
Programming -i-

6800 Programming - Introduction

This section of our manual has been written to help you begin

programming your 6800 Computer System. Programming is a complicated subject.

This manual describes only the two more basic levels of programming, machine

language and assembly language. With the material contained in this manual

you should be able to learn the basic principles of programming. Take things

slow and reread the material as many times as necessary to understand what is

being said. Since trial and error is one of the fastest learning methods,

don't be afraid to sit down and experiment with some short programs. Unlike

hardware, errors in programming, or software as it is often called; cannot

damage anything. So experiment with programs until you understand the

material presented here.

The "What Is An Assembler" section of this manual should be mastered

as a first step. Most of the material in the Motorola "Microprocessor

Programming Manual" assumes an understanding of both assembler and machine

language programming. Chapter five of this manual goes into detail describing

the 6800 assembler. It is important that you learn it now since all user

programs should be written using assembler mnemonics and then hand assembled

into machine language. Not doing this will make it impossible for you to look

at each program statement and know what it does. Chapter five's material on

editing, listing and saving programs applies only to timeshare services.

Programming -ii-

You should read pages PROG-1 through PROG-5 of the programming

section in this notebook next. Pages PROG-1 through PROG-3 describe in detail

the various methods of addressing and must be learned. Without knowing which

instruction addressing mode to use, writing a program will be virtually

impossible. Pages PROG-4 through PROG-5 describe the calculations that are

needed when hand assembling programs that contain branch instructions. When a

resident assembler program is used with the computer, labels are provided is

the source code and the assembler program makes the necessary calculations

for you.

Appendix A of the Motorola "Microprocessor Programming Manual"

contains all of the assembler mnemonic instructions as well as their

hexadecimal machine language equivalents. You should read through this

section several times to get familiar with the instructions that are

available to you in the 6800 processor. When you start writing your programs

you will find this information indispensable.

Appendix B contains the list of assembler directives which are

instructions used only for the assembler. They have no function when

programming in machine language, however, are nice to know when reading the

assembler source listings in the systems manual.

Pages PROG-6 through PROG-21 contain sample programs which may be

useful to the reader. Pages PROG-21 through PROG-29 contain some sample PIA

polling routines which would be useful to those using parallel interface

options.

Programming -iii-

What is an Assembler?

Throughout this notebook as well as the Motorola Programming Manual

you will repeatedly encounter the word "assembler" as well as printouts of

its source code listings. To those of you already familiar with assemblers

these terms should be easily understood, To others just learning about

computers, this can be a confusing subject. Before we can explain the term

"assembler" though, you must understand how programs are loaded, stored and

executed within the computer's memory.

The SWTPC 6800 Computer System has a read-only-memory (ROM) stored

minioperating system with a memory examine and change function which allows

the user to enter either programs, or data into the computer's memory from

the terminal's keyboard in convenient hexadecimal (base 16) notation. The

data is entered from whatever starting location the user chooses and is

loaded sequentially with the operating system incrementing the memory address

after each location has been loaded.

If we were to look at a listing of the data that was loaded into

memory, it might look like this:

A017 2B
A018 FE
A019 A0
A01A 02
A01B 86
A01C 01
A01D A7
A01E 00
A01F A1
A020 00
. .
. .
. .
. .
. .

Programming -iv-

The column of numbers on the left is the hexadecimal address at

which the hexadecimal data on the right is stored. As it happens, the data

loaded into these ten locations is a portion of a program loaded into memory

using the memory examine/change function of the mini-operating system. The

first location A017 although part of the program is used only for storing

data, the rest of the nine addresses starting with address A018 contain

actual program instructions. Before the program is to be started, the program

counter must be loaded with the address of the starting byte of the program

using the "display contents of MPU registers" function of the mini-operating

system. To actually start the program, one uses the "go to user's program"

function of the mini-operating system which transfers processor control to

the instruction pointed to by the program counter. In this case the

instruction is FE which translates to load the index register with the

contents of the memory address given in the next two bytes (A002). Since the

index register is a two byte register, the least significant byte is filled

with the contents of the next sequential address which is A003. For

simplicity this and other instructions are abbreviated to three letter terms

called mnemonics. The mnemonic for this instruction is LDX for LoaD indeX

register. The particular type of addressing used here is referred to as

"extended" and is described in detail later in the literature. So now we can

say the instruction FE is the same thing as LDX, extended. This is defined as

a three byte instruction since a total of three memory bytes are used for the

entire instruction. The data is stored in locations A018, A019, and A01A. The

program counter was incremented by one as each of the preceding memory

locations were processed and at the completion of the last byte of the

instruction, was left pointing to the next instruction location at address

A01B which is 86. The instruction 86 means to LoaD Accumulator A with the

contents of the memory location immediately following the instruction which

is 01. This is referred to as the immediate mode of addressing and is

Programming -v-

described in detail later in the literature. Our mnemonic for this

instruction is LDA A, immediate which stands for Loan Accumulator A and it is

a two byte instruction. At the completion of this instruction, our program

counter is left pointing to memory address AOID whose contents are an A7

which is a STore Accumulator A indexed by 0, instruction. The mnemonic here

is STA A, indexed.

This means the contents of accumulator A are stored at the address

contained within the index register plus the index value, which is contained

in the memory location immediately following the instruction which in this

case is zero. This instruction like the one following it is a two byte

instruction. The next instruction is an A1 whose mnemonic is CMP A, indexed,

which translates to CoMPare accumulator A to the memory location pointed to

by the address contained in the index register plus zero. And so the program

continues.

It's probably obvious by now that having to write a program in two

digit hexadecimal form usually referred to as machine language can really be

hard to interpret unless you are able to memorize the mnemonic translation

for all of the hexadecimal instructions. Wouldn't it be easy if you could

write your program using the easy to remember mnemonics and let the computer

translate them to their machine language equivalents to be loaded into

memory? Well this is what the assembler does and in addition allows the

programmer to use labels and comments with statements and add assembler

directives which allocate memory storage locations and start the program in

the selected memory address just to mention a few. The assembler also detects

and prints out detected errors in the source program. So as you can see the

assembler is simply a program which allows the programmer to save time and

simplify his program writing by using labels, simple mnemonic commands, and

assembler directives. The assembler program itself is several thousand bytes

in length and is usually loaded from a tape reader. It is far too long to be

typed in manually.

Programming -vi-

The mnemonic written program to be assembled is generally entered

from a tape that has been generated by what is called an editor. The editor

is a program used to generate a new or modify an already existent source

program. The editor allows the user to enter, delete, modify or insert data

to a source file. When the programmer is satisfied with the accuracy of the

file, a tape is generated which may then be assembled by the assembler. If

there are errors or if you choose to modify the program, the editor/assembler

sequence may be repeated as often as necessary. Like the assembler, the

editor is several thousand bytes in length and is far too long to be typed in

manually.

Since the SWTPC editor/assembler software package will not be

available until early 1976, many users will have to enter their programs in

machine language. It is suggested that you write your program in assembler

form using mnemonics as detailed later in the literature and then at the same

time jot down the hexadecimal machine code just to the left of the

instructions. You should be able to fill in all of the machine codes as you

go along with the exception of forward referenced branch and jump

instructions which you can go back and fill in after you have completed

writing the program. This hand assembled method was used when writing the

diagnostic programs in the software section of this notebook. You may even

find that it is quicker to hand assemble those programs less than fifty words

or so than to use the editor/assembler package.

