SECTION 1

GENERAL INFORMATION

1.1 INTRODUCTION

The assembler translates a symbolic 80688 assembly language program
("source code") into the binary instructions ("object code") required
by the computer to execute the program.

The assembler can operate on two different kinds of source code files,
both of which can be generated by the editors supplied with PTDOS:

Text Files: Each line of a normal text file consists
of the characters of that line followed by
a carriage return (@DH).

ALS-8 Text Files: Each line of an ALS-8 format file consists of a
one-byte character count, a four-byte line number
field (which may be blank), the characters of
the line, and a carriage return (@DH).

ALS-§ files need never be used unless programs are exchanged with an
ALS-8 system.

When the assembler is invoked, it is loaded into memory starting at
location 106H. It processes the source code file in two passes. OCn
the first pass, it builds a symbol table containing all of the labels
defined in the source program. (See Section 2.3.) The symbol table
begins at the memory location immediately following the assembler;
each entry in the table is 7 bytes long. Certain errors may be
detected during the first pass, causing error messages to be output to
an error file (usually the console). On the second pass, the object
code is generated and usually output to an object code file. 1In
addition, a formatted listing of both source and object code may be
output to a listing file, and symbol and cross-reference table
listings may be output to a possibly different file. Any errors
detected during this pass cause messages to be output to the error
file.

To abort the assembly process at any time, press the MODE key (or
CTRL-@) on the keyboard.

1-1 ASSM

If the assembly runs to completion and no errors are detected, the
resulting object code file is an image file that you can execute by
typing its name as a PTDOS command (if the source code contained an
XEQ pseudo-operation - see Section 3). To load the file without
executing it, type its name followed by a comma.

Example:

*SPELL lcads and executes a file called SPELL.
*SPELL, loads SPELL but does not execute it.

1.2 ASSEMBLER COMMAND FORMAT

The assembler is invoked by a PTDOS command with the following format.
The square brackets [] surround optional arguments; the anagle brackets

<> surround the generic name of an item to be typed, e.g., <name>
means "type a name."

ASSM <source>[,<list>,<object>,<error>,<symbol>,<S=options>]

{source> The name of the source code input file. This
parameter must be present; all others are
optional.

<list> The name of the listing output file. If this
argument is absent, no listing is generated. If
the specified file does not exist, it is created
with type '.' and block size 4C@H.

<object> The name of the object code output file. If this
argument is absent, no object code is generated.
If the specified file does not exist, it 1is
created with type 'I.' and block size 100H.

<error> The name of the file to which lines containing errors

are written. (211 lines, including those containing
errors, are written to <list>, if that argument

is present.) Default for <error> is the console
file (file #1), unless <list> is #1, in which case
there is no default <error> file.

<symbol> The name of the file to which symbol and cross
reference tables are written. If this argument
is absent, no symbol or cross reference table is
generated. If an equals sign (=) is used instead
of a file name, the table is written to the same
file as the listing.

S=<options> Various assembler options may be controlled by
following the S= with one or more of the following

option specifiers. The list of options is terminated

by a comma or carriage return. For those options
that may be preceded by a + or -, the + is optional
and will be assumed if absent.

+A The source file is in ALS-8 format.
-A The source file is a normal text file.

1-2 ASSHM

If neither of these is specified, the assembler
attempts to determine the file type by
examining the first few lines. If it fails,

an error message is generated. The appropriate
option then must be specified in order to
assemble the program successfully.

+L The source file has line numbers in column
1-4 of each line.
-L The source file has no line numbers.

If neither of these is specified, the
assembler will examine the first few lines
to determine if the file has line numbers.

Instructs the assembler to generate its own
line numbers in the listing in place of those
in the source file (if any).

g,1,2 or 3 Specifies the spacing on the listing:

no additional spacing

72 column output

8¢ column output (default)
132 column output

WK~
o nn

P Instructs the assembler to paginate output
to the listing file. The disk name and file
name of the source code file will be printed
on the top left-hand corner of each page.

A page number and the date from the system
global area will be printed on the top
right-hand corner of each page. 1If a TITL
pseudo-operation occurs in the source code,
a one- or two-line title will be centered
at the top of each page.

X Instructs the assembler to output a cross-
reference table to the symbol file (if one
was specified in the ASSM command). The source
code must either contain line numbers or be
assigned line numbers by the assembler (see
option, above).

The file name arguments are positional, e.g., the first is always
{source>, the second always <list>, etc. Any except <source> may be
omittea with the effect described above. 1If one of the intermediate
arguments is to be omitted while a subsequent argument is present, an
extra comma must be used to hold its place. The S=<options> argument
may occur at any position in the list of arguments, since it is
keyword delimited.

If the symbol table or cross reference listing is to be output to the

listing file,

an equals sign (=) must be used in place of the symbol

file name in the ASSM command. If the same file name (other than the

console output file #1) appears more than once in an ASSM command, a
PTDOS error will result.

Example 1:

Example 2:

Example 3:

ASSM TEST.S,TEST.L,TEST,TEST.E,TEST.SYM,S=P1

The source code file TEST.S will be assembled with
the listing output to the file TEST.L, and the
object code output to TEST. The listing will be
paginated with the spacing format set to 72
columns. If any errors are found during the
assembly, the line(s) containing the error(s) will
be written to the file TEST.E. A symbol table for
the program will be written to the file TEST.SYM.

ASSM TEST.S,#1

The source code file TEST.S will be assembled and
the listing will be output to the console output
file #1. No object code file will be generated.

The output listing will be unpaginated and formatted
to 80 columns (by default).

ASSM TEST.S,,TEST
The source code file TEST.S will ke assembled and
the object code file written to TEST. No listing

file will be generated, but any lines containing
errors will be output to the console (by default).

1-4 ASSM

SECTION 2

STATEMENTS

2.1 INTRODUCTION

An assembly language program (source code) is a series of statements
specifying the sequence of machine operations to be performed by the
program.

Each statement resides on a single line and may contain up to four
fields as well as an optional line number. These fields, label,
operation, operand and comment, are scanned from left to right by the
assembler, anc are separated by spaces.

2.2 LINE NUMBERS

Line numbers in the range 0080-999S may appear in columns 1-4. Line
numbers need not be ordered and have no meaning to the assembler,
except that they appear in a cross reference listing; if a source code
file has no line numbers and a cross reference listing is desired, S=#
must be specified in the ASSM command. Line numbers may also make it
easier to locate lines in the source code file when it is being
edited. The disk and memory space required for normal text files will
be increased by five bytes per line if line numbers are used; this may
become significant for large files. (ALS-8 format text files have
space allocated for line numbers, whether or not line numbers are
used.)

If line numbers are not used, the label field starts in column 1 and
the operation field may not start before column 2. If line numbers
are used, they must be followed by at least one space, so the label
field starts in column 6 and the operand field may not start before
column 7.

Once the starting column for the label has been established, the same
format must be followed throughout the file: either all of the lines
or none of the lines can have line numbers. Any other file(s)

assembled along with the main file (using the COPY pseudo-operation)
must conform to the format of the main file.

Example of source statements with line numbers:

column
1234567

@000 LABEL ORA A Label field must start at column 6.
#9001 JNZ NEXT Operation field starts at column 7 (minimum).
goB2 LOOP MOV A,B Operation field starts one space after label.

2-1 ASSM

Example of source statements without line numbers:

column

1234567

LABEL ORA A Label field must start at column 1.

JNZ NEXT Operation field starts at column 2 (minimum).
LCOP MOV A,B Operation field starts one space after label.
2.3 LABEL FIELD

The label field must start in column 1 of the line (column 6 if line
numbers are used). A label gives the line a symbolic name that can be
referenced by any statement in the program. Labels must start with an
alphabetic character (A-Z,a-z), and may consist of any number of
characters, though the assembler will ignore all characters beyond the
fifth; e.g., the labels BRIDGE, BRIDG and BRIDGET cannot be
distinguishead by the assembler. A duplicate label error will occur if
any two labels in a program begin with the same five letters.

A label may be separated from the operation field by a colon (:)
instead of, or in addition to, a blank.

The labels A, B, C, D, E, H, L, M, PSW and SP are pre-defined by the
assembler to serve as symbolic names for the 8080 registers (see
Section 2.5.1). They must not appear in the label field.

An asterisk (*) or semi-colon (;) in place of a label in column 1
{column 6 if line numbers are used) will designate the entire line as
a comment line; see Section 2.6.

2.4 OPERATION FIELD

The operation field contains either 8680 instruction mnemonics or
assembler pseudo-operation mnemonics. Appendix 1 summarizes the
standard instruction mnemonics recognized by the assembler, and
Appendix 4 lists several references to consult if more information on
the 8080 machine instructions is needed. Assembler pseudo-operations
are directives that control various aspects of the assembly process,
such as storage allocation, conditional assembly, file inclusion, and
listing control. The pseudo-operations are described in Section 3.

An operation mnemonic may not start before column 2 (column 7 if line
numbers are used) and must be separated from a label by at least one

space (or a colon).

2.5 OPERAND FIELD

Most machine instructions and pseudo-operations require one or two
operands, either register names, labels, constants, or arithmetic
expressions involving labels and constants.

2=2 ASSM

The operands must be separated from the operator by at least one
space. If two operands are reguired, they must be separated by a
comma. No spaces may occur within the operand field, since the first
space following the operands delimits the comment field.

2.5.1 Register Names

Many 6886 machine instructions require one or two registers or a
register pair to be designated in the operand field. The symbolic
names for the general-purpose registers are A, B, C, D, E, H and L.

SP stands for the stack pointer, while M refers to the memory location
whoee address is in the HL register pair. The register pairs RC, DE,
and HL are designated by the symbolic names B, D, and H, respectively.
The A register and condition flags, when operated upon as a register
pair, are given the symbolic name PSW.

The values assigned to the register names A, B, C, D, E, H, L, M, PSW
ana SF are 7, 9, 1, 2, 3, 4, 5, 6, 6 and 6, respectively. These
constants, or any label or expression whose value lies in the range 0
to 7, may be used in place of the pre-defined symbolic register names
where a register name is required; such a substitution of a value for
the pre-defined register name is not recommended, however,

2.5.2 Labels

Any label that is defined elsewhere in the program may be used as an
operand. If a label is used where an 8-bit guantity is reqguired
(e.g., MVI C,LABEL), its value must lie in the range -256 to 255, or
it will be flagged as a value error.

If a label 1s used as a register name, its value must lie in the range
@ to 7, or be 6, 2, 4, or 6 if it designates a register pair.
Otherwise, it will be flagged as a register error.

During each pass, the assembler maintains an instruction location
counter that keeps track of the next location at which an instruction
may be stored; this is analogous to the program counter used by the
processor during program execution to keep track of the location of
the next instruction to be fetched.

The special label $ (dollar sign) stands for the current value of the
assembler's instruction location counter. When $ appears within the
operand field of a machine instruction, its value is the address of
the first byte of the next instruction.

Example:
FIRST EQU §$ The label FIRST is set to the address
TABLE DB ENTRY of the first entry in a table and LAST
* points to the location immediately after
* the end of the table. TABLN is then
* the length of the table and will remain
LAST EQU S correct, even if later additions or
TABLN EQU LAST-FIRST deletions are made in the table.

2-3 ASSM

2.5.3 Constants

Decimal, hexadecimal, octal, binary and ASCII concstants may be used as
operands.

The base for numeric constants is indicated by a single letter
immediately following the number, as follows:

D = decimal

H = hexadecimal
0 = octal

Q = octal

B = binary

If the letter is omitted, the number is assumed to be decimal. O is
usually preferred for octal constants, since O is so easily confused
with 0 (zero). Numeric constants must begin with a numeric character
(6-9) so that they can be distinguished from labels; a hexadecimal
constant beginning with A-F must be preceded by a zero.

ASCII constants are one or two characters surrounded by single guotes
('). A single guote within an ASCII constant is represented by two
single quotes in a row with no intervening spaces. For example, the
ASCII value of a single guote mark (') is represented by the
expression '''', where the two outer quote marks are the delimiters of
the ASCII string, and the two inner quote marks represent the string
itself, i.e., the single quote character. A single character ASCII
constant has the numerical value of the corresponding ASCII code.
(Appendix 2 contains a list of ASCII codes.) A double character ASCII
constant has the 16-bit value whose high-order byte is the ASCII code
of the first character and whose low-order byte is the ASCII code of
the second character,

If a constant is used where an 8-bit gquantity is recuired (e.g., MVI
C,10H), its numeric value must lie in the range =256 to 255 or it will
be flagged as a value error.

If a constant is used as a register name, its numeric value must lie

in the range @ to 7, or be 8, 2, 4, or 6 if it designates a register
pair. Otherwise, it will be flagged as a register error.

Examples:

MVI A,128 Move 128 decimal to register A.

MVI C,10D Move 1@ decimal to register C.

LXI H,2FH Move 2F hexadecimal to register pair HL.
MVI B,3063Q Move 363 octal to register B.

MVI A,'Y' Move the ASCII value for Y to register A.
MVI A,101B Move 161 binary to register A.

JMP @FFH Jump to address FF hexadecimal.

2.5.4 Expressions

Operands may be arithmetic expressions constructed from labels,
constants, and the following operators:

addition or unary plus
subtraction or unary minus
multiplication

division (remainder discarded)

N |+

Values are treated as 16-bit unsigned 2's complement numbers. Positive
or negative overflow is allowed during expression evaluation, e.g.,
32767+1=7FFFH+1=8000H=-32768 and -32768-1=8000H-1=7FFFH=32767.
Expressions are evaluated from left to right; there is no operator
precedence.

If an expression is used where an 8-bit guantity is required (e.qg.,
MVI C,TEMP+10H), it must evaluate to a value in the range -256 to 255,
or it will be flagged as a value error.

An expression used as a register name must evaluate to a value in the
range 6 to 7, or to 8, 2, 4, or 6 if it designates a register pair.
Otherwise, it will be flagged as a register error.

Examples:

MVI A,255D/10H-5
LDA POTTS/256*CFFSET
LXI SP,30*2+STACK

2.5.5 High- and Low-Order Byte Extraction

If an operand is preceded by the symbol <, the high-order byte of the
evaluated expression will be used as the value of the operand. If an
operand is preceded by the symbol >, the low-order byte will be used.

Note that the symbols < and > are not operators that may be applied to
labels or constants within an expression. If more than one < or >
appears within an expression, the rightmost will be used to determine
whether to use the high- or low-order byte of the evaluated expression
as the value of the operand. That is, the rightmost < or > is treated

as 1f it preceded the entire expression, and the others will be
totally ignored.

Examples:
MVI A,>TEST Loads register A with the least

significant 8 bits of the value of the
label TEST.

MVI B,<@CCHGH Loads register B with the most significant
byte of the 16-bit value CC@@H, i.e., CCH.

MVI C,<1234H Loads register C with the value 12H.

MVI C,>1234H Loads register C with the value 34H.

2-5 ASSM

2.6 COMMENT FIELD

The comment field must be separated from the operand field (or
operation field for instructions or pseudo-operations that reguire no
operand) by at least one space. Comments are not processed by the
assembler, but are solely for the benefit of the programmer. Good
comments are essential if a program is to be understood very long

after it is written or is to be maintained by someone other than its
author.

An entire line will be treated as a comment if it starts with an
asterisk (*) or semicolon (;) in column 1 (column 6 if line numbers
are used).

Examples:

LOOP IN STAT INPUT DEVICE STATUS
ANI 1 TEST STATUS BIT
JZ 'LOOP WAIT FOR DATA

*DATA IS NOW AVAILARLE

If listing file formatting is specified in the ASSM command
(S=<options> contains 1, 2, or 3), the comment field must be preceded
by at least two spaces to ensure proper output formatting.
Furthermore, instructions and pseudo-operations reguiring no operand
must be followed by a dummy operand (a period is recommended).

Examples:

MVI A,106 COMMENT
RZ . COMMENT

2-6 ASSM

SECTION 3

PSEUDO-OPERATIONS

Pseudo-operations appear in a source program as instructions to the
assembler and do not always generate object code. This section
describes the pseudo-operations recognized by the PTDOS assembler.

In the following pseudo-operation formats, <expression> stands for a
constant, label, or arithmetic expression constructed from constants
and labels. Optional elements are enclosed in square brackets [].

Eguate <label> EQU <expression>

This pseudo-operation sets a label name to the 16-bit value that is
represented in the operand field. That value holds for the entire
assembly and may not be changed by another EQU.

Any label that appears in the operand field of an EQU statement must
be defined in a statement earlier in the program.

Examples:

BELL EQU 7 The value of the label BELL is set to 7.
BELL2 EQU BELL*2 Label BELL2 is set to 7%*2.

Set Origin [<label>] ORG <expression>

This pseudo-operation sets the assembler's instruction location
counter to the 16-bit value specified in the operand field . In other
words, the object code generated by the statements that follow must be
loaded beginning at the specified address in order to execute
properly. The label, if present, is given the specified 16-bit

value.

Any label that appears in the operand field of an ORG statement must
be defined in a statement earlier in the program.

If no origin is specified at the beginning of the source code, the
assembler will set the origin to 10@H. If no ORG pseudo-operation is
used anywhere in the source program, successive bytes of object code
will be stored at successive memory locations.

Examples:

ORG 64 Determines that the object code generated by
subsequent statements must be loaded in locations
beginning at 64 (40H).

START ORG 100H Determines that the object code generated by
subsequent statements must be loaded in locations
beginning at 100H.

3-1 ASSM

Set Execution Address XEQ <expression>

This pseudo-operation specifies the entry point address for the
program, i.e., the address at which it is to begin execution. If a
program contains no XEQ pseudo-operation, the object code image file
will contain no start address; if its name is typed as a PTDOS
command, it will be loaded but not executed (exactly as if its name
were followed by a comma). If more than one XEQ appears in a program,
the last will be used.

An example of the difference between ORG and XEQ is that a program
whose first 1€0 bytes are occupied by data will have an ORG address
100 bytes lower in memory than its XEQ address.

Example:

100H The entry point address for the assembled program
is set to 100H.

Define Storage [<label>] DS <expression>

[<label>] RES <expression>

Either of these pseudo-operations reserves the specified number of
successive memory locations starting at the current address within the
program. The contents of these locations are not defined and are not
initialized at load time.

Any label that appears in the operand field of a DS or RES statement
must be defined in a statement earlier in the program.

Examples:

SPEED DS 1 Reserve one byte.

DS 400 Reserve 400 bytes.

RES 177Q Reserve 177 (octal) bytes.
Define Byte [<label>] DB <expression>|[,<expression>,...]

This pseudo-operation sets a memory location to an 8-bit value. If
the operand field contains multiple expressions separated by commas,
the expressions will define successive bytes of memory beginning at
the current address. Each expression must evaluate to a number that
can be represented in 8 bits.

Examples:

DB 1 One byte is defined.
DB OFFH,363Q0,100D,11816011B,3*BELL,-18¢ Multiple bytes are defined.
TABLE DB 'A','B','C','D',0 Multiple bytes are defined.

3-2 ASSM

Define Word [<label>] DW <expression>

This pseudo-operation sets two memory locations to a 16-bit guantity.
The least significant (low-order) byte of the value is stored at the
current address and the most significant byte (high-order) is stored
at the current address + 1.

Examples:

SAVE DW 1234H 1234H is stored in memory, 34H in the low-order
byte and 12H in the high-order byte.

YES DW 'OK' The ASCII value for the letters 'O' and 'K' is
stored with the 'K' at the lower memory address.

Define Double Byte [<label>] DDB <expression>

This pseudo-operation is almost the same as DW, except that the two
bytes are stored in the opposite order: high-order byte first,
followed by the low-order byte.

Example:

FIRST DDB 1234H 1234H 1is stored in memory, 12H in the low-order
byte and 34H in the high-order byte.

Define ASCII String [<label>] ASC #<ASCII string>#
[<label>] ASCZ #<ASCII string>#

The ASC pseudo-operation puts a string of characters into successive
memory locations starting at the current location. The special symbols
in the format are "delimiters;" they define the beginning and end of
the ASCII character string. The assembler uses the first non-blank
character found as the delimiter. The string immediately follows this
delimiter, and ends at the next occurrence of the same delimiter, or
at a carriage return.

The ASCZ pseudo-operation is the same except that it appends a NUL
(0BH) to the end of the stored string.

Examples:

WORDS ASC "THIS IS AN ASCII STRING"
ASCZ "THIS IS ANOTHER STRING"

Set ASCII List Flag ASCF 0
ASCF 1

If the operand field contains a @, the listing of the assembled bytes
of an ASCII string will be suppressed after the first line (four

3-3 ASSM

bytes). Likewise, only the first four assembled bytes of a DR
pseudo-operation with multiple arguments will be listed. If a program
contains many long strings, its listing will be easier to read if the
ASCF pseudo—-operation is used.

If the operand field contains a 1, the assembled form of subsequent
ASCII strings and DB pseucdo-operations with multiple arguments will be
listed in full. This is the default condition.

See Appendix 3 for an example of the listing format.

Conditional Assembly IF <expression>

source code
ENDF

The value of the expression in the operand field governs whether or
not subseguent code up to the matching ENDF will be assembled. If the
expression evaluates to a 0§ (false), the code will not be assembled.
If the expression evaluates to a non-zero value (true), the code will
be assembled. Blocks of code delimited by IF and ENDF ("conditional
code") may be nested within another block of conditional code.

Any label that appears in the operand field of an IF...ENDF
pseudo-operation must be defined in a statement earlier in the
program.

YES EQU 1 Sets the value of the label 'YES' to 1.
NO EGU 0 Sets the value of the label 'NO' to 8.
*
IF YES The expression here is true (1), so the
MVI A,'Y' code on this line will be assembled.
IF NO The expression here 1is false (0), so the code
MVI A,'N"' on this line will not ke assembled.
ENDF This terminates the NO conditional.
ENDF This terminates the YES conditional.

List Conditional Code IFLS

This pseudo-operation enables listing of conditional source code even
though no object code is being generated because of a false IF
condition. The assembler will not list such conditional source code
if this pseudo-operation is not used.

Copy File COPY <file name>[/<unit>]

This pseudo-operation copies source code from a disk file into a
program being assembled. The code from the copied file will be
assembled starting at the current address. When the copied file is
exhausted, the assembler will continue to assemble from the original

3-4 ASSM

file. The resulting object code will be exactly like what would be
generated if the copied source code were part of the original file,
but the COPY pseudo-operation does not actually alter any source
file.

A copied file may in turn copy another, as long as no more than six
files are active at any given time. Note that one file must not copy
another which in turn copies the original file--the assembly will
generate duplicate label errors and assemble the same code over and
over until the object code file overflows the diskette on which it is
being written.

All files that are accessed by the COPY pseudo-operation must be of
the same format as the main source file, i.e., either ALS-8 format or
normal text files, and either having or not having line numbers.

Listing Control NLST
LST

The NLST pseudo-operation suppresses all output to the listing file.
Object code will still be output to the object code file and lines
containing errors will still be output to the error file. The LST
pseudo-operation re-enables output to the listing file.

Listing Title TITL <first line>"<second line>

If the P option is specified in the ASSM command, the one- or two-line
title specified by this pseudo-operation will be printed centered at
the top of each page of the listing.

Page Eject PAGE

If the P option is specified in the ASSM command, this
pseudo-operation causes a skip to the top of the next page of the
listing.

End of Source File END

This pseudo-operation terminates each pass of the assembly. Only one
END statement should be in the file or files to be assembled, and it
should be the last statement encountered by the assembler. Since an
end-of-file on the source code input file will also terminate each
pass, the END statement is unnecessary in most cases.

3-5 ASSM

SECTION 4

ERROR MESSAGES

4.1 ASSEMBLER COMMAND ERRORS

A number of console messages may be generated in response to errors in
the ASSM command. When an error of this sort occurs, the assembly is
aborted and control returns to PTDOS.

BAD ALS8 FILE STRUCTURE

EXPECTED NAME

ILLEGAL FILE NAME

ILLEGAL FILE NUMBER

ILLEGAL OPTION SPECIFIER

SYNTAX ERROR

The ALS-8 source code input file has a
structure defect. The most likely cause
of this error is trying to assemble a very
short non-ALS-8 source code file without
specifying S=-A.

The source code input file name is missing.

A file name contains illegal characters.
This message can also be generated by an
erroneous file name in a COPY
pseudo-operation.

A file ID is too large (>255).

An unrecognized option specifier follows
S=‘

The ASSM command contains too many
arguments or an arqument of the form
X=... where X is a letter other than S.

In addition to the above special messages, several standard error
messages may be generated by the PTDOS file system.

4-1 ASSM

4,2 ASSEMBLY ERRORS

If a statement contains one of the following errors, there will be a
single letter error code in column 19 of the line output to the
listing and/or error files. An error detected during both the first
and the second pass of the assembler will be flagged twice in the
listing(s). If the error is not an opcode error, NULs will be output
as the second and, if appropriate, third bytes of object code for that
instruction. If the error is an opcode error, the instruction will be
assumed to be a three-byte instruction, and three NULs will be written
to the listing and/or error files. The error codes are:

A ARGUMENT ERROR An illegal label or constant appears in
the operand field. This might be 1) a number
with a letter in it, e.g., 2L, 2) a label
that starts with a number, e.g., 3STOP,
or 3) an improper representation of a string,
e.g., "'""A''"'" in the operand field of a
statement containing the ASCII
pseudo-operation.

D DUPLICATE LABEL The source code contains multiple labels
whose first five characters are identical

L LABEL ERROR The symbol in the label field contains
illegal characters, e.g., it starts with
a number,

M MISSING LABEL An EQU instruction does not have a symbol
in the label field.

0 OPCODE ERROR The symbol in the operation field is not
a valid 808¢ instruction mnemonic or an
assembler pseudo-operation mnemonic.

R REGISTER ERROR An expression used as a register designator
does not have a legal value.

S SYNTAX ERROR A statement is not in the format required
by the assembler.

U UNDEFINED SYMBOL A label used in the operand field is not
defined, i.e., does not appear in the 1label
field anywhere in the program, or is not
defined prior to its use as an operand in
an EQU, ORG, DS, RES, or IF pseudo-operation.

Y VALUE ERROR The value of the operand lies outside the
allowed range.

4-2 ASSM

APPENDIX 2

Paper tape
123 .4567P

® & 0 0 0 0 0 o

[] L] [] []

[N L N

® o o 0

® &6 06 ¢ & 0 ¢ o
® & &6 & ¢ 0 0 0 o

Upper Octal

I
|
|
|
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
|
I
|
|
I
I
|
I
|
I
I
I
|
|
I
|
|
I
|
I
I
|
|
|
I
|
I
|
|
I
|
I
I
I
|
|
I
I
I
|
I
I
|
I
I

APPENDIX 2

TABLE OF ASCIl CODES (Zero Parity)

0000
0004
0010
0014
0020
0024
0030
0034
0040
0044
0050
0054
0060
0064
0070
0074
0100
0104
0110
0114
0120
0124
0130
0134
0140
0144
0150
0154
0160
0le4
0170
0174
0200
0204
0210
0214
0220
0224
0230
0234
0240
0244
0250
0254
0260
0264
0270
0274
0300
0304
0310
0314
0320
0324
0330
0334
0340
0344
0350
0354
0360
0364
0370
0374

Octal

000
001
002
003
004
005
006
007
010
01l
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063

065
066
067
070
071
072
073
074
075
076
077

Decimal

-1 QN U W N = O

W L WD L0 O 0 W W W Lo B B RS DD NI DD B DD BD DD e e e e e e e e e
gOm\IO*U‘I-\BWNJ'—'OC&NOM#WMWO\OmKJO‘WPWMHOCm

41

A2-1

Hex

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36

38
39
3A
3B
3C
3D
3E
3F

Character

ctrl @
ctrl A
ctrl B
ctrl C
ctrl D
ctrl E
ctrl F
crl G
cul H
ctrl T
ctrl J
ctrl K
ctrl L
ctrl M
ctrl N
crl O
crl P
ctrl Q
ctrl R
ctrl S
ctrl T
ctrl U
ctrl V
ctrl W
ctrl X
crl Y
ctrl 2
ctrl [
ctrl \
ctrl]
ctrl
el _

Space
!

+ o~ ~ R RUHE

~

e OO N WR = O

AV A

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
S

CAN

SUB
ESC
FS
GS
RS
us

Start of Heading
Start of Text
End of Text
End of Xmit
Enquiry
Acknowledge
Audible Signal
Back Space
Horizontal Tab
Line Feed
Vertical Tab
Form Feed
Carriage Return
Shift Out

Shift In

Data Line Escape
X On

Aux On

X Off

Aux Off

Negative Acknowledge

Synchronous File

End of Xmit Block

Cancel

End of Medium
Substitute
Escape

File Separator
Group Separator
Record Separator
Unit Separator

ASSM

APPENDIX 2
TABLE OF ASCHl CODES (Cont’d) (Zero Parity)

Paper tape Upper Octal Octal Decimal Hex Character

123.4567P
L] 0400 100 64 40 @
. (] 0404 101 65 41 A
(] (] 0410 102 66 42 B
e . 0414 103 67 43 C
., . 0420 104 68 44 D
e o ° 0424 105 69 45 E
oo o | 0430 106 70 46 F
eee, . 0434 107 71 47 G
NC I 0440 110 72 48 H
e .o o 0444 111 73 49 I
e .o o 0450 112 74 4A J
e .o o 0454 113 75 4B K
o, 0o o 0460 114 76 4C L
e o.0 o 0464 115 77 4D M
e .0 o 0470 116 78 4E N
eee .0 o | 0474 117 79 4F)
o o 0500 120 80 50 P
. ° o 0504 121 81 51 Q
. ° o 0510 122 82 52 R
|ee . o o 0514 123 83 53 S
e, o o 0520 124 84 54 T
e o, o o 0524 125 85 55 U
| oo, o @ 0530 126 86 56 v
eee, o o 0534 127 87 57 W
.00 @ 0540 130 88 58 X
e _.e0 o 0544 131 89 59 Y
e _e0 o 0550 132 90 SA Z
oo _o0 o 0554 133 91 5B [shift K
o .00 o 0560 134 92 5C \ shift L
e o 00 o 0564 135 93 5D] shift M
oo o0 o 0570 136 94 5E ~ shift N
oo o0 o 0574 137 95 S5F - shift O
o0 0600 140 96 60 N
[[X] 0604 141 97 61 a
e . eo 0610 142 98 62 b
oo (X 0614 143 99 63 c
'y oo 0620 144 100 64 d
) [0624 145 101 65 e
[X) oo 0630 146 102 66 f
eee., oo 0634 147 103 67 g
.o oo 0640 150 104 68 h
e .o oo 0644 151 105 69 i
e .o oo 0650 152 106 6A Jj
oo .o oo 0654 153 107 6B k
e.0 oo 0660 154 108 6C 1
o o, .0 oo 0664 155 109 6D m
e .0 oo 0670 156 110 6E n
o0 0o oo 0674 157 111 6F o
. eee 0700 160 112 70 p
e . eee 0704 161 113 71 q
e ., eee 0710 162 114 72 r
e . eoee 0714 163 115 73 s
o, oo 0720 164 116 74 t
e o, ecoo 0724 165 117 75 u
e, ooo 0730 166 118 76 v
00, oo 0734 167 119 77 w
.0000 0740 170 120 78 X
e _eoee 0744 171 121 79 v
e .00 0750 172 122 7A z
e _.so0ee 0754 173 123 7B {
e o000 0760 174 124 7C |
e o ocooe 0764 175 125 7D } Alt Mode
ee oo 0770 176 126 7E - Prefix
[XX XX X 0774 177 127 TF DEL Rubout

APPENDIX 2 A2-2 ASSM

0100
0101
0102
0103
0104
0107
0108
0109
0104
010D
010F
0110
0111
0112
0115
0116
0117
011A
011B
011C
011D

0120
0123
0125
0128
012B
012C
012F
0130
0131
0132
0133
0134

0135
0139
013B
013F
0141

43
00
43
00
00

1

02
01

OF

00

35
04
00
00

00

4F

4F
00

01

01

01

01

01

01

01
00

4p 31

4D 32

APPENDIX 3

ASSEMBLER LISTING

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
003b
0037
0v3d
U 0039
0040
U ooy
0042
0043
0044
0045
0046
0047
0046
0049y
0050
0051
U 0052
0053
U 0054
0055

COMMENT

*
*SEARCH TABLE FOR MATCH TO STRING

*EACH TABLE ENTRY IS FOLLOWED BY A TWO-BYTE DISPATCH ADDRESS.

*TABLE MUST HAVE AT LEAST ONE ENTRY AND IS TERMINATED BY A

*#ZERO BYTE.

*ON ENTRY: HL POINTS TO STRING

* DE POINTS TO TABLE

* C IS NUMBER OF CHARACTERS IN TABLE ENTRIES

*ON RETURN: ZERO FLAG SET IF NO MATCH, ELSE DE POINTS TO

* DISPATCH ADDRESS
#*
TSRCH PUSH H SAVE STRING ADDRESS
MOV B,C INITIALIZE CHARACTER COUNT
TS1 LDAX D COMPARE CHARACTERS
CMP M
JNZ 1S3
INX H CHARACTERS MATCH, GO ON TC NEXT
INX D
DCR B
INZ TS1
ORI 1 MATCHING ENTRY FOUND
TS2 POP H
RET
TS3 ORA A TEST FOR END OF TABLE
Jz 82
TS4 INX D SKIP TO NEXT ENTRY
DCR B
INZ TSh
INX D
NS D
POP H
JMP TSRCH
#*
*EXAMPLE OF TSRCH USE:

*
#(ASSUME HL POINTS TO A FOUR-CHARACTER COMMAND STRING)
LXI D,CTABL DE POINTS TO COMMAND TABLE
MVI C,4 TABLE ENTRIES ARE FOUR CHARACTERS LONG

CALL TSRCH
Jz ERROR COMMAND NOT IN TABLE

XCHG . SET UP STACK FOR RETURN TO MAIN ROUTINE
LXI D, COMMAND

PUSH D

MOV AM DISPATCH TO APPROPRIATE COMMAND ROUTINE
INX H

HOv H,M

MOV L,A

PCHL

*
*COMMAND TABLE

*
CTABL ASC 'COM1' FIRST ENTRY
DW SUB1 ADDRESS OF SUB1
ASC 'COM2' SECOND ENTRY
DwW SuBz ADDRESS OF SuB2
DB 0 END OF TABLE MARK
A3-1

ASSM

APPENDIX 3

ASSEMBLER LISTING (Cont'd)

SYMBOL TABLE LISTING

Label Addr. Label Addr. Label Addr. Label Addr.

CTABL 0135 T31 0102 152 010F 1583 0111
TS4 0115 TSRCH 0100

CROSS REFERENCE LISTING

(Printed in place of Symbol Table Listing if X option is specified.)

Label Addr. References

CTABL 0135 0092
51 0102 0131
TS2 010F 0192
TS3 0111 0239
TS4 0115 0307
TSRCH 0100 0367 0374

A3-2

ASSM

APPENLIX 4
REFERENCES
1. 8080/8085 Assembly Language Programming Manual (Intel
Corporation, Santa Clara, CA., 1977), Order Number 9800301B

2. Leventhal, Lance A., 8080A/8085 Assembly Language Programming
(Adam Osborne & Associates, Berkeley, CA., 1978)

APPENDIX 4 A4-1 ASSM

s 5

DEBUG

A DEBUGGER FOR PTDOS 1.5

TABLE OF CONTENTS

SECTION PAGE
1 INTRODUCTION...vveuwn T 1-1
1.1 GENERAL INFORMATION..:ueeoeoovecscacscoccnns 1-1

1.2 LOADING AND INITIALIZATION OF THE DEBUGGER.. 1-1

1.3 BREAKPOINTS AND RESTARTS .t eeeeeeccaccnocnens 1-2

2 COMMANDS t vttt eeeeeeececeaosssoancosssossssnacsnnns 2-1
2.1 CONVENTIONS..evesesoseoesassasessncnconsnnns 2-1

2.2 DEBUGGER COMMAND LIST.:teeeeesecasccacannans 2-2

2.3 DESCRIPTION OF COMMANDS ..t veeeececenonnnneas 2-4
2.4 A WALK THROUGH THE DEBUGGER.:.u..eeeeeceeooons 2-14

DEBUG

. J—

SECTION 1

INTRODUCTION

1.1 GENERAL INFORMATION

This program is an aid for debugging a machine language program
developed and assembled on a Helios-based microcomputer system using
PTDOS. With DEBUG, the user is permitted to set as many as fifteen
"breakpoints" in memory. (In general, these breakpoints will be set
within a program that requires debugging, although the debugger may
also be used to examine a program about whose operation the user is
simply curious.) When the program containing the breakpoints is
executed under the control of DEBUG, it will stop at each of these
addresses so that CPU registers, flags, and specified memory locations
may be examined and modified. It is possible to resume execution at a
breakpoint (or at another specified memory location) after
modifications have been made. At the conclusion of debugging, the
modified version of the user program may be saved from memory with the
PTDOS IMAGE command or the SOLOS/CUTER SAVE command. (The IMAGE
command will write to a disk file; the SAVE command, to a tape file.)

There are two versions of the DEBUG program on the PTDOS system disk.

DEBUG3 is loaded and executed at 3000H.
DEBUG is loaded and executed at 5000H.

The two versions are identical, except that they run at different
memory locations. The purpose of having two versions is to allow the
debugging of a program that uses memory space required by one or the
other of the DEBUG programs. DEBUG and DEBUG3 both use a little more
than 4K of memory and may be restarted at the addresses at which they
are loaded. (Hereafter, DEBUG or "the debugger" will be used to
designate either version of the program.)

The DEBUG program contains its own VDM output driver. When execution
begins, however, all output is sent to the current PTDOS CONOUT
driver; a command is provided (the V command, described in Subsection
2.3) to direct output to the internal VDM driver, instead of to
CONOUT.

1.2 LOADING AND INITIALIZATION OF THE DEBUGGER

To enter the debugger, type the name of the desired version of the
program after the PTDOS prompt (*). If the program to be debugged is
a PTDOS image file, type a command having the format

*file,DEBUG {parameters}

where "file" is the name of the program to be debugged, and
{parameters} represents the list of parameters required by that

1-1 DEBUG

program. (The brackets are not literal; they indicate that a
parameter list is optional, since not all programs require
parameters.) Remember that typing a filename followed by a comma
causes the named file to be loaded but not executed: a command of the
form given above will execute only the DEBUG program. (The first file
will be loaded into memory so that it can be executed from within the
debugger.)

When DEBUG begins to run, it will display the question
RST?

on the output device (probably the video display). Your response, a
number between 0 and 7, inclusive, will determine which 8088 "restart"
location will be used by the debugger to implement breakpoints.
(Subsection 1.3 discusses breakpoints and restarts.)

When the > prompt appears, the debugger is ready to accept a command
from the keyboard.

1.3 BREAKPOINTS AND RESTARTS

A BREAKPOINT is a location at which the operation of a program stops
to permit some kind of external intervention; in the case of DEBUG,
the user program (or the program being examined) stops to permit the
user to examine and modify registers and memory. A breakpoint can be
set at any address; when the debugger is in operation and a breakpoint
has been implemented, it is possible to proceed from that breakpoint,
or even to determine that execution will no longer stop there.

When a breakpoint is encountered by the debugger, the value of each
register is immediately displayed as a hexadecimal number following
the letter symbol for the register and an equals sign (=). For
example, B=3E means that the number 3E is in register B. The symbols
for the registers are:

for the Accumulator
for register B

for register C

for register D

for register E

for CPU Flags

for register H

for register L

for the content of the memory location to
which H and L point
for Program Counter
for Stack Pointer

roommoOw

n -

The flags that were set at the time of the breakpoint are indicated by
letter symbols following the letter "F" and an equals sign. The
symbols for the flags are:

1-2 DEBUG

for the Sign flag

for the Zero flag

for the Auxiliary Carry flag
for the Parity flag

for the Carry flag

for no flag

ZOoOmpPpNn

Thus, F=ZAP means that the Zero, Auxiliary Carry, and Parity flags
were set. (Obviously, the letter N will only appear if no other
symbol follows the equals sign.)

The X command (discussed in Subsection 2.3, below) may be used to
modify any of the values existing in the registers or flags at the
time of the breakpoint. There are also commands that make it possible
to examine and modify the contents of memory at any named location.

The 8080 microcomputer allows for eight possible RESTART locations,
numbered ¥ through 7 and corresponding to memory addresses @, 8, 16,
24, 32, 406, 48, and 56 Decimal. It is guite common to give a
much-used subroutine an origin at one of the restart locations,
because a call to such a location requires only the one-byte RST
instruction, rather than the three-byte CALL instruction. In the
debugger a subroutine for dealing with breakpoints has its origin at
whatever restart location is specified in answer to the RST? guestion.
The program provides for a choice of restart locations, in order to
allow the other restart addresses to remain available for access by
the user. (For example, the program being debugged may use restart
addresses as origins for some of its subroutines.) If all eight of
the restart locations are available for use by the debugger, then the
answer to RST? can be any number between # and 7.

1-3 DEBUG

SECTION 2

COMMANDS

2.1 CONVENTIONS

On the next page is a list of the commands accepted by the DEBUG
program. In this list and for the remainder of the manual, the
following conventions are used:

The symbol <cr> denotes the RETURN key.

Upper case letters are literal: the $Bexpr<cr> command actually
contains the upper case letter B. (Note that it also ends with a
carriage return.)

Lower case letters are not literal: the $Bexpr<cr> command contains a
four character hexadecimal address or an expression that evaluates to
a four character hexadecimal address. (The rules governing
expressions are given below.) If a number occupying more than four
hexadecimal places is entered as an address, only the rightmost four
characters are significant. Similarly, if an expression evaluates to a
number occupying more than four hexadecimal places, only the rightmost
four places are significant.

Brackets {} indicate that a parameter is optional. The command
$SP{n}<cr> contains an optional parameter represented by the letter n.

Other punctuation is literal, except that the dollar sign ($)
signifies the ESCape key, rather than the shift-4. (The ESCape key is
actually echoed on the screen as a dollar sign.)

EXPRESSIONS

The letters expr denote an expression that points to an address in
memory, l.e., an expression that evaluates to a number between @ and

65535, inclusive. The characteristics of an expression are as
follows:

1) An expression may involve any of the operators + (add), -
(subtract), * (multiply), and % (divide). Expressions are evaluated

from left to right, with no operator precedence. Parentheses are not
allowed.

2-1 DEBUG

2) An operand is assumed to be a hexadecimal number, unless it is

preceded by an exclamation point (!), in which case it is assumed to
be a decimal number.

100 is 100 Hexadecimal, or 256 Decimal.
11900 is 100 Decimal, or 64 Hexadecimal.

3) Multiplication and division operate on two 16-bit unsigned
numbers. The result of division is truncated to its integer part, and
the remainder is lost.

3D%7 evaluates to 0008.
4) There is no check for overflow or for division by zero.

It may be useful to imagine the acceptable range of numerical values
(corresponding exactly to the range of addressable memory) on a
circular number "clock," with @ at the twelve o'clock position and
values increasing in a clockwise direction. Thus the largest number
in the system (65535) is next to the smallest (#), just
counter-clockwise of twelve o'clock. If we follow the rule, "Move
clockwise to increment a value, counter-clockwise to decrement a
value," it becomes clear that in this system 3-5 will be 65534, and
65534+5 will be 3. Although it is possible to utilize this
arrangement to advantage, it is probably less confusing to use
expressions that actually evaluate to a number neither less than zero,
nor greater than 65535.

Division by zero will always give the result 65535 Decimal.

5) A period (.) in an expression represents the address of the last
memory location examined. Thus, a memory location offset by 188
Hexadecimal from the last location examined could be represented as
100+. or as .+10@8. If no memory location has yet been examined, the
value of . is 0000,

6) BLANKS ARE NOT ACCEPTABLE WITHIN EXPRESSIONS.

2.2 DEBUGGER COMMAND LIST

All of these commands will be described in the next subsection. A
command may be entered at any time that the > prompt appears on the
video display.

SYNTAX FUNCTION
SA<cr> Set breakpoint mode to Static.
$Bexpr<cr> Set breakpoint at address expr.
Up to fifteen breakpoints may be set.
$C<cr> Set output mode to Character.
$baddr<cr> Delete the breakpoint at address expr.

2-2 DEBUG

SE<Lcr> Exit DEBUG; return to PTDOS.

expr/ Display the content of the location
designated by expr. Allow modification
of the value at that location.

expr= Print the value of expr in Hexadecimal.

expr# Print the value of expr in Decimal.

SFexprl,expr2,bb<cr> Fill memory from address exprl to
address expr2 with byte bb.

SH<cr> Set output mode to Hexadecimal.

S$Ii<cr> Set output mode to Instruction.

SK<cr> Delete all currently set breakpoints.

SLfile<cr> Send subsequent output to the named

PTDOS file. The filename (denoted by
"file") must meet the requirements of
PTDOS. The L command without a file
name stops output to an open log file,
or causes such output to resume.

$P{n}<cr> Proceed from a breakpoint; continue
execution, skipping this breakpoint
until it is met again for the nth
time. Default for n is 1.

SRexpr<cr> Begin execution (of the program being
debugged or examined) at address expr.

$Sexprl,expr2,bb,mm<cr> Search memory from address exprl to
address expr2 for byte bb using mask mm.

$T<cr> Display a list of current breakpoint
addresses.

$v<cr> Change output driver (CONOUT to VDM,
or vice-versa).

SWexprl{,expr2}<cr> Dump contents of memory from address
exprl to address expr2.

$Xr<cr> Display the content of CPU register r.

Allow modification of that value.

$zZ<cr> Set breakpoint mode to Remove.

2-3 DEBUG

2.3 DESCRIPTICN OF COMMANDS

This subsection describes all of the commands in the debugger and
provides short examples of their use. (There are no examples in cases
in which the operation of a command is not evident on the display,
i.e., in which the DEBUG program simply issues a carriage return and a
prompt after the command is executed.) For the purpose of this
discussion, it is convenient to group the commands as follows:

GROUP 1 DEBUGGER CONTROL

These are commands not directly related to the process of debugging a
program. They determine where output will be sent from the debugger
(V,L), and whether the contents of memory will be represented as
hexadecimal numbers (H), characters (C), or 8680 instructions (I).
Also included in this group is the command that terminates execution
of the debugger (E).

GROUP 2 CONTROLLING EXECUTION OF THE USER PROGRAM

These commands set and delete breakpoints (B,D,T,K), start and restart
the program being debugged (R,P).

GROUP 3 EXAMINING AND MODIFYING MEMORY

These commands are related to the examination and modification of
particular memory locations (expr/,wW,F,S), CPU registers and flags
(X). These commands are generally used after a breakpoint has been
encountered, although it is possible to examine memory without setting
any breakpoints.

Subsection 2.4, below, illustrates a typical sequence of steps
followed while debugging a program.

GROUP 1: V and L set the output file(s).
sets output mode to Hexadecimal.
sets output mode to Instruction.
sets output mode to Character.
exits the program.

O D

CHANGE OUTPUT DRIVER $v<cr>

DEBUG can send output either to the internal VDM driver or to the
PTDOS CONOUT driver; the V command changes the output driver from
CONOUT TO VDM, or vice-versa. When the program is first executed,
output is sent to the CONOUT driver. (Normally, this is also the
video display.)

2-4 DEBUG

The internal VDM driver has a variable speed option: while output is
being displayed, it is possible to alter the speed of the display by
striking a key representing one of the digits (@ is fastest, 9 is
slowest). Output can be suspended temporarily by the space bar and
reactivated by any other key. The default display speed is 2.

SET LOG FILE SLfile<cr>

The L command opens a named PTDOS file to receive output from the
debugger. (All output will also go to the CONOUT driver or the
internal VDM driver.) When DEBUG begins execution, output is set to
go only to CONOUT; the first time that the L command is entered, the
named file is opened.

If the L command is entered without a filename, the debugger will
either start or stop sending output to an open log file, whichever
action would change the condition that existed when the command was
given. Once open, a log file is closed only by an exit from the
debugger.

EXAMPLE:

>SLNOTES/1<cr> (command to open a file NOTES on unit 1)

> (NOTES is opened)

cacn (other commands entered)

>$L<cr> (output will no longer be sent to NOTES)
> (NOTES is closed; NOTES2 is opened) oo
e eae (other commands entered)

>$L<cr> (output will be sent to NOTES again)

SET OUTPUT MODE TO HEXADECIMAL $H<cr>

This command determines that when the content of a memory location is
examined (expr/ command), it will be displayed as a hexadecimal
number. (The commands to examine memory are in Group 3.) The default
mode for output is Hexadecimal; it is therefore unnecessary to specify
this mode unless another mode is in force.

SET OUTPUT MODE TO INSTRUCTION FORMAT $I<cr>

This command determines that when the content of a memory location is
examined (expr/ command) or dumped (W command), it will be decoded
into the corresponding 8680 instruction mnemonic. (The twelve
undefined operation codes are output in Hexadecimal.) In Instruction
mode, DEBUG will assume that the location given by the expression in
the expr/ command is the first byte of an instruction. If the
location specified in the command is, in fact, the second or third
byte of a multiple-byte instruction, DEBUG will still decode the byte
as an assembly language instruction mnemonic, and the result will not
reflect what is actually happening in the object code.

2-5 DEBUG

There are two exceptions to the rule that every byte displayed in
Instruction mode will be displayed as an 8#8# instruction mnemonic.

If the W command is entered while Instruction mode is set, or if expr/
specifies the first byte of a multiple-byte instruction and the
linefeed key is used to examine the next location(s), the DEBUG
program will display the second and third bytes of instructions in
Hexadecimal format.

SET OUTPUT MODE TO CHARACTER $C<cr>

This command determines that when the contents of memory are examined
(expr/ command), any value that corresponds to the code for a
printable ASCII character will be displayed as that ASCII character.
Any value that does not correspond to a printable ASCII character will
be printed as a hexadecimal number.

EXIT TO PTDOS SE<cr>

This command terminates execution of the debugger and returns to
PTDOS. At this point the altered program may be saved from memory, oOr
its source may be altered by one of the PTDOS editors. If the program
is going to be saved from memory, all current breakpoints must be
removed before the E command is entered.

GROUP 2: B sets a breakpoint; D deletes a breakpoint.
T displays all breakpoints; K deletes all breakpoints.
A and Z set breakpoint mode.
R and P begin and restart program execution.

SET BREAKPOINT $Bexpr<cr>

This command sets a breakpoint at the location specified by the
expression expr. A breakpoint causes program execution to stop
immediately BEFORE the execution of the instruction at the specified
address; for this reason it is not permissible to set a breakpoint on
the second or third byte of a multiple-byte instruction.

There may be as many as fifteen breakpoints set at any given time.

DELETE BREAKPOINT $Dexpr<cr>

This command deletes the breakpoint currently set at the location
specified by the expression expr. If there is no breakpoint at the
specified address, a question mark will be printed.

DISPLAY ALL CURRENT BREAKPOINTS $T<cr>

This command causes the addresses of all current breakpoints to be

displayed; thus it becomes evident how many breakpoints have been set
and whether there are any that can be deleted.

2-6 DEBUG

EXAMPLE:

>$T<cr> (command to type out current breakpoints)
4075 (addresses at which breakpoints have been
4089 set with the B command)
41062

KILL ALL CURRENT BREAKPOINTS SK<cr>

This command deletes all of the breakpoints that have been set. Once
a program has been debugged, it can be executed normally from within
the debugger if all breakpoints have been removed. If the altered
version of a program is going to be saved following a return to PTDOS,
it is necessary to delete all breakpoints before entering the E
command.

SET BREAKPOINT MODE TO STATIC $ALcr>

This command determines that breakpoints will NOT be deleted after
they are encountered, that is, that execution will stop again every
time a breakpoint address is reached. Static mode is set when the
debugger is entered.

SET BREAKPOINT MODE TO REMOVE $Z<cr>

This command determines that breakpoints WILL be deleted after they
are encountered. Execution will stop only the FIRST time that the
breakpoint address is reached.

PROCEED FROM A BREAKPOINT $P{n}<cr>

This command causes program execution to resume after a breakpoint has
been encountered and related examination or modification of the code
has been completed. Execution will continue, beginning at the
instruction that caused the break, and will proceed until the next
breakpoint is encountered. All registers will be loaded with values
that reflect the modifications that have been made; a register or flag
whose value has not been modified will retain the value that it
contained when the breakpoint was encountered.

If a number is given after the letter P, the command is taken to mean:
proceed with execution and do not stop again for this breakpoint until
it is encountered for the nth time. For example, the command $P5<cr>
will cause the breakpoint just implemented to be bypassed four times;
all other breakpoints will be implemented normally. The default for n
is 1; that is, normally execution will proceed, and any breakpoint
that has not been deleted or removed will be implemented normally.

BEGIN EXECUTION SRexpr<cr>

This command will start execution of a program at the location
specified by expression expr. The R command is used to execute a
program at its starting address; it should not be used to proceed from
a breakpoint, because the values of registers and flags will not be
restored! (The P command, by contrast, restores the values of
registers and flags.)

2-7 DEBUG

GROUP 3: X displays CPU registers and flags.
W dumps a series of memory locations.
F fills a series of locations with a given value.
S searches a series of locations for a given value.
expr/ displays the contents of location expr.
expr= displays the value of expr in Hexadecimal.
expr# displays the value of expr in Decimal.

DISPLAY CPU REGISTERS AND FLAGS $Xr<cr>

This command is used to examine and modify the values of CPU registers
and flags after a breakpoint has been encountered. The r in the
command format represents a symbol for the register that is to be
examined or modified. If no value is specified for r, the values of
ALL registers and flags are displayed. The carriage return is NOT
required if a value is specified for r.

SYMBOLS DESIGNATING REGISTERS AND FLAGS

Here is a list of the symbols for registers and memory. Any of these
symbols may be used as the r element in the X command.

for the Accumulator
for register B

for register C

for register D

for register E

for CPU Flags

for register H

for register L

for the content of the memory location
to which H and L point
for Program Counter
for Stack Pointer

Frommoaow >

0 o

These are the symbols for the flags. The X command will not display
the value of an individual flag; rather, the flags are displayed as a
group when F is specified in the X command.

for the Sign flag

for the Zero flag

for the Auxiliary Carry flag
for the Parity flag

for the Carry flag

for no flag

ZQwronn

MODIFYING A REGISTER OR FLAG

In order to modify a register or flag, enter the X command, following
the letter "X" with the symbol that designates the register. To
modify one of the flags, type $XF<cr>, NOT the symbol that stands for
the particular flag! 1If the letter "X" is followed simply by a
carriage return, the values of all registers and flags will be
displayed again.

2-8 DEBUG

When the X command is entered, the value of the named register will be
displayed.

EXAMPLE:

>S$XB (command to display register B)
B=52 (hexadecimal value of register B)

If you do not want to modify the register, after all, type a carriage
return to re—enter command mode. If you DO want to modify the
register, enter a new value at the cursor position, without inserting
additional punctuation or spaces. The value that you enter will
replace the value currently in the register. Follow the entry with a
space or a carriage return; a space dictates that the next register be
displayed (on the current line), while a carriage return effects a
return to command mode. To modify the value of a flag, enter the
symbols of all flags that are to be set, whether or not they are set
already.

>$XF<cr> (examine flags)

F=87ZC SZP<cr> (sign, Zero, and Carry flags already set;
user sets Parity, alters carry so no
longer set)

> (back in command mode)

DUMP MEMORY $Wexprl{,expr2}<cr>

This command causes the contents of a specified section of memory to
be displayed in the current output mode (see Group 1l). If the mode is
not Instruction format, memory will be dumped with fourteen bytes
represented on each line: first all bytes are displayed in
Hexadecimal, and then all are displayed as characters. (A period will
be printed if the value of the byte does not correspond to a printable
ASCII character.) 1In Instruction format, memory will be dumped in
decoded format, with one instruction per line and the second and third
bytes of multiple-byte instructions represented in Hexadecimal.

Memory will be dumped starting at the location specified by exprl and
continuing to that specified by expr2. If no value is specified for
expr2, the value exprl will be used; the dump will continue as though
memory were circular, starting at exprl and continuing past 65535 to
@, finally stopping when the byte before exprl is reached. To
terminate a dump before it reaches expr2, type MODE SELECT or CTRL-@.

>$W1060,1108<cr>
6106 01 07 68 21 50 60 11 65 60 78 B1 C8 #B 7E ...!P..€.Xueu."
P1PE 12 24 14 .S.

FILL MEMORY WITH A GIVEN BYTE SFexprl,expr2,bb<cr>

This command fills memory from exprl to expr2 with byte bb. If exprl
and expr2 are guite far apart in memory, a few moments may pass before
the prompt (>) reappears on the screen.

2-9 DEBUG

SEARCH MEMORY FOR A GIVEN BYTE $Sexprl,expr2,bb, {mm}<cr>

This command searches memory from the location specified by exprl to
that specified by expr2 for byte bb, using mm as a mask.

As each byte is examined, it is ANDed with mask mm and then checked
for equality to byte bb. If the gquantities are equal, then the memory
address and the byte at the address are printed. If the mask is not
specified, it will be assumed to have the value @FF Hexadecimal, i.e.,
all bits will be compared.

EXAMPLE:
>$52346,2375,4C<cr> (search for 4CH, using default mask)
2357 4C (4C is found at location 2357)
>$85261,5269,0,1<cr> (search for even numbers)
5261 C2 (even numbers found at five locations)
5263 52
5264 3E
5265 6E
5266 90

EVALUATE EXPRESSION OR EXAMINE MEMORY expr=, expr#, expr/

If an expression is entered and followed immediately by an equals sign
(=), the expression is evaluated and the result is displayed as a
Hexadecimal number.

>5*%6=001E (result displayed in Hexadecimal)

If an expression is entered and followed immediately by a pound sign
(#), the expression is evaluated and the result is displayed as a
Decimal number.

>5*6#00030 (result displayed in Decimal)

If an expression is entered and followed by a slash (/), the
expression is evaluated and the content of the memory location denoted
by the expression is displayed in the current output mode (see

Group 1).

>$H<cr> (output mode set at Hexadecimal)
>134%2/ 48 (value of location 17 Decimal is
displayed in Hexadecimal output mode)

Note that none of these commands requires a carriage return.

In the rules for expressions (see Subsection 2.1), an expression was
defined as POINTING to an address in memory. Actually, in the case of
an expression followed by an equals sign or a pound sign, the
expression need not denote a location that is to be examined; any
arithmetic problem whose result will lie between @ and 65535,
inclusive, can be entered, even if the computer being used does not
have any memory at the designated location. If the expr/ command is
entered and there is no memory at the specified location, the result
will be FF in Hexadecimal mode, RST @7 in Instruction mode.

2-189 DEBUG

Once expr/ has been entered and the location has been displayed,
several different entries are possible.

A CARRIAGE RETURN effects a return to command mode.

A SINGLE QUOTE MARK (') causes the value of the location to be
displayed in Character mode (without changing the current mode setting
for the debugger).

>SH<cr> (set output mode to Hexadecimal)
>5002/ 50 ' P<cr> (value displayed in Hex, then as
> Character; return to command mode)

A SEMI-COLCON (;) causes the byte to be displayed in Instruction
format; the location is assumed to be the first byte of an 8080
instruction. The current mode setting for the debugger is not
altered.

>S$SH<cr> (set output mode to Hexadecimal)
>1234/ 39 ; DAD SP<cr> (value displayed in Hex, then as
> Instruction; return to command mode)

An EQUALS SIGN (=) causes the contents of the present memory location
to be displayed in Hexadecimal, without changing the current mode
setting for the debugger.

>$I<cr> (set output mode to Instruction)
>025F/XCHG =EB<cr> (value displayed as Instruction, then
> in Hex; return to command mode)

A DOUBLE QUOTE MARK (") followed by a character specifies that
character as a replacement for the current value of the location.
Replacement input must be terminated by a carriage return, linefeed,
or up arrow; each of these delimiters will also perform the function
ascribed to it elsewhere in this list, e.g., a linefeed will delimit
replacement input and then cause the next location to be displayed.
If an attempt is made to enter more than one character following a
double quote mark, DEBUG will respond with a guestion mark and will
not accept either character entered.

>$C<cr> (set output mode to Character)

>47D8/ @ " B<cr> (value displayed as Character, replaced
>./ B<cr> with letter B; new value displayed)

> (return to command mode)

(In this example, the period is used to designate the last location
displayed; see the rules for expressions in subsection 2.1, above.)

A COLON indicates that subseguent input is an instruction. It is
possible to enter a multiple byte instruction in place of a single
byte instruction; input will be placed in successive memory locations
and the previous contents of those locations will be overwritten.
Such a disturbance of the previous contents of memory will seldom be
desirable.

2-11 DEBUG

To enter a replacement in Instruction format, type the mnemonic for
the instruction, rather than the corresponding machine code. The
standard Intel instruction mnemonics have been implemented. (See the
appendix of 8080 Operation Codes.) Most of the standard symbolic
names for registers may be used in the operand field; the two
exceptions are that "P" should be used to denote the Program Status
Word (PSW) and "S" should be used to denote the Stack Pointer (SP).
The instruction must be entered immediately after the colon. Use a
single blank to separate operands from the operation code, and a comma
to separate two operands. Terminate the input with a carriage return,
linefeed, or up arrow; any of these delimiters will first delimit the
input and then perform the function ascribed to it elsewhere in this
list, e.g., a carriage return will delimit the input and than cause a
return to command mode.

>$H<cr> (set output mode to Hexadecimal)

>2113/ 1C ;INR E : INR C<cr> (value displayed in Hex, then as

> Instruction; Instruction input
and return to command mode)

A LINEFEED causes the contents of the next location to be displayed.
If the current output mode is Instruction mode and the last location
examined was interpreted as the first byte of a multiple-byte
instruction, the next one or two locations, if examined by means of
the linefeed, will be displayed in Hexadecimal.

>$I<cr> (set output mode to Instruction)
>50062/M0V D,B <linefeed> (value displayed; display next
5003 LXI SP, <linefeed> location, and next...)

5004 3E <linefeed> (second and third bytes of multi-byte
50605 F5 <cr> instruction are displayed in Hex)
> (return to command mode)

An UP ARROW (") causes the content of the previous location to be
examined. If the current mode is Instruction mode, the location will
be assumed to be the first byte of an instruction (whether or not this
is actually the case) and will be decoded into an 8680 instruction
mnemonic. (Consider that whereas it is possible to determine from an
operation code how many subsequent bytes are part of the instruction,
it is not always possible to tell whether or not PRECEDING bytes are
operation codes.)

>S$C<Lcr> (set output mode to Character)
>2306/ G © (value displayed as Character)
2299 U<cr> (value of previous location displayed)
> (return to command mode)
2-12 DEBUG

Load user program (or program to be examined)
and DEBUG or DEBUG3
*file,DEBUG

v

Determine output file(s) - V and L commands

v

Set breakpoints - B command

Set breakpoint mode - A or Z

v

ExXecute user program - R command

KF

\V4 V4

Examine & modify <] Set output mode -

registers & flags - X command E: H, I, or C command

v T

Examine memory -
expr/, W, F, S commands

v v

Determine possible changes in breakpoints - T, K, D commands

\VZ \V/

Kill all remaining Proceed with execution -

breakpoints - K command P command

v

Exit DEBUG - E command

v

Save debugged version of program -
*IMAGE file,addl,add2,...startadd

v

Correct source program - *EDIT source

Fig. 2-1 Typical Procedure for Using DEBUG to Debug A Program

2-13 DEBRUG

2.4 A WALK THROUGH THE DEBUGGER

The example below illustrates the use of DEBUG to locate and correct
the errors in an assembly language program. The next few pages
consist entirely of tutorial material; they do not contain any
additional information about the features of the debugger. The figure
on the facing page is a generalized diagram of the process of using
DEBUG to debug a program. This figure and the command summary in
subsection 2.2 are intended to serve as your quick reference materials
after you have read the detailed descriptions in the rest of the
manual.

SAMPLE PROBLEM

Below is the assembler listing of a routine just added to a large
program called TEST. The purpose of this routine is to move BC bytes
of information from one area of memory to another. When the routine
is first called, the H and L registers point to the first of BC
consecutive locations occupied by the information to be moved; the D
and E registers point to the first of BC consecutive locations to be
occupied by the same information when control returns to the calling
routine. The calling routine prints out the BC bytes beginning at the
location to which the first byte was moved.

p1oB 78 BMOVE MOV A,B
161 Bl ORA C
glo2 C8 RZ .
163 0B DCX B
9104 7E MOV AM
9185 12 STAX D
pgloe 24 INR H
0167 14 INR D
9128 C3 0@ 01 JMP BMOVE

Let us assume that we have run TEST in PTDOS, and that where we would
expect 7 bytes, the characters F, I, D, D, L, E, and S, to be printed
out as the ASCII string FIDDLES, we see a good first character 'F'
followed by a great deal of suspicious screen activity. (Write and
execute a program that calls BMOVE and then prints out about 100
bytes, beginning at the location indexed by D and E at the time of
the call.) Let us also assume that we do not immediately recognize
the bugs in the program, and that we decide to use the debugger to
take a closer look at the BMOVE routine during its execution.

Remember that the symbol > is the prompt character and should not be
typed. Also, $ signifies the ESCape key, not the dollar sign.

1) LOAD DEBUG or DEBUG3 from PTDOS
*TEST,DEBUG<cr>

TEST is loaded but not executed. DEBUG is loaded and executed.
RST? 3

DEBUG asks user to assign restart location. User enters 3.

2-14 DEBUG

2) DETERMINE OUTPUT FILE(S) with L and/or V commands
>SLSAVE<Lcr>

Output will be sent to the PTDOS file called SAVE, as well as to the
default output file, i.e., the CONOUT driver. (The V command could be
used to direct output to the internal VDM driver, rather than to
CONOUT.)

3) SET BREAKPOINT(S) with B command
>SB@l@2<cr>

Because only the first byte of information appears to have been moved
properly (see description above), it is worth checking whether the
BMOVE loop is executed only once, that is, whether the zero flag is
set and causes a return the second time the RZ instruction is reached.
By setting a breakpoint at @102H, we can examine the condition of the
flags at the time of the RZ instruction. (More breakpoints could, of
course, be set; to simplify this example, we set only one at a time.)

4) SET BREAKPOINT MODE with A or % command
>SALcr>

Breakpoints will not be deleted automatically after they have been
encountered once. The distinction between the modes is relevant here,
because the breakpoint at @102H will give useful information only the
second time it is encountered. (It is actually unnecessary to use the
A command, unless the Z command has been used previously; Static
breakpoint mode is set when the DEBUG program begins to run.)

5) EXECUTE USER PROGRAM (or program to be examined) with R command

>SR1208<cr>

The address specified in this command is the starting address of the
program called TEST. Execution will proceed until it reaches the

breakpoint address; then that address and the contents of all
registers and flags will be displayed.

*§102
A=07 B=00 C=07 D=00 E=65 F=N H=00 L=50 M=46 S=625C P=0102

Assuming that we intended to move 7 bytes of information beginning at
address 50 to consecutive addresses beginning at 65, all is well so
far. The STAX operation will put the value 46 (or ASCII 'F') in

location G6@65H. (M represents the value of the location addressed by
H and L.)

SET OUTPUT MODE with H, I, or C commands
EXAMINE MEMORY with expr, W, F, or S command

For good measure, we can EXAMINE MEMORY to make sure that the
characters ¥, I, D, D, L, E, and S are actually stored at consecutive

2-15 DEBUG

locations beginning at 5¢0. The W command can be used to display the
locations; output mode does not need to be set to Character, because
in the default Hexadecimal mode the dump will appear both in
Hexadecimal and in Characters.

>$W58,56<cr>
P50 46 49 50 44 4C 45 53 FIPDLES

The dump shows that the third character is incorrect. To insert the
correct character at address 52, we can enter

>$C<cr>
to set the output mode to Character, and then
>52/

to display the contents of location 52. The contents of the location
will be displayed right after the slash. To enter the correct
character, we type a double quote ("), the character, and a carriage
return. Now the line looks like this:

>52/ P " D<cr>

Of course, the fact that there was a P instead of a D at location 52
does not account for the fact that the program does not run properly.

6) DETERMINE POSSIBLE CHANGES IN BREAKPOINTS with T,K,D,B

In this instance, we have no real reason to type out or delete our one
breakpoint, but we might want to add a breakpoint at address @1l08H.

By looking at the registers at that point, we can see whether the
locations addressed by HL and DE are what we would expect them to be,
i.e., whether the value of each of these register pairs has been
incremented by 1.

>SB@P108<cr>

7) PROCEED FROM BREAKPOINT with P command
>$P<Lcr>
Execution will continue until the next breakpoint is encountered.

*P168
A=46 B=0b C=06 D=01 E=65 F=N H=@01 L=50 M=2E S=625C P=0108

From this display of the values of registers and flags, it becomes
clear that the register pairs that address memory locations have
actually been incremented not by 1, but by 180H (256 Decimal). 1In
order to verify that data is actually being stored at every hundredth
(or 256th) address, we can proceed with execution until the next time

2-16 DEBUG

0108H is reached. Then we can use other commands to examine memory
locations in the areas from which and to which we want to move our
data. To proceed with execution, we enter the command

>$P<cr>

(We will not delete the breakpoint at #1862, because we might want to
look at it again; the next time that breakpoint is encountered,
however, we can ignore it and Proceed with execution.)

When we reach 0108, the values of registers and flags are:

*0168
A=2E B=0#@ C=05 D=02 E=65 F=N H=02 L=50 M=06 S=625C P=0108

8) EXAMINE MEMORY with the expr/ command

If we enter the command to examine locations 156 and 165, we can
indeed see that the second byte to be moved was taken from location
150 and moved to 165, instead of being taken from location 51 and
moved to 66.

>150/ @<cr>
>165/ @<cr>

If we look at location 66, we find whatever value was at that location
when the debugger began its operation:

>66/ .<cr>

If our sample routine were not so short, we might want to use the
MEMORY SEARCH (S) command to locate the part of the program containing
the INX instructions. The table of 8080 Operation Mnemonics in the
ASSM subsystem manual indicates that INX H, which should be one of our
instructions, corresponds to the Hexadecimal value of 23. 'To search a
section of memory above our most recent breakpoint, we can enter

>$5100,188,23<cr>

only to find that the BMOVE routine does not contain an INX H
instruction at all!

Using the expr command to EXAMINE MEMORY, we can look at the code in
the same area that we just searched for INX. First we shall change

the output mode to Instruction, so that we will see the contents of

memory as a series of assembly language instructions, rather than as
Hexadecimal numbers.

>S$I<cr>
>01060/ MOV A,B<linefeed> (you enter the linefeeds)
0101/ ORA C<linefeed>
9162/ RZ .<linefeed>
etc.
§166/ 1INR H<linefeed>
@167/ 1INR D<cr>

2-17 DEBUG

Now the cause of our troubles is clear: instead of adding 1 to each
of the register pairs HL and DE, we have added 1 to each of the single
registers H and L. By examining locations @1€6 and @187 again, we can
change the two INR instructions to INX instructions and solve our
problem. The colon indicates instruction input.

>0186/ INR d :INX H<linefeed>
@1a7 INR b :INX D<cr>

9) EXAMINE AND MODIFY REGISTERS AND FLAGS with X command

We have found the bug in BMOVE and want to continue running TEST,
rather than reinitiate execution of that calling program. We can use
the X command to modify several registers, and so backtrack in our
execution of the program to a point before BMOVE first put an
incorrect byte in an incorrect location.

Remember ,we are still at a breakpoint. The X command without a
register specification will cause the contents of all registers and
flags to be displayed:

>S8X<cr>
A=2E B=00 C=05 D=02 E=65 F=P H=f2 L=50 M=06 S=625C P=0108

The bug in BMOVE caused all bytes but the first to be moved to
incorrect locations in memory. To backtrack to the point from which
we want to reinitiate execution, we must alter the following
registers:

C, so that BC indicates that the last 6 of the 7 bytes
that compose the (English) word FIDDLE must still be
moved:

>$XC
C=05 06

D and E, so that they point to the next location
to which information should be moved:

>$XD

D=2 00

>SXE

E=65 66 and

H and L, so that they point to the next location
from which information should be taken.

>SXH
H=02 00
>$XL
L=50 51

2-18 DEBUG

10) KILL ALL BREAKPOINTS using K command

Before either proceeding with execution or exiting to PTDOS to save
the file, we kill all current breakpoints. 1In order to have used
almost all possible commands in this example, we may as well type out
the breakpoints first with the T command.

>$T<cr>
B1o2
2198
>SK<cr>

11) EXIT DEBUG with the E commandg
>SE<cr>
This is the command to return to PTDOS. Once in PTDOS, we can use the

PTDOS IMAGE command to save the object file, and either EDIT or EDT3
to alter the source code file.

N
I

19 DEBUG

EDIT*

A TEXT EDITOR FOR PTDOS 1.5

TABLE OF CONTENTS

SECTION
1 INTRODUCTION. ¢ ettt veenoeooecacsccsoannns ceecescsane
2 OPERATION........ S e e e e e s e escar s et e s eceneecses e

2.1 COMMAND FORMAT...:eeuoaeoens

® 6 0 06 00 00 00 00 0.0

2.2 STARTUP....c.ieeeennenas cecetsecsssectccccccsoe
2.3 MEMORY USAGE........ sessssssssseesssssessane
2.4 TERMINATION......coeeevoacosccsasns ceceeccans
3 EDITOR COMMANDS ..ttt eeeeeenocecassssssssssscsscss

3.1 CURSOR AND FILE POSITIONING.

3.2 STRING SEARCH.....ieveesncensosscnccna

3.3 FILE MODIFICATION...veeeeass

® o s 6 0 0 0

3.4 EDITOR CONTROL...:eeveeeceossenscnns .o

3.5 EXTENDED COMMANDS....00eeees

*This manual describes EDIT, Release 1.1.

.

¢ e 00 0 00

e o s 0 0

EDIT

EDIT

A

o

SECTION 1

INTRODUCTION

The EDIT command initiates execution of a text editor program intended
for use with the Sol video display or the VDM-1. When the EDIT
command is given, the named file is read into memory and the first
sixteen lines are displayed on the screen. The user may then either
edit the file using single-letter control character commands, or, in
the case of a new file, simply begin entering text as though on a
typewriter, with all typed material appearing on the screen and all
editor commands available for making corrections.

The single-letter control character commands make it possible to move
the cursor anywhere on the screen, or to move through the file so that
any desired 16 lines of text are visible. Characters or entire lines
may be inserted, deleted, or moved from one part of the file to
another. Text may be scrolled up and down, i.e., it is possible to
move either backwards or forwards in a file and to stop this process
when the desired part of the file is visible. There are also
provisions for searching a file for particular strings of characters,
replacing every occurrence of a given string with another string, and
inserting another whole file into the text being edited.

At the conclusion of editing, a file may be written back to itself as
an update, or it may be written to another named file, if several
slightly different versions of one file are needed, or if a back-up of
the same file is desired. Editor commands may also be used to divide
a file into two or more files, if the original file becomes too long.
The entire edited file is in memory at once, so it is even possible to
choose NOT to save the file after editing. (This feature might be
used if if you made extensive corrections and suddenly realized they
were not appropriate.)

This editor accepts lines containing no more than 64 characters.

There is no minimum line length. (Unlike the earlier version of EDIT,
this version does not add blanks to lines containing fewer than 4
characters.)

1-1 EDIT

i,

R

SECTION 2

OPERATION OF EDIT

This section provides a general overview of the operation of EDIT.

2.1 COMMAND FORMAT

EDIT <from file> {,<to file>}{,<top of memory>}

where:
file
{ }

/unit

<A>

<from file>

<to file>

<filename {/unit}{<a>}>
optional parameters

disk drive unit number. If this parameter is not
included, the default unit number is used.

ALS-8 format file. 1In an ALS-8 format file, the
first byte of each line is a count of the number

of bytes in that line, including itself and the
carriage return. If this parameter is not included
in the file name, the file is assumed NOT to be

in ALS-8 format.

Note: the characters '<' and '>' are part of
the <A> file format specification:

TESTFILE<A> is an ALS-8 format file on the
default unit.

FILE.ONE/1<A> is an ALS-8 format file on unit 1.

NAME/1A is an illegal file name.

the file that contains the text to be edited.
This file will be loaded into memory when the
EDIT command is entered.

the file to which the edited file will be written
at the conclusion of editing. If no <to file> is
specified, the file is written back to the

<from file>.

2-1 EDIT

<top of memory> = the highest memory address to be used by the
edit operation. This address defines the end of
the text area. (The text area starts right after
the EDIT program code.) A file that exceeds the
size of the text area will not be loaded, and any
operation on a file in memory will not be
executed if it would make the file too large for
the available area. The default for this
parameter is either the last good memory location
or the lowest PTDOS system address (GLLOW).

2.2 STARTUP

The <from file> is read from the disk into memory for editing. If the
named file does not exist, the editor asks whether a new file by that
name should be created:

file is non-existent. Create?

If the character 'Y' is typed, the file will be created with type =
'.' (period) and the block size = 4C@H, and the new (empty) file will
be loaded into memory. (This procedure is one of the ways of creating
a new file in PTDOS.) If a character other than 'Y' is typed, control
will return to PTDOS.

If the <to file> is open or write protected, the <from file> cannot be
edited. If either of these conditions applies to the named (or
default) <to file>, the editor will indicate that

<file name> is open
or
<file name> is protected

Control will then be returned to PTDOS.

When a file is loaded successfully, the following information is
presented:

Last load addr: 1lEBA ... last memory address of the file
Load count: 0EF8 ... byte count of the file
End of file at: 1EBA ... end of file mark (@1l) address

C/R to continue

As soon as the carriage return (C/R) is entered, the first sixteen
lines of the file are displayed on the screen, with the cursor at line
1 and character position 1 (column @). If the file contains fewer
than sixteen lines, the remainder of the screen will be filled with #
signs. The file is now ready for editing.

2.3 MEMORY USAGE
The EDIT program is read into memory starting at location 1@8@H. The
<from file> is then read intc a file area beginning just after the

EDIT program code, and ending at the top-of-memory specified in the
EDIT command. If a top-of-memory address was not specified, the

2-2 EDIT

editor tests the memory of the computer and assigns a top-of-memory
address; this address can never exceed GLLOW, the lowest address

occupied by PTDOS. (The value of GLLOW can be altered with the SET
BU= command described in the Commands chapter of the PTDOS manual.)

The entire <from file> must fit into available contiguous memory. If
an edit operation would increase that size of a file so that the text
would no longer fit in the text area, a message appears on the cursor
line:

FULL - TYPE CONTROL Q

The offending operation will not be performed. After typing the CTRL
and Q keys simultaneously, the user should either shorten the file by
removing text, or leave the editor by typing the CTRL and F keys. 1If
the second alternative is chosen, the file will be written back onto
the disk; the editor can then be used to create a continuation file,
or to split the large file into two smaller files, so that further
additions can be made to each. (The discussion of EN and ST, below,
contains a step-by-step procedure for splitting a file.)

2.4 TERMINATION
There are two ways to terminate the editing of a file:
1) The ESCAFE key aborts the EDIT program.

If the user does not wish to save the file in memory by writing it to
the <to file>, the ESCAPE key should be used to abort the EDIT
program. When this command is given, the question

Abort?

appears on the screen. If the character 'Y' is typed in answer,
control is passed back to PTDOS and no file update occurs. The <from
file> still resides on the disk, just as it did before the edit. 1If
any character other than 'Y' is typed, the editor will re-display the
file with the cursor and file position just as it was before the abort
command was given.

2) CTRL and F keys terminate EDIT and update the file.

When the CTRL and F keys are typed simultaneously, the following
information appears on the screen:

PFC3 File start address ... first memory address of file
2B3B File end address ... last memory address of file
1B79 File count ... byte count of file

OK to write to "<file name>"?

Type 'Y' to write to the <to file> and return to PTDOS. Type any
other character to return to the editor. If any character other than
'Y' is typed, the editor will re-display the file with the cursor and
file position just as it was before the exit command was given.

2-3 EDIT

If a <to file> was specified in the EDIT command, the contents of the
text area is written to that file at the conclusion of editing. If
the named <to file> does not exist on the disk, it is created with a
type of '.' and a block size of 4C@H. 1If the <to file> parameter was
omitted from the EDIT command, the <from file> is updated with the
edited material. (Remember that when you write to a file, you write
over the previous contents of that file.)

The editor may be used to convert an ALS-8 file to non-ALS-8 format,
or vice-versa:

EDIT name<A>,name

loads an ALS-8 format file; when that file is written back onto the
disk, it will no longer be in ALS-8 format.

2-4 EDIT

S

SECTION 3

EDITOR COMMANDS

In the introduction to this manual, it was explained that the editor
can be used for two purposes. By entering the EDIT command and the
name of a file that does not yet exist, one can create that file and
use the editor to enter text (e.g., a program, a letter) for the first
time. In this context the control character commands permit
corrections to ke made conveniently; it is possible to retype words,
restructure paragraphs or other segments of text, without having to
retype the surrounding material. The other use of the editor is to
make alterations in existing text files (probably created in the same
editor on an earlier occasion).

Below is a list of the control keys used by the editor. A more
complete description of each command is given after the list. To
enter a control character, type the CTRL key and the named letter key
at the same time.

CONTROL KEYS:

CTRL/ W ~ move cursor up one line v

CTRL/ Z ~ move cursor down one line Vv

CTRL/ A - move cursor left one character v
CTRL/ S ~- move cursor right one character v
CTRL/ I -~ move cursor to next tab stop

CTRL/ E =~ ecroll file up one line %

CTRL/ X - scroll file down one line »

CTRL/ R -~ scroll file up 16 lines v

CTRL/ € - scroll file down 16 lines:

CTRL/ Q ~ home cursor to line 7; also escape from FULL
CTRL/ T - toggle insert character mode; ON/OFF «
CTRL/ Y -~ repeat next command n times v

CTRL/ H ~ delete character under cursor ./

CTRL/ B ~ insert line above cursor

CTRL/ P ~ delete lineY

CITRL/ O =~ initiate string search mode

CTRL/ L ~ continue search for string

CTRL/ V -~ set TAB/BLOCK MOVE/NULL/LL/FL/ST/EN/PA/IF
CTRL/ U =~ execute TAB / BLOCK MOVE

CTRL/ F =~ exit editor with file update

CTRL/ M ~ same as RETURN (below)

CTRL/ J ~ same as LINEFEED (below)

3-1 EDIT

OTHER KEYS:

/

TAB - same as CTRL/ I
LOAD - same as CTRL/ L
ESCAPE ~ abort editor with no file update °
RETURN ~ insert line below cursor
LINE FEED ~ delete all text to the right from the cursor

& position cursor one line down

Sol KEYS:

CURSOR UP ~ move
CURSOR DOWN -~ nove
CURSOR LEFT -~ move
CURSOR RIGHT - move

NOTE:

The cursor keys on a

cursor
cursor
cursor
cursor

up one line (same as CTRL/ W)

down one line CTRL/ Z)

left one character (same as CTRL/ A)
right one character (same as CTRL S)

Sol are on either side of the space bar.

3-2 EDIT

3.1 CURSOR AND FILE POSITIONING

The cursor marks the position at which the next typed character will
appear on the screen (and so, also, in the file in memory). In
general, any character entered from the keyboard, except a control
character, will replace the character at the cursor position. (There
is a special command that makes it possible to insert text at the
cursor position without "typing over" any other characters. That
command, the CTRL/ T command, will be described later.)

The cursor positioning commands, themselves, do not affect the
contents of the file in memory; their purpose is to move the cursor to
the desired position on the screen, so that insertions or changes may
be made there.

CTRL/ W move cursor up one line

CTRL/ Z move cursor down one line
CTRL/ A move cursor left one character
CTRL/ S move cursor right one character

Note that the keys A, S, W, Z form a diamond on the keyboard.

The Sol keyboard also contains cursor control keys to the left and
right of the space bar. These keys may be used with or without the
control key to move the cursor up, down, left or right, as above.

CTRL/ Q cursor home command -~ file FULL excape

This command has two unrelated functions. Because these functions are
useful in two completely different contexts, there is never any
ambiguity as to the user's intentions.

1) ©Unless the file area is full and a warning message has been
displayed, the command causes the cursor to be moved to line 7 and
character position 1.

DO NOT USE THIS COMMAND TO MOVE THE CURSOR UNLESS THERE ARE AT LEAST
SEVEN LINES OF TEXT ON THE SCREEN!!

2) The file area full condition is described above, in the discussion
of how the editor uses memory. CTRL/ Q is the escape from this
condition.

CTRL/ E scroll up one line

CTRL/ X scroll down one line
CTRL/ R scroll up sixteen lines
CTRL/ C scroll down sixteen lines

Screen scroll commands are provided to allow the file to be "rolled"
through the screen area until the desired file line is reached.
Scrolling UP moves the file upward across the screen, so that a LATER
part of the file becomes visible; scrolling DOWN moves the file
downward across the screen, so that an EARLIER part of the file
becomes visible.

3-3 EDIT

CTRL/ I or TAB move cursor to next tab stop

This command moves the cursor to the first tab stop to the right of
the present cursor position, or to the first character position in the
line, if there are no tab stops to the right of the cursor. Tab stops
are set and cleared by means of the TS command (one of the "extended
commands" described in Section 3.5, below).

3.2 STRING SEARCH

These commands permit the user to enter a string of characters and
then search the file quickly for occurrences of the string.

CTRL/ O string search

When this command is given, the screen is cleared and a colon (:)
appears on line 16. At this point the editor expects to receive an
input line consisting of one to thirty-nine characters and a carriage
return. The input line becomes the search string. Any occurrence of
the string, regardless what characters precede or follow it, will be
recognized as a match. Therefore, it is unnecessary to enter more
characters than are required to define the text uniquely, i.e, "the
gu” can be used locate a line containing "the quick brown fox."

After accepting the input string, the editor searches the file,
beginning one line belcw the current cursor line and ending at a
matching string or the end of the file, whichever is encountered
first. Upon finding a matching string, the editor positions the 1line
containing the match at the first line on the screen. If no match is
found before the end of the file, the the first sixteen lines of the
file are displayed. If a match is found, the search may be continued
to the next match of the same string; see the CTRL/ L command below.
To search the entire file, type the CTRL/ and V keys, then the command
FL (see discussion of these commands, below). Next type CTRL/ and O,
and enter the search string. If the CTRL/ L command is used to search
from each string match to the next, all occurrences of the input
string will eventually be found.

CTRL/ L or LOAD continue string search

After a string has been located with the CTRL/ O command, the CTRL/ L
command may be used to search for the next occurrence of the same
string. This command causes the editor to start searching with the
first line below the current cursor line and continue until a matching
string is found or until the end of file is reached. The CTRL/ L
command may be given as often as is desired.

3-4 EDIT

3.3 FILE MODIFICATION
CTRL/ T character insert mode switch (on~off-~on....)

Any input from the keyboard, other than an editor command, is placed
in the file in one of two modes. These modes, normal and insert, are
determined by the CTRL/ T command. Each entry of CTRL/ T changes the
input mode, i.e., if insert mode is on when command is given, the
command will turn it off.

When insert mode is OFF, as it is when the editor is loaded and
whenever the cursor is move to a new line, each input character is
placed at the cursor location, and the cursor moves to the right one
place. When insert mode is on, however, each character is inserted
into the file at the cursor position, moving the character at that
location, and any any characters to the right of the cursor, one
position to the the right. If the line resulting from such an
insertion is more than sixty~four characters long, all characters
after the sixty—-fourth are lost.

CTRL/ h delete character mode

The delete character command removes the character at the current
cursor position and moves each character to the right of the cursor
one position to the left.

CTRL/ B insert line command

The line insert control moves the file down one line from the cursor,
and inserts a new blank line at the 0ld cursor line position. The
cursor is moved to the first character position of the new line. Use
this command to insert a new line 'above' the current line.

CTRL/ M or RETURN scroll up & insert line

Carriage return scrolls up one line and inserts a blank line in the
file. The cursor is moved to the first character position of the new
line. Use RETURN to insert a line 'BELOW' the current cursor
position. No characters on the current line are deleted.

CTRL/ P delete line command

This control removes the current cursor line from the file.

CTRL/ J or LINEFEED blank remaining line

Linefeed deletes the character at the cursor position and all
characters in that line to the right of the cursor. After the
characters have been deleted, the cursor is placed at the first
character position of the following line, and the file is scrolled up
one line.

3-5 EDIT

3.4 EDITOR CONTROL
CTRL/ Y repeat command

This command has three parts: 1) the CTRL and Y keys typed together,
2) the command to be repeated (probably a combination of CTRL and some
other key), and 3) a character representing the number of times the
command should be repeated. The three parts of the command should be
entered in order, without blanks between them. Enter a carriage
return only after the third item in the command.

During the execution of a CTRL/ Y command, the cursor disappears from
the screen. If you are editing a file and the cursor unexpectedly
disappears, assume that you have given the command by accident, and
enter a repeat command that will not affect the contents of your file,
e.g., repeat the CTRL/ S command once.

The editor determines how many times a command will be repeated by
considering the third item of the command with an ASCII bias of 30
Hexadecimal. Thus, the characters 1 through 9 are taken to represent
the corresponding numerical values; to designate a numerical value
greater than 9, type the character whose hexadecimal ASCII value is 30
greater than the number you want to represent. (30 Hexadecimal is 48
Decimal.)

EXAMPLE: To delete 9 characters from the current cursor position,
type

CTRL/ Y CTRL/ H 9 <cr>

LEAVING OUT THE BLANKS.

CTRL/ F

This command is the normal means of exit from the editor. After
giving this command from anywhere in the text area, the user is asked
to confirm the command by typing the letter Y. If the command was
entered accidentally, the user can type another letter and return to
PTDOS. (See the section about LEAVING THE EDITOR.)

ESCape
This command is used to abort an EDIT and return to PTDOS. After

giving this command from anywhere in the text area, the user is asked
to confirm the command by typing the letter Y. If the command was

entered accidentally, the user can type another letter and return to
the text area. (See the section about LEAVING THE EDITOR.)

3.5 EXTENDED COMMANDS
CTRL/ V invoke extended commands

The function of the CTRL/ V command is really to make ten other
commands available. Three of these commands determine the function

3~-6 EDIT

to be associated with CTRL/ U (until that function is altered by
another CTRL/ V), one command determines the tab stops to be
considered by CTRL-I, and the other six are direct commands. When the
CTRL/ and V keys have been entered, the screen is cleared and a colon
(:) appears on line 16. The user is expected to type the code for the
desired function immediately after the colon.

TA <cr> Set CTRL/ U for tab function

When CTRL/ U is set for the TAB function, the CTRL/ U command will
expect one more keystroke to be typed in by the user. This value will
be used to tab the cursor to the corresponding character position in
the cursor line. To indicate a given character position, type the
character whose ASCII value is 30 Hex greater than the value you want
to represent. (The numbering of character positions starts at @, so
type @ to place the cursor over the leftmost character in a line.

When the EDIT program is loaded, the CTRL/ U command is set to perform
the tab function. If either block move or null mode has been set
since the program was loaded, type TA or TAB (and a carriage return)
after the colon. The file area will immediately be displayed again,
with file and cursor positions just as they were when the CTRL/ and V
keys were typed.

BM <cr> Set CTRL/ U for block move function

After CTRL/ V is typed and the colon (:) prompt is printed on the
screen, type BM and a carriage return to set the CTRL/ U command to
move blocks of text from one position to another within the file. The
procedure for moving blocks is as follows:

1) If you have not turned on the block move CTRL/ U option, do so now
(as above).

2) Insert a new blank line above the first line of text to be moved,

and type the letter 'F' (first) in the FIRST character position of the
new line.

3) Next insert a new blank line below the last line of text to be
moved, and type the letter 'L' (last) text to be moved, and type the
letter 'L' (last) in the FIRST character position of the new line.

4) Now, go to the line location of the file where the block of text
lines is to be moved, and insert a new blank line there. Type the
letter 'I' (insert) in the FIRST character position of the new line.

5) Now type CTRL/ U

The block of lines inclosed within the 'F' and 'L' will be removed
from its old position in the file, and inserted into the file at the
'I.' The file will then be displayed with the first line of the moved
text as the first (top) line of the screen. The 'F', 'L', & 'I' lines
will be removed from the file.

3~7 EDIT

NU <cr> Set CTRL/ U for no function

Typing this command in response to the CTRL/ V prompt will turn the
CTRL/ U functions off, i.e., CTRL/ U will have no effect if typed.
FL <cr> Position file to first line

The command causes the file to be displayed on the screen with the
first line at the top of the screen.

LL <cr> Position file to last line

This command causes the file to be displayed on the screen with the
last line of the file at the bottom of the screen.

ST <cr> Set start of file

This command deletes all text above the cursor line, so that the
cursor line becomes the first line of the file. Follow these
instructions carefully to use ST:

1) Position the cursor to the desired line.

2) Type CTRL/ V (colon prompt will appear).

3) Type ST and a carriage return. The file will be displayed with
the new first line at the top of the screen,

All information above the cursor line will be lost if the file is
written back onto the disk after this operation! 1If you have already
given the ST command and decide you really do not want to have lost
everything above the cursor, type the ESCAPE key to abort the edit
operation, and re-load the file with a new EDIT command. (If you
abort EDIT in this manner, you will lose ALL alterations you have made
in the file since you last loaded the EDIT program.)

EN <cr> Set end of file
This command deletes the cursor line and all text below it.

1) Position the cursor to a line ONE LINE BELOW the line that vyou
want at the end of the file.

2) Type CTRL/ V (colon prompt will appear).

3) Type EN and a carriage return. The last sixteen lines of the
file will be displayed on the screen.

Just as with the ST command, the material that you delete with EN will
no longer exist in the file when you write it back out to the disk.

3-8 EDIT

NOTE: how to divide a large file into smaller files

1) Enter the EDIT command, specifying the large file as the <from
file> and creating a new <to file>.

2) sSet the cursor in the middle of the file, enter the CTRL/ V
command, and use EN so that only the first half of the previous file
remains in the file area.

3) Enter the CTRL/ F command and write the contents of the file area
to the new <to file>.

4) Enter the EDIT command, specifying the large file as the <from
file> and creating a second new <to file>.

5) Set the cursor to the same position as in step 2, enter the CTRL/
V command, and use ST so that only the second half of the previous
file remains in the file area.

6) Enter the CTRL/ F command and write the contents of the file area
to the second new <to file>.

7) Kill the large file using the PTDOS KILL command.

PA R{S} <cr> replace pattern

This command allows the user to search for and replace or delete text
patterns within a file.

There are variants of the pattern replacement command:

PA RS -~ Selective Pattern Replacement
PA R ~ Pattern Replacement

PA DS ~ Selective Pattern Deletion

PA D =~ Pattern Deletion

After either of the first two variants is typed, the pattern program
will display:

Pattern:

Type the pattern for which to search the file, and then type the
RETURN key. The program will display:

Replace:
Type the replacement pattern, and they type the RETURN key.

The DELete key may be used to correct an error in the typing of a
pattern.

Upon finding a pattern match in the file, the first form of the
pattern command will display the line in which the match was made and
position the cursor directly below the first character of the matched
text. The user now has the option of allowing the replacement to
occur on this line (type any character other than 'N') or leaving the

3-9 EDIT

line as it is (type the letter 'N'). Use this form if you are not

sure whether to replace all occurrences of the pattern in the file.
If you were to replace all occurrences of 'POP' with 'PUSH', and a

line of the text contained the label 'POPl', the replacement of the
characters 'POP' would produce 'PUSH1'.

If the form PA R is used, all replacements will be made with no
display of matched lines.

It is possible to replace a text string with a new string of a
different character count. In this case, the file will be expanded or
contracted as needed. This may take some time, for example;

replacing all of the single spaces on this page with a single # sign
would only take a second. But replacing all of the spaces with say,
four # signs (####) would take somewhat longer, since each replacement
would require moving the following file down three spaces for each
replacement.

It is possible to overflow a line of text by replacing text patterns
with new patterns of greater length. 1In this case, the pattern
program displays the offending line and a message to the effect that
overflow would occur if the replacement were made. The replacement is
then not made. Type any key except the ESCape key to continue the
pattern replacement procedure. Type the ESCAPE key to abort the
pattern replacement procedure; then enter a carriage return to return
to the text area.

At the completion of pattern replacement a message will be printed
giving the number of times the pattern was replaced. Enter a carriage
return to return to the text area.

The other two forms of the command result in the deletion of the
indicated pattern. PA D and PA DS are similar in operation to PA R
and PA RS, respectively, except that the user is not asked to supply a
replacement pattern, because no patterns are to be replaced.

At any time during the pattern replacement procedure the ESCAPE key
may be typed to abort the operation. All replacements made up to this
point will remain, but no further replacements will be made.

IF <file name> <cr> insert file

If this command is typed after the colon prompt (:), the named file
(an existing PTDOS file with a legal filename) will be inserted into
the file in memory. The insertion begins just BEFORE the current
cursor position. The first line to be inserted pushes all characters
on the right side of the cursor RIGHTWARD in the text area (as though
that line had been inserted with the CTRL/ T command). All subseguent
lines are inserted as a block, pushing the existing text downward; the
file will expand to accommodate new lines (just as though they were
entered from the keyboard) ,unless the insert operation would overflow
the file area.

When the insertion is completed, the cursor is positioned on a blank
line following the last line that was inserted.

3-16 EDIT

TS<cr> set or clear tab stop(s)

If this command is typed after the colon prompt (:), a row of digits
appears on the next line, with the cursor flashing in the first
character position, and inverse video indicating current tab stops.
"Inverse video" means that on a screen that represents characters as
black on a white background, a character at a tab stop will be white
on a black background (and vice versa for the white~on~black setting
of the screen).

To set or clear a tab, use cursor control keys or the corresponding
control characters to move the cursor to the character position whose
status is to be changed; then strike CTRL~I or the TAB key. If that
character position was previously a tab stop, it will no longer be; if
it was not a tab stop, it will be set. Use a carriage return to exit
the tab setting mode.

To move the cursor to the next tab stop, give the CTRL-I or TAB
command in normal editing mode. 1If there are no tab stops set, or if
no tab stops are set to the right of the cursor, the cursor will be
moved to the first column of the current line.

3-11 EDIT

)

EDT3*

A TEXT EDITOR FOR PTDOS 1.5

TABLE OF CONTENTS

SECTION PAGE
1 INTRODUCTION...... t e e e e e e e e e et s c0css00s 00 s eccec e 1-1
1.1 CAPABILITIES...veeeeeoseecaeosessooonccnceaca 1-1

1.2 CONVENTIONS .. :eeeeeeeeeeeeenceoacnsanaansesa 1-1

1.3 DEFINITIONS....veeeeoeooss “eeeecesceevessan . 1-2

2 ACCESSING THE EDT3 PROGRAM..4veveeecoens cececcccsne 2-1
2.1 LOADING. ..ttt eeseossooeeoacnaancsooasscananns 2-1

2.2 EXECUTION. ...ttt eeoaeocaoaccoansoeoaocasnsesns 2-1

3 LANGUAGE ELEMENT S .. ittt eeeeceeeeeeoosaccsooccces 3-1
3.1 COMMAND FORMAT .4 eeueeeeeoeeecacsaoosnannaess 3-1

3.2 COMMAND SUMMARY .4 vveeeeeeeceanoansnsesananas 3-2

3.3 COMMAND STRINGS..ieteeeeeneeecenosacsasaconas 3-6

3.4 COMMAND ERRORS . :iveceeeeoseeeoocneoncoacnncas . 3-6
3.4.1 Character Level: DEL or RUBOUT...... 3-7

3.4.2 Command Level: MODE SELECT or "@.... 3-7

3.4.3 Command Buffer....cceceeeececeeeens .o 3-7

3.5 SPECIAL CHARACTER HANDLING. ... eeeeeoooaaceses 3-7

*This manual describes EDT3 1.1. EDT3 was derived from EDIT3,
a product of LSM Engineering. Portions of this manual are subject

to copyright by LSM Engineering and are used here with permission
of the author.

TABLE OF CONTENTS (Continued)

SECTION PAGE
4 CONSOLE IRPUT/OUTPUT . et e eeeeoeooocoecoones e s e o cas 4-1
4,1 SUMMARY OF CONSOLE COMMANDS...ceeee. cecccscese 4-1
4,2 NULL: NTN. . eeeees ce s s e et es s e secssencces ceees 4-2
4,3 WIDTH: 1 ceecosce s 4-2
4.4 TABBING: "T...... ceeeecaceenes e eeeecaeeee 4-2
5 DISK FILE INPUT/OUTPUT. e et eeeeececcocosocacesasaes 5-1
5.1 OPENING AND CLOSING DISK FILES eeeeceoceaocosse 5-1
5.1.1 Open File:
<filename$ or >filenameS...eee.. . 5-1
5.1.2 Set Block SizZ€: Njeeeececceoacocans . 5=2
5.1.3 Printing Filename: <= or >=... 5-2
5.1.4 Close File: <S or >S it .o 5-2
5.2 INPUT FROM A DISK FILE....ececeeces ceoecas e 5=3
5.2.1 Yank: Y c.ceececccnccacas ceecccccsnse . 5=3
5.2.2 Append: A ceecaseseasaas ceeee 5-3
5.3 O0OuUTPUT TO A DISK FILE..... ceeescccns cceeesne 5-4
5.3.1 Put: P ..eceie.n ceeeesceccseecccceses 5-4
5.3.2 Put without Formfeed: PW ...cceececce 5=5
5.3.3 Put and Endfile: PE ..c.eceeees ceecne 5-5
5.4 COMBINED DISK INPUT AND OUTPUT...¢ec... ce s e 5-5
5.4.1 End: E..e.oeeeeces cesecens ceeececces . 5-5
5.4.2 Put and Yank: nNRe..eeees ceescces e 5-6
6 BUFFER CONTENTSQC...‘.....l.‘..'......’....0.0.0' 6-1
7 CONTROLLING THE CHARACTER POINTER. . e eeeecococcess 7-1
7.1 PAGE LEVEL: B and Z ...ceceecccsccacosccncs .o 7-1
7.2 LINE LEVEL: L and J .eeececees ceocsesececesane 7-1
7.3 CHARACTER LEVEL:
M, Sstring$, Qstring$, and Nstring$........ . 7-2

ii

SECTION

8

10

11

12

13

TABLE OF CONTENTS (Continued)

ALTERING BUFFER CONTENTS..vvveeecccoonen
8.1 ADDITION/INSERTION..v::eeeeconcaeaes

8.1.1 Text: Istring$...eceeeceee.
8 2

1.
.1. Single Character: nlI
8.2 DELETION/SUBSTITUTION .. :eeesececess
8.2.1 Line Level: K cieeeeeeeoeen
8.2.2 Character Level: D
8.2.3 String Level: C 0r O.vveeeee

MACROS .t it eeveeeeaasasscecsoeccoaassoncnas
9.1 SUMMARY OF MACRO COMMANDS.:eeveeaes.
9.2 DEFINE MACRO: XMcommand string$S..
9.3 EXECUTE MACRO: Xueueeeeeoooocaancaans
9.4 DELETE MACRO: XD.veeeoeoooooeocesns
9.5 PRINT MACRO: X?uteeeeooeoeenaooacns
LEAVING EDT3..... teesccecsseccccssssssans

18.1 SUMMARY OF EXIT COMMANDS....ceec..

1l4.2 GO TO USER ROUTINE: Ghex addressS.

10.3 HALT: H.ivetireeeeeeoeooonoaannans

e e o 0000

10.4 GO TO COMMAND INTERPRETER: ?........ cecen

SETTING THE TEXT BUFFER LIMIT..eceeeeens
IMMEDIA‘I‘E COMMANDS‘.....Q..'...‘O.......

12.1 SUMMARY OF IMMEDIATE COMMANDS.....

-~

e e 0o 0 0 0 0

¢ ¢ o 00 00

12.2 PRINT LAST COMMAND STRING: P cecone

12.3 RE-EXECUTE LAST COMMAND STRING:

.

.

ERROR MESSAGES .. ittt eeeeseecaescascscencasnococnes

APPENDIX

1 TABLE OF ASCII CODES

iii

16-1
19-1
16-1
18-1
10-1
11-1
12-1
12-1
12-1
12-1

13-1

az;f
i,

SECTION 1

INTRODUCTION

1.1 CAPABILITIES

EDT3 is a text editor program that allows for the creation or
modification of ASCII files such as source files coded in FORTRAN,
BASIC, or Assembly Language. This program allows editing on
character, string, line and page levels; at any of these levels
additions, insertions, substitutions and deletions of text may be
made. Additionally, EDT3 offers the option to retain a command string
as a macro and execute it repeatedly. A special feature of EDT3 makes
it possible to insert an unprintable character into a text file.

The EDT3 program resides in low memory and requires approximately 4K.
EDT3 uses the remaining portion of memory as the text buffer area,
reserving two areas: one for use as a command buffer, another for use
as a macro buffer.

EDT3 receives its text from two sources: it reads data from disk files
or allows creation of new text on-line from the keyboard. An input
file is regarded as a single character string, usually organized into
pages. Upon command, EDT3 will read one page of text from a disk
file; that is, reading will progress until a page terminator (formfeed
character) is encountered in the file, or until the buffer is full.
After the text has been edited, it may be stored with or without the
page terminator. (A text without terminators will be regarded by EDT3
as a single page.)

It is possible to use this diskette version of EDT3 to write a
cassette file. While in PTDOS, assemble the CTAP:S file on your
system diskette, and name the object file CTAPI.

*ASSM CTAP:S,,CTAP1
After you have entered EDT3, use the > command (described in Section
5, below) to open CTAPl for output. The resulting tape file will have
the name PTFIL and a block size of 1024.
1.2 CONVENTIONS

The following conventions are used in the examples throughout this
manual:

1) An ESCape key entered by the operator is echoed to the console and
represented in the examples as a dollar sign ($).

1-1 EDT3

2) Control characters in this manual are represented by a """
followed by the character depressed in conjunction with the control
key, e.g., “P denotes a control P. 1In general, this representation
corresponds to the the way control characters actually appear on the
console. Control characters that function as commands to EDT3 are
exceptions, e.g., "A appears as #, "P is not echoed to the console at
all.

3) Whenever a string parameter is part of a command format, it is
represented in lower case (e.g., Sstring$ represents a command which
might actually be entered as Sgoto, or SBLACK, followed by an ESCape.)
In the text that accompanies examples a string is set off by qguotation
marks. For example, the command CAB$SCDS$$ appears expanded in the
explanation as: C "AB" to "CD".

4) Lower case n represents a positive or negative decimal integer
which, when it precedes a command, is related to that command in a
certain quantitative way: for example, it can indicate the number of
times an action is to be performed. The legal values of a quantifier
are given in connection with a specific command when it is discussed.
(-65535 to 65535 is the maximum range.) A plus sign before a
quantifier is for clarification; its use is optional.

5) A <cr> in an example represents the entry of a carriage-return.

1.3 DEFINITIONS

An input file is a continuous string of characters that EDT3 reads,
page by page, from a disk file or receives on-line from the keyboard.
A formfeed character marks the end of a page; a page includes all of
the characters up to, but not including, the formfeed. The formfeed
is not retained within the text buffer; if desired, a formfeed may be
written to the output file following a page of text.

A page may be segmented into lines. Each line is a string of
characters up to and including the carriage return. A linefeed is
assumed after each carriage return, although it does not actually
appear as a character within the file.

EDT3 maintains a character pointer (CP) within the text buffer. This
pointer is moved through the text by various commands; it should be
regarded as always pointing between two characters, rather than at a
particular character.

1-2 EDT3

SECTION 2

ACCESSING THE EDT3 PROGRAM

2.1 LOADING

EDT3 is loaded at location 1@@#H. To load the program, type the PTDOS
command

*EDT3<cr>

(Do not type the asterisk; it is the PTDOS prompt.)

2.2 EXECUTION

EDT3 is started at location 103 Hex; when the program begins to run,
it first clears its scratch area, macro, and command buffers, then
searches contiguous random access memory (RAM) to find the last
(highest) location that the text buffer can occupy. That address will
never be higher than the lowest PTDOS system address, GLLOW.

EDT3 then displays:

EDIT 3.0 (mod @) ZZZZZ

.
.

Where 2727ZZ7Z is the total character space (decimal) available
in the text buffer
: is EDT3's prompt

If 222ZZ is a smaller number than you would expect to find available,
given the amount of memory in your computer, EDT3 has probably
encountered either read-only memory, or a bad random-access memory
location, and discontinued its search for text buffer space.

The text buffer initially takes up all available memory space. The
contents of memory (routines, data, etc.) are not altered until text
is entered. The last location for memory usage may be specified at
any time after initialization is complete. (The memory size command
is described in Section 11.)

In case of accidental exit, EDT3 may be restarted by executing address
190H, bypassing all clearing and initialization. If memory has not
been changed externally, the text buffer will remain intact. (There
are commands which enable you to leave EDT3 intentionally, to execute
some other routine or to return to PTDOS. The G and H commands, which
serve these functions, are described in Section 18 of this manual.)

2-1 EDT3

)
&

SECTION 3

LANGUAGE ELEMENTS

3.1 COMMAND FORMAT

A single instruction to EDT3 has one of the formats listed below.
(Spaces are not required of any EDT3 commands, except when desired
within strings, and are used in this manual only for clarity.)

. <command>

. n <command>

<command> string $

. <command> stringl $ string2 $
. <command> <hex address> $

U WK =
L]

The <command> portion is a one or two character mnemonic (such as W or
X?). Commands may be typed in upper or lower case.

A signed integer, the n parameter, may be used to gquantify a command,
that is, to indicate how many times a command is to be executed or how
many characters are involved. EDT3 interprets a quantifier as a
decimal number. Decimal values may range from -65535 to +65535. (If
the operator enters a quantifier where it is not required, EDT3
exXecutes the command, ignores the quantifier, and returns no error
message. If a negative quantifier is specified, but is meaningless to
the command, it is taken to be positive; no error message is
displayed.)

Some commands require at least one string. A string may be zero or
more characters in length, and is terminated by the ESCape key (echoed

as the $ symbol on the operator's console). A string may include the
carriage return character.

EDT3 begins execution of most commands when two consecutive ESCapes
are entered. (One of these may be a string terminator.) The commands
"P, "R, and T are exceptions to this rule: they are executed
immediately upon being entered by the operator.

NOTE: If you have typed in a command and it appears not to have
been accepted properly, make sure that you have actually

typed in ESCapes, rather than dollar signs, as command
terminators.

3-1 EDT3

EXAMPLES:

5L$S The command to move the cursor to the beginning of the
fifth line following its present line position must be
terminated by two ESCapes.

: SLXISS The command to search for the string "LXI" requires
one ESCape as a string terminator, and a second as a
command terminator.

3.2 COMMAND SUMMARY

Here is an overview of the commands to be used with EDT3. Note that
each command is accompanied by 1) a very brief explanation of its
function, ana 2) a reference pointing to the section of this manual
where a more complete explanation may be found.

The abbreviation, "CP", here and elsewhere in the manual, stands for
Character Pointer, as defined in Section 1.3, above.

There are a number of search commands which are listed under COMBINED

DISK INPUT AND OUTPUT, rather than under CP CONTROL, because they have
tape input/output functions associated with them.

COMMAND FUNCTION REFERENCE

SPECIAL CHARACTERS
(immediate execution)

DEL or RUBOUT Deletes the last character entered. 3.4.1
MODE SELECT Cancels a current command string, 3.4.2
or “@ or halts its execution.

T Turns off tab simulation, if on; 4.

turns it on, if off. Tabs are
predefined at 8-space intervals.
There is no provision for
changing them.

SPACE-BAR Alternately suspends and continues 4,
output to the console display
during P command execution.

°p Prints the last command string. 12.2
"R Re-executes the last command 12.3
string.

3-2 EDT3

CONSOLE INPUT/OUTPUT

T

nT

nTN

nTwW

Prints buffer on the console
output device.

Prints n lines, beginning at the
CP, on the console output device.

Specifies number of nulls to be
sent after each carriage return/
line feed on subsequent T commands.

Specifies the width of an output
line (n characters) on subsequent
T commands.

OPENING AND CLOSING FILES

<filename$
>filename$

n;

{=
>=

<3
>$
INPUT FROM A DISK

Y

FILE

Opens a file for input.
Opens a file for output.

Sets output file block size.

Prints name of current input file.
Prints name of current output file.

Closes current input file.
Closes current output file.

Clears the previous contents of
the text buffer, without writing
it, and reads the next page.
Reads the next page, and appends
the input to the current contents
of the text buffer.

5.1.2
5.1.3

5.1.4

EDT3

OUTPUT TO A DISK FILE
P

nP

PW

nPwW

PE

nPE

COMBINED DISK INPUT AND

E

nR

Nstring$

Qstring$

Ostringl$string2$

Ostringss

BUFFER INFORMATION

:hex address$

Writes the entire text buffer with
a final formfeed.

Writes n lines from the CP and a
final formfeed.

Writes the entire text buffer
without a final formfeed.

Writes n lines from the CP and no
final formfeed.

Writes the entire text buffer with
a file terminator. Closes output file.
Writes n lines from the CP with a
file terminator. <Closes the output
file unless n = 0.

ouTPUT

Copies current buffer and
remainder of input to output file;
closes output file.

Executes, n times, the sequence:
P, then Y.

Searches buffer for "string";
continues search, page by page,
each time writing out the buffer
(P) before proceeding to the next
page (Y).

Like Nstring$, but does not write
out the text buffer before
proceeding to the next page.
Changes "stringl" to "string2",
searching the whole file by doing
P's and Y's, as necessary.
Deletes "string" (changes it to
null), searching the file by doing
P's and Y's, as necessary.

Displays the total number of lines
and characters in the text buffer.
Displays number of the line in which
the CP resides.

Returns the number of characters
that PRECEDE the CP in the 1line

in which it resides.

Specifies the last available memory
location for the text buffer.

5.3.1
5.3.1

3-4 EDT3

CP CONTROL

+ or - nL

ndJd

Sstring$

Moves the CP to the beginning of
the text buffer.

Moves the CP to the end of the

text buffer.

Moves the CP to the beginning of
the current line.

Moves the CP forward (+) or
backward (-) n lines.

Moves the CP to the beginning of
the nth line in the buffer. + or - nM
Moves the CP forward (+) or
backward (-) n characters.

Moves the CP to the first character
after "string".

Also see N and Q commands in combined disk input and output, above.

ADDITION/INSERTION
Istring$

nI

DELETION/SUBSTITUTION

K

nk
+ or - nD

Cstringl$string2$
Cstrings$s

Inserts a string of characters

at the CP.

Inserts the character whose
decimal ASCII value is n at the CP.

Deletes the entire line, no
matter where the CP is located
on it.

Deletes from the CP forward
over n carriage returns.
Deletes from the CP forward (+)
or backward (=) n characters.
Changes "stringl" to "string2".
Deletes "string" (changes it

it to null).

Also see O commands in COMBINED DISK INPUT AND OUTPUT, above.

MACROS

XMcommand strings
nX

XD

X?

LEAVING EDT3

Ghex address$

H

?

Defines a macro command string.
Executes the macro n times.
Deletes the macro.

Prints the macro.

Go to an external user routine.
Close files; return to PTDOS.

Go to the Command Interpreter for
one command.

190.2
1.3

16.4

3-5 EDT3

3.3 COMMAND STRINGS

EDT3 is able to execute, not only a single command, but also a group

of commands entered as a series. As each command is entered into what

becomes a command string, it is placed into the command buffer. An

ESCape between commands in a command string is optional, unless either
1) a command includes a string parameter, or 2) the follcwing command

might otherwise be construed as part of the first command (e.g., the
command string X$D must be differentiated from the single command
XD) .

EXAMPLES:
Y55L5TSS This command string consists of three commands:

Y, 55L, and 5T. The command string is
terminated by two ESCapes.

: SADDSLITC1$2$$ This command string consists of four commands:
S "ApD", L, 1T, and C "1" to "2". Note thAt
only the strings, in the S and C commands,
require the ESCape separator, and that when a
character string is the final item in a
command string, only one additional ESCape is
needed.

: SFILES <cr> This command string consists of four commands:
L<cr> S8 "FILE", L and 5T. A carriage return
may be used as a visual separator between
commands: in a command string; such carriage
returns do not affect the way that the
command string is executed.

3.4 COMMAND ERRORS

EDT3 executes a command string one command at a time. If EDT3
encounters a command that cannot be executed, it will print out an
error message and the unexecuted portion of the command string, and
will clear the command buffer. EDT3 will ignore a quantifier if it
appears without a command.

EXAMPLES:

+ YABCZZS33$SLKS$S Six commands: Y, A, B, C "Zz" to "33", L,
String not found and K. EDT3 types an error message

?2 2?2 7? ("String not found" and "? ? ?"), the un-
CZZ$33SLKSS executed portion of the command string and
: the prompt symbol.

CAUTION: A carriage return within a text string or between the
characters of a two-character command is not ignored.

3-6 EDT3

it

AVOID:

X <cr> EDT3 executes the XD (a legal command)
DSS as X, also a legal command, then deletes
one character.

If an error is made while typing a command, it may be corrected in one
of the following ways:

KEY FUNCTION
DEL or RUBOUT Deletes last character entered. Cursor backspaces.
MODE SELECT Cancels a current command string or halts its
or @ execution.

3.4.1 Character Level: DEL or RUBOUT

As commands are entered, they are stored in the command buffer. DEL
or RUBOUT deletes the last character entered in the command buffer.
Several DELs may be entered to delete several characters. If the
deletion empties the command buffer, EDT3 issues another prompt.

3.4.2 Command Level: MODE SELECT or “@

Before a command string is terminated, it can be canceled by issuing a
MODE SELECT or "@. EDT3 stops, empties the command buffer, and issues
another prompt. If the interrupted command is performing I/0, the
Character Pointer is set to the beginning of the text buffer;
otherwise, it is left in its current position (nP, nPW, or nPE), or at
the end of the previous text (A&).

3.4.3 Command Buffer

The command buffer is of sufficient length (124 characters) to
accommodate long command strings; if the command buffer length is
exceeded, the command input, up to that point, will be executed. The
exception to this rule is that the insert command will allow input
until the text buffer is filled.

3.5 SPECIAL CHARACTER HANDLING

Several input characters receive special handling by EDT3, depending
upon whether the character originates from the console or from a disk
file. Where the word "normal" appears in the table below, it is used
to indicate that a particular control character, where it is read or
inserted into the text buffer, is regarded as though it were any other
text character, i.e., it does not initiate any action by the program
or the system. Exceptions are noted below.

3-7 EDT3

CHARACTER

MODE SELECT or
NUL, or ~@

-~

A

LINEFEED or LF

~

or J

DEL or
RUBOUT

~

T

ESC or [or
“SHIFT K

RETURN or CR
or "M

"L or FF or
formfeed

On output to the console,

HEX

00

61

7F

ac

10

12

each carriage return.

Nulls, cannot be inserted into the text;

can be inserted using the I command and a quantifier.
characters of this set may be keyed in directly.

Note that SHIFT-3

characters.

FROM KEYBOARD

Executed, not echoed,
not retained

Echoed as #, retained
as "A in the command
string

Not executed

Executed,
not retained

Executed,
not retained

Echoed as $, retained
as ESC in the command
string

Echoed as CR/LF,
retained as CR

Echoed as special
character, retained
as formfeed.

Executed and not
retained if it is
the first character
of the command.
Otherwise normal.

Executed and not
retained if it is
the first character
of the command.
Otherwise normal.

FROM DISK FILE

Ignored

Normal

Ignored

Normal

Normal character

(no tab)

Normal

Normal

Terminates
page, then is
discarded

Normal

Normal

EDT3 provides a linefeed character after

control-T ESCape and DELete

All other

(the # symbol) and SHIFT~4 (the $ symbol) are normal

EDT3

SECTION 4

CONSOLE INPUT/OUTPUT

4.1 SUMMARY OF COMNSOLE COMMANDS

All console input and output is done by way of the CONIN, CONTST, and

CONOUT entry points on PTLOS.

In this manual, console input is

assumed to be from a keyboard.

The speed of output to a VDM is altered if a key representing a digit
is hit during printing. The digit 1 causes output to be fastest (no
delay), whereas 9 causes it to be slowest. Output to the Video
Display is suspended temporarily when the user presses the space bar

during printing;

it will resume when the next key is pressed

subsequently. Output may be aborted with the MODE SELECT key.

COMMAND EFFECT
T Send buffer to the output device dictated by CONOUT.
nT Send n lines following the CP to the output device
dictated by CONOUT.
nTN Specify number of nulls (n) to be sent after each carriage
return/linefeed for subsequent T commands.
nTwW Specify output line to be n characters wide for
subsequent T commands.
T Toggle tabbing mode (on/off).
EXAMPLES:
: 2TSS The command 2T causes two lines, starting at
DOIT: STA DPEX the Character Pointer, to be printed on the
LDA FLAG current output device.
=10TS$S This command string has two commands in it
(= and 18T).
2/24 There are two lines, or twenty-four characters,
TUIT: ANA B in the buffer. n exceeds this number, even
STA TABLE assuming that the CP is positioned at the
beginning of the text. Therefore, only two
of the ten regquested lines are printed.
: SLDASI1TSS After a SEARCH for "LDA," typing starts at
PINK the current position of the CP. To examine
: SLDASLITSS the entire line, issue the L command before
LDA PINK the nT command.

4-1 EDT3

4.2 NULL: nTN

This command determines how many nulls will be sent to the console
after each carriage return or linefeed; n may have a value from @ to
255. The purpose of sending nulls is to establish a delay that
certain output devices require after a carriage return.

4.3 WIDTH: nTw

This command sets the maximum length of an output line, probably
corresponding to the width of the console output device. n may have
an absolute value of 16 to 255; after EDT3 has printed that number of
characters on the console, it will automatically execute a carriage
return. (That carriage return is not stored in the text buffer.) If
n is negative, the console output device is assumed to be one of the
type that backspaces when it receives an underline character (5FH);
for example, the width parameter is initialized to -64, which is the
specification for a video display like the VDM.

4.4 TABBING: T

When the tabbing mode is on, all "I's (@9H) sent to the output device
cause spaces to be printed until the next tab stop is reached. Tabs
are defined at columns 1, 9, 17, 25, etc. There is no provision for
changing these settings. When tabbing is off, "I's are sent
normally.

4-2 EDT3

SECTION 5

DISK FILE INPUT/OUTPUT

5.1 OPENING AND CLOSING DISK FILES

COMMAND EFFECT

<filename$ Opens the file <filename> for input.

>filename$ Opens the file <filename> for output.

n; Sets to n the block size for any output file that
must be created.

<= Prints the name of the current input file.

>= Prints the name of the current output file.

<$ Closes the current input file.

>$ Closes the current output file.

5.1.1 Open File: <filename$ or >filename$

The < command opens the specified file for input operations. The >
command opens the specified file for output operations. If there is a
file open for either input or output and the corresponding command is
given, the open file will be closed, and the named file will be
opened.

EXAMPLES:

: <TUNASS$ Opens the file TUNA for Y, A, E, R, N, O, AND Q
: commands.

: >FISHSS Opens the file FISH for P, E, R, N, O, AND Q commands.

A legal filename consists of up to eight ASCII characters, none of
which may be a blank or a slash. A filename may be followed by a
slash and a unit number; the unit number is the number of the disk
drive unit in which the disk containing the file resides. If the
named input file does not exist on the specified unit, PTDOS will
return an error; 1f the named output file does not exist, it will be
created.

5-1 EDT3

5.1.2 Set Block Size: n:

Output files are written on the disk in blocks. If the output file
that will be named in the > command does not exist, it must be
assigned a block size, i.e., the number of bytes to be put in each
block. The default block size is 4C@H; the maximum block size is
FFFH. The larger the block size, the guicker disk access is, by

virtue of the reduced number of inter-block gaps. The block size must
be set BEFORE the output file is opened.

5.1.3 Print Filename: <= or >=

The <= command prints the current input <filename>; the >= command
prints the current output <filename>. 1If the corresponding file is
not open, EDT3 will respond with a blank line.

EXAMPLE:

: <=§$$
TUNA The last < command was "<TUNAS".

: >=§$
FISH The last > command was ">FISHS".

: >=$$
No output file is open.

5.1.4 Close File: <$ or >$
The <$ command closes the current input file. The >$ command closes

the current output file. If the corresponding file was not open, then
the command has no effect.

EXAMPLE:

<$<=$$ Closes the input file and then tries to print its name.

Any file written in EDT3 must be either closed or endfiled before an
attempt is made to read from it. The Put and Endfile (PE) command
will automatically close a file; also, leaving EDT3 will result in the
closing of all files open at the time that the command is entered.
Neither leaving nor closing will endfile an open output file. To end
a file without closing it, give the command OPESS.

5-2 EDT3

5.2 INPUT FROM A DISK FILE

The following commands allow input from a file that is opened:

COMMAND EFFECT

Y Reads the next page into the text buffer and
overwrites the previous buffer contents.

A Reads the next page into the text buffer,
appending the input to the end of the current
buffer contents.

Q See Section 7.3

Any guantifier preceding these commands is ignored. Note that the
formfeed page terminator is not retained within the text buffer and
all input characters are masked to 7 bits.

5.2.1 Yank: Y

The Y command always destroys the current contents of the text buffer,
and attempts to read in a page from the assigned file. The CP is
positioned before the first character of the new page. If no page is
available, EDT3 issues an error message; EDT3 does not complain if the
next page is empty (formfeed only).

EXAMPLE:

YYS$S Yanks one page, then immediately yanks another page
from the assigned file. The first page of text yanked
is destroyed, but the next page is available for editing.

If the input fills the text buffer before a formfeed is encountered,
EDT3 types the "Buffer full" error message. A hundred bytes have been
reserved in the text buffer, so that some editing may still be done
before the text, or part of it, is written out (See also Section
5.2.2).

5.2.2 Append: A

The A command does not destroy the previous contents of the text
buffer. It appends the subsequent page to the current contents.
Unless a formfeed character is inserted, the two pages are now

concatenated. The CP is positioned before the first character of the
appended page.

EXAMPLE:

: YAA$S Yank one page, then immediately append two additional pages.

5-3 EDT3

If the input fills the text buffer before the end of file or a
formfeed is encountered, EDT3 types the "Buffer full" error message
and positions the CP at the beginning of the text buffer.

Some text may be written out of the text buffer, and then deleted from
it, to clear space. Some text should be deleted in this manner if
another append is desired.

EXAMPLE:

¢ AAAAASS Attempt to append five additional pages.

Buffer full

2 2 7?

AAASS EDT3 types out the unexecuted portion of the
command string.

5.3 OUTPUT TO A DISK FILE

The following commands allow output of a given number of lines or the
entire text buffer:

COMMAND EFFECT

P Writes the entire text buffer with a final
formfeed.

nP Writes n lines, starting at the CP, and a
final formfeed.

PW Writes the entire text buffer without a final
formfeed.

nPw Writes n lines, starting at the CP, without
a final formfeed.

PE Writes the entire text buffer and endfiles the
output file.

nPE Writes n lines, starting at the CP, and endfiles
the output file.

These commands do not move the CP; it is used to locate where writing
should start when n is specified.

All output characters have the high bit set equal to zero (no
parity).

5.3.1 Put: P

The entire contents of the text buffer are written to the assigned
file and a formfeed, terminating the page, is written as the final
character. 1If the text buffer is empty, only the formfeed is written.
If n is specified, EDT3 writes n lines, starting at the current CP,
and a final formfeed; the CP is not moved. If n is 0§, only a formfeed
is written.

5-4 EDT3

EXAMPLE:

20PS$ Twenty lines and a final formfeed are written.

5.3.2 Put without Formfeed: PW

The PW command is like the P command, except that the entire buffer
(PW) or the specified number of lines from the current CP (nPW) are
written without the final formfeed.

EXAMPLE:

: YSS Four commands (Y, PW, Y and P) that combine two pages into
PWS$S one. The command string YAPSS could also be used.

Y$$

: PSS

se oo

5.3.3 Put and Endfile: PE

The PE command is like the P command, except that the entire text
buffer (PE) or the specified number of lines from the current CP (nPE)
are written and the file is endfiled. No final formfeed is written.
If n is @, then the file is just endfiled.

Remember that a file should be either closed, or endfiled, or both, if
it is to be used later as an input file.

5.4 COMBINED DISK INPUT AND OUTPUT
COMMAND EFFECT
E Copies current buffer and remainder of

input file to the output file and closes
the output file.

nR R does a P followed by a Y; n indicates
how many times R is to be performed.

N See Section 7.3.

0 See Section 8.2.3.
None of these commands may be entered after an EOF is encountered on
the input file.
5.4.1 End: E

The E command copies the input file page by page, preserving page
structure (i.e, formfeeds) until the end of file. When the end of
file is encountered, the output file is endfiled and closed, the
message "EOF" is printed, and the processing of the command string
resumes with the next command.

5-5 EDT3

EXAMPLE:

: YCMVISMOVSESS Reads a page, changes the first occurrence of
EOF MVI to MOV, copies input file to output file and
: endfiles the latter.

5.4.2 Put and Yank: nR

R does a put, followed by a yank, n times. If the end of file is
encountered during the yank portion of the command, the R command is
terminated immediately and EOF is printed. 1In such a case, the last
page of text has NOT been written to the output file. The processing
of the command string resumes with the next command.

EXAMPLE:
:YS5RSend$-3D$$ Yanks a page, does a put followed by a yank, etc.,

EOF until the end of file is encountered during a yank.
The page has not been written out.

5-6 EDT3

SECTION 6
BUFFER CONTENTS

The commands listed below provide information about the text buffer
and the position of the Character Pointer.

COMMAND EFFECT

= Displays the total number of lines and
characters in the text buffer.

@ Displays the number of the line in which the
CP is currently positioned.

W Returns the number of the character immediately
after which the CP is positioned.

EDT3 displays each value as a decimal number. If the text buffer is
empty, the = command displays a 6/0 value (no lines, no characters);

the € command displays 1 (CP is in the first line), and the W command
displays 0.

If a quantifier precedes any of these commands, it is ignored.

EXAMPLES:

: =$S%
2370/16878 There are currently 2370 lines and 16878 characters
't in the text buffer.

Y=3$$ As part of a command string of two commands:
33/1109 yank, display total lines and total characters.
T @WsS Where is the CP?

206 Cn line 206, character 15.

15

6-1 EDT3

SECTION 7

CONTROLLING THE CHARACTER POINTER

Several commands are available for positioning the Character Pointer
at the page, line or character level.
7.1 PAGE LEVEL: B and %
The following commands move the Character Pointer to a specified
position relative to the entire page of text being edited.

COMMAND EFFECT

B Moves the CP to the beginning of the text buffer
(before the first text character).

Z Moves the CP to the end of the text buffer

(after the last text character).

Any quantitfiers used with the B and Z commands are ignored; EDT3
executes the command once, and issues no error messagGe.

EXAMPLE:
@B2TSS The @ command finds the line position of the
287 CP (287); the B command moves it to the
LDA FLAG beginning of the buffer and the 2T command
ORA A types the first two lines in the buffer.
7.2 LINE LEVEL: L and J

The following commands move the Character Pointer to a given line
within the buffer.

COMMAND
L Moves the CP to the beginning of the current line.
+nL Moves the CP forward n lines (over n carriage
returns).
-nL Moves the CP backward n lines (over n carriage
returns).
nd Moves the CP to the beginning of the nth line in

the buffer.

7-1 EDT3

The L (line) commands position the CP before the first character of a
specified line. Where a quantifier is supplied, it indicates how many
carriage returns the CP must encounter in order to reach the
appropriate line. In the absence of a cguantifier, the current line is
assumed; the CP i1s moved back to the last carriage return and then
forward one position.

When moving backward (the minus sign is required) through the text,
EDT3 proceeds by counting n+l carriage returns back, and 1 position
forward. The beginning of the buffer is equivalent to a carriage
return. If n directs the CP beyond the limits of the buffer, the CP
is left positioned after the last character in the buffer (+n) or
before the first (-n).

EXAMPLE:

@-3L@SS CP starts in line 8 and moves backward 3 lines to
the beginning of line 5.

ee (1 QOO e

The J (jump) command moves the CP to the beginning of the text buffer,
then forward over n-1 carriage returns, finally positioning the CP
before the first character of the nth line. If n is omitted, the CP
is positioned at the beginning of the text buffer. If line n does not
exist, EDT3 issues the "? ? ?" error message.

EXAMPLE:

: @32J@$$S The CP located in line 47 moves to the beginning
47 of the buffer, then jumps to the 32nd line.

32

7.3 CHARACTER LEVEL: M, Sstring$, Qstring$, and Nstring$

The following commands move the Character Pointer to a given character
position, either relative to where the CP resides when the command 1is
given, or to a group of characters (i.e., a character string).

COMMAND EFFECT

+nM Moves the CP forward n characters.

-nM Moves the CP backward n characters.

Sstring$ Searches the buffer for "string" and positions the CP

after the last character of "string."

Cstring$ Searches the file, page by page, for "string."
Positions the CP after the last character of "string."

Nstring$ Like QOstring$, but copies the input file to the output
file during the search.

7-2 EDT3

The M (move) command moves the CP forward or backward n character

positions through the text buffer. If

one position. If n is positive,

n is omitted, the CP is moved

the CP moves forward n characters and
is positioned before the n+lth character.

If n is negative, the CP

moves backward n characters and is positioned befcre the nth character

back from the current position.

first character (-n)

EXAMPLE:

: 1T5M1TSS
LXI D,FUN
D, FUN

Three commands: 1T, 5M,
from the beginning of the

The S (search)
while searching for
found,

"string"

and 1T.

If n exceeds the limits of the text,
the CP is left positioned after the last character (+n),
in the text buffer.

or before the

The CP moves from
line to the D.

command moves the CP forward from its current position
in the text buffer.
the CP is positioned after the last character in "string".
search ends when the first occurrence is encountered.
buffer is searched to its end and "string"

If "string" is
The
If the text

is not found, EDT3 types

the "String not found" error message and positions the CP at the

beginning of the text buffer.

: 1TSADCSITSS
ADC L
L after the

Three commands: 1T, S

lcl;

After finding the string,
the next command

"ADC" and 1T.
the CP is positioned

(1T) types from

: the CP to the end of the line.

The search string may include masked character positions.

Enter A

(echoed as #) to mark character positions that are to match ANY

character.

EXAMPLE:

: SA#B#CSLITSS
A2BXCL 123 A, B and C,

one character,

The N and § commands are similar to S,
entire file, page by page. If the end
is not in the buffer, then the "String
The N command copies the input file to

and closes the output file if the search is unsuccessful;

The command searches for the occurrence of
each separated from the next by any
and types the line.

except that they search the

of file is reached and "“string"
not found" message is printed.
the output file as it searches,
if the end

of file is encountered, processing of the command string resumes with

the next command.

EDT3

,

&

SECTION 8

ALTERING BUFFER CONTENTS

8.1 ADDITION/INSERTION

The following commands allow individual characters and text to be
inserted into the text buffer:

COMMAND EFFECT
Istring$ Inserts a string of characters at the CP.
nIl Inserts the character whose decimal ASCII value is n at
the CF.
8.1.1 Text: Istring$
The "string" may be null, one character, several lines, or the entire

text buffer in length. The CP is left positioned after the last
character of the "string".

EXAMPLE:

: I LDA UP The inserted string is composed of three lines.
MOV M,A
INX H

$$

A "long" insertion operation proceeds to fill the command buffer
before entering the text into the text buffer; as each line is ended
with a carriage return, it is entered into the text buffer. MODE
SELECT will cancel only the line being entered and DEL will delete
only characters back to the beginning of that line.

8.1.2 Single Character: nl

This command makes it possible to insert into text a character that
the keyboard does not have (such as a lower case character) or one
that receives special handling. The numeric value of a single
character is masked to 7 bits and inserted; the CP is left positioned
after the character. The n parameter, which may range from 1 to 126,
corresponds to the decimal ASCII representation of the character to be
inserted. Formfeeds (@CH) may be inserted in this way to divide the
text buffer into two or more pages.

Exceptions: NUL (@0H), are ignored.

8-1 EDT3

EXAMPLES:

: 161ISS Inserts the decimal value of “P into the text buffer :
at the current Character Position.

EXAMPLE OF ERROR:

: 128IL1TSS Attempted to enter three commands: inserting
the decimal integer 128, L and 1T. EDT3

?2 0?2 7? masks the converted integer to 7 bits, so it

1281L1TSS becomes 0, and aborts command string processing

with an error message, since the insert
command would have tried to insert a NUL.

8.2 DELETION/SUBSTITUTION
Several commands are available to delete text at either the line,

character or string level. Substitution of text or a null string
(effective deletion) is available only at the string level.

8.2.1 Line Level: K

COMMAND EFFECT
K Deletes the entire current line, including the carriage
return.
+nK Deletes from the CP, forward over n carriage returns.

The K (kill) command counts carriage returns and regards a line as all
the characters up to and including the carriage return. The K alone
deletes the entire current line, no matter where the CP is located on
it. If n is specified, EDT3 deletes the remainder of the current
line, as well as all text encountered for the next n carriage returns.
The limits of the buffer are the limits of the K command.

EXAMPLES:

: 4J17TSS Jumps to the 4th line and displays it.
STA TABF

: B3K1TSS Moves the CP to the beginning of the buffer,
STA TABF and kills three lines; the old line 4 is now

the first line in the buffer.

8-2 EDT3

8.2.2 Character Level: D

COMMAND EFFECT
+nD Deletes from the CP forward n characters.
-nD Deletes from the CP backward n characters.

The D (delete) command, like the M (move) command, is easier to
understand if the CP is regarded as pointing between two characters.
The limits of the buffer are the limits of the command.

If n is @ or omitted, one character is deleted.

Since a carriage return is one character, this command may also be
used to join lines by deleting the carriage return.

EXAMPLES:
1TS S1DL1TSS Five commands: 1T, S ' ', 1D, L and 1T.
JMP @1 The command string types the current line, finds
JMP 1 the space, deletes the following character, moves
: the CP to the start of the line and displays the
entire line. .
: B2TSS The command string types the original two lines.
XCHG
RET
SGS1IDL1TSS Four commands: S "G", 1D, L and 1T. After a

XCHG RET search for the "G", the next character, a
carriage return, is deleted, so that the two
lines previously separated by the carriage return
are concatenated.

X3

8.2.3 String Level: C or O

COMMAND EFFECT
Cstringl$string?2 Changes "stringl" to "string2".
Cstringss Deletes "string" (changes it to null).

Ostringl$string2$ Changes "stringl" to "string2," searching the
entire file while doing P's (puts) and Y's
(yanks)

OstringsSs$s Deletes "string," searching the entire file,
entire file, if necessary.

The C (change) command moves the CP forward from its current position

8-3 EDT3

while searching for the first occurrence of "stringl". When located,
the string is deleted and replaced with "string2"; the CP is
positioned after the last character of "string2". If the end of the
text buffer is reached before "stringl" is found, EDT3 types the
"String not found" error message, and moves the CP to the start of the
text buffer.

Note that if "string2" is null (Cstring$$), "string" is deleted. This
form of the C command will automatically be the last command in a
command string since the two ESCapes force execution of the command
string.

Any quantifier preceding C is ignored.

EXAMPLES:
: CFILESTESTSLITSS Three commands: C "FILE" to
LDA TEST "TEST", L and 1T. After replacing
: "FILE" with "TEST", EDT3 types the line.
: ABC69SDESS The first two commands (A and B) are

executed: the search for "69" was
unsuccessful.
String not found

? P ?

C69$DESS

The search string ("stringl") may contain masked character positions.
Enter "A (echoed as #) to mark character positions that are to match
ANY character.

EXAMPLE:

: CA##BSBASS The command searches for the first occurrence
of A and B separated by any two characters and
changes those four to BA.

The substitute string ("string2") must not contain any mask
characters, or a command error will result.

The O command is similar to the C command, except that if "stringl" is
not found in the buffer, a P (Put) followed by a ¥ (yank) is done and
the search is continued. If the search is unsuccessful, then the
"String not found" error message is printed and the output file is
closed.

8-4 EDT3

SECTION 9

MACROS

9.1 SUMMARY OF MACRO COMMANDS

EDT3 offers the capability of retaining a command string and executing
the string repeatedly by issuing a single command. The command string
is stored in the macro buffer. The following commands are associated
with macro handling.

COMMAND EFFECT
XMcommand string$$ Defines a macro command string.
nX Executes the macro n times.
XD Deletes the macro.
X? Prints out the current macro.
G.2 DEFINE MACRO: XMcommand strings

Any previous macro is destroyed by the definition of a new macro. Any
quantifier is ignored when this command is executed. A macro
definition becomes the last command in a command string since it is
terminated by two ESCapes. The macro command string length is limited
to 122 characters.

EXAMPLES:

: XMYSS$1 $-3D$$ Defines the macro as a command string containing
: three commands: Y, S "$1 " and -3D.

<TESTSXMY=$$ The command string opens the disk file TEST for
input and then defines a macro containing two
commands: Y and = .

9.3 EXECUTE MACRO: X

The commands X, 08X and 1X are equivalent: the command string
currently retained in the macro buffer is executed once. If n is
greater than 1, the macro is executed n times.

Any positioning of the CP corresponds to the specific commands that
are contained in the macro. Any error situation caused by an
individual command in the macro causes EDT3 to halt execution, type
the appropriate error message, and return control to the operator.

9-1 EDT3

If a macro is undefined or contains the X command (recursive execution
of the macro), EDT3 types "Macro error." A macro must not contain
other macro commands.

EXAMPLE:

XMYAPSS

10X$$ Where the macro buffer contains the command string,
YAP, executing the command successfully ten times
produces 10 pages from the 26 that are read in.

e o

As with any command, MODE SELECT or "@ may be used to halt execution.

9.4 DELETE MACRO: XD
The macro might best be deleted in cases where a powerful macro would

destroy the contents of the text buffer if the X command were issued
inadvertently.

EXAMPLE:

: XDSS Deletes the macro.

9.5 PRINT MACRO: X?
Printing the current macro can save re-—entering a complicated command

string, or can be used to determine exactly what effect the last X
command had.

EXAMPLE:

: X?S$$
15L15T$$ The last command that defined a macro was: XM15L15TSS

9-2 EDT3

SECTION 10

LEAVING EDT3

19.1 SUMMARY OF EXIT COMMANDS

The user may leave EDT3, using the G command to execute another
routine anywhere in memory, or the H command to return to the PTDCS
Command Interpreter. This procedure is comparable to the use of a
CALL instruction. After either the G or the H command, executing
address 9100 Hex will result in a safe re—-entry to EDT3, with the
buffer intact, unless it has been changed externally.

COMMAND EFFECT

Ghex addresss$ Generates a return address and goes to the
routine at the given location.

H Close input and output files and return to
PTDOS Command Interpreter.

19.2 GO TO USER ROUTINE: Ghex addresss$

Leading zeros in the hex address are not required. If G is not the
last command in the command string, subsequent commands are held until
a proper return to EDT3 is made. The return location is placed on the
EDT3 stack; therefore, if the stack is not modified, a RET instruction
in the external routine is all that is required to return to command
string processing.

190.3 HALT: H

This 1s the normal method of leaving EDT3. Any files opened by EDT3
will be closed. 1If H is issued accidentally, the restart address
(0106H) may be executed to recover the text buffer. Because the input
and output files are closed by this command, the previous state of the
output file, and the position of the input file, cannot be recovered
by an execution of the restart address.

10.4 GO TO COMMAND INTERPRETER: ?

When this command is entered, the standard PTDOS prompt (*) will
appear, and one command may be entered. If the PTDOS command
terminates normally, EDT3 will be re-entered automatically; if an
error occurs during the execution of the command, the restart address
(106H) must be used to re—enter EDT3. If the Command Interpreter
input file is not empty when the ? command is given, the command to be
executed will be read from that file.

Only those PTDOS commands designated as [SAFE] in Section 1 of the

PTDOS Manual may be executed in this context without encroaching upon
EDT3. Do not use the ? command to reload or restart EDT3.

10-1 EDT3

SECTION 11

SETTING THE TEXT BUFFER LIMIT

The text buffer uses the highest portion of memory related to EDT3.

At system start up, EDT3 takes as much contiguous RAM memory as it can
find for the text buffer. The highest address used by the text buffer
will never exceed the lowest address assigned to PTDOS (i.e., the
GLLOW parameter in the System Global Area); all memory below that
address 1s tested but not changed. 1If the operator wishes , at any
time, to specify the last location to be made available for text, the
size command may be issued. Issuing the size command, to limit the
text buffer area prior to putting in text, will prevent the possible
destruction of memory contents above the specified last available
memory location.

COMMAND EFFECT
thex addresss$ Specifies the last available memory location for

the text buffer.

The hex address must be higher than the present last location used for
text and lower than the end of contiguous memory, or EDT3 issues the
"? ?2 ?2" error message.

After the size command is issued, EDT3 will display the total buffer
character space (decimal) available.

EXAMPLE:
: :1FFF$$ Limit the text buffer not to expand past memory

3446 location 1FFF hex. EDT3 indicates that there is
now space for 3446 characters in the text buffer.

11-1 EDT3

SECTION 12

IMMEDIATE COMMANDS

12.1 SUMMARY OF IMMEDIATE COMMANDS

There are three single-character commands which are executed
immediately upon being entered. They do not affect the command
buffer.

COMMAND EFFECT
“p Reprint the last command string entered.
"R Re-execute the last command string entered.
~ Toggle the tabbing switch. See Section 4.
12.2 PRINT LAST COMMAND STRING: “p

If "P is entered as the first character after execution of a command
string, that command string is printed. The "P is not echoed and not
retained. If "P is entered other than as the first character, it is
echoed and treated normally. This command is useful as a means of
seeing what was just executed, and also as a prelude to the "R
command.

-

12.3 RE-EXECUTE LAST COMMAND STRING: R

If "R is entered as the first character after execution of a command

string, that command string is re-executed. The "R is not echoed and
not retained. If "R is entered other than as the first character, it
is echoed and treated normally. This feature allows the contents of

the command buffer to be treated like a second macro.

~

NOTE: A "P or "R may be entered successfully after a "P or “R.
"P and "R will not work after an error has occurred,
because the command buffer is cleared when there has

been an error.

12-1 EDT3

gt

SECTION 13

ERROR MESSAGES

When an error is encountered, EDT3 types an error message and the
unexecuted remainder of the command string, beginning with the command

in error.

ERROR MESSAGE

Unknown command

? 0?7
<remainder of command string>

String not found

2 2 ?

EXPLANATION
EDT3 encountered a command that it

was not able to execute. Check the
command.

The string was not found.

<remainder of command string>
Buffer full The capacity of the text buffer
was exceeded--before a form feed
was encountered. The text in the
text buffer may be edited and
output.

? 0?2
<remainder of command string>

This message is
an A command is
an already full

also typed when
issued in spite of
text buffer.

Macro error At the time the X command was issued,
' the macro buffer was empty, or the
macro buffer contained the X

command. Define a macro that does
not include an X command.

7?7 ?

<remainder of command string>

No input file open
No output file open

A P, Y or A command was issued
and there was no corresponding
file open.

Not allowed after EOF is
reached on input file

An E, R, N, or O command was issued
after an EOF was found on the input
file.

NOTE: 1If a macro command is the first command in the <remainder

of command string> message, the error message is expanded
to show the macro command quantifier (n), the unexecuted-
remainder of the macro command string (in brackets), and
the remainder of the command string. The gquantifier given
for the macro is the decimal number of macro execution
attempts left at the point where the condition occurred to
end macro command string execution.

13-1 EDT3

EXAMPLE:

: XMCASass$ defines a macro.

: B500XSS executes the macro.

String not found is an error message.

? 0?2 2

495 [CASas$s]sSs is the unexecuted portion of the command string.

13-2 EDT3

SECTION

1.0

8 0820 FOCAL

TABLE OF CONTENTS
PAGE

FOCAL ~ DISK FOCAL INTERPRETER
1.1 INTRODUCTION..¢eieeescaooscaosnoacssssossnsasans

l.l.l GO And QUIT COmmandS-...-.-.......l'.

w w -~

102 CONVENTIONSIO.I“l‘..'....l'll.....‘.‘.‘..'.

NUMDErSeceeaeeccessasassscscsccscscsssns
VariableS.ieeeeesecccecsssscsssscsocaas
Expression Evaluation.sececescceccccas
Math FunctionS...ceeeecscccccccccccas
Line InterpretatiON.ccecccescccacccas

= b b
NN RN R
U1 W N -

O N OV b

103 THE SET COMMAND.oooooooooo-.o.-oao‘o'cocoo‘:
104 INPUT/OUTPUT COMMANDSQQ..IO..O......‘.OOQ'O. 10

1-4‘1 TYPE.....Q.....l.c..‘.ll.obooolclol.. 10
1.4-2 AsKnooo..oo0................O.QO..O.Q ll

1'5 BRANCH COMMANDS.0.‘!000.-0000000000000000000 12
.5'

«5
«5

GOTOIIO..Oll.l....l'.....'.l..'...". 12
IF Statement. ® © 8 06 86 5 5580080858585 083800880 00s00 13
JUMP Statemento S 58 8 605 8685006060605 6009000 14

e
W N

106 SUBROUTINES.-‘....‘lI.I...l.'........l'...'. 15
10601 DO And RETURNQ.............I.l....... 15

1.7 LOOPS"...OQ.‘..0‘....0l..........‘.....'... 17

10701 FORQ...I.QI.I.I......‘.....C..QQ.Q..‘ 17
1.7.2 Subscripted VariableS.eceecececosaccces 18
l . 7‘ 3 COMMENT Statement. ® & & & 8 6 0 06 00 8 8 0 0 0 8o 20

SECTION

TABLE OF CONTENTS (Continued)

PAGE

SUPERVISORY FUNCTIONS.O...CDQ.Q.Q.C.‘.C".IQ 22

WRITE . eeceoseascoosscsscsscsscscnconcnns 22
R 22
MODIFY e tsoeaoososcsssssssscosscscsccsnnsns 22
LIBRARY DISK COMMANDS. . ceececescsscscs 23
TRACE . ceeeeeeecenesssssssosccnscscssanns 26

bt et et
0 00 O O @
U1 W N -

RUNNING FOCAL..'...oo--.loo!--------oo'oo‘o- 26
.9.1 Hardware RequirementS..cccececceccssses 26
9.2 Miscellaneous NOtESeeessesssssssscsss 27
963 Errors.‘...ll.........‘...CII...Q..C. 28

1.0 FOCAL - DISK FOCAL INTERPRETER
1.1 INTRODUCTION

FOCAL is the name of a computer language as well as the name
of the program which translates and executes programs written in
that language. The program, FOCAL, belongs to a class of language
processors called "interpreters," and this means that FOCAL, while
operating, has complete control of the machine, and thus can
assist in storing, editing and running programs. Externally,
FOCAL communicates with a user through an input/output
device like a teletype. Internally it divides up memory into
three sections containing the FOCAL program itself, the user's
stored program and any variables the user may have created. A
minimum memory size of 8K is necessary for FOCAL, and additional
memory allows FOCAL to store larger programs and more variables.
The additional machine requirements are described in the section
called "Running FOCAL."

The user controls FOCAL by typing a line of characters fol-
lowed by a carriage return. The input line can be a command to
FOCAL which it must execute immediately, or it could be a program
line to be stored for later execution. These types of input
lines can be intermixed as there is no interference between
them. An input line, which is to be stored as a program state-
ment must begin with a number identifying its location within
the program. A line without a number is not stored but exe-
cuted immediately. FOCAL determines the order of execution

for lines in the stored program from their line numbers, not

the order they were typed, which makes adding or replacing lines
during a debugging session very easy. The following sequences,
listed as they were input, will both result in the same sequence
of calculations.

:1.0 SET A=1
:2.0 SET B=A*3.2
:2.21 SET C=A+B
:4.0 SET X=A+C/2
:2.21 SET C=A+B
:1.0 SET A=1
:4.0 SET X=A+C/2
:2.0 SET B=A*3.2

The digits to the left of the decimal point in a line num-

ber make up what is called the GROUP NUMBER, and can be used in
some statements to identify a block of statements. The digits
to the right of the decimal are known as the STEP NUMBER and
these have no special significance; step numbers can be assigned
values in the range 01 to 99; 0 and 00 are illegal. Groups of
statements will later be referenced by certain commands by a

(1) FOCAL

group number followed by a zero step number. The reader should
note that there is no single line in the program with a zero
step number; this number refers to the entire block having that
group number.

Most computer systems draw a distinction between commands

and statements. Commands are input lines given to a progranm,
usually called an "operating system," which controls the entire
machine. Statements, on the other hand, are lines written in a
strictly defined language, and these are interpreted by a program
subordinate to the operating system; this program could be a
"compiler," an "assembler” or an "interpreter." FOCAL is un-
usual in that it has the functions of both an operating system
and an interpreter, and this gives it an enormous flexibility.
It can handle both statements from the language FOCAL and com-
mands of a supervisory nature. This distinction between oper-
ating systems and interpreters, statements and commands is fur-
ther weakened because FOCAL allows statements from the language
to be executed immediately much like commands in other machines.
This manual will put little emphasis on the differences between
commands and statements; in fact, the terms will be used almost
interchangeably.

At any given instant FOCAL will be in one of three states

or operating modes READY, EXECUTION or PROGRAM INPUT. FOCAL
enters the READY mode after it finishes the last command given

to it, and as it enters this state it issues a colon (:) to

the user's terminal. It remains in this mode until the user has
typed an input line followed by a carriage return. In the short
sequences given on the first page of the introduction, the colons
were supplied by FOCAL and the user typed the remainder of the
line shown. The carriage return, needed at the end of every
input line, forces FOCAL to leave the ready mode and enter the
EXECUTION mode to perform the actions specified by the input
line. This may mean that it only has to store the line as part
of the program under construction. The input line could also
make FOCAL execute the input line as though it were a part of a
program; it could ask FOCAL to perform some supervisory function,
or it could have FOCAL execute the stored program.

The last mode, PROGRAM INPUT, occurs when FOCAL encounters

and executes a special instruction, ASK, which will be described
in full later. At that time FOCAL issues a question mark to the
terminal and waits, as in the READY mode, until the user enters
a number followed by a carriage return. The difference between
this mode and READY is that the user is "talking" to his program
through FOCAL. The execution mode is automatically re-entered
after the input is completed.

(2) FOCAL

1.1.1 GO And QUIT Commands

The stored program begins execution when FOCAL is given the

GO command. This execution begins at the lowest line number in
the stored program and will proceed from there to higher line
numbers as the program logic allows. The running program can be
stopped by the user, by FOCAL or by the program itself; regard-
less of the reason, control will pass to the "READY" mode of
FOCAL at the conclusion of the run.

The program can stop itself with the QUIT statement, which

can be stored anyplace, any number of times, throughout the
stored program. The instant this statement is executed the
program stops and returns control to FOCAL which will issue a
ready prompt to signal the end of the program. The program is
not altered in any way by running so that it can be immediately
re-run if desired. Examples of the GO and QUIT statements
appear all throughout this manual.

In the event the program begins acting in some undesirable

way, the user can halt the program by typing "MODE" (this can
also be done by hitting the "CNTL" key and the "@" simultaneous-
ly). FOCAL should respond with the READY prompt; if not, the
program has managed to annihilate part of the program FOCAL,

and FOCAL will have to be reloaded.

FOCAL will stop a program, if an error is discovered, or the
program executes its highest numbered line and does not jump
back into the rest of the program. In this latter case, FOCAL
tries to find a higher numbered line, and failing it returns to
the ready mode with a colon. Errors terminate a job with
question marks and an error code which can be deciphered with
the table given in a later section, except that errors which
occur in attempting to execute an operating system command

(like deleting a file) are explained in English by the operating
system's error-handling routines.

(3) FOCAL

1.2 CONVENTIONS
1.2.1 NUMBERS

All numbers in FOCAL are internally treated as floating point
numbers occupying four memory bytes apiece. The largest number
which can be represented by FOCAL is 3.6 times 10 to the 38th
power, and the smallest non-zero positive number is 2.7 times
10 to the minus 39th power. This same range applies to negative
numbers as well.

The accuracy for a number anywhere in this range is limited

to approximately 7 decimal places making 850.0000 eguivalent to
850.00003. Any number can be given to FOCAL as an integer
(without a decimal point) as a floatlng point number (a number
contalnlng a decimal), or as a number in scientific notation.
Numbers in the scientific notation format consist of a mantissa
and an exponent; the mantissa is written in decimal form fol-
lowed by an E, followed by the exponent value. In the scienti-
fically formatated number, -7.2E-11, the number -7.2 is the man-
tissa and -11 is the exponent. The value of this number is -7.2
times 10 to the ~-11th power or -.000000000072. Any form of num-
ber input may be signed (+ or ~-) or unsigned.

In FOCAL the following numbers are eguivalent:

700.3240
700.32403
7.003240E2
7.00324E+2.0
7.00324E01.0
70.0324E01.0
700324.0E-3.0
.0700324E4

All numbers printed by FOCAL can contain up to 7 decimal
digits (excluding the sign).

1.2.2 VARIABLES

A variable is a uniquely named storage location having an
associated arithmetic value. 1Its name consists of a sequence of
letters and/or numbers, the first character being any letter
other than F. (Names beginning with F are assumed to be func-
tion names.)

(4) FOCAL

FOCAL variable names are unigque in their first two characters
only. Thus, the variable names SA, SAM and SAMMY refer to the
same storage location.

LEGAL NAMES FOCAL RECOGNIZES
KNOCK KN
PROFIT PR
COST1 coO (Thus COST1 and COST2
COST?2 oo} are the same!)
ILLEGAL NAMES REASON
3ARM First character must be
be alphabetic.
FOOT First character must
not be F.

To facilitate storage of large amounts of information,
FOCAL allows variables to be subscripted. This feature will be
described later.

1.2.3 EVALUATING EXPRESSIONS

FOCAL, which is a contraction of FOrmula CALculator, allows
the user to construct arithmetic expressions or formulas using
the following symbols:

>

EXPONENTIATION
MULTIPLICATION
DIVISION
ADDITION
SUBTRACTION

I+ *

8080 FOCAL is similiar to DEC FOCAL in that the evaluation

of arithmetic expressions proceeds according to standard operator
priority. This priority follows the table above with the """
operation having the highest priority.

(5) FOCAL

Occasionally it becomes necessary, due to the complexity

of an expression, to NEST parts of the equation in parentheses.
Just as a single pair of parentheses reorder the sequence of
calculations in the above example, the "sub-expression" within
parentheses can be reordered by separating its parts with paren-
theses. For instance,

*SET X=CA*A+B*C+B/2.6
*SET X= (CA*A+B)* (C+B/2.6)
SET X=(CA (A+B)) * ((C+B)/2.6)

all contain legal expressions. Each will, however, use a dif-
ferent sequence of multiplications, additions, etc., which will
produce a different value for the variable "X". The internal
sequence of steps for evaluating the last of the above examples
would be:

ADD A TO B. PUT SUM IN TEMPORARY LOCATION "1" (TEMP)
ADD C AND B. SUM TO TEMP "2"

DIVIDE VALUE IN TEMP2 by 2.6 AND STORE QUOTIENT IN TEMP2
MULTIPLY CA BY TEMPl. PRODUCT STORED IN TEMP 1

MULTIPLY TEMP1 BY TEMP2. PRODUCT STORED IN X

U W N~

The level of a nest, or "Level number," is equal to the

number of left parentheses minus the number of right parenthe-
ses found to the left of the term in question. FOCAL, as shown,
evaluates the terms with the highest level number first, and
works down from there. Any level of nesting is allowed, as long
as the statement occupies only one line.

(6) FOCAL

1.2.4 MATH FUNCTIONS

FOCAL provides eleven standard math functions along with a
user-defined assembly language function. A function is a rou-
tine internal to FOCAL which performs an arithmetic calculation
on a value called an "argument," which is given to it. This
argument must be enclosed in parentheses immediately following
the functions's name. FOCAL's generality permits this argqument
to be a constant, variable or expression. The following is a
list of the function names recognized by FOCAL (throughout this
list, the character "X" represents the argument):

FUNCTION USE

FABS (X) ABSOLUTE VALUE

FSGN (X)) "SIGN" OF X. VALUE RETURNED IS -1 WHEN X
IS NEGATIVE, 0 WHEN X=0, AND +1 WHEN X>0

FITR (X) INTEGER PART OF X

FRAN (X) RANDOM NUMBER BETWEEN .5 and 1.0 WITH
RANDOM SIGN

FATN (X) ARC TANGENT

FEXP (X) EXPONENTIAL -- E"X

FLOG (X) NATURAL LOG

FSIN (X) SIN OF X

FCOS (X) COSINE OF X

FSQT (X) SQUARE ROOT OF ABSOLUTE VALUE OF X

FHYS (X) HYPERBOLIC SIN

FUSR (X) USER DEFINED. WHEN UNDEFINED, THIS

RETURNS THE VALUE OF THE ARGUMENT UNCHANGED

In a statement of the form SET Y=FSIN(PHI), the variable Y

is given the computed value of the sine of the angle, "PHI". All
of FOCAL's trigonometric functions assume that their arguments
are given in radians (FATN returns a radian value from minus pi
to +pi). To convert degrees to radians simply divide by
57.29579.

1.2.5 COMMAND LINE INTERPRETATION

FOCAL allows and even encourages the programmer to put more

than one statement on an input line. The additional commands
(statements) need to be separated by semicolons, and in one case,
the "FOR" statement, the entire line must be ended with a semi-
colon. This multiple statement line feature can be used in both
program store mode and immediate mode.

FOCAL also allows, for efficiency's sake, abbreviated com-
mands; thus, for example, "SET," "GO" and "QUIT" could all be
written as "S," "G" and "Q." Internally all commands are iden-
tified by their first letter only, so that "SHAKE", "GASP" and
"QUAKE" could be used for "SET," "GO" and "QUIT."™ All of

these statements and their functions will be described shortly.

(7) FOCAL

To simplify the command recognition process, the FOCAL

language has been constructed with a mild emphasis on blanks. In
the commands to be discussed in the upcoming sections, all must
begin with an easily recognized word (or abbreviation) 1like
"SET," "GO," "ASK" and "Q." This word, called a KEYWORD, must
be followed by at least one blank. This is a common source of
error for people new to the langquage. Line numbers in stored
programs also require a trailing blank for the same reason.

Most of the FOCAL language statements will expect a se-

quence of characters following the keyword and its blank. The
form and content of this part of the statement will depend on
the command in question. Those commands not requiring more than
the keyword will ignore anything between the keyword and the
next semicolon or carriage return. Telling FOCAL to ":QUIT YER
COMPLAININ'" will only cause it to QUIT. Telling it to ":GO TO
HEAVEN" (?) will cause an error, because "TO HEAVEN" is not the
line number expected by the "G" or "GOTO" command. For the same
reasons, "GO TO 5.1" will force an error because "TO 5.1" is not
a legal line number. This command will be described later.

(8) FOCAL

1.3 THE SET COMMAND
The most fundamental command in FOCAL is the SET command.
In its general form it looks like:

:<line number> SET <variable> = <expression>

This command can also be used in the immediate mode by
omitting the line number.

The variable names (X, Y, Z and D in the example below) are
defined by FOCAL and are given values (25.1, -6.88, etc.). A
memory location is associated with the variable name. If the
specified variable name has not yet been encountered by FOCAL, a
new memory location is set aside and is associated with the
name.

:10.4 SET 7Z=12.01

:10.5 SET X=25.1

:10.6 SET Y=-6.88

:10.7 SET D=FSQT ((X*X)+(Y*Y)+(2*2Z))
: GO

.
.

After the program has been run and FOCAL returns to the
ready mode, the memory location for the variable D (from above)
contains the value of the expression FSQT((X*X)+(Y*Y)+(Z2*Z)).

The execution of the SET command produces the same results
whether the command was stored and executed, or executed in im-
mediate mode. It is often very effective to use the command in
both ways during a series of runs with a program. Before the
RUN command is given, the controlling values for the problem can
be set or defined allowing the program to be very general. The
following illustrates a typical sequence of runs using this
feature.

INPUT THE

.1 SET A=FSQT(B/C+B"3)*D
2 PROGRAM

: 1
:l. SET . - . . L] - - . . L]

(generalized program)

:99.9 QUIT

:SET B=10.1; SET C=12.77; SET D=60 SET PARAMETERS
:GO RUN THE PROGRAM
(results) EXAMINE RESULTS
:SET B=10.6; SET C=11; SET D=100 MODIFY PARAMETERS
:GO RERUN THE PROGRAM
(results) EXAMINE

(9) FOCAL

1.4 INPUT/OUTPUT COMMANDS
1.4.1 THE TYPE COMMAND

Every FOCAL program must contain at least one TYPE

statement if it is to produce printed results. The TYPE
statement prints values of variables, text strings and results
of expressions. These can be combined using commas to separate
the items into a list. The following example shows several TYPE
statements and their resultant printout:

:SET A=]1;SET B=2;SET AB=-6
:TYPE A, #%
1.000000
:TYPE A,B,AB,#
1.000000 2.000000~6.000000
:TYPE "QUOTATION MARKS START AND END TEXT"
QUOTATION MARKS START AND END TEXT:TYPE A,#
1.000000 .
:TYPE !,"NOTE HOW THE # AND ! WORK", #

NOTE HOW THE # AND ! WORK
:TYPE A, !,B,#
1.000000

2.000000
:TYPE %5.02,AB,"hi",12345.5456
~6.00hi2345,55:

The examples are in immediate mode where their results

were immediately visible. The only modification for program
storage would be the addition of line numbers. It is impor-
tant in the examples to watch how the special characters
comma, #, ! and " are used.

The % begins a field description of the form %w.0d which
describes how numbers should be printed. The w is the width
to be used (maximum no. of digits), and the 4 is the number

of these digits which are to appear after the decimal point.
The 0 is required. 1In the example above, note that truncation
occurs if the number exceeds the field width. (Six digits
were retained because there is room for a sign.) The field
description remains in effect for all TYPE statements until
another field description is seen.

The most readable output is usually made by combining
text with printed values. The program can thus identify a
value as well as print its value. The following shows this
feature used in program store mode.

:1.1 SET G=32;SET T=5;SET D=.5*G*(T"2)
:2.1 TYPE "FOR ACCELERATION",G,"AND TIME",T,"SECONDS", #
:2.51 TYPE "AN OBJECT FALLS",D,"FEET.",#
:GO
FOR ACCELERATION 32.00000 AND TIME 5.000000 SECONDS
AN OBJECT FALLS 400.0000 FEET.

(10) FOCAL

Labeling results is a very good programming practice

usually ignored by beginning programmers. It does require
more time and effort, but this is more than offset by the
amount of clarity added to the code and its output. For pro-
grams which could be stored for any amount of time or for
lengthy programs, any kind of documentation is very helpful
and this labeling with TYPE statements is a very good form

of documentation.

If a $ appears in the list of things to print (not in
quotes) FOCAL will print out all the variables in use and
their corresponding values. The $ terminates the print
list, that is, anything following it won't be printed.

A very powerful use of the TYPE statement comes from its
ability to print the result of whole expressions. This means
your computer can be used as a super calculator which under-
stands variables. This capability is generally used in the
immediate mode as shown below. The variables used are the
same as those stored for use by the program.

:TYPE 572*16.,,#

400.0000

:TYPE FSQT(2*D/32),#

5.000000

:TYPE "TIME TO FALL",D,"FEET IS",FSQT(D/16),"SECONDS.",#
TIME TO FALL 400.0000 FEET IS 5.000000 SECONDS.

:SET D=144

: TYPE"TIME TO FALL",D,"FEET IS",FSQT(D/16),"SECONDS.",#
TIME TO FALL 144.0000 FEET IS 3.000000 SECONDS.

1.4.2 THE ASK COMMAND

Input to a FOCAL program is handled by the ASK command.

It is used in stored programs to define or redefine the
values of program variables. The command can contain a text
string and a list of variables. No expressions may appear in
the ASK command although they are allowable responses to the
command. When executing an ASK, FOCAL issues a question mark
to request a value. The value, or expression, for which FOCAL
can compute a value, must be followed by a carriage return.
FOCAL then issues a question mark for the next variable to be
defined, and so on. Text is printed as encountered in the
command. In use this looks like:

:70.6 ASK "DEFINE STARSHIPS X,Y,?2 COORDINATES" ,X,Y,Z,#
:70.61 ASK "DEFINE X,Y,Z FOR KLINGON SHIP" ,XK,YK,ZK, #
:70.65 SET XD=XK~X; SET YD=YK~-Y; SET ZD=ZK~Z

:70.66 SET DIST=FSQT((XD*XD)+ (YD*YD)+ (2D*2ZD))

:70.69 TYPE "DISTANCE TO ENEMY IS",DIST,"LIGHT YEARS",#
:GO

DEFINE STARSHIPS X,Y,Z COORDINATES?47?7576

DEFINE X,Y,Z FOR KLINGON SHIP?9?747?1

DISTANCE TO ENEMY SHIP IS 7.141429 LIGHT YEARS

(11) FOCAL

The ASK command also has provisions to allow a defined

value to remain unchanged. The user can type the ESCAPE

key in response to the question mark, and the corresponding
variable will be unchanged. Typing a carriage return will
result in the variable being set to 0. Typing an expression
(which may even contain variable and functions) will cause
FOCAL to evaluate the expression and assign the resulting
value to the variable in question. ASK will continue to
issue question marks for the remaining variable in its list.
Although the user follows each entry with a carriage return,
a line is advanced during an ASK command only when a colon or
exclamation point appears in the statement.

1.5 BRANCH COMMANDS

The computer's ability to alter the sequence of commands it
will execute is known as branching. This very powerful ability
is represented in FOCAL by three commands: GOTO, IF and JUMP.
These can alter the program flow rather than executing state-
ments in their numeric order. The computer can send control to
a program line number specified in the command. These commands
differ in that GOTO always transfers control to the single
statement number given to it, while JUMP and IF transfer to one
of a number of possible statements based on a test.

1.5.1 The GOTO Command

In the following example, the GOTO statement sends control
back to a statement that counts the number of times it

has been executed. Readers new to programming are strongly
advised to follow the example and the results closely.

:1.1 SET N=0

:1.3 SET N=N+1

:1.6 TYPE "LOOP NUMBER =",N,#
:1.7 GOTO 1.3

: GO

LOOP NUMBER = 1.000000

LOOP NUMBER = 2.000000

.

Unfortunately, this program never ends, and the programmer
will never see the READY colon from FOCAL. Program seg-
ments which repeat are called "loops." The program shown
above is an example of an "infinite loop". To escape such a
loop, type MODE and the program will stop.

GO (GOTO) starts a program at the line number specified

or at the lowest line number in the program, if no line number
follows. The GOTO statement can also be used in the immediate
mode to transfer control to the program.

(12) FOCAL

In the next example, the instruction GOTO 1.8 passes
control to statement 1.8, and starts the loop with the loop
counter already equalling 12.

SET N=0
SET N=N+1
TYPE "LOOP NUMBER =",N,#
GOTO 1.3
N=12; GOTO 1.8
NUMBER 12.00000
LOOP NUMBER 13.00000
LOOP NUMBER 14.00000
LOOP NUMBER 15.00000

[oo ee o 0s oo
O W
Qtltie o o o
oW W

1.5.2 The IF Statement

In the above example, the program will again cycle in-
definitely, since it has no condition for ending itself. For
this reason, FOCAL includes the IF command which transfers
control CONDITIONALLY. The basic form of an IF statement is;

:<line number> IF (<expression>) L1,L2,L3

where L1,L2, and L3 represent statement numbers, and the ex~-
pression, always enclosed in parentheses, stands for a single
variable or arithmetic formula containing variables.

When FOCAL encounters an IF statement, and the value in
parentheses is negative, the control is transferred to the
first statement number in the list. If the value is zero,
control goes to the second, and if it's greater than zero, it
transfers to the third. FOCAL recognizes abbreviated forms
of the 'IF' statement containing one or two statement numbers
rather than three. Should the IF statement only contain 2
statement numbers in its transfer list, control will be given
to the statement following the IF statement when the value is
greater than zero. Similarly, when an IF statement contains
only one statement, a value greater than or equal to zero
will have control transferred to the next sequential com-
mand. These different styles of IF statements are shown in
the following examples.

(13) FOCAL

IF (A-B) 1.5,1.4,1.3

TYPE "A IS GREATER THAN B"; QUIT
TYPE "A IS EQUAL TO B"; QUIT
TYPE "A IS LESS THAN B"; QUIT

L L]

b et et
L]
GV W

22.1 IF (MONEY) 22,28, 22.28; TYPE "YOU STILL HAVE
FUNDS", #
22.3 DO 24.0; GOTO 15.4

:40.6 IF (II) 40.8; DO 70.0; GOTO 40.6
:40.8 TYPE "II IS FINALLY NEGATIVE. GOODBYE",#
:40.9 QUIT

Note in the above that a space always separates the IF

and the open parenthesis mark. These examples are shown only
to exercise the various aspects of the IF statement. They
are not meant to be working parts of a single program.

1.5.3 The JUMP Statement

The last of the branch instructions is the JUMP command.
This statement is frequently used when a program needs to
transfer to one of more than three locations. The general
form of this multibranch instruction is

*<line number> JUMP (<expression>), L1,L2,L3,L4, . . .,Ln

L1 through Ln are the statement numbers much like those

in the IF command definition, but there may be as many num-
bers given as can fit in the command line. EXPRESSION, as be-
fore, is any single variable or arithmetic combination of
variables. If the value of the expression equals 0, control
transfers to the first statement number given. When the
value equals 1, the second statement number is chosen, and so
on. Should the value contain a fractional part, like 2.37 or
2.98, only the integer part is considered. The values 2.37
and 2.98 would both transfer control to the third statement
listed. The following shows this command being used to se-
lect a part of a program given some input from the user.

1.2 ASK "1) RIGHT 2) LEFT 3) UP 4) DOWN 5) NO CHANGE",N
1.4 JUMP (N-1), 10.1,15.34,12.3,65.98,2.02

(14)

If the computed value of the bracketed variable or ex-
pression is less than zero, control goes to the first state-
ment listed and if it's too large for the list, FOCAL sends
control to the last statement listed. 1If the user had re-
sponded 5 or larger to the ASK statement above, control
would have gone to the statement numbered 2.02.

1.6 SUBROUTINES
1.6.1 The DO And RETURN Commands

A subroutine, sometimes called a "routine," is a special
sequence of statements with the same group numbers. A group
number, as mentioned, is the integer part of a statement's
line number and the fractional part is the step number. A
subroutine, for instance, could be the sequence of state-
ments between line numbers 52.01 and 52.99. This sequence is
"special" because any part of the program can send control to
this block of statements and receive it again when the block,
the subroutine, has finished. The "sending of control" is
known as a subroutine "call" and the process used for a sub-
routine to return this control to the code which called it is
a "return" from subroutine. In FOCAL the subroutine is
thrown into execution by the DO statement, and the return from
the routine by a RETURN statement.

The DO statement must specify a line number containing
the group number for the subroutine to be called and a step
number of zero; thus "DO 52.0" is acceptable, whereas "DO 52"
is not. The RETURN statement requires no arguments; it sim-
ply returns control to the statement following the DO state-~
ment which called it. Note, in the example below, that 1) the
same subroutine can be called from many places, and 2) a sub-
routine may call another subroutine, which may call yet
another, which. . .etc. :10.1 DO 20.0; DO 18.0

:10.2 C IF J NOT RIGHT, CALL 20.0

AGAIN
:10.3 IF (~-J) 10.4; K=20*T; DO 20.0

:20.1 F I=1,10; DO 15.0;
:20.6 R

:18.1 DO 20.0; T K, #

:18.2 DO 16.0

:18.3 R ; C THESE EXAMPLES WERE NOT
TAKEN FROM

:18.4 C A WORKING PROGRAM

(15) FOCAL

The next example further exercises the flexibility of the
subroutine calling structure. 1In this example, a subroutine
calls ITSELF until a certain condition is satisfied, and then it
begins a series of RETURNS while calculating a factorial for a
number. A return to itself is made for each call it made to it~
self; the last return sends control back to the DO statement
which originally called this factorial subroutine. This sort of
subroutine calling is known as RECURSION. Computer theory buffs
should note that the initial variable list is used for all
levels of the calling sequence; FOCAL does not dynamically allo-
cate new memory for copies of the variables.

A N; C ASK FOR THE NUMBER TO USE
NF=1; DO 2.0; T N,"FACTORIAL IS",NF,#;Q

e .

—
.

N -

S

C SEE IF N IS GREATER THAN 1. IF SO SUBTRACT

C ONE AND CALL THIS ROUTINE AGAIN UNTIL IT IS 1
C
C

THIS ROUTINE RETURNS AS MANY TIMES AS IT WAS CALLED
AND THIS CONTROLS THE FACTORIAL CALCULATION

IF(N-1) 2.8,2.8 ; S N=N~-1; DO 2.0

C RETURNS ENTER HERE

S N=N+1; S NF=NF*N

R ; C RETURN FROM LAST CALL

NN
L] e o L] . .
OO WN -

0s ¢ ve o5 s B0 se o

If FOCAL runs out of step numbers for a subroutine, thus
threatening to continue into the next group of line numbers, it
issues the RETURN. This makes it perfectly valid to omit the
return statement from a subroutine. This optimizes memory re-
quirements at the expense of a program that becomes more diffi-
cult to read.

(16) FOCAL

1.7 LOOPS
1.7.1 The FOR Command

Program loops can be constructed in FOCAL with the FOR
command. This command executes the remaining statements on
its SAME LINE a specified number of times. The number of
loops depends upon the numbers given to the FOR command. In
its full form, FOR uses 4 values; an index variable, a start
value, increment and stop value for the index. These, in
order, look like:

:12.1 FOR I=1,3,200 ; J=I/2 ; TYPE J;

In the above, the values 1,3, and 200 could have been variable
names, and the second and third statements on that line

could have been any legal statements in the language. They
must be followed by a blank and the ENTIRE LINE must be fol-
lowed by a semicolon. In the following example,

:12.4 FOR II=VN,NN,Q ; TYPE II, FSQT(II),#%;

the variable II is initially given the value VN. On succes-
sive loops its value increases by the amount NN, and when this
value exceeds Q control is passed to the next LINE NUMBER.

If only 2 values follow the equal sign, it is assumed that

the increment has been omitted, leaving only the start and

end values for the next II. 1In this case, the increment is
set to 1.0.

Since the FOR command executes only the statements on

its same line, it is convenient to use it in conjunction with
the DO command. The polynomial graphing given on this page
shows this in use.

:20.2 S LX=40; S LY=70; S ¥YN=0; S ¥YX=100
£20.3 S XN=0; S XX=100

:20.5 S SX=(XX~XN)/LX ; S SY=(YX-¥YN)/LY
:20.6 A "DEFINE A,B,C FOR AX"2+BX+C" ,A,B,C
:20.7 T #,"GRAPH Y=AX"2+BX+C, X IS DOWN,"
:20.71 T "Y ACROSS",#

:20.9 F X=XN,SX,XX; DO 60.0;

:20.95 Q

:60.1 S Y=X"2*A+ (B*X) +C

:60.3 I (Y-YX) 60.5; S Y=YX; G 60.8

:60.5 I (YN-Y) 60.8; S Y=YN; G 60.8

:60.8 T "I"

:60.83 F J=YN,SY,Y; T "#*",;

:60.9 T # ;C RETURN

: GO
DEFINE A,B,C FOR AX"2+BX+C?1/80?7-1240
(PRINTS OUT GRAPH HERE)

(17) FOCAL

The reader should study the example shown here, and

compare this to the fully commented version.

It should also be

very instructive to run this program as shown, then modify both
the program and the data as desired.

The term "loop" refers to any sequence of statements which
can be executed repeatedly; the "FOR" statement is only one way

of forming a loop.

A common way of setting up a loop uses

"SET," "IF" and "GOTO" statements in such a way that a counter
(or "loop index"), an increment value and a limit are manipu-~

lated by the program directly.

The following shows the code

necessary for such a loop:

:23.25 C INDEX IN IS SET 1 INCREMENT LOWER THAN 1ST VALUE

:23.3 SET IN=0

:24.1 C INCREMENT LOOP INDEX. 24.4 IS LOOP START

:24.4 SET IN=IN+IC

:25.1 C TRANSFER OUT OF LOOP WHEN INDEX EXCEEDS LIMIT
:25.2 IF (IN-LIMIT) 27.6

:25.7 C HERE STARTS THE CODE FOR THE BODY OF THE LOOP.
:27.5 GOTO 24.4 ; C FORCE NEXT LOOP

:27.6 C THIS STATEMENT IS OUT OF THE LOOP

:27.7 C REST OF PROGRAM CONTINUES FROM HERE

Another example is given in the next section on subscripted
variables.

1.7.2 Subscripted Variables

The variables in a program generally represent the physical
entities of the problem under study. The programmer can think

of his variable, "T," as containing the current time in seconds
or another variable, "SP" as representing a vehicle's speed.

This association between variables and their physical meaning is
fundamental to any type of computer programming. Quite often,
however, several values must be simultaneously associated with a
single concept, and thus, the programmer would like to have a sin-
gle variable name represent these many values. A chess board is
a good example of this, since the programmer would like 64 values
held for the single board. While it would be possible to assign
each of the squares a separate name, FOCAL's subscripted vari-
able feature allows all the squares to be referenced with the
same name. A variable which has many values is called an ARRAY,
and its separate values may be selected by means of a SUBSCRIPT
or INDEX. A subscript is an integer tag identifying a particu-
lar value within an array. It is enclosed in parentheses
immediately following the array name. "BD(1l)", for example,

(18) FOCAL

might be the first square of the board, while "BD(64)" might be
the last. Little advantage would be realized were it not for
the fact that subscripts themselves can be variable names or
even expressions. In other words, any expression can be put in-
to the parentheses following the array name; FOCAL merely cal-
culates the value of the expression, drops any fractional part,

and uses the resultant integer to select a single value from
the array. ,

As an illustration, the following sequence of statements,
written as a subroutine, counts the number of pieces a chess
bishop can threaten from his square. Some initial definitions
at the beginning of the program are shown as is the routine it~
self; the actual call(s) from the main body of the program have
been omitted.

:1.11 C 8 POSSIBLE DIRECTIONS OF MOVEMENT STORED IN DX,DY
ARRAYS

:1.1 C DEFINE ARRAYS TO BE USED BY LATER SUBROUTINES

t1.12 S DX(1)=1 ; S DX(2)=1 ; S DX(3)=-1 ; S DX(4)=-1

t1.12 S DX(5)=1 ; S DX(6)=~-1 ; S DX(7)=0 ; S DX (8)=0

:1.13 S DY(l)=1] ; S DY(2)=-1 ; S DY(3)=1 ; S DY(4)=-~1

:1.15 S DY(5)=0 ; S DY(6)=0 ; S DY(7)=1 ; S DY(8)=-1

:1.16 C FIRST 4 USED BY BISHOP. LAST BY ROOKS. ALL BY QUEEN/
KING

:70.02 C THIS SUBROUTINE COUNTS THE NUMBER OF OPPOSING PLAYERS

:70.04 C THREATENED BY A KNIGHT AT ROW "NR", COLUMN "NC"

:70.06 C ASSUMES THAT OPPOSING PIECES ARE CODED AS NUMBERS WITH

:70.08 C OPPOSITE SIGNS AND THAT EMPTY SQUARES CONTAIN ZEROS.

:70.10 C "BD" HAS THE ENTIRE BOARD OF 64 SQUARES. "ZAP" COUNTS

:70.12 C THREATS FOR THE CALLING ROUTINE AND "LP" WILL

:70.14 C BE THE LOOP DIRECTION COUNTER INTERNAL TO THIS ROUTINE

:70.16 C START BY ZEROING COUNT AND STARTING DIRECTION INDEX

£70.17 S ZAP=0 ; S LP=0

:70.18 C PUT BISHIP'S VALUE INTO BT TO COMPARE LATER. FROM NR,
NC

:70.20 S BT=BD(NC-1*8+NR)
:70.22 C START LOOP - RETURN WHEN LP PAST 4
:70.24 SL P=LP+1 ; I (LP-5) 70.26 ; RETURN

£70.26 C SET INITIAL POSITION OF MOVING SQUARE

:70.28 S NX=NR; S NY=NC-

¢£70.30 C LOOP THROUGH NEXT SQUARES ON CHOSEN DIRECTION
:70.32 S NX=NX+DX(LP) ; S NY+DY(LP)

:70.34 C SEE IF YOU'RE STILL ON THE BOARD. 1 < or = to NX,

NY < or = to 8
:70.36 I (NX) 70.24, 70.24 ; I (9-NX) 70.24,70.24
¢£70.38 I (NY) 70.24, 70.24 ; I (9-NY) 70.24,70.24

(19) FOCAL

:70.40 C CALCULATE POSITION (INDEX) IN BOARD FOR THIS SQUARE
" (NX,NY) '

£70.42 S SQ=BD(NY~-1*8+NX)

:70.43 C MULTIPLY BY BISHOP'S VALUE TO CHECK SIGNS

:70.44 S PR=SQ*BT ; I (PR) 70.46,70.32,70.24

:70.45 C FOUND OPPONENT ~ COUNT IT AS THREATENED. LOOP AGAIN
:70.46 S ZAP=ZAP+1 ; DO 71.0

:70.50 G 70.24; C END OF SUBROUTINE

:71.1 C PRINT OUT THREATS ~ MONITOR PROGRAM PROGRESS

:71.2 T "PIECE AT ROW",NX,"COLUMN", NY," IS THREATENED BY",#
:71.25 T "PIECE AT", NR,NC,#

:71.3 R

FOCAL allows subscripts to have any values from -2047 TO +2047

1.7.3 The COMMENT Statement

FOCAL allows comments to be inserted into a program with

the C command. This command requires a line number as any other
command in a stored program, but when FOCAL encounters this
statement, it simply skips to the next command. This statement
begins with a line number, the letter C, and at least one blank
following the C. The rest of the line, up to the semicolon, is
ignored by FOCAL. Since these statements have line numbers,
branches can be made to them. In this case, comments can be
thought of as being "continue" statements (as in FORTRAN).

$19.1 C ~-- POLYNOMIAL GRAPHING PROGRAM ~--

:19.2 C -~- DOCUMENTED VERSION --

:20.1 C PREPARE SCALING VALUES THAT RELATE THE SIZE
:20.12 C OF THE PHYSICAL GRAPH TO THE FUNCTION VALUES
:20.14 C TO BE PLOTTED.

£20.2 S LX=40 ; S LY=70; S YN=0; S ¥YX=100

:20.22 C XN,XX ARE THE MINIMUM AND MAXIMUM X VALUES
:20.24 C ¥YN,YX ARE THE MINIMUM AND MAXIMUM Y VALUES
:20.3 S XN=0; S XXS=100

:20.42 C COMPUTE LENGTH BETWEEN SPOTS ON PLOT BY
:20.44 C COMPARING BOUNDS TO LENGTH AND WIDTH

$20.5 S SX=(XX-XN)/LX ; S SY=(YX-YN)/LY

£20.52 C INPUT PARAMETERS FOR THE POLYNOMIAL

:20.6 A "DEFINE A,B,C FOR AX"2+BX+C ",A,B,C

:20.7 T #, "GRAPH Y=AX"2+BX+C X DOWN, Y ACROSS",#
:20.8 C EACH LOOP OF 20.9 DOES 1 LINE OF PLOT

:20.9 F X=XN,SX,XX; DO 60.0;

20,95 Q

:60.05 C THIS ROUTINE COMPUTES POLYNOMIAL FOR WHATEVER
60,07 C VALUE OF X IS PASSED., 1IT'S THEN PLOTTED
:60.09 C (IF POSSIBLE) WITHIN THE DEFINED BOUNDS.

(20) FOCAL

:60.1
:60.24
:60.3
:60.5
:60.8
:60.81
:60.83
:60.88

O"MOHFHHEHOW

Y=X"2*A+ (B*X) +C

IF Y VALUE TOO LARGE OR TOO SMALL, PLOT ON EDGES
(Y-YX) 60.5; S ¥Y=YX; G 60.8

(YN-Y) 60.8; S ¥Y=N; G 60.8

III"

PRINT ASTERISKS UNTIL INDEX AS LARGE AS Y
J=YN,SY,Y; T "*",

FINISH THIS LINE WITH CR AND RETURN FOR NEW X

(21)

1.8 SUPERVISORY FUNCTIONS
1.8.1 The WRITE Command

For editing purposes, FOCAL provides the ability to

print all or parts of the program text with the WRITE com-
mand. It can be used to copy the entire program text to pa-
per tape for storage or can be used to print single lines or
subroutines. WRITE 2.2 will print just the line which is
numbered 2.2. WRITE 2.0 will print just all lines between
2,01 and 2.99, and the command WRITE ALL will print the en-
tire program ordered by increasing line number.

1.8.2 The ERASE Command

The ERASE command is used to delete lines or groups of
lines from a program. To erase a single line from the text,
the user only has to type ERASE followed by the line number
as in ERASE 22.34. To erase an entire group of lines such
as a subroutine, the user can type ERASE followed by the
group number. To delete a subroutine with the group number
95, the user should type ERASE 95.0.

ERASE can also be used to clear an entire program, its
variables and their values. This is only done when the user
wants to write a new program. The ERASE ALL releases all the
memory assigned to the last program so that it can be used

by the new one. It is naturally a good habit to save any
lengthy programs on paper tape before erasing them.

1.8.3 The MODIFY Command

The MODIFY command is used in immediate mode to edit

portions of lines in a FOCAL program. It accepts a line num-
ber designating the statement to be edited; this line number
must be followed by a carriage return. The actual editing is
performed on the line following the MODIFY command. The user
must guide the MODIFY editor with certain non~-printing com-
mands. After the carriage- return, MODIFY waits for the user
to type a single character from the keyboard; this character
will be used as the "search character." MODIFY will print
the line in question up to and including this search charac-
ter, or the user can direct modify to perform one of several
other tasks described below. Each of these tasks is selected
with a special character which is typed after the search
character. If MODIFY does not recognize this character as
being a member of its special list, it assumes that a text
insertion is being made.

(22) FOCAL

1. "CNTRL/G". This does nothing to the text already
defined, but prepares the MODIFY function for a new search
character. This new search character must follow immedi-
ately; neither will be printed. Any searches through the
rest of the current line will use this new character.

2. "CNTRL/L" or "FORM FEED". This command restarts

the search procedure in MODIFY which will begin typing the
rest of the line until the current search character is

found. As in the first search sequence undertaken by MODIFY,
the search character will be typed, and MODIFY will then wait
for more commands.

3. "DELETE". This deletes the last character in the
line. Successive DELETE's delete characters in order from
right to left towards the line number.

4. "CNTRL-X". This deletes everything in the line up to and
including the last character printed. The rest of the line,
as yet unprinted, remains intact. It will be shifted over,
however, so that it follows the line number.

5. "RETURN". This deletes anything to the right of the
last character last printed.

6. "LINE FEED". This instruction tells MODIFY to save

the line as presently defined.

1.8.4 LIBRARY DISK COMMANDS

Processor Technology Disk Focal has an interface with
PTDOS to save and recall programs and data from disk files.
This interface is through a series of LIBRARY statements:

LIB SAVE <file name> Save current program

LIB LOAD <file name> Get program from disk

LIB DELETE <file name> Kill file

LIB OPEN <#>,<file name> Open a data file

LIB TYPE <#>,<var list> "Type" data to file

LIB ASK <#>,<var 1list> "Ask" for data from file
LIB REWIND <#> Rewind a data file

LIB POINT <#> Point to end of file (EOF)
LIB ENDFILE <#> Make current position EOF
LIB CLOSE <#> Close data file

LIB FILES [/u] List all FOCAL files

LIB QUIT Return to PTDOS

<file name> 1is any valid PTDOS file name

<#> is a digit between 0-~9

<var list> Valid FOCAL variable list which may contain
constants, variables and expressions for TYPE,
just variables for ASK. Must not contain
quoted text, nsu’u#u,u?u or "iv,

(23) FOCAL

All LIBRARY commands may appear in a program or may be

used in the immediate mode. Except for L TYPE and L ASK,
none of the library commands should precede other commands
on the same line, since the rest of the line will be ignored.

The L LOAD command may be used within a program to chain
to another program. This will be discussed more fully under
LIB LOAD below.

Naturally, all library commands can be abbreviated. For
example LIB ENDFILE 5 can be written as L E 5.

LIB SAVE <file name> will save an exact copy of the
internal form of the current program in memory onto file
<file name>. If <file name> doesn't exist, it will be
created type 03. If it does exist, it must already be
type 03 or an error will occur.

LIB LOAD <file name> will load in the data in the file
(which must exist, type 03) over any program which is
currently in memory. If the LIB LOAD command was issued
from a program, the newly read-in program will be executed
starting at its lowest line number. This allows chaining
of FOCAL programs. To pass data from the first program to
the second, it should be written onto a data file by the
first program (using LIB TYPE--see below) and read back
from the same file number by the second program. (using
LIB ASK). It is not necessary to re-OPEN the data files
during a chain as long as the same file numbers are to be
used in both programs. When chaining, variable's values are
lost, unless they are saved on a data file.

LIB DELETE <file name> will delete the named file provided:

(1) it exists
(2) it is either type 01 (FOCAL data file) or type 03 (FOCAL
program).

LIB OPEN <#>,<file name> is used to set up a data file for
subsequent LIB TYPE or LIB ASK statements. If the file
doesn't exist, it is created type 0l1l. If it does exist it
must already be type 01, or an error will occur.

The opened file is assigned the number <#>, and this number
must be used to refer to the file in any subsequent data file
operations such as TYPE, REWIND, etc.

LIB TYPE <#>,<var list> is similar to the regular TYPE
command except that its output goes to file <#> where the
number <#> has been assigned to a file using the LIB OPEN
command. In addition, only numerical data can be written to
a FOCAL data file~--no quoted text, #, !, $ or ?. The data
is written to the file in binary form--4 bytes per number.
This data is written starting at the current cursor position
for the file. For example, the sequence

(24) FOCAL

:LIB OPEN 5,POTTS

:LIB POINT 5

:LIB TYPE 5,A,B"10,9*%1024
:LIB CLOSE 5

results in the values of the three expressions A, B"10 and

9*1024 being added to the end of the file POTTS. (POINT puts
the file cursor at the end of the file.)

LIB ASK <#>,<file name> is used to read values from a
file which LIB TYPE has written on. The number <#> must
have previously been assigned to <file name> in an OPEN
statement.

LIB REWIND <#> sets the cursor for file <#> (which has
been assigned in an OPEN) to the beginning of that file.
This is where the cursor is when the file is first opened.
LIB REWIND can be useful when chaining between programs,
since the second program must start at the beginning to
read the data from a file.

LIB POINT <#> sets the cursor for file <#> (which has
been assigned in an OPEN, naturally) to point to the end

of that file. LIB POINT is used when one wants to add data
to the end of a file without losing any old data which may
be there already.

LIB ENDFILE <#> makes the current cursor position the
end of file <#>. Any data after this position in the file
is lost. For example, the sequence

:LIB REWIND 2
:LIB ENDFILE 2
:LIB CLOSE 2

removes all data from file 2 (which has of course been
assigned to some file in an OPEN). ENDFILE should be used
any time that new data is being written on an o0ld file which
may contain garbage from a previous use of the file.

LIB CLOSE <#> removes the association between the given
number and the file to which it was assigned in a previous
LIB OPEN, writes out the file's buffer if necessary, and
frees the buffer space for later use. After executing a
CLOSE, the specified number may be re-used in a LIB OPEN
statement. Re-using a number without first closing it will
result in the file it used to belong to remaining open,

and there is no way to close it short of LIB QUIT.

LIB FILES [/u] is used to obtain a list of all FOCAL
program and data files which are currently on disk unit u.

If no unit is specified, then FOCAL files on the default unit
are listed.

LIB QUIT leaves FOCAL and returns to the Command Interpreter
Before leaving, QUIT closes all files.

(25) FOCAL

1.8.5 The TRACE Feature

The TRACE feature is provided to help debug stored pro-
grams. It can be activated from almost anywhere in a program
and can be deactivated as easily. While operating, trace
types out each line it sees being executed by FOCAL and re-
ports on any variable values that are changed during each
line of the program. A question mark is the symbol used to
both activate the trace and deactivate it. Any gquestion mark
encountered outside a comment statement and outside the text
parts of the "ASK" and "TYPE" commands will change the trace
mode. If the question mark is encountered while trace is ac-
tive, the trace will be deactivated. 1If seen while trace is
"OFF" the trace mode will be turned "ON".

1.9 RUNNING FOCAL
1.9.1 Hardware Requirements

In order to run FOCAL, an 8080 based computer must be

equipped with at least 8K of resident random access memory.

This memory should be addressed starting at zero and continue
upward contigous with preceding blocks. FOCAL is set up to

use 16K of memory allowing more than 4K for programs and data.
More than 12K can be used by changing memory location 107 and 108
to the number of bytes of continuous RAM in the computer.

For example, if 20K is available the location should be
as follows:

ADDRESS 0107 00H
0108 50H

These values may be changed any time after loading

FOCAL. The number of memory locations used by any stored
program can be calculated from the rule+ SIZE = 8S+C+4L
where S is the number of variables, C is the number of char-
acters in the stored program text, and L is the number of
lines in the program. FOCAL can be re-"imaged" with the

new value, if desired.

(26) FOCAL

1.9.2 Miscellaneous Notes

Should you accidentally leave FOCAL before saving your
program, you can restart it by typing EXEC 100 to the Command
Interpreter or SOLOS.

FOCAL does not understand lower case letters. All var-
iables, commands, functions, etc. must be in UPPER CASE.
Lower case 1is okay within quotes or file names.

Remember that binary arithmetic is not exact--it is
only very close. Therefore, you may expect very small
(but nevertheless disconcerting) errors such as

:T 23431
54.00001

which are caused by FOCAL's attempts at rounding off numbers
which it cannot store exactly. You can make these errors
much less frequent by not printing as many digits to the
right of the decimal point. (See TYPE)

(27) FOCAL

1.9.3 Errors

The following is a list of error codes issued by FOCAL.

The

error number represents the address in the FOCAL program where
Errors which occur during LIBRARY com-
mands are self-explanatory and are not listed here.

the error was detected.

ERROR CODE

200.00
201.DD
203.CB
203.A6
204.32
204.37
205.52

205.5B

?206.55
206.CB
207.0A
207.2A
?207.79
?07.F1
208.09
208.52
208.72
208.89
?0A.9E
?0B.FE
?20C.52
?0C.FO
?20D.08
?20D.31
?20D. 46
?20D. 4E
211.96
?11.FE
?212.10
?212.8A
214.00
214.19
215.65
215.84
?215.B5
?215.BA

MEANING

Restart (you hit MODE or CNTL-4@).

Input buffer overflow.

Bad line number.

Bad line number.

Bad char in expression.

Bad char in expression.

Irrecoverable memory overflow.
FOCAL must be reloaded.

Recoverable memory overflow.
Enter ERASE to clear variables.

Bad line number.

No such group.

DO references missing line.

GOTO references missing line.

Invalid command.

Missing (in JUMP.

Missing (in IF.

Left of = bad in FOR or SET.

Extra) in FOR or SET.

Bad expression in FOR.

MODIFY references missing line.

Missing operator before (.

Arithmetic overflow.

Missing (in function reference.

Parentheses error.

Unbalanced parentheses.

ERASE F 22?

Bad argument to ERASE.

Can't raise to a negative power.

Invalid library command.

Missing comma in LIB OPEN.

Missing comma in LIB ASK or LIB TYPE.

No / before unit in LIB FILES.
Garbage after unit in LIB FILES.
File name missing.

Name too long.

Bad file number.

Bad file number.

(28)

FOCAL

