Overview m
System Commands ﬂ
Command Interpreter

Command Macro
Preprocessor

File System H
Processor Technology
Disk Operating System sooeen mncessece A
System Calls

UsersManual m

Describes PTDOS 1.5 Device Drivers ﬂ

Error Messages m

Processor Technology
Corporation

7100 Johnson Industrial Drive .
Pleasanton, CA 94566 Appendices 1, 2 & 3 m
Telephone (415) 829-2600

EDIT

EDT

>
w .
9]

W

DEBUQ

FOCA

Copyright (C) 1973, Processor Technology Corporation
Second Edition, First Printing, October, 1978
Manual Part No. 731029
All rights reserved.

IMPORTANT NOTICE

This manual and the program it describes are copyrighted by Processor
Technology Corporation. All rights are reserved. All Processor
Technology software packages are distributed through authorized
dealers solely for sale to individual retail customers. Wholesaling
of these packages is not permitted under the agreement between
Processor Technology and its dealers. No license to copy or duplicate
is granted with distribution or subsequent sale.

SECTION

1

TABLE OF CONTENTS

PART I

OVERVIEW. ¢ ¢ et eteeteeenscscancscncosncsnsns

INTRODUCTION..n“ocoo.oooo--o

SYSTEM OVERVIEW. .. eeeeseonaese

HARDWARE REQUIREMENTS........

ORGANIZATION OF THE MANUAL...

SYSTEM COMMANDS .. .cveeeeeesssecasne

2.1
2.2

2.3

INTRODUCTION AND CONVENTIONS.

COMMAND DESCRIPTIONS.........

COMMANDS NOT USUALLY ENTERED
THE KEYBOARD.....ceveeeeeennn

COMMAND INTERPRETER.....

3.1
3.2

3.3

INTRODUCTION..csswow
COMMAND SYNTAX.....
OPERATION....cocc..

.3.1 CI Files....
3.2

o o o

e o 00

“ o s 0

3
3.3. Invocation...eee..

COMMAND MACRO PREPROCESSOR...

4.1

4.2

e o s o 0

* o 0 0

e o o 0 0

INTRODUCTION..eceeoeecansss .o

DEVELOPING THE INPUT FILE....

4,2.1 Variables..... .o
4.2.,2 Conditionals and Signed Conditionals.
4.2.3 Cases of Special Punctuation

EXECUTING DO..... ceseece

* o 0 00

® s 0 0 0

* o o 00

FROM

® ® o 00 00 00

o8¢0 00 0

® o e 0 002 00

® ¢ 0 0 0 0 0 0 0

® e 0 0000 0 ¢

® 6 5 06 0 0 8 00 0 0 0 050800800

EXAMPLES OF MACROS ... cereeeeeeocssscsasonnes

iii

PAGE

2-48
3-1

3-1

PTDOS

SYSTEM..............'....l'......l..........
INTRODUCTION. ® & & & ® 5 O 5 5 & & & 0 & & 8 O O O P S S S S O S S S e o
FILE CHARACTERISTICS .. ceeeotcsccccccoccncnsnse .
5.02.]1 File NAMEeS..eeeeeeecoscocsooscascoasess
5'2.2 File Types......O.‘.......I.'..O.'...
5.2.3 File Protection AttributeS.....ceece..
DISK STRUCTURE' *® & © & 0 & 0 & P O S 880 eSeSE e e e 0 e
FILE STRUCTURE. . cvceceocses cecescseesssee cocoecse

DISK SPACE ALLOCATION AND THE
FREE SPACE MAP....‘.‘.......‘...............

FILE ACCESS AND BUFFERING.. e ceeeecocecossse .
DATA STRUCTURE . ¢ ceeeeoceaascccoccssscccssccss
Introduction..eeeeeeeeoccesocecoccoas
Text Files...I...........I.....I.I.I.

Image FileS.ievieeeevceesoocsnocoscannns
Utility Files.....OQ.I........OQ...I.

(SO0,]
NN NN
B> w N -

- -
. .
. .

SYSTEM INTERFACE..................I....l.ll'.....

6.1
6.2
6.3

6.4

6.5

6.6

INTRODUCTION . :ceeeeeeecccacossancccsscncnscas
MEMORY MANAGEMENT .. ccceeeecececccccoscscncsnse
SYSTEM GLOBAL AREA....:ceeececsscssccsnnccscse
SYSTEM ENTRY POINTS..ceeeeccccccconsccsccnce

6.4.]1 SYS...ieiiitietrecrettccnraceccnsanannns
RB, WB.eeeoereesoooosososcnsosscccnnnocns

2

.3 SRESET, ERRLO, ERRL1l, ERRLZ2..........
.4 CONIN, CONOUT, CONTST.e.eeseeeccccccscs
5

6

UTIL. ® 9 0 0 0 0 0 O 6 0SS GO PG L LS E L NN S e
PSCANn ® ® 8 0 0.0 0 0 0 ¢ 00 00 00000000
ERROR HANDLING. .. ceeeeosesscacscccsoccccccscs

INTERRUPT PROGRAMMING...cceeeoeecacccccccans

SYSTEM CALLS..--oo.co..oooo..noo-o..ooo-----.a.o.

7.1

INTRODUCTION....‘......'..C.....'.......I...
STANDARD NAME RESOLUTION RULES...ec.tceeeeces
ERROR RETURNS .. ceetesecesosccccssscssacssncecse

OPERATION DESCRIPTIONS .. ceeocsecccccccncscscs

iv

1
>

(o)) O\O\C?\O\O\O\ [=))
bt =00~~~

PTDOS

E

10

SYSTEM UTILITIES .. teeeceesssccscsscsccccsss
8.1 INTRODUCTION...eeeeossscesosscosanacs
8.2 EXPLAIN ERROR UTILITY (UXOP).eeeeo..
8.3 FILE CATALOG UTILITY (UCAT).e.ceeees
DEVICE DRIVERS ... eeeseeesscscsacesssccnas
9.1 INTRODUCTION..:seeseeecccasoassansens
9.2 DEVICE FILE FORMAT....vccceeceee coeses
9.2.1 Driver Table Format...ceeeees
9.2.2 Calling Sequences for
Driver RoutinesS...ceeeeeceees
9.3 BUILDING A DEVICE FILE..eccecosocccas
9.4 CONSOLE DRIVER. :::eeeeoceonssocnansnse

Device File ACCESS.vieeevosses

e s o000 s 0

e o0 0008 s 0

e o8 0 00 0

® o 00 00 00

® o0 000 00

9.4.1
9.4.2 Single Character ACCESS.ceeeecccccens
9.4.3

4. Hardware Interface....ceeceses
9.5 CASSETTE TAPE DRIVER. ..o eecescscacns
9.6 NULL DEVICE FILE.......‘.........'..

ERROR MESSAGES......l..'..‘..............

APPENDICES
1 GETTING STARTED WITH PTDOS
2 BOOTSTRAPPING

3 COMMAND SUMMARY

PART II
MEDIT = oK H-b
EDIT
EDT3
ASSM
DEBUG
FOCAL

e o s 00 000

® s 0 0 00 o0

® s e 0o 00 00

PTDOS

PREFACE

This manual describes PTDOS 1.5, the result of continued evolutionary
development of the previous release, PTDOS 1.4. 1In addition to the

correction of all known bugs, a number of new features have been added
to PTDOS:

*The HELP, DCHECK, and XREF commands are new. «ME&9T

*Extended Disk BASIC replaces BASIC/5.

*The DISKCOPY, FREE?, and $PR commands have additional capabilities.

*The system may be configured with a permanently open log file,
to which all commands are echoed. This addition is reflected
in the CONFIGR, SET, and SYST commands.

*The console device driver is initialized differently.

*Several new device driver Control/Status operations have been
defined.

*Changes in wording have been made in many of the error messages
output by the Explain Error Utility.

The video-oriented editor (EDIT) has several new features:

*A new command (TS) has been added to set and clear tab stops.
*The TAB key (CTRL/ I) moves the cursor to the next tab stop.
*The LOAD key (CTRL/ L) causes the previous string search to be
continued.

*Two pattern deletion commands (PA D and PA DS) have been added.

*A new command (IF) has been added to allow files to be inserted
into a file that is being edited.

The assembler (ASSM) has several new features:

*TITL, PAGE, and ASCZ pseudo-operations have been added.
*Labels may have lower case letters in any position.
*Operation mnemonics and register names may be lower case.

*An octal number may be followed by an O or a Q.

*Binary numbers are assumed to be right-justified, like octal,
decimal, or hexadecimal numbers.

One change has been made in the debugger (DEBUG):

*The default output driver for DEBUG is now the PTDOS console
output driver, rather than the internal VDM driver.

vi PTDOS

SECTION 1

OVERVIEW

1.1 INTRODUCTION

PTDOS, the Processor Technology Disk Operating System, is an operating
system for 8080-based computers equipped with the Helios II Disk
Memory System.

This is a software reference manual. A reader interested in a more
detailed discussion of hardware than is available under the heading
HARDWARE ENVIRONMENT, below, is referred to the Helios II Disk Memory
System User's Manual. A reader interested in a tutorial introduction
to the system is referred to Appendix 1 of the present manual.

1.2 SYSTEM OVERVIEW

An operating system is a program that provides an interface between
the user and the computer hardware. This interface has two major
components. First, it allows the user to specify conveniently the
programs that will be executed and to supply parameters that control
the functioning of those programs. Second, it provides a file system
to facilitate management of the user's data.

In PTDOS these facilities have a very general implementation. System
commands are simply program names presented to a Command Interpreter,
which will load and run any file whose name appears in its input,
provided that the file contains executable code. PTDOS files usually
reside on a diskette, but any device connected to the system may be
treated in the same way as a disk file.

Almost all system services may be accessed in two ways: by means of
system calls from an assembly language program, or by means of the
system programs supplied on the PTDOS diskette.

The following is a list of some of the features of PTDOS:

USER INTERFACE

*Any program name may be used as a command.

*Command Interpreter input and output may be redirected.
*Command files allow execution of a sequence of commands.
*Command macros allow parameterized command files.

*Commands may be echoed to a selected device or file.
*Commands may be logged on a permanently open system log file.

1-1 PTDOS

SYSTEM MANAGEMENT

*System configuration may be changed by the user at any time.
*System configuration is protected by a password.

*The system may be write-locked to protect data from being
changed inadvertently.

*The user may create a startup file containing commands that
will be executed automatically when the system is bootstrapped.

FILE SYSTEM

*Disk space is allocated and deallocated automatically as

files are extended or shortened.

*Disk files may be accessed seguentially or randomly.

*A device-independent I/O system enables devices to be accessed
as files.

MEMORY MANAGEMENT

*File buffers may be static or dynamic.
*Static buffers may reside in either system or user memory.
*User memory may be protected from @ to a specified address.

ASSEMBLY LANGUAGE SYSTEM INTERFACE

*All primitive file operations are available as system calls.

*Three different methods of handling errors may be assigned
to each of three error severity levels.

*A system Utility Handler allows programs to be constructed
with multiple overlays.

*Standard system utilities may be accessed by a user program
to display error messages or to obtain information about
the files on a diskette.

*The console device may be accessed directly, one character
at a time.

*Provision is made for interrupt-driven devices.

*A Parameter Scanner simplifies the processing of arguments
by user programs.

*Commonly used system parameters are defined in files that
may be included in a user program.

1-2 PTDOS

The commands and programs in PTDOS may be categorized as follows:

SYSTEM CONTROL

BOOTLOAD
HELP
SYST
CONFIGR
SET
SETIN
SETOUT
ouT
FREE?
OPEN?
DO

EXEC
IMAGE
7Z1P
SLST
SNLST
SWAIT
SESC
$STOP
S$SREM

PRIMITIVE

/ CREATE

SCREATE
KILL
"OPEN
CLOSE

/ SPACE

 SEEK
READ

v WRITE

" ENDF

RANDOM
RENAME
RETYPE
REATR

Reload PTDOS from diskette.

Display information about command(s).

Display system parameters.

Change system parameters on a diskette.
Change system parameters in memory.

Make named file the CI input file.

Make named file the CI output file.

Set console output to display or port driver.
Report amount of free space on diskette.
Print name and number of each open file.
Invoke command macro processor.

Execute code at a specified address.

Write contents of memory to a file in image format.
Fill memory with number.

Turn on PTDOS echo flag.

Turn off PTDOS echo flag.

Wait for a carriage return or MODE SELECT.
Check for a MODE SELECT.

Return to the system from a macro file.
Identify a string as a remark.

FILE OPERATIONS

Create a file on a diskette.

Create a file on a diskette.

Kill file(s).

Open a file.

Close open file(s).

Move the file cursor.

Position the file cursor.

Transfer contents of file to memory.
Write contents of memory to a file.
Endfile at current cursor position.
Create index block for file.

Change name of file(s).

Change the type of a file.

Change protection attributes of file.

FILE MAINTENANCE PROGRAMS

FILES
COPY
DUMP
PRINT
SAVE
GET
EXTRACT

BLDUTIL

Display list of files.

Copy contents of file(s) to another file.

Display contents of file in hexadecimal and ASCII.
Print file on the CI output file or the named file.
Write one or more files to an archive file.
Transfer file(s) from a file or diskette.

Display load information; optionally, combine image
segments.

Build or alter a utility file; list current utility
numbers.

PTDOS

DISK MAINTENANCE PROGRAMS
DISKCOPY Condition, format, copy, or verify a diskette.

DCHECK Check structure of files on diskette.
RECOVER Reclaim lost space on diskette.

PROGRAM DEVELOPMENT TOOLS AND LANGUAGES

MEDIT INWOKE SeREEW T ORIEINTED MAshiyE ansudes EUITOM

EDIT Invoke screen-oriented text editor.

EDT3 Invoke line-oriented text editor.

RNUM Renumber lines of text file.

ASSM Assemble an 8080 assembly language source file.

XREF Generate cross-reference listing of assembly language
file.

DEBUG Invoke Debugger

BASIC Invoke Extended Disk BASIC Interpreter.

FOCAL Invoke FOCAL Interpreter.

GAME PROGRAM

TREK80 A video Star Trek game

1.3 HARDWARE REQUIREMENTS

- The minimum hardware configuration for PTDOS is an 808@-based computer
with at least 16K bytes of read-write memory, a terminal device, and a
Helios II Disk Memory System. The code used by PTDOS to access files
and provide system services is resident, occupying 12K bytes of memory
from 9000 to BFFF Hex. Programs and data are loaded from diskettes.

If the computer is not a Sol Terminal Computer, the Processor
Technology VDM-1 Video Display Device is recommended for console
output, although drivers are supplied for standard terminals.

1.4 ORGANIZATION OF THE MANUAL
The rest of the manual is organized as follows:

Section 2 describes the commands that will be almost the whole
experience of PTDOS for users other than assembly language
programmers. The syntax, purpose and special features of each command
are explained.

Section 3 describes the Command Interpreter (CI), the interface that
enables the user to communicate with the computer through the console.
This discussion includes a list of the rules that govern the syntax of
commands, as well as material about the selection of CI input and
output files, and an explanation of some system parameters related to
the operation of the CI.

Section 4 describes the command macro preprocessor (DO); this program
substitutes user-supplied parameters for the variables in a macro
command file, and causes the commands in the macro command file to be
executed.

1-4 PTDOS

E -

Section 5 contains detailed information about the PTDOS file system.
In addition to a general description of the structure and properties
of files, there are more technical discussions of disk allocation,
file access and buffering, and data structures peculiar to some kinds
of files, i.e., image files, utility files, text files.

Section 6 provides the information that a programmer must have in
order to interface with PTDOS from an assembly language program.
Included are discussions of memory management, system global
parameters and entry points, error handling, and interrupt
programming.

Section 7 describes the system calls that can be made from an assembly
language program. The description of each call includes a discussion
of the operation performed, its calling sequence, and possible error
conditions.

Section 8 describes the system utilities that may be invoked by a
program to display error messages or to obtain information about the
files on a diskette.

Section 9 contains a detailed discussion of device drivers. This
discussion includes a description of the system console driver and of
the cassette tape driver that is supplied with PTDOS.

Section 10 is a list of error messages and their meanings.

Part 1 of the manual concludes with three appendices: a tutorial
introduction to PTDOS, information about loading PTDOS, and a summary
of the system commands.

Part 2 of the manual consists of full descriptions of the text
editors, assembler, debugger, and FOCAL interpreter that are supplied
with PTDOS.

An Extended Disk BASIC interpreter and the TREK8# video game are

recorded on the same diskette as PTDOS, but are described in separate
manuals.

1-5 PTDOS

R,

2.1

SECTION 2

SYSTEM COMMANDS

INTRODUCTION AND CONVENTIONS

This section discusses each of the programs available as commands in
PTDOS 1.5. The commands are arranged in alphabetical order for easy
reference. The description of a command includes:

1) the name of the command, and a short description of
its function,

2) a general statement of the syntax of the command,
that is, what you should type to execute the command,

3) a brief description of the operation of the command,

4) a discussion of the "arguments" that follow the
command name on the command line,

5) any additional details or notes that clarify the
earlier brief description, and

6) examples, unless the command line consists simply of
a command name.

All commands are interpreted by a program called the Command
Interpreter (often abbreviated CI), which expects them to have a
certain format and to follow other rules. The Command Interpreter is
discussed at length in Section 3 of this manual. 1In order to use the
PTDOS commands, there are a few rules that you must understand and
follow:

1)

3)

Type the name of the command right after the PTDOS prompt (*).
Follow the command name with a space, and then type the
arguments, separating these by commas. Additional spaces may
be inserted for clarity but are not required.

If you make a mistake while entering a command, you can use

the DEL key to back up and erase the last character you typed.
If you want to type the whole line again, press the

CTRL and X keys simultaneously, and then enter the correct line.
The CTRL and X keys are reflected on the Video Display as an
exclamation point (!).

A unit specification (if it is not appended to a file name)

or any argument that has the form " X=option(s)," where X is

a code consisting of one or two letters and option(s)

indicates the pertinent values, may appear anywhere in the list

2-1 PTDOS

4)

5)

6)

7)

8)

of arguments; such an argument is "keyword delimited." Any

other argument is "positional," and must appear in a certain

position in the syntax of a command. If a positional argument

is optional and you want to omit it from the command, type an N
extra comma to indicate the omission. (Actually, you need to -}
do this only if you are including other positional arguments

later in the command line.) For example,

ASSM PROG1l,LIST,,+L means "assemble PROGl with line numbers

and send the listing to LIST but do not generate an object file."

If you omit an argument, a default value for that argument will

be used.

More than one command or program name may be typed on one
command line as a list, as long every item except the last is
followed immediately by a comma. Each command in the list is
loaded, but only the last is executed. This way of entering
more than one command applies only if none of the commands
(except possibly the last) have arguments.

A command line must end with a carriage return. Multiple
commands, with or without arguments, may be entered on the same
command line if each command and its argument list is separated
from the next command argument 1list by a semi-colon (;). None
of the commands in a command line is executed until the
carriage return is entered. (Note that if the commands are
separated by semi-colons, the commands will be loaded and
executed in sequence, whereas if they are separated by commas,
only the last command in the series will be executed.)

A slash and a unit number can be appended to a filename to
indicate which unit is to be searched for the file. Because

a command is a file, any command name may have a unit number
affixed to it. Thus, if you type FILES/1l, the FILES command
will be loaded from unit 1 and will generate a list of the files
on the default unit. 1In the examples in this section, the
system diskette is assumed to reside in the default unit. (If
you have never changed the default unit number, it will be 4,
the leftmost unit in the drive.)

With the few exceptions noted, numerical arguments are assumed
to be hexadecimal. To indicate that an argument has a different
number base, follow the argument with a colon (:) and a letter
from this list:

for a Hexadecimal number

for a Decimal number

for an Octal number (O may be used, but Q is recommended)
for a Binary number

wo om

A file number must almost always be preceded by a # sign.

2-2 PTDOS

2.2 COMMAND DESCRIPTIONS

This section describes the individual commands. The following
conventions will be used in all statements of command syntax:

1) VUpper-case letters are literal, as are numbers and most marks
of punctuation. In the command

*FREE? /1
the word FREE, the question mark, the space, the slash, and
and the number 1 are actually to be entered on the keyboard

or console. The asterisk (*) is the PTDOS prompt.

2) Lower-case letters indicate the category of item from which
which the actual entry must be taken. For example,

filename
means that the name of a file should be entered on the console.
3) Optional arguments are enclosed in braces. For example,
{filename}
indicates that the name of a file is an optional argument.
4) The symbol * is the PTDOS prompt.
There are only two additional items that need explanation here:
If a command is marked SAFE, that command runs in the portion of
memory occupied by PTDOS, and will not interfere with whatever
programs and data you have stored in memory below PTDOS.
If a command is marked INTERRUPTABLE, that command will stop its

operations if the MODE SELECT key (or CTRL - @) is typed on the
keyboard.

THE COMMANDS
ASSM - Assemble an 8080 assembly language source file
*ASSM source,{list},{object},{error},{symbol}, {S=options}
INTERRUPTABLE

OPERATION: The assembler translates a symbolic 8080 assembly language
source program ("source code") into the binary instructions ("object
code") required by the computer to execute the program. In addition
to an object code file, the assembler can generate a listing file, an
error file, and a file to which the symbol or cross-reference table is
written.

2-3 PTDOS

ARGUMENTS:

source

list

object

error

symbol

S=options

is the name of the source code input file. This
argument must be present; all others are optional.

is the name of the listing output file. If this
argument is absent, no listing is generated. If the

specified file does not exist, it is created with
type '.' and block size 4COH.

is the name of the object code output file. If this

argument is absent, no object code is generated. If
the specified file does not exist, it is created with
type 'I' and block size 100H.

is the name of the file to which lines with errors are
written. (All lines, including those with errors, are
written to "list," if that argument is present.)

The default value for "error" is the console output file
(file #1), unless "list" is #1, in which case there

is no default error file.

is the name of the file to which symbol and cross-
reference tables are written. 1If this argument is
absent, no symbol or cross-reference table is generated.
If an equals sign (=) is used instead of a filename,

the table is written to the same file as the listing.

is a string of option specifiers. For those options
that may be preceded by a + or -, the + is optional.

+A means that the source file is in ALS-8 format.
~-A means that the source file is in text format.

If neither of these is specified, the assembler attempts
to determine the file format by examining the first

few lines of the file. 1If it fails, an error message

is generated.

+I, means that the source file has a line number in
columns 1-4 of each line.
-I. means that the source file has no line numbers.

If neither of these is specified, the assembler
will examine the first few lines to determine whether
the file has line numbers.

instructs the assembler to generate its own line
numbers for use on the listing in place of those
in the source file (if there are any).

P instructs the assembler to paginate output to
the listing file.

2-4 PTDOS

X instructs the assembler to direct a cross-reference
listing to the symbol file (if there is one).
If a cross-reference table is written, a symbol
table will not be written. The source code must
either have line numbers or be assigned line numbers
by the assembler. This cross-reference listing
is generated very slowly; the XREF command performs
the same function much faster.

@ or 1 or 2 or 3 specifies the spacing on the listing:
@ - no additional spacing
1 - 72 column output
2 - 80 column output (default)
3 - 132 column output

NOTES: The assembler is described in its own manual, entitled
"ASSM: An Assembler for PTDOS 1.5" (See Part 2 of this
volume.)

EXAMPLES:

*ASSM PROG1,#1,BIN
*ASSM PROG1,LIST,,ERRS,SYMBS,S=+A-#X-P
*ASSM ERRSONLY

BLDUTIL - Build or alter a utility file; list current utility
numbers

*BLDUTIL utilfile{,I{number}=filename}{,D=number{,number,...}}
{,5=L}

OPERATION: Modules are added to or deleted from the named utility
file according to the arguments entered on the command line. BLDUTIL
will create the utility file if it is nonexistent, and will build its
directory if it is empty. More information about building and using
utility files can be found in Section 6.4.5 of this manual. The
format of utility files is described in Section 5.

ARGUMENTS:

Arguments are handled in the order that they appear. There are three
possible arguments, any of which may be repeated on the command line:

"utilfile" is the name or number of the utility file whose contents
will be affected.

2-5 PTDOS

I{number}=filename

will cause the named file to be inserted into the utility
file. The named file must be in image format and have a
starting address. If "number" is present, the file will be

as that module in the utility file. 1If there already is a
module #number, BLDUTIL will ask whether you intend to replace
the existing module; if your answer is Y, the existing module
will be replaced by "filename." If "number" is not present,
the file will be inserted at the first available position in
the utility file directory.

D=number{,number...}

will cause module #number to be deleted from the utility

file.

S=L
will cause a listing of the numbers of all existing
modules to be printed on the console.

EXAMPLES:

*BLDUTIL NEWTIL,I=POTTS,16=ZAP,D=3,S=L,I0=Zz0T,D=3,4,5

BOOTLOAD - Reload PTDOS from diskette
*BOOTLOAD

OPERATION: This command writes PTDOS into memory from diskette,
overwriting the version that was in memory, without using the
BOOTSTRAP loader program (see Appendix 2).

ARGUMENTS: This command has no arguments.

NOTES: The System Global Area contains a switch called the "verbose
switch." A user is able to change the setting of this
switch with the SET SW=H or CONFIGR command. If the switch
is on when the BOOTLOAD command is given (or when the
system is loaded from SOLOS/CUTER - see Appendix 2), the
Command Interpreter will immediately execute the commands
in the file START.UP on the system diskette. START.UP is
a text file; you can edit it to include any commands that
you want the CI to execute when the system is bootstrapped.
For example, if the START.UP file is altered so that it
contains the command to execute BASIC, the BASIC interpreter
will be invoked automatically when PTDOS begins execution.
If the verbose switch is not on when the system is loaded,
the Command Interpreter will receive its first command from
the console input device.

2-6 PTDOS

it

CLOSE - Close open file(s)

*CLOSE #fnum{,#fnum....,#fnum}
*CLOSE /{u}

OPERATION: 1In the first form of the command, the specified files are
closed. If the second form does not include a unit number, all open
files are closed, except the permanently open files; if a form does
include a unit number, all open files on the given unit are closed
except the permanently open files.

ARGUMENTS:

#fnum is the number of a file to be closed. The # is optional.
If the file is not open, no error will be reported and
no harm will be done.

u is the number of the disk drive unit that contains the
the files to be closed. (Remember that units are
numbered starting with @4.)

/ closes all open files

NOTES: File numbers are assumed to be given in Hexadecimal; to
specify a decimal number, follow the number with a
colon (:) and a D, e.g., CLOSE #38:D will close file
number 38 Decimal (26 Hexadecimal).

Initially, the permanently open files are #0 (console input),
#1 (console output), and #2 (the system utility file).

If you have used the CONFIGR command to establish SYST.LOG
(the system log file), that file will also be permanently
open as file #3.

CONFIGR - Change system parameters on a diskette
*CONFIGR {/u,}password
INTERRUPTABLE

OPERATION:

The CONFIGR command allows the PTDOS user to change system parametérs
on the diskette, but not in memory. This command differs from SET, in
that SET changes parameters in memory, but not on the diskette. The
changes made by CONFIGR will therefore not take effect until the
system is loaded again from the diskette.

2-7 PTDOS

ARGUMENTS:

is the unit on which parameters are to be examined and
If this argument is absent, the

must match the password recorded on the named or

default diskette; otherwise, the configuration of the

Initially the password

is PTDOS, but this command may be used to change it.

(consisting of all binary zeros)

is created, the command may be used subsequently

/u
perhaps changed.
default unit is used.
password
diskette may not be changed.
If a null password
without a password.
NOTES:

When CONFIGR begins execution, each parameter is except

the password displayed along with its current value. A

new value can then be entered for the parameter.

If no

new value is desired, type a carriage return to leave the

parameter with its current value.

Enter MODE SELECT (or

CTRL-@) at any time to leave CONFIGR and return to

the Command Interpreter.

case.

All input may be in upper or lower

The meaning of the parameters is explained in the
discussion of the System Global Area in Subsection 6.3 of

this manual.
to the SET command.

CONFIGR will display:

Disk name:

Change password?

Maximum number of units:

User memory protect:

Console read char routine addr:

Console write char routine addr:

Console test char routine addr:

Lowest address of buffer area:

Some parameters are described in relation

Enter a carriage return or:

up to 8 characters, none of
which may be control characters

Y if you want to change it.
Then type a new password.
Entering a carriage return as
the new password makes the
password null (see explanation
above).

number from 1 to 8

hexadecimal address (the lowest
address into which programs

or data may be loaded)
hexadecimal address
hexadecimal address
hexadecimal address

hexadecimal address less than
9001.

2-8 PTDOS

\\\w»:"

Interrupt flag:
Echo enable:

Disk write lock:
Character upshift:
Read—-back check:

Binary console I/0:

System log:
Verbose:

Maximum files open:

EXAMPLES:

CONFIGR /1,PTDOS

COPY - Copy contents of file(s)

*COPY infile,outfile{,s={A}{-E}}
*COPY O=file{,S=-E},infilel{,infile2...}

INTERRUPTABLE

On
On
On
On
On
On
On
On

decimal number from 7 to 255

or
or
or
or
or
or
or
or

off.
off.
off.
off.
off.
off.
off.
off.

to another file

OPERATION: In the first form of the command, data is copied from the
input file to the output file until an end-of-file is encountered on
the input file. In the second form,

concatenated and written to the output file.

modified by COPY.

ARGUMENTS:

infile,infilel,or infile2

is the name or number of a file from

which data is copied.

command,

outfile or O=file

is copied.

S=A means that the
the first form
is overwritten

In the second form of the
the named files are copied in the order that
they appear in the command line.

zero or more input files are

An input file is never

name or number of the file to which data

the file does not exist,

infile
of the
by the

S=-E means that an endfile

on the output file after all data has been copied.
Otherwise an endfile operation will be performed.

is appended to the outfile in
Otherwise the outfile

command.
infile.

it is created.

operation will not be performed

(See the ENDF command, below.)

PTDOS

NOTES: The input file and the output file must not be the same,
although a file may be copied to a file which has the same
name but resides on a different unit.

This command may not be used if it would shorten a file
open under more than one file number; such a file may only
be lengthened if designated by the first number under which

it was opened.

EXAMPLES:
*COPY MAN,MAN/1

*COPY TAIL,HEAD,S=A-E
*COPY O=MAN,MAN@,MAN1,MAN2,MAN3

CREATE - Create a file on a diskette
*CREATE filename{,{type}{,blocksizel}}

SAFE

OPERATION: A file with the specified name is created on the specified
unit with the specified type and block size. If a file with this name
already exists, an error message is printed.

ARGUMENTS:
filename is the name of the file to be
type is the type to be assigned to

value for "type" is '.'
blocksize is the hexadecimal block size

file. The default block size
EXAMPLES:

*CREATE BIGFILE,M,9C#
*CREATE MYFILE/1

created.

the file. The default

to be assigned to the
is 4COH.

PTDOS

ks i

DBASIC - Invoke Extended Disk BASIC Interpreter
*DBAS1IC

OPERATION: This is a special adaptation of BASIC (Beginner's
All-Purpose Symbolic Instruction Code) for use with PTDOS and the
Helios II Disk Memory System.

ARGUMENTS: DBASIC has no arguments. An argument may be included in
the command that executes the initialized version of BASIC (see NOTES,
below); that argument is the name of a file containing a RASIC
program. The named file is loaded and executed immediately, whether
it was saved in text or semi-compiled form; if the file does not
contain a BASIC program, an error will be reported.

NOTES: This program requires initialization; when DBASIC is first
executed, the user is asked to supply certain information
for use in this initialization. For example, should certain
functions be deleted? The initialized version of the
program should then be saved on the diskette under a name
other than DBASIC; that name will then be the command to
execute BASIC. The features and use of BASIC are described
in the Extended Disk BASIC User's Manual, in a separate
volume.

EXAMPLES:

*DBASIC
*BASIC PROGRAM (assuming BASIC is an initialized version of DBASIC)

DCHECK - Checks structure of files on diskette
DCHECK {/u}
INTERRUPTABLE

OPERATION: The directory is loaded from the specified or default
diskette. If no error occurs, DCHECK checks each file by opening it,
spacing through it, and closing it before proceeding to the next file.
If an error cccurs while a file is being checked, the file name and an
error message are listed on the CI output file, and DCHECK goes on to
check the next file.

The space operation requires that a buffer be allocated; therefore in
order for all files to be checked, GLLOW must be set low enough to
provide sufficient buffer space for the file that has the largest
block size. If DCHECK attempts to open a file that has a block size
larger than the available buffer space, an error message will be
generated and DCHECK will go on to check the next file.

2-11 PTDOS

ARGUMENTS:

/u specifies the unit on which files are to be checked.
If this argument is not given, the default unit is used.

EXAMPLE:

*DCHECK /1

DEBUG - Invoke 8088 Debugger

*DEBUG {arguments}
*DEBUG3 {arguments}

OPERATION: This command is an aid for debugging machine language
programs. The debugger operates by permitting as many as fifteen
breakpoints to be set in the program being examined. When the program
is executed under control of DEBUG, it will stop at each breakpoint
address so that CPU registers, flags, and specified memory locations
may be examined and modified.

There are two DEBUG programs available for use; these versions are
identical, except that they run at different memory locations.

DEBUG3 1is loaded and executed at 3000H.
DEBUG is loaded and executed at 5000H.

Either program requires just over 4K bytes of memory.
ARGUMENTS: No arguments are read by the debugger. 1If arguments are
entered on the command line, they are accessible to the next program
that tries to read arguments from that line. For example, if the
command line is

*FILES,DEBUG S=-1
and the FILES program is executed from within DEBUG, the S=-I
parameter will be read by the FILES command.

NOTES: The debugger is described in its own manual, entitled
"DEBUG: A Debugger for PTDOS 1.5." See Part 2 of this
volume.

2-12 PTDOS

EXAMPLES:

*TESTPROG/1,DEBUG #4,ABC,300

(Load TESTPROG from unit 1 and enter the debugger. TESTPROG must read
the arguments from the command line.)

DISKCOPY - Condition, format, copy, or verify a diskette

*DISKCOPY {/}from,{/}to{,S=-Ww}
*DISKCOPY /u,S={C}{F}{V}{-W} (only one of C, F, and V)
*DISKCOPY {/}unitl,{/}unit2{,s={{V}{-w}}

INTERRUPTABLE:

OPERATION: Each form of this command will perform one of the
following functions:

. Condition a new diskette for use by the Helios II Disk
Memory System

. Format a diskette for use by PTDOS (or erase the diskette

. Copy the contents of one diskette onto another

. Verify that the contents of one diskette are the same as
the contents of another

. Verify that all data on a diskette can be read

ARGUMENTS AND NOTES:
CONDITION A NEW DISKETTE - DISKCOPY /u,S=C

This command writes the proper control signals onto the diskette in
the specified unit. Until a diskette has been conditioned, the Helios
hardware cannot be used to read from it or write to it. CONDITION A
BRAND NEW DISKETTE BEFORE PERFORMING ANY OTHER OPERATION ON IT.

FORMAT A DISKETTE - DISKCOPY /u,S=F

This command writes necessary files onto the diskette in the specified
unit, so that PTDOS may use the diskette as a "data disk." If the
diskette being formatted already has information on it, that
information will be erased; thus, this command may be used to erase a
diskette. A diskette need not be conditioned prior to formatting.

2-13 PTDOS

COPY ONE DISKETTE TO ANOTHER - DISKCOPY /from,/to,{S=-W}

This command makes a track for track copy of the diskette in the
"from" unit on the diskette in the "to" unit. If the destination
diskette is brand new, it must be conditioned before this command is
given. It is not necessary to format a new diskette before copying to
it.

COMPARE TWO DISKETTES - DISKCOPY /unitl,/unit2,S=V

This command compares the data on the diskette in unitl with the data
on the diskette in unit2, 1If a difference is found, a message is
printed and the operation is discontinued.

TEST READABILITY OF A DISKETTE - DISKCOPY /u,S=V

This command reads every byte on the diskette twice and compares the
two bytes. If a byte cannot be read, or if the two readings of the
byte do not match, a message is printed and the operation is
discontinued.

THE -W OPTION may be added to the S arguments of any of the above
commands. If this option is not present, the command will require a
carriage return between the time that it is first entered and the time
that its function is actually performed; this feature is useful,
because it enables the user to make a copy of a diskette not in the
drive when the command is given. At any time before the carriage
return, diskettes may be removed from the drive and replaced with
other diskettes. 1In general, the -W option is used in situations in
which user intervention is not desired: for example, in a command
file to be executed with the SETIN command or the DO macropreprocessor
(see Section 4). This option also affects the heading of READ errors
(see below).

ERRORS AND LIMITATIONS:

It is not possible to format or copy onto disk unit @ or the default
unit. A diskcopy from a unit to itself is also unacceptable.

WRITE ERRORS will result in a retry of the write operation. The
retries will continue until a successful write occurs or the operation
is aborted with the MODE key. A write error is an indication of a
hardware problem; the diskette, the disk drive, or the controller
electronics may be at fault.

READ ERRORS are handled according to the setting of the W option. If
the -W is set, the error will be displayed on the console and the bad
sector (s) will be ignored. Otherwise the program will ask if a retry
is desired and will continue to try until an "N" answer is given to
that enquiry.

EXAMPLES:
*DISKCOPY /6,/1

*DISKCOPY /1,S=C
*DISKCOPY 0,1,S=V-W

2-14 PTDOS

G

DO - Invoke command macropreprocessor
*DO {O=outfilename,}{S=options,}infilename{,parameters}

OPERATION: This program enables the user to create versatile macro
command files. It allows variables to be inserted in a file to
represent parameters that will be supplied in the command to execute
the macro; it also provides for conditional substitutions based on the
presence or absence of expected parameters in the DO command line.

ARGUMENTS:

infilename is the name of the macro input file. This should
be a standard EDIT or EDT3 text file, or a text
file in ALS-8 format.

O=outfilename specifies the name of the first output file to be
generated by DO. If no such file exists, it will
be created with type "$" and block size 10@H. The
default output file is $DO.CMD@.

S=options Options are represented as a string following the
(=) sign.
X or +X dictates that the output file be executed immediately

afters its construction. This is the default
condition if the O argument is omitted from
the command line.

-X dictates that the output file not be executed
immediately after its construction. This is the
default conditon if the O argument is included in the
command line.

A or +A means that the input file is in ALS-8 format.
-A means that the input file is in standard text format.
parameters are the actual parameters to be substituted for the

variables in the input file.
NOTES: Section 4 of this manual describes the DO macropreprocessor.
EXAMPLES:

*DO 0=z00,ANIMALS,ZEBRA,ELEPHANT,17
*DO MAKES,1,2,T

2-15 PTDOS

DUMP - Display contents of file in hexadecimal and ASCII

*DUMP file{,addrl{,addr2 or >count}}

INTERRUPTABLE

OPERATION: The contents of all or part of the specified file are
displayed on the console output file in hexadecimal and ASCII. A

non-printable character is represented by a period (.) in the ASCII
part of the dump.

ARGUMENTS :

file is the name or number of the file whose contents are
to be dumped.

addrl is the starting address of the dump.

addr2 is the ending address of the dump.

>count indicates the number of bytes to dump, beginning with
addrl. "count" should not exceed the number of bytes
between addrl and the end of the file.

NOTES:

If no address or count is given, the file will be dumped from
beginning to end. If the second address or count is not given, the
file will be dumped starting at addrl and continuing to the end of the
file. If addr2 and >count are both specified, PTDOS will display the
message "DUMP ERROR: IMPROPER ARGUMENTS," and control will return to
the Command Interpreter.

EXAMPLES :
*DUMP GOOP

*DUMP POTTS,5,100
*DUMP KNOCK, ,>50:D

EDIT - Invoke screen-oriented text editor
*EDIT infile{<A>}{,{outfile{<A>}}{,top of memory}}

OPERATION: This command permits the input file to be edited. If no
output filename is given, the edited file is written over the input
file at the conclusion of editing. If an output filename is supplied,
the input file is left unchanged and the edited file is written to the
designated output file.

2-16 PTDOS

o

ARGUMENTS:

infile is the name or number of the file to be edited. 1If
the file does not exist, EDIT will ask whether it
should be created. If the answer is Y, the file
is created with type "." and block size 4C@H. A
text file is expected to consist of text lines; a
line consists of no more than 64 characters and ends
with a carriage return (which does not count as one
of the 64 or fewer characters).

outfile is the name or number of the file to which edited
material will be written. 1If that file does not
exist, it is created with a type of "." and a block
size of 4C@H.

<A> specifies that the file is to be read or written
as a file in ALS-8 format. The brackets are literal.

top or memory determines the end of the text area allowed by EDIT.
If this argument is not included in the command,
either the highest good memory address or the lowest
PTDOS system address (whichever of these is lower)
will be used.

NOTES: This editor is for use with Processor Technology Sol
Systems or other systems equipped with the VDM-1 display
module. EDIT is described at length in its own manual,
entitled "EDIT: A Text Editor for PTDOS 1.5."

EXAMPLES:

*EDIT MAILIST/1<A>,MAILIST/1 (notice conversion from ALS-8)
*EDIT KNOT,KNIT

EDT3 - Invoke line-oriented text editor
*EDT3

OPERATION: This command allows one or more files to be created,
edited, and written to other files. The program allows editing on
character, line, string, and page levels.

ARGUMENTS: The EDT3 command has no arguments. Control is passed to
the program, which contains commands to regulate input and output.

NOTES: This editor loads in low memory and requires at least 8K
of memory for proper operation. The EDT3 program is
described at length in its own manual, entitled
"EDT3: A Text Editor for PTDOS 1.5."

(See Part 2 of this volume.)

2-17 PTDOS

ENDF - Endfile at current cursor position

ENDF fnum{,}

SAFE

OPERATION: The designated file is endfiled at the current cursor
position. All data following this point is destroyed, and any disk

space formerly occupied by that data is released for further use. If
the file has an index for random access, the index is updated.

ARGUMENTS:
fnum is the number of the file that will be endfiled.
* means that the file should be left open at the conclusion

of the operation. The number of the open file is
displayed on the CI output file.

NOTES: This operation cannot be performed if it would shorten a
file that is open under more than one file number.
EXAMPLES:

*ENDF #3
ENDF #5,%

EXEC - Execute code at a specified address

*EXEC address

SAFE

OPERATION: This command transfers control to the specified address,
which presumably contains either the first instruction of a program or

a reentry point to that program.

ARGUMENTS:

address is the address to which control is to be transferred.

2-18 PTDOS

NOTES:

The operation of this command is similar to a standard assembly
language CALL instruction. A RET instruction may be used to return to
the system, if the stack has been maintained and CXBUF has not been
disturbed. (CXBUF 1is the command execution buffer; see Section 6.2.)

When control is transferred, the DE register pair points to the first
character AFTER the mark of punctuation that follows "address."
EXAMPLES:

*EXEC 6019

EXTRACT - Display load information; optionally, combine image
segments

*EXTRACT file{,S{-L}}
INTERRUPTABLE

OPERATION: The specified file, which must be in image format, is
read. The length and load address of each image segment is printed on
the console output file. The image file may also be made more
compact.

ARGUMENTS :

file is the name or number of an image file.

S means that image segments that load contiguously and
are contiguous in the file are combined, and the file
is rewritten.

-L causes the listing of load addresses to be suppressed.

NOTES: The binary output file written by the assembler is in image

format with a maximum segment size of 100 Decimal bytes.
The S option of EXTRACT may be used to make such a file
more compact.

EXAMPLES:

*EXTRACT POTTS,S

*EXTRACT KNOCK
*LXTRACT FILE,S-L

2-19 PTDOS

FILES - Display list of files
*FILES {/u}{,T=type}{,S={-H}{-1}}{,strings}
INTERRUPTABLE

OPERATION: A list of files is printed on the CI output file. The

arguments dictate which files will appear in the list; if a file
matches more than one argument, it will still be listed only once.

Each entry in the list consists of a the name of a file, the file
type, the number 256-byte sectors allotted to the file (one 4C0 block
is eguivalent to four 256-byte sectors), the block size, the file ID,
the sector and track on which the first block of the file is recorded,
the protection attributes of the file, and the location of the index
block. (There is no index block if the file is not a random access
file; also, the attribute field will be blank in many cases, because
many files will not have any protection attributes.)

ARGUMENTS:

/u specifies the unit whose directory is the source of
the list. 1If this argument is not present, the default
unit is used. Only files that exist on the specified
or default diskette will be listed.

T=type If this argument is present, only files of the given
type will appear in the listing. Specify image type
files by preceding the type with the letter "I"; specify
types that are non-printing by preceding the Hexadecimal
value of the type with a #. T=I#5 signifies a type
whose hex value is 5; T=I5 signifies a type whose value
is the ASCII character 5. System files have a type
value of zero and should be specified with T=#0

or T=I#0.
S={-H}{-I} -H means suppress column headings on the listing
-I means list files even if they are information-
protected.
strings In this command and in several others, a string may

be used to represent all files whose names contain that
string, or contain the string in a specific position

in the name, for example, at the beginning. If one

or more of these arguments are present in the command,
only files whose names are identified by the string(s)
will appear in the list. Otherwise, the names of all
files that meet the other option reguirements will
appear. Strings may be typed in upper or lower case,
i.e., "NAME" and "name" designate the same file.

String arguments may take any of the following forms:
string may be any legal PTDOS file name, not including a unit

number. If a file with this name exists, it will be
included in the list.

2-20 PTDOS

string> causes all files whose names begin with the string to
be included in the list.

<{string causes all files whose names end with the string to
be included in the list.

<string> causes all files whose names include the string to be
included in the list.

EXAMPLES:

*FILES /1,S=-1,T=#00

List all files of type 00, whether or not they are
information-protected.

*FILES <AID>,<AER,KNOCK

List the file called KNOCK, and also any files that contain
the string "AID" or end with the string "AER."

*FILES /1
List all files on unit 1, except information-protected files.
*FILES S=-I-H,SYSGLOBL
List the file SYSGLOBL if it is present on the default unit.
The information will be listed even if the file is

information-protected, and no column headings will be
printed.

FOCAL - Invoke FOCAL Interpreter
*FOCAL

OPERATION: FOCAL is a high-level language described in the 8088 FOCAL
User's Manual in Part 2 of this volume.

2-21 PTDOS

FREE? - Report amount of free space on diskette
*FREE? {/u}{,blksize}

SAFE

e

OPERATION: This command displays the decimal number of sectors free
on the specified or default diskette. If a block size argument is
supplied, the command will display the number of free blocks of the
specified size, if optimum, or the next higher optimum size. Optimum
block sizes are discussed in Section 5 of this manual. If no block
size is supplied, the command will display the number of free 256-byte
sectors.

ARGUMENTS :

/u is the unit containing the diskette to be examined.
If this argument is absent, the diskette in the default
unit will be examined.

blksize must be a hexadecimal number between 1 and FFF.
Otherwise, the program prints an error message.

NOTES: This command operates by reading the FREE SPACE MAP that
PTDOS maintains on each diskette. This map is discussed
in Section 5 of this manual.

GET - Transfer file(s) from a file or diskette
*GET I=/u or file {,/u}{,T=typel}{,S=options}{,strings}

OPERATION: GET is used to retrieve files saved with the SAVE command;
it can also be used to transfer one or more files from one data
diskette to another data diskette. The files are not actually deleted
from the archive file.

ARGUMENTS:
I=file If the equals sign (=) is followed by "file," that
or /u option specifies the name or number of the archive file

from which the files are to be taken. 1If the equals

sign is followed by a unit number, all files that satisfy
the name and type requirements are copied onto the unit
given in the {,/u} argument, or onto the default unit.

If the files being "gotten" do not already exist on

the output unit, they are created with the type, block
size, and attributes of the corresponding file on the
input unit.

Only one I argument may be present.

2-22 PTDOS

T=type dictates that only files of the specified type will
be retrieved.

strings have the same significance as in the FILES
command, above.

S=options N makes it impossible to retrieve a file if a file

with the same name appears on the output unit. (If
the file exists as part of a SAVE file on that unit,

it may be retrieved, because its name no longer
appears in the diskette directory.)

-L dictates that there be no listing of the names of
files as they are retrieved.

R inhibits the retrieval process, so that the command
produces only a list of the files that would have
been retrieved if the R option had not been selected.

NOTES: This operation may not be performed if it would result in
shortening a file open under more than one file number.
A file may be extended only if it is designated by the number
under which it was first opened.

EXAMPLES:

*GET /1,I=CTAPE1l,<PAY>,<OLL
GET all SAVEd files that contain the letters "PAY" or end
with the letters OLL. Files are transferred from the
default unit to unit 1.

*GET I=FROM/1,T=G,S=N
GET from FROM/1 to the default unit all files of type "G".
If any of these files already exist on the default unit,
do not GET the corresponding file onto that unit.

*GgT 1=/1,/0,E>

GET from unit 1 to unit @ all files whose names begin
with the letter "E."

HELP - Display information about command(s)
*HELP {command name}{,command name....}
OPERATION: This command displays the syntax of the named command,

gives a short description of its function, and lists available options
with their meanings.

N
I

23 PTDOS

ARGUMENTS:
command name may be the name of any PTDOS command.

If no arguments are present, HELP will display more information about
itself.

NOTES:

The HELP program utilizes a large data file called HELP:D on the
system diskette.

EXAMPLES:

*HELD
*HELP GET
*HELP HELP

IMAGE - Write contents of memory to a file in image format
*IMAGE file,{!blksize,}segl,seg2{,:seg3}....,segn{,sa}
SAFE

OPERATION: This command writes data from memory to an image file,
that is, to a file that can later be loaded and executed if its name
is typed after the PTDOS prompt. The structure of an image file is
discussed in Section 5.7.3.

ARGUMENTS:

file is the name or number of the image file to which data
be written. If that file does not exist, it created
with type "I" and the indicated or default block size.
In the rest of this discussion, "block" refers to a
portion of memory, rather than to a physical sector
on the diskette.

Iblksize is the block size to be assigned to the named file if
that file must be created. If this argument is absent,
the file will be created with block size 256. If the
named file already exists, this argument will be
ignored. The ! is literal.

Each "seg" is a pair of numbers with one of three forms:

1) nl,n2 where both n's are numbers and nl is smaller
than or equal to n2. The block of memory between
address nl and address n2, inclusive, will be
written to the specified file as a single segment.

2-24 PTDOS

2) nl,>count where nl and "count" are numbers. The contents
of "count" bytes, starting at address nl, will
be written to the file as a single segment.

The > is required.

3) either of the above followed by ":n3" where n3 is preceded
by a colon and is not equal to nl. n3 is the
address at which this segment should be loaded,
rather than at nl. The colon is required.

sa is the starting address for the image file. The value
of "sa" is not restricted to the area which will be
occupied by "file" when it is loaded. 1If this
arqgument is included in the command, it must be the
last item in the argument list. If this argument has
not been supplied, control will pass back to the
Command Interpreter after the file is loaded.

NOTES: There is no check for the type of the file to which the

data is being written, but there is no reason to IMAGE data
to a file that is not an image file.

EXAMPLES:
*IMAGE DATA 100,2C0

Write the contents of memory from 100 to 2C8 to a file
called DATA on the default unit. If the word DATA is
entered subsequently as a command, each byte of the image
block will be loaded at the same location from which it
was written by IMAGE, and control will return to the CI.

*IMAGE PROGRAM, !4C0,100,>8FC,24D

Write the contents of the 8FC bytes starting at 100 to

a file called PROGRAM. When PROGRAM is loaded, control
will pass to address 24D. If PROGRAM does not exist, it
will be created with type 'I' and block size 9C4.

*IMAGE EXAMPLE,0,50,:4000,100

Write the contents of memory from @ to 50 to a file called
EXAMPLE. Thereafter, when EXAMPLE is loaded, the data

will be loaded starting at address 4000, and control will
pass to address 180.

*IMAGE EXAMPLE,9,177:Q,300,FFF,1200,>1024:D,4000,6FFF,:3000

Write the contents of memory from & to 177 octal, from

300 to FFF hexadecimal, from 120@H forward 1024 decimal
bytes, and from 400808 to 6FFF hexadecimal, to a file called
EXAMPLE. When EXAMPLE is loaded, each segment will be
loaded into memory at the address from which it was
written, except the last segment, which will be loaded
starting at 306¥H. Control will pass back to the CI.

2-25 PTDOS

KILL - Kill file(s)
*KILL filename{,filename...}

SAFE
INTERRUPTABLE

OPERATION: Each named file is killed by having its entry removed from
the diskette directory and its disk space reclaimed. Each block of
data belonging to the file is rewritten with useless data.

ARGUMENTS:

filename is the name of a file to be killed. Files to be killed
need not all exist on the same diskette.

NOTES: After each file is killed, a message of the form:
filename IS KILLED

is printed on the CI output file. 1If a file you are trying to kill is
nonexistent or protected against the KILL operation, the word "KILLED"
will be replaced by "NONEXISTENT" or "PROTECTED," whichever is
appropriate, and the program will continue to the next file named on
the command line. A file cannot be killed if it is open when the
command is given.

EXAMPLES:

*KILL POTTS/1,POTTS,KNOCK

Kill the file POTTS on unit 1 and the files POTTS and KNOCK on the
default unit.

OPEN - Open a file
*OPEN filename{,buffer address or T}
SAFE

OPERATION: The specified file on the specified unit is opened. The
system assigns the file a number, which is displayed on the CI output
file; this is the number by which you should refer to the file while
it is open. A buffer is allocated for the file, and the first block
of the file is read into the buffer. The file cursor is created and
set to point to the first byte of the file. (Detailed information
about file access and buffering can be found in Section 5 of this
manual.)

2-26 PTDOS

ARGUMENTS :
filename is the name of the file to be opened.

buffer address 1is the address at which a static buffer should be
allocated for the file. " buffer" address is the
lowest address of the buffer; the highest is buffer
address plus the block size of the file. A buffer
can only be set in memory external to PTDOS, and
only in unprotected memory. A buffer cannot be
set at @ or FFFFH.

T indicates that dynamic buffering should be used.
Otherwise static buffering is used.

If no second argument is given, the system will allocate a static
buffer in the system-managed buffer area. It is not possible to
specify both a buffer address and the letter T, because it is not
possible for a user to assign a dynamic buffer outside the
system-managed buffer area.

NOTES:

Several PTDOS commands allow you to designate a file either by its
name or by its number. If you give the number of the file, rather
than its name, the file must be open, because A FILE THAT IS NOT OPEN
DOES NOT HAVE A FILE NUMBER. On the other hand, if you give the name
of the file, the file is assumed NOT to be open; the command will open
it, even if the file is already open, and assign it a second number
and a second buffer in the system-managed buffer area. When a file is
open under more than one file number, it is said to be "multiply
open". Many of the commands that will open a named file will also
close it when the desired operation is complete.

There is nothing inherently wrong about opening a file more than once.
In fact, if you want to operate on two parts of a file simultaneously,
you may have to open the file twice, so that you can have two cursors
pointing to different bytes (possibly in different blocks) of that
file. On the other hand, there are a few reasons to avoid opening
files more often than necessary:

1) Every time that you open a file, buffer space is allocated
for another block of that file. If you are not careful,
you may overflow the system buffer area.

2) There are a number of operations that it is not possible to
perform on a file that is open, or that is multiply open. 1In
general, you do not need to concern yourself with this fact,
because the syntax of the command will make it clear that a
file must be designated by name only, or by number only. If
you get an error message of the form:

<file> ALREADY OPEN or
<file> IS MULTIPLY OPEN

close the file, and you will probably be able to proceed.

2-27 PTDOS

EXAMPLES:

*QOPEN MYFILE,453F with buffer in user memory
*OPEN XFILE normal static system buffer %,

OPEN? - Print name and number of each open file

*QOPEN?

SAFE

OPERATION: This command lists the name, file number, and unit number
of each open file. The unit number is represented as a two-digit
number, e.g., FRITZIE/0@ is on unit 0.

ARGUMENTS: This command has no arguments.

NOTES: Device files do not have their names and unit numbers listed.
They appear on the listing as:

D-FILE/99

Permanently open files (like the keyboard, the display, the system
utility file, and possibly a system log file) are not listed at all.

OUT - Set console output to display or serial port driver
*QUT V or P

SAFE

OPERATION: The resident code of PTDOS has two output drivers. One is
a video display driver, and the other is for the serial or parallel
port. This command selects the specified driver as the console output
file.

ARGUMENTS:

V or any word starting with V causes output to be directed to
the video Display driver.

P or any word starting with P causes output to be directed to
the port driver.

2-28 PTDOS

NOTES: A detailed description of the console driver can be found
in Section 9 of this manual.

EXAMPLES:

*QUT P
*QUT VDM
*QUT PRINTER

PRINT - Print file on the CI output file or the named file
*PRINT {args,}file{,{args,}file...}

OPERATION: PRINT lists each file on the CI output file, unless an
argument specifies a different output file. The format in which a
file is printed is determined by arguments that precede the name or
number of that file in the command line.

ARGUMENTS:

Arguments are separated by commas and read sequentially. The
arguments that precede a filename are presumed to apply to that file
and to all files whose names appear later on the command line (unless
one of the same arguments appears later with a different value,
thereby altering the conditions for remaining files). If you omit an
argument list because the desired parameters are already in effect, DO
NOT INSERT A COMMA OR ANY OTHER CHARACTER to mark the omission.

file is the name or number of a file to be printed.

Within the argument list that precedes a filename, the order of these
arguments is arbitrary:

O=file determines that output will go to the file whose name
or number appears after the equals sign. The previous
output file will be closed, unless it is the CI
output file. (The CI output file will be left open,
but it will receive no output.) 1If this argument is
absent from the command line, all output will go to
the CI output file. If "file" does not exist, it will
be created.

H="string" declares that the given string, minus its delimiters
(i.e., the quotation marks), is to be printed as a
centered heading at the beginning of the next listing.
Any character other than a blank, a semicolon, a carriage
return, or a comma may be used as a delimiter; the same
character must delimit the beginning and the end of the
string, and must NOT appear within the string. If the
output is to be paginated, the heading will be printed
at the top of every page. If no string is specified
(i.e., if this argument is not present, or if the first

2-29 PTDOS

S=flags

P=number

T=number

B=number

L=number

non-blank character after the equals sign is a comma),
no heading will be printed. The heading may not be
more than one line long; line length is set by the

R argument.

sets or resets the option flags whose single-character
codes are given as a string after the equals sign. Each
code may be preceded by a plus (+) or a minus (-); if
neither of these signs appears, the meaning of a plus
sign is assumed. When the PRINT program begins to be
executed, none of the flags is set.

If the code for a flag is preceded by a '+', the flag

is set: the option denoted by the flag will be in effect
during the listing of all subsequent files; if the code
for a flag is preceded by a '-', the option will no
longer be in effect when subsequent files are listed.

A symbol that is not a plus, a minus, or the code for a
flag is ignored.

The flags and their codes are:

A - Subsequent files are in ALS-8 format (each line
begins with a byte count).

D - Listings are to be double-spaced. If the output
file is not a device file, an extra carriage
return/linefeed is inserted into the output.

P - Listings are to be paginated. Page numbers start
with 1 and can never exceed 9999. Each page number
will be centered on the penultimate line of the page.

- Files are to be listed with a line number before
each line of the original file. (For example, if
a text file is comprised of 64-character lines and
a 30-character page width is specified in the PRINT
command, the second line number will appear on the
fourth line of the listing.) Line numbers start
at one and ascend consecutively to the end of the
file. A line number may not exceed 99999.

sets the length of the page. Each page will consist
of the indicated number of lines, where "number" is
a decimal number between 3 and 255. The default
page length is 66 lines.

sets the line number of the beginning of the text to
a decimal number between 1 and 255. The default
value for this argument is 2.

sets the line number of the end of the text to a
decimal number between 1 and 255. The default

value for this argument is 63. The number must be

at least 2 less than that specified in the P argument.

determines the character position of the first
character of each line on the listing. "number"
must be a decimal number between 1 and 255. The
default value for this argument is 1.

2-30 PTDOS

R=number determines the character position of the last
character of each line on the listing. "number"

is a decimal number between 1 and 255; its default
value is 64.

If "number" is not specified or is @ in any of the foregoing
arguments, the default value is assigned to that argument.

NOTES:

The output file for this command need not be a device driver. For
example, to change the format of a long text file so that
it is double-spaced, you might:

1) Print the file to a text file, setting the D flag in the
PRINT command line.

2) Read the resulting text file into EDT3, which automatically
deletes linefeeds.

3) Write the text file from EDT3.

The text file resulting from this procedure may be edited thereafter
in EDIT.

EXAMPLES:

*PRINT R=80,0=TEXT,S=AP,FILEl

Copy the ALS-8 file FILEl to the file TEXT. Output will be paginated
and will consist of 8#-character lines.

*PRINT S=D#,FILEl,H="FILE2",S=-#P,0=#5,FILE2

Copy FILEl to the CI output file; the listing will be double-spaced
and contain line numbers. Then copy FILE2 to the open file whose
number is 5; the listing will be paginated, double-spaced, and have
the string FILE2 as a heading at the top of every page.

RANDOM - Create index block for file
RANDOM file{,}

OPERATION: This command causes an index to be built for the specified
file on the specified unit; as a result, the file is made randomly
accessible, i.e., it is possible to SEEK to a particular byte of the
file without proceeding sequentially through all of the bytes before
it. It is not possible to perform this operation on a device file.

2-31 PTDOS

ARGUMENTS :

file is the name or number of the file to be made random.

* means that the file should be left open at the conclusion

‘ of the RANDOM operation. The number of the open file is

displayed on the CI output file, and the cursor is left
at the end of the file.

NOTES: Detailed material about file access can be found in

Section 5 of this manual.

EXAMPLES:

*RANDOM #3
*RANDOM POTTS

L]

READ - Transfer contents of file to memory
READ file{,addrl{,addr2 or >count}}{,}

SAFE

OPERATION: Data is read from the specified file, which must exist, to
a specified or default address. Reading progresses until:

1) the end of the file is reached, or

2) data has been read into memory addresses up to and
including a specified last address, or

3) a given number of bytes has been read.

The number of bytes read (the "LOAD COUNT") is displayed on the CI
output file.

ARGUMENTS :

file is the name or number of the file from which the data
is to be read.

addrl is the lowest of the consecutive addresses into which
the data will be loaded. The default for addrl is 256
(1908H) .

addr?2 is the highest address into which data may be loaded.

>count is the number of bytes to be read. Do not specify both

addr2 and >count.

2-32 PTDOS

* dictates that the input file be left open at the
conclusion of the READ operation. The number of the
file is displayed on the CI output file.

NOTES:

READing an image file, instead of loading it, is a way of localizing
all of its data (including headers), whereas if the file were 1loaded,
individual image blocks might be scattered all over memory. You might
want all of the data to be contiguous in memory so that you can 1)
find out the number of bytes in the file, or 2) use DEBUG to examine
the program without having to write over data stored at locations your
program would normally occupy. (If you READ a program, instead of
loading it, it cannot be executed from memory.)

If you want to READ a device file as it appears on the diskette,
change its type to Image before you READ it.

EXAMPLES:

*READ FILEl

Read all of FILEl to addresses starting at 100H.

READ FILE1l,0,>1000,

Read the first 1000 bytes of FILEl to addresses starting at 0. If
there are fewer than 1000 bytes in the file, reading will stop when
the end of the file is reached. FILEl will be left open at the
conclusion of the operation.

*READ FILE1,100,9000

Read FILEl to addresses starting at 100H. Reading will stop if the

end of the file is reached, or when data has been loaded to address
9000H.

REATR - Change protection attributes of file

*REATR filename {,new attributes}

SAFE

OPERATION: The protection attributes of the file are changed in

accordance with the second argument in the command line. (Protection
attributes are discussed in Section 5 of this manual.)

2-33 PTDOS

ARGUMENTS:

filename is the name of the file whose attributes are to be
changed. "
new attributes determines what changes will be made in the
attributes of the file; it consists of from # to 8
attribute codes, each preceded by a plus (+), a
minus (-), or no prefix at all. The codes are:

- Kill protect (no KILL)

- Write protect (no WRITE or ENDF)

- Read protect (no READ)

- Information protect (no GET, SAVE, or FILES without
special arguments)

- Attribute change protect (no REATR)

Name and type change protect (no RENAME or RETYPE)

- Disk allocation protect (This attribute makes it
impossible to lengthen or shorten the file.)

== XN

m =z
|

If no prefixes appear in the string of codes, the new
attributes simply replace the 0ld ones.

If prefixes do appear, a plus (+) means that the
following attribute should be ADDED to the list of
0ld attributes, and a minus (-) means that the
following attribute should be DELETED from that list.
As long as there is at least one prefix in the string,
a code without a prefix is treated as though it

were preceded by a plus (+).

Attribute codes may be listed in any order.
If no new attributes are supplied, all existing
attributes are removed from the file.
EXAMPLES:
*REATR FILEl,KWRIANE
Turn on all protection. A file with these attributes is useless,
because you cannot write to it, read from it, kill it, or change its
attributes.

*REATR FILEl,KW

Protect FILEl agains any operation that would kill it or write to it,
and remove all other attributes, if there were any.

*REATR FILEl,+KW-R
Add kill and write protection to the current attributes of the file,

and remove read protection. Leave other attributes unchanged, if
there are any.

2-34 PTDOS

RECOVER - Reclaim lost space on diskette
*RECOVER {/u}

OPERATION: RECOVER searches the directory on the specified unit and
finds all File ID's associated with known files: that is, with files
that have entries in the directory. (Each file on a diskette has a
unique file ID, not to be confused with a file number. File ID's are
used for system book-keeping; you will never need to refer to a file
by its ID.) Then each sector of the diskette is read and handled as
follows:

If the sector cannot be read, it is rewritten with useless data. The
data it once contained is lost.

If the sector is readable but has a file ID of @, or some other file
ID not associated with a known file (see above), the sector is
rewritten with useless data. For example, if you KILL a file and get
a KILL error, the sectors following the error will fall into this
category, because they will no longer be associated with a file known
to the directory.

The free space map (FSMAP) is rewritten to show that the reclaimed
sectors are available for use. (The free space map is described in
Section 5 of this manual.)

ARGUMENTS :

/u stands for the unit that contains the diskette from which
data is to be recovered. If this argument is absent,
the default unit is used.

NOTES:

This program will not recover data from a file that has been partially
destroyed. Try to recover all available data by using more primitive
commands like READ and SPACE. If you have a backup copy of the bad
file and therefore do not need to recover the data, KILL the file
before you use RECOVER; otherwise the sectors after the error will not
be reclaimed, because their file ID will still be known to the

directory on the diskette. Never use RECOVER unless you have made a
DISKCOPY of the bad diskette.

2-35 PTDOS

RENAME - Change name of file(s)
*RENAME oldname,newname{,oldname,newname...}
SAFE)

OPERATION: The name of the specified file is changed to the specified
new name. The renamed file is not altered in any other way.

ARGUMENTS:
oldname is the current name of the file to be renamed.
newname is the new name to be given to the file.

Both arguments must be legal PTDOS filenames. oldname may have a unit
number appended to it; newname never needs a unit number, because the
new name will always be given to the old file, on the same unit on
which that file presently exists.

NOTES:

If a file to be renamed has a name change protection attribute (the N
attribute), an error message will be printed.

If a file with the new name already exists on the diskette, the
program will be aborted and an error message will be generated.

EXAMPLES:

*RENAME GOOP ,POTTS
*RENAME OLD1,NEW1,0LD2/1,NEW2

RETYPE - Change the type of a file

*RETYPE filename,newtype

SAFE

OPERATION: The type of the named file is changed to the specified new

type. If the file is protected against a change in its type, it must
be given new attributes before its type is changed.

2-36 PTDOS

ARGUMENTS:
filename is the name of the file whose type is to be changed.
newtype is the type to be assigned to the file.

There is a discussion of file types in Section 5 of this manual. If
the desired type is a printable character, enter that character as the
second argument in the RETYPE command line. To specify a type with a
value up to 20H, enter the corresponding control character. Specify
an image type file as type 'I' or as 'I' followed by another
character. A non-image type may NOT consist of more than one
character. 1If the file contains a device driver, its type should be
'D'.

NOTES :

There are several reasons you might want to change the type of a file.
One reason is that some operations may not be performed on files of a
certain type; changing the type of the file may make it possible to
perform the desired operation. Another reason is that types are a
convenient way of grouping files, and your groupings may change.

EXAMPLES:

*RETYPE RECORDS,A
*RETYPE PROG1,IS

RNUM - Renumber lines of text file
*RNUM filename{<A>}{,number}{,I}

OPERATION: This command replaces the first four characters of
consecutive lines of a text file with consecutive line numbers
starting at "number" and ascending in increments of 1 until the end of
the file is reached or the line number exceeds 9999. Renumbering may
be desired if some lines of a program file have been deleted or
rearranged in EDIT and you want to restore a sequential numbering
scheme to the file.

ARGUMENTS:

filename is the name of the file that will receive line
numbers in character positions 1-4 of each line.

<A> means that the file is in ALS-8 format.

number is an optional starting number for the numbering

seguence. The default value for this argument is 1.

2-37 PTDOS

I means that COPY files will not be renumbered. If
this argument is absent, COPY files other than the
file called PTDEFS will be renumbered with the main
source file. (In this context, "COPY" refers not
to the COPY command, but to the COPY pseudo-operation
of the assembler.)

NOTES:
Remember that if the named file that does not contain line numbers,
RNUM will replace the first four characters of each line of the file
with a line number. Thus, the 1line

The cat is on the mat

will become

@@@lcat is on the mat

SAVE - Write one or more files to an archive file
*SAVE O=file{,/u}{,T=typel}{,strings}{,s={-L}{-11}}

OPERATION: All files satisfying the specified conditions are written
onto the file indicated as the output file. A SAVE output file is an
archive file that contains other files. It is possible to retrieve
files from an archive file by using the GET command.

ARGUMENTS:

O=file specifies the archive file by its name or number.
(That file may be a device file.) File names and
other information are written to the output file
along with the data so that SAVE files may later be
retrieved by name with the GET command.

/u the unit to search for the files to be SAVEd. If this
argument is absent, the default unit is searched.

T=type dictates that only files of the specified type will
be SAVEAQd.

strings have the same significance as in the FILES command,
above.

S=options

-L causes the listing of the names of SAVEd files to
be suppressed.

-I makes it possible for information-protected files
to be SAVEAd.

2-38 PTDOS

S
ey

NOTES:

When a file is made part of an archive file, it does not have an

individual directory entry. If the file also exists independently on
the diskette, the independent file will have its own directory entry.

EXAMPLES:

*SAVE /1,0=CTAPEl,T=S

All files of type S on unit 1 are written onto a file called CTAPEL.
*SAVE O=BACKUP,<PAY>,<OLL

All files whose names contain the letters PAY or that end with OLL are
written onto a file called BACKUP.

SEEK - Position the file cursor
*SEEK file,number{,B}
SAFE

OPERATION: This command moves the cursor of the named file to the
specified byte or to the first byte of the specified block of the
file. This operation may be performed only on a "random" file. This
command differs from SPACE in that SEEK moves the cursor to an
absolute position in the file, whereas SPACE moves the cursor to a
position relative to its current position. PTDOS manages buffering,
so that the cursor may be moved beyond the limits of the current
block.

ARGUMENTS:

file is the name or number of the file whose cursor is to
be moved. This file is always left open after the
cursor has been moved; the number of the open file is
displayed on the CI output file.

number is the number of the byte or block at which the cursor
should be positioned. "number" is assumed to be
hexadecimal, unless it is followed by a colon and a
letter code (see the introduction to this section).

B means that the cursor should be positioned at the
first byte of block "number" of the file. If this
argument is absent, "number" is assumed to point to
a byte, rather than to a block.

NOTES: To make a file randomly accessible, use the RANDOM command.

EXAMPLES:

*SEEK POTTS,125

*SEEK #3,2F,B

2-39 PTDOS

SET - Change system parameters in memory
*SET argument{,argument....}
SAFE

OPERATION: This command sets the values of various system parameters.
SET differs from CONFIGR in most of the parameters altered by SET are
altered only in memory, whereas CONFIGR alters them on the diskette
but not in memory.

ARGUMENTS: Arguments may appear in any order; each has the form
"argument=value." 1In the following discussion "number" is always a
decimal number, and "address" is always a hexadecimal number. These
are the possible arguments:

DU=number determines which unit will be regarded as the default
unit. For example, if DU=1 and you enter a filename
without a unit number, the file is presumed to

reside on unit 1. "number" must be less than 8
and should not exceed the number of available units
minus 1.

EF=number sets the number of the "echo file" on which command
lines will be duplicated when the SW=E switch is
on (see below). Output from the commands will not
go to this file.

SY=number sets the number of permanently open files. "number"
cannot be greater than 7.

PR=address sets the lowest memory location into which programs
or data can be loaded. For example, if PR=100,
no programs or data will be loaded at any lower
address.

NU=number sets the number of null characters that will be sent
to the console after every carriage return. Set
this parameter if your output device requires a
delay between lines; otherwise, the value is 0 and
there is no need to change it.

BU=number sets the lowest address of the system buffer area.
The default value is 9000H; change it if you intend
to open files whose combined block sizes exceed
the available buffer area.

WC=address points to the starting address of the write character
routine for the console driver. (See Section 9.4.3.)

RC=address points to the starting address of the read character
routine for the console driver. (See Section 9.4.3.)

o
!

49 PTDOS

SC=address points to the starting address of the test for waiting
character routine for the console driver. (See
Section 9.4.3.)

DA=mm.dd.yy sets the date in the System Global Area. Slashes (/)
may be used instead of periods.

DD=mm.dd.yy sets the date on the default unit disk. Slashes (/)
may be used instead of periods. THIS VALUE IS
WRITTEN TO THE DISKETTE; all other arguments alter
memory only.

NA=string sets the disk name in the System Global Area. This
name will appear in the heading of output from the
SYST / command.

SW=switches sets one or more "switches" in the System Global Area.
If a switch is on, the option it names is in effect;
if it is off, the option is not in effect. The
letter codes for the switches may be in any order,
and should not be separated by commas. A '+' or no
prefix before a letter code turns the related switch

on; a '-' turns it off.
CODE FUNCTION IF SWITCH IS ON
E Echo commands to the CI echo file (see EF=, above).
L Lock the system so that nothing can be written
to any file on any unit.
U Upshift all ASCII characters input from or output
to the console, i.e., make all letters upper case.
H Operate in "verbose mode."
v Verify every byte written (by reading it after
writing it).
B Operate in binary mode (all 8 bits, no upshift, no

extra NULs after LF).
EXAMPLES:

*SET DA=#6.28.77,DU=1,SW=E
*SET SW=-ELU,PR=255:D

SETIN - Make named file the CI input file

SETIN file{,}

SAFE

OPERATION: The current input file is closed (unless it is file #0),

and the named file becomes the CI input file; that is, the next
command read by the Command Interpreter (see Section 3) will be read

2-41 PTDOS

from that file. If the named file is already open, the cursor remains
at its current position in that file. When an end-of-file is
encountered on the input file, file ## again becomes the CI input
file. The named file need not be a device file (see NOTES).

ARGUMENTS:

file is the name or number of the new CI input file.

* means that the previous CI input file should be
left open (although the Command Interpreter will not
receive input from it). Otherwise that file is closed,
unless it is one of the permanently open files, in which
case it is left open but not used for input.

NOTES:

This command allows a frequently executed group of commands to be
stored in a file and executed as a "job." Develop a text file
consisting of the series of commands, just as you would enter them
from the keyboard (remember that there will be no prompt). Then use
the SETIN command to make that file the CI input file.

SETOUT - Make named file the CI output file

SETOUT file{,}

SAFE

OPERATION: The named file becomes the CI output file; that is, all

output will go to that file until another file is made the output
file. The CI output file need not be a device file.

ARGUMENTS:
file is the name or number of the new CI output file.
* means that the previous CI output file should be

left open (but receive no output). Otherwise, that
file is closed, unless it is one of the permanently
open files, in which case it is left open but receives
no output.

EXAMPLES:

*SETOUT #1
SETOUT POTTS,

2-42 PTDOS

SPACE - Move the file cursor
*SPACE file,how
SAFE

OPERATION: This command moves the cursor of the named file to the
beginning or end of that file, or a specified number of bytes forward
or backward. SPACE differs from SEEK, in that SPACE moves the cursor
to a position relative to its current position, whereas SEEK moves the
cursor to an absolute position in the file. It is possible to SPACE
through a random access file, as well as through a sequential access
file. PTDOS manages buffering, so that the cursor may be moved beyond
the limits of the current block.

ARGUMENTS:

file is the name or number of the file whose cursor is to be
moved.

how indicates the desired direction and extent of motion:
>count moves the cursor forward "count" bytes.

"count" is a number.
<count moves the cursor backward "count" bytes.
"count" is a number.
< moves the cursor to the beginning of the file.
> moves the cursor to the end of the file.

* means to leave the file open after the cursor has been
moved. This argument is really superfluous, because
the file is left open, anyway. The number of the open
file is displayed on the CI output file.

NOTES:

If the end or the beginning of the file is reached, making it
impossible to SPACE the desired number of bytes, a message is
displayed to indicate how far (in bytes) the cursor was actually
moved, and whether the cursor is now positioned at the beginning or
the end of the file.

EXAMPLES:
*SPACE FILE3,>500 (forward 500 bytes)
*SPACE FILE3,< (rewind the file)

2-43 PTDOS

SYST - Display system parameters

*SYST {L}
*SYST /{u}{,L}

INTERRUPTABLE

OPERATION: This command displays the values of certain parameters in
the System Global Area (see Subsection 6.3). The first form of the
command causes information to be taken from the System Global Area
currently in memory; the second form causes information to be taken
from the System Global Area File on the specified or default unit.
(The default unit is defined in the System Global Area.)

ARGUMENTS:

u is the unit from which information is to be taken.

L dictates that more information be displayed than if
this argument were absent.

NOTES:

If L is not present (in either form of the command), the following
information will be presented:

The PTDOS version number (and the unit number, in the second
form of the command)

The disk name, and the date in the System Global Area

The lowest address assigned to the system (GLLOW)

The amount of unused buffer space, in hexadecimal and decimal

If the L is present, the following items of information are added:

The user memory protect address (GLPRO)

The status of the disk write lock, on or off (GLLOK)

The number of the default unit (GLUNI)

The number of permanently open files (GLPRM)

The file number of the current utility file (GLUTF)

The number of the CI input file (GLCIF)

The number of the CI output file (GLCOF)

The number of the CI echo file (GLCEF)

The maximum number of disk drive units allowed (GLMXU)

The starting address of the console input routine (GLRCH)

The starting address of the console output routine (GLWCH)

The starting address of the console test for waiting character
routine (GLTCH)

The number of nulls to be sent after a linefeed (GLNUL)

The status of the system log file, on or off (GLLOG)

After this information is displayed, hit any key to return to PTDOS
command mode.

2—-44 PTDOS

TREK80 - A Video Star Trek Game

*TREK80

OPERATION: Loads and executes the TREK80 game program. See the

TREK80 User's Manual, in a separate volume, and ignore all information
pertaining to loading the program from cassette.

WRITE - Write contents of memory to a file
WRITE file,{!blksize,}addrl,addr2 or >count{,}{,<}
SAFE

OPERATION: This command writes the contents of a specified area of
memory to the named file. It is possible to specify the lowest
address whose contents are to be written, as well as either the
highest address or the number of bytes to be written to the file.

ARGUMENTS ¢

file is the name or number of the file to which data is to
be written. If "file" is a name and the file does not
exist, it is created with type '.' and the specified
or default block size,

!blksize is the block size to be assigned to the named file if
that file must be created. If this argument is absent,
the file will be created with block size 4C@H. If the
file already exists, this argument will be ignored.

The ! is literal.

addrl is the first address from which data is to be written.
The default value for addrl is 100H.

addr2 is the last address from which data is to be written.
Either this argument or >count must be supplied.

>count is the number of bytes to be written.

* dictates that the output file be left open after it is
written. The number of that file is displayed on the
CI output file.

< dictates that an end-of-file be written to the output
file at the conclusion of the WRITE operation.

2-45 PTDOS

EXAMPLES:

*WRITE FILE2,160,>20 (20H bytes, starting at 100H)
*WRITE FILE2,7FF,4580,< (end of file written to output file)

XREF ~ Generate cross-reference listing of assembly language file
*XREF infile,outfile{,S=options}{,top of memory}
INTERRUPTABLE

OPERATION: This command generates a cross-reference listing of the
input file (which must be an assembly language source program) and
writes that listing to the output file. XREF produces the listing
much faster than the assembler does. Each line of the cross-reference
listing consists of a label defined in the program, the value of that
label in hexadecimal, the number of the line at which the label is
defined in the source program, and the numbers of all lines that
contain references to the label. The value and the line number are
separated by a slash; all other items are separated by blanks. COPY
files will be processed with the main source program. Undefined

ARGUMENTS:

infile is the name or number of an assembly language source
file.
outfile is the name or number of the file that will receive

the listing. This file may be an output device or a
file on the diskette.

S=options if present, MUST be the argument after "outfile."

D causes the source program to be displayed on the
console output device while the cross-reference
listing is being generated and sent to the output
file.

V causes the output to be formatted for the video
display, i.e., to be printed with 64 characters
per line. Otherwise, output width is 72 characters.

causes line numbers to be assigned to the source
code file, in place of those which exist there.
If the source code file does not have line numbers,
numbers will be added by default, even if this option
is not specified.

2-46 PTDOS

R dictates that the CPU registers be included as labels
in the cross-reference listing.

P instructs XREF to paginate output to the listing
file.
1 or 2 or 3 specifies page width
1 - 72 columns
2 - 80 columns (default)
3 - 132 columns

top of memory is the highest address that may be used by XREF.
A symbol table is created immediately after the XREF
code. A cross reference table is constructed downward
from the lowest of: 1) the specified top of memory,
2) the last available memory location, and 3) the
bottom of the PTDOS buffer area.

If these tables collide, a disk overflow file
(XREFOVER) will be created and XREF will continue to
operate, using the disk file instead of memory.

If the symbol table should overflow available memory
the message:

SYMBOL TABLE OVERFLOW
will be displayed.

If the reference table overflows the disk file
(XREFOVER), the message:

REFERENCE TABLE OVERFLOW
will be displayed. 1In either case XREF will terminate.
EXAMPLES:
*XREF SOURCE,CROSS/1,S=R,8000
Generates a cross-reference listing of SOURCE and writes it to CROSS

on unit 1, with CPU registers included as labels. XREF will not use
memory between 80@PH and the lowest address assigned to PTDOS.

2-47 PTDOS

ZIP - Fill memory with number

*7ZIP {number}

OPERATION: All memory locations below GLLOW (the lowest system %
address) are set to the specified value.
ARGUMENTS:
number is the value to be placed in every memory location
between @ (or a user memory protect) and the lowest
system address. The default value for this argument
is 76H (the 8080 HALT instruction).
EXAMPLE:
*ZIP FF
2.3 COMMANDS NOT USUALLY ENTERED FROM THE KEYBOARD

PTDOS provides a group of commands used most frequently in DO files
(see Section 4) and in text files that are used for CI input (see the
description of SETIN, above). With the exception of $STOP, the
commands in the list below may be entered from the keyboard. The $
sign that precedes each command is literal.

ARGUMENTS:

SLST turns on the CI echo flag, so that subsequent
commands will be echoed to the CI echo file or to the
system log file, if there is one. (Same as SET SW=E.)

SNLST turns off the CI echo flag. (Same as SET SW=-E.)

$SREM string identifies the string as a remark, so that the
Command Interpreter will not interpret it, or any part
of it, as a command. The string may include commas;
it may not, however, include a semi-colon or a
carriage return, because either of these two
characters is regarded as a terminator. If the echo
flag is on, the entire SREM command line will be echoed.

$PR string causes the string to be printed on the CI output file.
Control characters may be included in the string.

SWAIT waits for a carriage return or a MODE SELECT (CTRL-Q)
to be entered from the keyboard. If a carriage
return is entered, execution proceeds to the next
command., If a MODE or CTRL-@ is entered, all files
are closed, except the permanently open files, and
the console becomes the CI input file. If the
carriage return or MODE was entered during the
execution of the last command, and if that command
was not "INTERRUPTABLE," the SWAIT command reads
the <cr> or MODE and proceeds accordingly.

g

2-48 PTDOS

SESC determines whether a MODE SELECT (or CTRL-@) has been
entered from the keyboard. If so, the keyboard
becomes the CI input file; if not, execution proceeds
to the next command. Because $ESC, unlike SWAIT, does
not wait for an entry, a MODE SELECT will be perceived
only if it was entered during the execution of the
last command, and only if that command was not
"INTERRUPTABLE."

$STOP is the command used to return to the system from a
DO file. Do not use the command in any other context.

SCREATE is identical to CREATE, except that:

1) if the file already exists, no error is reported
(in fact, nothing happens), and

2) a list of attributes may be included as a fourth
argument on the command line. Attributes are
specified just as in the REATR command. For
example,

SCREATE NAME,T,4CO,KIN

will be kill-protected, information-protected,
and name—-and-type change-protected.

2-49 PTDOS

SECTION 3

COMMAND INTERPRETER

3.1 INTRODUCTION

The Command Interpreter (CI) provides the fundamental interface

between the user and PTDOS. It accepts commands from the system

console or a command file and executes them one by one. Whenever the

CI is waiting for input, it sends an asterisk (*) prompt to its output
file (usually the console).

A PTDOS command has two parts: a program (image file) name and an
optional argument list. For example, in the command FILES S=-I, which
displays a list of all files on the default diskette, FILES is the
name of an image file that contains the program to produce such
listings, while S=-I is an argument instructing FILES to list all
files, whether or not they are information protected.

The Command Interpreter reads the name of the image file, loads that
file into memory, and usually causes it to begin execution. The
program is then responsible for reading and interpreting its own
arguments, if it has any.

3.2 COMMAND SYNTAX
A command line has the following syntax:
program {{,}{program}...}{_arguments}{;command...} <cr>

The line may be no longer than 80 characters. Notice that the program
name is separated from its arguments by one or more blanks, shown
above as an underline (_) for clarity. Two or more complete commands
may be placed in the same command line if they are separated by
semi-colons (;). The last command in the line is terminated by a
carriage return.

Program names appearing in a command line must be image files, or the
CI will reject the command and generate an error message. The CI can
only start the execution of a program if the image file has a starting
address. Image files and starting addresses are discussed in

Section 5.

If a program name is followed immediately by a comma (,) it will be
loaded but not executed, even if it contains a starting address. If
a command line consists of several program names separated by commas,
each of the programs will be loaded at its load address, and the last
will be executed unless it is followed by a comma or has no starting
address. Any arguments that follow such a list of program names must
be read and interpreted by the last program in the list.

3-1 PTDOS

Since arguments are read by individual programs rather than by the CI,
the system places no restrictions on their format, except that a
semi-colon(;) cannot occur within an argument list. However, all
programs supplied with PTDOS use the same argument syntax, which is
recommended for user programs as well:

1) Blanks in argument lists are ignored.
2) Arguments are separated by commas.

3) Arguments may be either positional or keyword-delimited.
Positional arguments must occur in a prescribed order; if any
are to be omitted from the middle of a list, an extra comma
must be used to hold the place of each one missing.
Keyword-delimited arguments have the form keyword = value
(e.g., S=-I). They need not occur at a particular place in
an argument list, and can even be placed between two positional
arguments or omitted altogether without requiring a placeholder.

3.3 OPERATION
3.3.1 CI Files

The Command Interpreter gets its input from and sends its output to
files defined by two global area parameters:

GLCIF CI input file number
GLCOF CI output number file

These parameters are set initially to the system console, files #0 and
#1. They may be altered by the SETIN and SETOUT commands so that the
CI executes commands or sends its output to another file.

Once it gains control, a program reads its arguments from the current
CI input file; it must obtain the number of this file from the system
global parameter GLCIF. If a program with optional arguments in fact
has none, the first character it reads from the CI input file will be
the carriage return or semi-colon (;) that terminated the command.

The CI input and/or output files may be disk files or device files,
for example, a special terminal device. The driver for a device to be
used as the CI input file must not be read protected, and must support
the following operations:

DTRB read block;
DTRNB read next block;
DTRLB read last block.

The last operation (DTRLB) is required only if commands cross block
boundaries and are being echoed (see below). The driver for a device

to be used as the CI output file must not be write protected, and must
support the following operations:

DTWB write block;
DTWBR write block, read next block.

3-2 PTDOS

o

S

If an end of file is encountered while a program name is being read
from the CI input file, the following actions are taken:

1) The command is ignored.

2) If the CI input file was the system console, all open files
are closed. An EOF on the system console is generated by
typing a CTRL-C.

3) If the CI input file was not the system console, it is reset
to the system console. No open files are closed, including
the original CI input file. '

The CI may echo commands to a selected file. Echoing is controlled by
three system global parameters:

GLECF echo file number;
GLECH echo enable switch;
GLLOG log file enable switch.

Commands will be echoed to the file whose number is in GLECF if GLECH
is non-zero. GLECF has the default value of 1 if GLLOG was zero when
the system was bootstrapped. Then, if echoing is enabled, all
commands will be echoed on the system console. It is often useful to
monitor the command stream on the console if CI input is coming from a
disk file. If GLLOG was non-zero when the system was bootstrapped,
the system log file SYST.LOG will be permanently opened as file #3 and
GLECF will be set to 3, so that all commands will be echoed on
SYST.LOG. The system log file is intended to preserve a record of all
commands executed, to facilitate later auditing and error recovery.

If echoing is enabled, the CI must read an entire command, including
arguments, from its input file. To make the arguments available to
the program for which they are intended, the CI backspaces its input
file to the beginning of the arguments after the command has been
echoed.

3.3.2 Invocation

The Command Interpreter may be invoked in one of two ways: a "reset"
(initial system start-up, RESET or ABORT system calls, or the SRESET
system entry point), or a "return" caused by a normal return to the
system (RETURN or RETURN AND SET TRAP system calls).

On either a reset or a return, the following actions are taken:

l) The stack is switched to the internal CI stack.

2) The error trap addresses are set as follows:
GLERH=0, GLERM=0, and GLERS=-1.

3) The interrupt routine addresses are set to disable interrupt
handling: GLBDl=-1, and GLBD2=-1.

3-3 PTDOS

1)

2)

3)

4)
5)

On a reset, the following additional actions are taken:

The CI input and output files and the current utility file are
reset to their standard values: GLCIF=0, GLCOF=1l, and GLUTF=2.

The buffer for the CI input file (#0) is cleared so that no
partial or complete commands will be executed when the CI
gains control.

The file #0 prompt is set to an asterisk (*).

The CI return trap is disabled: GLTRP=~-1.

Control passes to the CI.

On a return, the CI return trap address is examined to see whether
control should pass to the Command Interpreter or to a user routine.
If GLTRP=-1, the CI gains control. Otherwise, control passes to the
routine whose starting address is in GLTRP.

3-4 PTDOS

SECTION 4

COMMAND MACRO PREPROCESSOR

4.1 INTRODUCTION

In the discussion of the SETIN command in Section 2, it is mentioned
that a series of frequently executed commands may be put in a standard
text file and later executed with the command:

*SETIN file

where file is the name or number of the text file containing the
commands (see Section 2). The text file consists of commands whose
syntax and punctuation (including semi-colons and terminal carriage
returns) are EXACTLY the same as if the commands were being entered
from the keyboard. For example, if a file named FIRSTJOB contained
the statements:

CREATE FIRST,T,4C@<cr>
EDIT FIRST<cr>

(neither carriage return is literal), the command SETIN FIRSTJOB would
cause the Command Interpreter to read the two commands from that file
and- execute them, just as though they had been typed from the
keyboard.

The DO program on the PTDOS diskette enables the user to create macro
command files more versatile than the FIRSTJOB type, because it allows
variables to be inserted in a file to represent parameters that the
user will supply in the command to execute the macro. The DO program
also provides for conditional substitutions based on the presence or
absence of expected parameters in the DO command line.

The remainder of this section is devoted to prescribing the following
procedure for using the macropreprocessor.

1) Using EDIT or EDT3, develop a text file containing commands
and either variables or actual parameters. (The rules for
specifying parameters will be described below.)

2) Give the DO command, specifying the name of the text file and
the actual parameters to replace the variables in the text
file. The program will create an output file in which the
variables have been replaced by the actual parameters in the
DO command line. The DO command can also take arguments which
select the name of the output file (otherwise a default name
is used) or suppress execution of the output file after
preprocessing.

4-1 PTDOS

3) If automatic execution of the output file has not been
suppressed, that file is made the CI output file; if execution
has been suppressed, the output file may be executed at any
time with the SETIN command. (The input file, unless it
contains no dummy parameters, cannot be executed successfully
with SETIN.)

At the conclusion of this procedure, there are at least three new
files on the diskette: 1) the input text file, which can again be
executed with the DO command, 2) at least one output file, which can
be executed with SETIN, and 3) a stack file called $DO.STKS$, which DO
uses to implement recursion (see below) and to provide for an orderly
return to the system when a macro is terminated. (There will be more
output files if the input file includes one or more DO commands.) If
you want to be able to execute the same set of commands repeatedly,
without changing any parameters, save the first output file and
thereafter use SETIN; if you want to execute the commands, but not
always with the same parameters, save the input file and thereafter
use DO.

4.2 DEVELOPING THE INPUT FILE

An input file is a normal text file consisting of commands. Any PTDOS
image file may be used in a macro; if the image file is not the 1last
to be executed, it should end with a RETOP (return to the operating
system), because otherwise the subsequent command(s) in the macro file
will not be executed. The system commands that begin with the dollar
sign (§$) are more frequently used in macros than in any other

context.

It is permissible for a macro to execute itself recursively, for
example, for a file named AGAIN to include a DO command to process and
execute the file AGAIN. It is also possible for a macro to execute
another macro. Whenever a macro is executed, even if it is being
executed recursively, another output file is opened; DO is able to
generate at least 36 such files, as long as PTDOS is configured to
allow adequate buffer space and the reguired number of open files.

The last command in the input file should be $STOP.

4.2.1 Variables

A macro input file may contain as many as 36 variables, each
designated by a percent sign (%) followed by a character in the range
#-9,A-7Z. (Upper and lower case letters are equivalent in the
representation of a variable.) Each of these variables represents a
parameter passed to the program in the DO command line: %@ represents
the name of the macro input file, %1 represents the first subsequent
parameter on the line, %A represents the tenth subsequent parameter,
etc. For example, if a file named MAKE consists of the command

lines:

CREATE %1,T,4C0;EDIT %1l<cr>
$STOP<cr>

4-2 PTDOS

the command DO MAKE,JACKAL will produce an output file that creates a
file called JACKAL, with dynamic buffering and a block size of 4C@,
and then enter the editor to edit the newly created JACKAL file.
(Notice that the same variable may occur more than once in the input
file.) If MAKE consisted of the command lines:

CREATE JACKAL,%1,%2,<cr>
$3 JACKAL<Lcr>
$STOP<Lcr>

the command DO MAKE,T,4C0,EDIT would have exactly. the same results.

If a variable is specified and there is no corresponding parameter
supplied on the DO command line, an error will be reported. '

4.2.2 Conditionals and Signed Conditionals

DO provides for two kinds of conditionals. The simplest kind of
conditional has the form [string], where brackets are literal and
"string" is either a variable or a string containing a variable. If
the parameter corresponding to the named variable is actually supplied
on the DO command line, "string" is written to the output file, with
the variable assigned its actual value; if the string contains only a
variable, the value of the variable is written to the output file. 1If
the parameter corresponding to the named variable is absent, "string"
is not written to the output file, and processing of the input file
continues. The brackets will never appear in the output file.

EXAMPLES:
1) If MAKE consists of the line:

CREATE %1,[%2],[%3];EDIT %1;S$SSTOP<cr>

the command DO MAKE,POTTS,,240 will produce a command file:

CREATE POTTS,,240;EDIT POTTS<cr>

whereas the command DO MAKE,POTTS will produce:

CREATE POTTS,,;EDIT POTTS<cr>
In neither case will an error be reported, as it would be if the
variable names were not enclosed in brackets. Also notice that the
commas in MAKE are outside the conditional; it is important to provide
for commas in the case of any command whose arguments are positional,
i.e., to be entered in a specific order. An extra comma is required
in the command DO MAKE,POTTS,,240 to signify that the second parameter

has, in fact, been omitted from the parameter list; otherwise, the
value 240 would be substituted for %2.

4-3 PTDOS

2) 1If a file named EX5$ contains the command lines:

$SREM [%1 IS PRESENT.[SO IS %2.][AND ALSO %3]]<cr>
$STOP<cCr>

the command DO EX5$,,argl,arg2 will produce:
SREM<cr>
whereas the command DO EX5$,argl,,arg3 will produce:

$REM argl IS PRESENT. AND ALSO arg3

This example contains "nested" conditionals. If the parameter
corresponding to the variable in the outermost conditional is not
present, the string, including any other conditionals, will not be
written to the output file. Conditionals may be nested to a depth of
14; the example above is nested to a depth of 1.

The second kind of conditional is a "signed" conditional of the form
[string] where "string" consists of a percent sign, a plus or minus
sign, a variable designation, and a string. Signed variables are used
only in conditional expressions; they have the meaning "write the
string to the output file ONLY if the parameter corresponding to the
named variable is present (for a plus) or absent (for a minus)." The
actual parameter is never written to the output file in the case of a
signed conditional.

EXAMPLES:
l) The command line:
CREATE %1,[%2]1[%-2T],[%3][%-3100]

results in the substitution of the appropriate values for %2
and %3, if those parameters are present in the DO command line.
If the second parameter is absent, the value T will be written
to the output file; if the third parameter is absent, the
value 100 will be written to the output file. Obviously, only
one of each pair of conditionals can be true.

2) The conditional expression:
[SPR %$-1%+2%+3-4 OK]

produces $PR OK only if parameters %1 and %4 are absent and
parameters %2 and %3 are present.

This kind of conditional can also be nested to a depth of 14.

4.2.3 Cases of Special Punctuation

1) 1If a line of the input file must overflow to the succeeding
line (for example, if the input file is being prepared in EDIT

4-4 PTDOS

4)

and is more than 64 characters long), type a backslash (\)
after the last character that will fit on the first line; the
backslash will prevent the carriage return that follows it from
being copied to the output file. For example,

CREATE %1\<cr>

s EDIT %1<cr>

will produce CREATE %1;EDIT %1<cr>. As the example illustrates,
the backslash may be used even if the first line really would
not overflow to a second line. By this means a line of a macro
may be extended to a length of 255.

A backslash must also be used to indicate that a bracket

([or 1), a percent sign (%), or a backslash (\) should NOT

be regarded as a directive to the program, but should be copied
to the output file "as is." The backslash must occur immediately
before the character to be copied. The character to be copied
may be another backslash; in that case, the second backslash

has no effect on the character after it.

EXAMPLE:
If a file named GROCLIST contains the line:
SREM [%1 FOOD]l<cr>
the command DO GROCLIST,DOG will produce:
$REM DOG FOOD
If the line is:
$SREM \[\%1 FOOD\] = \[%1 FOOD\]
the same command will produce
[81 FOOD] = [DOG FOOD]
If a space (), a comma (,) or a single or double guote
(' or ") is to be included in an parameter and written to the
output file, that argument must be surrounded by either single
or double guotation marks. For example, the command line:
DO STREETS,"1234 8th ST., BERKELEY, CALIFORNIA"
will cause the whole address, not including the gquotation marks,
to be substituted for variable %1 and written to the output
file.
If an argument is to be present, but contain no characters,

it should be represent by adjacent single or double guotation
marks.

4-5 PTDOS

4.3 EXECUTING DO

Many of the examples above illustrate the standard syntax of the DO
command:

*DO infile,parameter,parameter,parameter....

There are a few arguments, which may be inserted in any order BEFORE
THE NAME OF THE MACRO INPUT FILE.

O=file name

is used to specify the name of the output file to be written by the DO
program. If this argument is absent, the file is called $DO.CMDx,
where x is a digit. The first file opened is $DO.CMD@; if additional
output files are required (because of recursion or nesting of DO's),
those files will be named $DO.CMD1l, $DO.CMD2, etc. As many as 36
output files may be opened, if the configuration of PTDOS presents no
other restrictions. If this argument is present, but the named file
does not exist, it is created with type § and block size 100H. Default
output files are information-protected; user-specified output files
created by DO will not have this attribute.

The output file, whether it is a named file or the default file, may
be executed with the SETIN command. It is advisable to change the
name of the file $DO.CMD@ if its contents are to be saved for repeated
execution; if the name is not changed, the next execution of the DO
program (apart from recursion or the any other execution of DO within
a macro) will cause the contents of the file to be overwritten with a
new output file. If multiple output files have been created, only the
first need be executed with SETIN; the SDO.CMD@ file, because it
contains the other DO commands, will recreate those files during its
execution. (Because a DO output file is in standard text-format, it
may be edited or printed like any other text file.)

S=options
These options may be specified as a string after the equals sign (=):

-X prevents the output file from becoming the CI input
file automatically after processing. If the user
specifies the output file, this is the default
condition.

X causes the output file to become the CI input file
automatically after processing. If the default output
file is used, this is the default condition.

+X Same as X

-A indicates that the input file is not in ALS-8 format;
this is the default condition.

A indicates that the input file is in ALS-8 format.

EXAMPLES:

DO O=ASM,MACRO,5,BCDE

4-6 PTDOS

causes macro instructions to be written to a file called ASM. "MACRO"
is the original input file, and both "5" and "BCDE" are actual
parameters to be substituted for variables in that file. Because the
output file argument is included in the command, ASM will not be
executed automatically, that is, it will not be made the CI input
file. If the command were:

bO 0O=ASM,S=+X,MACRO,5,BCDE

the ASM file would be made the console input file, because of the
option specified. 1In either case, ASM can be executed later with the
SETIN command.

4.4 EXAMPLES OF MACROS

The following examples illustrate many of the features of the
macropreprocessor. In all examples, the symbol <cr> is a carriage
return. Commands that begin with the dollar sign ($) are described
near the end of Section 2 of this manual.

1) This is a macro input file called EX4S$:

SREM [%1 IS PARAMETER 1l]<cr>
[SREM %2 IS THE SECOND PARAMETER]<cr>
$SSTOP<cr>

The command DO EX4$,,FRED produces:

SREM<cr>

SREM FRED IS THE SECOND PARAMETER<cr>
$STOP<cCr>

The command DO EX4$ produces:

SREM<cr>
$STOP<cr>

The second $SREM is not present, because it is within the
conditional.

2) This is a macro input file called MAKES:

SNLST<cr>

SPRLcr>

SPR DOING %8 (Create and edit %1)<cr>
SREM DEFAULT TYPE IS "$"; DEFAULT BLOCK SIZE IS 1@0H.<cr>
CREATE %1, [%2][%-2$],[%3][%-3100]<cr>
SPR %1 HAS BEEN CREATED<cr>

SPRLCIr>

SPR PRESS RETURN TO EDIT<cr>

SWAIT<cr>

EDIT %l<cr>

$PR JOB COMPLETE.<cr>

SLST<cr>

SSTOPLcr>

4-7 PTDOS

3)

The command line DO MAKES,TEMP,,9C@;FILES TEMP will result
in the following output to the console:

DOING MAKE$ (Create and edit TEMP)
TEMP HAS BEEN CREATED

PRESS RETURN TO EDIT
(executes the PTDOS EDIT command and then returns to the macro)

JOB COMPLETE
$STOP

At this point control is returned to the Command Interpreter,
which reads and initiates execution of the FILES command. The
output from that command will show that a file called TEMP has
been created with type "$" and block size 9CPH. (Notice that
the only command that is echoed to the console during the
execution of the macro is $STOP, because the first command in
the macro turns off the PTDOS echo switch, and the command
before $STOP turns it back on.)

This is a macro input file whose purpose is to change the

attributes of as many as ten files at once. The file is called
REAT, and is an example of the use of recursion.

SREM Stop if there are no more files<cr>

[¢-1 $sSTOP]<cr>

[REATR %1,+I]; SREM Now REATR the rest of the files.<cr>
DO REAT,[%2],(%3],[%4],[%5],1%61,1[%7],(%81,[%9],[¢%A]<cr>
$STOPLcr>

The command DO REAT, ONE, TWO, THREE, FOUR will cause the files
ONE, TWO, THREE, and FOUR to be given the I (information
protect) attribute.

4~-8 PTDOS

SECTION 5

FILE SYSTEM

5.1 INTRODUCTION

PTDOS is, first and foremost, a system for managing files. Viewed
abstractly, a file is a collection of data that for some reason belong
together,

Most PTDOS files reside on a floppy disk. The detailed format of disk
files will be discussed later in this section. In addition, PTDOS
provides a mechanism, the "device file," that enables peripheral
hardware devices to be manipulated by the system in the same manner as
disk files. Further discussion of device files will be deferred until
Section 9.

5.2 FILE CHARACTERISTICS
5.2.1 File Names
A PTDOS file resides on a single diskette and has a name that must be

unigue among all files on that diskette. A file name consists of 1-8
ASCII characters, excluding the following:

NAME HEX ASCII CODE GRAPHIC SYMBOL

control characters go~-1F

space 20

number sign 23 #
comma 2C B
slash 2F /
semicolon 3B H
less than 3C <
equals 3D =
greater than 3E >
DEL TF

Upper and lower case alphabetic characters are equivalent, and the
high order (parity) bit in a character byte is ignored.

Recause a diskette may be placed in any of the disk units in a system,
the name of a file must usually be cualified by a "unit number". This
number, denoted by an ASCII digit in the range 0-7, identifies the
disk drive unit in which the diskette containing the file resides. A
unit number, always preceded by a slash (/), is affixed to the end of
a file name; for example, FILE/l is a file that exists on a diskette
in unit 1. If the name of a file does not have a unit number affixed
to it, that file is presumed to reside on a diskette in the default
unit.

5~-1 PTDOS

5.2.2 File Types

A PTDOS file has a type as well as a name. It is common to assign the
same file type to each of a group of files that have a common
property, e.g., assembly language source files, or executable image
files.

The file type is encoded in a single byte. File type 255 (FFH) is
reserved to designate a device file (see Section 9). The remaining
file types have no significance to the system, except that the high
order bit is used to distinguish between executable image files and
non~executable data files. If the high order bit is set, the Command
Interpreter assumes that the file is not executable and will not
attempt to load and execute it; if the high order bit is not set, the
Command Interpreter assumes that the file can be loaded and executed
(with unpredictable results if the file is not, in fact, an image
file).

So far, the following file types have been assigned meanings:

FILE TYPE DESCRIPTION

Hex Symbolic

89 108 System Image File

43 IC System Command Program

47 IG Game Program

53 IS System Program (e.g., ASSM)
54 Is$ System $Command File

2A I. Default Image File

80 1117} System Data File

81 gl Focal Binary Data File

82 gz BCD Data File

83 B3 Focal Program

84 94 BASIC/5 Program

85 85 BASIC Program, Semi~Compiled Form
86 g6 BASIC Program, Text Form

87 g7 BASIC Serial Access Data File
88 08 BASIC Random Access Data File
A4 $ Command File

AE . Default Data File

Ccl A SAVE Archive File

The symbolic form of the file type is the representation that appears
in the listing produced by the FILES command. For example, a device
file is type "D," and an image file is type "I" (or "I" followed by
another character). The symbolic types consisting of a single
printing character, or of "I" followed by a single character, may be
used in the argument list of the CREATE, RETYPE, FILES, SAVE, and GET
commands. Types with two digits in place of the single character can
be included in an argument list only if represented by the control
character whose ASCII code corresponds to the two digits.

5~2 PTDOS

5.2.3 File Protection Attributes

A set of protection attributes may be associated with a file to
prevent certain operations from being carried out on that file. The
protection attributes are encoded in a single byte whose bits, if set
to 1, have the following meanings:

BIT NAME PROTECTION

7 Undefined, reserved for future use

6 PALO Additional allocation of disk blocks
5 PNAT Name and type change

4 PATR Protection attribute change

3 PFINF File information display

2 PREA Read

1 PWRI Write

0 PKIL Kill

The names in the table are symbols defined in PTDEFS (see
Section 6.3); the value of each symbol has the bit for a particular
protection attribute set to 1, and all other bits set to @.

5.3 DISK STRUCTURE

Before it is possible to discuss file structure, it is necessary to
describe the physical disk structure upon which the PTDOS file system
is based. The surface of a diskette is divided into 77 circular
tracks. In a Helios II system, each track is further divided into 16
sectors. Each sector can contain 256 bytes of data, and is separated
from its neighbors by an intersector gap approximately_éi_bytes in
length.

The Helios II controller is capable of reading and writing physical
blocks whose length ranges from 1 to 4095 bytes. A physical block
always starts at the beginning of a sector, and its data are recorded
contiguously; if a block is longer than 256 bytes, part of its data is
written on one or more of the intersector gaps.

This recording technique, called "firm sectoring," has the advantage
that more data can be written on the disk if block sizes are
appropriately chosen. In order to maximize the space gained by
writing data on the intersector gaps, a block must end exactly at the
end of its last sector. This consideration dictates a choice of block
sizes from the following list of optimum sizes:

5-3 PTDOS

HEX BLOCK SIZE SECTORS PER BLOCK SPACE GAINED (BYTES)

100 1]
249 2 64
380 3 128
4Cco 4 192
600 5 256
749 6 320
880 7 384
9Co 8 448
BOO 9 512
C4p 10 576
D80 11 640
ECO 12 704
FFF 13 768

The most efficient storage possible is achieved if a track is divided
into exactly two blocks; the space gained cn a track divided in this
way 1s equivalent to 3 sectors. In practice, of course, it is not
possible to format an entire diskette with 2~block sectors, so the
actual space gained by firm sectoring always falls below the
theoretical maximum,

A physical block is preceded by a header that has the following
format:

#BYTES DEFINITION

1 Sector number

1 Track number

Z Forward block chaining pointer, sector
" n " n ’ t r a Ck

2 Backward block chaining pointer, sector
H)] n 1" ’ track

2 File ID

1 Block length in sectcrs

2 Block length in bytes

2 Undefined, reserved for future use

The block chaining pointers and file ID will be discussed in the
following section.

5.4 FILE STRUCTURE

A PTDOS file is a doubly linked list of physical blocks that reside on
a single diskette. All blocks of a file have the same length. The
list structure is implemented with the block chaining pointers in the
block headers. The forward pointer in a block points to the next
block of the file, while the backward pointer points to the preceding
block. The first block of a file has a backward chaining pointer
whose value is FFFFH, and the last block of a file has a forward
chaining pointer whose value is the number of bytes actually used in
that block plus 860UYH.

5~4 PTDOS

b

This linked list structure makes it possible to access a file
sequentially by following the pointers from block to block.

A file that is to be accessed rancdomly, as well as seguentially, must
have an incex block associated with it. This 256~-byte block contains
2~byte entries pointing to the sector and track of each of the first
125 blocks of the file, or to every klock of the file if it contains
no more than 128 blocks; unused index entries are 000GH. Any byte in
the first 128 blocks of an indexed file may be located by calculating
the number of the block in which it must reside and then locating that
block by means of the index. An index block header contains the ID of
the file that it indexes, and has chaining pointers identical to the
first block of that file.

Each file on a diskette has a uniacue file identification number (file
IC). This number is assigned when the file is created and appears in
the header of every block of the file. Every diskette contains a file
named NEXTID, or contains the 2~-byte value of the next unigue file ID
that can ke assigned; the value is updated every time a file is
created. The file ID is 16 bits long, so no more than 65,536 files
nmay be created during the life of a diskette; in the unlikely event
that this limit is reached, the files on that diskette should be
copied to another diskette on which it is still possible to create
files. The original diskette can then be reused if it is conditioned
cr formatted with DISKCOPY.

Every PTDOS diskette has a directory containing information about the
files residing on that diskette. The directory is itself a file named
DIRECTRY. It occupies all of track 25 (19H), and consists of 16
256~byte blocks, each of which has the following format:

#BYTES DEFINITION
1 Number of entries in block (0~12)
1 Pointer to next free byte in block
: Up to twelve 2l1-byte entries
é Unused

Each directory entry has the following format:

#BYTES DEFINITION

File name, filled on right with NULs (00H)
File type
Block size in bytes
File protection attributes
File ID
Pointer to index block, sector
1} n " " , track
Pointer tc first block of file, sector
1] n n " " " R t r a C k

NN = N e

)

Number of blocks in the file
Undefined, reserved for future use

|l 2

5-5 PTDOS

The index block pointer has the value § if the file has no index
block.

Because each block can contain at most 12 entries and there are 16
blocks in the directory file, no more than 192 files can exist
simultaneously on a diskette.

5.5 DISK SPACE ALLOCATION AND THE FREE SPACE MAP

Initially, all free space on a diskette is formatted into free blocks
exactly one sector (256 bytes) long with a file ID of @ and chaining
pointers appropriate for both the first and last block of a file
(i.e., a backward pointer of FFFFH and forward pointer of 8000H). The
location of all free sectors is represented in a free space bit map, a
file named FSMAP that contains 77 2~byte entries, one for each track.
The 16 bits of each track entry correspond to the 16 sectors of that
track; if a bit is 1, the corresponding sector is free.

When a file is created or data is added for which there is
insufficient space in the last block of the file, another block must
be allocated. This allocation is accomplished by searching the free
space map for the first area on the disk where there is a sufficient
number of contiguous free sectors to hold a block of the reguisite
length. The bits in the free space map that correspond to these
sectors are then set to zero, and the empty block is created and
linked to the block that was formerly the last block of the file.

When an end of file is placed in a block that was not previously the
last block of the file, or when an entire file is killed, one or more
blocks of the file can be returned to the free space pool. This
recovery is accomplished by reformatting the disk area occupied by the
block into one or more free 256-byte sectors and setting the
corresponding bit(s) in the free space map to 1.

5.6 FILE ACCESS AND BUFFERING

To access a file, a program must make a series of system calls to open
the file, read data from and/or write data to the file, and finally
close it. There are also system calls to space over part of a file,
endfile a file, and seek to a particular location in a random access
file before reading or writing. These file access calls will be
described in detail in Section 7, in addition to the system calls that
create or kill a file, change its name, type, and attributes, and
create an index block for a file that is to be accessed randomly.

When a file is opened, a number of actions are taken by the system:

1) A file number is assigned. This number will be associated with
the file only as long as it is open; once that file is closed, the
same file number may be assigned to another file when it in turn is
opened.

2) A file control block (FCB) is allocated. This contains, along

with other information about the file, a pointer to the byte at which
the next read, write, endfile, or space operation will begin. This

5-6 PTDOS

pointer is called the "file cursor", and initially points to the first
byte of the file; it is updated by the read, write, space, and seek
operations.

3) A buffer is allocated whose length is egual to the block size of
the file. The first block of the file is read to "prime" the buffer.

All transfers to and from a file are buffered by PTDOS. When a
program executes a read operation, the data are transferred from the
file buffer into memory designated by the program. If some data
required are not in the buffer, then another block of the file is read
into the buffer. The transfer continues in this manner until
complete. When a program is executing a write operation, the data are
transferred into the buffer, which is written to the file only when
necessary. Any transfer into the buffer sets a "dirty flag"
indicating that it contains data not yet present in the file. A dirty
buffer will be written to the file anytime that another block is to be
read into the buffer. (Writing out a full buffer when extending a
file may be considered a special case in which the new block to be
read is empty.)

PTDOS allows a choice of buffer management technigue. Normally,
buffers reside in system~managed memory and may have static or dynamic
allocation. Buffers may also reside in memory managed by the user
program, in which case their allocation is always static.

A static buffer is allocated when a file is opened, and continues to
exist until that file is closed. 1In contrast, a dynamic buffer is
allocated each time a reguest is made to execute a read or write
operation, and is deallocated immediately thereafter. The advantage
of dynamic buffering is that when the memory available for file
buffers is limited, several open files may all use the same memory
area for their buffers; the disadvantage is that the system's I/0
overhead is increased and most file operations will require many more
time~consuming data transfers between the buffer and the device on
which the file resides (usually a diskette).

5.7 DATA STRUCTURE
5.7.1 Introduction

Thus far, the physical structure common to all files has been
discussed. This physical structure is the only structure of which the
PTDOS file system is aware; any structure imposed on the data
contained in a file is meaningful only to the program or programs that
are intended to manipulate that file.

This section will describe the data structure of files manipulated by
the layers of PTDOS that are built on top of its file system.

5.7.2 Text Files

The text files used, for example, by EDIT, EDT3, and PRINT have a very
simple structure. Such a file is just a string of characters with an
ASCII carriage return character (CR or @DH) marking the end of each
line of text. A blank line is represented by a carriage return

5~7 PTDOS

immediately following the carriage return that terminated the vrevious
line. 1In addition to this line structure, a file produced by EDT3 may
be divided into pages; each page is terminated by an ASCII form feed
character (FF or 6CH).

EDIT can also read and write the ALS-8 text file formet, and convert
files from ALS~-8 to standard format, and vice-versa. Lines in an
ALS-6 file, in addition to being terminated by a CR, are prefixed by a
l-byte binary length field. A blank line is thus 2 bkytes 1long,
counting its terminating CR.

5.7.3 Image Files

An image file contains the machine languacde code for a proaram, the
address at which the Command Interpreter is to load it, and usually
the address at which execution of the loaded program is to begin. An
image file consists of zero or more segments that have the fcrmat:

#BYTES DESCRIPTION
2 Number of code and data bytes in segment
2 Load address of code and data belonging
to the segment
Variable Code and/or data

The CI will load each segment at the specified address until the end
of file is reached or a starting address is encountered.

A starting address usually is represented as two bytes immediately
following the last segment of the file, i.e., as the last two bytes of
the file. It is also possible to represent a starting address as a
segment with a zero byte count:

#BYTES DESCRIPTION
2 Identically zero
2 Starting address

The two representations for a starting address differ only in that if
the first representation is encountered, the image file is closed
after it has been loaded, whereas if the second form (zero lenath
segment) is encountered, the image file is left open after it has been
loaded.

ASSM, the assembler, produces image files with a maximum segment byte
count of 166 bytes and uses the first representation for a starting
address if an XEQ pseudo-operation appears in the assembly language
source program.

5.7.4 Utility Files

The files created by BLDUTIL and accessed by the utility handler
consist of a directory table followed by one or more program or data

5~-8 PTDOS

modules, each of which has the format of an image file. The directory
table contains offsets from the first byte of the utility file to the
beginning of each module, so that the utility handler can locate and
lcad any module. If a module has a starting address, that address

must be represented as a segment with a length of zero, i.e., in the
format described in Section 5.7.3.

A utility file has the followinag format:

#BYTES DESCRIPTION
1 Number of modules in the file
2 Offset to module 0
2 Offset to last module
8 Name of module @
Variabkle Module @, image format
8 Name of last module
Variable Last module, image format

Notice that the offsets are to the first byte of the code and data of
each module, not to its name.

5~9 PTDQGS

o

Oy,

SECTION 6

SYSTEM INTERFACE

6.1 INTRODUCTION

This section explains the interface between PTDOS and a user-written
program. Details of the system calls, system utilities, and device
drivers appear in Sections 7-10; this section provides necessary
background for those discussions.

6.2 MEMORY MANAGEMENT

PTDOS extends downward in memory from location BFFFH to the address
specified in the system global parameter GLLOW (see Section 6.3). 1In
a Sol the area from COOOH to CCOOH is left free for the SOLOS moritor
program; in a machine other than a Sol, this area may be used by the
CUTER monitor program. The area from CC@OH to DOGPH is normally used
as the videoc display memory of the Sol or VDM-1l. The areas from @ to
GLLOW and from DWUPH through FFFFH are available as user memory. The
system memory map may be represented as follows:

6-1 PTDOS

Hex Address

FFFF ! !
! User !
! Memory !
DO0G ! !
! Video Display !
! Memory !
CCgo ! !
! SOLOS or !
! CUTER 1
o1}’ ! !
! Overlay !
! Buffer: OLBUF !
BDCO ! !
! Command Exec !
! Buffer: CXBUF !
BCC#O ! !
! Entry Point !
! Table !
BC93 ! !
! System !
! Resident Code !
] 1
! System !
! Global Area !
SYSGLO ! !
! FCB !
! Area !
! !
I Buffer !
! Area !
GLLOW ! !
! User !
! Memory !
100 ! !

When a file is opened, the system must allocate a file control block
(FCB) and a buffer for it (see Section 5). File control blocks are
allocated in the FCB area; this area has a fixed size that depends on
the maximum number of open files allowed by the system configuration.
Buffers are allocated in the memory between the FCB area and GLLOW.
The amount of memory available for buffers is determined by the value
of GLLOW, which may be set by the user with the SET BU= or CONFIGR
command. The CONFIGR command sets GLLOW in the disk-based resident
and thus determines the default value that will be in effect whenever
the system is bootstrapped. 1If sufficient memory is available, 8800H
is a good choice for the default value, because it allows two files
with 4COH block sizes be open simultaneously. A value of 8000H will
serve all but the most extreme needs, e.g., unusually large block
sizes or number of open files.

It is possible for the user to protect the lower part of memory by
setting the system global parameter GLPRO. If this parameter has a
non-zero value, PTDOS will not allow memory from @ to GLPRO to be used
as a user buffer or as a data destination for a read or delimited read
operation.

6-2 PTDOS

e

When possible, system commands are executed in the command execution
buffer (CXBUF); such commands are called "safe." The Explain Error
Utility (see Section 8.2) runs in the overlay buffer (OLBUF); hence,
it can be invoked by the safe commands that run in CXBUF. Commands
whose code will not fit in CXBUF are executed in user memory starting
at 10UH; the memory below 1@0@H is never used by the system.

6.3 SYSTEM GLOBAL AREA

The System Global Area is a user-accessible area of memory containing
various parameters that control the operation of PTDOS. These
parameters appear in the following order and have the specified
functions. A number in parentheses is a cross-reference to additional
information about a parameter.

Symbol #Bytes Description

GLCIF 1 CI input file number (3.3.1)

GLCOF 1 CI output file number (3.3.1)

GLUTF 1 Utility file number (6.4.5)

GLECF 1 CI Echo file number (3.3.1)

GLUNI 1 Default unit number

GLPRM 1 Number of permanently open files

GLMXU 1 Maximum number of units

GLSWI 2 User sense switches

GLERS 2 Level 2 error trap address (6.5)

GLERM 2 Level 1 error trap address (6.5)

GLERH 2 Level @ error trap address (6.5)

GLTRP 2 CI return trap address (3.3.2)

GLPRO 2 User memory protect address (6.2)

GLFLG 1 Console character waiting flag (9.4.3)

GLBYT 1 Console waiting character (9.4.3)

GLRCH 2 Console read character routine pointer (9.4.3)

GLWCH 2 Console write character routine pointer (9.4.3)

GLTCH 2 Console test for waiting character routine
pointer (9.4.3)

GLNCT 1 Console number of nulls to follow LF (9.4.3)

GLVER 1 System version number

GLDAT 3 System date

Format is packed BCD, MMDDYY.

GLNAM 8 Disk name
Format is ASCII, zero filled on right.
GLPAS 8 Password used by CONFIGR command (2.2)
Format is ASCII, zero filled on right.
GLBD1 2 Pointer to wait for interrupt routine (6.6)
GLBD2 2 Reserved for future use
GLIF1l 1 Interrupt enable flag (6.6)
GLIF2 1 Disk interrupt processing complete (6.6)
GLLOW 2 Lowest address assigned to system (6.2)
GLECH 1 CI echo enable flag (3.3.1)
GLLOK 1 Disk write lock flag
GLUPS 1 Console ASCII upshift flag (9.4.1)
GLRBC 1 Disk read-after-write-check flag
GLBIO 1 Console binary I/0 flag (9.4.1)
GLLOG 1 CI log file enable flag (3.3.1)
GLVRB 1 Verbose flag used by BOOTLOAD command (2.2)

6-3 PTDOS

The symbolic names given in the table are offsets to the parameters

from the beginning of the System Global Area. These names are defined

by EQU assembler pseudo-operations in either of two files appearing on

the PTDOS System Diskette:)
PTDEFS assembly language definitions with line numbers;
NPTDEFS assembly language definitions without line numbers.

These files are meant to be included in the source code of a user
program by means of the COPY assembler pseudo-operation.

The starting address of the System Global Area is given by the
parameter SYSGLO in the System Entry Point Table (see Section 6.4).
To access a system global parameter, a program must add this starting
address to the offset for the parameter. For example,

LHLD SYSGLO get starting address of System Global Area
LXI D,GLCIF add offset to CI input file number

DAD D)
MOV A,M get value of CI input file number
6.4 SYSTEM ENTRY POINTS

All system entry points available to a user program are organized into
a System Entry Point Table. The starting address of this table
(BC93H) will not be changed in future releases of PTDOS. Because the
starting address of the System Global Area is subject to change in
future releases, that address is contained in SYSGLO (at location
BCAS5H) in the Entry Point Table (see Section 6.3).

The System Entry Point Table is summarized below. The entry points
will be discussed in detail in the sections that follow.

"PTDEFS Hex
Symbol Address Description

SYS BCBC Standard PTDOS operation entry point

RB BCB9 Read single byte from file

WB BCB6 Write single byte to file

UTIL BCB3 Utility Handler

SRESET BCB# Short reset entry point

ERRL® BCAD Initiate error level @ return to a user program
ERRL1 BCAA Initiate error level 1 return to a user program
ERRL2 BCA7 Initiate error level 2 return to a user program
SYSGLO BCA5 Pointer to the System Global Area

CONIN BCA2 Read single character from console

CONOUT BCOF Write single character to console

CONTST BC9C Test console for waiting character

PSCAN BC99 Parameter Scanner

INTDN BC96 Disk interrupt processing complete entry point
INTDK BC93 Disk interrupt processing entry point

The symbolic entry point names given in the table are defined in the
files PTDEFS and NPTDEFS. The value of each symbol is the address of
the corresponding entry point.

6-4 PTDOS

6.4.1 SYS

Most system calls are made through the SYS entry point. The calling
sequence for SYS is as follows:

<load all necessary registers>
CALL SYS

DB <operation code>

JMP <error routine>

<normal return point>

The possible operations are:

Code PTDEFS Function
Dec Hex Name
] @ CREOP Create file
1 1 OPEOP Open file
2 2 KILOP Kill file
3 3 RBLOP Read data
4 ' 4 WBLOP Write data
5 5 SPAQOP Space file cursor
6 6 EOFOP Endfile file
7 7 CLOOP Close file
8 8 CHTOP Change file type
9 9 CHAOP Change protection attributes
19 A CHNOP Change file name
11 B INFOP Request file information
12 C SUNOP Set default unit
13 D RETOP Return to system
14 E RESOP Reset 'and return
15 F ABTOP Abort and return ‘
16 10 SEKOP Seek to specified location
17 11 RNDOP Randomize file
18 12 CAQP Close all files
19 13 CTLOP Control/Status
20 14 RESOP Short reset
21 15 DRDOP Delimited read
22 16 DWROP Delimited write
23 17 DSPOP Delimited space
24 18 RTROP Return to system with trap set

The operations will be discussed individually in Secticn 7. The
registers to be loaded prior to the call depend upon the operation
requested. SYS requires four bytes of the user program stack, in
addition to the two bytes used by the CALL instruction.

If no errors occur, all operations except RETOP, RESOP, ABTOP, and
RTROP return to the normal return point in the calling program. The
values of the registers depend upon the operation that has been
completed.

If an error is detected while a system call is being serviced, and if

the trap address for that error level is set to -1, a return is made
to the error return point, the location immediately following the

6-5 PTDOS

operation code (see Section 6.5). The error return point normally
contains a JMP to an error-handling routine in the user program. On
an error return, register A contains the error code; the values of all
other registers depend upon the operation that was being performed.

The error returns possible from each operation are discussed in
Section 7. If a SYS call is made with an illegal operation code, a
level 1 error return is made with error code @AH (ERIOP).

6.4.2 RB, WB

The RB and WB entry points allow a single byte to be read from or
written to a file with minimal overhead. These entry points are
somewhat more efficient than the read and write SYS calls for
transfers of a single byte. However, this decrease in overhead is
achieved only if very few bytes are transferred to or from a block;
otherwise, it is more efficient to use the normal read and write SYS
calls. The potential gain in efficiency is entirely negated if the
file being accessed with RB or WB has been opened with dynamic
buffering.

Both RB and WB run on the calling program stack and require 30 bytes
of stack space in addition to the two bytes used by the CALL
instruction.

The calling sequence for RB is as follows:

<load register A with file number>

CALL RB
JMP <error routine> error code is in register A
<normal return point> byte read is in register A

If no errors occur, a return is made to the normal return point. The

character read will be in register A; the values of all other register
will be undefined.

If an error occurs, and if the trap address for that error is set to
-1, a return will be made to the error return point, the location
immediately following the operation code (see Section 6.5). The error
return point normally contains a JMP to an error-handling routine in
the user program. On an error return, register A contains the error
code; the values of all other registers are undefined. Possible level
1l errors are:

Code PTDEFS Description
Dec Hex Name
3 3 ERUFN File not open
4 4 ERPRO Protected file
24 18 EREOF End of file
27 1B ERMOV No space for buffer

6-6 PTDOS

The calling sequence for WB is as follows:

<load register A with file number>

<load register B with byte to be written>

CALL WB

JMP <error routine> error code is in register A
<normal return point>

If an error occurs and a return is made to the error return point,
register A contains the error code; the values of all other registers
are undefined. Possible level 1 errors are:

Code PTDEFS Description
Dec Hex Name
3 3 ERUFN File not open
4 4 ERPRO Protected file
27 1B ERMOV No space for buffer
29 1D ERDFL Disk full

6.4.3 SRESET, ERRLY, ERRL1, ERRL2

Each of these four entry points may be called by a user program in
response to certain error conditions. If such a call is made, control
will not return to the calling program.

SRESET behaves exactly like the RESOP call to SYS (see Section 7),
that is, it causes a "reset" invocation of the Command Interpreter
(see Section 3.4). 1Its calling sequence is simply:

CALL SRESET

The ERRL®, ERRL1, and ERRL2 entry points are called by a device driver
to initiate a level @, 1, or 2 error return to a user program (see
Section 9.2.1). The calling sequence for all three is exemplified

by:

CALL ERRLY
DB <error code>

The specified error code will be returned to the user program in
register A.

6.4.4 CONIN, CONOUT, CONTST
These entry points are used for single character console I/0. Their

operation is controlled by several system global parameters; Sections
9.4.1 and 9.4.2 contain a full description.

6-7 PTDOS

CONIN reads one character from the console input device. 1Its calling
sequence is:

CALL CONIN
{process the character in register A>

On return, the character read is returned in register A. CONIN will

not return until it has read a character; if none is available, it
waits until one is.

CONTST checks whether there is a character waiting to be read. A
-program that does not wish to wait for a character if none is
available should call CONTST prior to calling CONIN. The calling
sequence 1is:

CALL CONTST check for waiting character
JZ <somewhere> if none, do something else
CALL CONIN - input the character

{process the character>

On return from CONTST, the zero flag will be set if no character is
available; otherwise, the flag will be cleared.

CONOUT writes one character to the console output device. 1Its calling
sequence is:

<load register A with the character to be output>
CALL CONOUT

CONOUT returns after the character has been output.

6.4.5 UTIL

UTIL is the entry point to the Utility Handler, which may be called by
a user program to load overlays. Overlays are pieces of a program
(code and/or data) that share memory space; a program divided into
overlays can be larger than the real memory space available to run

it.

In PTDOS, overlays take the form of modules in a "utility file." A
utility file is a random access file (i.e., it has an index block, see
Section 5.4) that consists of a collection of modules preceded by a
directory table. Utility file structure is discussed in detail in
Section 5.7.4. BLDUTIL, the system command used to build and modify
utility files, is explained in Section 2.2.

The modules in a utility file are identified by module numbers; the
first module is number @, and the largest possible module number is
255. This number is used to specify the module to be loaded by a call
to the Utility Handler. The utility file from which the module is to
be loaded must be open, and its file number must be placed in the
system global parameter GLUTF that identifies the current utility
file.

6-8 PTDOS

UTIL has the following calling sequence:

<load registers A, H, and L>
CALL UTIL

DB <module number>

JMP <error routine>

<normal return point>

The Utility Handler requires four bytes of the calling program stack,
in addition to the two bytes used by the CALL instruction.
Information may be passed to the loaded module in registers A, H, and
L.

Because the normal return point from a UTIL call is three bytes after
the return address stored on the stack by the CALL instruction, the
loaded module must increment that address three times prior to making
the return. The following code will accomplish this:

XTHL swap HL and the return address

INX H triply increment the return address
INX H

INX H

XTHL swap back

RET return to the normal return point

If an error is detected, the Utility Handler returns to the error
return point, the location immediately following the module number.
The module can make an error return to the calling program by
executing a RET instruction (or equivalent).

On either a normal or error return, the values of the registers are
determined by the module that was called.

6-9 PTDOS

6.4.6 PSCAN

PSCAN is the entry point to the Parameter Scanner, a routine intended
to support the processing of arguments by any program that runs under
PTDOS. PSCAN accepts input from either the CI input file or a buffer
in user memory, and can process that input in three ways:

1) PSCAN can copy one or more characters from its input source

into a user output buffer for further processing by the user
program.

2) 1If presented with a file name, PSCAN can create and/or open
the file.

3) 1If presented with the ASCII representation of a numeric
value in any base, PSCAN can convert it into its internal
binary representation. As a special case, PSCAN will
convert an ASCII file number (e.g., #2) into its internal
binary equivalent.

PSCAN runs on the user stack and has the followinag calling
sequence: ‘

<load A with operation code>

<load B with base, if required>

<load DE with address of output buffer>

<load HL with address of input buffer, if required>
CALL PSCAN

The operation codes recognized by PSCAN are:

Hex PTDEFS Description
Code Symbol
4 PSC Create file if it does not exist
] PSCO Create file if it does not exist, open file
1 PSOP Open file
6 PSFC Create file (must not exist already)
2 PSFCO Create and open file (must not exist already)
A5 PSONE Read single character
8 PSOPT Read characters until delimiter is encountered
5 PSN Read file name
85 PSV Convert numeric value
D5 PSCN Convert numeric value in user buffer using

base in B

The PSCN operation (D5H) gets its input from a buffer in user memory.
The rest of the operations all accept input from the CI input file.
However, any of them will accept input from a user buffer if 40H is
added to the operation code in the table. For example, operation code
41H (1 + 4¢H) instructs PSCAN to open a file whose name is in user
memory. Whenever a user input buffer is to be used, register pair HL

must be set to point to the first byte of the buffer before PSCAN is
called.

For all operations, register pair DE must point to a 20-byte output
buffer in user memory. Input characters are transferred into this

6-19 PTDOS

buffer as PSCAN reads them. For any operation that may create a file,
the output buffer must be preceded by a file information block with
the format:

#Bytes Description
1 File type
2 Block size
1 Protection attributes

File names input to PSCAN must adhere to the requirements stated in
Section 5.2.1. They may be terminated by any of the delimiter
characters: comma, semicolon, carriage return, or NUL (@0H).

On a normal return from processing a file name, the output buffer will
contain the name followed by a NUL (B@H). If a file was opened, its
file number will be in register E. 1If an illegal character appears in
a file name, or if 20 characters appear without a valid delimiter, the
scan will be terminated immediately. In the first case, PSCAN will
return to the calling program with the Carry flag cleared and a -1 in
register E. In the second case, it will return with the Carry flag
set and a @ in register E. If the scan is terminated by either a
valid delimiter or an illegal character, on return register C contains
the number of characters scanned.

If a file number rather than a file name appears in the input to
PSCAN, no action is taken except that the decimal ASCII file number is
converted into internal binary in register E. A file number has the
format #n, where n is a decimal number. If an illegal character
appears in a file number, PSCAN will return to the calling program
with the Carry flag set and a @ in register E.

A numeric value input to PSCAN must have the format
number{:base}

and must be terminated by a NUL (80H). The base qualifiers recognized
by PSCAN are:

B Binary

O or Q Octal

D Decimal

H or none Hexadecimal

If the operation is PSCN (D5H), the numeric value may not include a
base specifier; instead, the binary value of the base (e.g., 2, 8, 14,
16) must be placed in register B before PSCAN is called.

The number part of a numeric value is unsigned and is constructed from
that subset of the digits #-5,A-F appropriate to its base. It may be
no larger than the largest 16-bit quantity, i.e.,

1111 1111 1111 1111:B
177 777:Q

65535:D

FFFF:H

6-11 PTDOS

On a normal return from a value conversion operation, the binary
representation of the value will be in register pair DE. The output
buffer will contain the ASCII input value terminated by a NUL (00H):;
if a base qualifier is present, the colon will be replaced by a NUL in
the output buffer. Register C will contain the number of characters
scanned. If 20 characters appear in the input without a valid
delimiter, the scan will be terminated immediately. 1In that case, or
if the value is too large or contains an illegal base qualifier or a
character not legal for its base, PSCAN will return to the calling
program with the Carry flag set and a § in register E.

On any return from PSCAN, register A contains the last character
scanned; on a normal return, the last character will be one of the
valid delimiters, except in the case of the Read Single Character
operation. If the first character read by PSCAN is a delimiter, it
will return with the Zero flag set and the Carry flag cleared. If any
PTDOS error occurs, PSCAN will return to the calling program with the
Carry flag set and the error code in register E.

6.5 ERROR HANDLING

Errors detected by PTDOS or by a program running under PTDOS are
characterized by a severity level:

Level ¢ These are very serious errors in disk or file
structure, usually generated by a hardware failure.

Level 1 These are less serious errors generated by programs
that improperly request system services or reguest
services for which there are insufficient resources
(e.g., file does not exist, no more buffer space).

Level 2 These are warnings that are generated by singular
conditions arising during normal functioning of the
system (e.g., end of file).

Errors at each level can be handled in one of three ways, as
determined by the error trap addresses in the System Global Area:

GLERH level § error trap address;
GLERM level 1 error trap address;
GLERS level 2 error trap address.

If any of these parameters has the value -1 (FFFFH), errors of the
corresponding level cause a return to the error return point in the
calling program. The error code will be in register A; all other
registers will have the values they had prior to the system call
except as noted in the discussions of the individual operations.

If any of the error trap addresses has the value 0, errors of the
corresponding level cause an ABORT system call with the error code in
register A, the operation code in register B, and the address of the
system call in register pair HL (see Section 7). This call results in
a console message of the form:

ERR: <error code> <operation code> <address of call>

6~-12 PTDOS

The abort handler then waits for a key to be pressed. If the key is
not a carriage return, a call is made to the Explain Error Utility,

which displays the error message that corresponds to the error code.
If the level @ abort is generated by the disk driver, the following

message is output to the CI output file before control is passed to

the system error handler:

DSK: <file ID> <sector,track> <header ID> <header block size>

If any of the error trap addresses has a value other than -1 or @,
errors of the corresponding level cause control to pass to a trap
routine at that address. Such a routine may take any action deemed
appropriate. The error code will be in register A; all other
registers will have the values they had prior to the system call
except as noted in the discussions of the individual operations. When
an error trap routine is entered, the stack will be in the state that
existed immediately prior to the system call.

6.6 INTERRUPT PROGRAMMING

PTDOS can be run in a system with interrupt-driven devices. There are
periods during disk transfers when instruction timing is critical. At
the beginning of such periods, the disk driver executes an 8080
disable interrupts instruction (DI). When the critical period has
passed, the driver will re-enable interrupts with an 8080 enable
interrupts instruction (EI) if the following system global parameter
has a non-zero value:

GLIF1 interrupt enable flag.

Because the area of memory from # to 10@H is not used by PTDOS, a
user-supplied interrupt handler may reside there, allowing vectored
interrupts to one of the 8080 restart locations (@, 8, 10H, 18H, 20H,
28H, 36H, 38H).

It is possible to modify the Helios II controller so that interrupt
signals are generated by the conditions "seek complete" and "transfer
complete." Thus it possible to implement a scheduler that will run
one or more tasks that do not use PTDOS during the disk operations
requested by a task that is running under PTDOS. (PTDOS is not
reentrant, so only one task can use it at a time.) 1In order to do
this, GLIFl must be set to a value other than zero. Two other system
global parameters are significant:

GLIF2 disk interrupt processing complete flag;
GLBD1 pointer to wait for interrupt routine.

In addition, two system entry points are used by the scheduler and the
interrupt handler:

INTDK disk interrupt processing entry point;
INTDN disk interrupt processing complete entry point.

6-13 PTDOS

When the PTDOS task has requested a disk operation and the system is
waiting for completion of a seek or data transfer, it passes control
to the scheduler routine whose address (non-zero) is in GLBD1l. This
scheduler should switch to its own stack, and can then start the other
task(s) running.

Occasionally, the non-PTDOS task(s) should return control to the
scheduler so that GLIF2 may be examined. If that parameter has a
value of zero, one of them may continue. Otherwise, the scheduler
should restart the PTDOS task by calling the INTDN entry point. PTDOS
will switch back to its own stack before proceeding.

When an interrupt occurs, the interrupt handler must call INTDK. If
the interrupt was generated by the disk controller, PTDOS services it
and returns to the interrupt handler with the Carry flag set. If the
interrupt was generated by some other device in the system, PTDOS
returns with the Carry flag cleared; in this case, the interrupt
handler is responsible for servicing the interrupt. 1In either case,
the values of all registers are undefined on return from INTDK, and
the interrupt handler is responsible for re-enabling interrupts with
an 8080 enable interrupts instruction (EI).

6-14 PTDOS

SECTION 7

SYSTEM CALLS

7.1 INTRODUCTION

The purpose of this section is to describe each of the 25 system calls
available through the SYS entry point to PTDOS. Each description
consists of:

1) the name of the operation, its symbolic name (as
defined by PTDEFS and NPTDEFS), its decimal code, and
its hexadecimal code;

2) a brief statement of the purpose of the operation;

3) instructions for loading expected values into the
registers before the call;

4) a more detailed discussion of the procedure involved
in the operation;

5) a list of possible error returns, with their
hexadecimal and decimal codes and the system error
messages to which they correspond; and

6) additional notes, where appropriate.

This discussion assumes familiarity with the background material
supplied in Sections 5, 6, and 9.

7.2 STANDARD NAME RESOLUTION RULES

Many operations require that a file name be specified. Names are
represented as strings of 18 or fewer characters, including an
optional unit number; such a string is scanned from left to right
(lower to higher locations in memory) until a NUL (#@H) or an ASCII
slash (/) is encountered. A name is expected to consist of no fewer
than 1 and no more than 8 characters. Several ASCII characters are
not legal in file names; a list of these characters appears in Section
5.2.1. No distinction is made between upper and lower case letters,
(i.e., "A" and "a" are equivalent), and the high-order (parity) bit in
each character is ignored. If an illegal character is encountered in
the string, or if the string consists of too few or too many
characters -- that is, if a terminator does not occur after the eighth
character -- an error is generated.

If the scan is terminated by a NUL, the named file is associated with
the default unit specified by GLUNI in the System Global Area (see
Section 6.3). If the scan is terminated by a slash (/), the next
character must be an ASCII digit specifying the unit with which the
file is to be associated. This digit must be less than the value
stored in GLMXU in the System Global Area. (GLMXU contains the
maximum number of units to be supported by the system; because unit
numbers begin with @, the digit corresponding to the highest available
unit has a value of GLMXU-1l.) An error will be reported if the
character supplied is not a unit in the acceptable range.

7-1 PTDOS

7.3 ERROR RETURNS

Possible error returns are discussed in the context of each operation.
If no error occurs during an operation, the return to the calling
program is "normal": that is, control passes to the address three
bytes after the system call, and the CPU registers and flags, except
Carry, are left intact (exceptions are noted). If an error does
occur, an error return is made to the calling program: control is
passed to the address immediately following the operation code, and a
hexadecimal code corresponding to the error is returned in the A
register (see Section 6.4.1).

Each of the errors detected by PTDOS or by a program running under
PTDOS is assigned with a severity level (see Section 6.5). Level @
(very serious) errors may occur during almost any operation and are
therefore not discussed in relation to particular operations. These
errors are associated with failure of the computer, disk surface, disk
drive and controller, or system integrity. Examples of Level @ errors
are:

Message: PTDEFS name: Error codes:
HEX DEC
FILE ID CONFLICT ERFIC 21 33
BLOCK SIZE CONFLICT ERBSC 22 34
SECTOR CONFLICT ERSCC 23 35
CAN'T FIND SECTOR ERCFS 24 36

When a serious error occurs, a message of the following form is
displayed on the CI output file:

DSK: <file ID> <sector,track> <header ID> <header block size>
before control is passed to the system error handler.

-

A procedure for dealing with hardware-related errors is outlined in
Section 16.

7.4 OPERATION DESCRIPTIONS

ABORT ABTOP 15 OFH

PURPOSE: Return to the Command Interpreter and print an error message
on the console. Terminate processing of the command string, and reset
console input and output files to #8 and #1, respectively.

REGISTERS ON ENTRY:
A contains the error number.

B contains any useful number that can be represented in 8 bits.
HL contains any useful number that can be represented in 16 bits.

7-2 PTDOS

PROCEDURE:
The message
ERR: AA BB HHLL

is printed on the console output device. In the example, "AA"
represents the content of register A, "BB" represents the content of
register B, and "HHLL" represents the content of the HL register pair
at the time of the call.

After the message is printed, the user may enter a single character on
the console input device. If that character is a carriage return, a
RESET operation is performed (see the RESET system call later in this
section). 1If the character is not a carriage return, a call is made
to the system Explain Error Utility (UXOP).

If all goes well, i.e., if the utility file can be read, an English
explanation of the error will be printed on the console, and a RESET
will be performed. 1If an error occurs during the call to the Explain
Error Utility, the message:

CAN'T EXPLAIN
will be printed, and another ABORT will be attempted.
NOTES: 1If the error number in A is zero, the explanation phase will
be omitted and a RESET performed. If the error number does not
correspond to one of the legal error codes, the English message will
be

ERROR: ILLEGAL

There are no returns from this call.

CHANGE ATTRIBUTES CHAOP 9 9H
PURPOSE: Change the protection attributes of a file.
REGISTERS ON ENTRY:

DE points to the file name
H contains the desired new attributes

PROCEDURE: The directory is searched on the unit specified by the
file name. If the file exists and is not protected against a change
in its attributes, the new attributes are substituted for the old
ones. (The attribute byte has a particular bit set for each desired
attribute; see Section 5.2.3.)

7-3 PTDOS

Level 1 errors: PTDEFS name: Error codes:

HEX DEC
FILE DOES NOT EXIST ERNEX 1 1
FILE IS PROTECTED ERPRO 4 4

No level 2 errors

CHANGE NAME CHNOP 10 @AH
PURPOSE: Change the name of a file
REGISTERS ON ENTRY:

DE points to the current file name
HL points to the proposed file name

PROCEDURE: The directory is searched on the unit specified by the
file name to ensure that the new name is not currently in use. The
standard name resolution rules apply, and both names must resolve to
the same unit. The file to be renamed must exist and must not be
protected against a change in its name.

The new name is substituted for the o0ld one, and the name change is
recorded in the directory.

Level 1 errors: PTDEFS name: Error codes:
HEX DEC
FILE DOES NOT EXIST ERNEX 1 1
FILE ALREADY EXISTS ERAEX 2 2
FILE PROTECTED ERPRO 4 4
UNIT CONFLICT ERUCN 13 19

No level 2 errors

7-4 PTDOS

s

CHANGE TYPE CHTOP 8 8H
PURPOSE: Change the type of a file.
REGISTERS ON ENTRY:

DE points to the file name
H contains the new type

PROCEDURE: The directory is searched on the unit specified in the

file name. If the file exists and is not protected against a change
in its type (see Section 5.2.3), the new type is substituted for the
old one, and the change is recorded in the directory on the diskette.

Level 1 errors: PTDEFS name: Error codes:
HEX DEC

FILE DOES NOT EXIST ERNEX 1 1

FILE PROTECTED ERAEX 4 4

No level 2 errors

CLOSE CLOOP 7 7H

PURPOSE: Terminate processing of a file and release resources
assocliated with access to the file.

REGISTERS ON ENTRY:
A contains the file number assigned to the file when it was opened.
PROCEDURE: If a change has been made in the block currently in the

buffer, the buffer is flushed to the disk. The space occupied by the
buffer is released, and the file number is freed for reuse.

Level 1 errors: PTDEFS name: Error codes:
HEX DEC
ILLEGAL FILE NUMBER ERIFI 32 50

No levél 2 errors

NOTES:

Remember that some files cannot be closed. (The number of such files
is determined by the GLPRM parameter in the System Global Area.) An

attempt to close one of the permanently open files has no effect and
generates no error.

7-5 PTDOS

CLOSE MULTIPLE FILES CAOP 18 12H
PURPOSE: Close a group of files.
REGISTERS ON ENTRY:

A contains 255 if all open files are to be closed (except the

permanently open files mentioned in the CLOSE notes). Otherwise,
A contains the number of the unit on which all files are to
be closed.

PROCEDURE:

A CLOSE operation is performed for each file in the category
determined by the value in register A. Device files are not closed
unless that value is 255. Because there is no check on the value in
register A, an attempt to close files on a nonexistent unit will have
no effect.

No level 1 or 2 errors

CONTROL/STATUS CTLOP 9 13H
PURPOSE: Allow non-standard operations to be performed on a device.
REGISTERS ON ENTRY:

A contains the number of the device file.

B, DE, and HL contain parameters that are passed to the device
driver.

PROCEDURE:

The Control/Status entry to the device driver is taken. The values in
registers other than A are recognized by the specified driver, and the
driver responds accordingly. Values may be returned to the calling
program in registers A, DE, and HL.

Level 1 errors: PTDEFS name: Error codes:
HEX DEC

ILLEGAL DRIVER ACCESS ERIDA 16 22

ILLEGAL FILE NUMBER ERIFI 32 50

errors produced by device driver

NOTES :

Section 9 of this manual contains detailed information about the
structure of device drivers; it also outlines recommended conventions,
operation codes, and error returns.

7-6 PTDOS

i
H

N
i

I

.

5

CREATE CREOP @ g4
PURPOSE: C(Create a new file.
REGISTERS ON ENTRY:

DE points to a block that has the format:

#Bytes Description

1 file type

2 block size

1 protection attributes
up to 10 file name

PROCEDURE:

The directory is searched on the unit specified in the file name. No
file with the specified name may exist on the diskette, and the
directory must have room for the new entry. A file identification
number (File ID) is assigned, the file is entered in the directory,
and one disk block is allocated to the new file.

Level 1 errors: PTDEFS name: Error codes:
HEX DEC
FILE ALREADY EXISTS ERAEX 2 2
ILLEGAL NAME ERINM 2D 13
ILLEGAL CHARACTER IN UNIT ERICU QE 14
DISK FULL ERDFL 1D 29
DIRECTORY FULL ERDIR 1E 39
SYSTEM WRITE-LOCKED ERLOC 28 40

Level 0 errors:

NO FILE ID'S ERNID 1C 28

No level 2 errors
NOTES :

File type, protection attributes, and block size are discussed in
Section 5.

No file will be created if there is an error return.

7-17 PTDOS

DELIMITED READ DRDOP 21 15H
DELIMITED WRITE DWROP 22 16H

PURPOSE: Transfer data exactly as in READ and WRITE (see below) but
terminate the transfer if a specified character is encountered.

REGISTERS ON ENTRY:

A contains the number of the file.

BC contains the maximum number of bytes to be transferred.

DE contains the memory address from or to which the bytes are
to be transferred.

L contains the delimiter.

PROCEDURE:

These operations are like READ and WRITE, with one added feature: it
is possible to specify a character that, if encountered, will cause
the READ or WRITE to be discontinued. Thus, the transfer of bytes will
stop if 1) the count in BC reaches zero, 2) the end of the file is
encountered, or 3) the character passed in register L is encountered.
In the third case, the delimiter is the last byte to be transferred,
and control returns to the normal return point with the registers
altered as in READ and WRITE.

NOTES:

Error conditions and notes are identical to those for READ and WRITE.

DELIMITED SPACE DSPOP 23 17H

PURPOSE: Move the file cursor just beyond a specified character.
REGISTERS ON ENTRY:

A contains the file number.

BC contains the maximum distance that the cursor should be moved.

D specifies the type of cursor movement.
L contains the delimiter.

7-8 PTDOS

PROCEDURE:

If a change has been made in the block that is in the buffer and the
cursor is moved to another block, the buffer is flushed to the

diskette. The cursor is moved in the direction specified by the value
in the D register.

The following values of D are legal:
D=8 Rewind (as in SPACE)
D=~1 Space to end of file (as in SPACE)

D<128 but not zero (typically, D = 1)

Space forward a maximum of BC bytes. This procedure is
similar to SPACE, except that spacing discontinues not
only if BC = @ or the end of the file is reached, but also
if the delimiting character supplied in L is encountered.
If the delimiter is encountered, the cursor will point to
the byte following the delimiter. The registers are
updated, as in SPACE.

D>127, but not -1 (typically, D = 128)
Space backwards a maximum of BC bytes. The file cursor
is moved toward the beginning of the file, as in SPACE,
except that spacing discontinues not only if BC = @ or if
the beginning of the file is reached, but also if the
delimiting character supplied in L is encountered. If the
delimiter is encountered, the cursor will be left pointing
to the byte following the delimiter. The registers are
updated, as in SPACE.

Errors are identical to those for SPACE.

ENDFILE EOFOP 6 6H

PURPOSE: The current position of the file cursor becomes the end of
the file, and all subsequent data are lost.

REGISTERS ON ENTRY:
A contains the file number.

PROCEDURE:

The file must not be write-protected. The End-File entry to the
appropriate driver is taken. If the file to be endfiled is a disk
file, the current block (with the new EOF) is written to the

7-9 PTDOS

diskette, and any subsequent blocks are released. If the file has an
index block for random access, that index is updated, i.e., the system
automatically performs a RANDOM operation. The cursor is left
pointing one position beyond the last byte of data.

Level 1 errors: PTDEFS name: Error codes
HEX DEC
ILLEGAL FILE NUMBER ERIFI 32 50
PROTECTED FILE ERPRO 4 4
FILE OPEN ERMOP 6 6
NO SPACE FOR BUFFER ERMOV 1B 27
ILLEGAL FILE NUMBER ERIFI 32 58

No level 2 errors

NOTES:

Level # (very serious) errors that occur during this operation can
result in the loss of some disk space formerly used by the file. To
recover the space (but not the data it contained), make a copy of the
file, KILL the original, and run the RECOVER program described in
Section 2.2.

This operation cannot be performed on a file that is multiply open.

FINFO INFOP 11 ?BH
PURPOSE: Provide information about a file.
REGISTERS ON ENTRY:

DE points to the file name
HL points to the area of memory that will receive the information
about the specified file.

PROCEDURE:

The directory is searched on the unit specified in the file name. If

the file exists and does not have the information-protect attribute,

the information is stored at the address in HL, as illustrated below.
O RETUL 1V 2 _ ,

On return from the FINFO operation, the system will have stored the

following information beginning at the address to which the HL

register pair points at the time of the call.

~
I

19 PTDOS

Bytes Description Notes

H L mm = D e e
2 file 1ID,
2 pointer to index block, sector value is 0 if no
index block
1) " n n t r a C k
2 pointer to first block of file, sector
n n n " n n t r a C k
2 number of blocks in file
1 reserved for future use
1 open flag value of 1 if file
is open; else 0
1 reserved for future use
1 file type
2 block size
1 protection attributes
8 file name zero-filled on right
1 @
Level 1 errors: PTDEFS name: Error codes:
HEX DEC
MEMORY PROTECT ERSMP 12 18

Level 2 errors:

FILE DOES NOT EXIST ERNEX 1 1

KILL KILOP 2 2H

PURPOSE: Destroy a file and recover disk space used by the file.
REGISTERS ON ENTRY:

DE points to the name of the file to be killed.

PROCEDURE:

The directory is searched on the unit specified in the file name. 1In
order to be KILLed, the file must exist and must not be open or have
the kill-protect attribute. A buffer with length equal to the block
size of the file is allocated in the system buffer area. The
directory entry for the file is removed, and the diskette space

occupied by the file is released for other use. Finally, the buffer
is released.

7-11 PTDOS

Level 1 errors: PTDEFS name: Error codes:

/ HEX DEC
FILE DOES NOT EXIST ERNEX 1 1

\FILE PROTECTED ERPRO 4 4

| FILE ALREADY OPEN ERMOP 6 6
NO SPACE FOR BUFFER ERMOV 1B 27

No level 2 errors

NOTES:

Level @ (very serious) errors may result in the loss of the diskette
space occupied by the file. Make a copy of the file, KILL the
original, and run the RECOVER program (see Section 2.2) to reclaim the
lost space.

OPEN OPEOP 1 1H

PURPOSE: Create a data access path between the file and the calling
program.

REGISTERS ON ENTRY:

DE points to the name of the file.
HL contains one of the buffer options:

-1 means dynamic buffering
@ means static buffering
other is the beginning address for a user buffer

PROCEDURE:

The specified file must exist in the directory on the unit specified
in the file name. 1If a static system buffer is selected, that is, if
HL = 0, a buffer is allocated in the system-managed buffer area. If a
user buffer is specified, that is, if the value in HL is neither @ nor
-1, that buffer must not overlap the system in any way, or an error is
generated. Addresses below GLPRO (user memory protect) are protected
likewise.

If the named file is a device file (type = 255), the procedure is as
follows:

1) The file is read; its contents are interpreted as an image
file and loaded into memory. Only the first segment is
loaded, and the starting address, if there is one, is

ignored. The buffer address or option in HL is used for
this 1load.

7-12 PTDOS

2) The buffer is released and a new one whose size is specified

in the driver table (see Section 9) is allocated as

described above.

3) The Initialize entry to the driver is called.

4) Prior to return, registers DE are set equal to the size

of the driver just loaded.
address at which the driver was loaded.

It is recommended that dynamic buffering be avoided when opening

device file.

Whether the file is a disk or device file,

point to the first byte of the file, and control returns to the

Registers HL are set to the

the file cursor is set to

calling program with the file number in register A and the file type

in register B.

Level 1 errors:

/

JFILE DOES NOT EXIST ERNEX
BAD DEVICE FILE ERZBC
ILLEGAL BUFFER ADDRESS ERIBF

JILLEGAL NAME ERINM
MEMORY PROTECT ERSMP

~ TOO MANY FILES OPEN ERTOP

| NO SPACE FOR BUFFER ERMOV

No level 2 errors

NOTES:

If a file is opened more than once,
its openers; it may be extended only by the first opener.

Section 5.6 contains a detailed description of file access and

buffering.

PTDEFS name:

Error codes:
HEX

1

9
gB
D
12
1A
1B

DEC

1

9
11
13
18
26
27

it may not be shortened by any of

PTDOS

RANDOM RNDOP 17 11H

PURPOSE: Create or update the index of a random file.
REGISTERS ON ENTRY:

A contains the file number.

PROCEDURE:

This call is legal only for disk files. The current buffer is written
out if a change was made in its contents. A 256-byte index block is
allocated and attached to the file, if the file did not already have
one. The file is rewound and then read sequentially; during this
read, an index is constructed for no more than the first 128 blocks of
the file. (Thus, no file may be accessed randomly beyond its 128th
block.) 1If the return is normal, the cursor points one position
beyond the last byte of the file, i.e., to the end of the file. The
index block is written out, and its address is recorded in the
directory entry for the file.

Level 1 errors: PTDEFS name: Error codes:
HEX DEC

FILE DEVICE TYPE ERRDV 8 8

DISK FULL ERDFL 1D 29

NO SPACE FOR BUFFER ERMOV 1B 27

ILLEGAL FILE NUMBER ERIFI 32 50

No level 2 errors

7-14 PTDOS

f

READ RBLOP 3 3H
WRITE WBLOP 4 4H

PURPOSE: Transfer data between a file and a selected area of memory.

REGISTERS ON ENTRY:

A contains the file number.
BC contains the number of bytes to be transferred.
DE contains the address to or from which data are to be transferred.

PROCEDURE:

The specified file may not have attributes that protect it against the
operation to be performed, i.e., reading or writing. A read may not
overwrite the system or user-protected areas. The transfer of data
begins at the current cursor position. As data are transferred, the
cursor is advanced through the file; registers DE are incremented, and
registers BC decremented, for each byte transferred. At the end of
the operation, DE will point one position beyond the last byte
transferred, and BC will have been decremented by the number of bytes
transferred (that is, BC will contain a value of zero if the return is
normal.) Buffers are emptied or filled as the transfer progresses.

The transfer is terminated if BC reaches zero, if a serious error
occurs, or if the end of the file is reached (in the case of READ).
The only normal return is that in which BC has reached zero. If BC is
equal to zero upon entry to READ or WRITE, no data are transferred.

Writing beyond the previous end of a file may cause additional blocks
of storage to be allocated and added to the file, unless one of its
attributes is Disk Allocation Protect. Also, if the file is multiply
open, only the first opener can extend the file. (None can shorten
the file.)

Level 1 errors: PTDEFS name: Error codes:
HEX DEC
FILE PROTECTED ERPRO 4 4
MEMORY PROTECT ERSMP 12 18
DISK FULL ERDFL 1D 29
ILLEGAL FILE NUMBER ERIFI 32 50

errors produced by device driver

Level 2 errors:

END OF FILE EREOF 18 24

7-15 PTDOS

NOTES:

Values are returned in the registers as described above, regardless of
errors. Some level § (very serious) errors (e.g., DISK FULL) will
prevent the last buffer from being transferred successfully; data may
be lost as a result.

RESET SREOP and RESOP 20 14H

PURPOSE: Return to the system, but less drastically than if ABORT
were called.

REGISTERS ON ENTRY:
No values are required.
PROCEDURE:

The system stack is made current, and files #0 and #1 are made the CI
input and output files, respectively. The buffer for file ##0 is
cleared, so that no partial or complete commands will be executed when
the Command Interpreter gains control. The prompt is reset to
asterisk (*), the system utility file is made current, and the CI
return trap (GLTRP) is disabled. Error traps (GLERH, GLERM and GLERS)
and interrupt routine addresses (GLBD1l, GLBD2) are set to their
standard values, and control is passed to the CI. No error messages
are printed, and no files are closed.

There are no error returns from this call.

NOTES: Section 3.3.2 contains more detailed information.

RETURN RETOP 13 @DH

PURPOSE: Return control to the CI, enabling it to continue normal
command processing.

REGISTERS ON ENTRY:

No values are required.

7-16 PTDOS

PROCEDURE:

The system stack is made current, and the error trap addresses (GLERH,
GLERM, and GLERS) are set to their standard values. The interrupt
routine addresses (GLBD1l, GLBD2) are set to disable interrupt
handling. The CI return trap address (GLTRP) is examined; if it is
not equal to -1, control is transferred to the address given, after
GLTRP is reset to -1. If GLTRP is equal to -1, the CI gains control.
In either case, control will not return to the calling program.

There are no error returns from this call.

NOTES: See Section 3 for a more detailed discussion.

RETURN AND SET TRAP RTROP 24 18H

PURPOSE: Return control to the CI and execute the next command as in
RETURN, but set the CI return trap word to the specified address, so
that the next RETURN operation will return to that address, rather
than to the CI.

REGISTERS ON ENTRY:

HL contains the address of the return trap.
If HL = -1, returns will not be trapped.

PROCEDURE:

The procedure for this call is identical to that for RETURN (see
above), except that whereas RETURN sets GLTRP to -1 before
transferring control to the current trap address, RETURN AND SET TRAP
sets that parameter to the value passed in the HL register pair.

NOTES: This call makes it possible for a program to execute commands.
The commands used must not alter the calling program, i.e., they must
not use memory used by the caller.

There are no returns from this call, except indirectly through the CI
return trap address.

7-17 PTDOS

SEEK SEKOP 16 10H

PURPOSE: Position a file cursor to a specified byte or the beginning
of a specified block of a file.

REGISTERS ON ENTRY:

A contains the file number. '
B contains the positioning option (byte if zero, block if not zero)
HL has the number of the byte or block at which the cursor

will be positioned. (H = @ for block positioning.)

PROCEDURE:

The current block is written to the disk if 1) a write operation has
changed the current block since it was read, and 2) the SEEK
operation entails moving to a new block. Then the SEEK entry to the
appropriate device driver is taken.

If the file is a disk file, SEEK consults the index block and locates
the block containing the desired byte. That block is read into the
buffer for the file, and the cursor is set to point to the desired
byte. (This byte must be within the bounds of the file; otherwise, an
error occurs.) The 16-bit length of HL restricts positioning of the
cursor to the first 65536 bytes of the file. Block positioning may be
used to access bytes beyond byte 65535.

The SEEK operation cannot be performed on a file that does not have an
index block (created by RANDOM). The CONTROL/STATUS operation may be
used to load the index into user memory; this procedure makes random
access more efficient by eliminating the need for an index load
operation each time a SEEK is performed. If the index is loaded into
memory with CONTROL/STATUS, SEEK will not need to access the disk more
than once in order to load the desired block. (If the desired block
is already in the buffer, SEEK will not have to access the disk at
all.)

Level 1 errors: PTDEFS name: Error codes:
HEX DEC
FILE NOT RANDOM ERRAC 7 7
ADDRESS OUT OF RANGE ERSEK 19 25
NO SPACE FOR BUFFER ERMOV 1B 27
ILLEGAL FILE NUMBER ERIFI 32 50

errors produced by device driver

No level 2 errors

NOTES: If the ADDRESS OUT OF RANGE error is returned, the file cursor

is left at an undefined position. Other errors leave the cursor
unchanged.

7-18 PTDOS

E
i

SET UNIT

PURPOSE:
resoluti

SUNOP 12 @CH

Select a particular unit as the default unit (see name
on in the introduction to this section).

REGISTERS ON ENTRY:

A contains the number of the new default unit.

PROCEDURE:

A must be in the range # to GLMXU-1 (GLMXU is a parameter in the

System G
default
Thereaft

lobal Area). If the value supplied in A is legal, the new
unit number is put into GLUNI in the System Global Area.
er, any file named without a unit specifier will be assumed to

exist on the new default unit.

Level 1

ILLEGAL

No level

SPACE S

PURPOSE:

errors: PTDEFS name: Error codes:
HEX DEC
UNIT ERIUN gF 15
2 errors
PAOP 5 5H

Move the file cursor relative to its current position.

REGISTERS ON ENTRY:

A conta
BC conta
D speci

ins the file number.

ins the distance that the cursor is to be moved.
fies the type of cursor movement.

PROCEDURE:

The curr
the curr
to anoth
register
register

The poss

D=0

ent block is written out if 1) a WRITE operation has changed
ent block since it was read and 2) the cursor is being moved
er block. Then the cursor is moved; the value in the D
dictates in which direction the cursor is to move, and the BC
pair specifies how far.

ible values for register "D" are:

The file is "rewound". BC is ignored. The
Rewind entry into the device driver associated
with the file is taken. For disk files, this
causes the first block of the file to be read
into the buffer and the file cursor to be set
to point to the first byte of the file.

7-19 PTDOS

D=-1 The cursor is set to point to the End-of-File (EOF).
BC is ignored. The Read Next Block entry into the
device driver is taken repeatedly until an EOF condition
is encountered. The file cursor is set to point
past the last byte of data in the file.

D<128 but not # (typically, D = 1). Space forward BC
bytes. The cursor is advanced toward the EOF
by BC bytes, if possible. The buffer is loaded
with the next file block when necessary. As the
movement proceeds, BC is decremented by one for each
byte passed. The movement of the cursor terminates
when BC = # (normal return), when an EOF is
encountered, or when some more sSerious error occurs.

D>127 but not -1 (typically, D = 128). Space backward
BC bytes (toward the beginning of the file). Buffers are
loaded using the Read-Last-Block call to the driver
The movement of the cursor terminates when BC = # (normal
return), the beginning of the file is reached, or a
serious error occurs.

Level 1 errors: PTDEFS name: Error codes:
HEX DEC
ILLEGAL DRIVER ACCESS ERIDA 16 22
NO SPACE FOR BUFFER ERMOV 1B 27
ILLEGAL FILE NUMBER ERIFI 32 50

errors produced by device

Level 2 errors:

END OF FILE EREOF 18 24

7-20 PTDOS

o

SECTION 8

SYSTEM UTILITIES

8.1 INTRODUCTION

The PTDOS System Diskette contains a utility file named SUTIL. This
file is permanently open; it is file #2. When PTDOS is bootstrapped,
the system global parameter GLUTF is set to 2, making SUTIL the
current utility file (see Section 6). It is possible for the user to
reset GLUTF to make some other utility file current, but when errors
occur or when RESET or ABORT system calls are made, the system resets
GLUTF to make SUTIL the current utility file again. This is done
because SUTIL provides the mechanism used by the system to generate
error messages. SUTIL contains four modules: the Explain Error
Utility, the two data sets containing the error messages, and the File
Catalog Utility.

8.2 EXPLAIN ERROR UTILITY (UXOP)

Module @, given the name UXOP in PTDEFS, is a program that displays

error messages on the system console. It is used by the system to

explain errors and can also be invoked by a user program. Modules 1

and 2 contain the text of the messages. E

UXOP has the following calling sequence:

MVI A,<control word>

CALL UTIL

DB UXOP (equated to @ in PTDEFS)
JMP <error routine>

DB <operation code>

DB <error code>

<optional normal return point>

On entry, register A contains a control word that has the following
format:

Bit 7: @ call RESET after message
1 return to calling routine's normal return point
Bit 3-6: X ignored
Bit 2: @ CRLF after message
1 no CRLF after message
Bit 1: # no "CALLED FROM" message on second line
1 output "CALLED FROM" message on second line
Bit 0: @ HL points to a string (terminated by a zero byte)
to be output as a second line
1 HL contains a 16-bit quantity to be output on the
second line
X ignored if HL=-1 (FFFFH)

8-1 PTDOS

The first line of an error message produced by UXOP has the format:
<operation> ERROR: <message>

The operation code following the UTIL call determines what operation
name will appear in the message. The codes recognized are those
corresponding to PTDOS system calls (see Section 7); if the operation
code is -1 (FFFFH), no operation name will be output.

The error code determines what message will follow the colon; if the
error code is -1 (FFFFH), nothing will be output following the colon.
Error codes from 1 to 29H and 39H may be returned from system calls.
The messages with codes between 2AH and 38H are provided for use by
user programs; some of them are used by system commands. All of the
error codes are assigned symbolic names in PTDEFS. The following
table lists the symbolic names and messages corresponding to the error
codes recognized by UXOP. Their standard meanings are discussed in
Section 10.

8-2 PTDOS

NAME ERROR CODE MESSAGE
Hex Dec

ERNEX 1 1 FILE DOES NOT EXIST
ERAEX 2 2 FILE ALREADY EXISTS
ERUFN 3 3 FILE NOT OPEN

ERPRO 4 4 FILE PROTECTED

ERNIF 5 5 FILE NOT IMAGE TYPE
ERMOP 6 6 FILE ALREADY OPEN
ERRAC 7 7 »~FILE NOT RANDOM

ERRDV 8 8 FILE DEVICE TYPE
ERZBC 9 9 BAD DEVICE FILE

ERIOP A 10 ILLEGAL OPERATION
ERIBF B 11 ILLEGAL BUFFER ADDRESS
ERIBS C 12 ILLEGAL BLOCK SIZE
ERINM D 13 ILLEGAL NAME

ERICU E 14 ILLEGAL CHARACTER IN UNIT
ERIUN F 15 ILLEGAL UNIT

ERNTL 10 16 NAME TOO LONG

ERMEM 11 17 USER MEMORY PROTECT
ERSMP 12 18 MEMORY PROTECT

ERUCN 13 19 UNIT CONFLICT

ERIUP 14 20 ILLEGAL OPERATION
ERDRI 15 21 DRIVER ERROR

ERIDA 16 22 ILLEGAL DRIVER ACCESS
ERNCT 17 23 NON~-RESPONDING DRIVER
EREOF 18 24 END OF FILE

ERSEK 19 25 7 ADDRESS OUT OF RANGE
ERTOP 1A 26 TOO MANY FILES OPEN
ERMOV 1B 27 NO SPACE FOR BUFFER
ERNID 1C 28 NO FILE ID'S

ERDFL 1D 29 DISK FULL

ERDIR 1E 30 DIRECTORY FULL

ERBLF 1F 31 BAD IMAGE FILE

ERFSB 20 32 BAD FILE STRUCTURE
ERFIC 21 33 FILE ID CONFLICT
ERBSC 22 34 BLOCK SIZE CONFLICT
ERSCC 23 35 SECTOR CONFLICT

ERCFS 24 36 CAN'T FIND SECTOR
ERTRI 25 37 BAD DISK STRUCTURE
ERCFT 26 38 CAN'T FIND TRACK
ERRBC 27 39 READ-BACK FAILED
ERLOC 28 40 SYSTEM WRITE-LOCKED
ERXXX 29 41 CATASTROPHIC ERROR
ERSYN 2A 42 COMMAND SYNTAX ERROR
ERNAX 2B 43 EXPECTED A NAME

ERNUX 2C 44 EXPECTED A SYMBOL
ERBCX 2D 45 EXPECTED A BYTE COUNT
ERADX 2E 46 EXPECTED AN ADDRESS
ERVAX 2F 47 EXPECTED A VALUE
EROPX 30 48 EXPECTED AN OPTION PARAMETER
ERINA 31 49 ILLEGAL FILE NAME
ERIFI 32 50 ILLEGAL FILE NUMBER
ERIAD 33 51 ILLEGAL ADDRESS

ERIBC 34 52 ILLEGAL BYTE COUNT
ERIVA 35 53 ILLEGAL VALUE

ERIOS 36 54 ILLEGAL OPTION SPECIFIER
ERITY 37 55 ILLEGAL TYPE

ERIAT 38 56 ILLEGAL ATTRIBUTES

8-3 PTDOS

8.3 FILE CATALOG UTILITY (UCAT)

Segment 3, given the name UCAT in PTDEFS, is a program that can be
invoked to obtain directory information for files of a specified type
on a specified disk unit. It returns the name, length in sectors, and
protection attributes for each qualifying file in a buffer area
allocated by the calling program. For example, the BASIC CAT command,
which displays a listing of BASIC program or data files, obtains the
information to be displayed by means of a call to UCAT.

UCAT has the following calling sequence:

MVI A,<file type>

LXI H,<address of unit number/data buffer>
CALL UTIL

DB UCAT (equated to 3 in PTDEFS)
JMP <error routine>

<normal return point>

On entry, register A contains the binary file type for which
information is desired. Register pair HL points to a memory location
that contains the binary disk unit number to be searched. Immediately
following this location, a buffer area must be allocated in which the
information will be returned. The requisite length of this buffer
area is 12*NFILES+1, where NFILES is the maximum number of qualifying
files.

On return, register A contains the number of gualifying files.
Register pair HL points to the last memory location actually used in
the buffer (i.e. the terminating zero byte). The buffer contains one
12-byte entry for each qualifying file; the last entry is followed by
a zero byte to mark the end of the data. The file information entries
have the following format:

#Bytes Description
8 File Name (ASCII, filled on right with NULs)
3 Length in Sectors (decimal ASCII, leading zeros)
1 Protection Attributes (see Section 5.2.3)

8-4 PTDOS

SECTION 9

DEVICE DRIVERS

9.1 INTRODUCTION

A device driver is a program that controls a hardware device such as a
line printer, cassette tape drive, paper tape reader or punch,
magnetic tape drive, etc. PTDOS has a "device independent" I/0
system; device drivers take the form of "device files" that look to
the system exactly like disk files, with the exception that some
operations (e.g., random access operations) may not be meaningful on a
particular device.

This section describes the format of device files, so that a user may
interface special hardware to PTDOS. The standard device drivers for
the system console and CUTS format cassette tape are also discussed.

9.2 DEVICE FILE FORMAT

A device file is an image file with file type 255 (FFH, or symbolic
type 'D'.) It may have only a single segment (see Section 5.7.3).
The load address for this block is the address at which the driver
will be loaded by PTDOS when the device file is accessed. The first
25 bytes comprise a "driver table", which is the interface between
PTDOS and the driver; it contains information about the driver, and
specifies the entry point addresses for routines that implement a
standard set of device functions for the particular hardware
peripheral. The driver table is followed by the code for these
routines.

9.2.1 Driver Table Format

The driver table has the following format. Each 2-byte entry is
stored with the low-order byte first. If a particular operation is
not supported by a driver, the corresponding address in the table
should be zero. Then, if an attempt is made to perform that
operation, an ILLEGAL DRIVER ACCESS error (level 1) will be generated
by the system.

Any errors detected by the driver should be handled by calling the

ERRLP, ERRL1l, or ERRLZ system entry point with the appropriate error
code (see Section 6.4.3).

9-1 PTDOS

CONTENTS OF THE DRIVER TABLE

OFNgzgRY DESCRIPTION #BYTES KIND OF ENTRY #RETURNS
DTRB Read block 2 Address 2
DTRNB Read next block 2 Address 2
DTRLB Read last block 2 Address 2
DTWBR Write block RN 2 Address 2
DTWB Write block 2 Address 2
DTREW Rewind 2 Address 1
DTEOF Endfile 2 Address 1
DTCLO Close 2 Address 1
DTSEK Seek 2 Address 2
DTCTL Control/status 2 Address 2
DTBLK Block size 2 Data -
DTITO ITO 1 Flag -
DTINI Initialization 2 Address 1

9.2.2 Calling Sequences for Driver Routines

The calling sequences for the various driver routines are described
below. In the descriptions:

Entry: refers to the values to be expected in the registers
when the particular driver routine is entered.

Returnl: refers to a return performed by a RET instruction (or
equivalent).

Return2: refers to a return performed by first incrementing the

address on the top of the stack three times, and then
then performing a RET instruction (or equivalent).

9-2 PTDOS

NAME OF ROUTINE

DTRB

DTRNB

DTRLB

DTWBR

DTWB

DTREW

FUNCTION AND CALLING SEQUENCE

Read Block

Used for loading buffers in cases other than those
listed below (DTRNB, DTRLB).

Entry: HL = buffer address (data destination)
DE = maximum number of bytes to read
Returnl: EOF encountered

Return2: Normal return

HL = number of bytes read.

Read Next Block
Used by the READ and RB operations.

Calling sequence is identical to DTRB.

Read Last Block

Used by the SPACE operation to read the previous
block while spacing backwards.

Calling sequence is identical to DTRB except that
Returnl is taken if the beginning of the file (BOF)
is encountered.

Write Block:; Read Next Block

Used by the WRITE and WB operations. A sequential
device driver should return a zero in HL.

Entry: HL = buffer address (data source)
DE = number of bytes to transfer
Returnl: EOF encountered reading next block
Return2: Normal return

HL = number of bytes read

Write Block

Entry: HL buffer address (data source)

DE number of bytes to transfer
Returnl: EOF encountered (e.g., end of tape)
Return2: Normal return

Rewind

Used by the SPACE operation. A sequential device
device driver should return a zero in HL.

Entry: HL = buffer address
DE = buffer size
Returnl: Normal return
HL = number of bytes read

9-3 PTDOS

DTEOF

DTCLO

DTSEK

DTCTL

Endfile
Used by the ENDFILE operation.
Entry: HL = buffer address (data source)

DE buffer size
Returnl: Normal return

Close

Used by the CLOSE operation. Once the driver has
been closed, it must be reopened before further
use.

Entry: No parameters
Returnl: Normal return

Seek

Used by the SEEK operation.

Entry: HL = buffer address (data destination)
A = value in B when SEEK call was made
DE = buffer size

The 16-bit seek address is passed on
the stack immediately under the return
address. The following code must be
executed to remove it from the stack
before a return is made (even if, for
some reason, it is not needed by the
driver routine).

POP H
XTHL seek address is now in HL

Returnl: Seek address out of range
Return2: Normal return
HL = number of bytes loaded into buffer
DE = displacement into the block where
the file cursor is positioned

Driver Control/Status Reguest

Used by the CONTROL/STATUS operation.

Entry: A = value in B when CONTROL/STATUS system
call was made
B = operation code (see list below)

DE = value when CONTRCL/STATUS system
call was made

HL = value when CONTROL/STATUS system
call was made

Returnl: Normal return
A, DE, and HL are returned to the program
that made the CONTROL/STATUS system call.

9-4 PTDOS

If the driver does not support a requested control/status operation,
it should call the ERRL2 system entry point with an error code of 17H
(ERNCT) .

The operation codes for control/status requests are defined as
follows:

CODE OPERATION

%] Return Driver Status

Returnl: A = protection attributes
D = device characteristics, format is

Bit Meaning

Echoes input

Interactive

Handles tab characters

Tab stops may be set

Handles ASCII formfeed

Can do absolute tabs

Can be interrupt driven
Supports set prompt operation

SN WdUOITO U

1 Forms Control

The function to be performed is determined by the value
value in register E, as follows:

Value Function
g Do a formfeed.
1 Set tab stop at current position.
2 Clear tab stop at current position.
3 Clear all tab stops.
4 Absolute tab to position in HL.

2 Set Prompt

Input prompt is set to the string to which register pair
HL points. The string must be terminated by a NUL (@0H).

3 Reset Device

4 Load Random Index
This operation is meaningful only for disk files. The index
block is loaded at the address in HL. Calling subsequently
with HL = -1 (FFFFH) informs the driver that the index is
no longer in memory.

5 Turn On Echo

6 Turn Off Echo

9-5 PTDOS

10

11-31

32-255

Special Status Read

Returnl: A
DE

device ready status (# if not ready)

number of bytes of free space in the driver's
buffer (for disk files, free space in the
PTDOS buffer)

Set device-not-ready trap address

Entry: HL = address of routine to be called if device
is not ready (@ clears a previously set trap
address)

A trap routine runs on the driver's stack
unless it switches to its own while

executing; return to the driver is effected
with a RET instruction or eguivalent. A

trap routine may not make any system calls
except to CONIN, CONOUT, and CONTST.

Interrupts are disabled before the trap routine
is entered.

The disk driver behaves in the following way
when a drive is found not to be ready. 1If
no trap address has been set, the disk driver
displays the message DRIVE NOT READY on the
system console and waits for a key to be
typed. If the key was a carriage return,
another attempt will be made to access the
disk; if the key was a mode select, the
Command Interpreter will be re-—entered.

If a trap address has been set, the trap
routine is called. The zero flag is cleared
upon return from the trap routine, that
routine will be called again; if the zero
flag is set, the driver will call the ERRL1
system entry point with an error code of 39H
(ERRED). The Command Interpreter, whenever
it is re-entered, clears the disk driver
trap address.

Refresh buffer

The driver's buffer (the PTDOS buffer for the disk driver)
is loaded from the device.

Refresh device

The data in the driver's buffer (the PTDOS buffer for the
disk driver) is written to the device.

Reserved for future system definition

User—-definable

9-6 PTDOS

DTBLK Block Size

This is the block size for the device or the maximum block
size for a device whose block size is variable (e.g., the
the console device).

DTITO Immediate Transfer Option

If this entry is not zero, the buffer will be written to
the device at the conclusion of all WRITE and WB operations.

DTINI Open-time Initialization
Used by the OPEN operation.

Entry: No parameters
Returnl: Normal return

5.3 BUILDING A DEVICE FILE
A device file may be created by the following procedure:

1) Write the driver table and assembly language program to implement
the desired operations. The load address of the driver (set with an
ORG pseudo-operation) must be chosen carefully, so that it will not
conflict with any other drivers that may be used simultaneously. A
start address (set with an XEQ pseudo-operation) is unnecessary and
will be ignored if present.

2) Assemble the driver with ASSM.

3) Compress the resulting image file into a single logical block with
EXTRACT. 1If the device file consists of more than one logical block,
none except the first will be loaded when the device file is

accessed.

4) Set the image file type to "D." with RETYPE.

5) Set the file protection attributes of the file with REATR.
Normally, it is desirable to set Kill and Name protection. Remember
that Read and Write protection apply to the operations that are
allowed on the hardware device; Read and Write protection should be
set only for a write-only or read-only device, respectively.
Information protection prevents the device file from appearing in a
FILES listing unless the command includes the S=-1I argument; the GET
and SAVE commands will also require this argument if they are to
operate on information-protected files.

9.4 CONSOLE DRIVER
9.4.1 Device File Access
The system console is treated as two permanently open device files;

console input is read from file #6 and console output is directed to
file #1.

9-7 PTDOS

An input line, terminated by a carriage return, constitutes a data
block for file #0; its length may range from @ to 80 characters, not
including the CR. Each line is buffered by the driver as it is typed
and is not returned by the driver until it is terminated by the CR.
Until that time, single characters or the entire line may be deleted
by typing the following special characters:

DEL Delete one character
CTRL-X Delete entire 1line; ! CRLF is echoed

If a CTRL-C is entered as the first character of a line, it is
interpreted as an end of file. The program reading data from the
console must respond to this condition as it sees fit. For example,
the Command Interpreter makes a CLOSE ALL system call when it
encounters an EOF on the console input file.

The console input driver supports two CONTROL/STATUS operations:
STATUS READ (B=#@) and SET PROMPT (B=2). The console output driver
supports the STATUS READ operation.

Some additional features of the console driver are controlled by three
parameters in the system global area:

GLUPS 1If this parameter is set, lower case letters are
upshifted on both input and output.

GLNCT The number of NULs to follow a LF on output.

GLBIO If this parameter is set, GLUPS and GLNCT are ignored
and bit 7 of an input character is not masked to
zero. This setting makes possible binary I/0
through the console device, e.g., to and from a paper
tape reader and punch.

9.4.2 Single Character Access

A character-at-a-time interface to the console driver is provided by
the CONIN, CONTST, and CONOUT system entry points (see Section
6.4.4).

Console input and output through these entry points is affected by the
global area parameters GLUPS, GLNCT, and GLBIO exactly as described
above. Two additional system global parameters are useful for
character—-at-a-time console input:

GLBYT Holds the last character read.

GLFLG If the value of this parameter is not zero, the next
character read will come from GLBYT rather than the
console input device.

These parameters make it possible to put a character back into the
input stream after it has been examined; the last character read will
be read again if GLFLG is set to a non-zero value. Any other
character may be forced into the input stream if it is put into GLBYT
and GLFLG is set. Once the character in GLBYT has been used, GLFLG is
reset to @ by the systenmn.

9-8 PTDOS

9.4.3 Hardware Interface

The interface between the console device driver and the hardware
devices used for console input and output is accomplished by means of
very simple routines that test for a waiting character, input a
character, and output a character. PTDOS includes a set of these
routines for keyboard input and VDM output, and for serial or parallel
port input and output. When the system is initialized, the set of
these routines appropriate for the hardware is chosen automatically.

The console device driver accesses the hardware interface routines
through three addresses in the system global area:

GLTCH pointer to the test for waiting character routine;
GLRCH pointer to the read character routine;
GLWCH pointer to the write character routine.

If the system is being run on either a Sol Terminal Computer (with the
SOLOS monitor program) or some other machine with the CUTER monitor
program resident at location C@00H, the global area pointers are set
in accordance with the current SOLOS/CUTER pseudo-port:

Pseudo-Port GLRCH,GLTCH GLWCH
] keyboard video display
1,3 serial port serial port
2 parallel port parallel port

The serial or parallel port routines, if used, are configured to match
the hardware port assignments assumed by SOLOS or CUTER. The CUTER
hardware port assignments are described in the SOLOS/CUTER User's
Manual.

If neither SOLOS nor CUTER is found at location C@@@H, the CUTER
serial port assignments are used:

PORT DESCRIPTION
] status port
Bit Meaning
7 ready to transmit data, active high

6 received data available, active high
-5 unused

1 data port

If non-standard hardware requires special interface routines, the
pointers may be changed to the entry point addresses of those
routines. Initially, the changes may be made in the appropriate
system global area locations after bootstrapping; the new values of
the pointers may be incorporated permanently into the system by
changing the disk-based resident with the CONFIGR command (see
Section 3). Unless the interface routines are resident in ROM, they
must be loaded every time the system is bootstrapped. By making the
routines into one or more image files and including their names, each

9-9 PTDOS

followed by a comma, in the START.UP file (see Section 2), the user
can provide for automatic loading upon bootstrapping. (Because of the
commas following their names, the routines will be loaded but not
executed. See Section 2.)

If either GLRCH (and GLTCH) or GLWCH has been changed to point to a
user-supplied interface routine, it will not be changed again as a
result of the initialization procedure described above.

Interface routines must conform to the following specifications:

GLTCH Return: Zero flag is set if no character is
available; otherwise, zero flag is cleared.
Register A and the rest of the flags are
undefined. All other registers must be
unchanged.

GLRCH Return: Register A contains the character that
was read; if GLBIO is zero, bit 7 must be
masked to zero. The flag register is
undefined. All other registers must be
unchanged.

GLWCH Entry: Register B contains the character to be
output.

Return: Registers A and B contain the character
that was output. The flag register is
undefined. All other registers must be
unchanged.

9.5 CASSETTE TAPE DRIVER

A device driver for CUTS format cassette tape is included on the PTDOS
system diskette. It enables cassette tape units interfaced to the

Sol's audio cassette interface or to a Processor Technology CUTS board
to be accessed as PTDOS files.

There are three files on the diskette:

CTAPE.A assembly language source code;

CTAPE1 device file for tape unit 1, loads at 7000H;

CTAPE2 device file for tape unit 2, loads at 732BH.
The load addresses may be changed if desired by rebuilding CTAPEl
and/or CTAPEZ2 from the source code on CTAPE.A, following the procedure
outlined in Section 9.3.
A PTDOS cassette file, as implemented by the CTAPE driver, is a
SOLOS/CUTER multiple block file with a block length of 46@H, file name
'"PTFIL', and a non-executable file type of 'D'. The load address
field in the block headers is used for a block sequence count. (See

the SOLOS/CUTER User's Manual for a detailed description of the
format.)

9-190 PTDOS

The CTAPE driver supports the following operations:

DTRB reads a block from tape.

D TRN B " n " n "

DTWB writes a block to tape.

DTWBR L1} n " 1" n

DTREW turns on tape unit motor, displays rewind message.

DTEOF writes an EOF block to tape.

DTCLO writes an EOF block to tape if one has not yet

been written.

DTSEK spaces tape past next EOF block.

DTINI simply returns, no initialization required.
9.6 NULL DEVICE FILE

There is a device file named NULL included on the PTDOS system
diskette. It is intended to be used as a data sink in case a program
requires an output file, but the user wishes to discard the output

produced.

The NULL device driver supports all operations, but takes no action
for any of the them. It loads at address 8000H.

9-11 PTDOS

SECTION 14

ERROR MESSAGES

PTDOS displays an error message if an error occurs during the
execution of a system command or system call; a user program can

display one of the same messages by calling the Explain Error Utility
(UXCP) with the appropriate error code.

Sections 6 and 8 of this manual contain detailed information about
error handling, the PTDOS Utility Handler, and the Explain Error
Utility. This section is devoted to an explanation of the individual
error messages. The messages are listed in alphabetical order; each
message is followed by its decimal error code, its hexadecimal error
code, an explanation of what might have caused the error, and some
suggestions as to how the problem might be remedied. (Section 8
includes a list of the messages ordered by their error codes.)

If an error occurs during a system call, the code corresponding to
that error is returned in the A register. THE ERRORS NUMBERED 2A
THROUGH 38 IN THE LIST BELOW WILL NEVER OCCUR DURING A SYSTEM CALL,
but the corresponding error messages are displayed by some PTDOS
Commands. Any of the messages except DRIVE NOT READY may be displayed
by a user program if a call is made to the Explain Error Utility.

DEALING WITH HARDWARE-RELATED ERRORS

The messages numbered 20H through 27H in the list below are normally
associated with hardware problems, for example, a scratch on the disk,
or faulty alignment of the disk drive. (In some cases, operations may
be performed on a disk in one system but not in another, because the
two disk drives are not compatible in their alignment.) Of the errors
in this set, only BLOCK SIZE CONFLICT can result from an error in a
user program. The proper course of action for dealing with any of
these errors is:

1) Try the operation again; if the problem is minor,
the second attempt might be successful. (Make a
back-up copy of your file on another disk; even if
the operation works the second time, the file on
which you have been working is suspect.)

2) If the operation fails a second time, try to make
a DISKCOPY of the disk that has given you trouble.
Sometimes the copy you make of the bad file or

files will not have the problem that the original
file had.

109-1 PTDOS

3) Use the RECOVER command described in Section 3.
ONLY USE THIS COMMAND IF YOU HAVE MADE A DISKCOPY
OF THE BAD DISK; sometimes RECOVER can destroy
information that you might otherwise be able to
retrieve.

4) Consult Section 6 of the Helios II Disk Memory
System User's Manual.

THESE ARE THE ERROR MESSAGES:

ADDRESS OUT OF RANGE 25 19H

This error arises when the SEEK command or system call is used to
position the file cursor after the end of the designated file. If you
were using the command, check your parameters. If you were making a
system call, check the B register and the HL register pair; did you
try to position the file cursor at the first byte of block 372,
instead of at byte 372 of the file? This error causes the cursor to
be left at an undefined position in the file.

BAD DEVICE FILE 9 9H

This error will occur if you try to open a device file less than 25
bytes long. (Not only the OPEN command, but also SETIN, SETOUT, COPY,
PRINT, and other commands will cause a device file to be opened.)

Make sure that you indicated the file you really wanted to open for
input or output, and that the file contains a device driver. (Section
9 of this manual describes device files and their structure.)

BAD DISK STRUCTURE 37 25H

This message indicates that the disk drive hardware is unable to read
the header of the first block of the file you are trying to access.
Follow the suggestions under "DEALING WITH HARDWARE-RELATED ERRORS,"
above.

BAD FILE STRUCTURE 32 20H

This message means that the chaining pointers of two blocks on a
diskette do not agree, that is, that the foreward chaining pointer for
a given block A points to block B, but the backward chaining pointer
for block B does not point to block A. This problem is
hardware-related; follow the suggestions under "DEALING WITH
HARDWARE-RELATED ERRORS," above.

BAD IMAGE FILE 31 1FH
The image file that you are trying to read contains fewer bytes than
you are trying to read from it. (The structure of an image file is

discussed in Section 5.5 of this manual.) Reassemble the program, if
you have a copy of its source, or obtain another copy of the program.

16-2 PTDOS

BLOCK SIZE CONFLICT 34 22H

This error can be caused by a hardware problem affecting the directory
or the named file, or by an error in the user's assembly language
program; the message indicates that the block size recorded in the
block header does not match the block size recorded in the directory
or specified in the user program. Check your program for a possible
error; otherwise, follow the suggestions under "DEALING WITH
HARDWARE-RELATED ERRORS," above.

CAN'T FIND SECTOR 36 24H

This error is caused by a hardware problem; the message indicates that
the disk drive hardware cannot find a header that identifies its
location as being on the desired sector. Follow the suggestions under
"DEALING WITH HARDWARE-RELATED ERRORS," above.

CAN'T FIND TRACK 38 26H

This error is similar to CAN'T FIND SECTOR; the disk drive hardware
cannot find a header that identifies its location as being on the
proper track. Follow the suggestions under "DEALING WITH
HARDWARE-RELATED ERRORS," above.

CATASTROPHIC ERROR 41 29H

This error message usually means that it is impossible to bootload
because something is wrong with the system diskette, or that you have
performed some unusual or nonsensical operation. Try ejecting the
diskette, inserting it again, and repeating the operation. (If the
error did not occur during an attempt to bootload, try to bootload the
system again.) If you are still unsuccessful, you should proceed very
cautiously. Try to bootload with a diskette that is not very valuable
to you or that is well backed up, and see whether a few commands work;
if there are still problems, try putting the diskette in another disk
drive unit. If you cannot operate with the other diskette, either,
consult Section 6 of the Helios Disk Memory System User's Manual.

COMMAND SYNTAX ERROR 42 2AH

Some commands cause this message to be displayed if the command has
not been entered correctly. Check the syntax of the command and enter
it again.

DIRECTORY FULL 30 1EH

This message indicates that you have exceeded the maximum number of
file names allowed in one directory. (The maximum number is 192.) 1If
you do not want to put your file on a different diskette, you must
either KILL a file that you no longer need, or concatenate two files
(by appending one to another) so that you can kill the appended file
without losing the information that it contained.

16-3 PTDOS

DISK FULL 29 1DH

You have filled up the diskette on which you are writing (with GET,
COPY, etc.). Write your information to another diskette, or KILL old
files to make more room on the full diskette. It is easy to aveoid
this error by giving the FREE? command occasionally. For example, if
you are about to develop an EDIT file, give the FREE? command and
specify the unit onto which you intend to write the new file. If you
find out there are 435 sectors left on the diskette, you know that
there is room for the new file; if there are only 10 sectors left, you
had better consider creating your file on a different diskette (or
killing some o0ld files to make more room on the diskette that is
nearly full).

DRIVE NOT READY 57 39H

This message is displayed by the driver and is not included in the
Explain Error Utility; it almost always means that you have forgotten
to insert a diskette into the drive, or that the diskette is upside
down or backwards. Push the diskette all the way in, and then strike
any key to initiate execution of the last command entered. If the
diskette appears to be inserted completely (and right-side up), but
you still get an error, push the eject button and insert the diskette
again; then strike any key other than MODE SELECT to execute the last
command. If you do not want the last command to be executed, strike
the MODE SELECT (or CTRL and @ keys) to return to command mode. (If
you choose to return to command mode, you do not need to insert the
diskette before striking MODE SELECT.) This error can also be caused
by any hardware problem that prevents a disk drive unit from reporting
to the controller that it is ready; if you suspect a hardware problem,
consult Section 6 of the Helios II Disk Memory System User's Manual.

DRIVER ERROR 21 15H

This message indicates an error return from a call to a device driver
(for example, the keyboard or video display). Make sure that the
device 1is properly connected.

END OF FILE 24 18H

This message means that you tried to access information before the
beginning or after the end of a file. For example, the message might
be displayed if you use the SPACE system call to position the cursor
after the end of the file, or the READ system call to read more bytes
than the file contains. If you were using SPACE, examine the BC
register pair and the D register; did you request that the cursor be
moved backward, instead of forward? If you were using READ, does the
BC register pair contain too large a number?

EXPECTED A BYTE COUNT 45 2DH
This error indicates that a command required a byte count parameter

and you did not supply one. Retype the command, specifying a byte
count.

1G-4 PTDOS

EXPECTED AN ADDRESS 46 2EH

This error indicates that a command required an address parameter and
you did not supply one. Retype the command, specifying an address
parameter.

EXPECTED A NAME 43 2BH

This error indicates that a command required a name parameter and you
did not supply one. Retype the command, including a name. (You might
get this error message if a command requires that you specify a file
by its name, and you specify it by its number, instead.)

EXPECTED AN OPTION PARAMETER 48 30H

This error indicates that a command requires an option parameter
(i.e., S=something) and you did not supply one. Retype the command,
including an option parameter.

EXPECTED A SYMBOL 44 2CH

This error indicates that a program required a symbol and you did not
supply one. Try again, specifying a legal symbol.

EXPECTED A VALUE . 47 2FH

This error indicates that a program required a value and you did not
supply one. Try again, specifying a legal value.

FILE ALREADY EXISTS 2 2H

This error will arise if you try to CREATE a file that already exists
on the diskette. If you really meant to create a new file, change its

name slightly so that it is no longer the same as that of the existing
file.

FILE ALREADY OPEN 6 6H

This error results from an attempt to change a file that is also open
for other operations that might be made impossible by that change.

For example, if a file has been opened twice, as file numbers 5 and 6,
endfiling file #6 would make nonsensical an attempt to SEEK to a later
part of file #5. It is illegal to KILL or shorten a file that is open
elsewhere in the system. Also, a multiply open file may have its
length extended ONLY if that file is specified by the number assigned

to it when it was first opened; of course, the file must still be open
under that file number.

19-5 PTDOS

FILE DOES NOT EXIST 1 1H

This message indicates that you have attempted to load or operate on a
file that does not exist on the diskette from which you are trying to
read it. (Many programs, e.g., EDIT, DEBUG, will automaticaly create
a file if the user specifies one that does not exist; otherwise, the
user must create the file on the diskette before referring to it.) Be
sure that you have not inserted the wrong diskette, and that you have
specified a unit number if the file is on a diskette in a unit other
than the default unit.

FILE ID CONFLICT 33 21H

This error arises when the foreward or backward chaining pointer of a
given block A points to block B, but block B identifies itself as not
belonging to the same file as block A; the message means that the file
control block for the file does not match the directory or a sector on
the diskette. Unless you opened a file on one diskette and tried to
close it on another, this error is normally indicative of a hardware
problem; follow the suggestions under "DEALING WITH HARDWARE-RELATED
ERRORS," above.

FILE IS DEVICE TYPE 8 8H

The operation that you are trying to perform may not be performed on a
device file. For example, you may be trying to randomize the file.
Whatever command or call you are using, be sure that you have
designated the file that you really want to access.

FILE NOT IMAGE TYPE 5 5H

This message indicates that you have attempted to load a file that is
not an image file, probably by typing the name of that file after the
PTDOS prompt (*). Type the name of the program that you actually
intended to execute.

FILE NOT OPEN 3 3H

The number by which you have designated a file, either in a command or
in the A register before a system call, does not correspond to the
number of an open file. Make sure that 1) the file has been opened,
but not closed, before you refer to it, 2) you have not mistaken the
number assigned to the file when it was opened, and 3) you stored the
file number where the program expected to find it, and did not write
over it with anything else in the meantime. Remember that a file that
is not open does not have a file number, and that it is therefore
impossible to designate a file by number if that file is not open.
Either open the file before you refer to it by number, or refer to the
file by its name.

10-6 PTDOS

FILE NOT RANDOM 7 7H

This message indicates that you have tried to perform a random access
operation on a file that has not been set up for random access. If
you want to make the file a random access file, use the RANDOM command
or system call to build the required index.

FILE PROTECTED 4 4H

This message indicates that you are trying to perform an operation on
a file whose attributes protect it against that operation. For
example, you may be trying to KILL a kill-protected file, or to RENAME
a name-and-type-change-protected file. Unless a file is protected
against a change in its attributes, you can use the REATR command to
change the attribute that is hindering you. It is always a good idea
to consider why a file has been given particular attributes; if you
change the attributes of file so that you can perform a particular
operation, remember to restore the old attributes at the conclusion of
the operation.

ILLEGAL ADDRESS 51 33H

This message means that an address supplied to a program is somehow
inappropriate, e.g., beyond the limits of addressable memory,
inconsistent with the specifications of the program being executed,
etc. If this message is displayed in response to a command line that
you have typed on the console, type the command again, giving a
suitable address specification.

ILLEGAL ATTRIBUTES 56 38H

This message means that you have attempted to give a file an attribute
that is not in the list of possible attributes. Check the list in
Section 5 of this manual. Then type the command again, assigning the
correct attributes.

ILLEGAL BLOCK SIZE 12 @CH

You have tried to assign a block size of 6, or a block size greater
than 4095. If you were using the CREATE command, type it again with a
legal block size parameter; if you were using the CREATE system call,
change the block size bytes in the block of memory addressed by the DE
register pair. Block size considerations are discussed in Section 5
of this manual.

ILLEGAL BUFFER ADDRESS 11 @BH

This message indicates that you have tried to allocate a buffer in
reserved memory, i.e., that the second parameter of the OPEN command,
or the value in the HL register pair at the time of the OPEN system
call, is either in user-protected memory or inside PTDOS.
User-protected memory may be allocated by the SET PR= or CONFIGR

19-7 PTDOS

command; in either case, you can supply to the system a location below
which you do not want programs or data to be loaded. The area
occupied by PTDOS begins at GLLOW and ends at BFFFH. GLLOW has a
default value of 9000H, but can be set lower with either the SET BU=
or CONFIGR command. To deal with the ILLEGAL BUFFER ADDRESS message,
either change the buffer address specification or configure the system
so that the desired buffer address is legal. (Use SET to change
system parameters in memory; use CONFIGR to change them on the
diskette.)

NOTE:

It is impossible to establish a buffer at address # or FFFFH. A
buffer address specification of @ is taken to be not an address, but
an indication that buffering should be static, and a specification of
FFFFH (or 'T' in the OPEN command) is taken to indicate that buffering
should be dynamic. A buffer in user memory is always static.

ILLEGAL BYTE COUNT 52 34H

This message indicates that a byte count supplied to a command or
program does not meet the requirements of that program. Determine the
range of byte counts acceptable to the program and proceed
accordingly.

ILLEGAL CHARACTER IN UNIT 14 PEH

Unit numbers are specified as /u, where u is a number signifying the
unit. (Remember that unit numbers begin at @, not 1.) If a character
other than a number appears after the slash, PTDOS will return this
error message. Enter the command again with a legal unit number.

ILLEGAL DRIVER ACCESS 22 16H

This message is displayed when a driver is accessed for a purpose that
the driver software is not designed to serve. (For example, it is
usually not possible to rewind a printer.) Perhaps you gave the wrong
file number in your command or program. This message does not
necessarily mean that the operation you wanted to perform cannot be
performed on any device; it means only that the operation is not
appropriate for the particular device on which you have chosen to
perform it.

ILLEGAL FILE NAME 49 31H

An illegal file name is a name that violates the rules imposed by a
particular command or program. For example, a program may require
that no file name be more than five characters long; than an attempt
to use that program to create a file having a six-character filename
might cause this message to be displayed. (The message NAME TOO LONG
is also available for such cases, but in a situation where there might
be several kinds of constraints on file names, ILLEGAL FILE NAME might
be preferable on account of its generality.

10-8 PTDOS

ILLEGAL FILE NUMBER 50 32H

An illegal file number is a number that is less than @ or greater than
255. If the error occurs during the execution of your own program,
check to see where you specified the file number, and change it if it
is incorrect. (If the file number seems to be correct, make sure that
it is stored where your program expects to find it.) If you made a

typing error when you entered a command, enter the command again with
the correct file number.

ILLEGAL NAME 13 0DH

This message indicates that a file name supplied to a command contains
an illegal character, i.e., one of the characters given in the list
near the beginning of Section 5. If you were giving a command, enter
it again with a legal file name.

ILLEGAL OPERATION 20 14H

This message means that you have specified an operation that is not
one of the 25 available system calls (see Section 7). Usually this
error results from a sequence like

CALL SYS
DB 26

in the user program. Because there are only 25 possibilities
(numbered @ to 24), the 26 does not signify an operation at all.
Another possibility is that the statement after CALL SYS is not a DB
pseudo-operation. The value stored by the assembler in the byte after
CALL SYS will always be taken as data specifying the operation to be
performed by the system. If an instruction follows the CALL SYS
statement and its operation code is not greater than 24 Decimal, the
corresponding system call will be made and no ILLEGAL PTDOS OP error
will be reported (although some other error or dubious activity is
certain to result); if the operation code is greater than 24 Decimal,
an ILLEGAL PTDOS OP error will be reported.

ILLEGAL OPTION SPECIFIER 54 36H

This message is displayed if the letter after the S= in a command line
is not the symbol for an available option. Check the syntax of the
command, and enter it again with an appropriate option specifier.

ILLEGAL TYPE 55 37H

This message is displayed if you specify 1) any file type consisting
of more than two characters, or 2) a non-image file type consisting of
more than one character. See Section 5 of this manual for a
discussion of file types.) Enter the command again, giving a legal

type.

18-9 PTDOS

ILLEGAL UNIT 15 OFH

This message is displayed if the number following the slash (in a unit
designation of the form /u) exceeds the maximum number of units for
which the system is configured. The CONFIGR command may be used to
change the maximum number of units to be supported by the system; that
parameter is set initially to 2. If you made a typing error, enter
the command again with the proper unit number; if the system was
configured incorrectly, use SET DU= to change the configuration in
memory, or CONFIGR to change it on the system diskette.

ILLEGAL VALUE 53 35H

This message means that a command or program expected to receive a
number within a certain range or having certain other properties
(e.g., you might have a program that accepts only even numbers), and
that the number you entered did not meet those requirements.
Determine what values the program will accept, and then enter another
value. (Depending on what kind of error handling is in force, you
might have to execute the program again.)

MEMORY PROTECT ‘ 18 12H

This message is displayed if you try to load a program or data into
memory that is occupied by the resident portion of PTDOS. If you need
more memory space below the system and can compromise buffer space,
use the SET BU= or CONFIGR command to raise the lowest system-managed
buffer address. Otherwise, you must load the program or data
elsewhere in memory.

NAME TOO LONG 16 1¢n

This message means that you specified a file name consisting of more
than eight characters. Shorten the file name and enter the command
again.

NO FILE ID'S 28 1CH

DID YOU REALLY GET THIS MESSAGE? Every time a file is created, it is
assigned a unique file ID that is permanently attached to the file.
(The file ID is not to be confused with a file NUMBER, which lasts
only from the time a file is opened to the time that file is closed).
There are 64K possible file ID'S; in order to see the NO FILE ID'S
message, you have to have created more than 65,536 files! (Actually,
they need not have been created on the same diskette, because whenever
you make a copy of a diskette with DISKCOPY, the copy adopts the
number of file ID's that existed on the source diskette, even if most
of those files no longer exist.) If the diskette is very old, use GET
to transfer files onto other diskettes. (You can continue to read
from the old diskette, and even to change the existing files. The
only restriction imposed by the NO FILE ID'S condition is that you can
no longer create new files on the diskette.) If you see the message
and have not created 65,536 files, suspect a hardware problem; follow
the suggestions under "DEALING WITH HARDWARE-RELATED ERRORS," above.

16-10 PTDOS

NON-RESPONDING DRIVER 23 17H

This message can indicate that a device is not plugged in or connected
properly. Check the condition of the device you are trying to use.

NO SPACE FOR BUFFER 27 1BH

This message means that there is not enough room in the system-managed
buffer area to accommodate one block of the file you have just tried
to open. If you were trying to open the file with a command from the
keyboard, you should close a file you are not using, or close all open
files by pressing the CTRL and C keys simultaneously. If the file was
being opened by a system call in your own program, and if that program
seems to require more buffer space than the present configuration of
PTDOS will allow, use the SET BU= or CONFIGR command to lower GLLOW
(the parameter that defines the lowest system-managed buffer address).
The SET command will change the system in memory, but not on the
diskette; the CONFIGR command will change the system on the diskette,
but not in memory (until the next time you bootload PTDOS from that
diskette).

READ-BACK FAILED 39 27H

This error can only occur if PTDOS is configured to verify all data
that it writes to the diskette. (If a block can be read immediately
after it is written, it is assumed to be verified.) The error is
indicative of a hardware problem; follow the suggestions under
"DEALING WITH HARDWARE-RELATED ERRORS," above. To configure PTDOS so
that all data written are verified by a read-back check, use the SET
SW=V command or the CONFIGR command to change the GLRBC flag in the
System Global Area.

SECTOR CONFLICT 35 23H

This message means that hardware and software do not agree about what
sector has been found on the diskette. Follow the suggestions under
"DEALING WITH HARDWARE-RELATED ERRORS," above.

SYSTEM WRITE-LOCKED 40 28H

This message is displayed if the system is write-locked and you try to
perform an operation that would alter data on a diskette in any disk
drive unit. (If you have set the WRITE LOCK switch with SET SW=L or
CONFIGR, you can not kill, endfile, create, write, or otherwise alter
any file on any diskette.) To remove WRITE LOCK from the
configuration of PTDOS on a system diskette, reset the computer and
bootload from a system diskette that does not have a write-lock; then
insert the write-locked diskette in unit 1, and use CONFIGR /1.

19-11 PTDOS

TOO MANY FILES OPEN 26 1AH

This message indicates that the number of files you have tried to open
exceeds the maximum number of open files that can be supported in the
current configuration of PTDOS. The CONFIGR command may be used to
set the maximum number of open files to a number between 7 and 255.

If you tried to open more files than the current configuration of
PTDOS will allow, change the configuration on your diskette or
determine why the files you open are not being closed properly. If a
file is multiply open, it is regarded as more than one open file; for
example, opening the same file three times (without closing it in the
meantime) is exactly like opening three different files.

UNIT CONFLICT 19 13H

This message is returned when you have made contradictory references
to disk drive units. For example, the command *RENAME POOH,PIGLET/1
is contradictory, because it is impossible to rename a file on one
diskette so that it is suddenly on another diskette. (By contrast, it
is possible to enter the command *RENAME PIGLET/1,POOH, because the
command will assume that the new file name POOH will be given to the
file PIGLET on unit 1.

USER MEMORY PROTECT 17 11H

This message means that you have attempted to load a program or data
into an area of memory below the "lowest unprotected location" that
you determined with SET PR= or CONFIGR. Change that address in memory
(with SET) or on the diskette (with CONFIGR).

19-12 PTDOS

APPENDIX 1

GETTING STARTED WITH PTDOS

INTRODUCTION

This section is designed to allow a new user to get the feel of
operating the HELIOS II system using PTDOS. All of the actions and
instructions necessary are included to allow the user to perform some
introductory operations with the system. These operations will help
you to understand the other sections of the manual.

It is assumed that the HELIOS II is fully operational and has been
tested as explained in the construction section of the manual. It is
also necessary for the user to have at least 16K of memory configured
as follows:

4K : 00OPH - OFFFH
12K : 9000H - BFFFH

16K of memory is just enough for use by PTDOS. Additional user memory
is required for most applications.

Equipment needed:

Sol or other computer with 16K or more of memory
HELIOS II with interface cards

Keyboard input

Some form of output device (video preferred)
PTDOS system diskette

OO W

BRINGING UP PTDOS

Make sure all cables are connected, the computer is on and the power

switch on the front of the HELIOS II cabinet is on. Also make sure ﬁ
that you have memory at the address locations indicated above, and

that this memory is unprotected.

If you have not tested the HELIOS II as directed in the manual, do it
now. The PTDOS system diskette will be used from here on, and it is
possible to destroy the data on the diskette if the components are not
functioning correctly.

INSERTING THE PTDOS SYSTEM DISKETTE
The PTDOS system diskette contains all of the software necessary for
system operations. This includes the system resident code, the error

utility files, and all of the command files. The diskette is labeled
PTDOS 1.4 SYSTEM DISK.

Remove the diskette from its protective jacket, being careful not to
touch the exposed areas of the actual recording surface, visible at

Al-1 PTDOS

the center and through the drive-head access slots. See Figure 4-3,
Diskette Orientation for Loading, in Section 4, Operating
Instructions, of the harware manual, for positioning of the diskette
prior to insertion. Now, insert the diskette into the left drive slot
(unit 9), and push it all the way into the slot until you hear the
drive engage and lock the diskette into place. The diskette may be
removed by pushing the left drive eject button at the lower left
corner of the cabinet. Always remove diskettes from the drive slots
before turning the power off or on.

THE BOOTSTRAP PROGRAM

The PTDOS (Processor Technology Disk Operating System) code is
contained on the PTDOS system diskette, and the resident portion (the
part that resides in the computer memory) must initially be read from
the system diskette into the computer's memory. This is accomplished
through the use of a BOOTSTRAP program. This program is contained in
ROM on the BOOTLOAD Personality Module, Order No. 107815.

A listing of this short program is given at the end of this appendix
along with a dump of code for use at address 400 hex. Bootstrap can be
placed in PROM or loaded from cassette tape, if you do not have the
special Personality Module.

If you have a Sol computer with the BOOTLOAD Personality Module, type
the command "BO" in Solos command mode. Otherwise, load the bootstap
object code into the computer memory starting at the proper location,
using your computer's monitor (such as SOLOS on the Sol) to enter the
bootstrap object code, or use whatever method your computer provides.
It is possible to save the loader at this point using the SOLOS or
CUTER tape routines. Loading the bootstrap program from a tape will
save time and effort in bringing the system up after it has been
turned off.

Check this bootstrap code you have just entered and make sure it is
correct. It is possible to damage the programs on the diskette with
improper code in the loader.

When you are satisfied with the bootstrap code, start the computer
running at location 800 Hex. If you used the "BO" command with the
BOOTLOAD Personality Module, the program will be run automatically.

The system resident code will now be loaded intc locations 900¢0H -
BFFFH, and control will be passed to this code. The system diskette
name, revision date, and other information will be printed, followed
by the PTDOS prompt character (*).

The prompt indicates that PTDOS is now waiting for input.

If you do not see the above information printed, remove the diskette

by pushing the eject button at the
cabinet, and go back and check all
far. Make sure you understand the
HELIOS II has passed the disk test
not work if it has been used for a

Al-2

lower left of the HELIOS II

of the information presented so
procedures, and make sure the
routines. The system diskette will
disk test, written on in an

PTDOS

incorrect manner or damaged in some other way. Try the bootstrap
procedure again.

CARRIAGE RETURN <cr>:

The characters typed into PTDOS are stored in a buffer until a

carriage return is typed. In the examples below, a carriage return is
indicated by the symbol: <cr>

The input line of characters is not acted upon until this carriage
return is typed.

BACKSPACE

If you make a mistake in typing, you may backspace to the character
that is incorrect by typing the 'DEL' key (7FH).

NOTE: The delete key is NOT the same as shift underline.

The entire line may be deleted by typing control-X, i.e, by holding
down the 'CTRL' (control) key and typing the 'X' key while it is held
down. PTDOS will respond by echoing an exclamation point (!) at the
end of the line just deleted. At this point the line may be entered
again.

DISKCOPY

As mentioned elsewhere in the manual, it is important to make a backup
copy of this system diskette. It would be a good idea to do this now.
If you wish to make a copy now, follow the instructions below,
otherwise, skip to the next section - "FILES EVERYWHERE."

Insert a blank diskette into the right hand drive (unit 1) in the same
manner as the system diskette was put into unit #. The diskette label
is to the left-rear-top with your right-hand thumb about over the
label.

Now - the prompt character has been printed, and PTDOS is waiting for
command input. Type the following command:

DISKCOPY/1,S=C <cr>

This command will "condition" the new diskette so that the Helios II
Disk Memory System can use it. The command will ask you to type a
carriage return (C/R) to continue. If you typed the command

correctly, press the return key; otherwise, press the MODE key (or the
CTRL and @ keys) and try again.

DISKCOPY 9,1 <cr>
This command tells PTDOS to make a copy of the diskette in unit @ onto
the diskette in unit 1. If you have made a mistake in typing the

command, an error message will be printed, followed by a prompt (*).
Type the command again.

Al-3 PTDOS

The system will now print the following:

DISKCOPY UNIT @ TO 1
C/R TO CONTINUE, ESC TO ABORT:

Check to make sure the command said to copy unit @ to unit 1. If this
is correct, type a carriage return. The diskcopy program will now be
loaded into memory, and a copy of the system diskette will be made
onto the diskette in unit 1. This takes about 5-6 minutes. If any
errors are made during the diskcopy, a message will be printed.
Usually the program will retry the section that gave the error, and
continue on.

When the copy is complete, a message to that effect will appear, and
the prompt character will be typed. Remove the diskette in unit @
(left hand) and store it in a safe place. The diskette in unit 1
should now be placed in unit # for the remaining operations. You have
just made a "backup" System diskette-a precaution that can save the
results of much labor in the event of an inadvertant command, a
rampant program, power failure, equipment malfunction, or diskette
damage.

Please note that PTDOS and most software available from Processor
Technology and other manufacturers is subject to legal protection
including copyright. Unauthorized circulation of copies, or
possession of "bootleg" copies may constitute a crime.

FILES EVERYWHERE

It is important to understand the concept of files. To PTDOS, almost
everything is a file. The keyboard is considered to be an input file,
the display screen (or printer) is an output file, commands are files,
anything saved on the disk is a file, and so on. All major
communication to and from PTDOS is done through files.

We are now going to try a few operations. If the message DRIVE NOT
READY appears at any time during this section, make sure the system
diskette is inserted correctly in unit 6. Also, go back and check to
make sure everything is in working order, according to other sections
in the manual.

Also, if an error message is printed, look at what you had typed as a
command - something may be wrong with it.

We will now go through a few examples in which you will type commands
to PTDOS. The characters you should type in from the keyboard will
follow the word 'TYPE:' in all of the examples. In the first example
below - TYPE: CREATE ... you would start typing with the word CREATE.
Also remember that you may backspace to correct a character by typing
the 'DEL' key, or the entire line may be deleted by typing control-X.
If an error was made in the line typed, PTDOS will respond with an
error message, then the prompt (*). Just type the line in again.
Remember to follow all commands with the RETURN key <cr>.

Now, let's look at creating a new file.

TYPE: CREATE TEST <cr>

Al-4 PTDOS

In the standard operating mode, PTDOS has printed the prompt (*), and
is reading file #0 (the keyboard). This is the default input file to
the CI (command interpreter). Characters typed into file #0 are
echoed back out to file #1 (display device), the default output file.
(Note: files #4U and #1 are always open and cannot be closed.) The
characters you type in on the keyboard are stored into a line buffer
until a carriage return <cr> is typed. The line is then decoded by
the CI (command interpreter). Remember, the CI is just reading a
file, and right now it happens to be the keyboard. Now the CI expects
commands, so starting at the front of the line just typed in, leading
blanks are skipped over, and then characters are saved until the first
'space' character (blank) is found.

This first group of characters is assumed to be a command name.

Finding you have typed 'CREATE,' the disk directory is searched for a
file called CREATE. Notice that all command names are just file
names! Upon finding that a file called CREATE does indeed exist, it
is now loaded into the computer's memory. The load address (and run
address if any) 1is included as part of the file's data. The file,
CREATE, loads into an area of the PTDOS system called the CXBUF. This
is the 'command execution buffer' - many of the commands load into
this buffer. CREATE also includes a run address, so after it has been
loaded into the CXBUF, control is transfered to the CREATE code.
('Control is transferred' means that the 8080's program counter has
been addressed by one of the program counter altering 80840
instructions, such as JMP, CALL, PCHL, etc.) The CREATE code now has
control; this code expects parameters in a certain order to perform
its function of creating a new file, and it gets these parameters from
the current input file. The current input file number is retrieved
from PTDOS (in this case, the CI file), and the necessary parameters
are read. The CI file has a pointer which is now pointing one past
the first space in the last command line typed in. (CREATE TEST)

The first parameter required by the CREATE command is the name of the
file to be created. 1In the example, there are no other parameters
present, so the default values for file type (.) and block size

(4CO0 Hex) are used. The CREATE code now calls into the PTDOS entry
area (SYS) with the necessary values for the CREATE function. PTDOS
now has control, and the CREATE function is evoked (parameters
checked, etc.), and a new file called TEST is created. The following
is a brief explanation of the actions that this procedure entails.

The FSMAP (free space map - file) is read into memory and checked for
the first free block of 4COH size. The disk address (sector and
track) is noted, and the FSMAP is updated to show this area is
currently in use. The FSMAP is then written back onto the diskette.
Now the diskette file directory (DIRECTRY) is read into memory and the
file named TEST along with the track, sector, file type, block size,
is added. The directory is then written back onto the diskette. Other
associated system maintenance is taken care of, and control is passed
back to the CREATE code. Errors (if any) will be reported now, and
control will be passed to the PTDOS system, which will continue to
read from the CI file if there are multiple commands. If there are no
more commands in the CI, a prompt will be printed, and PTDOS will wait
for more input.

Al-5 PTDOS

Some commands report back on some aspects of their operation. This
information is written out to the current output file (in this case,
the default file #1, the CO - command output file). An An example of
this output will be seen in the next command.

TYPE: KILL TEST

The file will be looked up, checked to make sure it is not
kill-protected, and the space on the diskette used by the file TEST
will be released, and the file name removed from the directory. The
contents of the file are not actually erased, but since the space
containing the file is defined as free, subsequent write operations
can write over the space.

Input may come from any file and not just the keyboard (file #0).
Next, we will CREATE a file, write some commands into it, and then use
this new file as the input file.

TYPE: CREATE PROC,P,100; CREATE DIRC,P,1024:D <cr>

NOTE: At least one space (blank) is necessary following a command
name. All other spaces are ignored.

Notice that we have used multiple commands in the line just typed.
The commands are separated by a semicolon (;). Also, in the second
file, the block size was typed in decimal, as indicated by the (:D)
following the block size number. (Hexadecimal is the default number
base).

The file PROC has now been created. Now, we will write directly onto

this file. We will do this by copying from file #@, the keyboard, to
the file, PROC, just created.

A PROCEDURE FILE EXAMPLE:
TYPE: COPY #6,PROC <cr>

TYPE: SET SW=-E <cr>

TYPE: $PR;$PR LISTING FILES T=P TO THE FILE DIRC;$PR <cr>
TYPE: SETOUT DIRC;FILES T=P <cr>

TYPE: SETOUT #1 <cr>

TYPE: $PR; S$SPR TYPE CARRIAGE RETURN TO CONTINUE <cr>

TYPE: SET SW=E;SWAIT <cr>

TYPE: FILES S=-1I <cr>

TYPE: OPEN? <cr>

TYPE: FREE? <cr>

TYPE: SETIN #6 <cr>

Lastly, type control-C. This will reset the system and close the
input to the file PROC. Also notice that multiple commands on one
line are possible here too, just as with any other input line.

Al-6 PTDOS

To check on what we have written into the file PROC, use the
following:

TYPE: COPY PROC,#1

This will copy the file PROC to the current output file. Look at the
list of commands in the file PRCC, and check to make sure they are

correct. If a mistake was made, go back to 'A PROCEDURE FILE EXAMPLE'
and start over,

Now, we have created a file consisting of other commands. This may be
thought of as a procedure file. Since the CI does not know (or care)
where the commands it reads come from, we shall tell it to read from
the file PROC. The commands that are contained will be executed, just
as if they had been typed directly in from the keyboard!

Here are the actions that will take place after we switch the input to
PTDOS:

First, the command SET SW=-E will turn off the command echo. Next,
the output file will be changed to the file DIRC, and the FILES
command will list all of the files of the type 'P' out to that file.
The output file will then be switched back to the consol print device
(file #1). The $PR command will now print its message, and the echo
mode will be turned on by the SET SW=E command (the commands read by
the CI will be echoed to the output file). Now the $SWAIT command will
be echoed, and the system will wait for a carriage return to be typed
in from the keyboard. To continue, type the carriage return. FILES
S=-I will now be executed. The S=-I tells the files command to list
all files on the diskette, including those files with the information
protect attribute (I). Next, the OPEN? command will list all files
currently open. (Files #0,#1,#2 are not listed - they are always open
and cannot be closed.) The FREE? command returns the number of unused
sectors on the diskette. The final command read from our procedure
file switches the input file from itself back to the keyboard. The
PTDOS prompt is printed, and the system is now once again waiting for
more input.

Now, let's switch the input file from the keyboard to our new file,
PROC. PTDOS will now read the command lines from PROC, and execute
the commands in order. The input file will be switched back to the
keyboard after the SETIN #¢ command has be executed. If a mistake has
been made in the format or typing of the command lines in PROC, an
error message will be printed, and the input will be automatically
switched back to the default input file - the keyboard. An error of
this type may leave files open - to make sure all files are closed,
type control-C. Then go back to the text of the procedure file above,
starting with the COPY #6,PROC command, and type all of the lines
again. Be careful to type exactly what is shown - the spelling and
punctuation must be correct! Don't forget the last control-C.

Al-7 PTDOS

TYPE: SETIN PROC <cr>

In the above example, a FILES T=P command was executed with the list
written to the file DIRC. To look at the information now contained in
the DIRC file:

TYPE: COPY DIRC,#1 <cr>

(When a file is opened, a file number is associated with the buffer
for the file. To access an open file, a number sign (#) followed by
the file number is used - such as file #1 above. 1If a file is not
open, the file name is used, as with the file DIRC in the above
example.)

The procedure file PROC that we have written may be used as the input
file as many times as you wish. Just switch the input to PTDOS as
above. If you have no further need of the files DIRC and PROC, they
may be killed at this time.

TYPE: KILL DIRC,PROFF,PROC <cr>
(Note the effect of trying to kill the non-existent file. PROFF.)

If the kill command responds with <IS OPEN>, the file to be killed is
still open. A file must be closed to be deleted. Typing Control-C
closes all open files. Once a file is killed it is gone forever, so
do not kill files you still need.

In the above example, the same purpose could have been served by using
the "DO" Command Interpreter Macro Facility, as described in Chapter
7. "DO" provides an even more flexible way of creating procedure
files.

NOTES

The above demonstration was designed to help the user to understand a
little of the 'files' concept, and at the same time let the user
perform some actual PTDOS operations. Read the rest of the manual for
complete information on both the system supplied commands and
information on all of the PTDOS - HELIOS II operations.

Backup Your Diskettes

Keep your disks orderly - use a daily work disk, and when finished
working with a file or files, copy them to another diskette for
storage.

Al-8 PTDOS

CLCSE [/
The 'DEL' key
Control / X

Control / C

will close all open files
will backspace the input cursor
will delete an entire input line

if typed as the first character of a line will close
all files and execute a system reset. A file may

may be opened more than once. If a file is open,

it cannot be end-filed or killed. 1If you get errors
during operations, and you are not sure of the current
status of open files, type control /X followed by

a control C. All files will be closed, and the input
file will be empty.

It is possible for a user program to write into the PTDOS system
resident area by mistake. If you think this may have happened, type

BOOTLOAD <cr>.

The system will then be reloaded.

Al-9 PTDOS

5,

g

APPENDIX 2

BOOTSTRAPPING

The system command BOOTLOAD reinitializes PTDOS by loading the

resident code into memory from the system diskette. After a power
interruption or major system crash, it is necessary to run a short
bootstrap program that in turn loads and runs the BOOTLOAD program.

On a Sol Terminal Computer with a BOOTLOAD personality module, the
bootstrap program is built into the monitor and may be invoked by the
BOOT command.

On a Sol with a SOLOS personality module, or on another computer using
the CUTER monitor program, the SOLOS/CUTER command ENTR 868 may be
used to enter the program by hand from the listing that follows. To
save the BOOTLOAD program on a cassette, type

SAVE BOOT 800 84E<cr>

immediately after entering the program. Thereafter, BOOT may be
loaded and executed from SOLOS/CUTER with the command

XEQ BOOT<cr>
If you wish to burn the bootstrap program into PROM, you may give it

any origin at or above 86@H. Normally, an address above @BFFFH (the
highest address assigned to PTDOS) will be chosen.

A2-1 PTDOS

p8owd
8800
p8o2
p8o4
p806
h808
080A
p8BC
@BUE
0811
0813
0815
P817
p818
p81B
G81E
@81F
0820
p821
p824
0826
0827
B82A
p82C
P82E
p831
p833
P835
0837
p839
@83A
p83C
P83E
0840
0842
p844
p84o6
084S
084B
P84E

3E
D3
D3
3E
D3
DB
E6
c2
3E
D3
DB
07
DA
11
1B
7A
B3
C2
DB
87
DA
DB
E6
CA
3E
D3
3E
D3
AF
D3
D3
3E
D3
DB
E6
CA
E6
Cc2
C3

CF
F7
F5
FF
Fl
Fd
49
DA
DF
F7
FO

15
18

1E
Fo

24
Fo
02
2A
40
F3
03
F4

F5
Fo6
03
Fl
F@
0B
42
08
0o
04

g8

038
63

08

08

08

08

08
)%

BOOTSTRAP PROGRAM LISTING

BOOTS

BOOTL

IFIN

IFIN2

IFIN3

SWAIT

DLOOP

ORG
MVI
ouT
ouT
MVI
OouT
IN

ANI
JNZ
MVI
ouT
IN

RLC
JC

LXI
DCX
MOV
ORA
JNZ
IN

RLC
JC

IN

ANI
JZ

MVI
ouT
MVI
ouT
XRA
ouT
ouT
MVI
ouT
IN

ANTI
Jz

ANI
JNZ
JMP

A2-2

800H
A,0CFH
PF7H
@F5H
a,-1
gF1H
gFroH
40H
BOOTL
A,0DFH
OF7H
GFOH

IFIN
D,1290H/6
D

A,D

E

IFINZ
OFOH

IFIN3
PFoH
2
SWAIT
A,40H
OF3H
a,3
PF4H
A
@F5H
BF6H
A,3
Ar1lH
OF0H
GBH
DLOOP
8
BOOTS
4

PTDOS

i

ASSM

BLDUTIL

BOOTLOAD

CLOSE

CONFIGR

COPY

CREATE

DBASIC

DCHECK

DEBUG

DISKCOPY

DO

APPENDIX 3
COMMAND SUMMARY
PAGE

Assemble an 8080 assembly language source file...
ASSM source,{list},{object},{error},{symbol},
{S=options}

2-3

Build or alter a utility file; list current
utility numbers..... cesacns s esesscsassssssess cesne
BLDUTIL utilfile{,I{number}=filename}{,D=number
{number,...}}{,s=L}

Reload PTDOS from AisSkKkette. o eeeeeseeseees. ceeaee
BOOTLOAD

Close open file(S).ieeeeunn ceetcseansresanenn ceeen
CLOSE # fnum{,#fnum....,#fnum}
CLOSE /{u}

Change system parameters on a diskette...........
CONFIGR {/u,}password

Copy contents of file(s) to another file.........
COPY infile,outfile{s={A}{-E}}
COPY O=file{,S=-E},infile{,infile2...}

2-9

a file ONn @ AiSKEtE@ur v e oo ineeeeeeeennnenn 2-10

filename{,{typel}{,blocksize}}

Create
CREATE

Invoke
DBASIC

Extended Disk BASIC Interpreter........ .o 2-11

Check structure of files on AisSkette .. weeeeeeeeon 2-11

DCHECK {/u}

Invoke Debugger.......... s et e e e ane ..
DEBUG {arguments}
DEBUG3 {arguments}

.
.
.
.
.
.
.
.
.
[\
1

12

Condition, format, copy, or verify a diskette....
DISKCOPY {/}from,{/}to{,S=-W}

DISKCOPY /u,S={C}{F}{V}{-W} (only one of C, F,
DISKCOPY {/}unitl,{/}unit2{,s={{Vv}{-w}}

2-13

and V)

Invoke command MaCrO PrOCESSOC . v eueeeecesnsnnnens
DO {O=outfilename,}{S=options,}infilename
{ ,parameters}

a3-1

PTDOS

DUMP

EDIT

EDT3

ENDF

EXEC

EXTRACT

FILES

FOCAL

FREE?

GET

HELP

IMAGE

KILL

OPEN

OPEN?

ouT

PRINT

Display contents of file in hexadecimal
and ASCITI...vececscoconss creesasenes cececcstasens
DUMP file{,addrlf{, addr2 or >count}}

Invoke screen-oriented text editor..... Ceses e
EDIT input file{<A>},{output file{<a>}}
{,top of memory}

Invoke line-oriented text editOor.....ceeeeeeccans
EDT3
Endfile at current cursor position....ceceeceeens

ENDF fnum{, *}

Execute code at a specified address...c.eceecceess
EXEC address

Display load information; optionally, combine
image segmentS...eeeceese ceeceseasnen cececsesecaas
EXTRACT file{,S{-L}}

Display list Of fileS.uiieeeeeneeeeonecanescnnnns
FILES {/u}{,T=type}{,S={-H}{-I}}{,strings}

Invoke FOCAL Interpreter.....cccececeences ceaseas
FOCAL

Report amount of free space on diskette..........
FREE? {/u}{,blksize}

Transfer file(s) from a file or diskette.........
GET I=/u or file {,/u}{,T=type}{,S=options}
{,strings, }

Display information about command(s)..... ceeeesas
HELP {command name}{,command name....}

Write contents of memory to a file

in image format.....ceceeeecean ceserecasssssseas
IMAGE file,{!blksize, }blkl blk2{,:blk3}....,blkn
{,sa}l

Kill file(S)......-....--.-....-...-............-
KILL filename{,filename...}

Open a file...... seeecsseses st s sesassesessessnsae
OPEN filename{,buffer address or T}

Print name and number of each open file..........
OPEN?

Set console output to display or port driver.....
OUT V or P

Print file on the CI output file
or the named file.u..eeeeeeeterssosanasasosnssccnoes
PRINT {args,}file{,{args,}file...}

A3-2

PTDOS

RANDOM Create index block for file...eeeeeeeoeceees ceves 2-31
RANDOM file{,*}

READ Transfer contents of file tO MEMOrY..ceeveeaasns .o 2-32
READ file{,addrl{,addr2 or >count}}{,*}

REATR Change protection attributes of file...... ceeeenee 2-33
REATR filename {,new attributes}

RECOVER Reclaim lost space on diskette....oeeeees ceeeanans 2-35
RECOVER {/u}

RENAME Change name O0f file(S).uveeteeeoeeecooncosnns cecanes 2-36
RENAME oldname,newnamef{, oldname newname...}

RETYPE Change the type 0f a fileiiiiiierennoeseneeaannns 2-36
RETYPE filename,newtype

RNUM Renumber lines of text file..veeeeeeeeeececacoces 2-37
RNUM filename{<A>}{,number}{,I}

SAVE Write one or more files to an archive file...... . 2-38
SAVE O=file{,/u}{,T=type}{,strings}{,S={-L}{-1}}

SEEK Position the file CUIrSOr .. .eeeeeeencenceases ceeene 2-39
SEEK file,number{,B}

SET Change system parameters in MeMOIY...eeessesccsss 2-49
SET argument{,argument....}

SETIN Make named file the CI input file......ccc.. cee e 2-41
SETIN file{,*}

SETOUT Make named file the CI output file...... ceeacenas 2-42
SETOUT file{,*}

SPACE Move the file CUILSOr..iiieieeeerecessossccnacccns 2-43
SPACE file,how

SYST Display system parameterS..c.eeeeeeecccoesecsscns cees 2-44
SYST {L}
sYST /{u}{,L}

TREK80 A video Star Trek game......... ceeesessessssscsas 2-45
TREKS80

WRITE Write contents of memory to a file...veeeeeeeenns 2-45

WRITE file,{!blksize,}addrl,addr2 or >count
{,*3{,<}

XREF Generate cross-reference listing of assembly
languadge file...eeieieeeenenen ceeeessccessaseans . 2-46
XREF infile,outfile{,S= optlons}{ top of memory}

z1P Fill memory with number......... cecseessccassens . 2-48
ZIP {number}

A3-3 PTDOS

SCREATE

SESC

SLST

SNLST

SSTOP

SWAIT

Create a file on diskette..oeeoe...

SCREATE filename{,{type}({, block51ze}{ attrlbutes}

Check fOor @ MODE SELECT . e e et eeoceeanoeeeees

$ESC

Turn on PTDOS echo flag...i.vieeieeeeeones .
SLST

Turn Off PTDOS €ChO flag..eeeeeeeeeeeoenens
SNLST

Print string on CI output file....veeeeeonn
$SPR string

Identify a string as a remarkK....eeeeeesee.

SREM string

Return to the system from a macro

SSTOP

Wait for a carriage return or a MODE SELECT

SWAIT

A3-4

PTDOS

	Overview
	System Commands
	Command Interpreter
	Command Macro Processor
	File System
	System Interface
	System Calls
	System Utilities
	Device Drivers
	Error Messages
	Appendix 1 - Getting Started
	Appendix 2 - Bootstrapping
	Appendix 3 - Command Summary

