is a summarizer command that sorts the input vector
in ascending order. If no vector is given, then the standard input is
assumed.

Command Format

[qsort [-option] [vector(s)]

Option:

cn n is the number of output elements per line.

Command Example

The foliowing is an example of sorting the vector P.

P =60 50 40 30 20 10

~gsort P<CR>

10 20 30 40 50 60

GR 4-103

COMMAND DESCRIPTIONS

quit — Terminate Session

General

The quit command terminates the current terminal session.

GR 4-105

COMMAND DESCRIPTIONS

rand — Generate Random Sequence

General

The rand command is a generator node that generates random numbers.
The output is a vector of number elements determined by the parameters
low, high, multiplier, and seed. Random numbers are first generated in the
range O to 1, initialized by the seed. Then if a multiplier is given, each
number is multiplied accordingly. The parameters are set by command
options.

Command Format

[rand [-option(s)]

Options:
cn n elements per output line
hn n = high. If not given, high =1
In n = low. If not given, low = 0
mn n = multiplier. If not given, multiplier is determined
from high and low
nn n = number. If not given, number = 10
sn n = seed. If not given, seed = 1.

GR 4-107

COMMAND DESCRIPTIONS

Command Example

The following is an exampie of generating a vector of random numbers with
the seed = 10 and high = 20.

~rand -s10,h20<CR>

2.77291 17.221 6.86361 5.41398 10.3073
1.36357 12.3063 16.8413 12.363 18.7445

GR 4-108

COMMAND DESCRIPTIONS

rank — Rank of Vector

General

The rank command is a summarizer node that gives the number of
elements in each input vector. If no vector is given, then the standard
input is assumed.

Command Format

[rank [vector(s)]

Command Example

The following is an example of finding the rank of vector A,

A =10 20 30 40 50

~rank A<CR>

5

GR 4-109

COMMAND DESCRIPTIONS

remcom — Remove Comments

General

The remcom command copies its input to its output with comments
removed. Comments are as defined in C (such as, /* comment */). Input
is from file(s), if given, otherwise it is from the standard input.

Command Format

remcom [file(s)]

Command Example

The following is an example of removing the comments from vector G.

G =23 /*comments*/
45 /*comments® /

~remecom G<CR>

23
45

GR 4-111

COMMAND DESCRIPTIONS

root — Root Function

General

The root function is a transformer node. The output is a vector with each
element being the root of the corresponding element from the input
vector(s). If no vector is given, then the standard input is assumed.

Command Format

[root [-option(s)] [vector(s)]

Options:
cn nis the number of output elements per line
rn n = root. If not given, root = 2.

Command Example

The following is an example of finding the square root of vector A.

A =1020304050

~root A<CR>

3.16778 4.47214 5.47723 6.32456 7.07107

GR 4-113

COMMAND DESCRIPTIONS

round — Rounded Value

General

The round command is a transformer node. The output is the rounded
value for each element of the input vector(s). If no vector is given, the
standard input is assumed.

Command Format

[round [-option(s)] [vector(s)]

Options:
cn nis the number of output elements per line
pn n is the number of places following the decimal point
rounded to the next number where n is in the range O
to 9, 0 by default
sn n is the number of significant digits rounded to the next

number where nis in the range 0 to 9, 9 by default.

Command Example

An example of rounding each elements of the input vector X, follows:

X=243682

GR 4-115

COMMAND DESCRIPTIONS

~round X<CR>

248

GR 4-116

COMMAND DESCRIPTIONS

siline — Generate a Line Given Slope and Intercept

General

The siline command is a transformer node that generates a line from a
given slope and intercept. The output is a vector of values slope times x
plus intercept, where x takes on values from vector(s). If the n option is
given, vector is the ascending positive integers. If neither the n option nor
a vector is given, vector comes from the standard input.

Command Format

[siline [-option(s)] [vector(s)]

Options:
en n is the number of output elements per line
in n is the intercept, O if not given
nn n is the number of positive integers to be used for x
sn nis the slope, 1 if not given.

Command Example

The following is an example of generating a line that has the slope of 2 and
intercept of 1.

GR 4-117

COMMAND DESCRIPTIONS

[Asiline ~n10,s2,il | plot ! td

» siline -n10,s2,il generates the following data.

1 3 5 7 9
11 13 15 17 19

« plot generates a GPS of an x-y graph.

s td command displays a drawing on TEKTRONIX 4014 terminal.

See Figure 4-9 for a result of the drawing.

GR 4-118

COMMAND DESCRIPTIONS

T T T T T T T T
T T N B B
25 U i At et et s Rl s sty
NS
H— N —+———— b=+ —A—— b —+—
N
SN A S A SN A
NG
L1 N L4 L1]
T NG
L N L
T T T T T
L N
i i St et ity N (il s M
oINS
B Subu il s Rebet bl Henie Nl mhels iy
[T K R R I N
H—— b — b — o=+ —
o I
b b N
I T R R
L I I N B N

2] P~ [Ie] ™| -~ =] ~ [fe] [32] -~
— -~ -~ — —

10
GR 4-119

Figure 4-9. Plot of siline -n10,s2,il | plot itd

COMMAND DESCRIPTIONS

sin — Sine Function

General

The sin command is a transformer node that takes the sine for each
element of the input vector(s). Input is assumed to be in radians. If no
vector is given, then the standard input is assumed.

Command Format

[sin [-option] [vector(s)]

Option:

cn nis the number of output elements per line.

Command Example

The following is an example of finding the sine of each element of the input
vector A.

A =10 20 30 40 50

~sin A<CR>

-.544071 .912945 -.988032 .745113 -.262375

GR 4-121

COMMAND DESCRIPTIONS

spline — Interpolate Smooth Curve

General

The spline command takes pairs of numbers from the standard input as
abscissas and ordinates of a function. It produces a similar set, which is
almost equally spaced and includes the input set, on the standard output.
The cubic spline output has two continuous derivatives, and has enough
points to look smooth when plotted (for example, by graph).

Command Format

spline [options]

Options:

-a Supplies abscissas automatically (they are missing from
the input); spacing is given by the next argument, or is
assumed to be 1 if next argument is not a number.

-k The constant k used in the boundary value
computation: yo=ky1y,=ky,-1 is set by the next
argument (default k = 0).

-n Space output points so that n intervals occur almost
between the lower and upper x limits (default n =
1000).

-p Makes output periodic, such as, matching derivatives at

the ends. First and last input values should normally
agree.

GR 4-123

COMMAND DESCRIPTIONS

Next 1 (or 2) argument is lower (and upper) x limits.
Normally, these limits are calculated from the data.
Automatic abscissas start at the lower limit (default 0).

-X

Command Example
The following is an example of using the spline command to produce an x-y
graph from the Z vector.

Z=12
34
56
79

1011

[Aspline <Z | graph | ptog | td<CR>

Note; The spline command take the pairs of numbers from the
input and generates points that will create a smooth curve when
used with the graph command. Remember the graph command
must use the ptog command to change the format from plot(5) to

a GPS.

See Figure 4-10 for a result of the drawing.

GR 4-124

COMMAND DESCRIPTIONS

e

0-X- 100 -Y- 15

Figure 4-10. Plot of spline <Z | graph | ptog | td

GR 4-125

COMMAND DESCRIPTIONS

subset — Generate a Subset

General

The subset command is a transformer node that generates a subset. The
output is elements selected from the input based on a key and option(s). If
no vector is given, then the standard input is assumed.

Selection

If a master vector is given, then the key for the jth element of the input is
the ith element of master, otherwise the key is the input element itself. In
either case, i goes from start to terminate.

The input element is selected if the key is either above, below, or equal to
pick, and not equal to leave. If neither above, below, nor pick is given, then
the element is selected if it is not equal to leave.

Command Format

[subset [-option(s)] [vector(s)]

Options:
an n = above
bn n = below
cn n elements per output line
Fvector vector is the master

GR 4-127

COMMAND DESCRIPTIONS

in n = interval, default is 1

In n = leave

nl Leave elements whose index is given in master
np Pick elements whose index is given in master
pn n = pick

sn n = start, defaultis 1

tn n = terminate, default is 32767.

Command Example

The following is an example of generating a subset from the master vector
and another vector.

(master vector) xvector =1 2 3 4 5 6 7 8 9
yvector = 11 22 33 44 55 66 77 88 99

~subset -Fxvector,ab<CR>

66 77 88 99

GR 4-128

COMMAND DESCRIPTIONS

td — Display GPS on a TEKTRONIX 4014

General

The td command displays the GPS on a TEKTRONIX 4014. The output is
scope coded for a TEKTRONIX 4014 terminal. A viewing window is
computed from the maximum and minimum points in the first file unless
options are provided. If no file is given, then the standard input is assumed.

Command Format

[td [-option(s)] [GPS file(s)]

Options:
rn Window on GPS region n, n between 1 and 25,
inclusively
u Window on the entire GPS universe
e Do not erase screen before initiating display.

GR 4-129

COMMAND DESCRIPTIONS

tekset — Send Reset Character for TEKTRONIX 4014 Display
Terminal

General

The tekset command clears the display screen, sets the display mode to
alpha, and the characters to the smallest font.

Command Format

[~tekset<CR>

GR 4-131

COMMAND DESCRIPTIONS

title — Title a Vector or GPS

General

The title command is a translator node used to title a vector or a GPS.
Input is taken from the file(s), if given, otherwise it is from the standard
input.

Command Format

title [-option(s)] [file(s)]

Options:
b Make the GPS title bold.
c Retain lower case letters in title; otherwise, ail letters
are upper case.
Istring For a GPS, generate a lower title = string.
ustring For a GPS, generate an upper title = string.
wstring For a vector, title = string.

GR 4-133

COMMAND DESCRIPTIONS

Command Example

The following is an example of titling a GPS.

1. Create a file containing a GPS.

[Arand -n1000 { gqsort | bucket | hist >Randplot<CR>

2. Title the GPS file (Randplot).

[Atitle -I" lower title" ,u" upper title" Randplot ! td<CR>

See Figure 4-11 for a result of the drawing.

GR 4-134

COMMAND DESCRIPTIONS

UPPER TITLE
120 o
MO o o o o] e
00 T U I U R,
w_~—_ _Fr——_ - 1 - - +__r +
o . 4+ 4+ - ¥t ¥ Q-+ |-
_ L 4V __ &+ 1 ___p 4 |-
0} 4 _ 4 - - &4+ ¥ |- —4 - |-
so _ 4. _ L. v 4 _-_ 4 ¢ |-
FY I SRR IRUSE N NN (NN AN RPN S RPN
20 41 °r 1 _ -4 14—
PO I U N W SN (U, SN RN N S
oV _J_ 4+ 1 __r 4 |-
50.101 0.201 0.301 0.4 0.5 0.6 0.7 0.799 0.899 0.999

LOMER TITLE

Figure 4-11. Plot of title -I" lower title" ,u” upper title" Randplot | td

GR 4-135

COMMAND DESCRIPTIONS

total — Sum Total

General

The total command is a summarizer node. The output is the sum total of
the elements in the input vector(s). If no vector is given, the standard
input is assumed.

Command Format

[total [vector(s)]

Command Example

The following is an example of finding the sum total of all the elements in
vector A.

A =10 20 3040 50

~total A<CR>

150

GR 4-137

COMMAND DESCRIPTIONS

tplot — Graphics Filter

General

The tplot command reads plotting instructions, plot(5), from the standard
input; and in general, produce plotting instructions suitable for a particular
terminal on the standard output. If no terminal is specified, the
environment parameter $TERM is used. Known terminals are:

300 DASI 300

300S DASI 300s

450 DASI 450.

4014 TEKTRONIX 4014

ver Versatec D1200A. (This version of the plot places
a scan-converted image in /usr/tmp /raster
and sends the result directly to the plotter
device, rather than to the standard output.
The -e option causes a previously scan-
converted file raster to be sent to the
plotter.)

Command Format

[tplot [-T terminal [-e raster]]

Command Example

(See the graph example.)

GR 4-139

COMMAND DESCRIPTIONS

ttoc — Make Textual Table of Contents

General

The output is the Textual Table of Contents (TTOC) generated by the .H
macro of the nroff or troff raw data file of Document Workbench. If no file
is given, then the standard input is assumed.

Command Format

[ttoc [mm(1) file]

GR 4-141

COMMAND DESCRIPTIONS

Command Example

The following is an example of outputting a Textual Table of Contents
(TTOL).

1. Create a heading with text.

"

~vi txt<CR>

“.H 1" example one" <CR>
A line of text<CR>

.H 2" example two" <CFR>
A second line of text<CR>
.H 3" example three" <CR>
A third line of text<CR>

.H 3 " example four" <CR>
A fourth line of text<CR>
.H 2 " example five<CR>

A fifth line of text<CR>

.H 3 " example six<CR>

A sixth line of text<CR>

.H 1" example seven<CR>

end

2. List a Textual Table of Contents (TTOC).

.

~ttoc txt<CR>

" Table of Contents”
" example one" O
" example two" O

1

.2" example four” O
" example five" 0

1

GR 4-142

COMMAND DESCRIPTIONS

3. Display the Textual Table of Contents (TTQC) command on the
TEKTRONIX 4014,

[Attoc txt | vioc | td<CR>

See Figure 4-12 for a result of the drawing.

GR 4-143

COMMAND DESCRIPTIONS

1.

CONTENTS
0 2. a
EXAMPLE EXAMPLE
ONE SEVEN
1.2
EXAMPLE EXAMPLE
TWO FIVE
A 0 .1.2 1.2.1
EXAMPLE EXAMPLE EXAMPLE
THREE FOUR SIX

GR 4-144

Figure 4-12. Plot of ttoc txt | vtoc ! td

COMMAND DESCRIPTIONS

var — Variance

General

The var command is a summarizer node that finds the difference between
the slope point and outer point. The output is the variance of the
elements in the input vector(s). If no vector is given, then the standard
input is assumed.

Command Format

var [vector(s)]

Command Example

The following is an example of finding the variance of the input vector A.

A =1020 304050

~var A<CR>

250

GR 4-145

COMMAND DESCRIPTIONS

vtoc — Visual Table of Contents

General

The output is a GPS that describes a Visual Table of Contents (vtoc or
hierarchical chart) of the Textual Table of Contents (TTOC) entries from
the input. If no file is given, then the standard input is assumed. TTOC
entries have the form:

id [line weight,line style] " text” [mark]

where
id Is an alternating sequence of numbers and dots.
line weight Is either n for narrow, m for medium, or b for bold.
line style Is either so for solid, do for dotted, dd for dot-dashed,
or Id for long-dashed.
text Is a string of characters surrounded by quotes.
mark Is a string of characters (surrounded by quotes if it

contains spaces), with included dots being escaped.

Command Format

[vtoc [-option(s)] [TTOC file]

GR 4-147

COMMAND DESCRIPTIONS

Options:
c Take the ext as entered (default is all upper case).
d Connect the boxes with diagonal lines.
hn Horizontal interbox space is n% of box width.
i Suppress the box id.
m Suppress the box mark.
] Do not compact boxes horizontally.
vn Vertical interbox space is n% of box height.

Command Example

(See the TTOC example.)

GR 4-148

COMMAND DESCRIPTIONS

whatis — Brief Online Documentation

General

The whatis command prints a brief description of each command given. If
no command is given, then the current list of the description command is
printed. The whatis command prints out every description.

Command Format

whatis [-option] [name(s)]

Option:

o Just print command options.

Command Example

The following is an example of using the whatis command.

-

~whatis bel<CR>
bel: send bel character to terminal

_B_e_| causes most terminals to sound an audible
tone, a useful nonvisual signal.

GR 4-149

COMMAND DESCRIPTIONS

yoo — Pipe Fitting

General

The yoo command is a piping primitive that deposits the output of a
pipeline into a file used in the same pipeline. Note that without yoo, this is
not usually successful as it causes a read and write on the same file,
simultaneously.

Command Format

[yoo file

Command Example

The following is an example of using the yoo command.

IAaf "x'2" i plot!yoo x<CR>

GR 4-151

Chapter 5

GRAPHICS EDITOR

INTRODUCTIONttt e e i neeammananannrnncsanansaansanaaannassnnsnnns
GETTING STARTEDttt anaanrnnnanneaanaanssrnasonaseensonsesss
COMMAND FORMAT ... ittt iiin s snnananneaanansanannonananennnasnnns
GRAPHICS EDITOR COMMAND DESCRIPTION iiiiiiiiiiiaiinianean
CONSTRUCTING GRAPHICAL OBJECTS it ciienenenanasaanaennaan
GEMERATING TEXT . ..ot i it i s ammmssnanaanaanannnssasaasananassannnans
DRAWING LINES ittt nnnamamannamaanaaaaaannananneaaaennnnn
ACCESSING POINTS BY NMAME ittt imanenennan e enmacceoennnnns
DRAWING CURVES . . . i i ittt et innnamaananasananaansnassaaneseneaannans

EDITING OBJECT S . . ottt i i ittt e e amaaaaaaaananaanaananansnnssnassns
Addressing ObBJeCScvnutnennnnnncnnccannantiranaanonasaaenns
Changing the Locationof an Object inmintiinnainnns
Changing the Shapeof an Objectt
Changing the Sizeof an Object i it
Changing the Orientationof an Object i iiiian.
Changing the Style and Widthof Lines i,

VIEW COMMANDSt ninnssnasaanansnnnnesannnssnnsnsnsnannnsas
WINDOWINGttt innma s cnnancanaannareonsnananesaseeens

OTHER COMMANDS . ..t ii i in i nmnnanaansaanaanasanasannasnarasasnnsss
Interacting with Files. i ireaannennnnrananaene

EXAMPLE OF EDITING A GPS IN THE GRAPHICSEDITOR 0niinnn
EXAMPLE OF CREATING MULTIDRAWINGS IN THE SAME UNIVERSE
LEAVING THE GRAPHICS EDITOR it i iacanacannnns

OTHER USEFUL INFORMATION i iiincanmnnnasnaneessanssnanns
One-Line UNIX System ESCAPe v enenennnnenenannaansnnnosaanns

Typing Aheado 5-35

Speeding up ThiNgst i it e n e aamamannannnenaanaaannnn 5-35
COMMAND SUMMARY it iann s s ananannaaanaaaanaaacannnanaans 5-36
Construct Commands 0o in it at et e et a e 5-36
L Ly 0 T T =T T [5-36
View Commands ittt a e a e a e 5-37
OTHER COMMANDSt taeamecnaanan e aananannaananaaas 5-37
OPTION S . it ittt e it s annnnaanacnasannaananaanaannonaanennnnnas 5-38

SOME EXAMPLES OF USING THE ged« oo ittt iimnnnncnnannann 5-40

Chapter 5

GRAPHICS EDITOR

INTRODUCTION

The graphics editor (ged), is an interactive graphical editor used to display,
edit, and build drawings on a TEKTRONIX 4014 display terminal. The
drawings are represented as a sequence of objects in a token language
known as a GPS (graphical primitive string). A GPS is produced by the
drawing commands in the UNIX System Graphics such as vtoc and plot, as
well as by ged itself.

Drawings are built from objects consisting of lines, arcs, and text. Using the
editor, the objects can be viewed at various maghnifications and from
various locations. Objects can be created, deleted, moved, copied,
rotated, scaled, and modified.

The examples in this chapter will illustrate how to build and edit simple
drawings. Try them to become familiar with how the editor works, but
keep in mind that ged is intended primarily to edit the output of other
programs rather than to build drawings from scratch.

GR 5-1

GRAPHICS EDITOR

GETTING STARTED

To enter the graphics editor (ged), enter the following command while in
the graphics shell:

[Aged<CR>

After a moment the screen should be clearing except for the ged prompt,
*, in the upper left corner. The # shows that ged is ready to accept a
command.

[*

Each command passes through a sequence of stages during which you
describe what the command is to do. All commands pass through a subset
of these stages:

1. Command line

2. Text
3. Points
4. Pivot

5. Destination.

As a rule, each stage is stopped by typing <CR>. The <CR> for the last
stage of a command triggers execution.

GR 5-2

GRAPHICS EDITOR

COMMAND FORMAT

The simplest commands consist only of a command line. The command
line is modeled after a conventional command line in the shell.

command name [—option(s)] filename

GRAPHICS EDITOR COMMAND DESCRIPTION

The graphics editor will echo the full name of all commands and wait for
the rest of the command line. For example, e references the erase
command. As erase consists only of stagel, typing <CR> causes the erase
command to clear the display screen,

[*erase< CR>

bringing the editor back to the ged prompt, *.

Following the command name, options may be entered. Options control
such things as the width and style of lines to be drawn or the size and
orientation of the text. Most options have a default value that applies if a
value for the option is not specified on the command line. The set
command allows examination and change of the default values. To see the
current default values, type:

[*set<Cl?>

GR 5-3

GRAPHICS EDITOR

The option value is one of three types: integer, character, or Boolean.
Boolean values are represented by a + (for true) and a ~ (for false). A
default value is modified by providing it as an option to the set command.
For example, to change the default text height to 300 units, type:

[*set —-h300<CR>

The following list will name each of the options default values. A complete
description of each default option is discussed in the Command Summary
section located at the rear of this chapter.

e a - angle

« f - factor

s h - height

s § - styletype
e W - withtype
e e - echo

» k - kopy

« m - midpoint

e O -out
e p - points
o I - rightpoint

GR 5-4

GRAPHICS EDITOR

e t-text

e X - X,

A question mark (?) is a command used to list the commands and options
understood by ged. To generate the list, type the following:

[*?<CR>

The delete key (del) on the 5620 DMD is used to abort a command. This
is done by depressing the key after the command and before the carriage
return <CR>. The following is an example of using this command:

(*?

Arguments on the command line, but not the command name, may be
edited using the erase and kill characters from the shell. This applies
whenever text is being entered.

CONSTRUCTING GRAPHICAL OBJECTS

Drawings are stored as a GPS in a display buffer internal to the editor.
Typically, a drawing in ged is composed of instances of three graphical
primitives: arcs, lines, and text.

GR b-5

GRAPHICS EDITOR

GENERATING TEXT

To put a line of text on the display screen, use the Text command.

First enter the command line (stage 1):

[*Text<CR>

Next enter the text (stage 2):

[a line of text<CR>

Next place the graphics cursor at the desired position on the screen. The
graphics cursor is the point at which the lines intercept on the screen. It
can be moved by using the mouse on the DMD.

[<paosition cursor><CR>

Positioning of the graphic cursor is done either with the thumbwheel knobs
on the TEKTRONIX 4014 display terminal keyboard or with the mouse on
the 5620 DMD. The <CR> establishes the location of the cursor to be the
starting point for the text string. The Text command ends at stage 3, so
this <CR> shows the drawing of the text string.

GR 5-6

GRAPHICS EDITOR

The Text command accepts options to vary the angle, height, and line
width of the characters, and to either center or right justify the text
object. The text string may span more than one line by escaping the
<CR> (i.e., \<CR>) to show continuation. To illustrate some of these
capabilities, try the following:

*Text —r<CR> (right justify text)

top\<CFR>

right<CR>

<position cursor><CR>

+Text —a90<CR> (rotate text 90 degrees)

lower\<CR>

left<CR>

<position cursor><CR> (pick a point below and left of
the previous point)

Results of these commands are shown in Figure 5-1.

top
right

lower
left

Figure 5-1. Generating Text Objects

GR 5-7

GRAPHICS EDITOR

DRAWING LINES

The Lines command is used to make objects built from a sequence of
straight lines. It consists of stages 1 and 3. Stage 1 is straightforward:

{*Lines [options]<CR>

The Lines command accepts options to specify line style and line width.

Stage 3, the entering of points, is more interesting. Points are referenced
either with the graphic cursor or by name. We have already entered a
point with the cursor for the Text command. For the Lines command, it is
more of the same. As an example, to build a triangle, type:

(*Lines<CR>

<position cursor><SP> (locate the first point)
<position cursor><S8P> (the second point)
<position cursor><SP> (the third point)
<position cursor><SP> (back to the first point)
<CR> (end points, draw triangle)

Results of these commands are shown in Figure 5-2.

Typing <SP> enters the location of the crosshairs as a point. Ged
identifies the point with an integer and adds the location to the current
point set. The last point entered can be erased by typing #. The current
point set can be cleared by typing @. On receiving the final <CR>, the
points are connected in numerical order.

GR 5-8

GRAPHICS EDITOR

second point

first point entered

|~ =

fourth point third point

Figure 5-2. Building a Triangle

ACCESSING POINTS BY NAME

The points in the current point set may be referenced by name using the $
operator. For instance, $n references the point numbered n. By using §,
the triangle above can be redrawn by entering:

*Lines<CH>

<position cursor><SP>

<position cursor><SP>

<position cursor><SP>

$0<CR> (reference point 0)
<CR>

At the start of each command that includes stage 3, points, the current
point set is empty. The point set from the previous command is saved and
is accessible using the . operator. The . swaps the points in the previous

GR 5-9

GRAPHICS EDITOR

point set with those in the current set. The = operator can be used to
identify the current points. To illustrate, use the triangle just entered as
the basis for drawing a quadrilateral:

a

*hines<CR>
(access the previous set)
= (identify the current points)
(erase the last point)
<position cursor><5P> (add a new point)
$0<CR> (close the figure)
<CR>

Results of these commands are shown in Figure 5-3.

Figure 5-3. Accessing the Previous Point Set

GR 5-10

GRAPHICS EDITOR

individual points from the previous point set can be referenced by using
the . operator with $. The following example builds a triangle that shares
an edge with the quadrilateral:

~

*Lines<CR>

$.1<CR> (reference point 1 from the previous point set)
$.2<CR> (reference point 2)

<position cursor><SP> (enter a new point)

$0<CR> (or $.1, to close the figure)

<CR>

Results of these points are shown in Figure 5-4.

point 1 from A p new point
previous point set

point 2 from
previous point set

Figure 5-4. Referencing Points from Previous Point Set

GR 5-11

GRAPHICS EDITOR

A point can also be given a name. The > operator permits an upper case
letter to be associated with a point just entered. A simple example is:

*Lines<CHR>

<position cursor><SP> (enter a point)
>A<CR> (name the point A)
<position cursor><SP>

<CR>

In commands that follow, point A can be referenced using the $ operator,
as in:

*Lines<CR>

SA<CR>

<position cursor><S5F>
<CR>

GR b-12

GRAPHICS EDITOR

DRAWING CURVES

Curves are interpolated from a sequence of three or more points. The Arc
command generates a circular arc given three points on a circle. The arc
is drawn starting at the first point, through the second point, and ending at
the third point. A circle is an arc with the first and third points
coincidentally touching. Thus, one way to draw a circle is:

*Arc<CR>

<position cursor><SP>
<position cursor><SP>
$0<CR>

<CR>

Also, a circle can be generated by using the Circle command. A simple
example is:

*Circle<CR>
<position cursor><SP> (specify the center)
<position cursor><CR> (specify a point on the circle)

GR 5-13

GRAPHICS EDITOR

EDITING OBJECTS

Addressing Objects

An object is addressed by pointing to one of its handles. All objects have
an object-handle. Usually the object-handle is the first point entered when
the object was created. The object command marks the location of each
object-handle with an Q. For example, to see the handles of all the objects
on the screen, type:

{*objects ~W<CR>

Some objects, Lines for example, also have point-handles. Typically, each
of the points entered when an object is constructed becomes a point-
handle. (An object-handie is also a point-handle.) The points command
marks each of the point-handies.

A handle is pointed to by including it within a defined area. A defined area
is generated either with a command line option or interactively using the
graphic cursor. As an example, to delete one object that was created on
the screen, type:

*Delete<CR>

<position cursor><SP> (above and to the left of some
object-handle)

<position cursor><SP> (below and to the right of the
object-handle)

<CR> (the defined area should include the
object-handle)
<CR> (if all is well, delete the object)

GR 5-14

GRAPHICS EDITOR

The defined area is outlined with dotted lines. The reason for the
seemingly extra <CR> at the end of the Delete command is to provide an
opportunity to stop the command (using key) if the defined area is
not right. Every command that accepts a defined area will wait for a
confirming <CR>. The new command can be used to get a fresh copy of
the remaining objects.

Defined areas are entered as points in the same way that objects are
created. Actually, a defined area may be generated by giving anywhere
from O to 30 points. Inputting zero points is particularly useful to point to
a single handle. It creates a small defined area which is about the location
of the terminating <CR>. Using a zero point defined area, the Delete
command would be:

*Delete<CR>

<position cursor> (center crosshairs on the object-handle)
<CR> (end the defined area)

<CR> (delete the object)

A defined area can also be given as a command line option. For example,
to delete everything in the display buffer gives the universe option (u) to
the Delete command. Note the difference between the commands Delete
—universe and erase. The universe option deletes all points in the buffer.
The erase command clears the screen.

GR 5-15

GRAPHICS EDITOR

Changing the Location of an Object

Objects are moved, using the Move command. Create a circle using Arc,
then move it as follows:

*Move<CR>
<position cursor><CR> (centered on the object-handle)
<CR> (this establishes a pivot, marked with

an asterisk)
<position cursor><CR> (this establishes a destination)

The basic move operation relocates every point in each object within the
defined area by the distance from the pivot to the destination. Here, the
pivot was chosen to be the object-handle. So effectively, the object-handle
was moved to the destination point.

Changing the Shape of an Object

The Box command is a special case of generating lines. Given two points,
it creates a rectangle such that the two points are at opposite corners.
The sides of the rectangle lie parallel to the edges of the screen. To draw
a box, type:

*Box<CR>
<position cursor><SP>
<position cursor><CR>

GR 5-16

GRAPHICS EDITOR

The Box command generates point-handles at each vertex of the
rectangle. Use the points command to mark the point-handles. The shape
of an object can be altered by moving point-handles. The next example
illustrates one way to double the height of a box (see Figure 5-5.)

*Move —p+<CR>

<position cursor><SP> (left of the box, between the
top and bottom edges)

<position cursor><CR> (right of the box, below the
bottom edge)

<position cursor><CR> (on the top edge)

<position cursor><CR> (directly below on the bottom
edge)

two points for Box

\ pivot

~| destination

!
-

two points for defined — area

Figure 5-5. Growing a Box

GR 5-17

GRAPHICS EDITOR

When the points flag (p) is true, operations are applied to each point-
handle addressed. In this example, the points flag was set to true using
the command-line option —p+ causing each point-handle within the defined
area to be moved the distance from the pivot to the destination. If p was
false, only the object-handle would have been addressed.

Changing the Size of an Object

The size of an object can be changed using the Scale command. The Scale
command scales objects by changing the distance from each handle of the
object to the pivot by a factor. Put a line of text on the screen and try the
following Scale commands (Figure 5-6):

*Scale —~f200<CR> (factor is in percent)

<position cursor><CR> (point to object-handle)
<position cursor><CR> (set pivot to rightmost character)
<CR>

*Scale ~f50<CR>

<CR> (reference the previous defined area)

<position cursor><CR> (set pivot above a character
near the middle)

<CR>

GR 5-18

GRAPHICS EDITOR

* pivot for Scale -f50

A LINE OF TEXT
A LINE @OFind biXText

pivot for Scale -f200
original line
of text

Figure 5-6. Scaling Text

A useful insight into the behavior of scaling is to note that the position of
the pivot does not change. Also observe that the defined area is scaled to
preserve its relationship to the graphical objects.

The size of objects can also be changed by moving point-handles.
Generate a circle, this time using the Circle command:

*Circle<CR>
<position cursor><SP> (specify the center)
<position cursor><CR> (specify a point on the circle)

The Circle command generates an arc with the first and third point at the
point specified on the circle. The second point of the arc is located 180
degrees around the circle. One way to change the size of the circle is to
move one point-handle (using Move —p-+).

GR 5-19

GRAPHICS EDITOR

The following is an example of using Move ~p+:

1. Create a circle.

*Circle<CR>
<position cursor><SP> (Point A Figure 5-7.)
<position cursor><CR> (Point B Figure 5-7.)

2. Use the point command to mark the point-handles.

*point<CR>
<position cursor><CR> (Point B Figure 5-7.)
<CR>

3. Move the circle by using the -p+ option.

*Move -p+<CR>

<position cursor><CR> (point-handle, Point B)
<CR> (pivot point B, Figure 5-7)

<position cursor><CR> (Point C Figure 5-7.)

GR 5-20

GRAPHICS EDITOR

Figure 5-7. Example of Moving a Circle Using the Move —p+

GR 5-21

GRAPHICS EDITOR

The size of text characters can be changed via a third mechanism.
Character height is the property of a line of text. The Edit command
allows you to change the character height, shown in the following example:

1. Create a line of text.

*Text<CR>
A line of text.
<position cursor><CR>

See Figure 5-8 (small print) for a result of the drawing.

2. Use the Edit command to enlarge the text.

*Edit ~h1000<CR> (increase height to 1000.)
<position cursor><CR> (point to the object-handle point A)
<CR>

See Figure 5-8 (large print) for a result of the drawing.

Sh-fire of text.

Figure 5-8. Exampie of Edit -h1000

GR 5-22

GRAPHICS EDITOR

Changing the Orientation of an Object

The orientation of an object can be altered using the Rotate command.
The Rotate command rotates each point of an object about a pivot by an
angle. Try the following rotations on a line of text (Figure 5-9).

*Rotate —a90<CR> (angle is in degrees)

<position cursor><CR> (point to object-handle)

<position cursor><CR> (set pivot to rightmost
character)

<CR>

*Rotate —a—90<CR>

<CR> (reference previous defined area)

<position cursor><CR> (set pivot to a character near
the middle)

<CR>

original text

ANOTHER LINE OF TE)Q/

pivot for Rotate -a90

ANOTHER EINE OF TEXT

ANDTHER LINE OF TE

pivot for Rotate -a-80

Figure 5-9. Rotating Text

GR 5-23

GRAPHICS EDITOR

Changing the Style and Width of Lines

In the current editor, objects can be drawn from lines in any of five styles:
solid (s0), dashed (da), dot-dashed (dd), long-dashed (Id), and three widths
-- narrow (n), medium (m), and bold (b). Style is controlled by the s
option and width by the w. The next example creates a narrow-dotted line:

tLines —wn,sdo<CR>
<position cursor><SP>
<position cursor><SP>
<CR>

Using the Edit command, the line can be changed to bold, dot-dashed:

*Edit —~wb, sdd<CR>

$.0<CR> (reference the object-handle of the previous line)
<CR> (complete the defined area)

<CR>

GR 5-24

GRAPHICS EDITOR

VIEW COMMANDS

All the objects drawn lie within a Cartesian plane, 65,534 units on each
axis, known as the universe. Thus far, only a small portion of the universe
has been displayed on the screen. The command:

[*view ~u<CR>

displays the entire universe.

GR 5-25

GRAPHICS EDITOR

WINDOWING

A mapping of a portion of the universe onto the display screen is called a
window. The extent or magnification of a window is altered using the zoom
command. To buiid a window that includes all the objects drawn, type:

p

*zoom<CR>

<position cursor><SP> (above and to the left of all
the object)

<position cursor><CR> (below and to the right, also
end points)

<CR> (verify)

Zooming can be either in or out. Zooming in, as with a camera lens,
increases the magnification of the window. The area outlined by points is
expanded to fill the screen. Zooming out decreases magnification. The
current window is shrunk so that it fits within the defined area. The
direction of the zoom is controlled by the sense of the out flag; o true
means zoom out.

The location of a window is altered using the wview command. View moves
the window so that a given point in the universe lies at a given location on
the screen.

*wiew< CR>
<position cursor><CR> (locate a point in the universe)
<position cursor><CR> (locate a point on the screen)

View also provides access to several predefined windows. As seen earlier,
view —u displays the entire universe. The wiew —h command displays the
home-window. The home-window is the window that encircles all the
objects in the universe. The result is similar to that of the example using
zoom that was given earlier.

GR 5-26

GRAPHICS EDITOR

Lastly, the view command permits selection of a window on a particular
region. The universe is partitioned into 25 equal-sized regions. Regions
are numbered from 1 through 25, beginning at the lower left and
proceeding toward the upper right. Region 13, the center of the universe,
is used as the default region by drawing commands such as plot(1) and
vtoc(1).

OTHER COMMANDS

Interacting with Files

The write command saves the contents of the display buffer by copying it
to a file:

[*write filename<CR>

The contents of filename will be a GPS. Thus, it can be displayed using any
of the device filters (such as, td (1)) or read back into ged.

A GPS is read into the editor using the read command:

[*read Silename<CR>

The GPS from filename is appended to the display buffer and then
displayed. Because read does not change the current window, only some
(or none) of the objects read may be visible.

GR 5-27

GRAPHICS EDITOR

A useful command sequence to view everything read is:

*read —e— filename<CR>
*wiew ~h<CR>

The display function of read is inhibited by setting the echo flag to false;
view —h windows on and displays the full display buffer.

The read command may also be used to input text files. The form is:

read [—option(s)] filename<CR>

Followed by a single point to locate the first line of text. A text object is
created for each line of text from filename. Options to the read command
are the same as those for the Text command.

GR 5-28

GRAPHICS EDITOR

EXAMPLE OF EDITING A GPS IN THE GRAPHICS
EDITOR

Note: From the label command example in Chapter 4, you will
ohserve that the label for the y-axis was not in the correct position.
In this example, we will position the label in the correct position by
using the graphics editor (ged).

1. Instead of displaying the drawing after appending the label file to the
histogram, you must direct the output to a file so that it can be read
into the graphics editor (ged).

[Alabel -Flab,h,r90,y Randplot >Q<CFR>

2. Enter the graphics editor (ged) and read the file Q into the graphics
editor (ged). Then, observe the drawing by using the view command.

~ged<CR>
*read -e- Q<CR>
*view ~h<CR>

The same drawing that is shown in Figure 4-5 will be seen.

GR 5-29

GRAPHICS EDITOR

3. Now, you can use the move command to position the label in the
correct position.

*Move<CR>

<position cursor><CR> (point A, Figure 5-10(a))
<CR> (point A, Figure 5-10(a))

<position cursor><CR> (point B, Figure 5-10(a))

4. Use the new command and observe that the label is in the correct
position.

[* new<CR>

The results of the drawing is shown in Figure 5-10(b)).

GR 5-30

GRAPHICS EDITOR

0 _f—— __ _— — 441 4 L — - =
g0 ¢ 4 ¢ ¢ ¢ .1 1] . 1

[
[
| 1
I
L
b
j]
I
]
lo
b}
Lo
lo
e
[
=
I
1
b
I i

|
[
|
|
|
J
]
!
;
!
!
|
|
f
|
-t
|
T
J
]

]
J
|
|
]
!
|
|
|
|
|
|
i
|
}
!
!
!
I

|
[
|
[
|
|
|
|
|
[
|
|
il
!
;
|
|
|
'
|
]

b FREQUENCY 02 RANEDM NEMBERY
|
|
|
|
]
|
l
|
|
|
i
|
L
|
f
|
f
|
f
|
]

0a_§ .. 4 ¢ . ¥ & 4 _ 4 4 & i 1
50,101 0.2010.301 0.4 0.5 0.6 0.7 0.799 0.899 0.999
A.
ol]
M0 e e — .
ool &} 4 [SR I
w 0 bt | N (U N I SR ey
2
&
@
s seo0f . 4.4 | 444+ i
=
=
8 7o f 4.y ¢ | NS R NP N BN S
=
=
o
PR {1 I S FEN DU N N SN R S S S
o
>
S sof | 4 4 4 +_ ¥+ 4 {1 — LY
]
=]
=4
2 a0l 0 4 4 i _| N R R N S .
&
30| f— - §_ | 44 3 _ 1 _F_ 1
2 |- 4§82+ 4 3 _ | b — - — - —
o 4 J— 44— 43 @+ L __i]

50.1010.2010.301 0.4 0.5 0.6 0.7 0.7990.899 0.999
B.

Figure 5-10. Example of Editing a GPS in the Graphics Editor

GR 5-31

GRAPHICS EDITOR

EXAMPLE OF CREATING MULTIDRAWINGS IN THE
SAME UNIVERSE

The following is an example of creating an x-y graph and a histogram in the
graphics shell; then placing both drawings in the same universe by using
the graphics editor (ged).

1. Create an x-y graph and direct it to file A; then, display the drawing on
a TEKTRONIX 4014 display terminal.

~gas -s0,810 ! af " x 2" | plot >A<CR>
“td A<CR>

The results of the drawing is shown in Figure b-11(a).

2. Create a file of 100 random numbers, then break that file of 100
random numbers into intervals and counts by using the bucket
command, and direct it to file C.

~rand -n100 | title -v" 100 random numbers" | gsort | bucket >C<CR>

GR 5-32

GRAPHICS EDITOR

Create a histogram of file € and display it on a TEKTRONIX 4014
display terminal.

l/Ahist Citd<CR>

The results of the drawing is shown in Figure 5-11(b).

Now, direct the histogram to region 14.

[Ahist -r14 C >D<CR>

Enter the graphics editor and read in the two files containing the GPS
for the x-y graph and histogram. Then, use the view command to
observe the results.

~ged<CR>
*read ~e- D<CR>
*read -e- A<CR>
*view ~u<CR>

The results are shown in Figure 5-11(c).

GR 5-33

GRAPHICS EDITOR

[T T N B -
1mm_—l_l_l_l_— ﬂ__ 20
T T
18
16
14
12
10
8
8
AN 4
| | 2
| I 0
2 4 6 8 10 12 10.1650.3010.438 0.574 0.71 0.847 0,983
100 RANDOM NUMBERS
A. B.
T T T o —
ool |~ 4] 20
o L1 1/l .
NS "
T
aop.. T _—r] 8|
(. I 6
it s Hensy "o mibe Il :
0 | a

10.1650.3010.4380.5740.710.8470.983
100 RANDOM NUMBERS

Figure B-11. Creating a Multidrawing in the Same Screen

GR 5-34

GRAPHICS EDITOR

LEAVING THE GRAPHICS EDITOR

The quit command is used to end an editing session. As with the text
editor ed, quit responds with ? if the internal buffer has been modified
since the last write command. A second quit command forces exit.

OTHER USEFUL INFORMATION

One-Line UNIX System Escape

As in ed, the ! provides a temporary escape to the shell.

Typing Ahead

Most programs under the UNIX System allow input to be typed before the
program is ready to receive it. In general, this is not the case with ged;
characters typed before the appropriate prompt are lost.

Speeding up Things

Displaying the contents of the display buffer can be time consuming,
particularly if much text is involved. The use of two flags to control what
gets displayed can make life more pleasant:

» The echo flag controls echoing of new additions to the display
buffer.

s The text flag controls whether text will be outlined or drawn.

GR 5-35

GRAPHICS EDITOR

COMMAND SUMMARY

In the summary, characters actually typed are printed in boldface.
Command stages are printed in italics. Arguments surrounded by brackets
(e.g., [...]) are optional. Parentheses surrounding arguments, separated by
“or,” means that exactly one argument must be given.

For example, the Delete command accepts the arguments —universe,
-view, and points.

Construct Commands

Arc [—echo,style, width] points
Box [—echo,style, width] points
Circle [—-echo,étyle,width] points

Hardware [—echo] text points

Lines [—echo,style,width] points
Text [—angle,echo,height,midpoint,rightpoint, text,width] text
points

Edit Commands

Delete (— (universe or view) or points)

Edit [~angle,echo,height,style,width] (— (universe or view) or
points)

Kopy [~echo,points,x] points pivot destination

Move [—echo,points,x] points pivot destination

GR 5-36

GRAPHICS EDITOR

Rotate

Scale

[—angle,echo,kopy,x] points pivot destination

[~echo,factor, kopy,x] points pivot destination

View Commands

coordinates points

erase
new
objects
points

view

Zoom

(— (universe or view) or points)
(— (labelled-points or universe or view) or points)

(— (home or universe or region) or [—x] pivot destination

)
[-view] points

[~out] points

OTHER COMMANDS

guit

read

set

write

[—angle,echo,height,midpoint,rightpoint,text, width]
filename [destination)

[—angle,echo,factor, height,kopy,midpoint,
points,rightpoint,style, text,width,x]

filename

GR 5-37

GRAPHICS EDITOR

Ycommand

?

OPTIONS

Options specify parameters used to build, edit, and view graphical objects.
If a parameter, used by a command, is not specified as an option, the
default value for the parameter will be used. The format of command

options is:

—option[,option]

where option is keyletter{value). Flags take on the values of true or false,
shown by + and —, respectively. If no value is given with a flag, true is
assumed. Object options are:

anglen

echo

factorn

heightn

kopy

midpoint

out

GR 5-38

Specify an angle of n degrees.

When true, changes to the display buffer will be echoed
on the screen.

Specify a scale factor of n percent.

Specify height of text to be n universe-units (n greater
than or equal to O and less than 1280).

The commands Scale and Rotate can be used to either
create new objects or to alter old ones. When the kopy

flag is true, new objects are created.

When true, use the midpoint of a text string to locate the
string.

When true, reduce magnification during zoom.

GRAPHICS EDITOR

Area

points

rightpoint

styletype

text

widthtype

options are:

home
regionn
universe

view

When true, operate on points; otherwise, operate on
objects.

When true, use the rightmost point of a text string to
locate the string.

Specify line style to be of the following types:
so solid

da dashed
dd dot-dashed
do dotted

id long-dashed

Most text is drawn as a sequence of lines. This can
sometimes be painfully slow. When the text flag (1) is
false, strings are outlined rather than drawn.

Specify line width to be of the following types:

n narrow

m medium

b bold

One way to find the center of a rectangular area is to

draw the diagonals of the rectangle. When the x flag is
true, defined areas are drawn with their diagonals.

References the home-window
References the region n
Reference the universe-window

Reference those objects currently in view.

GR 5-39

GRAPHICS EDITOR

SOME EXAMPLES OF USING THE ged

The following examples are used 1o illustrate use of the ged.

Example 1--Text Centered Within a Circle

-

=Qircle<CR>

<position cursor><SP> (establish center)

<position cursor><CR> (establish radius)

*Text ~m<CR> (text is to be centered)

some text<CR>

$.0<CR> (first point from previous set,
i.e., circle center)

<CR>

Figure 5-12 shows the output of these commands.

some text

Figure 5-12. Text Centered Within a Circle

GR 5-40

GRAPHICS EDITOR

Example 2--Making Notes on a Plot

! gas | plot ~g >A<CR> (generate a plot, put it in file A)

*read ~e— A<CFR> (input the plot, but do not display it)
sview ~h<CR> (window on the plot)
#Lines —sdo<CFR> (draw dotted lines)

<position cursor><SP> (0,6.5 y-axis)
<position cursor><SP> (6.5,5.5)
<position cursor><SP> (5.5,0 x-axis)

<CR> (end of Lines)
sset —h150,wn<CR> (set text height to 150, line width to
narrow)

sText —r<CR> (right justify text)

threshold beyond that nothing matters<CFR>

<position cursor><CR> (set right point of text)

*Text —a—90<CR> (rotate text negative 90 degrees)

threshold beyond that nothing matters<CR>

<position cursor><CR> (set top end of text)

#<CR> (find center of plot)

<position cursor><SP> (top left corner of plot)

<position cursor><CR> (bottom right corner of plot)

*Text ~h300,wm,m<CR> (build title: height 300, weight
medium, centered)

SOME KIND OF PLOT<CFR>

<position cursor><CR> (set title centered above plot)

sview ~h<CR> (window on the resultant drawing)

GR 5-41

GRAPHICS EDITOR

Figure 5-13 shows the output of these commands.

SOME KIND OF PLOT

10—
9_._..
8._..
threshold beyond which nothing matters

-

____________ L

B— l oa

| =

| =)

5f— =]

I £

| 2

A | -

8

I 2

-] . Eal

I S

| o

@

2 @

|2

: | | | | |1 | |
0 1 2 3 4 5 8 7

Figure 5-13. Making Motes on a Plot

GR 5-42

GRAPHICS EDITOR

Example 3--A Page Layout with Drawings and Text

(

+1 rand ~s1,n100 | title —v" seed 1" | gsort | bucket |

hist —ri2 >A<CR> (put a histogram, region
12, of 100 random numbers in file A)

1 rand —s2,n100 | title —v" seed 2" | qsort | bucket |

hist —rl3 >B<CR> (put another histogram,
region 13, into file B)

st ed<CR> (create a file of text using the text editor)

a<CR>

On this page are two histograms<CR>

from a series of 40<CR>

designed to illustrate the weakness<CR>

of multiplicative congruential random number

generators.<CR>

.pl 3<CR> (mark end of page)

<CR>

w C<CR> (put the text into file C)

151

q<CR>

#! nroff C] yoo C<CR> (format C, leave the output
in C)

wiew —u<CR> (window on the universe)

*read —e— A<CR

sread —e— B<CR>

*view ~h<CR> (view the two histograms)

*read —h300,wn,m C<CR> (text height 300, line weight
narrow, text centered)

<position cursor><CR> (center text over two plots)

wyiew ~h<CR> (window on the resultant drawing)

.

GR 5-43

o NN e ;oo

GRAPHICS EDITOR

Figure 5-14 shows the output of these commands.

ON THIS PAGE ARE TWO HISTORGRAMS FROM A SERIES OF
40 DESIGNED TO ILLUSTRATE THE WEAKNESS OF MULTIPLICATIVE

CONGRUENTIAL R

ANDOM NUMBER GEMERATORS.

22

- o - — = —]

_ -
— o — 4 - — — — — — | — 1 — —

— 1004 - 4 1 I (N

21— — S i

o -+ -+ = 44 4+ __}1

0.02810.1650.3010.

4380.5740.710.8470.

SEED 1

o0 M & om
|
|

—
|
r
|
1
l
!
|
|
Il
!

1

1

983 .007870.1490.2890.430.5710.7110.8520,983

SEED 2

Figure 5-14. Page Layout with Drawings and Text

GR 5-44

Replace this
page with the
HELP

tab separator.

== ATal

- ~ W A = PP A 24
[3 3 3 80 90 4
3
. € X E -3
[€
¢ ¢ ¥ m
€ € »
!
-] DO ¥
r [‘e e o’ 9.4
Y 2 e a@m X % ll n
) o8 ¢
< alg e 3
et & °
f €
Secelelel " .
anw) O
‘e O
0] _ <
& e)9 W
e [€ " ¥)
I) X e 4 0.0 0
S
') Ilvlll 4) 4
e & ¢) 4 b4
t &). 9 4
) @_¢
f ()0 ¢
€ L). 8 8 1
D & CR
& =)
b3
L)
= :
)
¢
K3
m _0
€
€&
& &
@
— O lg®
.CQ
Snlﬂ e
t @
)
© o D)
o €
_D.
fap—
St 'e®,
|
=) [
= t
VA \ S
Q »
f—) E l\
Caly ", £ 8 H!Innn [y
B P e T E e T (3 EEEENE B ¥E 8 s EEGE
e e = G E€CCRENDENEERERRNERGEGEGEEEL
) Gt aCaC sl)
€ E8 U)
€ 8 € B Catl
G-ty cee e
R &8 gree
O oo a3
£ e a €€ aete
& E G € € 8 E EE & E &
Co) CRCIC NN)
e e e g0 ee e & @
€ E & € g B E G E E & 8 E E 6 G
€ e 6. € E 6 CEEEECEEEEEEEGGEEEEEEE
e6 o & 68 & ¢ B CGCEGCEEE6EEECEEEEEEREEEEE
& & BE € § E @ &2 8 CEEEEEE E EEEEEEEGGEEE
G e & @ 8 8 & G &€ €8 EEEEEEGEEEGEENE G EGCE
€ e 6. E €C 8 E G EE GO S EE UG EREE QB I EEE EE
& E 8 €& e e e €E C e 8 €6 EeCECESNEECEBS O O0ECEO6CE QG
8 €@ E € & €E 8 £FEEEEE EEE QGO ECE EN B ECEE C
& e gaea € € E € ECEECECEE &0 EEECEGECEE CEEE
E 8 @ € 6 €6 EEECEECEELCCE ST EEECCEn 6§ 6 B 6
E & @6 & & & 6§ € 8 E 8§ 6 E E€E Q2 EEMEECCCEECLCECQ
E e nc¢cs
e e g E 8 € e & &
E ¢ © 8B &
e ¢ e B & & 2 & @&
E e e e s
© e & e 6 & eec
e & G 68
€Ece e e c e c e e
€ cE68
€ c e € G @ € €
¢ € & @ & 8
¢ e e 8 €6 e
ecececeocces
E &€ C G @ € € €
GG eae
ccceoceece © <
ceccew o e
B € & 8 € € € G © € B € € O € C € &
€ G € CEG6E 666 EEECECOEGEEGECCOOGRECECEEeaocEec
G © 6 €66 CCCECECEECECCEGECEGGOOECCEEEES
€ e e €E€CEECEeECREE6CEECCEEOCEGCGGCGEEECEEEE
€6 6 66 eE&EE €ECEEECECCEGCRCCECECBECCCE T
€€ ee6 68 €EECGCCE GO E6EEEGCCLCOCEEECEGEEEREEEEE
€eceecucececrmce
e ceewceceaceces
€cceeccceoceceoceE
€ cecocoecececceae
e 666 G6oeceEEeEs €
Cccocececaeec e
e et o 6coecco e
ceceeeece e
et eccaucce «
e eeecececec e
€ cecooecc e <
cccececcE oo c
cceececcece
ccceececee
cccoeecee
cecaececco
ce e eceecee
ccceaecs s
cececcecc
€ e e eeceee
ceeecccecee
ccceceoe e
¢t cececee
ccceecec e

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

NS o R~ wDhRH

CONTENTS

INTRODUCTION

HELP MENU

STARTER MODULE
GLOSSARY MODULE
LOCATE MODULE

USAGE MODULE
ADMINISTRATION UTILITIES

Chapter 1

INTRODUCTION
PAGE
GEMERAL . . .o ettt ittt e e e et et et e e e e e e 11
FEATURE DESCRIPTIONttt ettt et eene 1-2
HOW COMMANDS ARE DESCRIBED\ttt enaiaaaaeeaann. 1-2

Chapter 1

INTRODUCTION

GENERAL

This guide describes command formats (syntax) and use of the Help
Utilities provided with your AT&T 3B2 Computer. The commands and
procedures described in this guide are for someone who needs help in
using the UNIX* System. This utilities is an interactive, menu-driven
facility that provides information on the UNIX System. There are four
major sections or modules in the Help Utilities. These modules will be
described in later chapters of this guide.

* Trademark of AT&T

HP 1-1

INTRODUCTION

FEATURE DESCRIPTION

The Help Utilities is an optional 3B2 Computer add-on feature. It allows
you to easily get a variety of information about the UNIX System while on
the computer.

Feature highlights include:

1. Starter Module - general UNIX System information

2. Glossary Module - definitions of UNIX System terms and symbois
3. Locate Module - function-related commands

4. Usage Module - how to use some UNIX System commands

5. System Administration Operation.

HOW COMMANDS ARE DESCRIBED

In the command format discussions, the following symbology and
conventions are used to define the command syntax.

« The basic command is shown in bold type. For example: command
is in bold type

e Arguments that you must supply to the command are shown in a
special type. For example: command argument

» Command options and arguments that do not have to be supplied

are enclosed in brackets ([]). For example: command
[optional arguments]

HP 1-2

INTRODUCTION

« The pipe symbol (1) is used to separate arguments when one of
several forms of an argument can be used for a given argument
field. The pipe symbol can be thought of as an exclusive OR
function in this context. For example:
command [argumentl | argumentZ]

In the sample command discussions, the lines that you input are ended
with a carriage return. This is shown by using <CR> at the end of the
lines.

Refer to the AT&T 3B2 Computer User Reference Manual for UNIX System
V manual pages supporting the commands described in this guide.

The following conventions are used to show your terminal input and the
system output:

This style of type is used to show system generated
responses displayed on your screen.

This style of bold type is used to show inputs
entered from your keyboard that are displayed on your
screen,

These bracket symbols, < > identify inputs from the
keyboard that are not displayed on your screen, such

as: <CR> carriage return, <CTRL d> control d, <ESC g>
escape g, passwords, and tabs.

This style of italic type is used for notes that
provide you with additional information.

HP 1-3

INTRODUCTION

GUIDE ORGANIZATION

This guide is structured so you can easily find information without having
to read the entire text. The remainder of this guide is organized as
follows:

+ Chapter 2, “HELP MENU," describes the help command and the
top level menu of the Help Utilities.

« Chapter 3, “STARTER MODULE,” describes the starter option and
its lower level menu screens.

s Chapter 4, “GLOSSARY MODULE,"” describes the glossary option
and its lower level menu screens.

» Chapter 5, “"LOCATE MODULE,"” describes the locate option and its
lower level menu screens.

» Chapter 6, “USAGE MODULE,"” describes the usage option and its
lower level menu screens.

« Chapter 7, “ADMINISTRATION UTILITIES,”" describes the

administration commmands used to add or change information in the
Help Utilities.

HP 1-4

Chapter 2

HELP MENU

PAGE

GENERALttt ittt e et st 2-1
HELP UTILITIES TREE ot r e ii et i am i nnaann i aasmaeaaaaanannnenn 2-2
SETTING UPYOUR TERMINAL i it e atncneanannneannnnans 2-3
HELP MENU L Lttt et aae e mait i aansnneasanananannannanann 2-4
Entering the Help Menu it it naannanacnnanns 2-4

Help Menu, Oplions i ittt e amatanananncaaennnenns 2-5
Bypassing the Help Menu i i i ieneeaanannnnns 2-6
Mlegal ENEries. . . oo ittt m e e e et en e a e n e a e 2-6
LOWER LEVEL MODULES ittt i an e e ananaanannnanns 2-7
Module MenUSo it ittt et e e 2-7

Module Contentsttt it e it it et a e e 2-7

Chapter 2

HELP MENU

GENERAL

This chapter describes the help command and the top level menu of the
Help Utilities. The top level menu is the help menu. There are several
menus in the modules of the Help Utilities. In these menus there may be
one or several screens of other menus or information. These layers of
menus and information screens are connected together and branch out
like the branches of a tree.

HP 2-1

HELP MENU

HELP UTILITIES TREE

HP 2-2

help

starter

screen 1
command
document
education
local

teach

I

glossarz
screen 1

screen 2

locate

screen 1

screen 2

usage
screen 1
list
description
examples

options

HELP MENU

SETTING UP YOUR TERMINAL

There are a few things you might have to do for the Help Utilities to work
to its full potential with your terminal. Some of the modules have screens
that are more than one page long. These screens have options that allow
you to move forward and backward, one page at a time. Important
information in some screens is also made more noticeable by highlighting
words or letters. This highlighting does not show up on all terminals or on
terminals that are defined wrong in your .profile. The following
information will help you to set up your terminal so that it will work as well
as it can with the Help Utilities.

If the TERM variable is not set in your .profile file, the default terminal will
be a 450 hard-copy terminal. You must set the TERM variable if your
terminal is not a 450 hard-copy terminal. All the functions of help will not
be available if your TERM variable is set wrong or not set at all. For
instance, the paging back and forth of some screens will not be available
on some terminals. The paging options n and b are available in some of
the screens that are more than one page long. The help facility also
reqguires that the tabs are set on your terminal. If the tabs are not set, the
data displayed may look like garbage.

The SCROLL variable may also be set in your .profile according to your
preference. The default for SCROLL is yes (SCROLL = yes). If the
SCROLL variable is set to noe (SCROLL = no) and then exported, the
screen will be cleared before printing the next screen of data. If you want
the screen to scroll, you must set SCROLL = yes and then export SCROLL,
or you can simply delete the SCROLL variable from your .profile. You
should also delete the exporting of SCROLL if you delete the variabla
SCROLL. The lines that should be in your .profile are shown below:

SCROLL=yes
export SCROLL

or

SCROLL=no
export SCROLL

HP 2-3

HELP MENU

Option Description

Enters starter screen 1
Enters locate screen 1
Enters usage screen 1
Enters glossary screen 1
Quits and exits to shell.

om0 c —o»

Bypassing the Help Menu

There may be several steps in the process of reaching the information for
which you are searching. You may skip the step of entering the help menu
once you become familiar with the lower level modules. For example, if
you want to enter the starter screen 1, you can skip the help screen by
entering:

help starter<CR>
or you can enter:

starter<CR>

Illegal Entries

Error messages are sometimes printed when you enter an unknown or
illegal character while in any menu of the Help Utilities. The Help Utilities
is an interactive system and will teil you when you make certain mistakes.
If an illegal character is entered while in a menu, the following error
message is printed.

HP 2-6

HELP MENU

is an invalid choice. Enter a choice shown above.
Enter choice > _

Now you may enter a legal choice.

LOWER LEVEL MODULES

There are four lower level modules each with a set of menus with options
for selecting various other menus or information. The information in these
modules will be described later.

Module Menus

These menus are interactive, which means the computer will prompt you
with a list of choices. Then, you must decide what to do. If a mistake is
made, the computer will print an error message and allow you to make
another choice. In this way, the computer will teach you how to use the
Help Utilities.

Note: The h (help) option of the lower level module screens is only
available if you enter that module from the help menu.

Module Contents

« Starter Module - contains general information on the UNIX System and
information for beginners.

» Glossary Module - contains a list of terms and symbols and the
definitions of those terms and symbols.

HP 2-7

HELP MENU

e Locate Module - is a means of identifying UNIX System commands by
their function.

» Usage Module - contains information about specific UNIX System

commands with descriptions, options, and examples demonstrating
some typical uses.

HP 2-8

Chapter 3

STARTER MODULE

PAGE

GENE R ALot i e 3-1
STARTER MODULE SCREENS i it e s maaaanan e eaanen 3-2
Entering Starter Screen 1 i e 3-2
Starter Screen L OptioNs i i 3-3
Entering Starter Command SCreem it i 3-3
Starter Command Screen Oplions e 3-3
Entering Starter Documents SCreent iiiienrrcanaaenann 3-5
Starter Documents Screen Options e 3-5
Entering Starter Education Screen i i 3-6
Starter Education Screen Options it it e 3-6
Entering Starter Local SCreemnt i ittt ittt et 3-7
Starter Local Screen Options ittt it s 3-7
Entering Starter Teach Screen it i i e eannanennnnns 3-8

Starter Teach Screen Options i e 3-8

Chapter 3

STARTER MODULE

GENERAL

This chapter describes the starter module and its lower level screens.
These screens contain general information for beginners. There are six
screens in the starter module, each with its own options. All these options
require only a single-character entry followed by a carriage return for the
operation to start.

HP 3-1

STARTER MODULE

STARTER MODULE SCREENS

The starter module contains the following:

» Command screen - lists some of the basic commands and terms for a
beginner to learn.

» Document screen - is a list of important basic UNIX System documents.

» Education screen - is a list of training centers for UNIX System courses,
including addresses.

» Local screen - lists the name, location, and telephone number of your
local system administrator.

» Teach screen - lists information about available on-line teaching aids.

Entering Starter Screen 1

The starter screen 1 can be entered from the help menu as explained in
Chapter 2. You can also enter the starter screen directly from the shelf
command level. Whether you enter directly from the shell or from the help
menu, you will be put in starter screen 1. From there you can choose an
option for one of the other starter screens. Each screen of the starter
module can be entered from the starter screen 1 by using the appropriate
option.

The starter screen 1 menu entry methods are shown below:

To enter, type: help<CR> then enter option s<CR>
or type: help starter<CFR>
or type: starter<CFR>

HP 3-2

STARTER MODULE

Starter Screen 1 Options

The options of the starter screen 1 menu are shown below:

Options Description
h (help) Returns to help screen 1
q (quit) Quits and exits to shell

¢ (command) Displays command screen
d (document) Displays document screen
e (education) Displays education screen
I (local) Displays local screen

t (teach) Displays teach screen.

Entering Starter Command Screen
The starter command screen is entered from starter screen 1. The starter
command screen menu entry method is shown below:

To enter, type: e<CR>

Starter Command Screen Options

The options of the starter command menu are shown below:

HP 3-3

STARTER MODULE

Options Descriptions

h (help) Returns to help screen 1

q {(quit) Quits and exits to shell

s (starter) Returns to starter screen 1.

Below is an example of the starter command screen:

~

Commands & Terms to learn first

The most basic UNIX System commands and terms are listed here.
New system users should master these commands and understand the
meaning of these techmical terms before going on to anything else.

Command Technical Terms
cat ed mv command password
cd grep pwd directory pathname
chmod 1s rm file program
cp mail who file system shell
date mkdir login UNIX System
for command information: for definitions:
1. enter: gq to quit 1. enter: g to quit
2. type: usage cmd_name, 2. type: glossary tech term

where cmd_name=a command name where tech_term=a term from the list

Choices: s (restart starter), h (restart help), q (quit)

LEnter choice > _

You can use the commands and terms in this screen to get familiar with
using the Help Utilities and learn the commands and terms at the same
time.

HP 3-4

STARTER MODULE

Entering Starter Documents Screen

The starter documents screen is entered from starter screen 1. The
starter documents screen menu entry method is shown below:

To enter, type: d<CR>

Starter Documents Screen Options

The options of the starter documents menu are shown below:

Options Description

h (help) Returns to help screen 1

q (quit) Quits and exits to shell

s (starter) Returns to starter screen 1.

The following is an example of a few of the documents listed in the
documents screen:

— Basics for UNIX System Users

— Using the File System

— Screen Editor (vi) Tutorial

— Shell Tutorial

— File System Hierarchy /Pathnames
— Text Formatters Reference.

HP 3-5

STARTER MODULE

Entering Starter Education Screen

The starter education screen is entered from starter screen 1. The starter
education screen menu entry method is shown below:

To enter, type: e<CR>

Starter Education Screen Options

The options of the starter education menu are shown below:

Options Description

h (help) Returns to help screen 1

q (quit) Quits and exits to shell

s (starter) Returns to starter screen 1.

The following is an example of how information about a training center is
listed in the education screen.

Name: AT&T Technologies Dublin Training Center
Location: Dublin OH
Information: Call: 800-TRAINER

Audience: AT&T personnel and commercial customers

HP 3-6

STARTER MODULE

Entering Starter Local Screen

The starter local screen is entered from starter screen 1. The starter local
screen menu entry method is shown below:

To enter, type: I<CH>

Starter Local Screen Options

The options of the starter local menu are shown below:

Options Description

h (help) Returns to help screen 1

g (quit) Quits and exits to shell

s (starter) Returns to starter screen 1.

Below is an example of the type of information found in the local screen:

HP 3-7

STARTER MODULE

Local System Information:

The following is an example of information for your system
that is to be supplied by your system administrator:

SYSTEM ADMINISTRATOR: Chip Logic
PHONE NUMBER: 555-8669

SYSTEM NAME: 3B2

PROCESSOR TYPE: WE3200

Choices: s (restart starter), h (restart help), g (quit)

Enter choice > _

Entering Starter Teach Screen

The starter teach screen is entered from starter screen 1. The starter
teach screen menu entry method is shown below:

To enter, type: t<CR>

Starter Teach Screen Options

The options of the starter teach menu are shown below:

Options Description

h (help) Returns to help screen 1

q (quit) Quits and exits to shell

s (starter) Returns to starter screen 1.

HP 3-8

STARTER MODULE

Below is an example of the teach screen:

Teaching Aids Available On-Line

Name : UNIX Instructional Workbench
Description: Programs for computer-aided instruction.
Courses: 1. Fundamentals of the UNIX System
2. Advanced Use of the UNIX System Text Editor
3. UNIX System Memorandum Macros
4. Table Processing (tbl) Using the UNIX System
Ordering: Order UNIX System Instructional Workbench through your
AT&T Technologies Regional Representative (AT&T

affiliates) or by contacting AT&T Technologies
Licensing at (919) 697-6930 (commercial customers).

Choices: s(restart starter), q(quit), h(help)

HP 3-9

Chapter 4

GLOSSARY MODULE

PAGE

GENERAL . . ottt ittt et aaa e 4-1
GLOSSARY MODULE SCREENS ittt inaaasaananenennnnsannn 4-1
Entering Giossary Screen 1 (Terms) innninnninneannnanan 4-2
Glossary Screen 1 Optionsttt it i e e 4-2
Entering Glossary Screen 2 (Definitions) i, 4-4

Glossary Screen 2 Oplions .,ottt i nn i nanannen s ienan s - A4

Chapter 4

GLOSSARY MODULE

GENERAL

This chapter describes the glossary module and its lower level screens.
There are two screens of the glossary module, each with its own options.
Most of these options require only a single character entry followed by a
carriage return for the operation to start. The option UNIX term is the
only exception.

GLOSSARY MODULE SCREENS

The glossary module contains the following:

o Glossary screen 1 - A list of UNIX terms that are defined in glossary
screen 2.

s Glossary screen 2 - The definition of the terms listed in glossary screen
1

HP 4-1

GLOSSARY MODULE

Entering Glossary Screen 1 (Terms)

The glossary screen 1 can be entered from the help menu as explained in
Chapter 2. You can also enter the glossary screen directly from the shell
command level. If you enter from the shell, you can go directly to glossary
screen 2 by entering a UNIX term as the last argument on the command
line. If you leave off the UNIX term argument you will be put in glossary
screen 1. From there you can choose an option for one of the other
glossary screens.

UNIX term can be a word or phrase special to the UNIX System (file, shell,
link, or mode). The term is entered at the bottom of glossary screen 1;
then, glossary screen 2 is automatically entered, and the definition is
printed on the screen.

The glossary screen 1 menu entry methods are shown below:

To enter, type: help<CFR> then enter option g<CR>
or type: help glossary<CR>
or type: glossary<CR>

Glossary Screen 1 Options

The options of the glossary screen 1 menu are shown below.

HP 4-2

GLOSSARY MODULE

Option Description

h (help) Returns to help screen 1
(if you entered from the help menu)

q (quit) Quits and exits to shell

n (next) Goes to next page

b (back) Goes back one page

UNIX term Goes to glossary screen 2 and displays definition of the

UNIX term entered.

Below are a few of the terms listed in glossary screen 1:

$

&

HOME UNIX

block command line
field file

group link

fogin mode

owner pathname
pipe prompt

root root directory
shell string

user ID white space

HP 4-3

GLOSSARY MODULE

Entering Glossary Screen 2 (Definitions)

The glossary screen 2 menu entry methods are shown below:

To enter, type: help glassary UNIX term<CR>
or type: glossary UNIX term<CR>
or type: UNIX term<CR> (from glossary screen 1)

Glossary Screen 2 Options

The options of the glossary screen 2 menu are shown below:

Option Description

h (help) Returns to help screen 1 (if you entered from the help
menu)

q (quit) Quits and exits to shell

g (glossary) Returns to glossary screen 1.

n (next) Goes to next page

b (back) Goes back one page.

Below is an example of a description found in glossary screen 2. The
definition shown is for the terms root or root directory.

HP 4-4

GLOSSARY MODULE

root : root directory
The root directory is the base of the tree structure of the

file system of a UNIX System. It is represented as a slash
(/) at the beginning of every " full pathname" *.

* defined in the glossary

Choices: UNIX term (from list), g (restart glossary) q (quit)

Enter choice > _

HP 4-5

Chapter 5

LOCATE MODULE

PAGE

GENE R . . . oottt ittt ittt et e e 5-1
LOCATE MODULE SCREENS it aieiannnanaannannanna 5-1
Entering Locate Screen 1 it e ve. B-2
Locate Screen LOPiONS it it 5-2
Entering Locate SCreem 2 it i e 5-3
Locate Screen 2 OpRiONSttt ittt e et 5-3

LOCATE EXAMPLE i it aen et iataiaaaaanansosnnnaannnnnn 5-4

Chapter 5

LOCATE MODULE

GENERAL

This chapter describes the locate module and its lower level screens.
There are two screens in the locate module, each with its own options. All
these options require only a single-character entry followed by a carriage
return for the operation to start.

LOCATE MODULE SCREENS

The /ocate module contains the following:

e Locate screen 1 - A description of locate, and a list of related
commands for each keyword with a short example of how the function-
related keywords are used.

« Locate screen 2 - A description of related commands.

HP 5-1

LOCATE MODULE

A keyword is a word (not a command) that is related to a group of
commands through its function. Print is a word that can be related by
function to such commands as: pr, Is, or cat. So, if you need to know what
command will do a function (such as: hunt for an item), you enter that
word (hunt). All the commands that do a similar or related function to
hunt will be listed on the screen. You can then choose the command that
will best suit your needs. If you need more information on hunt or other
commands, you may enter the usage screen or reference the AT&T 382
Computer User Reference Manual.

Entering Locate Screen 1

The locate screen I menu entry methods are shown below:

To enter, type: help<CR> then enter option I<CR>
or type: help locate<CR>
or type: locate<CR>

Locate Screen 1 Options

The options of the locate screen 1 menu are shown below:

Options Descriptions
k (help) Returns to help screen 1
a (quit) Quits and exits to shell

k (keyword) Goes to locate screen 2 (Enter keyword(s) after new
prompt).

HP 5-2

LOCATE MODULE

Entering Locate Screen 2

The Jocate screen 2 menu entry methods are shown below:

To enter, type: help locate keyword(s)<CR>
or type: locate keyword(s)<CR>
or type: k<CR> (from locate screen 1)

Locate Screen 2 Options

The options of the locate screen 2 menu are shown below:

Options
h (help)

g (quit)

k (keyword)

¢ (command)

n (next)

b (back)

Descriptions
Returns to help screen 1
Quits and exits to shell

Enter keyword(s) after new prompt (displays commands
found using the keyword entered)

Enter command name, then enter option [d, e, o] (links
to usage screens)

d displays the usage description screen
e displays the usage examples screen
o displays the usage option screen

Goes 1o next page (on some terminals)

Goes back one page (on some terminals).

Nete: The e option goes to the Usage Module and the appropriate

screen.

HP 5-3

LOCATE MODULE

LOCATE EXAMPLE

Below is an example of the locate screen:

-~

locate: Find UNIX System Commands with keywords

Give locate a list of one or more keywords related to the work
you want to do. It will print a list of UNIX System

commands whose actions are related to the keywords.

For example, the keyword list:

print file could produce the list: The cat (concatenate) command

The 1ls (list) command
The pr (print) command

To use locate, enter a k. When the " Enter keywords" prompt
appears, enter the keywords on one line, separated by blank spaces

choices description
k Enter a list of keywords
q Quit

Enter choice > _

If you enter a k as the choice above, the following prompt will be
displayed:

Enter keyword(s) >

HP 5-4

LOCATE MODULE

If you enter print as the keyword at the keyword prompt in locate screen

1, the following would be displayed in locate screen 2:

The
The
The
The
The
The

cat (concatenate) command

echo command

1s (list) command

pr (print) command

pwd (print working directory) command
tail command

Choices: ¢ (cmd info), k (new keywords),

Enter choice >

HP 5-5

Chapter 6

USAGE MODULE

PAGE

GEMERALottt it s e nn e n e man iAo eaan 6-1
USAGE MODULE SCREENS ittt a it ienenaannan 6-2
Entering Usage Screen L ittt i it ann b 6-2
Usage Screen 1 Oplions.t i it anacaanannanannaan 6-3
Entering Usage List SCreem i nnininiensenenannannaennnnn 6-3
Usage List Screen Oplions ittt et 6-4
Entering Usage Description Screen i iiniiiiniineiaaean 6-4
Usage Description Screen Options. i 6-5
Entering Usage Example Screen imnnnnnnnnnnnnnnnnns 6-5
Usage Example Screen Options nniniininannnnnnnn 6-6
Entering Usage Options SCreen i it tnniiannanananaeanannn 6-7
Usage Options Screen Options iiinnnnennannnnns 6-8
USAGE MODULE EXAMPLES ittt naannaneiaaanannnnns 6-9
Usage Screen 1 Example e 6-9
Usage List Screen Example e, 6-10
Usage Description Screen Example i e 6-11
Usage Examples Screen Example 6-12

Usage Options Screenm Example i nn it carnraacaanannn 6-13

Chapter 6

USAGE MODULE

GENERAL

This chapter describes the usage module and its lower level screens.
There are five screens in the usage module, each with its own options. All
these options require only a single-character entry followed by a carriage
return for the operation to start.

HP 6-1

USAGE MODULE

USAGE MODULE SCREENS

The usage module contains the following:

« Usage Screen 1 - A menu of the possible options.

» Usage Command List Screen - A list of all UNIX System commands
supported by the Help Utilities.

» Usage Command Description Screen - A description of the commands
listed in the command list screen.

o Usage Command Examples Screen - Examples of how to use each of
the commands listed.

« Usage Command Options Screen - All the available options for each of
the commands listed.

Entering Usage Screen 1

The usage module is used to get information on specific commands. Once
you enter usage screen 1, you may print out a list of supported commands
or get information on a specific command. To get information on a
command, just choose option ¢ and enter the command after the second
prompt. You must then choose what type of information you want. You
can get a description, an example, or possible options of the command.
After you enter this choice, you will be allowed to make one of several
choices.

The usage screen 1 menu entry methods are shown below:

To enter, type: help<CR> then enter option u<CR>
or type: help usage<CR>
or type: usage<CR>

HP 6-2

USAGE MODULE

Usage Screen 1 Options

The options of the usage screen 1 menu are shown below:

Options Description

h (help) Returns 1o help screen 1

q {quit) Quits and exits to shell

p (print) Prints usage list screen command list

¢ (command) Enter command name, then enter option [d, e, 0]
d displays the description screen
e displays the examples screen
o displays the option screen.

Entering Usage List Screen

The usage list screen menu entry method is shown below:

To enter, type: up<CR> (at usage screen 1)

HP 6-3

USAGE MODULE

Usage List Screen Options

The options of the usage list screen 1 menu are shown below:

Options Description
h (help) Returns to help screen 1
q (quit) Quits and exits to shell

¢ (command) Enter command name, then enter option [d, e, 0]
d displays the description screen
e displays the examples screen
o displays the option screen.

Entering Usage Description Screen

The usage description screen menu entry methods are shown below:

To enter, type: help usage command name<CR>
or type: usage command name<CR>
or type: d<CR> from usage examples screen
or type: d<CR> from usage options screen

You may also enter the description screen from other screens. After
entering ¢ as the choice in the appropriate screen, you must enter a
command name. You may then enter the description screen by choosing
the d option when you are asked to enter a choice. The following methods
show how to enter from each of the other screens.

To enter, type: d<CR> from usage screen 1
or type: d<CR> from usage list screen
or type: d<CR> from locate screen 2

HP 6-4

USAGE MODULE

Usage Description Screen Options

The options of the usage description screen menu are shown below:

Options
h (help)
q (quit)
p (print)

¢ (command)

e (example)
o (option)

| (locate)

Description

Returns to help screen 1
Quits and exits to shell
Prints usage list screen

Enter command name, then enter option [e, 0]
e displays the examples screen
o displays the option screen

Displays example screen
Displays option screen

Returns to the locate command list (if you entered
usage from the locate module).

Entering Usage Example Screen

The usage example screen menu entry methods area shown below:

To enter, type: help usage -e command name<CR>
or type: usage -e command name<CR>
or type: e<CR> from usage description screen
or type: e<CR> from usage options screen

You may also enter the example screen from other screens. After entering
¢ as the choice in the appropriate screen, you must enter a command
name. You may then enter the example screen by choosing the e option
when you are asked to enter a choice.

HP 6-5

USAGE MODULE

The following methods show how to enter from each of the other screens:

To enter, type: e<CR> from usage screen 1
or type: e<CR> from usage list screen
or type: e<CR> from locate screen 2

Usage Example Screen Options

The options of the usage example screen menu are shown below:

Options Description

h (help) Returns to help screen 1
g (quit) Quits and exits to shell
p (print) Prints usage list screen

¢ (command) Enter command name, then enter option [d, 0]
d displays the description screen
o displays the option screen

d (description) Displays description screen
o (option) Displays option screen

| (locate) Returns to the locate command list (if you entered
usage from the locate module).

HP 6-6

USAGE MODULE

Entering Usage Options Screen

The usage options screen menu entry methods are shown below:

To enter, type: help usage -0 command name<CR>
or type: usage -0 command name<CR>
or type: o<CR> from description screen
or type: o<CR> from example screen

You may also enter the options screen from other screens. After entering
¢ as the choice in the appropriate screen, you must enter a command
name. You may then enter the options screen by choosing the o option
when you are asked to enter a choice. The following methods show how
to enter from each of the other screens:

To enter, type: o<CR> from usage screen 1
or type: o<CR> from usage list screen
or type: o<CR> from locate screen 2

HP 6-7

USAGE MODULE

Usage Options Screen Options

The options of the usage options screen menu are shown below:

Options Description

h (help) Returns to help screen 1
g (quit) Quits and exits to shell
p (print) Prints usage list screen

¢ (command) Enter command name, then enter option [d, e]
d displays the description screen
e displays the examples screen

d (description) Displays description screen
e (example) Displays example screen

I (locate) Returns to locate command list (if you entered usage
from the locate module)

n (next) Goes to next page

b (back) Goes back one page.

HP 6-8

USAGE MODULE

USAGE MODULE EXAMPLES

The following examples may not be an exact copy of the data contained in
your help database. Because, the local administrator may add, change, or
delete information in the database. The content of individual screens may
be different from what is shown here.

Usage Screen 1 Example

Below is an example of usage screen 1

(

usage: Information about Commands

usage provides information about specific UNIX System commands.
Enter one choice below to proceed.

choices Description

c Obtain usage information for a command
p Print a list of commands

q Quit

Enter choice > _

HP 6-9

USAGE MODULE

Usage List Screen Example

The following is an example of the usage list screen

P

usage: Information about Commands

The following commands are currently included in help:

cat cd chmod cp cut date
echo egrep fgrep file find glossary
grep help 1n locate 1s mail
mesg mkdir mv news pr ps

pwd rm sleep sort starter stty
tabs tail tee time touch tty
uname usage wall we who write

Choices: ¢ (enter cmd), g (quit)

Enter choice > _

If you enter a ¢ as the choice above, the following prompt will be
displayed:

Enter command name >

After you enter a command name (cmd_name) at the prompt above, the
following prompt will be displayed:

Enter d (description), e (examples), or o (options) > _

HP 6-10

USAGE MODULE

After entering an option at the prompt above, the chosen screen will be
displayed.

Usage Description Screen Example

Below is an example of the usage description screen for the cat command:

cat
Syntax Summary: cat [-u] [-s] [-v [-t] [-e]] file_name

where:
file names are simple file names, relative
pathnames, or full pathnames.

Description:
cat is shorthand for "concatenate." It prints the
contents of the file[s] specified as its argument(s].
If more than one file is specified, cat will print
each one in sequence on the standard output.
See also: cp(l), pg(l), pr(1l).

Choices: o(options), e(examples), c(enter cmd), p(print list),
q(quit)

Enter choice > _

You may now enter a choice, and the appropriate screen will be displayed
(unless you enter a q).

HP 6-11

USAGE MODULE

Usage Examples Screen Example

If you enter an e as the option at the prompt in the cat description screen,
the following cat examples screen will be displayed:

cat : Examples

cat textfile
--> Prints, on the standard output, the contents of the
file textfile in the current working directory.

cat /etc/passwd /etc/group > groupfile
--> Prints the contents of /etc/passwd and then the contents
of /etc/group and redirects the output to the file groupfile.

cat /usr/src/cemd/* | grep stdio.h
--> Prints the lines that contain the pattern stdio.h from
the files in the directory /usr/src/cmd.

Choices: o(options), d(description), c(enter cmd), p(print list),
q(quit)

Enter choice > _

HP 6-12

USAGE MODULE

Usage Options Screen Example

If you enter an o as the option at the prompt in the cat examples screen,
the following cat options screen will be displayed:

rcat : Options

-u output is not placed in temporary storage before
printing (unbuffered)

-8 suppresses messages about non-existent files

-V causes non-printed characters to be printed (except tabs,
newlines and form-feeds) (e.g. "G is printed for the bell
character)

-t causes tabs to be printed as "I (used only with -v)

-e causes a $ character to be printed at the end of

each line (used only with -v)

Choices: e(examples), d(description), c(enter cmd), p(print list),
q(quit)

Enter choice > _

HP 6-13

Chapter 7

ADMINISTRATION UTILITIES

BENER ALttt ie s et et e aaa e
Entering the ‘helpadm’ Menu e enannanaaeanns
thelpadm’ MemU. . .. i e nn e

CHANGING THE HELP DATABASE ittt e enenananannnnn
Changing Starter Information i e e
Example of Changing Starter Bata 1 it ininnnarann
Changing Glossary Information i it i inneeemanannnn
Modifying Command Information it e e
Monitoringthe Use of Help i e i iaaannaan

RECOMMENDATIONS FOR FORMATTING DATAttt ianennnnanns
General Rules for All Types of Help Screenst inennnnnn
Guidelines for Glossary SCreems innnnnnnnnaeanannnnnnnnn
Guidelines for Descriplion SCreenst eiin o e taneanenaannnan
Guidelines for Ophions SCreens oottt i ier i saa e
Guidelines for Examples Screens. ittt

PAGE

7-1

Chapter 7

ADMINISTRATION
UTILITIES

GENERAL

The Help Administration Utilities are interactive tools used by UNIX System
administrators. The Administration Utilities enable administrators to add,
change, or delete information in the Help database. The ability to monitor
the use of the Help Utilities is also allowed for users with root or bin as a
login.

Entering the "helpadm’ Menu

To use the helpadm command and change heip data, you must be logged
in as root, bin, or you must be a member of the group bin login. [f anyone
else tries to change help data, an error message is printed at their
terminal, and they will be returned to the shell from which they entered
the Helpadm utilities. The helpadm menu of options can be displayed by
doing the following:

To enter, type: helpadm<CR>

HP 7-1

ADMINISTRATION UTILITIES

‘heipadm’ Menu

The options of the helpadm menu are listed below:

Options Description

1 To make changes to data in the starter module (only root
logins may change starter data)

2 To make changes to data in the glossary module (only root
or bin logins may change starter data)

3 To make changes to description, examples, options, and
keyword data of the locate and usage modules (only root or
bin logins may change starter data)

4 To stop monitoring the use of help
(may be set by root or bin logins only)

5 To start monitoring the use of help
(may be set by root or bin logins only)

q Quits and exits helpadm menu, and returns you to the shell
command level.

After entering the helpadm menu and selecting an option, you will be
allowed to make the chosen action. The possible actions allowed in each
menu and how to make those actions are described next.

HP 7-2

ADMINISTRATION UTILITIES

CHANGING THE HELP DATABASE

There are three areas that you may enter, to make changes to the
database. The three areas are:

e Starter
« Glossary

o Command information.

Only one person may change data in any one area at a time. If more than
one person tries to change data in an area, a message is printed at the
second or later person’s terminal and they will be returned to the shell. If
this happens, you should try to make your changes at another time.

Note: The default editor for editing the help database is the ed
editor.

Changing Starter Information

After you enter the starter database, a menu of the starter screen is
displayed at your terminal. A prompt is printed at the bottom of the
screen requesting you to enter your choice of screens. After you respond,
you are placed in the editor specified by the EDITOR shell variable in your
.profile. The default editor is ed. However, you may change the editor
that you default to by defining the EDITOR shell variable in your .profile

- and then exporting it. You must be logged in as root to change
information in the starter database.

Exiting the Editor

When you have finished editing the data in a screen, you will be asked if
you are satisfied with the screen you have changed. If you are not
satisfied, you can re-edit the screen. When you have responded that you
are satisfied with the screen, you are asked if you want the changes
entered into the database. To have the changes entered, you must

HP 7-3

ADMINISTRATION UTILITIES

respond by typing y for yes. If you do not typey, the database remains
unchanged. This prompting sequence is used for most of the screens
when exiting the edit mode.

Example of Changing Starter Data

The following is an example of how to change data in the starter database.
To begin, enter:

helpadm<CR>

After entering helpadm, the first helpadm menu will be displayed. The
helpadm menu is shown below:

helpadm: UNIX System On-Line help Administrative Utilities
These software tools will enable the administrator to change

information in the help facility’s database, and to monitor
use of the help facility.

choices description

1 starter
2 glossary
3 commands

S

prevent recording use of help facility

5 record use of the help facility

q quit

Enter choice > _

If you enter 1 (starter) as the choice in the helpadm menu, the following
starter menu will be displayed.

HP 7-4

ADMINISTRATION UTILITIES

helpadm: starter

Which screens of starter do you want to make changes to?

choices description

c commands screen
d documents screen
e education screen
1 local screen

t teach screen

q quit

Enter choice > _

If you do not have permission to change starter information, the following
message will be displayed; and you will be placed back in the shell from
which you entered helpadm. Remember, only root can make changes to
the starter database.

You do not have permission to change this starter screen.
Exiting with no changes to the help facility database.

HP 7-5

ADMINISTRATION UTILITIES

Changing Glossary Information

After you enter the glossary database, you will be prompted for the term
to be added, changed, or deleted. After you enter the option, you will be
asked for the term which you are going to add, change, or delete. Once
you enter the term, you will be placed into the default editor to edit the
term. When you have finished editing, you can exit the editing process by
using the procedure explained in the " Exiting the Editor" section of this
manual.

Note: if the screen being edited is more than 17 lines, you will be
put back into the editor to shorten the definition.

Adding a Term

If you wish to add a term to the glossary, you should choose the add
option when prompted for the option. When you enter a glossary term
that is not already in the glossary, you will be prompted with a message
that states the entered term is a new term, and assumes you are adding
the term. At this point you will be placed in the editor specified by the
EDITOR shell variable. You may then add the definition of the chosen term.
The definition cannot be more than 17 lines long. When you have finished
editing, you can exit the editing process by using the procedure explained
in the " Exiting The Editor” section of this manual.

Nete: You may only change or delete glossary definitions if you
have write permission for the definition file. If you do hot have
write permission for the definition file, an error message is printed
at your terminal, and you will be returned to the shell.

Changing a Term

To change an existing term, you must enter the term when prompted for
it. Once you enter an existing term, you will be prompted to choose
between changing or deleting the term. If you wish to change the term,
you should choose the modify option. After you enter the option, you will
be placed into the default editor specified by the EDITOR shell variable.

HP 7-6

ADMINISTRATION UTILITIES

You may then make your changes to the definition of the chosen term.
When you have finished editing, you can exit the editing process by using
the procedure explained in the " Exiting the Editor" section of this manual.
The terms definition cannot be more than 17 lines long.

Deleting a Term

To delete an existing term, you must enter the term when prompted for it.
Once you enter an existing term, you will be prompted to choose between
changing or deleting the term. To delete the term, you should choose the
delete option. If you choose the delete option, you will be asked again if
you want to delete the term. For the term to be deleted, you must
respond by typing y for yes. If you do not type y, the database remains
unchanged. The following is an example of deleting a term after you have
entered the glossary database from the helpadm menu.

Enter the name of the glossary term to be added/modified/deleted > list <CR>
list is already included in the glossary.
Do you want to m(modify) its definition or d(delete) it from the glossary?

Enter choice (m or d) > d<CR>
Are you sure you want to delete list from the glossary?

Enter choice (y or n) > y<CR>
list deleted from glossary.

Example for Changing Glossary Terms

If you enter 2 (glossary) as the choice in the first helpadm menu, the
following prompt will be displayed:

Enter the name of the glossary term to be added/modified/deleted> _

HP 7-7

ADMINISTRATION UTILITIES

If you edit the definition for shell, which is an existing term in the glossary,
the following message will be printed:

[Editing definition for shell

You will then be placed in the editor mode specified by the EDITOR export
variable defined in your .praofile. After you have finished editing the term
chosen, you will be prompted with the following message:

[Are you satisfied with this definition (y or n)? >

If you enter n at the prompt above, the following message will be
displayed, and you will be placed back into the editor again:

[Re—editing definition for shell

After you have finished editing again, you will be prompted with the
following message:

[Are you satisfied with this definition (y or n)? > _

If you enter y at the prompt above, the following message will be
displayed.

HP 7-8

ADMINISTRATION UTILITIES

Do you want the data you have entered to be added to the
help facility database (y or n)? >

If you enter y, the changes will be entered in the database, and you will he
returned to the shell. If you enter n, the following message will be
displayed:

Exiting with no changes to the help database.

You will now be returned to the shell.

Adding a term to the glossary data base is similar to changing data of a
term. After entering a 2 in the first menu for the glossary option, the
following prompt will be displayed:

[Enter the name of the glossary term to be added/modified/deleted> _

You will then be placed into the editor to add the definition for the term.
When you have finished editing, you must answer yes to the following
prompts to have the data added to the database:

Are you satisfied with this definition (y or n)? >
Do you want the data you have entered to be added to the help
facility database (y or n)? >

HP 7-9

ADMINISTRATION UTILITIES

When you have answered y to these prompts, the following message will be
displayed:

[Modifications to the help glossary complete.

Modifying Command Information

You must be logged in as root or bin to enter the command area of the
Help Utilities database. If anyone else tries to change command data, an
error message is printed at their terminal, and they will be returned to the
shell. After you enter the command area database, you may add, change,
or delete the following four types of command information:

« Description information

Examples information
o Keyword information

« Options information.

You will be asked to enter the name of the command whose data is to be
added, changed, or deleted. If the command is not in the help database,
the facility assumes that the command is to be added to the database.

Note: You may only change or delete a command description file if
you have write permission for the file. If you do not have write
permission for the description file, an error message is printed at
your terminal, and you will be returned to the shell.

HP 7-10

ADMINISTRATION UTILITIES

Adding Command Information

if a command is to be added to the database, then you must enter
information for description, example, options, and keywords when you are
prompted.

If you are adding description, options, or examples information, you will be
placed in the editor specified by the EDITOR shell variable. You can then
make the additions to the database. Adding keyword information will be
described later.

When you have finished editing, you will be asked if you are satisfied with
the screen you have changed. If you are not satisfied, you can re-edit the
screen. When you have responded that you are satisfied with the screen,
you will be asked if you want the changes entered into the database. To
have the changes entered, you must respond by typing y for yes. If you do
not type y, the database remains unchanged.

You will automatically be allowed to edit the keyword list for a new
command. There must be at least one keyword in the list before you will
be allowed to exit the keyword list. A keyword must be a single word.
When you have finished adding keywords, you must enter a period on a
line by itself. You will then be asked if you are satisfied with the list. Once
you respond to this prompt, you will be asked if you want the data you
enter to be added to the database. To have the changes entered, you
must respond by typing y for yes. If you do not type vy, the database
remains unchanged. This will complete the editing process for adding a
command to the database. The administration facility will add the
information and print out a message for each type of screen as the data is
added for the new command. A message will also be displayed when all
changes have been done.

HP 7-11

ADMINISTRATION UTILITIES

Changing Command Information

If command information is to be changed, you will be given the option of
choosing what part is to be changed: description, option, examples, or
keywords. When you respond, you will be placed in the editor specified by
the EDITOR shell variable. You can then make the changes to the
database.

When you have finished editing, you will be asked if you are satisfied with
the screen you have changed. If you are not satisfied, you can re-edit the
screen. When you have responded that you are satisfied with the screen,
you will be asked if you want the changes entered into the database. To
have the changes entered, you must respond by typing y for yes. if you do
not type y, the database remains unchanged.

When changing keywords in the keyword list, the list is printed on the
terminal. Then, you are asked if you want to delete any keywords. If you
do not want to delete any keywords, you enter a period on a line by itself.
This will stop deletions and start additions. You will be prompted for a new
keyword. A keyword must be a single word. To stop the adding process,
you must enter a period on a line by itself. At this point, you will be given
the option of adding more keywords or stopping.

Deleting Command Information

If the command already exists in the database, you will be given the choice
of deleting the commands information when the command name is
entered. If the command is to be deleted, all the command information:
description, options, examples, and keywords will be deleted at the same
time. You must respond by typing y when the prompt is displayed. You
will then be asked if you are sure you want to delete the information.

HP 7-12

ADMINISTRATION UTILITIES

The

following is an example of removing the Is command:

-~

Enter the name of the command to be added/modified/deleted > ls<CR>
The Is command is already included in help.

Do you want to delete information on Is (y or n)? > y<CR>

Are you sure you want to remove keywords, description, option,
and example information for Is (y or n)? > y<CR>

Keywords, description, option, and example information for

Is have been deleted from the help facility database.

Example for Modifying Command Data

The
Afte

following is an example for adding a command to the help database.
r you enter a 3 (command) as the choice in helpadm menu, the

following will be displayed for adding the split command:

(

Enter the name of the command to be added/modified/deleted > split<CR>
New Command: split

This command is not currently included in the help facility.
You must enter a COMPLETE set of command data, including
description and syntax information, option information, usage
examples, and a keyword set, if ANY of the data you enter
are to be added to the help facility's database. You will

be asked to explicitly request that this data be included in
the help facility database at the end of this session.

Editing Description Screen For split

HP 7-13

ADMINISTRATION UTILITIES

At this point you may add the description for the command being added to
the database. Once the editing has been completed, the following prompt
is displayed. You should then respond by entering a y or an n.

Are you satisfied with this screen (y or n)? > y<CR>
Description Screen Completed.
Editing Options Screen for split

At this point you may add the options for the command being added to the
database. Once the editing has been completed, the following prompt is
displayed. You should then respond by entering a y or an n.

Are you satisfied with this screen (y or n)? > y<CR>
Options Screen Completed.
Editing Examples Screen for split

At this point you may add the examples for the command being added to
the database. Once the editing has been completed, the following prompt
is displayed. You should then respond by entering a y or an n.

Are you satisfied with this screen (y or n)? > y<CR>
Examples Screen Completed.

Making Keyword List for split

Enter a single keyword for the command after each colon (:).

To stop adding keywords, enter a period (.).

HP 7-14

ADMINISTRATION UTILITIES

After entering the keywords as described and ending with a period, the
keyword list you entered will be displayed on the terminal. The following
prompts will be displayed after the keyword list:

Are you satisfied with this list? (y or n) > y<CR>
Do you want the data you have entered to be added to the help
facility database? (y or n) > y<CR>

Once you enter a y to have the data entered into the database, the
following messages will be displayed as each type screen is written to
memory.

Description Screen for split Updated
Options Screen for split Updated
Examples Screen for split Updated
Keyword List for split Updated.
Modifications to help database complete.

You will now be returned to the shell from which you entered the helpadm
command.

HP 7-15

ADMINISTRATION UTILITIES

The following is an example of changing data of the list command in the
help database. After you enter a 3 (command) as the choice in the
helpadm menu, the following will be displayed for changing the list
command.

Enter the name of the command to be added/modified/deleted > list<CR>
The list command is already included in help.

Do you want to delete information on list (y or n)? n<CR>
What part of the command data do you wish to edit?

Enter d(desc), o(options), e(examp), k(keywds), or g(quit) > d<CR>
Editing Description Screen for list

After editing the description of the command chosen the following prompt
will be displayed.

Are you satisfied with this screen (y or n)? > y<CR>
What part of the command data do you wish to edit?
Enter d(desc), o(options), e(examp), k(keywds), or g(quit) > d<CR>

You may continue editing the different parts of the command in this way
until you are satisfied with the results. When you have finished, you should
enter a g (quit) at the following prompt and return to the shell:

Enter d(desc), o(options), e(examp), k(keywds), or q(quit) > q<CR>

HP 7-16

ADMINISTRATION UTILITIES

Monitoring the Use of Help

The option of monitoring help has been provided if you want to keep a
record of how the help facility is used. The monitor function can be turned
off and on from the helpadm menu. Monitoring will not take place unless
you turn on the monitor function. To set the option for monitoring you
must enter the first helpadm menu and select option 5. Option 4 of the
menu turns the monitor function off, and option % turns the monitor
function on. After entering the option, you will be returned to the shell
level. However, if the LOGNAME variable is not exported in your .profile,
the monitoring function may not work properly.

Setting the monitor function to record the use of help creates a file called
HELPLOG. A complete record of who uses the help command and every
action taken while in the help facility is contained in this file. You may read
this file to see the actions taken by anyone who uses the help facility to
see such things as:

« Which commands are referenced.

o Who uses help.

» What mistakes are made using help.
e« Which module is used most.

« What part of a command is referenced most often (options,
descriptions, or examples).

HP 7-17

ADMINISTRATION UTILITIES

Below is an example of the HELPLOG file:

login=bin uname=wr3b2a date=Fri July 19 10:46:03 1985
name=locate response="1’ status=0K

name=1locate response=’d’ status=ERROR

name=getkey response=’Kk’ status=0K

name=Keysrch response=’list’ status=0K

name=quit response="q’ status=0K

login=bin uname=wr3b2a date=Fri July 19 10:47:03 1985

The HELPLOG file will occasionally need to be cleaned up. You can
execute helpclean to clean out the HELPLOG file. The helpclean file is an
executable file that removes the data in the HELPLOG file but does not
remove the file. The data in the HELPLOG file is actually copied to the
oHELPLOG file, and a new HELPLOG file is created. If you execute the
helpclean command twice in succession, both the HELI’PLOG and the
oHELPLOG files will be cleaned out. There are other ways in which you
can cleanup the HELPLOG files. Some suggestions on other cleanup
methods may be found in the AT&T 382 Computer User Reference
Manual.

HP 7-18

ADMINISTRATION UTILITIES

RECOMMENDATIONS FOR FORMATTING DATA

To help users of helpadm to input data in a consistent format, the
following guidelines are recommended.

General Rules for All Types of Help Screens

» Data will be presented exactly as it is entered— so, it should be typed
the way you would like it to appear.

e Use "\S" to cause words to be highlighted (displayed in reverse video)
on the screen when it is displayed. The helpadm Utilities automatically
puts the name(s) of the term highlighted into the buffer being edited
when adding a new term. If the word is within the text, feave spaces
before and after. For example:
text \S word \S text
If the word is not within text, spaces are not needed. For example:
text
\Sword\S
text

e The "\S" characters will not appear when the text is printed.

Therefore, if you want words in a column to line up, you must account
for any "\S" characters around the words.

Guidelines for Glossary Screens

» A blank line at the beginning of the screen is optional.
+ Highlight the name of the term.

HP 7-19

ADMINISTRATION UTILITIES

Start typing the term in column 1.

If more than one term has the same definition and is being defined
on the same glossary screen, then separate the names of the terms
by a colon. For example:

\S terml : term2 \S

Leave a blank line before beginning the text of a definition.

The text of a definition is entered in paragraph form.

You may start in column 1 or indent.

Any examples in the text should be on a separate line.

The examples should be centered and preceded and followed by
blank lines, for example:

text
example

continuation of text

Guidelines for Description Screens

» A blank line at the beginning of the screen is optional.

Highlight the name of the command.
Start typing in column 1 (the helpadm Utilities automatically puts the
name of the command highlighted into the edited buffer when adding a

new command).

Leave a blank line.

HP 7-20

ADMINISTRATION UTILITIES

o Enter a syntax summary and an explanation of terms in the syntax
summary, as follows:

Syntax Summary:

where: <explanation of terms
in syntax summary>

When typing the words " Syntax Summary," start typing in column 1.
s Leave a blank line.

e Type " Description:” in column 1, and then skip to the next line and
type the description of the command indented, for example:

Description:

text indented

Guidelines for Options Screens

o A blank line at the beginning of the screen is optional.
e Highlight the name of the command and the word " Options" .
» Start typing the text in column 1, for example:

\S command-name \S: Options

(the heipadm Utilities automatically puts the name of the command
highlighted into the screen).

o Leave a blank line.

HP 7-21

ADMINISTRATION UTILITIES

» If the command has options, then type each one with an explanation,
for example:

\S option \S explanation

» If there are no options, then type the following:

There are no options to \Scommand-name\s.

Guidelines for Examples Screens

e A blank line at the beginning of the screen is optional.
« Highlight the name of the command and the word " Examples” .
» Start typing the command in column 1, for example:

\S command-name \S : Examples

The helpadm Utilities automatically puts the name of the command
highlighted into the screen.

e Leave a blank line.

» The example should be entered on a separate line and highlighted. The
explanation should begin on the next line, for example:

\S command-name \S
text of explanation.

» Each example should be separated by one blank line.

HP 7-22

Replace this
page with the
INTER-PROCESS COMMUNICATION

tab separator.

=N R
.mw o~ m R
o T
568 e .
a o ooa-qoo " . .
Qg < setecee! . 2 3
<@ u () “. 2 S lx
ELE 35 : 22
O E s s
Cwﬂw esseeearsanetes s s
@
N Qoo 9
m o g =
Mo S 0
=z & O
m =
D —_—
RZET B
5 e s 2
S R i

ATarl

Ao

i

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

1
2
3
4,
5
6
7

CONTENTS

INTRODUCTION

OVERVIEW OF IPC FACILITIES
MESSAGES

SEMAPHORES

SHARED MEMORY

SYSTEM TUNABLE PARAMETERS
COMMAND DESCRIPTIONS

Appendix: IPC ERROR CODES

Chapter 1

INTRODUCTION
PAGE
L L T 1-1
Faciiities . . o et ae e e e e 1-1
L8 4T 1-3

Chapter 1

INTRODUCTION

GENERAL

This guide describes the inter-Process Communication (IPC) Facilities and
Utilities available with the AT&T 3B2 Computer.

Facilities

Facilities are uniquely identifiable software mechanisms that processes
(executing programs) create, control, or operate on. These software
mechanisms “‘facilitate '’ or handle IPC.

There are three types of IPC facilities. These three types of IPC facilities
are the heart of IPC . Each type of IPC facility allows a particular method
of communication between or among cooperating processes. These
methods of communication are named as follows:

o Messages

» Semaphores

IP1-1

INTRODUCTION

e Shared memory.

Processes create, control, or operate on facilities by using system calls.
Each type of IPC facility has three categories of system calls associated
with it. These system calls are normally imbedded in € Language
programs to do the following functions:

e Getting the facility
« Controlling the facility

» Operating on the facility.

There are nine IPC UNIX* System manual pages associated with these
system calls, three manual pages for each of the three types of IPC:

msgget() msgctl() msgop()
semget() semctl() semop()
shmget() shmctl() shmop()

The first three letters of the IPC UNIX System manual page names
represent the type of IPC: msg for message, sem for semaphore, and shm
for shared memory. The last three letters of the names represent the
action to do: get for getting the facility, etl for controlling the facility, and
op for operating on the facility.

These names are the system call names with two exceptions. The msgop()
and shmop() UNIX System manual page names are not used to invoke the
system calls. They both have two different system call names for their
operations.

* Trademark of AT&T

IP1-2

INTRODUCTION

For msgop() they are:

« msgsnd(), message send

o msgrcv(), message receive.
For shmop() they are:

« shmat(), shared memory attach

e shmdt(), shared memory detach.

The naming of the msgop() and shmop() UNIX System manual pages is for
consistency and ease of reference.
Utilities

There are two IPC utilities (commands) that run under the UNIX System.
These commands are used for the following:

o Checking the status of IPC facilities

« Removing IPC facilities.
The mnemonic names for these commands are as follows:

e ipes

o fipcrm.

The first three letters of these commands (ipe) represent ‘‘inter-process
communication.”” The remaining letters denote what the command is used
for: s stands for status, and rm stands for remove. These commands give
you a direct interface to the IPC facilities.

IP1-3

INTRODUCTION

Refer to the AT&T 3B2 Computer User Reference Manual for UNIX System
V manual pages supporting the commands described in this guide.

GUIDE ORGANIZATION

This guide is structured so you can easily find desired information without
having to read the entire text. The remainder of this document is
organized as follows:

P 1-4

Chapter 2, “OVERVIEW OF IPC FACILITIES,” gives an overview of
each type of IPC facility. This overview allows you to understand
how the types of IPC facilities work and what they can do for
you.

Chapter 3, “MESSAGES,"” describes the message type of IPC.
The prerequisites (calling sequence) before invoking each system
call and the return values for each system call are explained. A
verified program listing to exercise each system call is explained.

Chapter 4, “SEMAPHORES," describes the semaphore type of
IPC. The prerequisites (calling sequence) before invoking each
systemn call and the return values for each system call are
explained. A verified program listing to exercise each system call
is explained.

Chapter 5, 'SHARED MEMORY,"" describes the shared memory
type of IPC. The prerequisites (calling sequence) before invoking
each system call and the return values for each system call are
explained. A verified program listing to exercise each system call
is explained.

Chapter 6, “SYSTEM TUNABLE PARAMETERS," describes the IPC
system tunable parameters. The maximum or default value
initially set for each tunable parameter is given. When one
tunable parameter affects another parameter, the
interrelationship is explained.

INTRODUCTION

e Chapter 7, “COMMAND DESCRIPTIONS,” contains tutorial
information for using the ipcs and iperm utilities. The system call
programs described in the MESSAGES, SEMAPHORES, and
SHARED MEMORY chapters were used to develop the facilities
shown in the examples.

« Appendix, "IPC ERROR CODES,” explains the standard system
call error numbers as they apply to IPC. They are categorized by
the type of IPC and associated system calls.

IP 1-5

Chapter 2

OVERVIEW OF IPC FACILITIES

PAGE
S S AGE S . . . e 2-2
SEMAPHORESttt ettt e e e e 2-4

The UNIX System V Release 2.0 Operating System supports three types of
Inter-Process Communication (IPC):

» Messages
o Semaphores

o Shared Memory.

This chapter contains a general discussion of each type of IPC. Following
chapters contain detailed discussions of the associated system calls for
each type of IPC. If you are unfamiliar with IPC facilities, the organization
of this guide should enable you to understand and use the facilities first
before using the ipcs and ipcrm utilities.

P 2-1

OVERVIEW OF IPC FACILITIES

MESSAGES

The message type of IPC allows processes (executing programs) to
communicate through the exchange of data stored in buffers. This data is
transmitted between processes in discrete portions called messages.
Processes using this type of IPC can do two operations:

e Sending

s Receiving.

Before a message can be sent or received by a process, a process must
have the UNIX System generate the necessary software mechanisms to
handle these operations. A process does this by using the msgget()
system call. While doing this, the process becomes the owner /creator of
the message facility and specifies the initial operation permissions for all
other processes, including itself. Later, the owner/creator can relinquish
ownership or change the operation permissions using the msgctl() system
call. However, the creator always remains the creator as long as the
facility exists. Other processes with permission can use msgctl() to do
various other control functions.

Processes that have permission and are attempting to send or receive a
message can suspend execution if they are unsuccessful at performing
their operation. That is, simplistically, a process that is attempting to send
a message can wait until the process that is to receive the message is
ready and vice versa. A process that specifies that execution is to be
suspended is performing a “‘blocking message operation.” A process that
does not allow its execution to be suspended is performing a ‘““nonblocking
message operation.”’

P 2-2

OVERVIEW OF IPC FACILITIES

A process performing a blocking message operation can be suspended until
one of three conditions occurs:

e |t is successful
o It receives a signal

s The facility is removed.

System calls make these message capabilities available to processes. The
calling process passes arguments to a system call, and the system call
either successfully or unsuccessfully performs its function. If the system
call is successful, it performs its function and returns applicable
information. Otherwise, a known error code (-1) is returned to the
process, and an external error number variable errno is set accordingly.
Examples of message system calls are contained in Chapter 3,
“MESSAGES.”

System tunable parameters that define the maximum UNIX System
resources that are initially set for this type of IPC are given in Chapter 6 of
this guide, “SYSTEM TUNABLE PARAMETERS.” These parameters are also
pointed out where they affect the usage of a system call in the
“MESSAGES" chapter.

IP 2-3

OVERVIEW OF IPC FACILITIES

SEMAPHORES

The semaphore type of IPC allows processes (executing programs) to
communicate through the exchange of semaphore values. A semaphore is
a positive integer (0O through 32,767). Since many applications require the
use of more than one semaphore, the UNIX System is able to create sets
or arrays of semaphores. A semaphore set can contain one or more
semaphores up to a system tunable parameter limit, SEMMSL=25.
Semaphore sets are created by using the semget() system call.

The process performing the semget() system call becomes the

owner /creator, determines how many semaphores are in the set, and sets
the operation permissions for the set, including itself. This process can
later relinquish ownership of the set or change the operation permissions
using the semctl(), semaphore control, system call. The creating process
always remains the creator as long as the facility exists. Other processes
with permission can use semetl() to do other control functions.

Provided a process has alter permission, it can manipulate the
semaphore(s). Each semaphore within a set can be manipulated in two
ways with the semop() system call:

e Incremented

» Decremented.

To increment a semaphore, an unsigned positive integer value of the
desired magnitude is passed to the semop() system call. To decrement a
semaphore, a minus (-) signed value of the desired magnitude is passed.

The UNIX System insures that only one process can manipulate a
semaphore set at any given time. Simultaneous requests are performed
sequentially in an arbitrary manner.

A process can test for a semaphore value to be greater than a certain
value by attempting to decrement the semaphore by one more than that
value. If the process is successful, then the semaphore value is greater
than that certain value. Otherwise, the semaphore value is not. While
doing this, the process can have its execution suspended (IPC_NOWAIT flag

IP 2-4

OVERVIEW OF IPC FACILITIES

not set) until the semaphore value would permit the operation (other
processes increment the semaphore), or the semaphore facility is
removed.

The ability to suspend execution is called a “‘blocking semaphore
operation.”” This ability is also available for a process that is testing for a
semaphore to become zero or equal to zero; only read permission is
required for this test, and it is done by passing a value of zero to the
semop() system call.

On the other hand, if the process is not successful and the process does
not request to have its execution suspended, it is called a ‘“‘nonblocking
semaphore operation.” A known error code (-1) is returned to the process,
and the external errno variable is set accordingly.

The blocking semaphore operation, simplistically, allows processes to
communicate based on the values of semaphores at different points in
time. Remember also that IPC facilities remain in the UNIX System until
removed by a permitted process or until the system is reinitialized.

Operating on a semaphore set is done by using the semop(), semaphore
operation, system call.

Note: When a set of semaphores is created, the first semaphore in
the set is semaphore number zero. The last semaphore number in
the set is one less than the total in the set.

An array of these "'blocking/nonblocking operations’’ can be performed on
a set containing more than one semaphore. When performing an array of
operations, the “‘blocking/nonblocking operations’ can be applied to any
or all the semaphores in the set. Also, the operations can be applied in
any order of semaphore number. However, no operations are done until
they can all be done successfully. This requirement means that preceding
changes made to semaphore values in the set must be undone when a
“blocking semaphore operation” on a semaphore in the set cannot be
completed successfully; no changes are made until they can all be made.
For example, if a process has successfully completed three of six

IP 2-5

OVERVIEW OF IPC FACILITIES

operations on a set of ten semaphores but is “'blocked’” from performing
the fourth operation, no changes are made to the set until the fourth and
remaining operations are successfully performed. Additionally, any
operation preceding or succeeding the “'blocked’” operation, including the
blocked operation, can specify that at such time that all operations can be
performed successfully, that the operation be undone. Otherwise, the
operations are performed and the semaphores are changed or one
“nonblocking operation’ is unsuccessful and none are changed. All this is
commonly referred to as being “‘atomically performed.”

The ability to undo operations requires the UNIX System to maintain an
array of “‘undo structures’” corresponding to the array of semaphore
operations to be performed. Each semaphore operation that is to be
undone has an associated adjust variable used for undoing the operation, if
necessary.

Remember, any unsuccessful ‘‘nonblocking operation’’ for a single
semaphore or a set of semaphores causes immediate return with no
operations performed at all. When this occurs, a known error code (-1) is
returned to the process, and the external variable errno is set accordingly.

Systemn calls make these semaphore capabilities available to processes.
The calling process passes arguments to a system call, and the system call
either successfully or unsuccessfully performs its function. If the system
call is successful, it performs its function and returns the appropriate
information. Otherwise, a known error code (-1) is returned to the
process, and the external variable errno is set accordingly. The detailed
usage of these system calls is contained in Chapter 4, "SEMAPHORES."”

System tunable parameters that define the maximum UNIX System
resources that are initially set for this type of IPC are given in Chapter 6 of
this guide, “SYSTEM TUNABLE PARAMETERS.” They are also pointed out
where they affect the usage of a system call in the “SEMAPHORES”
chapter.

IP 2-6

OVERVIEW OF IPC FACILITIES

SHARED MEMORY

The shared memory type of IPC allows two or more processes (executing
programs) to share memory and consequently the data contained there.
This is done by allowing processes to set up access to a common virtual
memory address space. This sharing occurs on a segment basis that is
3B2 Computer memory management hardware dependent.

This sharing of memory provides the fastest means of exchanging data
between processes.

A process initially creates a shared memory segment facility using the
shmget() system call. On creation, this process sets the overall operation
permissions for the shared memory segment facility, sets its size in bytes,
and can specify that the shared memory segment is for reference only
(read-only) on attachment. If the memory segment is not specified to be
for reference only, all other processes with appropriate operation
permissions can read from or write to the memory segment.

There are two operations that can be performed on a shared memory
segment:

» shmat() — shared memory attach

s shmdt() — shared memory detach.

Shared memory attach aliows processes to associate themselves with the
shared memory segment, if they have permission. They can then read or
write as allowed.

Shared memory detach allows processes to disassociate themselves from
a shared memory segment. Therefore, they lose the ability to read from
or write to the shared memory segment.

The original owner /creator of a shared memory segment can relinquish
owhership to another process using the shmetl() system call. However,

IP 2-7

OVERVIEW OF IPC FACILITIES

the creating process remains the creator until the facility is removed or
the system is reinitialized. Other processes with permission can do other
functions on the shared memory segment using the shmectl{) system call.

System calls make these shared memory capabilities available to
processes. The calling process passes arguments to a system call, and the
system call either successfully or unsuccessfully performs its function. If
the system call is successful, it performs its function and returns the
appropriate information. Otherwise, a known error code (-1) is returned to
the process, and the external variable errno is set accordingly. The
detailed usage of these system calls is contained in Chapter 5, “SHARED
MEMORY."”

System tunable parameters that define the maximum UNIX System
resources that are initially set for this type of IPC are given in Chapter 6 of
this guide, "“SYSTEM TUNABLE PARAMETERS.”" They are also pointed out
where they affect the usage of a system call in the “SHARED MEMORY"
chapter.

IP 2-8

Chapter 3

MESSAGES

PAGE

GENE R AL . .ot i et n e e e e e e 3-1
GETTING MESSAGE QUEUES ittt i et s 3-10
Using Msgget s 3-10
Example Programt ittt et e e 3-16
CONTROLLING MESSAGE QUEUES ittt 3-21
Using Msgetl L e e 3-21
Example Programttt i e e e 3-23
OPERATIONS FOR MESSAGESottt ittt ittt e et e e e e e i 3-31
SN SgOP . . .o e e e e e e 3-31

Chapter 3

MESSAGES

The message type of Inter-Process Communication (IPC) allows processes
to communicate through the exchange of data. This data is exchanged in
discrete portions called messages. They are exchanged by sending or
receiving; see the " OPERATIONS FOR MESSAGES " section in this
chapter about sending or receiving messages.

GENERAL

Before a message can be sent or received, a uniquely identified message
queue and data structure must be created. The unique identifier created
is called the message queue identifier (msqid); it is used to identify or
reference the associated message queue and data structure. Figure 3-1
illustrates the relationships among the msgid, message queue, and data
structure.

IP 3-1

MESSAGES

The message queue is used to store (header) information about each
message that is being sent or received. This information includes the
following for each message:

o Pointer to the next message on queue

Message type

3

 Message text size

» Message text address.

P 3-2

MESSAGES

OPERATION PERMISSIONS

DATA STRUCTURE|

STRUCTURE

{HEADERS)
y
POINTER TO MEXT
MESSAGE ON QUEUE
MESSAGE TYPE
MESSAGE TEXT
SIZE
MESSAGE TEXT
MAP ADDRESS
POINTER TO NEXT
T0 MESSAGE OM QUEUE
MESSAGE
BUFFER MESSAGE TYPE
MESSAGE TEXT
SIZE
MESSAGE TEXT
MAP ADDRESS
T0
MESSAGE
BUFFER

N T

POINTER 7O NEXT

Y
<

& ——— 835

POINTER TO FIRST MESSAGE
ON THE QUEUE

POINTER TO LAST MESSAGE
ON THE QUEUE

CURRENT NUMBER OF
BYTES ON THE QUEUE

NUMBER OF MESSAGES
OM THE QUEUE

MAXIMUM NUMBER OF BYTES
ON THE QUEUE

PROCESS ID OF LAST
MESSAGE SENDER

PROCESS ID OF LAST
MESSAGE RECEIVER

LAST MESSAGE
SEND TIME

LAST MESSAGE
RECEIVE TIME

LAST CHANGE TIME

OWNER'S USER ID

T

I
I
I
I
|
|
I
|
|
I
I
|

OWNER'S GROUP ID

CREATOR'S USER ID

CREATOR'S GROUP ID

MESSAGE OM QUEUE

MESSAGE TYPE

MESSAGE TEXT
SIZE

MESSAGE TEXT

MAP ADDRESS

NULL

ACCESS MODES

SLDT USAGE SEQUENCE
MUMBER

KEY

| OPERATION PERMISSIONS
STRUCTURE

L

Figure 3-1. Message IPC Organization

_———— e — L

IP 3-3

MESSAGES

There is one associated data structure for the uniquely identified message
queue. This data structure contains the following information related to
the message queue.

e Operation permissions data (operation permission structure)
« Pointer to first message on the queue

» Pointer to last message on the queue

s Current number of bytes on the queue

+ Amount of messages on the queue

o Maximum number of bytes on the queue

« Process ldentification (PID) of last message sender
e PID of last message receiver

e Last message send time

e Last message receive time

e Last change time.

Note: All include files discussed in this guide are located in the
susr/include or /usr/include /sys directories.

IP 3-4

MESSAGES

The € Programming Language data structure definition for the message
information contained in the message queue is as follows:

struct msg |
struct msg
long
short
short

*msg_next;
msg_type;
msg ts;

msg_spot;

/#
/*

ptr to next message on q */
message type */

message text size */
message text map address */

/*

It is located in the Jusr/include/sys/msg.h header file.

Likewise, the structure definition for the associated data structure is as

follows:

struct msqid_ds {
struct ipc_perm
struct msg
struct msg
ushort
ushort
ushort
ushort
ushort
time_t
time_t
time t

msg_perm;
*msg_first;
*msg_last;
msg chytes;
msg_gnum;
msg qbytes;
msg lspid;
msg lrpid;
msg stime;
msg_ rtime;
msg_ctime;

/*
/*
/*
/i:
/*
/*
/a
/z
/4:
/*
/*
/:

operation permission struct */
ptr to first message on q */
ptr to last message on q */
curxent # bytes on q */

of messages on q */

max # of bytes on q */

pid of last msgsnd */

pid of last msgrev */

last msgsnd time */
time */

time */

last msgrev
last change
Times measured in sec since */

00:00:00 GMT, Jan. 1, 1970 */

[t is located in the #include <sys/msg.h> header file also. Note that the
msgperm member of this structure uses ipc_perm as a template. Thus,
the breakout is shown in Figure 3-1 for the operation permissions data

structure.

IP 3-5

MESSAGES

The definition of the ipc_perm data structure is as follows:

struet ipc_perm |

ushort uid; /* owner’s mser id */

ushort gid; /* owner’s group id */

ushort cuid; /* creator’s user id */

ushort cgid; /* creator’s group id */

ushort mode ; /* access modes */

ushort seq; /* slot usage sequence number */
key_t key; /* key */

It is located in the #include <sys/ipc.h> header file; it is common for all
IPC facilities.

IP 3-6

MESSAGES

The msgget() system call is used to perform two tasks when only the
IPC_CREAT flag is set in the msgflg argument that it receives:

o To get a new msqid and create an associated message queue and
data structure for it

s To return an existing msqid that already has an associated
message queue and data structure.

The task performed is determined by the value of the key argument
passed to the msgget() system call.

For the first task, if the key is not already in use for an existing msqid, a
new msqid is returned with an associated message queue and data
structure created for the key. This occurs provided no system tunable
parameters would be exceeded.

There is also a provision for specifying a key of value zero that is known as
the private key (IPC_PRIVATE = 0); when specified, a new msqid is always
returned with an associated message queue and data structure created for
it unless a system tunable parameter would be exceeded. When the ipcs
command is performed, the KEY field for the msqid is all zeros.

For the second task, if a msqid exists for the key specified, the value of the
existing msqid is returned. If you do not desire to have an existing msqid
returned, a control command (IPC_EXCL) can be specified (set) in the
msgflg argument passed to the system call. The details of using this
system call are discussed in the " Using Msgget " section of this chapter.

1P 3-7

MESSAGES

When performing the first task, the process that calls msgget becomes the
owner /creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed but the creating process always
remains the creator; see the " CONTROLLING MESSAGE QUEUES "
section in this chapter. The creator of the message queue also determines
the initial operation permissions for it.

Once a uniquely identified message queue and data structure are created,
message operations [msgop()] and message control [msgctl()] can be
used.

Note: Msgop() is not a system call.

Message operations, as mentioned previously, consist of sending and
receiving messages. System calls are provided for each of these
operations; they are msgsnd() and msgrev(). Refer to the " OPERATIONS
FOR MESSAGES " section in this chapter for details of these system calls.

IP 3-8

MESSAGES

Message control is done by using the msgetl() system call. It permits you
to control the message facility in the following ways:

« To determine the associated data structure status for a message
gueue identifier (msqid)

e To change operation permissions for a message queue

» To change the size (msg_gbytes) of the message queue for a
particular msqid

o To remove a particular msqid from the UNIX System along with
its associated message queue and data structure.

Refer to the " CONTROLLING MESSAGE QUEUES " section in this chapter
for details of the msgctl() system call.

IP 3-9

MESSAGES

GETTING MESSAGE QUEUES

This section gives a detailed description of using the msgget() system call
along with an example program illustrating its use.

Using Msgget

The synopsis of the msgget() UNIX System manual page is as follows:

#inciude <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.bh>

int msgget (key, msgflg)
key t key;
int msgflg;

All these include files that are located in the /usr/include/sys directory of
the UNIX System.

The following line in the synopsis:

int msgget (key, msgflg)

informs you that msgget() is a function with two formal arguments that
returns an integer type value, on successful completion (msqgid). The next
two lines:

key_t key;
int msgflg;

declare the types of the formal arguments. Key_t is declared by a typedef
in the types.h header file to be a long integer. Therefore, key and msgflg
are integers (int) which both occupy 32-bits each in the 3B2 Computer.

The integer returned from this function on successful completion is the
message queue identifier (msqid) that was discussed in the “GENERAL"
section of this chapter.

IP 3-10

MESSAGES

As declared, the process calling the msgget() system call must supply two
actual arguments to be passed to the formal key and msgflg arguments.

The value passed to key must be a unique integer type hexadecimal value
or zero (IPC_PRIVATE = 0) if a new msqid with an associated message
queue and data structure is desired; it must be an existing key to return its
msgqid. This is true when only the IPC_CREAT flag is set in the msgflg
argument.

Unique keys can be determined in several ways. The STDIPC(), standard
interprocess communication package, subroutine is one method to
generate unique keys to avoid undesired interference between processes.
Another way could be to use the makekey() command. Picking a key at
random is also possible but less desirable. If the key is IPC_PRIVATE, only
the owner /creator process usually uses the facility.

Note: Refer to the AT&T 3B2 Computer User Reference Manual
for UNIX System V manual pages supporting the commands
described in this guide.

The value passed to the msgflg argument must be an integer type octal
value and it will specify the following:

e Access permissions
s Execution modes

» Control fields (commands).

Access permissions determine the read/write attributes and execution
modes determine the user /group/other attributes of the msgflg
argument. They are collectively referred to as “‘operation permissions.”
Figure 3-2 reflects the numeric values for the valid operation permissions
codes.

IP 3-11

MESSAGES

OPERATION PERMISSIONS | NUMERIC VALUE
Read by User 00400
Write by User 00200
Read by Group 00040
Write by Group 00020
Read by Others 00004
Write by Others 00002

Figure 3-2. Operation Permissions Codes

A specific numeric value is derived by adding the numeric values for the
operation permissions desired. That is, if read by user and read/write by
others is desired, the code value would be 00406 (00400 plus 00006).
These values are represented in octal. There are constants located in the
msg.h header file that can be used for the user (OWNER). They are as
follows:

MSG_R 0400
MSG_W 0200

Control commands are predefined constants (represented by all uppercase
letters). Figure 3-3 contains the names of the constants that apply to the
msgget() system call along with their values. They are also referred to as
flags and are defined in the ipc.h header file.

CONTROL COMMAND VALUE

IPC_CREAT 0001000
IPC_EXCL 0002000

Figure 3-3. Control Commands (Flags)

P 3-12

MESSAGES

The value for msgflg is therefore a combination of operation permissions
and control commands. After determining the value for the operation
permissions as previously described, the desired flag(s) can be specified.
This is done by bitwise ORing (i) them with the operation permissions; the
bit positions and values for the control commands in relation to those of
the operation permissions make this possible. It is illustrated as follows:

OCTAL VALUE BINARY VALUE
IPC_CREAT = 01¢ 900 O 000 601 000 600 000
| Read by User = 0 ¢ 400 ¢ 000 000 100 000 000
msgflg = 01400 6 000 001 100 000 000

The msgflg value can be easily set by using the names of the flags with the
octal operation permissions value:

msqid = msgget (key, (IPC_CREAT ! 0400));

msqid = msgget (key, (IPC_CREAT | IPC_EXCL | 0400));

As specified by the msgget() UNIX System manual page, success or failure
of this system call depends on the argument values for key and msgflg or
system tunable parameters. The system cali will attempt to return a new
msqid if one of the following conditions is true:

» Key is equal to IPC_PRIVATE (0)

» Key does not already have a msqid associated with it, and
(msgflg & IPC_CREAT) is ““true’’ (not zero).

IP 3-13

MESSAGES

The key argument can be set to IPC_PRIVATE in the following ways:

msgqid = msgget (IPC_PRIVATE, msgflg);
OR

msqid = msgget (0 , msgflg);

This alone will cause the system call to be attempted because it satisfies
the first condition specified. Exceeding the MSGMNI system tunable
parameter causes a failure regardlessly. The MSGMNI system tunable
parameter determines the maximum amount of unique message queues
(msqid’s) in the UNIX System.

The second condition is satisfied if the value for key is not already
associated with a msqid and the bitwise ANDing of msgflg and IPC_CREAT
is “true’’ (not zero). This means that the key is unique (not in use) within
the UNIX System for this facility type and that the IPC_CREAT flag is set
(msgflg 1 IPC_CREAT). The bitwise ANDing (&), which is the logical way of
testing if a flag is set, is illustrated as follows:

1 x x x (x = don’t care)
1000

msgflg
& JPC_CREAT

W

vesult = € 1 0 0 0 {not zere)

Since the result is not zero, the flag is set or “'true.”” MSGMNI applies here
also, just as for condition one.

IP 3-14

MESSAGES

IPC_EXCL is another control command used with IPC_CREAT to exclusively
have the system call fail if, and only if, 2 msqid exists for the specified key
provided. This is necessary to prevent the process from thinking that it
has received a new (unique) msqid when it has not. In other words, when
both IPC_CREAT and IPC_EXCL are specified, a new msqid is returned if
the system call is successful.

Refer to the msgget() UNIX System manual page for specific associated
data structure initialization for successful completion. The specific failure
conditions with error names are contained there also.

IP 3-15

MESSAGES

Example Program

The example program in this section is a menu driven program that allows
all possible combinations of using the msgget() system call to be exercised.
This program was compiled and run on the 3B2 Computer; its execution
has been verified.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

Since there are many ways in the € Programming Language to accomplish
the same task or requirement, keep in mind that this example program
was written for clarity and not for program efficiency. Usually, system
calls are embedded within a larger user-written program that makes use of
a particular function that they provide.

This program begins by including the required header files as specified by
the UNIX System manual page for msgget() (lines 4-8). Note that the
errno.h header file is included as opposed to declaring errno as an external
variable; either method will work.

IP 3-16

MESSAGES

Variable names have been chosen to be as close as possible to those in
the synopsis for the system call. Their declarations are seif-explanatory.
These names make the program more readable, and it is perfectly legal
since they are local to the program. The variables declared for this
program and their purposes are as follows:

e key—used to pass the value for the desired key
« opperm—used to store the desired operation permissions
» flags—used to store the desired control commands (flags)

» opperm_flags—used to store the combination from the logical
ORing of the opperm and flags variables; it is then used in the
system call to pass the msgflg argument

o msqgid—used for returning the message queue identification
number for a successful system call or the error code (-1) for an
unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal
operation permissions code, and finally for the control command
combinations (flags) which are selected from a menu (lines 15-32).

Note: All possible combinations are allowed even though they
might not be viable. This allows observing the errors for illegal
combinations.

Next, the menu selection for the flags is combined with the operation
permissions, and the result is stored at the address of the opperm_flags
variable (lines 36-51).

The system call is made next, and the result is stored at the address of the
msqid variable (line 53).

IP 3-17

MESSAGES

Since the msqid variable now contains a valid message queue identifier or
the error code (-1), it is tested to see if an error occurred (line 55). If
msqid equals -1, a message indicates that an error resulted, and the
external errno variable is displayed (lines 57, 58).

If no error occurred, the returned message queue identifier is displayed
(line 62).

The example program for the msgget() system call follows. It is suggested
that the source program file be named *‘msgget.c’’ and that the
executable file be named “‘msgget.”’

Mote: When compiling € programs that use floating point
operations, the -f option should be used on the ¢¢ command line.
If this option is not used, the program will compile successfully, but
when the program is executed it will fail.

IP 3-18

MESSAGES

@

0 23 & G oA

10
11
12
13
14
15
16
17

18
19
20
21
22

23
24
25
26
27
28
29
30
31
32

33
34
35

/*This is a program to illustrate
**the message get, msgget(),
**gystem call capabilities.*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipe.h>
#include <sys/msg.h>
#include <errno.h>

/*Start of main C language program®/
maing)
!
3
key_t key; /*declare as long integer*/
int opperm, flags;
int msqgid, opperm flags;
/*Enter the desired key*/
printf("Enter the desired key in hex = ");
scanf ("4x" , &key);

/*Enter the desired octal operation
permissions.*/

printf("\nEnter the operation\n");

printf (" permissions in octal = ");

scanf (" %o" , &opperm);

/*Set the desired flags.*/
printf (" \nEnter corresponding number to\n");
printf("set the desired flags:\n");

printf("Noe flags = 0\n");
printf (" IPC_CREAT = I\n");
printf (" IPC EXCL = 2\n");
printf (" IPC_CREAT and IPC EXCL = A\n");
printf(" Flags =");

/*Get the flag(s) to be set.*/
scanf("qd" , &flags);

/*Check the values.*/
printf ("\nkey =0x%x, opperm = 0%o, flags = 0%o\n",
key, opperm, flags);

P 3-19

MESSAGES

36 /*Incorporate the control fields (flags) with

37 the operation permissions*/

38 switch (flags)

39 {

40 case 0: /*No flags are to be set.*/

41 opperm_ flags = (opperm | 0);

42 break;

43 case 1: /*Set the XIPC _CREAT flag.*/

44 opperm flags = (opperm | YPC_CREAT);

45 break;

46 case 2: /*Set the IPC_EXCL flag.*/

47 opperm_flags = (opperm | IPC_EXCL);

48 break;

49 case 3: /*Set the TPC_CREAT and IPC_EXCL flags.*/
50 opperm_flags = (opperm ! XIPC_CREAT ! IPC_EXCL);
51 }

52 /*Call the msgget system call.*/

53 msqgid = msgget (key, opperm_flags);

54 /*Perform the following if the call is unsuccessfunl.*/
55 if(msgid == -1)

56 {

57 printf ("\nThe msgget system call failed!\n");
58 printf (" The error number = %d\n", erxno);

59 1

60 /*Return the msqid on successful completion.*/

61 else

62 printf ("\nThe msqid = %d\n", msqid);

63 exit(0);

64 }

IP 3-20

MESSAGES

CONTROLLING MESSAGE QUEUES

This section gives a detailed description of using the msgctl() system call
along with an example program that allows all its capabilities to be
exercised.

Using Msgctli

The synopsis of the msgcti() UNIX System manual page is as follows:

#include <sys/types.h>
#include <sys/ipe.h>
#include <sys/msg.h>

int msgetl (msqid, cmd, buf)
int msqid, cmd;
struct msqid_ds *huf;

The msgctl() system call requires three arguments to be passed to it, and
it returns an integer value,

On successful completion, a zero value is returned; and when unsuccessful,
it returns a -1.

The msqid variable must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget() system
call.

IP 3-21

MESSAGES

The cmd argument can be replaced by one of the following control
commands (flags):

o IPC_STAT—return the status information contained in the
associated data structure for the specified msqid, and place it in
the data structure pointed to by the *buf pointer in the user
memory area

» IPC_SET—for the specified msqid, set the effective user and
group identification, operation permissions, and the number of
bytes for the message queue

+ IPC_RMID—remove the specified msqid along with its associated
message queue and data structure.

A process must have an effective user identification of OWNER /CREATOR
or super-user to perform an IPC_SET or IPC_RMID control command.
Read permission is required to perform the IPC_STAT control command.

The details of this system call are discussed in the example program for it.
If you have problems understanding the logic manipulations in this
program, read the ‘Using Msgget'’ section of this chapter; it goes into
more detail than what would be practical to do for every system call.

IP 3-22

MESSAGES

Example Program

The example program in this section is a menu driven program that allows
all possible combinations of using the msgetl() system call to be exercised.
This program was compiled and run on the 3B2 Computer; its execution
has been verified.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

Since there are many ways in the C Programming Language to accomplish
the same task or requirement, keep in mind that this example program
was written for clarity and not for program efficiency. Usually, system
calls are embedded within a larger user-written program that makes use of
a particular function that they provide.

This program begins by including the required header files as specified by
the UNIX System manual page for msgctl() (lines 5-9). Note in this
program that errno is declared as an external variable, and therefore, the
errno.h header file does not have to be included.

1P 3-23

MESSAGES

Variable and structure names have been chosen to be as close as possible
to those in the synopsis for the system call. Their declarations are self-
explanatory. These names make the program more readable, and it is
perfectly legal since they are local to the program. The variables declared
for this program and their purpose are as follows:

IP 3-24

uid—used to store the IPC_SET value for the effective user
identification

gid-—used to store the IPC_SET value for the effective group
identification

mode—used to store the IPC_SET value for the operation
permissions

bytes—used to store the IPC_SET vaiue for the number of bytes
in the message queue (msg_gbytes)

rtrn—used to store the return integer value from the system call

msgid—used to store and pass the message queue identifier to
the system call

command-—used to store the code for the desired control
command so that further processing can be performed on it

choice—used to determine what member is to be changed for
the IPC_SET control command

msqid_ds—used to receive the specified message queue
indentifier’s data structure when an IPC_STAT control command
is performed

*puf-—a pointer passed to the system call that locates the data
structure in the user memory area where the IPC_STAT control
command is to place its return values or where the IPC_SET
command gets the values to set.

MESSAGES

Note that the msqid_ds data structure in this program (line 16) uses the
data structure located in the msg.h header file of the same name as a
template for its declaration. This is a perfect example of the advantage of
local variables.

The next important thing to observe is that although the *buf pointer is
declared to be a pointer to a data structure of the msqgid_ds type, it must
also be initialized to contain the address of the user memory area data
structure (line 17).

Now that all the required declarations have been explained for this
program, this is how it works.

First, the program prompts for a valid message queue identifier that is
stored at the address of the msqid variable (lines 19, 20). This is required
for every msgctl() system call.

Then the code for the desired control command must be entered (lines
21-27), and it is stored at the address of the command variable. The code
is tested to determine the control command for further processing.

If the IPC_STAT control command is selected (code 1), the system call is
performed (lines 37, 38) and the status information returned is printed out
(lines 39-46); only the members that can be set are printed out in this
program. Note that if the system call is unsuccessful (line 106), the status
information of the last successful call is printed out regardlessly; also, an
error message is displayed and the errno variable is printed out (lines 108,
109). If the system call is successful, a message indicates this along with
the message queue identifier used (lines 111-114).

IP 3-25

MESSAGES

If the IPC_SET controi command is selected (code 2), the first thing done
is to get the current status information for the message queue identifier
specified (lines 50-52). This is necessary because this example program
provides for changing only one member at a time, and the system call
changes all of them. Also, if an invalid value happened to be stored in the
user memory area for one of these members, it would cause repetitive
failures for this control command until corrected. The next thing the
program does is to prompt for a code corresponding to the member to be
changed (lines 53-59). This code is stored at the address of the choice
variable (line 60). Now, depending on the member picked, the program
prompts for the new value (lines 66-95). The value is placed at the
address of the appropriate member in the user memory area data
structure, and the system call is made (lines 96-98). Depending on
success or failure, the program returns the same messages as for
IPC_STAT above.

If the IPC_RMID control command (code 3) is selected, the system call is
performed (lines 100-103), and the msqid along with its associated
message queue and data structure are removed from the UNIX System.
Note that the *buf pointer is not required as an argument to perform this
control command, and its value can be zero or NULL. Depending on the
success or failure, the program returns the same messages as for the
other control commands.

The example program for the msgctl() system call follows. It is suggested
that the source program file be named “msgctl.c’’ and that the executable
file be named “‘msgctl.”

Note: When compiling € programs that use floating point
operations, the -f option should be used on the ec command line.
If this option is not used, the program will compile successfully, but
when the program is executed it will fail.

IP 3-26

MESSAGES

W N =

® o N » G

11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27

28
28
3¢

/*This is a program to illustrate

**the message control, msgectl(),

**system call capabilities.

*/

/*Include necessary header files.*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipec.h>
#include <sys/msg.h>

/*Start of main € language program*/

main()

{
1

extern int errno;

int uwid, gid, mode, bytes;

int rtrn, msqid, command, choice;
struct msqid_ds msqid_ds, *buf;
buf = &msqid_ds;

/*Get the msqid, and command.*/
printf("Enter the msqid = ");
scanf (" %d" , &msqid);
printf("\nEnter the number for\n");
printf (" the desired command:\n");

printf (" IPC_STAT = 1\n");
printf (" XPC_SET = 2\n");
printf (" IPC_RMID = 3\n");
printf (" Entry = ")

scanf("%d" , &command);

/*Check the values.*/
printf ("\nmsqid =%d, command = %d\n"

msgid, command);

IP 3-27

MESSAGES

31 switch (command)

32 {

33 case 1: /*Use msgetl() to duplicate

34 the data structure for

35 msqid in the msqid_ds area pointed
36 to by buf and then print it out.*/
37 rtrn = msgetl(msqgid, IPC_STAT,

38 buf);

39 printf ("\nThe USER ID = %d\n",

40 buf->msg perm.uid);

41 printf (" The GROUP ID = %d\n",

42 buf.>msg_perm.gid);

43 printf (" The operation permissioms = 0%o\n",
44 buf.>msg perm.mode);

45 printf ("The msg_gbytes = %d\n",

46 buf->msg qbytes);

47 break;

48 case 2: /*Select and change the desired

49 member(s) of the data structure.*/

IP 3-28

MESSAGES

50
51
52

53
54
55
56
57
58
59
60
61
62
62
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
83
86
87
88
88
90
91
92
93
94
95

/*Get the original data for this msqid
data structure first.*/
rtrm = msgetl{msqid, IPC_STAY, buf);

printf ("\nEnter the number for the\n");
printf (" member to be changed:\n");

printf("msg_perm.uid = \n");
printf("msg_perm.gid = 2\n");
printf("msg_perm.mode = 3\n");
printf ("msg_gbytes = A\n");
printf (" Entry =");

scanf("%d" , &choice);
/*Only one choice is allowed per
pass as an illegal entry will
cause repetitive failures until
msqid_ds is updated with
IPC_STAT.*/

switch{choice)
case 1:
printf (" \nEnter USER ID = ");
scanf ("%d", &uid);
buf—>msg_perm.uid = uid;
printf (" \nUSER ID = %d\n",
buf->msg_perm.uid);
break;
case 2:
printf("\nEnter GROUP ID = ");
scanf (" %d" , &gid);
buf->msg perm.gid = gid;
printf (" \nGROUP ID = %4d\n",
buf->msg_perm.gid};
break;
case 3:
printf("\nEnter MODE = ");
scanf (" %o" , &mode);
buf->msg_perm.m0de = mode;
printf("\nMODE = 0%o\n",
buf->msg_perm.mode);
break;
case 4:
printf(" \nEnter msq_bytes = ");
scanf("%d" , &bytes);
buf->msg gbytes = bytes;
printf("ihmsg‘qbytes = Gd\n" ,
buf->msg gbytes);
break;

IP 3-29

MESSAGES

96

97

98

99
100
101
102
103
104
105
106
107
108
109
1190
111
11z
113
114
115
116

/*Do the change.*/
ritrn = msgctl(msqgid, IPC_SET,
buf);
break;
case 3: /*Remove the msqgid along with its

associated message queue
and data structure.*/

rtrn = msgetl(msqgid, TPC_RMID, NULL);

1
1l

/*Perform the following if the call is mnsuccessful.*/
if(rtrm == -1)

{
1

printf ("\nThe msgetl system call failed!\n");
printf (" The error number = %d\n", errno);

L

)

/*Return the msgid on successful completion.*/

else
printf ("\nMsgctl was successful for msqid = %d\n",

msgid);
exit (0);

IP 3-30

MESSAGES

OPERATIONS FOR MESSAGES

This section gives a detailed description of using the msgsnd() and
msgrev() system calls, along with an example program that allows all their
capabilities to be exercised.

Using Msgop

The synopsis of the msgop() UNIX System manual page is as follows:

#include <sys/types.h>
#include <sys/ipe.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;

struct msgbuf *msgp;

int msgsz, msgflg;

int msgrev (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;

struct msgbuf *msgp;

int msgsz;

leng msgtyp;

int msgflg;

Sending a Message

The msgsnd() system call requires four arguments to be passed to it, and
msgsnd() returns an integer value.

On successful completion, a zero value is returned:; and when unsuccessful,
msgsnd() returns a -1.

IP 3-31

MESSAGES

The msgid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget() system
call.

The msgp argument is a pointer to a structure in the user memory area
that contains the type of the message and the message to be sent.

The msgsz argument specifies the length of the character array in the data
structure pointed to by the msgp argument. This is the length of the
message. The maximum size of this array is determined by the MSGMAX
system tunable parameter.

Note: The msg _gbytes data structure member can be lowered
from MSGMNB by using the msgct/() IPC_SET control command,
but only the super-user can raise it afterwards.

The msgflg argument aliows the “‘blocking message operation’” to be
performed if the IPC_NOWAIT flag is not set (msgflg & IPC_NOWAIT = 0);
this would occur if the total amount of bytes allowed on the specified
message queue are in use (msg_gbytes or MSGMNB), or the total system-
wide amount of messages on all queues is equal to the system imposed
limit (MSGTQL). If the IPC_NOWAIT flag is set, the system call will fail and
return a -1.

Further details of this system call are discussed in the example program
for it. If you have problems understanding the logic manipulations in this
program, read the “Using Msgget'’ section of this chapter; it goes into
more detail than what would be practical to do for every system call.

IP 3-32

MESSAGES

Receiving Messages

The msgrev() system call requires five arguments to be passed to it, and it
returns an integer value.

On successful completion, a value equal to the number of bytes received is
returned and when unsuccessful it returns a -1.

The msqid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget() system
call.

The msgp argument is a pointer to a structure in the user memory area
that will receive the message type and the message text.

The msgsz argument specifies the length of the message to be received. If
its value is less than the message in the array, an error can be returned if
desired; see the msgflg argument.

The msgtyp argument is used to pick the first message on the message
queue of the particular type specified. If it is equal to zero, the first
message on the queue is received; if it is greater than zero, the first
message of the same type is received; if it is less than zero, the lowest
type that is less than or equal to its absolute value is received.

The msgflg argument allows the ‘'blocking message operation’’ to be
performed if the IPC_NOWAIT flag is not set (msgflg & IPC_NOWAIT = 0);
this would occur if there is not a message on the message queue of the
desired type (msgtyp) to be received. Hf the IPC_NOWAIT flag is set, the
system cail will fail immediately when there is not a message of the desired
type on the queue. Msgflg can also specify that the system call fail if the
message is longer than the size to be received; this is done by not setting
the MSG_NCOERROR flag in the msgflg argument (msgflg & MSG_NOERROR
= 0). If the MSG_NOERROR flag is set, the message is truncated to the
length specified by the msgsz argument of msgrev().

IP 3-33

MESSAGES

Further details of this system call are discussed in the example program
for it. If you have problems understanding the logic manipulations in this
program, read the ""Using Msgget’’ section of this chapter; it goes into
more detail than what would be practical to do for every system call.

P 3-34

MESSAGES

Example Program

The example program in this section is a menu driven program that allows
all possible combinations of using the msgsnd() and msgrecv() system calls
to be exercised. This program was compiled and run on the 382
Computer; its execution has been verified.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

Since there are many ways in the € Programming Language to accomplish
the same task or requirement, keep in mind that this example program
was written for clarity and not for program efficiency. Usually, system
calls are embedded within a larger user-written program that makes use of
a particular function that they provide.

This program begins by including the required header files as specified by
the UNIX System manual page for msgop() (lines 5-9). Note that in this
program errno is declared as an external variable, and therefore, the
errno.h header file does not have to be included.

IP 3-35

MESSAGES

Variable and structure names have been chosen to be as close as possible
to those in the synopsis. Their declarations are self-explanatory. These
names make the program more readable, and this is perfectly legal since
they are local to the program. The variables declared for this program and
their purposes are as follows:

« sndbuf—used as a buffer to contain a message to be sent (line
13); it uses the msgbufl data structure as a template (lines 10-
13)

Note: The msgbufl structure (lines 10-13) is almost an
exact duplicate of the msgbuf structure contained in the
msg.h header file. The only difference is that the
character array for msgbufl contains the maximum
message size (MSGMAX) for the 3B2 Computer where in
msgbuf it is set to one (1) to satisfy the compiler. For
this reason msgbuf cannot be used directly as a template
for the user-written program. It is there so you can
determine its members.

o revbuf—used as a buffer to receive a message (line 13); it uses
the msgbufl data structure as a template (lines 10-13)

e *msgp—used as a pointer (line 13) to both the sndbuf and
rcvbuf buffers

« i—used as a counter for inputing characters from the keyboard,
storing them in the array, and keeping track of the message
length for the msgsnd() system call; it is also used as a counter
to output the received message for the msgrcv() system call

e c—used to receive the inputed character from the ‘‘getchar()”
function (line 50)

o flag—used to store the code of IPC_NOWAIT for the msgsnd()
system call (line 61)

IP 3-36

MESSAGES

o flags—used to store the code of the IPC_NOWAIT or
MSG_NOERROR flags for the msgrcv() system call (line 117)

» choice-—used to store the code for sending or receiving (line 30)
e rirm—used to store the return values from all system calls

« msqid—used to store and pass the desired message queue
identifier for both system calls

» msgsz—used to store and pass the size of the message to be
sent or received

» msgflg—used to pass the value of flag for sending or the value of
flags for receiving

» msgtyp—used for specifying the message type for sending, or
used to pick a message type for receiving.

Note that a msqgid_ds data structure is set up in the program (line 21) with
a pointer that is initialized to point to it (line 22); this will allow the data
structure members that are affected by message operations to be
observed. They are observed by using the msgctl() (IPC_STAT) system call
to get them for the program to print them out (lines 80-92 and lines 161-
168).

The first thing the program prompts for is whether to send or receive a
message. A corresponding code must be entered for the desired
operation, and it is stored at the address of the choice variable (lines 23-
30). Depending on the code, the program proceeds as in the following
“Msgsnd or Msgrcv'’ sections,

P 3-37

MESSAGES

Msgsnd

When the code is to send a message, the msgp pointer is initialized (line
33) to the address of the send data structure, sndbuf. Next, a message
type must be entered for the message; it is stored at the address of the
variable msgtyp (line 42), and then (line 43) it is put into the mtype
member of the data structure pointed to by msgp.

The program now prompts for a message to be entered from the keyboard
and enters a loop of getting and storing into the mtext array of the data
structure (lines 48-51). This will continue until an end of file is recognized,
which for the “‘getchar()’" function, is a control-d ("d) immediately
following a carriage return (<CR>). When this happens, the size of the
message is determined by adding one to the i counter (lines 52, 53) as it
stored the message beginning in the zero array element of mtext. Keep in
mind that the message also contains the terminating characters, and the
message will therefore appear to be three characters short of msgsz.

The message is immediately echoed from the mtext array of the sndbuf
data structure to provide feedback (lines 54-56).

The next and final thing that must be decided is whether to set the
IPC_NOWAIT flag. The program does this by requesting that a code of a 1
be entered for yes or anything else for no (lines 57-65). It is stored at the
address of the flag variable. If a 1 is entered, IPC_NOWAIT is logically
ORed with msgflg; otherwise, msgflg is set to zero.

The msgsnd() system call is performed (line 69). If it is unsuccessful, a
failure message is displayed along with the error number (lines 70-72). If it
is successful, the returned value is printed and should be zero (lines 73-
76).

IP 3-38

MESSAGES

Every time a message is successfully sent, there are three members of the
associated data structure that are updated. They are described as follows:

» msg_qgnum—represents the total amount of messages “ck)n the
message queue; it is incremented by one

» msg_lspid—contains the Process Identification (PID) number of
the last process sending a message; it is set accordingly

» msg_stime—contains the time in seconds since January 1, 1970,
Greenwich Mean Time (GMT) of the last message sent; it is set
accordingly.

For this reason, these members are displayed after every successful
message send operation (lines 79-92).

Msgrcv

If the code specifies that a message is to be received, the program
continues execution as in the following paragraphs.

The msgp pointer is initialized to the rcvbuf data structure (line 99).

Next, the message queue identifier of the message queue from which to
receive the message is requested, and it is stored at the address of msgid
(lines 100-103).

The message type is requested, and it is stored at the address of msgtyp
(lines 104-107).

The code for the desired combination of control flags is requested next,
and it is stored at the address of flags (lines 108-117). Depending on the
selected combination, msgflg is set accordingly (lines 118-133).

IP 3-39

MESSAGES

Finally, the number of bytes to be received is requested, and it is stored at
the address of msgsz (lines 134-137).

IP 3-40

MESSAGES

The msgrcv() system call is performed (line 144). If it is unsuccessful, a
message and error number is displayed (lines 145-148). If successful, a
message indicates so, and the number of bytes returned is displayed
followed by the received message (lines 153-159).

When a message is successfully received, there are three members of the
associated data structure that are updated; they are described as follows:

e Msg_gnum-—contains the number of messages on the message
queue; it is decremented by one

» msg_lrpid—contains the Process Identification (PID) of the last
process receiving a message; it is set accordingly

» msg_rtime—contains the time in seconds since January 1, 1970,
Greenwich Mean Time (GMT) that the last process received a
message; it is set accordingly.

The example program for the msgop() system calls follows. It is suggested
that the program be put into a source file called “‘msgop.c’”’ and then into
an executable file called *‘msgop.”

Note: When compiling € programs that use floating point
operations, the -f option should be used on the ce command line.
If this option is not used, the program will compile successfully, but
when the program is executed it will fail.

IP 3-41

MESSAGES

EN T

LN RS -

11
1z
13

14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
3¢

31
3z
33

34
35
36
37

/*This is a program to illustrate
**the message operatioms, msgop(),
**gystem call capabilities.

*/

/*Include necessary headexr files.*/
#include <stdio.h>

#include <sys/types.h>

#include <sysfipe.h>

#include <sys/msg.h>

struct msgbufl {

long miype;
char mtext[8192];
} sndbuf, revbuf, *msgp;

/*Start of main C language program*/
main()

{
1

extern imnt errno;

int i, ¢, flag, flags, choice;
int rtrn, msgqid, msgsz, msgflg;
long mtype, msgtyp;

struct msqid_ds msqid_ds, *buf;
buf = &msqid_ds;

/*Select the desired operation.*/
printf("Enter the correspondimg\n");
printf(" code teo send or\n");
printf(" receive a message:\n");

printf (" Send = M\n");
printf(" Receive = 2\n");
printf (" Entry = ");

scant (" %d" , &choice);

if(choice == 1) /*Send a message.*/

{

msgp = &sndbuf; /*Point to user send structuvre.

printf("\nEnter the msqid of\n"):
printf(" the message queuwe to\n");
printf(" handle the message = ")};
scanf (" %d" , &msqid);

*/

IP 3-42

MESSAGES

38
a9
490
4%
42
43

44
45

46
47

48
49
50
51

52
53

54
55
56

57
58
59
60
61
62
63
64
65

66
67

/*Set the message type.*/

printf ("\nEnter a positive integer\m");
printf("message type (long) for the\n");
printf("message = ");

scanf (" %d" , &msgtyp):

msgp->mtype = mMSgtyp;

/*Enter the message to send.*/
printf (" \nEnter a message: \n");

/*A conirol-d ('d) terminates as
EOF.*/

/*Get each character of the message
and put it in the mtext array.*/
for(i = 0; ({(c = getchar()) != EOF); i++)
sndbuf.mtext[i] = c;

/*Determine the message size.*/
msgsz = i + 1;

/*Echo the message to send.*/
for(i = 0; i < msgsz; it++)
putchar (sndbuf .mtext[i]);

/*Set the IPC_NOVAIT flag if
desired.*/
printf (" \nEnter a 1 if youw want the\n");

printf (" the IPC_NOWAIT flag set: ");
scanf(" %d" , &flag);
if(flag == 1)
msgflg I= XIPC NOWAIT:
else B
msgflg = 0

/*Check the msgflg.*/
printf("\nmsgflg = 0%o\n", msgflg);

IP 3-43

MESSAGES

68
69
70
71
72
73
74
75
76

77
78
79

80
81

82

83
84
85
86
87
88
89
90
91
92
93

94

95
96
97
98
99

100
101
102
103

——

/*Send the message.*/
rtrn = msgsnd(msgid, msgp, msgsz, msgflg);

if(rtrn == -1)

printf("\nMsgsnd failed. Error = %d\n",
errno};

else |

/*Print the value of test which
should be zero for successful.*/
printf("\nValue returned = %d\n" , rtrn);

/*Print the size of the message
sent.*/
printf("\nMsgsz = %d\n", msgsz);

/*Check the data structure update.?*/
msgctl(msgid, ¥PC_STAT, buf);

/*Print out the affected members.*/

/*Print the incremented amount of
messages on the queune.*/
printf (" \nThe msg_gnum = %d\n",
buf->msg_qnum);

/*Print the process id of the last sender.

printf(" The msg_lspid = %d\n",
buf->msg lspid);

/*Print the last send time.*/

printf (" The msg_stime = %d\n",
buf->msg_stime);

if(choice == 2) /[*Receive a message.*/

{

/*Initialize the message pointer
to the receive buffer.*/
msgp = &revbuf;

/*Specify the message quemne that contains

the desired message.*/
printf (" \nEnter the msqid = ");
scanf (" %d" , &msqid);

*

IP 3-44

MESSAGES

104
105
106
107

108
109
110
111
112
113
114
115
116
17

118
119
120
121
122
123
124
125
126
127
128
129
130
131
13z
133

/*Specify the specific message on the gueue
by using its type.*/

printf (" \nEnter the msgtyp = ");:

scanf (" %d" , &msgtyp);

/*Configure the control flags for the
desired actions.*/

printf (" \nEnter the corresponding code\n");

printf(" to select the desired flags: \n");

printf("No flags 0\n");
printf (" MSG_NOERROR = I\n");
printf (" IPC_NOVAIT = 2\n");
printf("MSG_NOERROR and XIPC_NOWAIT = 3\n");
printf (" Flags = ")

scanf("%d" , &flags);

switch(flags) {

/*Set msgflg by ORing it with the appropriate

flags (constants).*/

case 0:

msgflg = 0;

break;
case 1:

msgflg I= MSG_NOERROR;

break;
case 2:

msgflg
break;

IPC_NOWAIT;

case 3:
msgflg
break;

MSG_NOERROR | IPC NOWAIT;

IP 3-45

MESSAGES

134
135
136
137

138
139
140
141
142

143
144

145
146
147
148
149
150
151
152

153
154
155
156

157
158
159
160
161
162
163
164
165
166
167
168
169
170

/*Specify the number of bytes to receive.*/
printf (" \nEnter the number of bytes\n”);
printf(" to receive (msgsz) = ");
scanf (" %d" , &msgsz);

/*Check the values for the arguments.*/
printf (" \nmsqid =%d\n" , msqid);
printf (" \nmsgtyp = %d\n", msgtyp);
printf (" \nmsgsz = %d\n" , msgsz);
printf (" \nmsgflg = 0%o\n", msgflg);

/*Call msgrev to receive the message.*/
rtrm = msgrev{msqid, msgp, msgsz, msgtyp, msgflg);

if(rtrn == -1) {
printf (" \nMsgrev failed. ");
printf (" Error = %d\n", errno);

1
)

else {
printf ("\nMsgctl was successful\n");
printf(" for msqid = Gd\n",
msqgid);

/*Print the number of bytes received,
it is equal to the returm
valpe.*/

printf("Bytes received = %d\n", rtrm);

/*Print the received message.*/
for(i = 0; i<=rtrm; itt+)
putchar (revbuf .mtext{i]);

}
/*Check the associated data structure.?*/
msgctl{msqid, IPC_STAT, buf);
/*Print the decremented amount of messages.*/
printf (" \nThe msg_gnum = %d\n" , buf->msg_gnum);
/*Print the process id of the last receiver.*/
printf(" The msg_lrpid = %d\n", buf ->msg lrpid);
/*Print the last message recejive time*/
printf (" The msg_rtime = %d\n", buf->msg rtime);

IP 3-46

Chapter 4

SEMAPHORES

GENERAL . . i et

GETTING SEMAPHORES ittt it a s ananaaananannnns
Using Semget it et
Example Programt it e e e,

CONTROLLING SEMAPHORES i it st e nenaneeeananenann
Using Semctl e e
Example Program e e

OPERATIONS ON SEMAPHORES ittt ittt e tm et eianannnnn
ST SO & . .\t i ittt e e et
Example Programttt e

Chapter 4

SEMAPHORES

The semaphore type of Inter-Process Communication (IPC) allows
processes (executing programs) to communicate through the exchange of
integer values. Semaphores are created in sets of one or more and are
used depending on the results of operations that are performed on them.
See the " OPERATIONS ON SEMAPHORES " section of this chapter about
the specific operations allowed.

Refer to the AT&T 3B2 Computer User Reference Manual for UNIX System
V manual pages supporting the commands described in this Chapter.

GENERAL

Before semaphores can be used (operated on or controlled) a uniquely
identified data structure and semaphore set (array) must be created. The
unique identifier is called the semaphore identifier (semid); it is used to
identify or reference a particular data structure and semaphore set. Figure
4-1 illustrates the relationships among the semid, data structure, and
semaphore set.

IP 4-1

SEMAPHORES

UNIQUE
SEMAPHORE

SEMAPHORE
DATA STRUCTURE|

OPERATION PERMISSIONS
STRUCTURE

-
L

-
I
I
I

I
I
I
I
|
I

IP_SEI"II\PHIJRE —I POINTER TO FIRST
SET 1 —1| SEMAPHORE IN SET
I (ARRAY) | | NUMBER OF SEMAPHORES
| SEMAPHORE | | IN SET
TEXT MAP LAST SEMAPHORE
| ADDRESS | | | OPERATION TIME
l PROCESS 1D | LAST CHANGE
OF LAST [TIME
| OPERATION] ——
| NUMBER OF PROCESSES I
AMAITING | .
I SEMVAL > CVAL I [OPERATION PERMISSTONS!
| NUNBERAHI;FITF;RNI]GCESSES |] STRUCTURE
| SEMVAL = I | -
I ¥ I | OWMER'S USER ID
| 0 | OWMER'S GROUP 1D
SEC:EE'SRE N arrerrT——
I (SEMVAL) ° | | CREATOR'S GROUP ID
| 1w HEmoRY : I | ACCESS MODES
| i | SLOT USAGE SEQUENCE
I I NUMBER
| I | KEY
[SEMAPHORE l L
TEXT MAP
| ADDRESS |
| PROCESS 1D |
OF LAST
| OPERATION |
NUMBER OF PROCESSES
! AWAITING |
| SEMVAL > CVAL |
| NUMBER OF PROCESSES | |
AWAITING
I SEMVAL - @ I
. l
| TO SEMAPHORE
VALUE (SEMVAL) |
IN MEMORY

IP 4-2

Figure 4-1. Semaphore IPC Qrganization

SEMAPHORES

The semaphore set contains a predefined amount of structures in an array,
one structure for each semaphore in the set. The amount of semaphores
(nsems) in a semaphore set is user selectable. The following members are
in each structure within a semaphore set:

» Semaphore text map address
e Process ldentification (PID) performing last operation

« Amount of processes awaiting the semaphore value to become
greater than its current value

» Amount of processes awaiting the semaphore value to equal zero.

There is one associated data structure for the uniquely identified
semaphore set. This data structure contains information related to the
semaphore set as follows:

« Operation permissions data (operation permissions structure)
e Pointer to first semaphore in the set (array)
« Amount of semaphores in the set

Last semaphore operation time

« Last semaphore change time.

Note: All include files discussed in this guide are located in the
susr/include or /usr/include /sys directories.

The € Programming Language data structure definition for the semaphore
set (array member) is as follows:

IP 4-3

SEMAPHORES

struct sem {

ushort semval; /* semaphore text map address */
short sempid; /* pid of last operation */
ushoxt semnecnt; /* # awaiting semval > cwval */
ushort semzcnt; /* # awaiting semval = 0 ¥/

It is located in the #include <sys/sem.h> header file.

Likewise, the structure definition for the associated semaphore data
structure is as follows:

struct semid ds {
struct ipc perm sem perm; /* operation permission struct */

struct sem *sem_base; /* ptr to first semaphore in set */

ushort sem_nsems; /* # of semaphores in set */
time_t sem_otime; /* last semop time */
time_t sem_ctime; /* last change time */

It is also located in the #include <sys/sem.h> header file. Note that the
sem_perm member of this structure uses ipc_perm as a template. Thus,
the breakout is shown in Figure 4-1 for the operation permissions data
structure.

The ipc_perm data structure is the same for all IPC facilities, and it is
located in the #include <sys/ipc.h> header file. It is shown in the
" GENERAL " section of Chapter 3, ” MESSAGES."

The semget system call is used te do two tasks when only the IPC_CREAT
flag is set in the semflg argument that it receives:

» To get a new semid and create an associated data structure and
semaphore set for it

« To return an existing semid that already has an associated data
structure and semaphore set.

IP 4-4

SEMAPHORES

The task performed is determined by the value of the key argument
passed to the semget system call.

For the first task, if the key is not already in use for an existing semid, a
new semid is returned with an associated data structure and semaphore
set created for it provided no system tunable parameter would be
exceeded.

There is also a provision for specifying a key of value zero (0) that is known
as the private key (IPC_PRIVATE = 0); when specified, a new semid is
always returned with an associated data structure and semaphore set
created for it unless a system tunable parameter would be exceeded.
When the ipes command is performed, the KEY field for the semid is all
zeros.

When performing the first task, the process that calls semget becomes
the owner /creator, and the associated data structure is initialized
accordingly. Remember, ownership can be changed, but the creating
process always remains the creator; see the " CONTROLLING
SEMAPHORES " section in this chapter. The creator of the semaphore set
also determines the initial operation permissions for the facility.

For the second task, if a semid exists for the key specified, the value of the
existing semid is returned. If it is not desired to have an existing semid
returned, a control command (IPC_EXCL) can be specified (set) in the
semflg argument passed to the system call. The system call will fail if it is
passed a value for the number of semaphores (nsems) that is greater than
the number actually in the set; if you do not know how many semaphores
are in the set, use O for nsems. The details of using this system call are
discussed in the " Using Semget " section of this chapter.

Once a uniquely identified semaphore set and data structure are created,
semaphore operations [semop] and semaphore control [semctl] can be
used.

IP 4-5

SEMAPHORES

Semaphore operations consist of incrementing, decrementing, and testing
for zero. A single system call is used to do these operations. It is called
semop. Refer to the " OPERATIONS ON SEMAPHORES " section in this
chapter for details of this system call.

Semaphore control is done by using the semctl system call. These control
operations permit you to control the semaphore facility in the following
ways:

o To return the value of a semaphore.
» To set the value of a semaphore.

e To return the Process Identifier (PID) of the last process
performing an operation on a semaphore set.

e To return the number of processes waiting for a semaphore value
to become greater than its current value,

» To return the number of processes waiting for a semaphore value
to equal zero.

» To get all semaphore values in a set and place them in an array
in user memory.

» To set all semaphore values in a semaphore set from an array of
values in user memory.

e To place all data structure member values, status, of a
semaphore set into user memory area.

» To change operation permissions for a semaphore set.

e« To remove a particular semid from the UNIX System along with
its associated data structure and semaphore set.

Refer to the " CONTROLLING SEMAPHORES " section in this chapter for
details of the semctl system call.

IP 4-6

SEMAPHORES

GETTING SEMAPHORES

This section contains a detailed description of using the semget system call
along with an example program illustrating its use.

Using Semget
The synopsis of the semget is as follows:
#include <sys/types.h>
#include <sys/ipe:h>
#include <sys/sem.h>
int semget (key, nsems, semflg)

key_t key;
int nsems, semflg;

All these include files are located in the /usr/inélude/sys directory of the
UNIX System.

The following line in the synopsis:

int semget (key, nsems, semflg)

informs you that semget is a function with three formal arguments that
returns an integer type value, on successful completion (semid). The next
two lines:

key_t key;
int nsems, semflg;

declare the types of the formal arguments. Key_tis declared by a typedef
in the types.h header file to be a long integer. Therefore key, nsems, and
semflg are integers (int) that occupy 32 bits each in the 3B2 Computer.

The integer returned from this system call on successful completion is the
semaphore set identifier (semid) that was discussed in the " GENERAL "

P 4-7

SEMAPHORES

section of this chapter.

As declared, the process calling the semget system call must supply three
actual arguments to be passed to the formal key, nsems, and semflg
arguments.

The value passed to key must be a unique integer type hexadecimal value
or zero (IPC_PRIVATE = 0) if a new semid with an associated data
structure and semaphore set is desired; it must be an existing key to
return its semid. This is true when only the IPC_CREAT flag is set in the
semflg argument.

Unique keys can be determined in several ways. The STDHPC, standard
inter-process communication package, subroutine is one method to
generate unique keys to avoid undesired interference between processes.
Another way could be to use the makekey command, see the manual
pages for the STDIPC and makekey commands. Picking a key at random
is also possible but less desirable. If the key is IPC_PRIVATE, only the
owner /creator process usually uses the facility.

The value passed to the semflg argument must be an integer type octal
value and will specify the following:

» Access permissions
e Execution modes

o Control fields (commands).

Access permissions determine the read/alter attributes and execution
modes determine the user/group /other attributes of the semflg
argument. They are collectively referred to as " operation permissions.”
Figure 4-2 reflects the numeric values for the valid operation permissions
codes.

IP 4-8

SEMAPHORES

OPERATION PERMISSIONS | NUMERIC VALUE
Read by User 00400
Alter by User 00200
Read by Group 00040
Alter by Group 00020
Read by Others 00004
Alter by Others 00002

Figure 4-2. Operation Permissions Codes

A specific numeric value is derived by adding the numeric values for the
operation permissions desired. That is, if read by user and read /alter by
others is desired, the code value would be 00406 (00400 plus 00006).
These values are represented in octal. There are constants located in the
sem.h header file that can be used for the user (OWNER). They are as
follows:

SEM R 0400
SEM_A 0200

Control commands are predefined constants (represented by all uppercase
letters). Figure 4-3 contains the names of the constants that apply to the
semget system call along with their values. They are also referred to as
flags and are defined in the ipc.h header file.

IP 4-9

SEMAPHORES

CONTROL COMMAND VALUE

IPC_CREAT 0001000
IPC_EXCL 0002000

Figure 4-3. Conirol Commands (Flags)

The value for semflg is, therefore, a combination of operation permissions
and control commands. After determining the value for the operation
permissions as previously described, the desired flag(s) can be specified.
This specification is done by bitwise ORing (i) them with the operation
permissions; the bit positions and values for the control commands to
those of the operation permissions make this possible. It is illustrated as
follows:

OCTAL VALUE BINARY VALUE
IPC_CREAT = 01000 o ¢00 001 000 000 000
! Read by User = 0400 ¢ 000 000 100 000 000
semflg = ¢ 1400 ¢ 0606 001 106 000 000

The semflg value can be easily set by using the names of the flags with the
octal operation permissions value:

semid = semget (key, nsems, (IPC_CREAT | 0400));

semid = semget (key, msems, (XPC_CREAT | XPC_EXCL | 0400));

As specified by the semget success or failure of this system call depends
on the actual argument values for key, nsems, semflg or system tunable
parameters. The system call will attempt to return a new semid if a
following condition is true:

» Key is equal to IPC_PRIVATE (0)

IP 4-10

SEMAPHORES

« Key does not already have a semid associated with it, and
(semflg & IPC_CREAT) is " true " (not zero).

The key argument can be set to IPC_PRIVATE in the following ways:

semid = semget (IPC PRIVATE, nsems, semflg);
OR

semid = semget (0, nsems, semflg);

This alone will cause the system call to be attempted because it satisfies
the first condition specified.

Exceeding the SEMMNI, SEMMNS, or SEMMSL system tunable parameters
will cause a failure regardlessly. The SEMMNI system tunable parameter
determines the maximum amount of unique semaphore sets (semid’s) in
the UNIX System. The SEMMNS system tunable parameter determines
the maximum amount of semaphores in all semaphore sets system wide.
The SEMMSL system tunable parameter determines the maximum amount
of semaphores in each semaphore set.

The second condition is satisfied if the value for key is not already
associated with a semid, and the bitwise ANDing of semfig and IPC_CREAT
is " true " (not zero). This means that the key is unique (not in use) within
the UNIX System for this facility type and that the IPC_CREAT flag is set
(semflg { IPC_CREAT). The bitwise ANDing (&), which is the logical way of
testing if a flag is set, is illustrated as follows:

semflg = x 1 x x x (x = don’t care)
& TPC CREAT =

result 01¢900 {not zero)

Since the result is not zero, the flag is set or " true . SEMMNI, SEMMNS,
and SEMMSL apply here also, just as for condition one.

P 4-11

SEMAPHORES

IPC_EXCL is another control command used with IPC_CREAT to exclusively
have the system call fail if, and only if, a semid exists for the specified key
provided. This is necessary to prevent the process from thinking that it
has received a new (unique) semid when it has not. In other words, when
both IPC_CREAT and IPC_EXCL are specified, a new semid is returned if
the system call is successful. Any value for semflg returns a new semid if
the key equals zero (IPC_PRIVATE) and no system tunable parameters are
exceeded.

Refer to the semget manual page for specific associated data structure
initialization for successful completion. The specific failure conditions with
error names are contained in the manual page.

Example Program

P The example program in this section is a menu driven program that
allows all possible combinations of using the semget system call to be
exercised. This program was compiled and run on the 3B2 Computer; its
execution has been verified.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

Since there are many ways in the € Programming Language to accomplish
the same task or requirement, keep in mind that this example program
was written for clarity and not program efficiency. Usually, system calls
are embedded within a larger user-written program that makes use of a
particular function that they provide.

This program begins by including the required header files as specified by
the manual page for semget (lines 4-8). Note that the errno.h header file
is included as opposed to declaring errno as an external variable; either
method will work.

P 4-12

SEMAPHORES

Variable names have been chosen to be as close as possible to those in
the synopsis. Their declarations are self-explanatory. These names make
the program more readable, and this is perfectly legal since they are local
to the program. The variables declared for this program and their purpose
are as follows:

o key—used to pass the value for the desired key
« opperm—used to store the desired operation permissions
» flags—used to store the desired control commands (flags)

o opperm_flags—used to store the combination from the logical
ORing of the opperm and flags variables; it is then used in the
system call to pass the semflg argument

o semid-—used for returning the semaphore set identification
number for a successful system call or the error code (-1) for an
unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal
operation permissions code, and the control command combinations
(flags) that are selected from a menu (lines 15-32).

Note: All possible combinations are allowed even though they
might not be viable. This allows observing the errors for illegal
combinations.

Next, the menu selection for the flags is combined with the operation
permissions, and the result is stored at the address of the opperm_flags
variable (lines 36-52).

Then, the number of semaphores for the set is requested (lines 53-57),
and its value is stored at the address of nsems.

IP 4-13

SEMAPHORES

The system call is made next, and the result is stored at the address of the
semid variable (lines 60, 61).

Since the semid variable now contains a valid semaphore set identifier or
the error code (-1), it is tested to see if an error occurred (line 63). If
semid equals -1, a message shows that an error resulted and the external
errno variable is displayed (lines 65, 66). Remember that the external
errno variable is only set when a system call fails; it should only be tested
immediately following system calls.

If no error occurred, the returned semaphore set identifier is displayed
(line 70).

The example program for the semget system call follows. It is suggested
that the source program file be named " semget.c " and that the
executable file be named " semget.”

Note: When compiling € programs that use floating point
operations, the -f option should be used on the ce command line.
If this option is not used, the program will compile successfully, but
when the program is executed it will fail,

IP 4-14

SEMAPHORES

W oN

@ N3 DG

106
i1
12
12
14

15
16
17

18
19
20
21
22

23
24
25
26
27
Z8
29
30
31
32

33
34

35

/*This is a program to illustrate
**the semaphore get, semget(),
**system call capabilities.*/

#include <stdio.h>
#include <sys/types.h>
#include <sysfipc.h>
#include <sys/sem.h>
#include <errno.h>

/*Start of main C language program*/

main()

{
key_t key; /*declare as long integer*/
int opperm, flags, nsems;
int semid, opperm_flags;

/*Enter the desired key*/
printf("\nEnter the desired key in hex = ");
scanf (" %x" , &key):

/*Enter the desired octal operation

permissions.*/
printf("\nEnter the operation\n");
printf(" permissions in octal = ");
scanf (" %o" , &opperm);

/*Set the desired flags.*/
printf("\nEnter corresponding number to\n");
printf("set the desired flags:\n");

printf("No flags = 0\n");
printf (" IPC_CREAT = 1N\n");
printf (" IPC_EXCL = 2\n");
printf (" IPC_CREAT and IPC_EXCL = 3\n");
printf (" Flags ="y

/*Get the flags to be set.*/
scanf("%d" , &flags);

/*Error checking (debugging)*/
printf ("\nkey =0x%x, opperm = 0%o,
flags = 0%o\n",

key, opperm, flags);

IP 4-15

SEMAPHORES

a6 /*Incorporate the control fields (flags) with

37 the operation permissions.*/

38 switch (flags)

39 {

40 case 0: /*No flags are to be set.*/

41 opperm_flags = (opperm i 0);

42 break;

43 case 1: /*Set the IPC_CREAT flag.*/

44 opperm_flags = (opperm | IPC_CREAT);

45 break;

46 case 2: /*Set the IPC_EXCL flag.*/

47 opperm_flags = (opperm | TPC_EXCL);

48 break;

49 case 3: /*Set the IPC_CREAT and IPC_EXCL

50 flags.*/

51 opperm_flags = (opperm | IPC_CREAT

IPC_EXCL);

52)

53 /*Get the number of semaphores for this set.*/

54 printf (" \nEnter the number of\n");

55 printf(" desired semaphores for\n");

56 printf (" this set (25 max) = ");

57 scanf("%d" , &msems);

58 /*Check the entry.*/

59 printf("\nNsems = %d\n" , nsems);

60 /*Call the semget system call.*/

61 semid = semget(key, nsems, opperm_flags);

62 /*Perform the following if the call is
unsuccessful.*/

63 if (semid == -1)

64 {

65 printf(" The semget system call failed!\n");

66 printf(" The error number = %d\n", errnoc);

67 }

68 /*Return the semid on successful completion.*/

69 else

70 printf("\nThe semid = %d\n" , semid);

71 exit(0);

72 !

iP 4-16

SEMAPHORES

CONTROLLING SEMAPHORES

This section contains a detailed description of using the semetl system call
along with an example program that allows all its capabilities to be
exercised.

Using Semctl

The synopsis of the semctl is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, cmd, arg)
int semid, cmd;
int semnum;
union semun {
int val;
struct semid_ds *buf;
ushort array[]:;
| arg:

The semctl system call requires four arguments to be passed to it, and it
returns an integer value.

The semid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the semget system call.

The semnum argument is used to select a semaphore by its number. This
relates to array (atomically performed) operations on the set.

Note: When a set of semaphores is created, the first semaphore is
number 0, and the last semaphore has the number of one less than
the total in the set.

The cmd argument can be replaced by a foliowing control command
(flags):

IP 4-17

SEMAPHORES

o GETVAL—return the value of a single semaphore within a
semaphore set.

» SETVAL—set the value of a single semaphore within a
semaphore set.

» GETPID—return the Process ldentifier (PID) of the process that
performed the last operation on the semaphore within a
semaphore set.

o GETNCNT—return the number of processes waiting for the value
of a particular semaphore to become greater than its current
value.

o GETZCNT—return the number of processes waiting for the value
of a particular semaphore to be equal to zero.

» GETALL—return the values for all semaphores in a semaphore
set.

» SETALL—set all semaphore values in a semaphore set.

e IPC_STAT—return the status information contained in the
associated data structure for the specified semid, and place it in
the data structure pointed to by the *buf pointer in the user
memory area; arg.buf is the union member that contains the
value of buf.

o IPC_SET—for the specified semaphore set (semid), set the
effective user /group identification and operation permissions.

» IPC_RMID—remove the specified (semid) semaphore set along
with its associated data structure.

A process must have an effective user identification of OWNER/CREATOR
or super-user to do an IPC_SET or IPC_RMID control command.

Read /alter permission is required as applicable for the other control
commands.

IP 4-18

SEMAPHORES

The arg argument is used to pass the system call the appropriate union
member for the control command to be performed:

e arg.val
e arg.buf

e arg.array

The details of this system call are discussed in the example program for it.
If you have problems understanding the logic manipulations in this
program, read the " Using Semget " section of this chapter; it goes into
more detail than what would be practical to do for every system call.

Example Program

The example program in this section is a menu driven program that allows
all possible combinations of using the semetl system call to be exercised.
This program was compiled and run on the 3B2 Computer; its execution
has been verified.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

Since there are many ways in the € Programming Language to accomplish
the same task or requirement, keep in mind that this example program
was written for clarity and not program efficiency. Usually, system calls
are embedded within a larger user-written program that makes use of a
particular function that they provide.

This program begins by including the required header files as specified by
the manual page for semctl (lines 5-9). Note that in this program errno is
declared as an external variabie, and therefore the errno.h header file does
not have to be included.

IP 4-19

SEMAPHORES

Variable, structure, and union names have been chosen to be as close as
possible to those in the synopsis. Their declarations are self-explanatory.
These names make the program more readable, and this is perfectly legal
since they are local to the program. Those declared for this program and
their purpose are as follows:

IP 4-20

semid_ds—used to receive the specified semaphore set
identifier's data structure when an IPC_STAT control command is
performed

c—used to receive the inputed values from the " scanf " function
(line 117) when performing a SETALL control command

i—used as a counter to increment through the union arg.array
when displaying the semaphore values for a GETALL (lines 97-99)
control command, and when initializing the arg.array when
performing a SETALL (lines 115-119) control command

length—used as a variable to test for the number of semaphores
in a set against the i counter variable (lines 97, 115)

uid—used to store the IPC_SET value for the effective user
identification

gid—used to store the IPC_SET value for the effective group
identification

mode—used to store the IPC_SET value for the operation
permissions

rtrn—used to store the return integer from the system call that
depends on the control command or a -1 when unsuccessful

semid-—used to store and pass the semaphore set identifier to
the system call

semnum-—used to store and pass the semaphore number to the
system call

SEMAPHORES

» cmd—used to store the code for the desired control command
so that further processing can be performed on it

o choice—used to determine what member (uid, gid, mode) for
the IPC_SET control command that is to be changed

o arg.val—used to pass the system call a value to set (SETVAL) or
to store (GETVAL) a value returned from the system call for a
single semaphore (union member)

» arg.buf—a pointer passed to the system call that locates the
data structure in the user memory area where the IPC_STAT
control command is to place its return values, or where the
IPC_SET command gets the values to set (union member)

« arg.array—used to store the set of semaphore values when
getting (GETALL) or initializing (SETALL) (union member).

Note that the semid_ds data structure in this program (line 14) uses the
data structure located in the sem.h header file of the same name as a
template for its declaration. This is a perfect example of the advantage of
local variables.

The arg union (lines 18-22) serves three purposes in one. The compiler
allocates enough storage to hold its largest member. The program can
then use the union as any member by referencing them as if they were
regular structure members. Note that the array is declared to have 25
elements (0 through 24). This number corresponds to the maximum
amount of semaphores allowed per set (SEMMSL), a system tunable
parameter.

The next important program aspect to observe is that although the *buf
pointer member (arg.buf) of the union is declared to be a pointer to a data
structure of the semid_ds type, it must also be initialized to contain the
address of the user memory area data structure (line 24). Because of the
way this program is written, the pointer does not need to be reinitialized
later. If it was used to increment through the array, it would need to be
reinitialized just before calling the system call.

IP4-21

SEMAPHORES

Now that all the required declarations have been presented for this
program, this is how it works.

First, the program prompts for a valid semaphore set identifier that is
stored at the address of the semid variable (lines 25-27). This is required
for all semctl system calls.

Then, the code for the desired control command must be entered (lines
28-42), and the code is stored at the address of the cmd variable. The
code is tested to determine the control command for further processing.

If the GETVAL control command is selected (code 1), a message prompting
for a semaphore number is displayed (lines 49, 50). When it is entered, it
is stored at the address of the semnum variable (line 51). Then, the
system call is performed, and the semaphore value is displayed (lines 52-
55). If the system call is successful, a message shows this along with the
semaphore set identifier used (lines 195, 196); if the system call is
unsuccessful, an error message is displayed along with the value of the
external errno variable (lines 191-193).

If the SETVAL control command is selected (code 2), a message prompting
for a semaphore number is displayed (lines 56, 57). When it is entered, it
is stored at the address of the semnum variable (line 58). Next, a message
prompts for the value to what the semaphore is to be set, and it is stored
as the arg.val member of the union (lines 59, 60). Then, the system call is
performed (lines 61, 63). Depending on success or failure, the program
returns the same messages as for GETVAL above.

If the GETPID control command is selected (code 3), the system call is
made immediately since all required arguments are known (lines 64-67),
and the PID of the process performing the last operation is displayed.
Depending on success or failure, the program returns the same messages
as for GETVAL above.

If the GETNCNT control command is selected (code 4), a message
prompting for a semaphore number is displayed (lines 68-72). When

IP 4-22

SEMAPHORES

entered, it is stored at the address of the semnum variable (line 73). Then,
the system call is performed, and the number of processes waiting for the
semaphore to become greater than its current value is displayed (lines 74-
77). Depending on success or failure, the program returns the same
messages as for GETVAL above.

If the GETZCNT control command is selected (code 5), a message
prompting for a semaphore number is displayed (lines 78-81). When it is
entered, it is stored at the address of the semnum variable (line 82). Then
the system call is performed, and the number of processes waiting for the
semaphore value to become equal to zero is displayed (lines 83, 86).
Depending on success or failure, the program returns the same messages
as for GETVAL above.

f the GETALL control command is selected (code 6), the program first
performs an IPC_STAT control command to determine the number of
semaphores in the set (lines 88-93). The length variable is set to the
number of semaphores in the set (line 91). Next, the system call is made
and, on success, the arg.array union member contains the values of the
semaphore set (line 96). Now, a loop is entered that displays each
element of the arg.array from zero to one less than the value of length
(lines 97-103). The semaphores in the set are displayed on a single line,
separated by a space. Depending on success or failure, the program
returns the same messages as for GETVAL above.

It the SETALL control command is selected (code 7), the program first
performs an IPC_STAT control command to determine the number of
semaphores in the set (lines 106-108). The length variable is set to the
number of semaphores in the set (line 109). Next, the program prompts
for the values to be set and enters a loop that takes values from the
keyboard and initializes the arg.array union member to contain the desired
values of the semaphore set (lines 113-119). The loop puts the first entry
into the array position for semaphore number zero and ends when the
semaphore number that is filled in the array equals one less than the value
of length. The system call is then made (lines 120-122). Depending on
success or failure, the program returns the same messages as for GETVAL
above.

P 4-23

SEMAPHORES

If the IPC_STAT control command is selected (code 8), the system call is
performed (line 127), and the status information returned is printed out
(lines 128-139); only the members that can be set are printed out in this
program. Note that if the system call is unsuccessful, the status
information of the last successful one is printed out regardiessly; also an
error message is displayed, and the errno variable is printed out (lines 191,
192).

If the IPC_SET control command is selected (code 8), the program gets
the current status information for the semaphore set identifier specified
(lines 143-146). This is necessary because this example program provides
for changing only one member at a time, and the semctl system call
changes all of them. Also, if an invalid value happened to be stored in the
user memory area for one of these members, it would cause repetitive
failures for this control command until corrected. The next thing the
program does is to prompt for a code corresponding to the member to be
changed (lines 147-153). This code is stored at the address of the choice
variable (line 154). Now, depending on the member picked, the program
prompts for the new value (lines 155-178). The value is placed at the
address of the appropriate member in the user memory area data
structure, and the system call is made (line 181). Depending on success
or failure, the program returns the same messages as for GETVAL above.

if the IPC_RMID control command (code 10) is selected, the system call is
performed (lines 183-185). The semid along with its associated data
structure and semaphore set is removed from the UNIX System.
Depending on success or failure, the program returns the same messages
as for the other control commands.

The example program for the semctl system call follows. It is suggested
that the source program file be named " semctl.c " and that the
executable file be named " semctl."

Note: When compiling € programs that use floating point
operations, the -f option should be used on the ee command line.
if this option is not used, the program will compile successfully, but
when the program is executed it will fail,

IP 4-24

SEMAPHORES

B N

W N, W

11
12
13
14
15
18
17
18
19
20
21
22

23
24

25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

/*This is a program te illustrate
**the semapheore control, semctl(),
**system call capabilities.

*/

/*Include necessary header files.*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipe.h>
#include <sys/sem.h>

/*Start of main C language program*/
main()
{
extern int errno;
struct semid_ds semid_ds;
int ¢, i, length;
int wid, gid, mode;
int retrn, semid, semnum, cmd, choice;
union semun {
int val;
struct semid_ds *buf;
ushort array[25];
} oarg;

/*Initialize the data structure pointer.*/
arg.buf = &semid_ds;

/*Enter the semaphore ID.*/
printf("Enter the semid = ");
scanf (" %d" , &semid);

/*Choose the desired command.*/
printf (" \nEnter the number for\n");
printf(" the desired cmd:\n");

printf (" GETVAL \n")3
printf (" SETVAL = 2\n");
printf (" GETPID = 3\n");
printf (" GEINCNT = 4A\n");
printf (" GETZCNT = 5\n");
printf (" GETALL = 6\n");
printf (" SETALL = 7\n");
printf (" IPC_STAT = 8\n");
printf (" XPC_SET = 9\n");
printf (" IPC_RMID = 10\n");
printf (" Entry = ")

scanf (" %d" , &cmd);

IP 4-25

SEMAPHORES

43
44
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

/*Check entries.*/
printf ("\nsemid =%d, cmd = %d\m\n",
semid, cmd);

/*Set the command and do the call.*/
switch (cmd)

f
1

case 1: /[*Get a specified value.*/
printf (" \nEnter the semnuom = ");
scanf (" %d" , &semnum);
/*Do the system call.*/
retrn = semctl(semid, semnum, GETVAL,
printf (" \nThe semval = Gd\n", retrm);

break;

case 2: [*Set a specified value.*/
printf(" \nEnter the semmum = ");
scanf (" %d" , &semnum);
printf (" \nEnter the wvalue = ");

scanf("%d" , &arg.val);
/#Do the system call.*/

retrn = semctl(semid, semnum, SETVAL,
arg.val);
break;

case 3: [*Get the process ID.=*/f
retrn = semctl(semid, €, GETPID, 0);
printf(" \nThe sempid = %d\n" , retrmn);
break;
case 4: /*Get the mumber of processes
waiting for the semaphore to
become greater than its current
valoe.*/
printf (" \nEnter the semmum = "});
scanf (" %d" , &semnum);
/*Do the system call.*/

retrn = semctl(semid, semnum, GETMNCNT,
printf (" \nThe semncnt = %d" , retrn);
break;

case B5: [*Get the mumber of processes
waiting for the semaphore
value to become zero.™/
printf(" \nEnter the semnum = ");
scanf (" %d" , &semnum);
/*Do ithe system call.*/

retrn = semctl{semid, semnum, GETZCNT,
printf(" \nThe semzcnt = %d" , retrn);
break;

)3

)3

®);

1P 4-26

SEMAPHORES

87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
162
103
104
105

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

case 6: /*Get all the semaphores.*/

/*Get the number of semaphores in
the semaphore set.*/
retrn = semctl(semid, 0, JYPC_STAT, arg.buf);
length = arg.buf->sem_nsems;
if(retrn == -1)
goto ERROR;
/*Get and print all semaphores in the
specified set.*/
retrn = semctl(semid, @, GETALL, arg.array);
for (i = ¢; i < length; iH+)
{
printf("%d", arg.array[i]);
/*Separate each
semaphore.*/
printf (" %", 7)3

ks
i

break;
case 7: /*Set all semaphores in the set.*/

/*Get the number of semaphores in
the set.*/
retrn = semctl(semid, ¢, IPC_STAT, arg.buf);

length = arg.buf->sem_nsems;
printf(" Length = %d\n", length);
if(retrn == -1)

goto ERROR;

/*Set the semaphore set valunes.*/
printf(" \nEnter each value:\n");
for(i = 0; i < length ; it+t+)

scanf (" %d" , &c);
arg.array[i] = ¢;

s
il

/*Do the system call.*/
retrm = semctl(semid, 0, SETALL, arg.array);
break;

P 4-27

SEMAPHORES

123 case 8: /*Get the status for the semaphore

124 set.*/

125 /*Get the current status valumes and

126 print them out.*/

127 retrn = semctl(semid, 0, IPC_STAT, arg.buf);
128 printf ("\nThe USER ID = %d\n",

129 arg.buf->sem_perm.uid);

130 printf (" The GROUP ID = %d\n",

131 arg.buf->sem_perm.gid);

132 printf ("The operation permissions = 0%o\n",
123 arg.buf->sem_perm.mode);

134 printf ("The number of semaphores in set = %d\n",
135 arg.buf->sem nsems);

136 printf ("The last semop time = Gd\n",

137 arg.buf->sem_otime);

138 printf ("The last change time = %d\n",

139 arg.buf->sem_ctime);

140 break;

141 case 9: /*Select and change the desired

142 member of the data structure.*/
143 /*Get the current status values.?*/

144 retrn = semctl(semid, 0, IPC_STAT, arg.buf);
145 if(retrn == -1)

146 goto ERROR;

147 /*Select the member to change.*/

148 printf("\nEnter the number for the\n");

149 printf (" member to be changed:\n");

150 printf (" sem_perm.uid = 1\n");

151 printf (" sem_perm.gid = 2\n");

152 printf (" sem_perm.mode = 3\n");

153 printf (" Entry = ")

154 scanf("%d" , &choice);

15% switch(chojice){

156 case 1: /*Change the user ID.*/

157 printf (" \nEnter USER ID = ");

158 scanf ("%d" , &uid);

159 arg.buf->sem_perm.unid = uid;

160 printf (" \nUSER ID = %d\n",

161 arg.buf->sem_perm.uid);

162 break;

IP 4-28

SEMAPHORES

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
130
191

192
193
194
195
196
197
198

case 2: [*Change the group ID.*/
printf("\nEnter GROUP ID = ");
scanf (" %d" , &gid);
arg.buf->sem perm.gid = gid;
printf(" \nGROUP ID = %d\n",

arg.buf->sem_perm.gid);
break;

case 3: [*Change the mode portion of

the operation
permissions.*/
printf("\nEnter MODE = ");
scanf (" %o" , &mode);
arg.buf—>sem_perm.mode = mode;
printf (" \nMODE = 0%o\n",
arg.buf->sem_perm.mode);

break;

1
i

/*Do the change.*/
retrm = semctl(semid, 0, IPC_SET, arg.buf);
break;
case 10: /*Remove the semid along with its
data structure.*/
retrn = semctl{semid, 0, IPC_RMID, 0);

1
J

/*Perform the foellowing if the call is unsuccessful.*/
if(retrm == -1)
{
ERROR :
printf ("\nm\nThe semctl system call
failed!\n");

printf (" The error number = %d\n", errno);
exit(0);

printf ("\n\nThe semctl system call was successful\n");
printf (" for semid = %d\n", semid);
exit (0);

IP 4-29

SEMAPHORES

OPERATIONS ON SEMAPHORES

This section contains a detailed description of using the semop system call
along with an example program that allows all its capabilities to be
exercised.

Using Semop

The synopsis of the semop is as follows:
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
int semop (semid, sops, nsops)
int semid;

struct sembuf **sops;
unsigned nsops;

The semop system call requires three arguments to be passed to it, and it
returns an integer value.

On successful completion, a zero value is returned and when unsuccessful
it returns a -1.

The semid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the semget system cail.

The sops argument is a pointer to an array of structures in the user
memory area that contains the following for each semaphore to be
changed:

» The semaphore number
e The operation to be performed

s The control command (flags).

IP 4-30

SEMAPHORES

The **sops declaration means that a pointer can be initialized to the
address of the array, or the array name can be used since it is the address
of the first element of the array. Sembuf is the tag name of the data
structure used as the template for the structure members in the array; it
is located in the #include <sys/sem.h> header file.

The nsops argument specifies the length of the array (the number of
structures in the array). The maximum size of this array is determined by
the SEMOPM system tunable parameter. Therefore, a maximum of
SEMOPM operations can be performed for each semop system call.

The semaphore number determines the particular semaphore within the
set on what operation is to be performed.

The operation to be performed is determined by the following:

s A positive integer value means to increment the semaphore value
by its value.

s A negative integer value means to decrement the semaphore
value by its value.

o A value of zero means to test if the semaphore is equal to zero.
The following operation commands (flags) can be used:

o IPC_NOWAIT—this operation command can be set for any
operations in the array. The system call will return
unsuccessfully without changing any semaphore values at all if
any operation for what IPC_NOWAIT is set cannot be performed
successfully. The system call will be unsuccessful when trying to
decrement a semaphore more than its current value, or when
testing for a semaphore to be equal to zero when it is not. See
" blocking /nonblocking semaphore operations " in Chapter 2.

P 4-31

SEMAPHORES

o SEM_UNDO-—this operation command allows any operations in
the array to be undone when any operation in the array is
unsuccessful and does not have the IPC_NOWAIT flag set. That
is, the blocked operation waits until it can do its operation; and
when it and all succeeding operations are successful, all
operations with the SEM_UNDO flag set are undone. Remember,
no operations are performed on any semaphores in a set until all
operations are successful. Undoing is done by using an array of
adjust values for the operations that are to be undone when the
blocked operation and all further operations are successful.

Example Program

The example program in this section is a menu driven program that allows
all possible combinations of using the semop system call to be exercised.
This program was compiled and run on the 3B2 Computer; its execution
has been verified.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

Since there are many ways in the € Programming Language to accomplish
the same task or requirement, keep in mind that this example program
was written for clarity and not for program efficiency. Usually, system
calls are embedded within a larger user-written program that makes use of
a particular function that the system calls provide.

This program begins by including the required header files as specified by
the manual page for msgop (lines 5-9). Note that in this program errno is
declared as an external variable, and therefore, the errno.h header file
does not have to be included.

Variable and structure names have been chosen to be as close as possible
to those in the synopsis. Their declarations are self-explanatory. These
names make the program more readable, and this is perfectly legal since
the declarations are local to the program. The variables declared for this

1P 4-32

SEMAPHORES

program

and their purpose are as follows:

sembuf[10]—used as an array buffer (line 14) to contain a
maximum of ten sembuf type structures; ten equals SEMOPM,
the maximum amount of operations on a semaphore set for each
semop system call

*sops—used as a pointer (line 14) to sembuf[10] for the system
call and for accessing the structure members within the array

rtrn—used to store the return values from the system call

flags—used to store the code of the IPC_NOWAIT or SEM_UNDO
flags for the semop system call (line 60)

i—used as a counter (line 32) for initializing the structure
members in the array, and used to print out each structure in the
array (line 79)

nsops-—used to specify the number of semaphore operations for
the system call——must be less than or equal to SEMOPM

semid—used to store the desired semaphore set identifier for
the system call.

First, the program prompts for a semaphore set identifier that the system
call is to do operations on (lines 19-22). Semid is stored at the address of
the semid variable (line 23).

A message is displayed requesting the number of operations to be
performed on this set (lines 25-27). The number of operations is stored at
the address of the nsops variable (line 28).

Next, a loop is entered to initialize the array of structures (lines 30-77).
The semaphore number, operation, and operation command (flags) are
entered for each structure in the array. The number of structures equals
the number of semaphore operations (nsops) to be performed for the

IP 4-33

SEMAPHORES

system call, so nsops is tested against the i counter for loop control. Note
that sops is used as a pointer to each element (structure) in the array, and
sops is incremented just like i. Sops is then used to point to each member
in the structure for setting them.

After the array is initialized, all its elements are printed out for feedback
(lines 78-85).

The sops pointer is set to the address of the array (lines 86, 87). Sembuf
could be used directly, if desired, instead of sops in the system call.

The system call is made (line 89), and depending on success or failure, a
corresponding message is displayed. The results of the operation(s) can
be viewed by using the semctl GETALL control command.

The example program for the semop system call follows. It is suggested
that the source program file be named " semop.c " and that the
executable file be named " semop.”

Note: When compiling C programs that use floating point
operations, the -f option should be used on the ee command line.
If this option is not used, the program will compile successfully, but
when the program is executed it will fail.

IP 4-34

SEMAPHORES

0 Ny H B I

=

i1
12
13
14
15
16
17
18

38
32
40

/*This is a program te illustrate
**the semaphore operations, semop(),
**system call capabilities.

=/

/*Include necessary header files.*/
#include <stdio.h>

#incliude <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

/*Start of maim € language program*/
maind)
{
extern int errno;
struct sembuf sembuf[18], *sops;
char string[];
int retrn, flags, sem_num, i, semid;
unsigned nsops;
sops = sembuf; /[*Pointer to array sembuf.*/

/*Enter the semaphore TD.*/
printf(" \nEnter the semid of\n");
printf(" the semaphore set to\n");
printf(" be operated on = ");
scanf("%d" , &semid);

printf(" \nsemid = %d", semid);

/*Enter the number of operatioms.*/
printf("\nEnter the number of semaphore\n");
printf (" operations for this set = ");
scanf("%d" , &nsops);

printf(" \nnosops = %d" , nseops);

/*Initialize the array for the
number of operations to be performed.?*/
for(i = 0; 1 < msops; i++, sopstt)

!
1

/*This determines the semaphore in
the semaphore set.*/
printf("\nEnter the semaphore\n");
printf (" number (sem_num) = ");
scanf (" %d" . &sem_num);
S0psS ~>Sem_num = sem__num;
printf("\nThe sem num = %d", sops->sem num);

IP 4-35

SEMAPHORES

41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69
76
71
72
73
74
75
76

77

/*Enter a (-)number to decrement,
an unsigned number (no +) to increment,
or zero to test for zero. These values
are entered into a strimg and converted
to integer values.*/
printf (" \nEnter the operation for\m");
printf (" the semaphore (sem op) = ");
scanf (" %s" , string);
sops->sem op = atoi(string);
printf("\nsem_op = %d\n", sops->sem_op);

/*Specify the desired flags.*/
printf (" \nEnter the corresponding\n");
printf (" number for the desired\n");
printf(" flags:\n");

printf("No flags = f\n");
printf (" IPC_NOWALT = 1\n");
printf (" SEM_UNDO = 2\n");
printf("IPC_NOWAIT and SEM_UNDO = 3\n");
printf (" Flags ="y

scanf (" %d" , &flags);

switch(flags)

{
1

case 0:
sops->sem_flg = 03
break;

case 1:
sops->sem flg = IPC_NOWAILT;
break;

case 2:
sops->sem_flg = SEM UNDO;
break;

case 3X:
sops->sem flg = IPC NOWALT ISEM_UNDO;
break;

}

printf("\nFlags = 0%o\n", sops->sem_flg);

IP 4-36

SEMAPHORES

78
79
8¢
81

82
83
84
85

86
87

88
89
36
91
92
93
94
95
96

97
98
99

/*Print out each structure in the array.*/

for(i = 0; i < nsops; i+t)

{
printf (" \nsem_num = %d\n",

sembuf[i].sem num);

printf (" sem _op = %d\n", sembuf|[i].sem_op);
printf("sem flg = %o\n", sembuf[i].sem_flg);
printf("%e", ° ’);

sops = sembuf; /*Reset the pointer to
sembuf[0].*/

/*Do the semop system call.®*/

retrn = semop(semid, sops, nsops);
if(retrn == -1) {
printf (" \nSemop failed. ");

printf("Ercvor = %d\n", errnc);

1
i

else {
printf ("\mnSemop was successful\n");
printf (" for semid = %d\n", semid);

printf (" Value returned = %d\n", retrn);

!
J

IP 4-37

Chapter 5

SHARED MEMORY

PAGE

GENERAL . . e, 5-1
GETTING SHARED MEMORY SEGMENTS ittt e eianaennnnns 5-11
Using Shmget e 5-11
Example Program e 5-16
CONTROLLING SHARED MEMORYttt iieneanaenanaaaennnnnanns 5.21
Using Shmetl. i i it ittt e 5-21
Example Program e, 5-22
OPERATIONS FOR SHARED MEMORY ittt i et ineaenannanennnn 5-30
Using ShmoOp e 5-30

Example Program e 5-32

Chapter 5

SHARED MEMORY

The shared memory type of Inter-Process Communication (IPC) allows
processes (executing programs) to communicate by explicitly setting up
access to a common virtual address space. The sharing of memory
between processes occurs on a virtual segment basis. There is one and
only one instance of an individual shared memory segment existing in the
UNIX System at any point in time.

Refer to the AT&T 3B2 Computer User Reference Manual for UNIX System
V manual pages supporting the commands described in this Chapter.

GENERAL

Before sharing of memory can be realized, a uniquely identified shared
memory segment and data structure must be created. The unique
identifier created is called the shared memory identifier (shmid); it is used
to identify or reference the associated data structure. Figure 5-1
illustrates the relationships among the shmid, segment descriptor, and
data structure.

P 5-1

SHARED MEMORY

The data
segment:

structure includes the following for each shared memory

Operation permissions

Segment size

Segment descriptor

Process identification performing last operation
Process identification of creator

Current amount of processes attached

In memory the amount of processes attached
Last attach time

Last detach time

Last change time.

SHARED MEMORY

UNTQUE
SHARED
MEMORY
1D

[7] suaren memory |

l DATA STRUCTURE

OPERATIONS PERMISSIGNS

STRUCTURE
SEGMENT SIZE

WORD 2

SEGMENT DESCRIPTOR
(SEE FIGURE 5-2.)

PHYSICAL
{ INCORE)
MEMORY
OR
DISK BLOCK
ON SWAP
DEVICE

USER PROCESS TABLE

u-BLOCK

STACK

STACK

STACK

SHARED MEMORY

. SEGMENT DESCRIPTOR

PROCESS IDENTIFICATION
PERFORMING LAST OPERATION

I
| T
I I
f |
I |
| PROCESS IDENTIFICATION |
| OF CREATOR |
| CURRENT RUMBER OF |
I |
| |
| |
| I
I I
| |

PROCESSES ATTACHED
IN MEMORY NUMBER OF
PROCESSES ATTACHED
LAST ATTACH TIME
(shmat)
LAST DETACH TIME
(shmdt)
LAST CHANGE TIME
tshmetl)

L - - _
S 1

OWNER'S USER ID

OWNER'S GROUP ID
CREATOR'S USER ID
CREATOR'S GROUP 1D

SLOT USAGE SEQUENCE
NUMBER

KEY

SHARED MEMORY

SHARED MEMORY

SHARED MEMORY

I [
| I
| |
I ACCESS MODES I
| I
| I
I |

OPERATION PERMISSIONS

Lo fme]

Figure 5-1. Shared Memory IPC Organization

IP 5-3

SHARED MEMORY

The C Programming Language data structure definition for the shared
memory segment data structure is as follows:

/*

*w There is a shared mem ID data structure for

* each segment in the system.

*/

struct shmid _ds {
struct ipc_perm shm_perm; /* oper permission struct */
int shm_segsz; /* segment size */
sde_t shm_seg; /* segment descriptor */
ushort shm_lpid; /* pid of last shmop */
ushort shm_ecpid; /* pid of creator */
ushort shm_nattch; /* current # attached */
ushort shm_cnattch; /* in memory # attached */
time_t shm_atime; /* last shmat time */
time_t shm_dtime; /* last shmdt time */
time_t shm_ctime; /* last change time */

Note that the shm_perm member of this structure uses ipc_perm as a
template. Thus, the breakout is shown in Figure 5-1 for the operation
permissions data structure.

The ipc_perm data structure is the same for all IPC facilities, and it is
located in the #include <sys/ipc.h> header file. It is shown in the
“GENERAL" section of Chapter 3, “MESSAGES.”

The shm_seg member of this data structure is defined by a typedef in the
/usr/include/sys/types.h file. The definition is as follows:

IP 5-4

SHARED MEMORY

typedef struct SDE | /* segment descriptor */

/* */

A S Femmmmnnanan L B Ll T I Ryt + %/
/* | access ! maxoff ! ! flags ! | address b/

J* Aemnnna- e oot m e m B R + %/
/* 8 14 2 8 32 */
I g
/* A e oot ¥/
/* (V0): H INWist >/

/* S tot-t-t %/
7+ 29 111 */

*/
unsigned int access B 8; /* Access rightis */
unsigned int maxoff : 14; /* Segment’s max offset */
unsigned int H 2; /* Reserved */
unsigned int flags : 8; /* Descriptor flags */
union |

unsigned int address;
(

struct
unsigned int 1 29,
unsigned int lock 1; [* "N" bit */
unsigned int shmswap 1; /* "W" bit */
unsigned int alloe 1; /*¥ 'S " bit */

7 Vo

| wd2;
; sde_t; /* 0ld name: SDE */

Figure 5-2 represents the shared memory segment descriptor pictorially.

IP 5-5

SHARED MEMORY

WORD 1
31 24 23 10 9 8 7 5 3 2 1 0
Acc Max Off Res 1 v R $ c M P
WORD 2
31 2 0
Address (high order 29 bits) Soft
LOCK SWAP | ALLOC

Figure 5-2. Shared Memory Segment Descriptor

IP 5-6

SHARED MEMORY

Figure 5-3 is a table that shows the shared memory state information.

SHARED MEMORY STATES
LOCK BIT SWAP BIT ALLOCATED BIT IMPLIED STATE
0 0 0 Unallocated Segment
¢} 0 1 Incore
4] 1 0 Unused
0 1 1 On Disk
1 0 1 Locked Incore
1 1 0 Unused
1 0 0 Unused
1 1 1 Unused

Figure 5-3. Shared Memory State Information

The implied states of Figure 5-3 are as follows:

« Unallocated Segment—the segment associated with this
segment descriptor has not been allocated for use.

« Incore—the shared segment associated with this descriptor has
been allocated for use. Therefore, the segment does exist and is
currently resident in memory.

« On Disk—the shared segment associated with this segment
descriptor is currently resident on the swap device.

+ Locked Incore—the shared segment associated with this
segment descriptor is currently locked in memory and will not be

IP 5-7

SHARED MEMORY

a candidate for swapping until the segment is unlocked. Only the
super-user may lock and unlock a shared segment.

» Unused—this state is currently unused and should never be
encountered by the normal user in shared memory handiing.

The shmget system call is used to do two tasks when only the IPC_CREAT
flag is set in the shmflg argument that it receives:

e To get a new shmid and create an associated shared memory
segment data structure for it

» To return an existing shmid that already has an associated
shared memory segment data structure.

The task performed is determined by the value of the key argument
passed to the shmget system call.

For the first task, if the key is not already in use for an existing shmid, a

new shmid is returned with an associated shared memory segment data

structure created for it provided no system tunable parameters would be
exceeded.

There is also a provision for specifying a key of value zero that is known as
the private key (IPC_PRIVATE = 0); when specified, a new shmid is always
returned with an associated shared memory segment data structure
created for it unless a system tunable parameter would be exceeded.
When the ipcs command is performed, the KEY field for the shmid is all
Zeros.

For the second task, if a shmid exists for the key specified, the value of the
existing shmid is returned. If it is not desired to have an existing shmid
returned, a control command ({PC_EXCL) can be specified (set) in the
shmflg argument passed to the system call. The details of using this
system call are discussed in the ““Using Shmget’’ section of this chapter.

IP 5-8

SHARED MEMORY

When performing the first task, the process that calls shmget becomes the
owner /creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed, but the creating process always
remains the creator; see the “CONTROLLING SHARED MEMORY"’ section
in this chapter. The creator of the shared memory segment also
determines the initial operation permissions for it.

Once an uniquely identified shared memory segment data structure is
created, shared memory segment operations [shmop] and control
[shmctl] can be used.

Note: Shmop is not a system call.

Shared memory segment operations consist of attaching and detaching
shared memory segments. System calls are provided for each of these
operations; they are shmat and shmdt. Refer to the *"OPERATIONS FOR
SHARED MEMORY’' section in this chapter for details of these system
calls.

Shared memory segment control is done by using the shmctl system call.
It permits you to control the shared memory facility in the following ways:

e To determine the associated data structure status for a shared
memory segment (shmid)

« To change operation permissions for a shared memory segment

« To remove a particular shmid from the UNIX System along with
its associated shared memory segment data structure

e To lock a shared memory segment in memory

e To unlock a shared memory segment.

IP 5-9

SHARED MEMORY

Refer to the “CONTROLLING SHARED MEMORY" section in this chapter
for details of the shmctl system call.

IP 5-10

SHARED MEMORY

GETTING SHARED MEMORY SEGMENTS

This section gives a detailed description of using the shmget system call
along with an example program illustrating its use.

Using Shmget

The synopsis of the shmget is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)
key_t key;
int size, shmflg;

All these include files are located in the Jusr/inciude/sys directory of the
UMNIX System.

The following line in the synopsis:

inmt shmget (key, size, shmflg)

informs you that shmget is a function with three formal arguments that
returns an integer type value, on successful completion (shmid). The next
two lines:

key t key;
int, size, shmflg:

declare the types of the formal arguments. Key_tis declared by a typedef
in the types.h header file to be a long integer. Therefore, key, size, and
shimflg are integers (int) that occupy 32 bits each in the 3B2 Computer.

The integer returned from this function on successful completion is the
shared memory identifier (shmid) that was discussed in the “GENERAL’”’
section of this chapter.

IP5-11

SHARED MEMORY

As declared, the process calling the shmget system call must supply three
actual arguments to be passed to the formal key, size, and shmflg
arguments.

The value passed to key must be a unique integer type hexadecimal value
or zero (IPC_PRIVATE = 0) if a new shmid with an associated shared
memory segment data structure is desired; it must be an existing key to
return its shmid. This is true when only the IPC_CREAT flag is set in the
shmflg argument.

Unique keys can be determined in several ways. The STDIPC, standard
inter-process communication package, subroutine is one method to
generate unique keys to avoid undesired interference between processes.
Another way could be to use the makekey command, see the STDIPC and
makekey manual pages. Picking a key at random is also possible but less
desirable. If the key is IPC_PRIVATE, only the owner /creator process
usually uses the facility.

The value passed to the shmfig argument must be an integer type octal
value and will specify the following:

» Access permissions
o Execution modes

s Control fields (commands).

Access permissions determine the read/write attributes and execution
modes determine the user/group/other attributes of the shmflg
argument. They are collectively referred to as ‘‘operation permissions.”
Figure 5-4 refiects the numeric values for the valid operation permissions
codes.

P 5-12

SHARED MEMORY

OPERATION PERMISSIONS | NUMERIC VALUE
Read by User 00400
Write by User 00200
Read by Group 00040
Write by Group 00020
Read by Others 00004
Write by Others 00002

Figure 5-4. Operation Permissions Codes

A specific numeric value is derived by adding the numeric values for the
operation permissions desired. That is, if read by user and read /write by
others is desired, the code value would be 00406 (00400 plus 00006).
These values are represented in octal. There are constants located in the
shm.h header file that can be used for the user (OWNER). They are as
follows:

SHM_R 0400
SHM_W 0200

Control commands are predefined constants (represented by all uppercase
letters). Figure b-b contains the names of the constants that apply to the
shmget system call along with their values. They are also referred to as
flags and are defined in the ipc.h header file.

CONTROL COMMAND VALUE

IPC_CREAT 0001000
IPC_EXCL 0002000

Figure 3-5. Control Commands (Flags)

iP 5-13

SHARED MEMORY

The value for shmflg is, therefore, a combination of operation permissions
and control commands. After determining the value for the operation
permissions as previously described, the desired flag(s) can be specified.
This is done by bitwise ORing (1) them with the operation permissions; the
bit positions and values for the control commands to those of the
operation permissions make this possible. It is illustrated as follows:

OCTAL VALUE BINARY VALUE
IPC_CREAT = 01600 0 066 601 0060 000 000
! Read by User = 0400 0 000 000 100 000 000
shmiflg = 01400 ¢ 000 001 100 000 000

The shmflg value can be easily set by using the names of the flags with the
octal operation permissions value:

shmid = shmget (key, size, (IPC_CREAT | 0400));

shmid = shmget (key, size, (IPC_CREAT | IPC_EXCL | 0400));

As specified by the shmget manual page, success or failure of this system
call depends on the argument values for key, size, and shmflg or system
tunable parameters. The system call will attempt to return a new shmid if
a following condition is true:

e Key is equal to IPC_PRIVATE (0)

« Key does not already have a shmid associated with it, and
(shmfig & IPC_CREAT) is “true’ (not zero).

The key argument can be set to IPC_PRIVATE in the fellowing ways:

shmid = shmget (IPC_PRIVATE, size, shmflg);
OR

shmid = shmget (0 , size, shmflg);

IP 5-14

SHARED MEMORY

This alone will cause the system call to be attempted because it satisfies
the first condition specified. Exceeding the SHMMN! system tunable
parameter causes a failure regardlessly. The SHMMNI system tunable
parameter determines the maximum amount of unique shared memory
segments (shmid’s) in the UNIX System.

The second condition is satisfied if the value for key is not already
associated with a shmid and the bitwise ANDing of shmflg and IPC_CREAT
is “‘true’”’ (not zero). This means that the key is unique (not in use) within
the UNIX System for this facility type and that the IPC_CREAT flag is set
(shmflg { IPC_CREAT). The bitwise ANDing (&), which is the logical way of
testing if a flag is set, is illustrated as follows:

shmflg = x 1 x x X (x = don’t care)
& XPC _CREAT = 0 1 0 0 0

u
]
-
)
°
£

result (not zexo)

Since the result is not zero, the flag is set or “‘true.”” SHMMNI applies here
also, just as for condition one.

IPC_EXCL is another control command used with IPC_CREAT to exclusively
have the system call fail if, and only if, a shmid exists for the specified key
provided. This is necessary to prevent the process from thinking that it
has received a new (unique) shmid when it has not. In other words, when
both IPC_CREAT and IPC_EXCL are specified, a new shmid is returned if
the system call is successful. Any value for shmfig returns a new shmid if
the key equals zero (IPC_PRIVATE).

The system call will fail if the value for the size argument is less than
SHMMIN or greater than SHMMAX. These tunable parameters specify the
minimum and maximum shared memory segment sizes.

Refer to the shmget manual page for specific associated data structure
initialization for successful completion. The specific failure conditions with
error names are contained there also.

iP 5-15

SHARED MEMORY

Example Program

The example program in this section is a menu driven program that allows
all possible combinations of using the shmget system call to be exercised.
This program was compiled and run on the 3B2 Computer; its execution
has been verified.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

Since there are many ways in the € Programming Language to accomplish
the same task or requirement, keep in mind that this example program
was written for clarity and not program efficiency. Usually, system calls
are embedded within a larger user-written program that makes use of a
particular function that they provide.

This program begins by including the required header files as specified by
the manual page for shmget (lines 4-7). Note that the errno.h header file
is included as opposed to declaring errme as an external variable; either
method will work.

Variable names have been chosen to be as close as possible to those in
the synopsis for the system call. Their declarations are self-explanatory.
These names make the program more readable, and this is perfectly legal
since they are local to the program. The variables declared for this
program and their purposes are as follows:

» key—used to pass the value for the desired key

« opperm—used to store the desired operation permissions

o flags—used to store the desired control commands (flags)

» opperm_flags—used to store the combination from the logical

ORing of the opperm and flags variables; it is then used in the
system call to pass the shmflg argument

iP b-16

SHARED MEMORY

o shmid—used for returning the message queue identification
number for a successful system call or the error code (-1) for an
unsuccessful one

e size—used to specify the shared memory segment size.

The program begins by prompting for a hexadecimal key, an octal
operation permissions code, and finally for the control command
combinations (flags) that are selected from a menu (lines 14-31).

Note: All possible combinations are allowed even though they
might not be viable. This allows observing the errors for illegal
combinations.

Next, the menu selection for the flags is combined with the operation
permissions, and the result is stored at the address of the opperm_flags
variable (lines 35-50).

A display then prompts for the size of the shared memory segment, and it
is stored at the address of the size variable (lines 51-54).

The system call is made next, and the result is stored at the address of the
shmid variable (line 56).

Since the shmid variable now contains a valid message queue identifier or
the error code (-1), it is tested to see if an error occurred (line 58). If
shmid equals -1, a message shows that an error resulted and the external
errno variable is displayed (lines 60, 61).

If no error occurred, the returned shared memory segment identifier is
displayed (line 65).

IP 5-17

SHARED MEMORY

The example program for the shmget system call follows. It is suggested
that the source program file be named *“‘shmget.c’” and that the
executable file be named '‘shmget.”

Note: When compiling € programs that use floating point
operations, the -f option should be used on the ¢¢ command line.
If this option is not used, the program will compile successfully, but
when the program is executed it will fail.

IP 5-18

SHARED MEMORY

1 /*This is a program to illustrate

2 **the shared memory get, shmget(),

3 **system call capabilities.*/

4 #include <sys/types.h>

5 #include <sys/ipc.h>

6 #include <sys/shm.h>

7 #include <errno.h>

8 /*Start of main C language program*/

9 main()

10

11 key_t key; /*declare as long integer*/
12 int opperm, flags;

13 int shmid, size, opperm_flags;

14 /*Enter the desired key*/

15 printf("Enter the desired key in hex = ");
16 scanf (" %x" , &key);

17 /*Enter the desired octal operation

18 permissions.*/

19 printf("\nEnter the operationm\n"};

20 printf (" permissions in octal = ");

21 scanf (" %" , &opperm);

22 /*Set the desired flags.*/

22 printf (" \nEnter corresponding number to\n");
24 printf(" set the desired flags:\n");

25 printf("No flags = 0\n");
26 printf (" IPC_CREAT = 1\n");
27 printf (" XPC_EXCL = 2\n");
28 printf (" XPC_CREAT and IPC_EXCL = 3\n");
29 printf(" Flags =");

30 /*Get the flag(s) to be set.*/

21 scanf (" %d" , &flags);

32 /*Check the values.*/

33 printf ("\nkey =0x%x, opperm = 0%o, flags = 0%o\n",
34 key, opperm, flags);

IP 5-19

SHARED MEMORY

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54

55
56

57
58
59
60
61
62
63
64
65
66
87

/*Incorperate the control fields (flags) with
the operation permissions*/
switch (flags)

f
1

case 0: /*Ne flags are to be set.*/
opperm_flags = (opperm 1 0);
break;
case 1: /*Set the IPC_CREAT flag.*/
opperm_flags = (opperm | IPC_CREAT);
break;
case 2: /*Set the IPC_EXCL flag.*/
opperm_flags = (opperm i JPC_EXCL);
break;
case 3: /*Set the IPC_CREAT and XPC_EXCL flags.*/

opperm_flags = (opperm | IPC_CREAT | IPC EXCL);

1
i

/*Get the size of the segment in bytes.*/
printf ("\nEnter the segment");

printf ("\msize in bytes = ");

scanf ("%d", &size);

/*Call the shmget system call.*/
shmid = shmget (key, size, opperm flags);

/*Perform the following if the call is unsuccessful.*/
if(shmid == -1)

{
i

printf ("\nThe shmget system call failed!\n");
printf ("The errox number = %d\n", errno);

IS
3

/*Return the shmid on successful completion.*/
else

printf ("\nThe shmid = %d\n", shmid);
exit(®);

IP 5-20

SHARED MEMORY

CONTROLLING SHARED MEMORY

This section gives a detailed description of using the shmetl system call
along with an example program that allows all its capabilities to be
exercised.

Using Shmctl

The synopsis of the shmcti is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, emd, buf)
int shmid, cmd;
struct shmid_ds *buf;

The shmctl system call requires three arguments to be passed to it, and
shmctl returns an integer value.

On successful completion, a zero value is returned; and when unsuccessful,
shimctl returns a -1.

The shmid variable must be a valid, non-negative, integer value. In other
words, it must have aiready been created by using the shmget system call.

The cmd argument can be replaced by one of following control commands
(flags):

e |PC_STAT—return the status information contained in the
associated data structure for the specified shmid and place it in
the data structure pointed to by the *buf pointer in the user
memory area

e IPC_SET—for the specified shmid, set the effective user and
group identification, and operation permissions

IP 5-21

SHARED MEMORY

o IPC_RMID—remove the specified shmid along with its associated
shared memory segment data structure

» SHM_LOCK—Ilock the specified shared memory segment in
memory, must be super-user

» SHM_UNLOCK—unlock the shared memory segment from
memory, must be super-user.

A process must have an effective user identification of OWNER/CREATOR
or super-user to do an IPC_SET or IPC_RMID control command. Only the
super-user can do a SHM_LOCK or SHM_UNLOCK control command. A

process must have read permission to do the IPC_STAT control command.

The details of this system call are discussed in the example program for it.
If you have problems understanding the iogic manipulations in this
program, read the “Using Shmget'’ section of this chapter; it goes into
more detail than what would be practical to do for every system call.

Example Program

The example program in this section is a menu driven program that allows
all possible combinations of using the shimetl system call to be exercised.
This program was compiled and run on the 3B2 Computer; its execution
has been verified.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

Since there are many ways in the € Programming Language to accomplish
the same task or requirement, keep in mind that this example program
was written for clarity and not program efficiency. Usually, system cails
are embedded within a larger user-written program that makes use of a
particular function that they provide.

P 5-22

SHARED MEMORY

This program begins by including the required header files as specified by
the manual page for shmctl (lines 5-9). Note in this program that errno is
declared as an external variable, and therefore, the errno.h header file
does not have to be included.

Variable and structure names have been chosen to be as close as possible
to those in the synopsis for the system call. Their declarations are self-
explanatory. These names make the program more readable, and it is
perfectly legal since they are local to the program. The variables declared
for this program and their purposes are as follows:

o nid—used to store the IPC_SET value for the effective user
identification

+ gid—used to store the IPC_SET value for the effective group
identification

« mode—used to store the IPC_SET value for the operation
permissions

o rtrmn—used to store the return integer value from the system call

» shmid—used to store and pass the shared memory segment
identifier to the system call

s command—used to store the code for the desired control
command so that further processing can be performed on it

s choice—used to determine what member for the IPC_SET
control command that is to be changed

» shmid_ds—used to receive the specified shared memory
segment indentifier’'s data structure when an IPC_STAT control
command is performed

+ *buf—a pointer passed to the system call that locates the data
structure in the user memory area where the IPC_STAT control
command is to place its return values or where the IPC_SET

IP 5-23

SHARED MEMORY

command gets the values to set.

Note that the shmid_ds data structure in this program (line 16) uses the
data structure located in the shm.h header file of the same name as a
template for its declaration. This is a perfect example of the advantage of
local variables.

The next important thing to observe is that although the *buf pointer is
declared to be a pointer to a data structure of the shmid_ds type, it must
also be initialized to contain the address of the user memory area data
structure (line 17).

Now that all the required declarations have been explained for this
program, this is how it works.

First, the program prompts for a valid shared memory segment identifier
that is stored at the address of the shmid variable (lines 18-20). This is
required for every shmctl system call.

Then, the code for the desired control command must be entered (lines
21-29), and it is stored at the address of the command variable. The code
is tested to determine the control command for further processing.

If the IPC_STAT controi command is selected {(code 1), the system call is
performed (lines 39, 40) and the status information returned is printed out
(lines 41-86). Note that if the system call is unsuccessful (line 146), the
status information of the last successful call is printed out regardlessly;
also an error message is displayed and the errno variable is printed out
(lines 148, 149). If the system call is successful, a message shows this
along with the shared memory segment identifier used (lines 151-154).

If the IPC_SET control command is selected (code 2), the first thing done
is to get the current status information for the message queue identifier
specified (lines 90-92). This is necessary because this example program
provides for changing only cne member at a time, and the system call
changes all of them. Also, if an invalid value happened to be stored in the

IP 5-24

SHARED MEMORY

user memory area for one of these members, it would cause repetitive
failures for this control command until corrected. The next thing the
program does is to prompt for a code corresponding to the member to be
changed (lines 93-98). This code is stored at the address of the choice
variable (line 99). Now, depending on the member picked, the program
prompts for the new value (lines 105-127). The value is placed at the
address of the appropriate member in the user memory area data
structure, and the system call is made (lines 128-130). Depending on
success or failure, the program returns the same messages as for
IPC_STAT above.

If the IPC_RMID control command (code 3) is selected, the system call is
performed (lines 132-135), and the shmid along with its associated
message queue and data structure are removed from the UNIX System.
Note that the *buf pointer is not required as an argument to do this
control command and its value can be zero or NULL. Depending on the
success or failure, the program returns the same messages as for the
other control commands.

If the SHM_LOCK control command (code 4) is selected, the system call is
performed (lines 137,138). Depending on the success or failure, the
program returns the same messages as for the other control commands.

If the SHM_UNLQCK control command (code 5) is selected, the system
call is performed (lines 140-142). Depending on the success or failure, the
program returns the same messages as for the other control commands.

The example program for the shmctl system call follows. It is suggested
that the source program file be named “shmctl.c’’ and that the executable
file be named “‘shmctl.”

Note: When compiling € programs that use floating point
operations, the -f option should be used on the c¢ command line.
If this option is not used, the program will compile successfully, but
when the program is executed it will fail.

IP 5-25

SHARED MEMORY

W N e

w wN: W,

11
12
13
14
15
i6
17

18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34

/*This is a program to illustrate
**the shared memory control, shmetl(),
**system call capabilities.

*/

/*Include necessary header files.*/
#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm. h>

/*Start of main € language program*/
main()

!
t

extern int erxrno;

int uid, gid, mode;

int rtrn, shmid, command, choice;
struct shmid_ds shmid_ds, *buf;
buf = &shmid_ds;

/*Get the shmid, and command.*/
printf (" Enter the shmid = ");
scanf (" %d" , &shmid);
printf("\nEnter the number for\n");
printf (" the desired command:\n");

printf (" IPC_STAT = 1\m");
printf (" IPC_SET = 2\n");
printf (" IPC_RMID = 3\n");
printf (" SHM_LOCK = 4\n");
printf("SHM _UNLOCK = B5\n");

printf (" Entry = ");
scanf (" %d" , &command);

/*Check the values.*/

printf ("\nshmid =%d, command = %d\n",
shmid, command);

switch (command)

{

IP 5-26

SHARED MEMORY

35
36
37
38
39
40
41
4z
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

/*Use shmctl() to duplicate
the data structure for

case 1:

shmid in the shmid_ds area pointed

to by buf and then print it out.*/

rtrn = shmetl(shmid, IPC_STAT,
buf);

printf ("\nThe USER ID = %d\n",
buf->shm_perm.uid);

printf (" The GROUP ID = %d\n",
buf->shm_perm.gid);

printf (" The creator’s ID = %d\n",
brf->shm_perm.cuid);

printf ("The creator’s group ID = %d\n",
buf->shm_ perm.cgid);

printf ("The operation permissions = 0%o\n",

buf->shm_perm.mode);
printf ("The slot usage sequence\n");
printf (" number = 0%x\n",
buf->shm perm.seq);
printf (" The key= 0%x\n",
buf->shm_perm.key);
printf (" The segment size = %d\n",
buf—>shm_segsz);
printf ("Segment Descriptor:\n");
printf (" access = %o\n",
buf->shm_seg.access);
printf ("maximum offset = 0%x\n",
buf->shm_seg.maxoff);
printf (" flags = %o\n",
buf->shm_seg.flags);
printf (" address = 0%x\n",
buf->shm seg.address);
printf ("IocE.= %o\n" ,
buf—>shm_segAwd2.V0.1ock);
printf (" shmswap = %o\n",
buf->shm_seg.wd2.V0.shmswap);
printf ("alloc = %o\n",
buf->shm _seg.wd2.V0.alloc);
printf ("The pid of Iast shmop = %d\n",
buf->shm_lpid);
printf (" The pid of creator = gd\n",
buf->shm_ecpid);

IP 5-27

SHARED MEMORY

77 printf ("The current # attached = %d\n",
78 buf—>shm_nattch);

79 printf ("The in memory # attached = %d\n"
8¢ buf—>shm_cnattch);

81 printf ("The last shmat time= Gd\n",

82 buf->shm atime);

83 printf (" The last shmdt time= %d\n",

84 buf->shm_dtime);

85 printf (" The last change time= Gd\n",
86 buf—>shm_ctime);

87 break;

88 case 2: /*Select and change the desired
89 member(s) of the data structure.*/
90 /*Get the original data for this shmid
91 data structure first.*/

92 rtrn = shmectl(shmid, IPC_STAT, buf);
93 printf("\nEnter the number for the\n");
94 printf (" member to be changed:\n");

95 printf(" shm_perm.uid = 1\n");

96 printf(" shm_perm.gid = 2\n");

97 printf(" shm_perm.mode = 3\n")};

98 printf("Entry =");

99 scanf("%d" , &choice);

100 /*0Only one choice is allowed per

101 pass as an illegal entry will

102 cause repetitive failures wnmtil
103 shmid_ds is updated with

104 IPC_STAT.* /

105 switch(choice){

106 case 1:

107 printf (" \nEnter USER ID = ");

108 scanf ("%d" , &uid);

109 buf->shm perm.uid = uid;

110 print£(" \nUSER ID = %d\n",

111 buf->shm_perm.uid);

112 break;

113 case 2:

114 printf (" \nEnter GROUP ID = ");
115 scanf (" %d" , &gid);

116 buf->shm_perm.gid = gid;

117 printf (" \nGROUP ID = %d\n",

118 buf->shm_perm.gid);

119 break;

IP 5-28

SHARED MEMORY

120 case 3:

121 printf (" \nEnter MODE = ");

122 scanf (" %o" , &mode);

123 buf->shm_perm.mode = mode;

124 printf (" \nMODE = 0%o\n",

125 buf->shm_perm.mode);

126 break;

127 }

128 /*Do the change.*/

129 rtrn = shmectl(shmid, IPC_SET,

13¢ buf);

131 break;

132 case 3: /*Remove the shmid along with its
123 associated

134 data structure.*/

135 rtrn = shmetl(shmid, IPC RMID, NULL);
136 break;

137 case 4: /*Lock the shared memory segment*/
138 rtrn = shmetl(shmid, SHM LOCK, NULL);

139 break;

14¢ case 5: [/*Unlock the shared memory

141 segment.*/

142 rtrn = shmctl{shmid, SHM_UNLOCK, NULL);
143 break;

144 }

145 [*Perform the following if the call is unsuccessful.*/
146 if{rtrm == -1)

147 {

148 printf ("\nThe shmctl system call failedi\n");
149 printf (" The error number = Gd\n" , exrrno);
150]

151 /*Return the shmid on sucecessful completion.*/
152 else

153 printf ("\nShmctl was successful for shmid = Gd\n",
154 shmid);

155 exit (0):

156)

IP 5-29

SHARED MEMORY

OPERATIONS FOR SHARED MEMORY

This section gives a detailed description of using the shmat and shmdt
system calls, along with an example program that ailows all their
capabilities to be exercised.

Using Shmop

The synopsis of the shmop is as follows:

#include <sys/types.h>
#include <sys/ipe.h>
#inmclude <sys/shm.h>

char *shmat (shmid, shmaddr, shmflg)
int shmid;

char *shmaddr

int shmflg;

int shmdt (shmaddr)
char *shmaddr

Attaching a Shared Memory Segment

The shmat system call requires three arguments to be passed to it, and it
returns a character pointer value,

The system call can be cast to return an integer value. On successful
completion, this value will be the address in core memory where the
process is attached to the shared memory segment and when
unsuccessful it will be a -1.

The shmid argument must be a valid, non-negative, integer value. In other
words, it must have aiready been created by using the shmget system call.

The shmaddr argument can be zero or user supplied when passed to the
shmat system call. If it is zero, the UNIX System picks the address of
where the shared memory segment will be attached. If it is user supplied,
the address must be a valid address that the UNIX System would pick.

IP 5-30

SHARED MEMORY

The following illustrates some of the typical address ranges for the 3B2
Computer:

0xc00c0000
Oxc0Ge0HO
0xcO1LO6000
0xc®i20000

Note that these addresses are in chunks of 20,000 hexadecimal. It would
be wise to let the operating system pick addresses to improve portability.

The shmflg argument is used to pass the SHM_RND and SHM_RDONLY
flags to the shmat system call.

Further details are discussed in the example program for shmop. If you
have problems understanding the logic manipulations in this program, read
the "Using Shmget’’ section of this chapter; it goes into more detail than
what would be practical to do for every system call.

Detaching Shared Memory Segments

The shmdt system call requires one argument to be passed to it, and
shmdt returns an integer value.

On successful completion, zero is returned; and when unsuccessful, shmdt
returns a -1.

Further details of this system call are discussed in the example program.
If you have problems understanding the logic manipulations in this
program, read the “Using Shmget’' section of this chapter; it goes into
more detail than what would be practical to do for every system call.

P 5-31

SHARED MEMORY

Example Program

The example program in this section is a menu driven program that allows
all possible combinations of using the shmat and shmdt system calls to be
exercised. This program was compiled and run on the 3B2 Computer; its
execution has been verified.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

Since there are many ways in the € Programming Language to accomplish
the same task or requirement, keep in mind that this example program
was written for clarity and not program efficiency. Usually, system calis
are embedded within a larger user-written program that makes use of a
particular function that they provide.

This program begins by including the required header files as specified by
the manual page for shmop (lines 5-9). Note that in this program that
errno is declared as an external variable, and therefore, the errno.h header
file does not have to be included.

Variable and structure names have been chosen to be as close as possible
to those in the synopsis. Their declarations are self-explanatory. These
names make the program more readable, and this is perfectly legal since
they are local to the program. The variables declared for this program and
their purposes are as follows:

» flags—used to store the codes of SHM_RND or SHM_RDONLY
for the shmat system call

» addr—used to store the address of the shared memory segment
for the shmat and shmdt system calls

e i—used as a loop counter for attaching and detaching

IP 5-32

SHARED MEMORY

« attach—used to store the desired amount of attach operations

« shmid—used to store and pass the desired shared memory
segment identifier

« shmflg—used to pass the value of flags to the shmat system call
» retrn—used to store the return values from both system calls

detach—used to store the desired amount of detach operations.

This example program combines both the shmat and shmdt system calls.
The program prompts for the number of attachments and enters a loop
until they are done for the specified shared memory identifiers. Then, the
program prompts for the number of detachments to be performed and
enters a loop until they are done for the specified shared memory segment
addresses.

Shmat

The program prompts for the number of attachments to be performed,
and the value is stored at the address of the attach variable (lines 17-21).

A loop is entered using the attach variable and the i counter (lines 23-70)
to do the specified amount of attachments.

In this loop, the program prompts for a shared memory segment identifier
(lines 24-27) and it is stored at the address of the shmid variable (line 29).
Next, the program prompts for the address where the segment is to be
attached (lines 30-34), and it is stored at the address of the addr variable
(line 3b). Then, the program prompts for the desired flags to be used for
the attachment (lines 37-44), and the code representing the flags is stored
at the address of the flags variable (line 45). The flags variable is tested to
determine the code to be stored for the shmflg variable used to pass them
to the shmat system call (lines 46-57). The system call is made (line 60).
If successful, a messdge stating so is displayed along with the attach
address (lines 66-68). If unsuccessful, a message stating so is displayed

IP 5-33

SHARED MEMORY

and the error code is displayed (lines 62, 63). The loop then continues
until it finishes.

Shmdt

After the attach loop completes, the program prompts for the number of
detach operations to be performed (lines 71-75), and the value is stored at
the address of the detach variable (line 76).

A loop is entered using the detach variable and the i counter (lines 78-95)
to do the specified amount of detachments.

In this loop, the program prompts for the address of the shared memory
segment to be detached (lines 79-83), and it is stored at the address of
the addr variable (line 84). Then, the shmdt system call is performed (line
87). If successful, a message stating so is displayed along with the address
that the segment was detached from (lines 92,93). If unsuccessful, the
error number is displayed (line 89). The loop continues until it finishes.

The example program for the shmop system calls follows. It is suggested
that the program be put into a source file called **shmop.c’’ and then into
an executable file called **shmop.”

Note: When compiling C programs that use floating point
operations, the -f option should be used on the cc command line.
If this option is not used, the program will compile successfully, but
when the program is executed it will fail.

IP 5-34

SHARED MEMORY

B W N =

Lo R - RS |

11
12
13
14
15

16
17
18
19
20

21
22

23
24
25
26
27
28
29

3¢
31
32
32
34
35
36

/*This is a

program to illustrate

**the shared memory operations, shmop(),
**system call capabilities.

=/

/*Include necessary header files.*/

#include
#include
#include
#include

<stdio.h>
<sys/types.h>
<sys/fipec.h>
<sys/shm.h>

/*Start of main C language program*/
g g

maing)

{
1

extern int evrno;
int flags, addr, i, attach;
int shmid, shmflg, retrn, detach;

/*Loop for attachments by this process.?*/

printf ("
printf ("
printf ("
printf

Enter the number of\n");

attachments for this\n");

process (1-4).\n");
Attachments = ");

scanf("%d" , &attach);

printf("

for(i =

Number of attaches = %d\n", attach);

1; i <= attach; i++) !

/*Enter the shared memory ID.*/

printf(" \nEnter the shmid of\n");
printf (" the shared memory segment to\m");
printf (" be operated on = ");

scanf(" %d" , &shmid);

printf (" \nshmid = %d\n" , shmid);

/*Enter the value for shmaddr.*/

printf(" \nEnter the value for\n");
printf(" the shared memory address\n");
prinmtf(" in hexadecimal:\n" };

printf (" Shmaddr = ");

scanf (" %x" , &addr);

printf (" The desired address = 0x%x\n", addr);

P 5-35

SHARED MEMORY

37
38
3s
40
41
42
43
44
45

46
47
48
49
50
51
52
53
54
i5
56
57
58

59
60
61
62
63
64
65
66
87
68
69
70
71
72
73
74
75

76
77
78

/*Specify the desired flags.*/
printf (" \nEnter the corresponding\n");
printf (" number for the desired\n");
printf(" flags:\n");

printf (" SHM_RND = 1\n");
printf (" SHM_RDONLY = 2\n");
printf (" SHM_RND and SHM_RDONLY = 3\n");
printf " Flags = "),

scanf("%d" , &flags);

switch(flags)

!
1

case 1:
shmflg = SHWM RND;
break;
case 2:
shmflg = SHM RDONLY;
break;
case 3:
shmflg = SHM RND | SHM_RDONLY;
break;

1
5

printf("\nFlags = 0%o\n", shmflg);

/*Do the shmat system call.*/
retrn = (int)shmat(shmid, addr, shmflg);
if(retrn == -1) |
printf (" \nShmat failed. ");
printf("Error = %d\n", errno);

1
J

else {
printf ("\nShmat was smeccessful\n");
printf (" for shmid = %d\n" , shmid);
printf (" The address = @x%x\n", retrn);

}

/*Loop for detachments by this process.*/
printf("Enter the number of\n");

printf(" detachments for this\n");
printf (" process (1-4).\n");

printf(" Detachments = ");

scanf (" §d" , &detach);
printf (" Number of attaches = %d\n" , detach);
for(i = 1; i <= detach; i++) |

iP 5-36

SHARED MEMORY

79
80
81
82
83
84
85

86
87
88
89
90
91
92
93

94
95
96

/*Enter the value for shmaddr.*/
printf("\nEnter the value for\n");
printf(" the shared memory address\n");
printf(" in hexadecimal:\n");

printf{" Shmaddr = ");

scanf (" %x" , &addr);

printf (" The desired address = 0x%x\n", addr);

/*Do the shmdt system call.*/
retrn = (int)shmdt(addr);
if(retrn == -1) |

printf (" Exrror = %d\n", errno);

!
S

else {
printf ("\nShmdt was successful\n");
printf (" for address = 0%x\n", addr);

IP 5-37

Chapter 6

SYSTEM TUNABLE PARAMETERS

PAGE

GENERAL « « v e v e e e e e e e e e e e e e e e 6-1
ESSAGES - .« v v e e e e e e et e e e e e e e 6-2
MSGMAP . . o o oottt e e e e e e e e e .. B2
MISGIMAX « -+ e e et e e e e e e e e e e e e e e e e e e 6-2
MISGIMNE - . o o e ottt e e e e e e e e e e e e e 63

Y V1| B 63
ISGSSZ . . o v e e et e e e e e e e e e e 63
MSGTOL - .ot rer et e e e e e e et e e e e e e e e e 6-3
PESGSEG .« . o o e e e e e e et e e e e e e 6-4
SEMAPHORES . . . o oo et e e e et et e e e e e e e e e e e e e e 65
SEMMAP oottt et e e e 65
SEMMNI . o o et e e e e e e e e e 6-6
SEMMNS . .o ottt e e e e e e e e e 6-6
SEMMINU . . o et e e et e e e e e e e e e e e 66
SEMMSL. - .o e et n e e e e e e e e e e e e e 6-6
SEMOPM ..o oottt e e e e e e e e e e 6-6
SEMUME . . o oo ettt e e e e e e e e e e e e e e e e e 67
SEMVME . oo et e e e e e e e e e e e e e e 6-7
SEMAEM . oo et et e e e e e e e e e e e e e 67
SHARED MEMORY . . . o o e e et e e e e e e e e e e e e e e e e et e e e e 6-9
SHIMMAX - -« o e 6-9
SHMMIN . o o e et et e e e e e e e e e e 6-9
SHMMINT .o oottt e e e e e e e e e e 6-9
SHMSBEG -« v o ettt e e e e e e e e e e e e 6-10

] 1 6-10

Chapter 6

SYSTEM TUNABLE
PARAMETERS

To effectively allocate the UNIX System resources to the AT&T 3B2
Computer Inter-Process Communications (IPC) facilities, system tunable
parameters are used. System tunable parameters, as their name implies,
can be tuned or changed to provide the most efficient UNIX System
environment. However, these tunable parameters cannot be changed
arbitrarily as they are interdependent. This chapter deals with the system
tunable parameters for the IPC facilities.

GENERAL

System tunable parameters are initialized to their initial maximum or initial
default values when the UNIX System is built. These values are contained
in a directory named /etc/master.d. Only a process with an effective user
identification of super-user (0) can change these values. The initial
maximum or initial default values are given in the following sections of this
chapter for each IPC facility. Additionally, information on how they
interrelate is given.

iP 6-1

SYSTEM TUNABLE PARAMETERS

MESSAGES

There are seven system tunable parameters for the messagé type facility.
Each parameter and its initial value follows:

o MSGMAP-100
» MSGMAX-8192
» MSGMNB-16384
~ MSGMNI-10

» MSGSSZ-8

» MSGTQL-40

» MSGSEG-1024.

The following sections describe each system tunable parameter and how
they interrelate to each other.

MSGMAP

This parameter specifies the size (amount of entries) of the memory
control map used to manage message segments. A warning message is
sent to the console port if this value is insufficient to handle the message
type facilities. The initial value for this parameter is a default. MSGMAP
can be raised as required to accommodate the message facilities. Each
map number represents eight (8) bytes.

MSGMAX

This parameter determines the maximum size of a message sent (msgsnd).
The initial value is a default, but it can be raised to a maximum of 131,072
bytes (128 kilobytes) (see MSGSSZ and MSGSEG). When receiving a
message (msgrcv), a value larger than this parameter can be used to
insure receiving the whole message without truncation.

IP 6-2

SYSTEM TUNABLE PARAMETERS

MSGMNB

This parameter specifies the bytes that each message queue can have for
storing its message header information. The initial value is a default, and it
can be tuned as desired to fit the application; each header requires 12
bytes, so keep it in multiples (regardless of the default, two raised to the
fourteenth power). The OWNER of a facility can lower this value, but only
the super-user can raise it afterwards (msg_gbytes).

MSGMNI

This parameter specifies the amount of message queue identifiers (msqid)
system wide. MSGMNI, therefore, determines the amount of message
gueues that can be created (msgget) at any one time. The initial value is a
default, and it can be tuned to fit the application.

MSGSSZ

This parameter determines the segment size used for storing messages in
memory. Each message is stored in contiguous segments numbering
enough to fit the message. The initial value of this parameter is a default.
MSGSSZ can be tuned as desired to fit the application. Keep in mind that
the larger the segments are, the probability of having more wasted
memory at the end of each message increases. The product of this
parameter and MSGSEG should be no larger than 131,072 bytes (128
kilobytes). The 128 kilobyte value is also equal to the maximum value for
a single message to be sent, MSGMAX.

MSGTQL

This parameter specifies the maximum amount of message queue headers
on all message queues system wide, and consequently the total amount of
outstanding messages. Each header occupies 12 bytes; this relates to the
length of a message queue (MSGMNB). The initial value of MSGTQL is a
default. MSGTQL can be tuned to fit the application.

IP 6-3

SYSTEM TUNABLE PARAMETERS

MSGSEG

This parameter specifies the amount of memory segments system wide for
storing messages. The initial value is a default., The product of MSGSEG
and MSGSSZ should be no larger than 131,072 bytes (128 kilobytes).

The following data structure is contained in the /usr/include/sys/msg.h
header file:

struct msginfo {

int msgmap, /* # of entries in msg map */
msgmax, /* max message size */
msgmnb, /* max # bytes on queue */
msgmni, /* # of message gumeue identifiers */
msgssz, [* msg segment size (word size multiple) */
msgtql; /* # of system message headers */

ushort msgseg; /* # of msg segments (MUST BE < 32768) */

This data structure is initialized from the /etc/master.d/msg file when the
UNIX System is initialized.

IP 6-4

SYSTEM TUNABLE PARAMETERS

SEMAPHORES

There are nine system tunable parameters for the semaphore type of IPC
facility. Each parameter and its initial value follows:

s SEMMAP-10
e SEMMNI-10
o SEMMNS-60
» SEMMNU-30
s SEMMSL-25
s SEMOPM-10
e SEMUME-10
o SEMVMX-32767

o SEMAEM-16384.

The following sections describe each system tunable parameter and how
they interrelate to each other.

SEMMAP

This parameter specifies the size (amount of entries) of the memory
control map used to manage semaphore sets. A warning message is sent
to the console port if this value is insufficient to handle the semaphore
type facilities. The initial value for this parameter is a default. SEMMAP
can be raised as required to accommodate the semaphore facilities. Each
map number represents eight (8) bytes.

IP 6-5

SYSTEM TUNABLE PARAMETERS

SEMMNI

This parameter specifies the amount of semaphore set identifiers (semid)
system wide. SEMMNI, therefore, determines the amount of semaphore
sets that can be created (semget) at any one time. The initial value is a

defauit, and SEMMNI can be tuned to fit the application. This parameter
occupies 32 bytes.

SEMMNS

This parameter specifies the total amount of semaphores in all semaphore
sets system wide. The initial value is a default. SEMMNS can be tuned to
fit the application. This parameter occupies 8 bytes.

SEMMNU

This parameter specifies the amount of semaphore undo structures system
wide. The initial value is a default, and SEMMNU can be tuned to fit the
application. The size of each undo structure equals [8 x (SEMUME + 2)]
bytes.

SEMMSL

This parameter specifies the maximum amount of semaphores that can be
in one semaphore set. The initial value is a default. SEMMSL can be tuned
to fit the application.

SEMOPM

This parameter specifies the maximum amount of semaphore operations
allowed for each semop() system call. The initial value is a default.
SEMOPM can be tuned to fit the application. This parameter occupies 8
bytes.

IP 6-6

SYSTEM TUNABLE PARAMETERS

SEMUME

This parameter specifies the maximum amount of undo structures per
semaphore set. The initial value is a default. SEMUME can be tuned to fit
the application. Keep in mind that it would be better to be able to undo as
many operations as allowed per semaphore set; make SEMUME equal
SEMOPM. This parameter occupies 240 bytes.

SEMVMX

This parameter specifies the maximum value that any semaphore can be.
That is, the next higher number would be negative.

SEMAEM

This parameter specifies the maximum value that a semaphore adjust on
exit value can be. That is, when decrementing a semaphore, this is the
most that can be added to the adjust value for undoing the operation.
Note that this parameter value is one more than half of SEMVMX.

The following data structure is contained in the /usr/include/sys/sem.h
header file:

struct seminfo |

int semmap, /* # of entries in semaphore map */
semmni, /* # of semaphore identifiers */
semmns , /* # of semaphores in system */
semmnu , /* # of undo structures in system */
semms 1, /* max # of semaphores per id */
semopm, /* max # of operations per semop call */
semume , /* max # of undo entries per process */
Semusz, /* size in bytes of undo structure */
semvmx, /* semaphore maximum value */
semaem; /* adjust on exit max value */

This data structure is initialized from the /etc/master.d/sem file when the
UNIX System is initialized.

iP 6-7

SYSTEM TUNABLE PARAMETERS

Note that the semusz member is not listed in the /etc/master.d/sem file
as it will vary depending on the semaphore facility use.

IP 6-8

SYSTEM TUNABLE PARAMETERS

SHARED MEMORY

There are five system tunable parameters for the shared memory type of
IPC facility. Each parameter and its initial value follows:

» SHMMAX-8192
o SHMMIN-1
» SHMMNI-8
e SHMSEG-4

e SHMALL-32

The following sections describe each system tunable parameter and how
they interrelate to each other.

SHMMAX

This parameter specifies the maximum amount of bytes that can be in a
shared memory segment.

SHMMIN

This parameter specifies the minimum amount of bytes that a shared
memory segment can be.

SHMMNI

This parameter specifies the total amount of shared memory facilities that
can be in the UNIX System at one time. It corresponds to the amount of
unigue identifiers (shmid) that can be generated.

IP 6-9

SYSTEM TUNABLE PARAMETERS

SHMSEG

This parameter specifies the maximum amount of shared memory
segments that any one process can attach itself to at any one time. The
default value is 4. Its maximum value is 15.

SHMALL

This parameter specifies the total amount of assigned physical pages of
memory that can be in the UNIX System at one time. A page of memory

equals 2048 bytes.

The following data structure is

header file:
struct shminfo |
int shmmax ,
shmmin,
shmmni,
shmseg;
int shmall;

contained in the /usr/include/sys/shm.h

max shared memory segment size */

min shared memory segment size */

of shared memory identifiers */

max attached shared memory segments per process */
maximum physical assigned simultaneously */

This data structure is initialized from the /etc/master.d/shm file when the

UNIX System is initialized.

IP 6-10

Chapter 7

COMMAND DESCRIPTIONS

PAGE

GENERAL . . e et et e e 7-1
INTER-PROCESS COMMUNICATION STATUS it i ie i 7-2
ipes Without Options ittt e e e e e e eeiaaas 7-2

Ipecs With Oplions ittt et et iiiaanaan 7-5

INTER-PROCESS COMMUNICATION REMOVE i iiriniinenaaneannans 7-13

Chapter 7

GENERAL

This chapter gives usage information for the two Inter-Process
Communication (IPC) Utilities. The two utilities are as follows:

e ipcs — Inter-Process Communication status

e ipcrm — Inter-Process Communication remove.

The following sections contain the usage information and examples for
each command.

P 7-1

COMMAND DESCRIPTIONS

INTER-PROCESS COMMUNICATION STATUS

The ipes command can be used in two ways:

s Without options

o With options.

Ipcs Without Options

When using ipes without options, a short status format is displayed for all
IPC facilities that are in the UNIX System at the time of command
execution. The short status format consists of the following information for
all types of facilities:

» T—type of the facility

» |ID—the identifier for the facility

o KEY—the key used for creating the facility
o MODE—the operation permissions and flags

OWNER—the login name of the owner of the facility

GROUP—the group name of the owner of the facility.

The example that follows is the result of entering the following command
line:

P 7-2

COMMAND DESCRIPTIONS

$ipes<CR>

IPC status from /dev/kmem as of Fri July 19 15:14:45 1985
T ID KEY MODE OWNER GROUP

Message Queues:

q 0 0x00000000 S-rw------~ hrp other

q 1 0x0000000a -Rrw-rw---— hrp other

q 2 0x00000001 --rw-rw-rw- hrp other

Shared Memory:

m 0 0x00000000 D-rw------- hrp other
m 1 0x0000000a -Crw-rw--— hrp other
m 2 0x00000001 -Crw-rw-rw- hrp other
Semaphores:

s 0 0x00000000 --ra------- hrp other

s 1 0x0000000a ~-ra-ra---- hrp other

s 2 0x00000001 --ra-ra-ra- hrp other

From looking at this example, you can see several points of interest.

First, note that the display is separated into Message Queues, Shared
Memory, and Semaphores. Note also that there are common column
headings for these facility types. These headings correspond to the short
status format information that ipcs without options displays as previously
discussed.

The codes for the type (T) of facility are q, m, and s for message queues,
shared memory, and semaphores, respectively.

Identifiers (ID) are integers (zero and positive) that are returned when
creating a facility using the msgget(), shmget(), and semget() system calls.

Keys (KEY) are either IPC_PRIVATE (0) or equal to the value passed to the
msgget(), shmget(), or semget() system calls for the key argument when
creating a new facility; they can be 0, hexadecimal values, or decimal
values. See the example display.

Mode (MODE) gives the operation permissions for each type of facility
along with flags for the message and shared memory facilities. The mode
is represented by a sequence of eleven character fields.

IP 7-3

COMMAND DESCRIPTIONS

For message queues, the first character field is an S if a process is blocked
from sending a message to the facility, and the second character field is an
R if a process is blocked from receiving a message from a facility.

For shared memory, the first character field is a D if the shared memory
segment facility is to be removed when the last process attached to the
segment detaches it, and the second character field is a C if the shared
memory segment facility is to be cleared when the first attach is made.

For semaphores, these two fields are not used as semnent and semzent
serve the same purpose. See the /usr/include/sys/sem.h file.

The corresponding special flags are not set for message queues and shared
memory when the character field is " - " . These first two character fields
are always " - " for semaphores as they are not used.

Operation permissions use the remaining nine character fields. They are
used in groups of three and from left-to-right they represent the
permissions for OWNER, GROUP, and OTHER. Note that for message
gueues rw means read/write and for semaphores ra means read/alter. All
fields not in use are depicted by a hyphen.

The OWNER column heading gives the owner name of the facility. Note
that when using msgcti(), shmcti(), or semctl() to change ownership of a
facility, a positive integer value is used to represent the owner. These
values can be determined for a particular owner name by searching
through the /etc/passwd file.

The GROUP column heading gives the group name of the owner. Changing
the group is analogous to changing the owner.

P 7-4

COMMAND DESCRIPTIONS

ipcs With Options

The options available for the ipes command consist of facility type options
and general options. The facility type options allow the short format status
information to be displayed for just the facility type desired. The general
options allow information about size, creator, usage, process identification,
and time to be observed. The general options can be used with the facility
type options to observe the general options for a particular facility type.

Facility Type Options

The options that allow the status of only a particular type of facility to be
observed are as follows:

-q Message Queue Type
-m Shared Memory Type
-8 Semaphore Type

Proper formats for entering these options are as follows:

$ipes -q<CR> Message Queue Type
$ipcs -m<CR> Shared Memory Type
$ipcs -s<CR> Semaphore Type

The status can be displayed for selected facilities by putting the options on
the same command line, separated by spaces.

The following display occurs if status is requested but no facilities exist.

ipes<CR>

IPC status from /dev/kmem as of Fri July 19 09:31:16 1985
T ID KEY MODE OWNER GROUP

Message Queues:

Shared Memory:

Semaphores:

IP 7-5

COMMAND DESCRIPTIONS

General Options

The general options allow additional kinds of information to be displayed
for all facility types or for specific facility types. In other words, these
general options can be used with ipes alone to obtain the desired
information for all facility types, or they can be appended to the facility
type options for specific facility type information. More than one of these
general options can be specified on the command line as well.

The following options are available:

e -b Biggest allowable size

s -C Creator login name and group name

e -0 Outstanding usage

e -p Process number

o -t Time

e -2 All general options

s -C Use a different corefile than /dev/kmem
s -N Use a different namelist than /unix.

Of course, these options will reflect only the information applicable to each
facility type.

1P 7-6

COMMAND DESCRIPTIONS

The biggest allowable size information option is illustrated as follows:

(-‘Bipcs -b<CR>

IPC status from /dev/kmem as of Fri July 19 07:55:13 1985
T ID KEY MODE OWNER GROUP QBYTES
Message Queues:

q 0 OxD0000000 --rw------- hrp other 16384

q 1 0x0000000a --rw-rw---- hrp other 16384

q 2 Ox00000001 ~rw-rw-rw- root other 500

T ID KEY MODE- OWNER GROUP SEGSZ
Shared Memory:

m 0 0x00000000 -Crw------- hrp other 8192

m 1 0x0000000a -Crw-rw---- hrp other 1024

m 2 0x00000001 -Crw-rw-rw- root other 8192
T D KEY MODE OWNER GROUP NSEMS

Semaphores:
s 0 0x00000000 --ra------- hrp other 25
s 1 0x0000000a ~-ra-ra---- hrp other 25

s 2 0x00000001 --ra-ra-ra- root other 5

Notice that for the message queue type of facility, QBYTES is the biggest
allowable size information that is returned; it has been lowered for ID 2 to
be 500. They were all initialized to the value of the system tunable
parameter that specifies the maximum ailowed bytes on a queue,
MSGMNB.

For the shared memaory type of facility, SEGSZ is the biggest allowable size
information returned. SEGSZ specifies the size in bytes of the shared
memory segment. The maximum is 8192 bytes (SHMMAX), and the
minimum is 1 (SHMMIN).

For the semaphore type of facility, NSEMS is the higgest allowable size
information that is returned. These values were determined when the
facilities were created. The nsems argument passed to semget()
determines these values. Remember that the system tunable parameter
SEMMSL determines the maximum semaphores in a set (25).

P 7-7

COMMAND DESCRIPTIONS

The creator information is illustrated as follows:

$ipecs -c<CR>

IPC status from /dev/kmem as of Fri July 19 07:56:15 1985
T ID KEY MODE OWNER GROUP CREATOR CGROUP
Message Queues:

q 0 Ox00000000 --rw---—-- hrp other hrp other

q 1 Ox0000000a ~-rw-rw--— hrp other hrp other

q 2 Ox00000001 --rw-rw-rw- root other hrp other
Shared Memory:

m 0 Ox00000000 -Crw------- hrp other hrp other

m 1 0x0000000a -Crw-rw---- hrp other hrp other

m 2 0x00000001 -Crw-rw-rw- root other hrp other
Semaphores:

s 0 0x00000000 --ra------- hrp other hrp other

s 1 Ox0000000a --ra-ra---—- hrp other hrp other

s 2 0x00000001 --ra-ra-ra- root other hrp other

The results are the same for all facility types in this case. The column
headings CREATOR and CGROUP show the login name and group name of
the creator, respectively. The corresponding positive integer values for
these names can be determined by searching the /etc/passwd file.
Remember, the creator of a facility always remains the creator while the
owner and group can change.

IP 7-8

COMMAND DESCRIPTIONS

The outstanding usage option is as follows:

($ipcs ~0<CR>

IPC status from /dev/kmem as of Fri July 19 07:55:13 1985
T 1D KEY MODE OWNER GROUP CBYTES QNUM
Message Queues:

q 0 0x00000000 --rw------- hrp other 16 1

q 1 Ox0000000a ~rw-rw---- hrp other o 0

q 2 0x00000001 --rw-rw-rw- root other 359 14

T ID KEY MODE OWNER GROUP NATTCH
Shared Memory:

m 0 0x00000000 D-rw------- hrp other 1
m 1 0x0000000za -Crw-rw---- hrp other (¢}
m 2 Ox00000001 D-rw-rw-rw- root other 5
Semaphores:

s 0 Ox00000000 --ra----—--— hrp other

s 1 0x0000000a --ra-ra-—- hrp other

s 2 Ox00000001 --ra-ra-ra- root other

For message queues, the CBYTES and QNUM column headings stand for
the total amount of bytes in core memory for all messages and the total
amount of messages, respectively, for each message queue. The sum of
all CBYTES is associated with the product of the amount of segments,
MSGSEG, and the size of the segments, MSGSSZ. QNUM is associated
with the total amount of bytes allowed for headers on each queue,
MSGMNB. The sum of all QNUMs is associated with the total amount of
message headers system wide, MSGTQL.

For shared memory, NATTCH corresponds to the amount of processes
attached to the facility.

The outstanding usage option does not apply to the semaphore type
facility even though the short format status information is displayed for it.

ik 7-9

COMMAND DESCRIPTIONS

The process number option is illustrated as follows:

-
$ipecs ~p<CR>

IPC status from /dev/kmem as of Fri July 19 08:12:53 1985
T ID KEY MODE OWNER GROUP LSPID LRPID
Message Queues:

q 0 0x00000000 --rw------- hrp other 2275 2281

q 1 0x0000000a --rw-rw---- hrp other O O

g 2 0x00000001 —~rw-rw-rw- root other O O
Shared Memory:

m 0 Ox00000000 --rw--—--- hrp other 158 2254
m 1 0x0000000a --rw-rw---- hrp other 2208 2254
m 2 0x00000001 --rw-rw-rw- root other 166 2252
Semaphores:

S 0 0x00000000 --ra------- hrp other

S 1 0x0000000a --ra-ra---- hrp = other

s 2 0x00000001 --ra-ra-ra- root other

For message queues, the LSPID and LRPID column headings represent the
last process identifier that sent and received a message from the
associated message queue, respectively.

For shared memory, LSPID and LRPID represent the last process identifier
to attach and detach from the facility, respectively.

The process number option does not apply to the semaphore type facility
even though the short format status information is displayed for it.

P 7-10

COMMAND DESCRIPTIONS

The time information option is illustrated as follows:

$ipes ~t<CR>

IPC status from /dev/kmem as of Fri July 19 08:15:57 1985

T ID KEY MODE OWNER GROUP STIME RTIME CTIME
Message Queues:

g 0 0x00000000 ~rw----—-- hrp other 8:11:44 8:12:07 15:09:25

g 1 Ox0000000a --rw-rw-—-- hrp other no-entry no-entry 15:09:53
q 2 0x00000001 --rw-rw-rw- root other no-entry no-entry 7:25:23
T ID KEY MODE OWNER GROUP ATIME DTIME CTIME
Shared Memory:

m 0 0x00000000 --rw--mm-- hrp other 8:04:50 8:05:12 15:10:39
m 1 Dx0000000a --rw-rw-— hrp other 8:05:00 8:05:29 7:54:41
m 2 0x00000001 --rw-rw-rw- root other 8:03:42 no-entry 7:26:30
T Ib KEY MODE OWNER GROUP OTIME CTIME
Semaphores:

s 0 0x00000000 --ra------- hrp other 8:14:45 15:11:56

s 1 0x0000000a -~ra-ra-—- hrp other no-entry 15:12:14

s 2 0x00000001 --ra-ra-ra- root other no-entry 7:25:57

The message queue type of facility has three new column headings for this
option: STIME, RTIME, and CTIME. STIME represents the last time that a
process sent a message. RTIME represents the last time a process
received a message. CTIME represents the time of the facility creation or
the last time changed with a msgctl() system call.

The shared memory type of facility has three headings also. ATIME
represents the time of the last attach operation. DTIME represents the
time of the last detach operation. CTIME is the time of the facility creation
or the last time changed with a shmctl() system call.

The semaphore type of facility has two new column headings for this
option: OTIME, and CTIME. OTIME represents the last time that a process
performed operations on the associated semaphore set. CTIME represents
the time of the facility creation or the last time changed with a semctl()
system call.

IP7-11

COMMAND DESCRIPTIONS

The display all options keyletter is illustrated as follows:

Note: The short status format information is not included in this
example so the pertinent information will fit on the page. On the
display screen, the status information will wrap around.

$ipcs -a<CR>

IPC status from /dev/kmem as of Fri July 19 08:17:09 1985

CREATOR CGROUP CBYTES QNUM QBYTES LSPID LRPID STIME RTIME CTIME
Message Queues:

hrp other O 0 16384 2275 2281 8:11:44 8:12:07 15:09:25
hrp other 0 0 16384 O 0 no-entry no-entry 15:09:53

hrp other O 0 500 O 0 no-entry no-entry 7:25:23
CREATOR CGROUP NATTCH SEGSZ CPID LPID ATIME DTIME CTIME
Shared Memory:

hrp other 0 8192 158 2254 8:04:50 8:05:12 15:10:39

hrp other 0 1024 2208 2254 8:05:00 8:05:29 7:54:41

hrp other 0 8192 166 2252 8:03:42 no-entry 7:26:30
CREATOR CGROUP NSEMS OTIME CTIME

Semaphores:

hrp other 25 8:14:45 15:11:56

hrp other 25 no-entry 15:12:14

hrp other 5 no-entry 7:25:57

The -C and -N options allow all the preceding options to be used on a
different corefile and namelist. These options are useful for performing
ipes on a coredump file (-C) or when more than one version of the UNIX
System (-N) is installed. Since the status of facilities can change while ipcs
is running, these options allow more control.

IP 7-12

COMMAND DESCRIPTIONS

INTER-PROCESS COMMUNICATION REMOVE

The command used to remove IPC facilities is as follows:

iperm [options]

There are two ways to remove a selected IPC facility from the UNIX
System:

« Using the facility identifier (ID)

o Using the facility key (KEY).

The following sections illustrate how to remove IPC facilities using their 1Ds
and KEYs.

Removal by ID

The options that are available to remove a facility by its ID are as follows:

s -q msqid
e -m shmid

e -S semid

An example of its use is as follows:

[.‘Bipcrm -q2 -sl -q0 -ml<CR>

Note that the options can be repeated and placed on the command line in
any order. The result of this command line will be to remove message
queues 2 and 0O, semaphore set 1, and shared memory segment 1.

P 7-13

COMMAND DESCRIPTIONS

Removal by Key

Note: The key used for ipcrm must be a decimal value. The ipcs
command reports keys in hexadecimal, however.

The options available to remove a facility by its key use the same letters as
for removal by ID except that they are capital letters. They are as follows:

o -Q msgkey
s -M shmkey

e -S semkey

An example using these options follows:

[$ipcrm -Q0 -S16 -Q1 -MI<CR>

The result of this command is to remove the message queue facilities with
keys of 0 and 1, to remove the semaphore facility with the key of a (10),
and to remove the shared memory segment with the key of 1.

IP7-14

Appendix

IPC ERROR CODES

MESSAGE ERROR CODESttt iitineneinnnnnn s reananaannnnns
MSgEet() ...t e
10 23 o« T T e

ISEOD() - .ottt e
SEMAPHORE ERROR CODESttt it e e naae e eanannaeaan

£1 11107 4-Y (N
£33 114073 4T
1T 1 E oY+ (U

Appendix

IPC ERROR CODES

This appendix contains the error codes for the 3B2 Computer Inter-
Process Communication (IPC) system calls. Positive integer error codes
are set in the external errmo variable when a system call is unsuccessful.

An error has occurred when an IPC system call returns a -1 value. The
value of errno is only valid immediately following this occurrence.

Each error code humber has a corresponding mnemonic name. In this
appendix, error code numbers and mnemonic names are categorized by
facility type and associated system calls. The error reasons as they apply
to IPC system calls are given.

IP A-1

Appendix

These error codes are the same as those on the intro(2) manual page
found in the AT&T 3B2 Computer Programmer Reference Manual. The
reasons for the errors given there are more general than the reasons given
in this appendix as they are used for all system calls.

MESSAGE ERROR CODES

The IPC error codes for the message type facility are contained in this
section.

Msgget()

Each possible error code number, along with its mnemonic and reason(s),
that the msgget() system call returns is contained in Figure A-1.

IP A-2

Appendix

IPC (MSGGET) ERROR CODES

NUMBER MNEMONIC REASON

2 ENOENT A key not already in use is passed to
the system call, but the IPC_CREAT
flag is not set.

13 EACCES Operation permissions deny the
calling process.

17 EEXIST A key already in use is passed to the
system cail with the IPC_CREAT and
IPC_EXCL flags set. This is the
exclusive create ability.

28 ENOSPC The system wide amount of message
queue identifiers would be exceeded
(MSGMNI).

Figure A-1. Msgget Error Codes

Msgctl()

Each possible error code number, along with its mnemonic and reason(s),
that the msgctl() system call returns is contained in Figure A-2.

IP A-3

Appendix

IPC (MSGCTL) ERROR CODES

NUMBER

MNEMONIC

REASON

EPERM

The process does not have the
effective user identification of
OWNER/CREATOR (msg_perm.[c]uid)
of the facility or super-user when an
IPC_RMID or IPC_SET control
command is specified.

The process does not have the
effective user identification of super-
user when using IPC_SET to increase
the number of bytes (msg_gbytes) for
the specified message queue.

13

EACCES

Operation permissions deny the
calling process.

14

EFAULT

The pointer (buf) passed to the
system call does not point to the
necessary data structure (msqid_ds)
in the user memory area.

22

EINVAL

The message queue identifier (msqid)
is invalid; the facility does not exist.

The value of the control command
(cmd) passed to the system call is not
equal to IPC_STAT, IPC_SET, or
IPC_RMID.

P A-4

Figure A-2. Msgctl Error Codes

Appendix

Msgop()

Each possible error code number, along with its mnemonic and reason(s),
that the msgsnd() and msgrcv() system calls return is contained in Figures
A-3 and Figure A-4, respectively.

IPC (MSGSND) ERROR CODES

MUMBER MNEMONIC REASON
4 EINTR The process received a signal while it
was performing a " blocking message
operation” that was blocked.

(IPC_NOWAIT is not set.)
11 EAGAIN The process cannot send a message

because there are not enough bytes
on the message queue (msg_gbytes),
or the total amount of messages on
all message queues would be
exceeded (MSGTQL) while the
process is performing a " nonblocking
message operation.” (IPC_NOWAIT

flag is set.)

13 EACCES Operation permissions deny the
calling process,

14 EFAULT The pointer (msgp) passed to the

system call does not point to the
necessary data structure (msgbuf) in
the user memory area. (The data
structure contains the message type
value and message text array.)

Figure A-3. Msgsnd Error Codes (Sheet 1 of 2)

IP A-5

Appendix

IPC (MSGSND) ERROR CODES

NUMBER

MNEMONIC

REASON

22

EINVAL

The message queue identifier (msqid)
is invalid; the facility does not exist.

The value of the message type
(msgtyp) variable passed to the
system call is less than 1.

The message size (msgsz) value
passed to the system call is less than
zero or greater than the system
imposed limit, MSGMAX, for
maximum message size.

36

E{DRM

The facility that the system call is
performing a " blocking message
operation” on is removed while the
process is blocked. (IPC_NOWAIT is
not set.)

EINTR

The process received a signal while it
was performing a " blocking message
operation” that was blocked.
(IPC_NOWAIT is not set.)

IP A-6

Figure A-3. Msgsnd Error Codes (Sheet 2 of 2)

Appendix

IPC (MSGRCV) ERROR CODES

NUMBER MNEMONIC REASON

/ E2BIG The value passed to the system call
for the message size (msgsz) to be
received is less than the message size
and the IPC_NOERROR flag is not set.

13 EACCES Operation permissions deny the
calling process.

L4 EFAULT The pointer (msgp) passed to the
system call does not point to the
necessary data structure (msgbuf) in
the user memory area. (The data
structure contains the message type
value and message text array.)

The message queue identifier (msqid)
is invalid; the facility does not exist.

22 EINVAL
The value of the message size
(msgsz) variable passed to the system
call is less than zero.

35 ENOMSG The specified message queue does

not contain the desired message type
(msgtyp), and the IPC_NOWAIT flag is
set (msgflg).

Figure A-4. Msgrcv Error Codes

IP A-7

Appendix

SEMAPHORE ERROR CODES

The IPC error codes for the semaphore type facility are contained in this
section.

Semget()

Each possible error code number, along with its mnemonic and reason(s),
that the semget() system call returns is contained in Figure A-5.

IP A-8

Appendix

IPC (SEMGET) ERROR CODES

NUMBER MMEMONIC REASON

2 ENGENT A key not already in use is passed to
the system call, but the IPC_CREAT
flag is not set.

13 FACCES Operation permissions deny the
calling process.

17 EEXIST A key already in use is passed to the
system call with the IPC_CREAT and
IPC_EXCL flags set. This is the
exclusive create ability.

The number of semaphores (nsems)
to be in the set is less than or equal
to zero or greater than the system
tunable parameter SEMMSL.

22 EINVAL

The value passed to the system call
for the number of semaphores
(nsems) is greater than what is in the
set.

The system call would cause the
maximum amount of semaphore
identifiers (sets) system wide to be
exceeded (SEMMNI).

28 ENOSPC

The system call would cause the
maximum amount of semaphores in
all sets to be exceeded (SEMNS).

Figure A-5. Semget Error Codes

iP A-9

Appendix

Semctl()

Each possible error code number, along with its mnemonic and reason(s),
that the semctl() system call returns is contained in Figure A-6.

IP A-10

Appendix

IPC (SEMCTL) ERROR CODES

MUMBER MNEMONIC REASON

1 EPERM The process does not have the
effective user identification of
OWNER /CREATOR (sem_perm.[c]uid)
of the facility or super-user when an
IPC_RMID or IPC_SET control
command is specified.

13 EACCES Operation permissions deny the
calling process.

14 EFAULT The pointer (arg.buf) passed to the
system call does not point to the
necessary union data structure
(semun) in the user memory area.

The semaphore set identifier (semid)
is invalid; the facility does not exist.

22 EINVAL The semaphore number (0 through
24, semnum) is less than zero or
greater than the number of
semaphores in the set (sem_nsems).

The value of the control command
(cmd) passed to the system call is
invalid.

34 ERANGE - | When setting a semaphore(s) value
(SETVAL, SETALL), the system
imposed - -maximum is exceeded
(SEMVMX).

Figure A-6. Semctl Error Codes

IPA-11

Appendix

Semop()

Each possible error code number, along with its mnemonic and reason(s),
that the semop() system call returns is contained in Figure A-7.

IPC (SEMOP) ERROR CODES

NUMBER MNEMONIC REASON
4 EINTR The process received a signal while it
was performing a " blocking

semaphore operation” that was
blocked. (IPC_NOWAIT is not set.)

7 E2BIG The value passed to the system call
for the number of semaphore
operations (nsops) to be performed
exceeds the system tunable
parameter SEMOPM.

1 EAGAIN The process would be blocked from
performing its semaphore operation,
but the IPC_NOWAIT flag is set.

13 EACCES Operation permissions deny the
calling process. ‘

Figure A-7. Semop Error Codes (Sheet 1 of 3)

IP A-12

Appendix

IPC (SEMOP) ERROR CODES

NUMBER MNEMONIC REASON

14 EFAULT The pointer (sops) passed to the
system call does not point to an array
of data structures (sembuf) in the
user memory area. (Each data
structure in the array contains the
semaphore number, the operation to
be performed, and the control
command flags.)

The semaphore set identifier (semid)
is invalid; the facility does not exist.

22 EINVAL
The maximum amount of undo entries
per system call (SEMUME) system
tunable parameter would be
exceeded.

27 EFBIG The semaphore number (sem_num)

for a data structure in the array is
less than zero or greater than or
equal to the total semaphores in the
set.

Figure A-7. Semop Error Codes (Sheet 2 of 3)

IP A-13

Appendix

IPC (SEMOP) ERROR CODES

NUMBER MNEMONIC REASOM

28 ENOSPC The maximum amount of undo entries
system wide (SEMMNU system
tunable parameter) would be
exceeded.

The result of the operation would
cause the semaphore value to exceed
the maximum value for a semaphore
(SEMVMX).

34 ERANGE

The result of the operation would
cause the maximum undo data
structure value for semaphore adjust
(SEMAEM) to be exceeded.

36 EIDRM The facility that the system call is
performing a "blocking message
operation” on is removed while the
process is blocked. (IPC_NOWAIT is
not set.)

Figure A-7. Semop Error Codes (Sheet 3 of 3)

IP A-15

Appendix

SHARED MEMORY ERROR CODES

The IPC error codes for the shared memory type facility are contained in
this section.

Shmget()

Each possible error code number, along with its mnemonic and reason(s),
that the shmget() system call returns is contained in Figure A-8.

IP A-16

Appendix

IPC (SHMGET) ERROR CODES

NUMBER MNEMONIC REASOM

2 ENOENT A key not already in use is passed to
the system call, but the IPC_CREAT
flag is not set.

12 ENOMEM There is not enough physical memory
to fill the request.

13 EACCES Operation permissions deny the
calling process.

17 EEXIST A key already in use is passed to the
system call with the IPC_CREAT and
IPC_EXCL flags set. This is the
exclusive create ability.

The size of the shared memory
segment passed to the system call is
invalid. The size must be greater than
or equal to 1 or less than or equal to
8192. See SHMMIN and SHMMAX.

22 EINVAL
An identifier exists for the facility
(key) but the shared memory
segment size is less than the size (not
zero) passed to the system call.

28 ENOSPC The system wide amount of shared

memory segment identifiers would be
exceeded (SHMMNI).

Figure A-B. Shmget Error Codes

IP A-17

Appendix

Shmectl()

Each possible error code number, along with its mnemonic and reason(s),
that the shmctl() system call returns is contained in Figure A-9.

IPC (SHMCTL) ERROR CODES

MUMBER MNEMONIC REASON

The process does not have the
effective user identification of
OWNER/CREATOR (shm_perm.[c]uid)
of the facility or super-user when an
IPC_RMID or IPC_SET control
command is specified.

1 EPERM
The process does not have the
effective user identification of super-
user when using the SHM_LOCK or
SHM_UNLOCK commands.

13 EACCES Operation permissions deny the

calling process.

Figure A-9. Shmctl Error Codes (Sheet 1 of 2)

IP A-18

Appendix

IPC (SHMCTL) ERROR CODES

NUMBER MNEMONIC REASON

14 EFAULT The pointer (buf) passed to the
system call does not point to the
necessary data structure (shmid_ds)
in the user memory area.

The shared memory identifier (shmid)
is invalid; the facility does not exist,.

22 EINVAL

The value of the control command
(cmd) passed to the system cail is not
equal to IPC_STAT, IPC_SET,
IPC_RMID, SHM_LOCK, or
SHM_UNLOCK.

The command is SHM_UNLOCK but
the specified shared memory
segment is not locked in memory.

Figure A-9. Shmectl Error Codes (Sheet 2 of 2)

IP A-19

Appendix

Shmop()

Each possible error code number, along with its mnemonic and reason(s),
that the shmat() and shmdt() system calls return is contained in Figures
A-10 and Figure A-11, respectively.

IPC (SHMAT) ERROR CODES

NUMBER MNEMONIC REASOM
12 ENOMEM There is not enough in core memory
to accommodate the shared memory

segment.
13 EACCES Operation permissions deny the

calling process.

The shared memory identifier (shmid)
is invalid; the facility does not exist.

22 EINVAL The shared memory address
(shmaddr) passed to the system call
is not equal to zero and [shmaddr-
(shmaddr modulus SHMLBA)] is an
illegal address.

The shared memory address
(shmaddr) passed to the system call
is not equal to zero, the SHM_RND
flag is false, and the address is illegal.

Figure A-10. Shmat Error Codes

IP A-20

Appendix

IPC (SHMDT) ERROR CODES

NUMBER MNEMONIC REASON

13 EACCES Operation permissions deny the
calling process.

The system cali detaches the shared
memory segment located at the
specified address (shmaddr) from the
process data segment.

22 EINVAL
The address (shmaddr) passed to the
system call is not the start of a
shared memory segment.

24 EMFILE The number of shared memory

segments attached to the calling
process would exceed the number
allowed, SHMSEG.

Figure A-11. Shmdt Error Codes

IP A-21

