'USER’S MANUAL

00l
0o
0o

COPYRIGHT © 1978 BY
ADMINISTRATIVE SYSTEMS, INCORPORATED

Revision 2.0, January, 1978

All Rights Reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of Administrative Systems, Inc, (A.S.I.).

IT1.

START UP PROCEDURES. ...t iiiittneiiirieenonnenennnenensnannnns I-1

A. General Requirements.ottt ittt iieinnreennnenonnnns I-1
B. Entering the Loader..... ...ttt ininevronsecnnennnans I-2
C. Loading OPUS and the System Generation..................... 1-2
D. The System Generation Routine.........ccuiiiiiitinnnnnnnnnn I-8
E. Bringing up Initialized OPUS.......iitetetonoeennennnnnnons I-20
INTRODUCTION TO THE OPUS LANGUAGE......ccouvterniinnnnnnnenn II-1
A. Background.......cioeeeeioeneteoeeaocasanosaccacaoasacanncans II-1
B. Language Construction........ ceeiiiiiiiniieeneeennnennanns II-3
1. Command Mode.....uvriionereneeunsecaneeenanennsnnenses II-3
2. Program Editing......ciiiieeiiiiiteeenenecneeanenanans I1-4
3. Special Characters.. ittt enerieseiatscsosnaeeananns I1-5
B, SoUPrCe ProgramS....cueeeceeecenneccoacceoasncasaneeans I11-6
5. Compilation.......... f et eateeeatreerecaea et II-6
6. Object Programs...... et ee et e e aaeaas II-8
7. Statements............... e receeece et e 11-8
B. OPEraNdS.:.eceeseeesereeeseassaaasacnonsaasennaannnnnns I1-8
a. ConsStants.. ittt iiieeranerootioesseanannnananns II-8
1) Numbers...... et teteceatececec e a . 11-8
b2 TN v b oV ¥ T II-10
b. Variables......... e teceteese st anacteatataeceeanans II-10
1) Simple VariablesS...oveeeerceeenaneannnnneeanns II-11
2) Matrix VariablesS......iiieeiiineniacnnnnennns II-11
9. Number €—>» String Conversion.....eeveeeeerienerceneennn I1-12
10. Statement Construction.........iiiiniiiiiiiiinennennns I11-13
11. Operand Stack..... f et eeeaeesseaa ettt asanas IT-14
2. The Semicolon.....ccevveeveneacenne ettt et I1-15
13. Line Construction......... ettt e eet et I1-16
1., Block Construction......ccuoveiiniintrinnreannennananns I1-16
15. The Colon.......... ceeeaaenn e et ceeeaeca e I1-18
16. The COMMA. .oueeeencanoeenceeecaanneaanoaasaasnnennnnes II-19
17. Peripheral Devices... .ttt inereetennennnneenoansenanens II-19
18. Data Files....vive.on. e e etecneaeace e II-19
19, DisSC TAZS ..t eveinosrsotoaanssanoasansceascssoaconcnnnnasnn 11-20
20. Disc Swap Routine.........ccivvenennn e e e e I1-21
21. Enabling DisSCS..iiveiitiieeetnnesecnocaseansasensnsnans I1-21
22. Program and File Names and TypeS..ccuieeentinenranennns I1-22
23, Bl O S . st et teenenenennoasesesnanosasesnacsesananasnanns II-23
a. Statement Errors......cceiciiitiieininenteerenoannsns II-23
b. Buffer Overflow Errors.....cceeeeeereeriieseescnsoann 11-23
C. DiSC BrrOr S .. ieeeeeneaesaasassosioeeessnnsssscaneas 17-25
24, Debugging HintS..iviiieiiieneeriooeonnrocannasassonns 11-27
C. Using OPUS...... t ettt ieeter e vt et et ettt I1-28
D. Manual Format.......vun. G hetier s ee e e et IT-32

IT1T.

IV.

VI.

VIT.

COMMANDS . . it e ittt ii et itesaneianenn

A. Fundamentals......oieeeineennn
B, Definitions.....eueeeeeerenennn
1. COMpile..iiiicviirenennnas

DELete....coiiiiiviiennn

OO =W
=
2]
=

ASSIGNMENT ... ¢ttt it i et et eneeecnnans
A. PFundamentals.......ccoiiuene..
B. Assignment: =
ARITHMETIC OPERATIONS.....o0veean.
A. Fundamentals......eeeueeeneenns
B, Definitions.....ceeeiveeneenan.
1. Addition: +cieiinne..
2 Subtraction and Negation:
3. Multiplication: *
L. Division: / et eeaee
5. Exponentiation: 4
STRING OPERATIONS. ... v nenenn
A, Fundamentals.......eevuevenennn
B. Definitions....eeueeeeereeannns
1. AQuotation Mark: "
2. Concatenation: &
3. Substring: $
INPUT/QUTPUT OPERATIONS...........
A. Fundamentals.......eeeeennnnnn
B. Definitions.....i.iviennnennn
1. INput......oiiiiiiiinnnnn
2 INPUT . ci it i s it it cienann
3 PRINT . . it iiein i inanann
b OUTpUut. ..t ivieinencennnnns
5 Print Formatted...........

vi

...............................

...............................

...............................

...............................

............................

VIII.

IX.

6 LI sttt ittt it ieenceennecanennononenoesnsncnsaneneess VIiI-8

7 SPAce...... C et eeetet e er ittt ettt ettt aeae VII-9

8 SAVE. ... ittt inineann, ettt tetetceaat et et VII-10

9. Compiled SAVEttt enrnesernonsaeinennanananeonnens VII-11

10 GET . ettt it i it ittt aiaeneasesneenneaenneanenans VIiI-12

11 10 VII-13
DI SC OPERATIONS . it ittt aeeieneeeneneaoeaaannenaansenennneanens VIII-1
A Fundamentals . i it iiieniieeeeeionesseanoaseenannesnananana VITI-1
B. Program Storage and Retrieval........iiiiinnriinnnnnnnnnn. VIII-4
e SAVE . ittt it ittt i ittt atotonosenseasernennnnnsnseeoneennns VIIiI-5

2. Compiled SAVE or DUMP..... et tteraec e e, VIII-6
S €30 VIII-7
4 LOAD..... et e et re st c e s et a et ettt e VIII-8
C. Data Storage and Retrieval.....icueueeieeeeneeeeneennnnennn VIii-9

P € 23 2 VIII-12

2. ASSIGN......eieenean. ettt e et aa e et ettt VIII-13

3. READ.....ctieevrnnnnnees G et e e asaaisaeeresane e VIII-14

S 5 VIII-15

5. CLOSE...... e s et eseiis i ea it ettt e VIII-16

B. PURGE. .. itiriiieieeeneeenoannnenecnasonecanenennennnnnns VIII-17

R L 75 VIII-18

D. General..... ceseaessacanan cee e Ct ettt eecte sttt VIII-19

L 1 7 Gt et tetesiesea ittt e s VIII-19

2. End Of File: EOF ...ttt iienneennencacannsanannns VIII-20

3. End of FILE: EFILE e eesetaease e e VIII-21

b, DISC..ieeceennnennnn e et etaetetret ittt ea s VIII-22

5. LIBrary..eeeeesecscescesss e eeteenaeat ettt VIII-23
BRANCH & BLOCK OPERATIONS..... cee e et ecaneteereraea e IX-1
A. Unconditional Branching.....c.eeiieiricenninsnencenscconnncnss IX-1
1 GOTO. it i it ieenesnsnenesasseneeaonnnssssaneseasasscacnsanss IX-3
2 GOSUB...RETURN S h s e e ets e st eneate st areenaen e IX-4
B Conditional Block Operations.....c.cece.. et es ettt IX-5
1 T i e tsieeanenassonsnscosonsnssosoesoaasossesnssnsaasnanss IX-6
2 IF .. .ELSE . .iiierrenernncncnnsnnenns crenenna Cerenretennan IX-7
3 LOOP...TO.. . NEXT ..ciievevecannnnans C et etaeaes e IX-8

L, WHILE...CONTANUE ...vciiveneeeennonnssanssnecscananaansa IX-10

5 ON. i tiirernsrnnnnonsnennen e et titeetaser et et e IX-11
BOOLEAN & RELATIONAL OPERATIONS....civntiinevineeinnnnnannancenns X-1
A Boolean Operalions...ie i iieieeneeeaneersonsanssanacesncennsas X-1
1. AND......... et st casaeraaas et e ea sttt e X-2
2 OReivirnenecnnennns Cete et e etaer e e n et e X-3
3 NOT e ittt tseenenosneenscnssaecnsoesaanecnanensonnnnansnnas X-4

vii

XI.

XII.

XIII.

B. Relational Operations......ieieieeiieesearenecnesanssesnansnsas X-5
1. Less Than: < tuiveerrennnenenn e eee e e X-6
2. Greater Than: > . ..iiiieinreeeeneoosennneenenenaneannnns X=7
3. Not EQual: #f . .itieereneeneaeooanaaaeenanenaaanaacnaaanns X-8
4 1 X-9
FUNCTIONS . . i vttt ieeansrsenanonsessnssssssssoanssscsassanacnsnssns XI-1
A. Exponential and Logarithmic Functions......... .o XI-2
1. EXPonent...... ceeneas e e e as s esaeac et et XI-3
2. LOGarithm..... e e it eteetere ettt ee e et ettt XI-4
B. Trigonometric Functions.........c.viiiiimiiiniininaa,.. XI-5
1 SINE..veveeenenens ceeaes Ceetceceecec ettt e XI-6
2. COSine...ecovvvess Sttt et et et eat ettt et as s XI-7
ST 7 V.- o X1-8
4, ArcTaNgent.......cceeeo... f et eccaenete i XI1-9
C. General Functions..... ceeaes e recetceneacec et XI-10
1 ABSOlULE . s i esr e e cncien e acacaaasa e XI-10
2 ASCII....... e e tereseceancan s et aaanaeatcescetaaneaaanenn XI-11
3 BREAK . .ttt inneeveanrecanancassnsssaascoaaanssnsncnnsasacnns XI-12
4 DATE. it i et cencncecaonnnsnnae e et eeceneneaace et XI-13
5 FETCH.......... Gt e s et e e aetae et e sttt et XI-14
6 LENZE N . et i i reenecaeenosoeaossoeanonsnssasaaasssasasanss XI-15
T. MAXimum......eeceoeveees f e et eeseeatae et s e e eas e XI-16
8. MINimum.....eooeee.. ceeeeeaa et trteteceeteer e XI-17
G, NONE. ..iieseoeeranscosresessssssssossssssssssnnsnsnaenseas XI1-18
170. NUMber......ceeevae teeeets ettt etaet ettt e eeneneaanans XI-19
T1. RANDOM. .ttt ienevnenecoascoesassesnasossenosesossosanasaennss XI-20
12, SiGN....cviervennenns ceeereeeans Ceserernceaaenn e XI-21
13. SQuare Root......... ctessesasaasteetenrenanann Cesacecaanas XI-22
14, STRiNg..e.eeevenn i et et eee bt e e b aneeaeaeaa XI-23
15. STUFF..... st esaecseseatsteenceaatsases sttt e e XI-24
16. TRUncate........... ettt ree e cactenaanas et tanen e eaaanse XI-25
MATRICES. . citvvneensncnnns Cetrtececianaaens e treteesetaeseataeaeas XII-1
A. Fundamentals.......... cessaesensne c et tersetes sttt caaaenns X1I-1
B. Matrix Operations.......ceeieecencercnncencnns e rresaesaacens XII-3
1. DIMension........ci.oeen Creteceeeeeaae e Creeeeeeeaas XII-3
2. Matrix Element: ! Gttt eaterreeetereanaraeeea e XII-4
MISCELLANEQUS OPERATIONS . .t ittt neennsecntonsssssananoacnnanns XITI-1
A. END........... Cere e ettt eseete ettt et e XITI-1
B. REMark...... et Sttt et ettt ettt et ettt oo s XII1-2
C. SCAN Ceterteneeanans Ceeeresenana et e ettecaeaene e XIII-3
D. THEN.....evieneeena Ceceeceanas cectetenaeeanan Chrereceeeanan XIII-4

viii

XIV.

XV.

OPUS/TWO & OPUS/THREE SUPPLEMENT. ...t teenennnenrennnnnneaenns XIV-1

A, OPUS/TWO.. e iettrerorosnasacnacoanannnnan Gt et tieeecaee e XIv-2
1. Error Trapping......c.coe.e. C e iaeaea ittt X1v-2
a. ERROr......cccieeeann e ce st ee sttt ie et XI1v-2
b. Question Mark: & .. iiiirinineeenennennonnrenennens XIv-3
2 External Subroutines and Functions........eoveeivnunnn.. XIV-4
a. BEXTernal......ceeeeeenans St e ettt ettt et XIV-4
b. GLOBAL. C vt et et e e ettt et et e e XIV-5
¢. CALL........ ceeerecenaans e e eesecstr et et XIV-6
d. @ Sigh..eieveneenens et esesterateat et XIvV-7
e. SUBroutine..... et e tt i etaeete et et X1v-8
. RETUPN. it it cii ettt ieietieeaoceoneaneseanceannnnn XIv-9
3. Extended Strlng Manipulation.......itiiinininenennennnan XIVv-10
a. SEEK....iieeneeeonanne . XIV-10
4, Extended File and Disc Manipulation.....iieeeereeeeennnn XIV-11
a. Dimensioned Files..iiveieeeernreieananessseoenncannas XIV-11
b. Expansion of the Disc Command.....coeiuireieinnnnnnn XIv-13
¢. SEQuential...... Sttt e s ecasean e ee ettt XIv-14
d. ESEQuential.....ccciece.e. Lttt eteat s et et ee e XIv-15
e. RECord............ Ceeeraeene teeeeacaaanacaeaaaaeaa XIv-16
f. TAG.....eevvecennn Gt eeesce s aertaaet et XIv-17
g. SWAP ceresenes st ircecncasenenes et aaen XIv-18
5 Machine Code Subroutines.............. St eseseercaeaa s XIvV-19
a. Machine CALL........... . XIvV-19
. OVErlaysS....vieereeerenrensnseaasannnnnas Ceeeeeieaaaan .. XIV-20
a. OverLAY....iivvennen e er et teet et e et aaeeean XI1v-20
7. Miscellaneous Statements............... ctrereecrastenanas XIv-21
T 0 1 XI1v-21
b. POP..vieievevanes e ceeseses et tae et a et e te s X1iv-22
C. Byte IN..iiiiiereonentetseoncnnnnanans s eetescerenecaans XIv-23
d. Byte OUT...iieveeeeenneeronernnnns st e e it eenas XIv-24
B. OPUS/THREE.....ceteceeecnncnas Ceseseseatesicitcesasncaenanes. XIV=-25
1. ASCII Program FilesS....uieeieeteierenosoasascnsasasnanenas XIV-26
2. TRACE........ et et et etetrete et et et ettt en i anenae XI1v-27
3. Multi-User CommandsS....cveeseresssscasnosssssarsasanssns X1v-30
a. TIME....... creereeas creeensareen St eetres e XIV-30
D. HANG. .. ieiitveeeroaasenosasnssosoassssnssncnossnsnasans XIV-31
4, Machine Code Relocatable FileS..i.ceeeeeasesncrannnas ... XIV-32
a. OPUS Subroutines.......... Seeccereecresaansenssanens XIV-33
THE WHYS AND WHY NOTS OF COMMON PROBLEMS.....cciiieterennncceanns XvV-1
A. Imbedded Spaces Within Key Statements......... Ceteeaatanaaas XV-2
B. Illegal Block Entries and EXifS...uivivrrancnnnnnceconcassnnns Xv-4
C. Clearing the Operand Table.......... e Cheteanreeeeenaeaa XV-6
D. The Format of Disc Statements........ce... i eeeenceeteaaaaaa Xv-8
E. The Care and Feeding of Data Diskettes......ciiivnineennnnnnn XvV-9
F. Why OPUS Won't Do Anything......eeiiiiiiiiriiiianenionenns ... XV=12

ix

XVI.

GLOSSARY .. .cvvennnnenn ctbeeaeas e

.

NHMXE<<3 OO ZIOCOAoHITQH@BDUOQWE P

AA.

CC.
DD.
EE.
FF.
GG.
HH.
I1.
Jd.
KK.
LL.

NN.
00.
PP.
QQ.
RR.
SS.
TT.
uu.
Vv.

Append....coieiiiniininn., .
Argument..... ceceensenes e
Array....coeceeenaaensn ceeeens
ASCII Code Representation...
Assignment.........cciue.s
Binary Operator.......c... ..
Bracket.....vieviveenn. oo
Buffer........ cev e e
Byte....oeenvnt Cetecreanann
Character......veieeeeeeenn.
Comment.....eiiinvnenvavenas
Constant....cvevivivnnenenns
Control Characters..........

Crash...eveeceene cteseseennas

Delimiters..ceveeeusees e
Editing....... Cesetesetenaan
Execute.....cvvenne veeecses
Expression........... ceeaans
Floppy DisC.veniennenenn oo

Infinite LooOp..eeeivnaens e

Interrupts.....ccovieen cenne
Label........... cesenes cenen

Literal String......o... ceen
Memory Requirements..... SN
Number-to-~String.....c.vevv..
Object Program.......ceeeses
Operand......ccoeeeueee cresan

Operation.....ecevee.e ceesenas

Operator...ccoveviceencnnnnas
Parentheses........ chesenans
Patches..veieirvennacrennnnas
Peripheral Device......eveu
Postfix Notation........e...
Priority Structure..........
Program...ceeeeeevsoccscnene

Program Code...vvvrienvvansnnse
Program Counter....... ceesona

PROM..¢.vvenvoenns ceetantans
Protected Memory.....eeeeue.
Quotation Marks....cveveenns

XVIT.

XVIII.

XIX.

XX, SpacCeS..ieuisererosososesescnes et ea e eseets et s ceataacracraena XVIi-12
YY. Statement......iceeierreececocnccnnsannans cere et e e Ceseen XVi-12
ZZ. Statement Delimiter......ieeeeeeeiinenennnnn Ceeseereaataaeaans XVIi-12
ABAA. String-to-NUmbeEr. . ittt ieernnoenceesnecenoeneaonnesennnena XVI-12
BBB., Terminals..uieeeeeresseecesossesoacnsenaaseoaesansenansannanna XVi-13
CCC. Unary Operator....veeeeeeceeenceseenns Ceeetsasiers ettt ananan XVI-13
DDD. Value Format....eveiereeennecneennn c it e et cas ettt st eaanann XVI-13
EEE. Variables...veeveeeeeveeconenneens ce et ees e chee e XVI-13
AP PEN DI CE S . it ittt vttt oneannsesetencsaecneeoncasoecsneansnnannns XVII-1
A. Standard Drivers....cceeeeieons et e et tet et XVII-1
1. Serial I/0 Interface RoULINES..v.iveirenterenenneneanenns XVII-1
2. Port Initialization RoutinesS....e.eevientiieinrnenneoenns XVII-5
3. Disc Drivers..e.cieieneeecaees ch e e e st eet ettt XV11I-7
B. LoadersS..iicieescsasscsevosnanss e s e eser et ian e et eatrreenenn XVII-14
1. Disc Loaders.....veeeeeeseens St et e et ittt XVII-14
a. MITS Altair Disc Loader: Octalciieiivnvnnnnn XVII-16
b. MITS Altair Disc Loader: HeX ..ieieieeerennreonennns XVII-20
c. 1iCOM Disc Loader: 0Octal ..ec.vvviierninnnnenenannnens XVIiI-24
d. 1COM Disc Loader: HeX .uueeeeienneeenensoensnennens XViI-28
2. Paper Tape Loader...ieiiienereeneanserocnanenosnsonsonnns XVII-32
a. Paper Tape Loader: Octalc.iiiiiiieiertinnnnnenns XVII-33
b. Paper Tape Loader: HeX ..vciuiveerririecncnrsasecnnnns XVII-36
3. Cassette Loader..icieeerierenresreersesnassaasetsoansnsenas XVII-39
a. Cassette Loader: 0ctalccveeinecenennnnnnenans XVII-U0
b. Cassette Loader: HeX ..vieiveiineeenionanonnannnnans XVII-42
C. Disc & File Format...vveeeveescncnenn eeeereiraneneeeaa eeee.XVII-U4
1. Table Description...... s tantane Cereanens ceireasanena XVII-U4
2. Disc Lay-0ubt....eivienecnencnnasennsannans Sttt seaeaaas XVII-u8
D. Statement Table....eevevevoveracsnecocnonnns Ceteteectseneans XVII-Ug
E. ASCII Table..ieeeesocovervoanonsorsnsnnsas et creeresaanans XVII-55
F. Technical Data....eeeveenn.. et eeetececerereannes Cheeseeasaas XVII-56
SAMPLE PROGRAMS . ittt evneersrossoscoasenconanennn et eresaneceas XVIII-1
A. Programs Which Run Under OPUS/ONE......iiieiieennenonssass XVITII-T
1. Bubble SOrt...eeieeeecsoccssencosascnnncnnns cierescnnns XVIII-1
2. Calculabtor..ceevieeieesesenersonosnsnoansans et eraaae e XVIiIi-2
3. Loan Payment Calculator.......cieivenincanns cete e XVIII-4
B. Programs Which Run Under OPUS/TWO..... it iiieennsnnscnnseas XVIII-5
Te QUICK SOPrL.uiieenieeereeescetesocsossasossassssssensnnas XVIII-5
2. The Maze....veeerevoconacocanas creeaaes ceeens e eteeaeae XVIII-6
INDEX....... ceeens et ese e ettt ace et e, XIX-1

X1

START UP PROCEDURES. | ... i ittt iieieennreneananannnnnn I-1

A. General Reguirements.......viiiiiiieeinnneretacocssncoannas I-1
B. Entering the Loader.........c.cevue. e eeesiseoacssanaasaas I-2
C. Loading OPUS and the System Generation..................... I-2
D. The System Generation Routine.........ciieiveriinnnennnnn. 1-8
E. Bringing up Initialized OPUS......... ...t ancnnn I-20

I. START UP PROCEDURES

A. GENERAL REQUIREMENTS

OPUS is designed to run on any 8@8@- or Z8@-based computer system, regard-
less of hardware peripheral configuration. To implement this flexibility,
the language must first be tailored to the particular hardware configuration
of the system by means of the System Generation Routine. This routine allows
the user to declare all drivers necessary to run the terminals, dises, and
other devices configured in the system.

The version of OPUS purchased will always contain this System Generation
Routine, and prior to actually using OPUS, this routine must be executed.
This section is designed to help the user through this routine in order to
produce a version of OPUS configured specifically for the hardware in use.

OPUS/ONE CASSETTE VERSION

This version has no capability of accessing disc drives and, hence, no

disc commands. Any serial device (including cassette) driver may be defined
as a standard device driver (listed in Appendix A.) or may be entered
directly in machine code during the generation procedure.

OPUS/ONE DISC VERSION

This version comes with more than one System Generation Routine. The rou-
tine to specify depends entirely upon the disc drive to be utilized. A.S.I.
provides standard disc routines for specific disc drive systems. If a
standard drive does not apply in your case, the "ZZ" version should be spec-
ified, allowing the user to enter the machine code of the disc driver direct-
ly into OPUS. Note that this "ZZ" version will also contain standard disc
drivers. All serial device drivers may be defined as standard device drivers
or may be entered in machine code during the generation procedure,

"OPUS/TWO DISC VERSION

This version includes all OPUS/ONE commands plus additional commands to
facilitate programming. The System Generation Routine provides all standard
disc drivers and the capability of entering a user-~defined disc driver in
machine code. Multiple disc drivers may be specified, allowing the user to
access different types of drives simultaneously on-line. All serial device
drivers may be defined as standard device drivers or may be entered in
machine code during the generation procedure.

In order to load OPUS with the System Generation Routine, it is necessary to have
this minimum hardware configuration:

1. 808P or Z8@ Computer Processor

2. Memory: 16K (OPUS/ONE Cassette or Paper Tape)
20K (OPUS/ONE Disc), 2U4K (OPUS/ONE "ZZ")
24K (OPUS/TWO)

3. Any ASCII Terminal communicating with the computer by means of any I/0
Interface.

4, One of the following: Paper Tape Reader
Cassette
Hard-Sectored Disc Drive
Soft-Sectored Disc Drive

B. ENTERING THE LOADER

OPUS, with the System Generation Routine, must be loaded into memory prior to
executing. To do this, the user must first put into memory a loader routine

which will be used to read OPUS off the medium and store it in memory. The loader
routine may be entered into memory by any of the following methods, dependent upon
the hardware:

1. Toggled in through the front panel switches, if such switches exist.
2. Through the use of a system monitor if there are no front panel switches.

3. If the system currently has an operating system, it may be possible to enter
the loader as a file and retrieve it whenever it is necessary to load OPUS.

4. The loader may be burned into PROM (Programmable Read-Only Memory) located at
some high memory location.

The machine code listing and format for possible loaders are listed in Appendix B.
at the end of this manuel. The user should carefully scan these loaders to deter-
mine if they are compatible with the hardware configuration. If so, the loader
may be used as is. If not, the loader must be modified or rewritten according to
the specifications given for each loader medium (Appendix B.).

At the end of the loader, the user should insert a port initialization routine to
initialize the interface board in order to communicate with the terminal.

C. LOADING OPUS AND THE SYSTEM GENERATION

Before executing the System Generation Routine, the terminal with which the routine
is to communicate must be declared. This declaration must be made either before or
after OPUS is loaded, depending upon the hardware configuration. Refer to the

following section which applies to your configuration.

1.

STANDARD SERIAL I/0 INTERFACE

Each version of the generation routine has standard drivers with which to
communicate with the System Generation Routine. The table in Appendix A.
lists the interface for each driver. 1In this table, a code (I1, I2, I3)
is specified for each possible driver that may be used to communicate with
the system generation. This code will be referred to in the following
sections.

Even though the interface board to be used may not be one of the standard
ones listed, it is possible that the driver may be the same, if the same
I.C. chip is used. Refer to Appendix A. for a machine code listing of

each of the standard serial device drivers that are used in the generation
routine to see if your interface is compatible. 1If it is not, use the next
section on using non-standard interfaces (Section I.C.2., page I-5).

If the terminal is strapped to a port above 63, it is necessary to use the
non-standard interface procedure even if the interface board is standard.
This is because the switch configuration determining the interface does not
have enough bits to allow for a port greater than 63.

a. SYSTEM HAS FRONT PANEL SWITCHES

Go through the following procedure to load OPUS, referring to the
table in Appendix A.

1) With the examine switch, examine the first location of the loader.

2) Set the sense switches on the front panel to one of these config-
urations which determines the I/0 interface with which the genera-
tion routine is to communicate (the sense switches are the left-
hand 8 bits of the address switches--A15 is the most significant,
A8 the least significant):

A15 A14 SWITCH CODE

)) I1
@ 1 I2
1 2 I3
1 1 I4

3) Set the remaining sense switches (A8-A13) to the lowest port number
(whether data or status channel) at which the interface board is
strapped for the terminal,

Examples:

A13 A12 A11 A10 A9 A8 PORT

2 @ @ g © 9 0

)

5)

A13 A12 A11 A10 A9 A8 PORT

') 1 2 @ P 9 16 (28 Octal)
1 1) @ 9 @ 48 (6@ Octal)

Mount the medium upon which OPUS is received into the appropriate
device.

PAPER TAPE: Start the reader at the beginning of the leader portion
of the tape (null bytes).

CASSETTE : PLAY at the beginning of the cassette. Wait 10 seconds.
DISC : Turn the power on.

Push RUN on the front panel of the computer. The System Generation
Routine will be loaded into memory and control immediately sent to

the routine. If the computer should HALT, a checksum error has
occurred, and the loading procedure should be restarted.

SYSTEM HAS NO FRONT PANEL

Follow this procedure:

1)

2)

3)

4)

Mount the medium upon which OPUS is received into the appropriate
device.

PAPER TAPE: Start the reader at the beginning of the leader
portion of the tape (null bytes).

CASSETTE : PLAY at the beginning of the cassette. Wait 10
seconds.
DISC : Turn the power on.

With the system monitor, start execution at the beginning of the
loader. Do not let the loader automatically send control to the
generation routine (modify if necessary). Return control to the
monitor. If the system HALTS before OPUS is loaded, a checksum
(bad read) has occurred. Restart the procedure.

With the monitor, examine the first three bytes of QPUS:
3¢3 JUMP instruction (Octal)
L Low address

H High address

Examine the location given by H and L above. There should be the

I-4

following:

OCTAL HEX
363 F3
061 31

? ?
? ?
333 DB
377 FF

The fifth and sixth instruction execute an IN from the front
panel (port 377/FF). Because there is no front panel, it is
necessary to load the Register A with a byte specifying the

interface and port.

Bits 7 and 6 (most significant) determine the interface:

BIT 7 BIT 6 SWITCH CODE

/] /] I1
9 1 I2
1 2 13
1 1 I4

Bits @-5 specify the lowest port number (whether data or status)
for which the I/0 board is strapped for communication with the
terminal. Examples:

BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT @ PORT

]) 2 2 2 2]
) @ 1 2 @ 2 8
1 1 2 2 2) 48

5) Deposit the following two bytes at the location where there is cur-
rently a 333, 377 (Octal) or DB, FF, (Hex):

OCTAL HEX
P76 3E
A A Where A is the byte determined in Step U4, above.

6) With the monitor, start execution at the first byte of OPUS. The
OPUS System Generation Routine should begin execution.

NON-STANDARD SERIAL I/0 INTERFACE

Proceed through the following steps. If the system has a system monitor,
it may be used to examine and change memory. Otherwise, use the front
panel switches.

I-5

Load OPUS with the loader by mounting the paper tape, cassette, or
diskette, and executing the loader at the first location. Do not allow
the loader to send control to OPUS immediately. Return control to the
system monitor, or HALT the machine.

An input and output subroutine must be deposited at some location in
memory, through which the generation routine can communicate with the
terminal. The location should not conflict with the location of OPUS
(#-16K: OPUS/ONE Cassette; #-20K: OPUS/ONE Disc; #-2UK: OPUS/TWO).

If a system monitor is being used, it may be possible to use most or all
of the input/output routines that the monitor uses.

These subroutines will be used only temporarily by the initialization
routine.

SPECIFICATIONS: INPUT ROUTINE

1) The subroutine should execute a loop, waiting for valid data to
come in by checking the status channel.

2) When data is present, execute an IN instruction off the data channel.

3) Execute a RET instruction to return the byte in Register A to the
OPUS routine.

4) Do not destroy the contents of the B, C, D, E, H, and L registers.,

SPECIFICATIONS: OUTPUT ROUTINE

1) OPUS will send the ASCII byte to be output to the terminal in Register
B.

2) The subroutine should execute a loop, waiting for an OK status to out-
put the byte.

3) When it is alright to output the byte, move the ccntents of Register
B to Register A and execute an OUT instruction.

4) Execute a RET instruction to return to the OPUS routine.
5) Do not destroy the contents of the B, C, D, E, H, and L registers.
Note: Refer to Appendix A. for examples of input and output subroutines.

Deposit these subroutines in memory.

I-6

C‘

e.

At the following locations relative to the start of OPUS (normally

#), deposit the

OCTAL HEX

following bytes:

DATA BYTE

292 210 @9 @8
g98 211 89 09

200 812 99 QA
g00 813 @@ 2B

The generation

to use the user-defined I/0 subroutines.
panel, all 8 sense switches must be up (high).

Low address of input subroutine
High address of input subroutine

Low address of output subroutine
High address of output subroutine

routine must read in a 377/FF from port 255 in order

If the system has a front
If the system does not

have a front panel, it is quite likely that there is nothing connected
to port 255, in which case a 377/FF will automatically be read in from

this port, and nothing else needs to be done.

However, if there is some

device on this port, or if some byte other than a 377/FF may be read, go
through the following:

1)

The first instruction at the start of OPUS (location @) is a JUMP
instruction to the start of the System Initialization Routine.

Examine the location to which this JUMP instruction sends control.
There should be:

OCTAL HEX
363 F3
061 31

? ?
? ?
333 DB
377 FF

Replace the 333/DB and 377/FF bytes with the following:

g76 3E
377 FF

Instead of reading data off port 255, the Register A is immediately
loaded with the 377/FF byte.

Start execution of OPUS at the starting location.
Routine should come up.

I-7

The System Generation

D. THE SYSTEM GENERATION ROUTINE

The System Generation Routine requires data from the user to determine buffer
sizes, I/0 drivers and several other parameters. ALL DATA DISCS MUST BE FOR-
MATTED WITHIN THIS ROUTINE. There is a default value for all buffer sizes which
are assumed if the user simply hits RETURN to the prompt. Whether a default or
user-entered value, the buffer sizes declared will become default sizes under
normal OPUS operation. Some may be changed during OPUS with the SET command.
Refer to the glossary to get an understanding of the meanings of these buffers,
If the user does not have a feel for any of the sizes, it is recommended that
the default value be indicated.

All underlining refers to computer prompts.

¥%%¥%¥%¥ OPUS SYSTEM GENERATION ¥¥¥¥¥

COPYRIGHT (C) 1977 BY ADMINISTRATIVE SYSTEMS, INCORPORATED (A.S.I.)

OCTAL OR HEX NOTATION:

Enter an "O" for Octal or an "H" for Hex notation. All numbers entered in
the following generation routine must be entered in this Octal or Hex nota-
tion. The generation routine will also output all numbers in this notation.

IMPORTANT !!! No numbers must be entered as decimal numbers. This applies to
the routine only, not normal OPUS execution.

INCLUDE MATH FUNCTIONS?

"Y": The following functions will be included in the OPUS command set:

SIN
CoS
TAN
ATN
SQR
LOG
EXP
4 (power)

"N": The above functions will not be included in the command set. Approxi-
mately 140@ bytes will be saved if they are not included.

Default: "Y"

TOP MEMORY PAGE:

Enter the number of pages of contiguous memory which OPUS will utilize. A
page is 256 bytes (or the 8 most significant bits of a 16-bit address). For
example, if there is 32K of memory, enter 288 (Octal) or 8@ (Hex).

1-8

Default: 20@ in Octal or 80 in Hex (128 decimal)

-~-- BUFFER MAXIMUMS ---

DIGIT PRECISION:

Enter the default value for the maximum number of digits to which preci-
sion will be carried out under arithmetic operations.

Default: 19 in Octal or 8 Hex (8 decimal)

BYTES- VARIABLE NAME TABLE:

Enter the number of bytes determining the buffer size of the table holding
all variable names used within a program.

Default: 226 in Octal or 96 in Hex (150 decimal)

BYTES- OPERAND TABLE:

Enter the number of bytes determining the buffer size of the table tempo-
rarily holding the addresses of all operands needed by one operator.

Default: 55 in Octal or 2D in Hex (45 decimal)

BYTES- CONSTANT TABLE:

Enter the number of bytes determining the buffer size of the table tempo-
rarily holding the values of expression calculations.

Default: 4@@ in Octal or in 180 Hex (256 decimal)

BYTES- INPUT LINE:

Enter the maximum number of characters allowed on one line of input.
Default: 120 in Octal or 5@ in Hex (8@ decimal)
The following prompt refers to disc versions only:

MAXIMUM DATA FILE BUFFERS:

Enter the maximum number of data files which may be accessed simul-
taneously during a program.

Default: 3

--— SERIAL I/0 DRIVERS ---

Each peripheral device on the system other than the discs must be assigned
a logical device number defining the device for OPUS operation. These

I-9

device number assignments are arbitrary, although it is recommended that
Device 1 be the master terminal. There is no limit to the number of devices
allowed. During this procedure, the user will also define drivers for each
of the devices, whether standard or non-standard peripherals. All devices
entered below must be serial access peripherals only.
DEVICE @@1:

INTERFACE: Enter one of the following:

(1) For a standard interface, enter the mnemonic listed with the
appropriate interface in Appendix A.

(2) For a non-standard interface, enter "2?".
(1) If a standard interface is declared:
LOW PORTi#:

Enter the lowest port number on the device as it is strapped in
the interface board.

INTERRUPTS ALLOWED?

Enter "Y" (yes) if Control C is to be enabled for input to the
device under OPUS operation, breaking the current program. This
is a software interrupt. No hardware interrupts are used in
standalone OPUS. Normally this should be entered for all input-
output terminals.

Enter "N" (no) if the device may not interrupt any operation.
This should be entered for any device where Control C is to be
ignored or treated as any other data, normally cassettes, paper
tape punches, etc.

Default: "V
NULL BYTES:

Enter the number of null bytes (@@@) that should be generated
by OPUS after every carriage return is executed in normal
operation. This is used for delay control only. Normally this
is not necessary and the default specified.

Default: @

The generation routine will print the locations of the input routine,
the output routine, and the interrupt routine (if specified) as they
are entered in as standard drivers.

INPUT ROUTINE: HHH LLL (High address, Low address)
QUTPUT ROUTINE: HHH LLL
INTERRUPT ROUTINE: HHH LLL

(2) If a non-standard ("?") device is indicated:
INTERRUPTS ALLOWED?

Enter "Y" (yes) if Control C is to be enabled for input to the
device under OPUS operation, breaking the current program. This
is a software interrupt. No hardware interrupts are used in
standalone OPUS. Normally this should be entered for all input-
output terminals.

Enter "N" (no) if the device may not interrupt any operation.
This should be entered for any device where Control C is to be
ignored or treated as any other data, normally cassettes, paper
tape punches, etec.

Default: "y"
NULL BYTES:

Enter the number of null bytes (@@@) that should be generated
by OPUS after every carriage return is executed in normal
operation. This is used for delay control only. Normally this
is not necessary and the default specified.

Default: @

The user must enter input, output, and interrupt machine code
subroutines for the device.

The generation routine will prompt the user for each routine by
printing out the address in memory for each byte entered in the
subroutine. The user must enter the instruction bytes (in Octal/-
Hex) after each address prompt.

INPUT ROUTINE:

HHH LLL

Enter the machine code instruction.
HHH: High 8-bit (page) address of the location
LLL: Low 8-bit address of the location

The generation routine will continue the address prompt, in-
crementing the address by 1 each time, until the user hits
carriage return to the prompt, designating an end to the sub-
routine.

OUTPUT ROUTINE:
HHH LLL

Likewise, enter the output subroutine.
INTERRUPT ROUTINE: (if specified above)
HHH LLL

Likewise, enter the interrupt routine.

The following gives specifications for the three subroutines that are to
be entered above. If it is still not clear exactly how to write one of
these routines, it is recommended that the user refer to Appendix A. for
the listings of the standard drivers for examples. The format is identi-
cal.

SPECIFICATIONS: INPUT SUBROUTINE

1) The subroutine must execute a loop, checking for a valid data byte
coming in by monitoring the status channel.

2) Execute an IN instruction off the data channel to retrieve the byte.

3) Return the ASCII data byte in Register A. If parity is present it
will be ignored by OPUS.

4) Terminate the subroutine with a RET instruction.
5) Do not destroy the values of the B, C, D, E, H, and L Registers.
SPECIFICATIONS: OUTPUT SUBROUTINE

1) OPUS will send an ASCII byte to output to the device in Register B.
There will be no parity.

2) The subroutine should execute a loop, monitoring the status channel
to determine when it is okay to output the byte.

3) Move the byte in Register B to Register A and execute an OUT instruc-
tion to the data channel.

4) Terminate the subroutine with a RET instruction.
5) Do not destroy the values of the B, C, D, E, H, and L Registers.
SPECIFICATIONS: INTERRUPT SUBROUTINE

1) The subroutine should execute an IN off the status channel and deter-
mine whether or not a data byte is forthcoming.

2) 1If data is on the receive line, make sure the carry bit is set, and
execute a RET instruction to return to OPUS,

3) If there is no data on the receive 1line, make sure the carry bit is
clear (@), and execute a RET instruction to return to OPUS.

4) 1If data is present, DO NOT execute an IN instruction from the data
channel. After OPUS calls this subroutine, if the carry bit is re-
turned high, it will then call the input routine to receive the data
byte.

5) Do not destroy the values of Registers B, C, D, E, H, and L.

Note that all three routines do not have to be entered for every
device. The input routine should be entered only if data may be
received from the device. The output routine should be entered only
if data may be sent to the device. The interrupt routine should be
entered only if the user wants a Control C received from the device to
be able to interrupt program execution. Normally this would only apply
to input/output terminals. OPUS utilizes only software interrupts by
means of this interrupt routine. All hardware interrupts are disabled.

The initialization routine will repeat the above device definition routine.
Incrementing the device number each time, until the user hits carriage re-
turn to "INTERFACE:",.

PORT INITIALIZATION ROUTINES —--

The user may specify routines that will initialize any 1/0 integrated
circuit chips necessary to allow device communication through the port.
This routine will normally determine clock rate, start/stop bits, parity,
etc. Refer to the documentation on the interface board to determine what
the routine must be for your device configuration.

The following prompt will be repeated indefinitely until a carriage return
is struck. Normally, for each device declared in the above I1I/0 definition,
an initialization routine should be specified here. OPUS will execute all
port initialization routines prior to printing the header message.

INTERFACE:

Enter one of the following:

(1) For a standard interface, enter the mnemonic listed with the appro-
priate interface in Appendix A. This mnemonic will be the same as
that given above in the I/0 definition.

The generation routine will print the memory location of the
initialization routine as it is inserted within OPUS:

INITIALIZATION ROUTINE: HHH LLL (High address, Low address)

(2) For a non-standard interface, enter "?".
The user must enter the machine code of the initialization routine.

INITTIALIZATION ROUTINE:

HEH LLL

Enter the machine code instruction.

The

HHH: High 8-bit (page) memory location
LLL: Low 8-bit memory location

SPECIFICATIONS:

1. The subroutine must output as many bytes to the status
port as needed to declare clock rate, start/stop bits,
and any other hardware configuration.

2. Terminate the subroutine with a RET instruction.

3. Do not destroy the values of the C, D, and E Registers.

EREERXXRRRRRRXERRRRBXRBRRFRERRXRRERR

following applies to OPUS/ONE Disc Version only (not "ZZ'"):

--- DISC NUMBER DEFINITION ---

NUMBER OF DISC DRIVES:

Enter the total number of drives using the standard driver on the system.
Default: 2

DISC FORMAT ---

ALL DISCS TO BE USED UNDER OPUS FOR PROGRAM AND FILE STORAGE MUST BE
FORMATTED IN THIS ROUTINE.

DISC NUMBER:

Enter the number of the disc drive (@-?) in which an OPUS data disc is

to be formatted. If there are no more to be formatted, hit carriage return.

FORMAT ENTIRE DISKETTE?

Enter "Y" if entire diskette is to be formatted. This must be specified
if Altair disc drives are being implemented or if the user wishes to make
sure that all sectors on the diskette are good. The routine will write all

zeros in each sector of the diskette. If a bad sector is detected, a disc
failure will occur.

Enter "N" if the drive is not an Altair and the user is not concerned with
condition of the diskette. The routine will write all zeros in just the
first track of the diskette. This is sufficient for normal OPUS operation.

IDENTIFYING TAG:

Enter a tag (a label of any ASCII characters, not exceeding 7 characters in
length) which will identify the diskette. This tag may be specified in OPUS

1-114

The

disc operations.

INSERT DISKETTE IN DRIVE:

Insert the diskette in the above-specified drive and hit carriage
return. The diskette will be formatted.

The format routine will return to "DISC NUMBER:" to format as many
diskettes as needed.

REEXRERERRERERRXRRRRERRERRXRARRERER
following applies to OPUS/TWO and to OPUS/ONE "ZZ" versions only:

DISC DRIVER DEFINITION ---

Multiple drivers for disc drives may be entered. This section defines the
sector read and sector write subroutines for each different drive that may
be running on the system. Multiple discs (defined in the next section)
may access the same driver routines. Driver numbers are automatically
assigned to each driver routine to be used in the disc¢ definition section.
These numbers are temporary only and have no relationship to the disc
numbers used in normal OPUS operation,

The following prompts will be repeated continuously until the user hits
carriage return to "INTERFACE:".

DRIVER N (N starts with 1 and increments sequentially)

INTERFACE:
Enter one of the following:
(1) Enter a mnemonic of a standard driver listed in Appendix A.
LOW PORT#:

Enter the lowest port number of the driver (each disc usually
has a series of port numbers that it will use).

The driver will be inserted in OPUS and the location of the sector
read and write subroutines printed:

SECTOR READ ROUTINE: HHH LLL

SECTOR WRITE ROUTINE: HHH LLL

(2) Enter "2?" to specify a non-standard driver.

A sector read subroutine and a sector write subroutine must be
entered in machine code.

I-15

SECTOR READ ROUTINE:

This subroutine must select the required drive, locate the heads
on the correct track and sector, and read the proper number of
data bytes into the given buffer area.

HHH LLL

Enter the subroutine in machine code instructions. Terminate
with a carriage return.

HHH: High 8-bit address of memory location
LLL: Low 8-bit address of memory location

SECTOR WRITE ROUTINE:

This subroutine must select the required drive, locate the heads
on the correct track and sector, and write the proper number of
bytes from the buffer area onto the disec.

HHH LLL ‘

Likewise, enter the sector write subroutine

SPECIFICATIONS FOR BOTH READ AND WRITE SUBROUTINES:

1.

Upon entry to the subroutine, these registers will have the
following values:

Disc drive number @#-7
Sector number @ through S-1 (3= number of sectors per track)
Track number @ through T-1 (T= tracks per disc)

E Double register pair containing the address of the buffer into
which data must be read or from which data must be written

omr o

The routine must return to OPUS one of the following values in
Register A:

Successful read operation

1 Multiple attempts were needed to read the sector, but a
successful read did finally occur. The routine itself must
be responsible for rereading a sector. OPUS will print out a
"DISC RETRY" message, giving the disc number track and sector
of the retry.

2 The routine was unable to successfully read the sector. A
"DISC FAILURE" message will occur, giving the disc number,
track and sector. Control will be transferred back to command
mode.

3. Do not destroy the values of Registers D, E, H, and L.
k, Terminate the subroutine with a RET instruction.

5. The subroutine is responsible for all CRC/Checksum analysis.
Retries must be attempted within the routine itself.

6. The subroutine must keep track of the current head location
on each drive, if necessary.

7. Many drives specify sector numbers as 1-S instead of #-(S-1).
Be sure to increment the sector number received by OPUS to

handle this situation.

--— DISC NUMBER DEFINITION =---

A disc number must be assighed to each drive in the system, defining the
appropriate driver and the physical specifications of the drive. The disc
number will be used to reference the drive under OPUS operation.

The following prompts will be issued continuously until the user hits
carriage return to "DISC DRIVER:".

DISC N (Where N is the disc number, starting with @)

DISC DRIVER:

Enter one of the driver numbers assigned above to define the driver
routines for this disec,

DRIVE NUMBER:

Enter the physical drive number (#-?) of the disc as it resides in
the set of drives.

BYTES/SECTOR:

Enter the number of bytes that will be read/written as data in the
sector.

Normal: 2@@ in Octal or 8@ in Hex (128 decimal)

SECTORS/TRACK :

Enter the number of sectors on each track.
Normal:

Hard-sectored: 4@ in Octal or 2@ in Hex (32 decimal)
Soft-sectored: 32 in Octal or 1A in Hex (26 decimal)

TRACKS/DISC:

Enter the number of tracks on the disc.
Normal: 115 in Octal or U4D in Hex (77 decimal)

-—-= DISC FORMAT ---

ALL DISCS TO BE USED UNDER OPUS FOR PROGRAM AND FILE STORAGE MUST BE FOR-
MATTED IN IN THIS ROUTINE.

DISC NUMBER:

Enter the number of the disc drive (#-?) in which an OPUS data disc is to
be formatted. If there are no more to be formatted, hit carriage return,

FORMAT ENTIRE DISKETTE?

Enter "Y" if entire diskette is to be formatted. This must be specified
if Altair disc drives are being implemented or if the user wishes to make
sure that all sectors on the diskette are good. The routine will write
all zeros in each sector of the diskette. 1If a bad sector is detected, a
disc failure will occur.

Enter "N" if the drive is not an Altair and the user is not concerned
with condition of the diskette. The routine will write all zeros in just
the first track of the diskette. This is sufficient for normal OPUS
operation,

IDENTIFYING TAG:

Enter a tag (a label of any ASCII characters, not exceeding 7 characters
in length) which will identify the diskette. This tag may be specified
in OPUS Disc operations.

INSERT DISKETTE IN DRIVE:

Insert the diskette in the above spe01f1ed drive and hit carriage return,
The diskette will be formatted.

The format routine will return to "DISC NUMBER:" to format as may diskettes
as needed,

HRRRXXRRRRRRXRKRERARRRERRRRRRXRNNRRR

All versions of OPUS:

=== DUMP QOPUS -=-

ENTER DEVICE NUMBER:

Enter one of the following:

(1) To dump OPUS to a serial device (cassette, paper tape, etc.), enter
the device number (1-?) as defined in the I/0 definition.

PREPARE DEVICE

For paper tape, turn the punch on. For cassette, insert a blank
cassette, push RECORD, and wait 10 seconds.

Hit carriage return. OPUS will be dumped to the specified medium.

(2) To dump OPUS to a diskette, enter "D" (does not apply with OPUS/ONE
cassette version).

DISC NUMBER:

Enter the disc number (as defined in the disc number definition
section) on which OPUS is to be dumped.

INSERT DISKETTE IN DRIVE:

Insert a blank diskette in the specified drive, and hit carriage
return. OPUS will be dumped on this disc.

--- FINISHED ---

The generation routine will go into a loop. The system may be halted.
The user's version of OPUS may at any time be loaded by following the
"BRINGING UP OPUS" procedure on the following pages.

NOTE:

It is possible to test the tailored version of OPUS to make sure that all
parameters and drivers have been entered correctly without loading this version.
After OPUS is dumped, it resides in memory exactly as it will when loaded. Thus
simply start execution at the first location (normally @#). OPUS should come up.

IMPORTANT !
If OPUS does not behave correctly after being initialized, carefully check all

parameters and drivers entered in the generation routine. It is most likely
that something was entered incorrectly.

E. BRINGING UP INITIALIZED OPUS

To bring up the initialized version of OPUS, the following steps must be
implemented:

1.

Put in Loader -

If the initialized version of OPUS was dumped to the same medium from which
OPUS with the System Generation Routine was loaded, the same loader should
be used. If the medium was different, a corresponding loader must be put
into memory. Refer to the loader procedure in Section I. B. to determine
how to put the loader in memory; the procedure in this step is identical to
that in this Section.

Define Device & Load OPUS

Front Panel

Before executing the loader, the sense switches of the front panel must be
set to determine the device upon which OPUS is to come up. Assuming "@"
means switch down and "1" means switch up, the following table gives the
switch patterns corresponding to device numbers defined in the System
Generation Routine:

A15 A1Y A13 A12 A11 A10 A9 A8 Device Number
@ 2 @]] 1] /] @ 1
2 @ @ @ @ 2 @ 1 2
2 ? 2 @] @ 1 2 3
@ 2 2 @ /) 2 1 1 4

No Front Panel

Using the loader, load OPUS into memory. Normally OPUS will first execute
an IN instruction from port 255 (377 in Octal, FF in Hex). If either a @
or 255 (377/FF) is read in, control will be sent to Device 1. If any other
byte is possible, OPUS must be patched to determine the device. Change the
following locations (shown in both Octal and Hex):

Location 0ld Byte New Byte Location 01d Byte New Byte
geo 101 333 p76 g U1 DB 3E
g09 182 377 JulY) g8 u2 FF 29

By making this patch, OPUS will always come up on Device 1. The second byte
may pe changed to give a different device number according to the above
switch table.

I-20

3. QPUS Execution

Start execution of QOPUS at the first location. OPUS should print:

¥ ¥ % ¥ ¥ QPUS/?2? REV 27?2 % % % % X

COPYRIGHT (C) 1977 BY ADMINISTRATIVE SYSTEMS INCORPORATED (A.S.I.)

DAY? Enter the day of the month (0-31)

MONTH? Enter the month (1-12)

YEAR? Enter the last two digits of the year (88-99)

FINE

OPUS is up and running!!! Good Luck!!!

I-21

(T,

INTRODUCTION TO THE QPUS LANGUAGE......... TT-1

C.
D.

BaC K roUNd . . i e e e e e e e e e e I17-1
Language Construction....... ...t i i, 11-3
1. Command Mode. ... iin it it ettt e e e e e TI-3
2. Program Editing....... ... II N
3. Special CharactersS ..ottt it it et e et e e e, IT-h
d R OUP CE PO A e v v e e e st et et ee et e I1-6
B Compilation. . vttt i i e e e e 11-6
6. Object ProgramsS. . v e s enee it eieeeeaaaanananaane. II2R
7. Statements.t i e e e e e IT-&
o I 0 T=3 1= o Lo K= TS PR TI-&
a. Constants. .. .ttt e e e e e e T11-¢
1) NUMD O S e vttt e et et e e et e e e e e 1I-¢8

2 TR v o o=~ Ir-10

b, Variables.ttt e e e e TI-10

1) Simple VariableS .. u.. oot eeeeee TT-11

2) Matrix Variables........ ..ot iiniiann. .. TT-11

9. Number <—>» String Conversion...........c.coieiieiana... 11-12

10. Statement Construction.........cuiiiii it ienneennnnn. I1-173

117, Operand Stack..... ..t i i ei e TI-14

12. The Semicolon..... ittt e iinnneannaea.1 T-15

13. Line ConstrucChion. ... e ie ettt ee e e teneeae e I7T-16

T4, Block Construction....u oot it e] T-16
1 TR ¥ 1T 00 0 o) o O TI-18

16, The ComMmMa. oo v i e it ettt e st ieaanean e T1-10

17. Peripheral Devices.. ...ttt it inenaannana. 110
LS T T oF = T 2 T =Y - I1-149

19, DiSC TAE S et it i it et et et ettt n et et aa e i I1-20
20. Disc Swap Routine. ..ot iv it it ittt i ie i IT-21
21. Enabling DiscCS.. ..ttt IT-21

22. Program and File Names and Types.....coeiiiiiiin., 11-22

D S 51 3 1o) o< 1 I11-23

a. Statement ErrorsS.t it i i I1-27

b. Buffer Overflow Errors......c.cieeeeiiiiitienannnn I11-23%

C. DisSC FrrorS . i ittt it it ettt it ta i II-2%

2L, Debugeing Hinbts . . i oottt ettt ettt 11-27

UsSing OPUS . ottt ittt ittt it et s ettt et et e I1-286

Manual Format.ot ittt ittt ettt tneaneaneatennannsas I1-32

II. INTRODUCTION TO THE OPUS LANGUAGE

A. BACKGROUND

A.5.1I. was incorporated in the fall of 1975 with the intent of forming a
small computer company utilizing the new technology of microcomputers. As

is probably the case with hundreds of microcomputer hobbyists, the potential
of these small machines seemed unlimited and extremely exciting. At first,
A.S.I. was primarily interested in the end-user product or application, in
particular, business applications. It was our intention to utilize a BASIC
language that was to be on the market shortly. However, it became apparent
that it would be several months before we would see this language. Finally,
we made the decision to go ahead and develop our own high-level language, not
with the intent of selling the language itself, but as a tool for our end-user
applications. So OPUS came into being.

OPUS started out as a very BASIC-like language. However, as development
proceeded, the question, "Why does this language have to follow the rules of
BASIC?", increasingly kept producing the answer, "It doesn't". As applications
were our end goal, it seemed only logical to build a language that would make
these applications easy and efficient to produce. BRASIC is a very rigid and
structured language, with little room for programming flexibility. For an
advanced programmer, the limitations become quickly apparent and coding be-
comes tedious. We felt we could develop a tool that overcame these limitations,
producing a language that provided a never-ending challenge.

Not because structured programming was the 'in' thing to do, but more because a
structured language provides more logical code with less debugging time, a block
structure (similar in many ways to ALGOL) was built into OPUS. This allows pro-
grams to be written in a very logical flow, with little jumping all over the

place, and almost no need for the questionable GOTO statement. Automatic internal
conversions from numbers to strings and vice versa frees the programmer from that
common programming headache, and almost unlimited number precision (up to 55
digits) allows the programmer to worry about more important things than double or
triple precision routines. But that is what this manual is all about -~ to explain
all the commands and the ins and outs of OPUS.

QOPUS was developed primarilv as an interpreting language as opposed to a true
compiler. An interpreter .cans lines of program code and operates according to
the instruction. A compiler takes the program code and compiles it into machine
code instructions, essentially inserting the operational subroutines from the
language as needed. The machine code is then directly executable. There is a
great difference of opinion as to whether interpreters or compilers are the best
way to go. Compilers may improve speed somewhat and are useful because a pro-
gram may be executed without the operating system being present. On the othe:
hand, interpreters allow more flexibility in terms of editing and debugging and

I1I-1

usually take less memory to operate. OPUS attempts to utilize the best of two
worlds by compiling program code into an object code format, allowing a very
quick interpretation of the code during execution. Overhead in interpretation
is cut to a minimum. In addition, there is a run-only subset of OPUS available
(FORTE) which is dedicated to executing finished programs in a minimal amount of
memory .

We eventually decided to go ahead and market OPUS. Feeling strongly that we had
produced a high-level language that matched the excitement and potential of the
microcomputer industry, OPUS was put into preliminary production in March of
1977 to run on any 8@8@- or Z8@-based microcomputer with any combination of
peripheral devices. Since that period, we have continued to improve upon the
language, in fact producing a couple more versions with extended capabilities.
We feel strongly that the end result both challenges and rewards the programmer.

This language and this manual are not for all programmers or potential programmers.
First, it is assumed that the person using this manual has had some experience with
computer languages. The manual is not a programming course. It explains all the
commands and operations of the OPUS language, without going into all the detail of
exactly what a programming language is, or in fact, what a computer is. Secondly,
the very flexibility of OPUS, a plus factor for advanced programmers, may cause
headaches and frustration for the programmer with. little experience with block-
structured languages. There is no denying that a language with rigid and simple
rules will be easier for the beginning programmer. However our feeling is that
with patience, imagination, and a certain amount of perseverance, the richness and
potential of OPUS will produce more rewards than gray hairs. Thirdly, OPUS is
probably not the language for scientific applications requiring a rigid speed
factor in numerical calculations. Because no hardware multiply/divide boards

are used, and variable precision is implemented, OPUS will break no records for
number-crunching speeds, for business applications, games, etc., this variable pre-
cision capability more than makes up for a little lost speed, which will not be

at all apparent in most instances.

11-2

B. LANGUAGE CONSTRUCTION

This section is intended to give the programmer the basic knowledge needed

to understand and operate OPUS. It should be read very carefully. The

more understanding gained from this section will eliminate many problems when
programming is actually undertaken. Most terms and procedures necessary for
a basic understanding of OPUS are thoroughly explained in this section.

Command Mode

Upon bringing up OPUS and responding to the date prompts (day, month, year),
the system will print FINE and go into what is called "command mode". 1In
this mode, the programmer may either type commands directly to OPUS or edit

a program. If the first character entered in the line is not a number, OPUS
assumes the programmer has entered a command. After a carriage return is
struck, the line of statements will automatically be compiled and directly
executed. Following execution, OPUS will always respond with FINE, indicating
completion. As many operations as needed may be typed on a single line. All
statements in OPUS may be executed in command mode, although some will have
little meaning in such an environment. Essentially one line of statements
executed in command mode is much like writing a one-~line program and running
it. Under normal operation, command mode is used primarily to initiate some
process, such as loading or running a program, or checking the values of var-
iables during debugging.

Examples of statements in command mode:

PRINT "TESTING";
TESTING

FINE

LOOP I,1 to 5; PRINT I*I; NEXT;
1

i

9
16
25

FINE
GET "PROG"

FINE
LIST

10 REM "THIS IS AN EXAMPLE OF A PROGRAM THAT DOES NOTHING"
20 END;

CoM

FINE
RUN

FINE
11-3

Note that the maximum length of a line entered is determined in the System
fleneration Routine; the default value is 88 characters.

Program Editing

If a number is first entered on a line in command mode, QOPUS assumes that it
is being entered as a line in a program, to add, change, or delete. All lines
in a program must be preceded by a line number -- any integer from @ to 65535.
These line numbers are used only for editing programs; when the program is
compiled and executed, the line numbers are deleted and are of no use. GOTOs
and other statements must refer to labels within the program and not to line
numbers.

When a line number is entered in command mode, OPUS will first check to see
whether program code has been entered after the line number.

If no code is entered after the line number, OPUS assumes that the line spec-
ified by the number is to be deleted from the program currently in memory.
The line, if it exists, will be deleted. If it does not exist, it will be
ignored. Example:

LIST

10 REM "EXAMPLE"
20 PRINT "BOO";
30 END;

FINE
20
LIST

10 REM "EXAMPLE"
30 END;

FINE
If code is entered after the line number, OPUS will scan the program in memory
for a matching line number. If this line number is already in the program,

OPUS will replace that line in the program with the new line just entered.
Example:

LIST

10 REM "EXAMPLE"
20 PRINT "BOO";

30 END;
FINE
20 PRINT "HI";
LIST

10 REM "EXAMPLE"
20 PRINT "HI";
30 END;

If any portion of a line is to be changed, the entire line must be re-entered
in this fashion.

If the line number entered in command mode does not exist in the current pro-
gram in memory, OPUS will add the line to the program. The location of this
line is determined by the numerical value of the line number. The starting
line in a program will always have the lowest line number, and the last line,
the highest line number. Any integer from @ to 65535 may be used to place
the line of code in the correct location in the program. It may be necessary
to use the RENumber command to renumber a program if the programmer finds it
necessary to add a line between two lines with a line number difference of
one. Example of new line entered:

10 REM "I AM ENTERING LINE 10"
5 PRINT "THIS IS LINE 5";

100 PRINT "THIS IS LINE 100";
LIST

5 PRINT "THIS IS LINE 5";
10 REM "I AM ENTERING LINE 10"
100 PRINT "THIS IS LINE 100";

FINE

Note that after entering a line number in command mode, OPUS will not respond
with FINE but will simply drop to the next line. This indicates that no direct
command has been executed, just that the program has been modified. OPUS does
not scan the code entered after a line number for syntax and no errors are
possible at this point.

Special Characters

There are several special characters that apply to editing and controlling
features in OPUS. These are mostly control characters. That is, the user must
push the control (CTRL) key down and while holding it, press the character key.
Control characters are listed below with a ? preceding the character.

Carriage Return (CR): After entering any line of input (in command mode or
within a program), the return key must be hit. This
tells OPUS that the line is complete and to continue
on . ’

AH : May be used when entering a line and a mistake is made.
The last character entered will be deleted and the cursor
will move backwards one character. Multiple #Hs may be
entered to delete more than one character.

Underline : Deletes the previous character exactly as 4 does, but

instead of the cursor backing up, OPUS will generate an
underline character.

I1-5

ax : If the user is entering a line and decides that the entire
line needs to be re-entered, M may be struck. A backlash
(\) will be printed and the cursor will drop to the next
line. The entire line should be re-entered. Note that X
must be used before a carriage return is hit to terminate
the line.

AC ¢ If this character is hit, OPUS will return to command mode
and print FINE. It may be used at any time during program
or statement operation to terminate the process.

43 : Hitting this character will suppress all output by temporar-
ily suspending the operation. This is useful when listing
programs or generating other output to a CRT. The 1list or
output may be halted briefly to allow the user to scan the
contents.

£Q : This character will release the 4S function. That is, when

the user wishes output to continue after a A4S has been hit,
the MQ must be struck.

Source Programs

Programs entered with line numbers are called source programs. The characters enter-
ed in the line will first be stored in memory in ASCII format; ASCII code is simply

a way of expressing characters in binary code that the computer will recognize. Upon
hitting carriage return, OPUS will immediately compact this ASCII line into source
code which is significantly shorter in content, and is not straight ASCII code, as
was entered. Commands are stored as a one-byte number, variables pretty much the
same, numbers in floating point format, strings with a string identifier. The

source program entered in this manner is not directly executable. It may only be
listed and edited in this form. To run the program, it must be first compiled (COM
statement) into object code format.

Compilation

Compilation is the process by which source code is turned into executable object code.
The order of the source code is modified to a form more easily interpreted by the
computer, commonly know as Postfix or Reverse Polish notation. All operands (constants
or variables) are stored prior o the command itself. Operations are normally entered
in Prefix notation, the operand following the command, or Infix notation, in which

the operator is imbedded between the operands. Actually, all OPUS code may be enter-
ed in Postfix notation, but common usage dictates that commands precede the operands.
For example:

PRINT "HI"™;
HI

FINE

"HI" PRINT;
HI

FINE

I11-6

The result is the same because compilation from source to object results in
identical object code in both instances.

The major reason for storing program code in this Postfix notation is that
there is a very simple algorithm to execute such code. Overhead in inter-
preting code to be executed is cut to a minimum.

An important factor to remember when source programs are compiled to object
programs is the idea of priority. Each statement in OPUS is assigned a pri-
ority number (listed in Appendix D). Commands with a higher priority will be
compiled and executed before those with a lower priority. The user is, no
doubt, familiar with this concept in arithmetic expressions. Most programming
languages assign priorities to arithmetic operators similar to the following:

Operation Priority #

Exponentiation
Division
Multiplication
Subtraction
Addition

(Highest Priority)

*® N =

3
2
2
1
1

(Lowest Priority)

+

Therefore, an expression such as:

A+B/Ct2
would first execute C%2, divide B by the result and finally add A.

5%l 42-1
would multiply 5 times 4 (2@), add 2 (22), and subtract 1 (21).
In OPUS, all statements are handled in this fashion. Priority numbers with
a higher number indicating a higher priority are given to each statement.
Note that many statements may have the same priority; in which case, the first
statement encountered (scanning left to right) will be executed first.
Parentheses are also very important in the compilation process. They may be
used to force an operation of lower priority to be executed before one of
higher priority. Taking our example above, if one entered the expression as:

5¥(4+2)-1

I} would first be added to 2 (6), multiplied by 5 (3@¢), and finally 1 is sub-
tracted (29).

Parentheses may be nested to any depth. The following:
22(4*(1+2))

Would add 1 and 2 (3), multiply times U4 (12), and raise 2 to this power (U4@96).

I1-7

Parentheses may be used with any operation expressions in QPUS, not just
arithmetic expressions. This allows statements to be imbedded within other
statements., For example, the following operation:

If Z>@ [A="POSITIVE"] ELSE [A="NEGATIVE"];
may be written as:

A= (IF Z>@ ["POSITIVE"] ELSE ["NEGATIVE"]);
Parentheses do not exist in the object code. It is the compilation process
itself that will use the parentheses to determine the order of execution; it
will not insert the parentheses as a command.
OPUS will not give an error if the number of left parentheses does not match
the number of right parentheses. However, program execution could cause strange

results because commands may have been compiled in a manner not intended by the
user.

Object Programs

An object program is the source program in compiled form that is directly execut-
able using the RUN command. No line numbers in the source program will appear in
the object program. The object program is treated essentially as a one-line
program with no differentiation between the lines.

Statements
All instructions or commands in OPUS are normally referred to as statements. 1t
is important to note that every reserved character or word in OPUS has a unique

operation, including the statement delimeter ";". Most of the manual is devoted
to explaining the operation of each statement available in OPUS.

Operands

Most statements utilize parameters or operands. These operands can be divided
into two major groups, constants and variables.

Constants

There are two types of constants, numbers and strings.
Numbers
All numbers in OPUS are stored in normalized floating point format, with
a biased exponent and a mantissa stored in BCD (Einary Coded Qecimal)

notation. Floating point notation is very similar to scientific notation:

N.NNN... 104X

"N.NNN..." is the mantissa and "X" is the exponent (an integer).
Both mantissa and exponent may be negative numbers.

The number of digits permitted in the mantissa (precision) is com-
pletely under the programmer's control, with a maximum of 55. The
default precision is initially set under the System Generation
Routine and may be changed at any time with use of the SET command.

If a number may be represented accurately within the precision
declared, it will be printed in a normal manner; that is, the decimal
point will appear in the correct relative position. However, if the
number may not be accurately represented within the precision, it will
be printed in its floating point (exponential) format:

N.NNN... E#X

Where "N.NNN..." is the mantissa, "E" designhates exponent, and "X" is
that exponent. This is very similar to the scientific notation
shown above. "EPX" is equivalent to "1g%x".

The exponent may have any integer value between -63 and +63,inclusive.
Thus, the range of positive numbers in OPUS goes from 1E-63 through
9.999...E63, and negative numbers from -9.999...E63 through -1E-63.

If numerical calculations exceed these limits, OPUS will maintain the
maximum exponent limit and print out the following message:

-OVER/UNDERFLOW-

The operation will not be terminated. However, the resulting value
will not be accurate because of the underflow or overflow encountered.

At certain times, it is important to know exactly how many bytes a
number is going to require for storage. This is particularly impor-
tant when calculating the amount of data that can fit in a disc file
logical record. Note that a number will utilize the minimum number
of bytes needed for accurate representation even though this may be
less than the number of digits declared as precision.

Fach number will require a minimum of 3 bytes. The first byte is a
number identifier, giving the number of bytes used by the mantissa.
The second byte st res the exponent and the sign of the mantissa. The
rest of the bytes are the mantissa. Two digits are stored in each
byte in the mantissa. The formula for the total number of bytes is:

Total Bytes = 3 + TRU((# Digits - 1)/2)

where "TRU" indicates truncated integer value. The number of digits
refers only to the actual digits in the mantissa, disregarding decimai
point and sign. Leading and trailing zeros of a number are not counted

I1-9

in the number of digits because they are absorbed in the exponent value.

Examples:
.334 4 bytes
.000334 4 bytes
33400 Y bytes
1.23456 5 bytes
99 3 bytes
1000000 3 bytes
-.1E50 3 bytes

Strings

A string 1s a series of alpha-numeric characters; the maximum number of
characters in a string is 127. A string may contain any character from
ASCII code @ through code 255,

A string constant within a statement operation must contain the series of
characters delimited on each end with a quote ("). Examples:

"HORSE CART"

"THIS IS A STING OF LENGTH 29"
"123456789"

nESEE" () #en

The number of bytes required to store a string will always be the total
number of characters in the string plus one. This extra byte is a string
identifier giving the number of characters in the string. Quotes do not
count as part of the string, and are only used to desighate the character
series as a string constant.

Note: If a string constant is the last item on a line of code, the last
quote is optional. OPUS assumes the string contains all characters
to the end of the 1line.

Portions of strings, or substrings, may be referenced. The user should
refer to the "$" command for an explanation (Section VI.).

A null string is a string containing no characters. Its representation
as a string constant is:

"
Null strings may be used at any time, exactly as any other string.

Variables

The user is, no doubt, familar with the concept of variables from any basic

math course. A variable can be considered to consist of two parts -- the
variable name and the variable value.

I1I-10

The variable name may be any group of upper-case alphabetical characters,
the length limited only by the maximum number of characters allowed in an
input line. No numbers or other characters are allowed. Also, the variable
may not contain any special statement word used by OPUS. Spaces entered
between letters of a variable name will be ignored. If memory space is
eritical, it is recommended that the length of variable names be kept to a
minimum. Examples of variable names:

X OK

HOTDOG OK

Z1 Not OK

TOW Not OK (Contains TO)

The variable value may be thought of as the value assigned to the variable
name; this value may be either a number of a string if the variable is a
simple variable, or a matrix if the variable is a matrix variable.

Simple Variables

A simple variable will have the value of either a number or a string

constant, which may be assigned to that variable at any point during

operation. It will always have an initial value of @ prior to having
another value assigned.

OPUS does not differentiate between number variables and string variables.
Any variable may hold any value at any time.

Matrix Variables

A variable name is declared to be a matrix variable by using the
DIMension statement. The value of this variable is a matrix, which is
a series of number and/or string constants, referenced by means of an
element number determining the correct dimensioned position. The DIM
statement determines the number of dimensions and the number of elements
in each dimension. The number of elements in the matrix is the product
of the number of elements in each dimension.

A one-dimensioned matrix is an array. For example:
DIM M(14);

M is now a matrix .ariable containing a one-dimensioned matrix of 10
elements.

A Tic-Tac-Toe square may be considered to be a two-dimensioned matrix
with three elements in each dimension. The rows are the first dimension,
and the columns the second.

A cube is a three-dimensioned matrix. To go higher than three dimensions

takes a little bit of imagination, but up to 155 dimensions are possible
in OPUS.

TI-11

Once a matrix has been declared in the DIM statement, any element may be
referenced or assigned either a number or string value. The format of a
matrix element reference is:

variable name (ELE "’En)

2’
The variable name is the matrix name. E. through E_are the element
positions in each dimension, where n is the number of dimensions. The
parentheses must be present. 1In the first line of code in the following
example, matrix MX has 2 dimensions, the first with 3 elements, and the
second with 2 elements.

DIM MX(3,2);
MX(1,1)="ROW 1,COLUMN 1";
LOOP I,1 TO 3; LOOP J,1 TO 2; MX(I,J)=I&","&J; NEXT; NEXT;

PRINT MX;
1,17 1,2 2,1 2,2 3,1 3,2

Note: When an entire matrix is referenced, the first element accessed
will have the lowest element number of each dimension. Going
sequentially, the last dimension will continue to increment by
one until the maximum, then the next dimension, etc.

One more example:
DIM A(2,3,4);
Reading across, the sequential reference would be:

AC1,1,1), AC1,1,2), AC1,1,3), A(1,1,4)
AC1,2,1), A(1,2,2), A(1,2,3), A(1,2,4)
A(1,3,1), A(1,3,2), A(1,3,3), A(1,3,H)
A(2,1,1), A(2,1,2), A(2,1,3), A(2,1,4)
A(2,2,1), A(2,2,2), A(2,2,3), A(2,2,4)
A(2,3,1), A(2,3,2), A(2,3,3), A(2,3,4)

Once a variable name has been declared to be a matrix variable, it may
not be treated as a simple variable. All elements will initially be set
to a value of @ by the DIM statement.

Number <> String Conversion

All values received by OPUS statements may be in either number or string format.
Prior to the operation, OPUS will internally convert the value to the correct
form required by the statement. Under most circumstances, the programmer need
not be concerned with the format of the operand. There are two exceptions:

IT-12

1. If the operation is comparing two values with a relative operator (such
as < or >), it may be necessary to force the values into either both
string or both number format (NUM or STR statement). There are specific
rules listed in Section X. that determine the manner in which OPUS com-
pares values,

2. When writing data to a disc file, the format of the value is important
because the number of bytes required by a string value may be different
than that required by its corresponding numerical value.

If a string that does not have a numerical digit as its first character is
converted to a number, its value will become @. If non-numerical characters
follow digits within a string, they will be ignored during the conversion.

Note: Although a value may be converted for an operation, the converted
value will be stored only temporarily for use by the operation. If the
value belongs to a variable, the format of the variable remains the
same.

Examples of number to string conversions:

12345 n12345"
-.@91 "—.pan
5.33E-19 "5.33E-18"

PRINT 1.2 & 3U;
1.234

Examples of string to number conversions:

"33.55" 33.55
"—.ggeT" -.0067
nxXyzn @
"8ABC" 8
n*1*2*3n @
n1*2*3n 1

PRINT "35"+"6A";
41

PRINT "DOG"#*"HORSE";
@

Statement Construction

There are essentially three types of statements in OPUS:

1. Unary Operators

These statements require exactly one operand for execution. This category
includes functions and some conditional commands.

I1-13

General Format: statement expression

2. Binary Operators

These statements require two operands for execution. Normal usage places
the operator between the two operands. This category includes arithmetic
operators and string concatenation.

General Format: expression statement expression

1 2

3. List Operators

These statements require a varying number of operands. This category
includes most commands.
. >

General Format: statement < expression,, expression

17 2"

A comma is normally used to delimit the expressions. Upon entering an

operation, the comma is immediately deleted and therefore, has no executable
function.

In the General Format above, the "statement" is the OPUS instruction word. The
"expression" may be a string or number constant, a variable, or another operation
that will return a value for use by the statement. Note that all statements in
OPUS may have operands expressed in this manner. The only thing that OPUS will
look at during execution of the statement is the value of the expression, not the
syntax.

The carets (< >) designate optional expressions. Whether or not an operand is
optional is determined by the specific statement.

This same notation for the format of a statement is used throughout the manual.

Operand Stack

Of primary importance in understanding OPUS is the concept of the operand stack.
This stack is a table that holds all constant values, string values, or expression
values as they are encountered during execution.

Remember that executable OPUS code is stored in Postfix notation, with the operands
preceding the operators. Thers lore, upon execution, as OPUS sequentially scans

the program, it will encounter constants and variables before it reaches the actual
statement. The values of these operands will immediately be pushed onto the
operand stack.

When a statement is executed, OPUS will first retrieve from this stack any values
that are needed for execution, with the number of values dependent upon the state-
ment. Unary and binary operators will always retrieve the last operand(s) pushed

on the stack. List operators will normally use all operands on the stack, the first

I1-14

on the stack being the first operand retrieved, and so forth.
Most unary and binary operators will not only retrieve operands from the stack
but, upon completion, will return the calculated value back to the stack to be

used by another operation.

This concept of the operand stack is the reason that operations may be nested
within other operations. Examples:

Operation: A = 3%¥(1+2)
Postfix A +

Statement Operand Stack Operands Retrieved Operands Returned

+ A 31 12 3

* A33 33 9

= A9 A9 9

9
Operation: PRINT "TEST",(XX = "HOT" & "DOG")
Postfix : M"TEST" XX "HOT" "DOG" & = PRINT
Operands Operands

Statement Operand Stack Retrieved Returned

& "TEST"™ XX "HOT" "DOG" "HOT" "DOG" "HOTDOG"

= "TEST" XX "HOTDOG" XX "HOTDOG" "HOTDOG"

PRINT "TEST" "HOTDOG" "TEST" "HOTDOG"

This may be much more confusing than informative. For simple, straightforward
programs, the programmer will probably never need to understand this stack
concept. However, as sophistication grows, so will the need to understand this.

The Semicolon

While the operand stack concept is fresh in the reader's mind, the special
semicolon statement needs to be explained.

The function of the semicolon is to clear all operands from the stack. Because
it has the lowest priority, all code entered before the semicolon will usually
be compiled and executed p ior to the semicolon. By executing the semicolon,
the programmer is ensurea that no operands are left for later operations.

Under normal operations, it is good practice to enter a semicolon after each
operation. For example, assume the programmer is in command mode and types:

A="HORSE"
FINE

PRINT A

HORSE HORSE

FINE

I1-15

Why did "HORSE" print twice? The assignment operator (=) returns the value
"HORSE" to the operand stack. It is still there, along with the variable A4,
when the PRINT statement is executed. By using a semicolon after the assignment
operation, this problem is corrected:

A="HORSE";

FINE
PRINT A
HORSE

FINE

Of course, the programmer may have wanted to print "HORSE" twice. The semi-
colon does not have to be there. As the programmer becomes more familiar with
OPUS code, it will become more apparent as to when the semicolon is useful. But,
in general, to avoid confusing results like that above, it is good practice to
use the semicolon after each operation.

Line Construction

In either command mode or within a program, there is no limit to the number of
operations that can be entered on one line, other than the length of the input
line. Normally, the semicolon described above will be used as an operation
delimiter between operations on the same line.

In command mode, after the user hits carriage return, the entire line of code is
compiled and then executed. It is important to note that the operand stack is
not touched during compilation of a line in command mode. Therefore, if operands
are present on the stack before entering a line, they will be used by the
operations in the code.

In a program, line boundaries have virtually no meaning when the program is
compiled. Therefore, it is possible to split operations between lines. Example:

10 INPUT "WHAT IS YOUR NAME?" ,NAME; IF LEN NAME >20 [PRINT
20 "NAME TOO LONG"; END;] ;

Expressions within parentheses are also line independent.
Variable names and constants r.y not be divided across line boundaries, if an
attempt is made to do so, the portion on the first line will be considered one

variable or constant, and the portion on the second line a different variable or
constant.

Block Construction

It is important in OPUS to understand block construction. A very general descrip-

1T-16

tion of a block is a section of program code that for some reason must be set
apart from the rest of the code. There are several types of blocks in OPUS:

(. . .1
LOOP. . .NEXT

WHILE. . .CONT
GOSUB. . .RETURN
CALL. . .RET

Unless otherwise specified, the normal usage of the term "block” will refer
only to the bracket block first listed above. The other blocks are described
under the statement definitions in the manual. The bracket block has primarily
two functions:

1.

Used in combination with the IF/ELSE or ON statements. These statements will
execute code within a block if certain conditions are true, and will other-
wise use the brackets to determine which code is to be skipped. Example:

IF X>@ [PRINT "X IS POSITIVE"] ELSE [PRINT "X IS NOT POSITIVE"];

If X is greater than zero, the first block will be executed and the second
block skipped. If X is less than or equal to zero, the first block will be
skipped and the second block executed.

The "[" statement (block initiator) will mark a new start to the operand
stack. The new start of the stack will become the previous end. Therefore,
any operands on the stack before the block is entered will remain there
throughout execution of the block even if semicolons are used within the
block. The "]" statement (block terminator) will return the address of the
stack as it was prior to the block.

This feature allows for interesting and efficient coding. Operations
requiring calculated values may be accomplished within a single operation.
Examples:

A=([INPUT X; IF NONE [@] ELSE [1]11);

If a value is entered in the input statement, A is assigned the value of 1,
otherwise it is assigned #.

PRINT (LOOP I,1 TO 5 [I*I] NEXT 1);
1 L 9 16 2

The value "I¥I" will be pushed 5 times onto the operand stack. The print
statement will print out all values in the stack.

Parentheses and blocks must not be confused. They have totally separate
meanings. Parentheses are used only to specify the order of execution and ara
not executable statements. Brackets delimit a block of code and are executable
statements.

T1-17

If the code within a block consists of only one statement or one constant, the
brackets are not needed. For example:

ON X [PRINT 1]\ [PRINT 2]\ [PRINT 3]
may be written as:

ON X PRINT 1\2\3
or:

ON X PRINT [1]1\[21N([3]

Matching left and right brackets is very important. OPUS will give no errors if
they do not match, but execution will result in strange things. 1f there 1is no
matching left bracket to a right bracket and the block is skipped, the program will
probably terminate as OPUS searches for the matching terminator. If a right
bracket is executed without a previous left bracket, a STACK OVERFLOW error and
program termination will occur. This function stack holds parameters set up by

the block initiator, and, if not present, an error will occur.

Blocks may be nested to any depth within each other. The only limit is memory.

The Colon

The colon is a special statement used to separate operand lists into two sections.
Several commands (mostly input/output commands) utilize this statement to distin-
guish one portion of the list from another. The operands prior to the colon
normally have some special meaning and format while those after the colon are a
more general list of the values used by the statement.

The actual operation of the colon marks a new start of the operand stack. The
operands entered prior to the colon will be in a different section in the stack
than those entered after the colon. The statement using the colon will look for
the first section in the stack for any special parameters. If there, it will
remove them and shift the start of the operand stack back to its initial state.
Colons are usually optional. If not present, default values will be assumed.
Examples:

PRINT 2: "BOO" Prints "BOO" to Device 2

PRINT 2, "BOO" Prints . and "BOO" to the current terminal
READ 1,1: X Reads Record 1 from Disc File 1

SCAN "DATA": Resets the SCAN pointer to location "DATA"

Although the colon is almost always used in the above manner, it is quite likely
that the programmer may find other uses for it. Imagination and experimentation
can produce interesting results!

I11-18

The Comma

Commas are non-executable statements used only to delimit parameters within
a list. During compilation, all commas are deleted. If there is an obvious
separation between two constants, the comma is not needed, but should
probably be used nonetheless for clarification. Examples:

PRINT XYZ, ABC (two variables XYZ and ABC)

PRINT XYZ ABC (one variable XYZABC)

PRINT 1,A,"HORSE"
1 DOG HORSE

PRINT 1A"HORSE"
1 DOG HORSE

Peripheral Devices

OPUS will handle almost any combination of perpheral devices through the
System Generation Routine. Two types of devices can be implemented:

1. Serial Devices

Serial devices are those peripherals that sequentially send and receive

one character at a time. Included in this category are terminals, paper
tape readers and punches, cassettes, etc. In the System Generation

Routine, the user defines the input and output drivers for these devices,
with the routine automatically assigning, a device number (1,2,. . .) to
each device. By using this device number, the user can generate output

or receive input with various I/0 commands. Programs can be saved or
retrieved from these devices (normally paper tape or cassette).

Although OPUS will not internally handle data files on these serial devices,
the user can nonetheless dump and retrieve data in a user-defined format.

2. Random Devices

Random devices are normally assumed to be disc drives, in particular, floppy
discs. Programs may be saved and retrieved. Data files may be created,
allowing the user to randomly access any record within the file. The
system generation will assign a disc number (@,1,. . .) to each random
device.

Although discs are the normal random devices, it is possible to enter other

devices, such as software-controlled cassette units. These devices must be
separated into sectors and tracks.

Data Files

All data files in OPUS are random files. No sequential file may be treated as
data (i.e. program files, etc.). FEach data file is divided into two parts:

I1T-19

1. The Map
When a file is opened (OPEN command), the map portion of the file is created.
The map requires enough continucus sectors on the disc to hold all possible
sector pointers to the data sectors. Each pointer consists of two bytes:
the track and the sector. As data is written in the file, the map is updated
to point to the location of the data. The relative position in the map
corresponds to the record number of the data.

2. The Data Rectors

The actual sectors which will contain data are not allocated until data is
written in the file. When data is to be written, OPUS will find a free
sector on the diskette, write the record, and update the map to point to this
location. Depending upon the number of bytes per sector, each sector may
contain a varying number of logical records.

With the OPEN command, the user must specify the number of logical records that
can be held in one sector and the maximum number of logical records the file

may hold. A logical record may consist of a varying number of strings and
numbers that define a specific piece of information. Records within the file

are always referred to by the logical record number (1,2,. . .). Any record
within the file may be referenced at any time with either a read or write command.

See Section VIII. for a more detailed look at data files.

Disc Tags

While each drive unit in the system is assigned a disc number, every data
diskette may be assigned a disc tag. This tag is any string of ASCII characters,
including alphabetical characters, numbers, control characters, etc., not to
exceed a length of 7 characters. This tag is given to the diskette during the
format procedure in the System Generation Routine or with the TAG command (OPUS/-
TWO and OPUS/THREE only).

The tag allows the programmer to specify a diskette without being concerned with
the particular drive. All disc commands that reference some file or program on
a diskette may optionally use this disc tag, as a parameter, to specify upon
which diskette the file is to be located. OPUS keeps a table in memory of all
discs that have been enabled, along with the disc tag. This table is referenced
each time a tag is declared. Ti.e following example loads the source from the
diskette with tag "XYZ":

GET "PROG","XYZ";
The next one assigns a file from the diskette with tag "TEST":

ASSIGN "FILE",1,"TEST"

11-20

Disc Swap Routine

If a disc tag is declared for a diskette that either is not currently in a
drive or has not been enabled (and thus not in the disc table in memory),
QPUS will enter the Disc Swap Routine:

(TAG) DISC MUST BE LOADED; ENTER DRIVE NUMBER:

SWAP DISC & HIT RETURN

After printing the first prompt, OPUS will wait until the user responds

with a drive number designating the drive into which the diskette with the
given tag will be loaded. The user must enter the number (#,1,. . .) and
hit carriage return. OPUS will then print the second prompt and pause. At
this time, and only at this time, the user may remove the old diskette, if
any, from the designhated drive, and insert the new diskette with the correct
disc tag. The user must then hit carriage return to inform OPUS that this
has been accomplished. If this new diskette is the correct one, the program
or operation will continue on; otherwise, the routine will be repeated.

This routine allows diskettes to be swapped in and out throughout the
operation of a program. Note that any files assigned on a diskette which is
removed will be automatically closed.

Although this routine appears simple enough, it is extremely important that
it is followed to the letter. The o0ld diskette must be removed and the new
one inserted ONLY when OPUS is pausing after printing SWAP DISC & HIT RETURN.
If the diskettes are changed after the first prompt, the sector maps of the
diskettes will be written incorrectly, refiecting wrong data. At this point,
the data must be transferred from these data diskettes to new ones or else
the data will become increasingly unreliable (see Section XV.).

Enabling Disecs

Discs are enabled by using either the DISC command or specifying a drive
number in conjunction with a command that looks at the disc for some operation
(GET, SAVE, ASSIGN, etc.). When enabling a disc, OPUS reads the sector-free
table and the disc tag into memory. The sector-free table is essentially a
map of all locations on the diskette that have been filled with data and those
that are empty or available for data. Each diskette will have a different
table according to what dat: has been written on it. This enabling will only
occur once, after which ail references to that diskette assume this table is
correct.

As easily can be seen, many problems will arise if diskettes are casually
swapped in and out of a drive without fellowing the correct procedure. If the
sector-free table is written back on the wrong diskette, data may be written
over other data in the future. Again, we urge the programmer to refer to
Section XV. for a description of preventive procedures.

IT-21

Once a diskette has been enabled, this procedure must be followed to remove it
and/or insert a new diskette:

1. Make sure all data files are closed (use the CLOSE command) if they have
been previously ASSIGNed.

2. OPUS/ONE: Remove the current diskette
OPUS/TWO: Use the SWAP command to remove the current diskette
3. Insert the new diskette
4. Enable the new diskette with the DISC command
To disable a disc, the user need only make sure all files are closed (CLOSE

command) .

Program and File Names and Types

Every program that is to be saved or loaded from either a sequential or random
device and every file that is to be opened on a random device must be given a
file name and a file type.

The file name is any string of ASCII characters not to exceed a length of seven.
The name may include numbers, characters, or other keyboard characters. The
backslash (\) must not be used within a name. The name may be specified simply
as a string constant or as a calculated expression.

Each program or file is also given a file type designation -- one character
describing the type of file:

OPUS source program

OPUS object program

OPUS data file

OPUS dimensioned data file (OFUS/TWO only)

OmOoOwm

Other software developed by A.S.I. will use other file types than these. Refer
to Appendix C. for a more complete listing.

All statements requiring a file name as a parameter assume one of the above
types as a default. However, it is possible to designate a different type by
entering a backslash (\) and t%.: type character after the file name.

file name \ type

The backslash and type must be included within the same string constant. OPUS
will save or retrieve this file with the abnormal type designation. Examples:

GET "TEST" or GET "TEST\S" Loads source program
ASSIGN "DATA",1 "Fr file

I1-22

ASSIGN "DATAND",2 "D" file

DUMP "TEST\S" SAVEs source program

SAVE "TEST" SAVEs source program

KILL "PROG\QO" KILLs object program
Errors

There are essentially three types of errors that can occur in OPUS. All
of them will occur during execution only. Because of the syntax flexibility,
it is not possible to check for syntax errors during code entry and compilation.

a.

Statement Errors

Many statements require their parameters to be within certain ranges or of
certain format. If an expression value which is to be used by the state-
ment does not follow the format rules for that statement an error will
ocecur:

(STATEMENT) ERROR

Program termination will follow immediately.

No location is given for the error because no line numbers exist in the
object code. This places a burden on the programmer, but by following some
of the debugging hints below, the chore is not that difficult.

The manual does not list the possible errors for each statement. The
programmer should assume that if a statement error occurs, the values (or
lack of values) received by the statement do not satisfy the format
requirements of the statement.

In OPUS/TWO and OPUS/THREE, statement errors may be supressed by the
ERR command.

Buffer Overflow Errors

OPUS utilizes several memory buffers for various functions. If any of
these buffers are overflowed, an error will occur and program termination
will result. All variable values will be lost, although the program re-
mains intact. These errors may not be suppressed by any means.

1) Operand Stack

Described in depth above, this buffer holds all operands to be used by
following statements during execution. Only the memory address of the
value and the type identifier (number, string, matrix) are actually
stored in this buffer. Each operand therefore takes 3 bytes of memory.
Possible error:

OPT OVERFLOW!

I1-23

2)

3)

4)

Meaning:

There is not enough room for all operands in the stack. The size of
this buffer may be increased by using the SET command with parameter 1.

Constant Table

This buffer holds all temporary values of calculated expressions. For
example, arithmetic operations will return a value that will go into
this constant table. The value will be purged as soon as it is used by
another statement. The size of this table is dependent upon the number
of bytes required by these calculated values. Possible error:

CON_ OVERFLOW!

Meaning:

There is not enough room for the calculated values. The size of this
buffer may be changed by using the SET command with parameter 2.

Variable Name Table

This buffer holds all the names of variables used within a program.

The number of bytes required by each variable is the number of characters
in the variable name plus two. The two extra bytes hold the memory
address of the value of the variable in the variable value table.
Possible error:

VNT OVERFLOW!

Meaning:

There is not enough room for all variables used. The size of this buffer
may be changed with the SET command using parameter 3.

Variable Value Table

This buffer holds all the values of variables used within a program. The
values are strings or numbers and the size of the table is determined by
the size of these constants. As these constants will be constantly
changing throughout the program, so will the size of this buffer. This
buffer is located after the program area and will include all memory up to
the function stack. Possible error:

VVT OVERFLOW!

The only way to increase the size of this buffer is by adding more memoryv
or shortening the length of the program. If more memory actually exists
in the system, the SET command may be used with parameter 7. Otherwise,

TI-24

5)

6)

additional physical memory must be added.

Function Stack

This stack has a multitude of uses. It holds varicus values used by
block statements, such as the return address for the RETurn state-
ment. Compilation will use this stack temporarily. ‘Each item in the
stack requires three bytes, one to identify the use, and the other two
to specify a memory location. Possible error:

STACK OVERFLOW!

There are two possible reasons for this error:

1. The stack has been pushed down to the point that it overflows into
the variable value table. The only solution is to increase memory
or shorten the program.

2. Some block terminator has been executed without executing a block
initiator, such as executing a NEXT statement without a prior LOOP.
The program must be corrected.~ The reason that an error occurs in
this instance is that OPUS, upon reaching a block terminator, will
scan the stack for the matching initiator. If it is not there, the
stack 1s overflowed at the top.

Program Area

This buffer is reserved for user programs. Its length is variable,
according to the amount of memory in the system. Possible error:

MEMORY OVERFLOW!

This will occur if a program is loaded or entered that overlaps memory
boundaries. Memory must be increased.

Disc Errors

There are four types of disc errors:

1)

File Errors

If an attempt is mac2 to access a data record that does not exist in a
disc file, an error will occur. If the record accessed is a valid record
number but contains no data, and a READ or PURGE is attempted, an End-Of-
Record error and program termination will occur:

EOR _ERRCR

If the record accessed does not fall within the maximum record boundary
of the file, an End-0Of-File error and program termination will occur:

EOF ERROR

I1-25

2)

3)

Both these errors may be suppressed using the EFILE statement.

In OPUS/TWO and OPUS/THREE, if errors are trapped with the ERR state-
ment, these two errors will also be supressed. The numerical value
of each (equivalent to the statement number) is as follows:

EOF 126
EOR 127

These numbers are accessible by the "7?" statement.

Overflow Errors

If a diskette reaches the point where no more data may be saved on it, this
error will occur:

DISC QVERFLOW!

The program or file record will not have been successfully written on the
disc. Either other data must be purged or a different diskette used. This
message will also occur if the programmer attempts to open a file requiring
more sectors to store the file map than are available on the diskette.

If the directory on a diskette becomes full, that is, there is no more room
to store program and file names, this error will occur:

DIRECTORY OVERFLOW!

Again, the program or file will not be successfully created. Normally,
at least 168 programs and files may be saved on one diskette, although
this is dependent upon the type of disc drive implemented.

Disc Failures

Should a disc drive fail or a diskette become unreadable due to alignment,
etc., the following errors may occur:

(D)/(T)/(S) DISC RETRY!

D: Disc Number
T: Track
S: Sector

These numbers are in decimal in OPUS/ONE and OPUS/TWO, and in Octal or Hex
in OPUS/THREE. This error may be printed if a read or write to the disc
was unsuccessful the first time but did eventually succeed. Execution will
continue normally. The user should be warned that something is not quite
right with the drive.

The following error will occur if a read or write to the disc was completely
unsuccessful.

(D)/(T)/(8) DISC FAILURE!

11-26

Program termination will result. If the track and sector numbers are
valid, something is wrong with either the diskette or the drive. If
the track and sectors are not valid, it means that the data on the
diskette has been altered incorrectly (see Section XV.). It is
recommended that the diskette be used as a read-only diskette and data
transferred to a new diskette.

4) Miscellaneous Disc Messages

~-NO DISC DECLARED~-

A disc command was entered without any disc being specified. Either use
a parameter to specify the disc or the DISC command.

Debugging Hints

Trying to find the bugs in a program is the programmer's number one headache.
The following tips may prove to be of help.

1. In order to trace the flow of a program, it is often helpful fto insert
PRINT statements liberally throughout. The values of various variables can
be printed to give some idea of what is happening. Also it can be deter-
mined if indeed a program is reaching certain points.

2. If a program bombs on a statement error, the programmer can print out, in
command mode, various values of variables in an attempt to determine the
source of the error.

3. If very strange things are happening in the order of execution, first check
for matching parentheses and brackets. This can always be a source of
problems.

4, Check for any miscellaneous values that may have accidentally been left on
the operand stack and inadvertently used by the wrong statement.

5. Check for OPUS statement words that may have been used in a variable name.
OPUS will attempt to execute the statement with a different variable than
intended.

6. In OPUS/THREE only, there is a TRACE function which essentially single steps
through a program, givirz each instruction with the contents of the operand

stack and function stack. Free memory can also be determined at any point.

Section XV. describes several common programming problems with possible solutions.

II-27

C. USING OPUS

Assuming that you have properly initialized and brought up your system, you are
now ready to begin programming. This section is intended to help you get started.

First, it would be appropriate to address a general point about OPUS. Computers
are extremely flexible machines; indeed, it is their beauty. However, there are
certain limitations, or boundaries, within which the user must operate. The

act of designing a high-level language defines the relative values to be placed
on several variables within the boundaries set by the hardware. One of these
variables is the flexibility offered to the programmer.

OPUS has been designed to maximize flexibility. This maximization, in and

of itself, places a heavier burden on the programmer. That is, achieving high
flexibility requires extra care. Clearly, the most flexible language is machine
language, and the least flexible a language which imposes severe constraints
through limited vocabulary or strict syntax requirements.

The point of this: OPUS was set up to try to combine maximum flexibility

with ease of use for the programmer. At times it can be frustrating, for you

may find yourself convinced that there is a serious 'bug' in the language, when
in actuality, there is a flaw in your program. We would suggest, therefore, that
you make every effort to assume a logical program flaw before contacting A.S.I.
with your problem. We are more than happy to be of assistance, but we are also
trying to develop and provide more software for you, which is a time consuming
business.

To the terminals!
Again, assuming that the system has been initialized, that you have typed in
answers to DAY?, MONTH? and YEAR?, you are ready to proceed. First, try some-
thing in command mode. This will be a one-time statement which is automatically
compiled and executed. Try typing the following, then hit RETURN:

PRINT "THIS IS A TEST";
The machine should respond:

THIS IS A TEST

FINE
"FINE" simply means that your one-line program was accepted, has been compiled
and executed, and that the system is now ready for more input. We can do the

same thing in a program. Type:

10 PRINT "THIS IS A TEST",

11-28

Notice that the statement was preceded by a line number. OPUS interprets
this to mean that the statement is a part (or all) of a program, and will not
execute the line until so instructed. Now type:
COM
This is the COMpile command which converts your source code into object code, a
form which is now ready to be executed. The machine should respond with FINE.
Now type RUN. OPUS now executes the program and returns to command mode:
THIS IS A TEST
FINE
You have now written a program. Since the source code is still in main memory,
along with the object code, it may be LISTed and edited. Note that the compiled

version, or object code, may be RUN again and again, until a change is made,
when the source program must be reCOMpiled before it may be RUN.

Now type LIST. The computer will print:

10 PRINT "THIS IS A TEST";
At this point the line may be edited or deleted. OPUS is a line-oriented language;
that is, in order to change anything in the program, the entire line must be re-
entered.
Now let's add to the current program. Type in another line like this:

20 INPUT "WHAT IS THE NUMBER? ", X;

When compiled, this will cause the computer to send WHAT IS THE NUMBER? and wait
for the user to type a response. Now another line:

30 PRINT "THE SQUARE ROOT OF ", X, "IS: ", SQR(X);
Go ahead and COMpile the program, and RUN the object program like this:
CoM
FINE
RUN
The computer responds:

THIS IS A TEST
WHAT IS THE NUMBER?

Type in any number, say 4, and push the return key. The computer prints:
THE SQUARE ROOT OF Yy IS: 2

FINE

I1-29

Now suppose we wish to repeat this sequence several times. LIST the program,
and add these lines:

5 "START";
40 GOTO "START";

Be sure that the "START" in line 5 is identical to the "START" in line 40. It's
easy to slip on the keyboard and type a non-printing character, or add a space
somewhere. If the two labels are not identical, an error will occur. Now
COMpile and RUN:

THIS IS A TEST

WHAT IS THE NUMBER? U4

THE SQUARE ROOT OF U IS: 2
THIS IS A TEST

WHAT IS THE NUMBER?

Now you may want to stop the program. Since we didn't make any special pro-
vision for this, hold down the CONTROL key and type C, then push the RETURN key.
The computer responds:

FINE
. We can add a line now to take care of this problem:
25 IF NONE [END;];

This tells the computer that, if the user responds to an INPUT request with a
CARRIAGE RETURN only, it should execute an orderly HALT. Try it. (Remember to
COMpile before typing RUN).

Listing the program now shows that the line numbers are not as evenly spaced as
would be nice. To remedy this, type REN, for RENumber. LIST the program again;
it should be evenly numbered in increments of 10, starting with line 10.

As you can see with this simple example, writing a program can be thought of as
simply building a structure with blocks of code. OPUS has been designed to
facilitate this approach. You will notice that line 40 utilizes this block
structure approach; instead of:

IF NONE [END ;] ;
we could have said:
IF NONE [PRINT "FINISHED"; END;];

or any other group, or block, of code. Since compiling removes line numbers, one
may even divide a block into several lines. For example:

10 INPUT A;

20 IF NONE

30 [PRINT "NONE";
L0 END;];

IT-30

This provides considerable flexibility for the programmer, and can make 'de-
bugging' the program much simpler. Remember to match brackets, however. There
must always be a right bracket for every left bracket in the program,

Probably the best way to learn a language is to try it. If your program runs
correctly, you have written a working program; remember, though, that the best
program is the one which does the most work with the least amount of code. Don't
try to get too fancy to start with, but keep in mind that OPUS can be written
very efficiently. Sample programs are shown in the manual. Studying them should
help give you an idea of the kind of programming which may be accomplished with
OPUS.

To continue on with OPUS, be sure to take maximum advantage of the rest of this

manual. The advanced programmer will want to pay particular attention to the State-
ment Table in Section XVITI.D.

IT-31

D. MANUAL FORMAT

On the whole, each command in the manual is shown in the following format:

Command Name

Two

------------------------------- Example:

10 mmmmmmm e

20 e e Source Program
30 e

Executed Object Code
points should be noted here:
Carets (< >) placed in the Format section are used to denote optional parts
of the command. For instance, the command LIST may be used by itself and need
not include the five parameters available.
In the examples, we have deleted the commands COMpile and RUN and the system
responses of FINE. These are implied with the three elisions between the

source program and the executed code. Thus, the program format should be
thought of as:

FINE

RUN
Executed Object Code

FINE

I1-32

ITT. COMMANDS

A.
B.

.. III-1
Fundamentals . v iininieinnetientonerosneneaeeenenensas I1I-1
Definitions........ e e e ettt e s e et I11-2
1. COMpile...iiiveinnneannnn et et e e e I1I-2
2. DElete.......c.cv... e ettt I11-3
3 SET. i it ii e ot ettt et e et ettt ITI-4
O 0 1 I1I-5
5. NEW. . vt it ittt iienannennnnns o h et et I1I-6
B. RUN. it iitt ittt tteneaneeeneenaeenoneenneennnenneeens IT1-7
7. RENUMDEIr. .. .iiititieiiinineeneeeroeenseasaneensnannns I11-8
B BYE . ittt ettt et et III-9

I11-0

III. COMMANDS

A. FUNDAMENTALS

Commands are OPUS statements that are primarily used in command mode to ini-
tiate some process or to edit source programs. Most of these commands will
optionally use a list of parameters for execution.

Although most commands may be used within a program, there are two exceptions:

COMpile
RUN

If used within a program, the COM command will still compile source code to
object code, but it will automatically return to command mode.

If used within a program, the RUN command will start execution of the object
program at the beginning. However, if the RUN command is repeatedly executed,
the machine code stack will quickly overrun,and it is possible to wipe out the
operating system.

ITI-1

B. DEFINITIONS

COMpile

The COMpile command will cause the source program currently in memory to be put
into object code format in preparation for execution.

Format: COM

The source program itself will not be affected by this operation. This command
must be given prior to RUNning a source program because it is the object program
that is actually executed. All operatins that are directly executed in the com-
mand mode will be automatically COMpiled before execution.

In OPUS/TWO and OPUS/THREE, ASCII files previously created by a text editor may
be loaded as programs, COMpiled once to produce source code, and COMpiled a second
time to produce boject code.

Format: COM < expr >
The expression must have the value "A" to COMpile ASCII to source or "S" to COM-
pile source to object. If not specified, source to object is assumed. The

ASCII to source will automatically assign line numbers to each line of code.
Thus, the ASCII file should not contain line numbers.

III-2

DELete

This command may be used to delete one or more lines from a source program.

Format: DEL line1<}line >

2

Line 1 is the first line to be deleted and line 2 is the ending line

number (exclusive -- all lines up to but NOT including this line) of the
section to be deleted. If only line 1 is entered, OPUS will delete all
lines from this number through to the end of the program. If only one line
is to be deleted, it is easier to simply type the line number and hit the
RETURN key.

ITI-3

SET

This command may be used to set buffer and parameter

Format: SET exprl, expr2

Exgrl Description

Change Operand Table size

Change Constant Table size

Change Input Buffer size

1
2
3 Change Variable Name Table size
Y
5

sizes:

#
#
#
#

Change number of files to be assigned #

simultaneously
6 Change digit accuracy

7 Change memory size

#
#

Expr

2

bytes required
bytes required
bytes required
char. per line

files

digits
bytes

The SET command may be used within a program; however, all variables pre-

viously entered will be reset.

I17-4

LIST

This command will list the source program currently in memory.
Format: LIST<expr1:><expr'2, expry, expr, expr'5>

Expression 1 is the output device number to which the listing is to go.
Default declares the current device as the correct one. Expression 2 is

the starting line number of the section of program to be listed. Default
causes the 1list to start at the beginning of the program. Expression 3 is
the ending line number (exclusive -- up to, but not including, this line
number) of the section of program to be listed. Default causes the list to
continue to the end of the program. Expression 4 is the number of lines to
be listed per page. Sixty lines is the normal number of lines for an eleven-
inch page. Default causes the program to be listed without paging.

Expression 5 is the number of line feeds to be generated between every page
of the listing. The default is 6, which will generate 6 line feeds. If
expression 4 is not specified, expression 5 will be ighored. It is not
necessary to enter all five parameters if only the first few are required.
OPUS will assume default values for all those that are not entered. Zeros
may be entered to specify the dafault values.

ITI-5

NEW

The NEW command clears the program buffer.

Format: NEW <expr >

The expression may be one of the following: "S", which clears the source pro-
gram area only, or "O", which clears the object program area only. If no
expression is entered, all program areas are cleared.

In OPUS/TWO and OPUS/THREE, if an ASCII file has been loaded (previously

created by a text editor), the NEW parameter may have one more value: "A",
which clears the ASCII program area only.

IT1I-6

RUN

The RUN command is used to start program execution.

Format: RUN

It will always start program execution at the beginning of the program.
Only object programs may be RUN, and if no object program is in memory,
an error will occur. The object program may be created from source code
with the COMpile command, or it may be loaded from a peripheral device.

It is possible to start program execution within the middle of a program by

executing a GOTO statement in command mode to a specified label within the
program.

III-7

RENumber

The RENumber command may be used to renumber line numbers in a source
program.

Format: REN <expr 17 €Xpr,, expr expr’u>

2! 3’

Expression 1 is the new line number with which the section of program is to
begin. Default is line number 1¥. Expression 2 is the interval

between line numbers that will occur in the renumbered section. Default is
10. Expression 3 is the current line number of the start of the program
code to be renumbered. Default is the start of the program. Expression 4
is the current line number of the end of the program code to be renumbered.
This line number is excluded from renumbering. Default is the end of the
program. The value of all expressions must be integers greater than or

equal to zero. If no parameter is entered, or if the parameter is =zero,
the default value will be assumed.

1 A= 9;

2 B= 2;

3 C= 4;

y PRINT A, B, C;
REN

].O A= 9;

20 B= 2;

30 C= 4,

2
40 PRINT A, B, C;

I11-8

BYE

This command will update all discs in use and terminate OPUS operation.
Format: BYE

The computer types "---OPUS TERMINATED---" and will no longer respond. When
the user is finished with OPUS, he should type BYE and halt the computer or

turn it off.

In OPUS/THREE, running under the TEMPOS Operating System, the BYE command will
cause the job to be terminated, not the master operating system.

I1I-9

Iv.

V-0

ASSTGNMENT . ¢ ittt ettt teetnnrensssaensonessassnsnssssannnasaans IV-1
A, Fundamentals.iiiiiiieennnneeerosnosansnssnssnsnnnnnes Iv-1
B. Assignment: = ...ttt ettt Iv-2

IV. ASSIGNMENT

A. FUNDAMENTALS

Assignment is the action of giving a variable a specific value. The value may
be either a string or number constant. An operation involving the assignment
statement, "=", places the variable which receives the value on the left-hand
side of the "=", and the value itself on the right-hand side. The value may
be calculated from any operation(s). However, only one operand must be re-
turned to the operand table to be assigned to the variable.

The variable which receives the value may be one of three types:

Simple variable
Matrix variable element
Substring

A simple variable is a character name that has a value, number or string.
The name must consist of only upper-case alphabetical characters, with no
limit to the length. A variable is always given an initial value of zero,
prior to program assignments,

The format of the matrix variable elements and substrings are given in
Sections XII. and VI., respectively.

It should be stressed that any variable may be assigned either a number or
string value. OPUS internally keeps track of the type of constant.

After completion of the assignment statement, the value that was assigned will
be returned to the operand table for optional use by another statement.

V-1

Assignment: =
The equal sign is the symbol for assignment.
Format: variable = expression

The value of the expression on the right of the equal sign is assigned to the
variable on the left. Remember that this operation does not mean "equals",
but rather "is given the value of". The variable must be a simple variable,
a matrix variable element, or a variable substring.

Simple Variable
X= X - 33

X is given the value of the expression X - 3.

Matrix Variable Element

M(2,5)= "HORSE";

The value of "HORSE" is assigned to the matrix element (see Matrices).

Variable Substring

Assume ST has the value "CAT". By executing:
ST$(3,3)= "R";
ST will now have the value "CAR" (See Substrings).

In the following example, "HORSE" is assigned to "A", returned to the operand
table, and used by the PRINT statement.

PRINT (A="HORSE");
It is important to note that the value of the right-hand expression is returned
to the operand table for optional use by another statement. If this is not
needed, be sure to execute a semicolon immediately after the assignment operation
to clear the operand stack.
If one needs to assign the same value to several variables, instead of

A=g; B=@; C=0;

it is possible to execute

A=(B=(C=0));

1v-2

The "=" signh may not be used as a relational operation for comparing the first
value against the second. The programmer must use the operation IS for this
purpose.

Iv-3

V. ARITHMETIC OPERATIONS. ...ttt ittt tiniiieernonoroaennneenasenns V-1

A.
B.

Fundamentals

.. V-1
I L= i 4 T T A o) o2 V-3
T Vo o B 1 v o)« - I V-3
2. Subtraction and Negation: =c.iiiiniiiinennnennenns V-4
3. Multiplication: ¥ ... et itirnrineonnenreneonaenenennns V-5
b DIVASIONI /it ittt ettt e e V-6
5. Exponentiation: B ...ttt i e e e e V-7

V. ARITHMETIC OPERATIONS

A. FUNDAMENTALS

The following arithmetic statements are binary operators requiring two nu-
merical values for execution:

Operator Priority Description
4 11 Exponentiation
/ 10 - Division
* 10 Multiplication
- 9 Subtraction
+ 9 Addition

The statement will remove these two values from the operand stack, perform
the operation, and return the resulting value to the operand stack for use
by another operation.

The following arithmetic statement is a unary operator, requiring one nu-
merical value from the operand stack and returning one numerical value to
the operand stack:

Operator Priority Description
- 12 Negate the operand
As can be seen, the key word for both negation and subtraction, "-", is the

same. During compilation, OPUS will determine the way it is to be used by
determining if one or two operands are available for the operator.

If an operand is received in string format, OPUS will automatically convert
the value to numerical format before proceeding with the operation. The pro-
grammer need not be concerned with this format.

The priority numbers given above with each operator determine the order of
execution when more than one operator is included in an expression. The num-
bers with higher values indicate that these operators will have higher priority
over the operators with lower priority numbers. For example:
1+2%3-16/4%2
will be executed as if parentheses were positioned in this manner:
1+(2%3)-(16/(412))
The value would be:
1+6-16/16

7-1
6

Parentheses may be used at any time in an arithmetic expression to clarify the
order of execution. By using parentheses differently than in the above expres-
sion, the resulting value could be completely different:

(1+2)*¥3-(16/7)%2
would produce:

3%¥3-4¢2
9-16
=7

Note that if two operators have the same priority number, the order of execu-
tion is determined by the order in which they appear in the expression. The
one on the left will be executed first, followed by the one on the right.

There is no limit to the size of a single arithmetic expression other than
the size of the operand stack and constant table (which can be enlarged).

As many parentheses as desired may be used within an expression, nested to

any depth. However, be sure that the number of left parentheses match the
number of right parentheses. OPUS will not give an error if they do not match,
but the order of execution will be altered significantly.

B. DEFINITIONS

Addition: +
The "+" sign is the arithmetic binary operator for addition.

Format: expr, + expr

1 2

The value returned will be the sum of the two expressions.

PRINT 165+99
264

V-3

Subtraction and Negation: =

The "-" symbol may be used as either the unary operation of negation, or the
binary operation of subtraction, depending upon whether one or two operands
are present.

Format: —exprl

This format returns the negated value of the expression.

Format: expr. - expr

1 2

This format returns the numerical difference between expression 1 and exp-
ression 2.

PRINT -6,6-2,-(A%3)
-6 4 =30

Multiplication: *

The asterisk is the arithmetic binary operator for multiplication.

Format: expr., * expr

1 2
The value returned by the operation will be the product of the two expressions.

PRINT 135%22
2970

V-5

Division: /

The slash is the binary operator for division.

Format: expr, / expr‘2

The value returned is the quotient of expression 1 (the dividend) and
expression 2 (the divisor). It should be noted that if the quotient is a
continuing fraction, it will be carried out to the maximum number of digits
as allowed in the precision declaration. The last digit will be rounded
to the nearest unit,

X=1/3;PRINT X
.33333333

V-6

Exponentiation: %

The up-arrow is the binary operator designating exponentiation.

Format: expr1 4 expr'2

The value of expression 1 is raised to the power of the value of expression
2. The result is returned to the operand table. In OPUS the expression X2
is written as XM 2. Note: Precision will be carried out to 6 digits max-

imum.

V-7

VI. STRING OPERATIONS

.. VI-1
A, Fundamentals. iini ittt ittt ittt aennnn VI-1
B. DefinitionsS. .t ui it ittt e e et e L.VI-2
1. Quotation Mark: M it e e et e et e VIi-2
2. Concatenalion: & ittt tieineeeaaneann VI-3
3. SUDSErINE . 8 ittt it et et e i e e, VI-4

VI-0

VI. STRING OPERATIONS

A. FUNDAMENTALS

A string is a sequence of ASCII characters with a length from @ through

127 characters. Any variable or matrix element may be given a string value.
It is not necessary, nor is it possible, to dimension variables or matrices to
hold string constants. OPUS does not care whether a string or numerical con-
stant is assigned to a variable.

If it is necessary to inélude a reserved character within a string, such as
Control X or a quote, the ASC function should be used.

If an operation requiring a string value is encountered, OPUS will automa-
tically convert any numerical values into string constants prior to the-
execution. .

A null string is a string with no characters. 1Its string constant value is
designated as: "". Null strings may be used in any operation requiring
string values. 1If a null string is converted to numerical form, its value will
be @.

Portions of a string (substrings) may be easily referenced or assigned values.
The particular subset must be specified by declaring the starting and ending
character positions. Numbers will be converted to string format during sub-
string operations (see the "$" statement). Examples of strings:

"THIS IS A STRING OF LENGTH 29"
"THIS CONCATENATION WITH A NULL STRING PRODUCES THE ORIGINAL STRING™ & ""

"123.333333"
ULV & & & &G

VI-1

B. DEFINITIONS

Quotation Mark: "

The quotation mark (") is used to delimit a literal string of characters.
The user must enter a quotation mark to determine the start of every string,
but if the user does not type a quotation mark following the end of the
string, OPUS will assume that the end of the line of input is the end of .
string. For example:

GET"TEST

FINE
is equivalent to:

GET"TEST"

FINE

VI-2

Concatenation: &

The "&" symbol is the binary operator for string concatenation.

Format: expr. & expr

1 2

Concatenation is the process by which one string is added to the end of
another string. The value returned will be the value of expression 1
immediately followed by the value of expression 2. This concatenated result

will always be a string.

10 INPUT "FIRST WORD?", A, "™ SECOND? ", B;
20 PRINT "CONCATENATED:", A &B;

FIRST WORD? HORSE SECOND? CART
CONCATENATED: HORSECART

VI-3

Substring: $

The "$" symbol must be used to specify a substring.
Format: variable $ (expr1,<fexpr2:>)

The variable must be either a simple variable or matrix variable element.
Expression 1 of the substring is its first character position within the string
The number must be an integer from 1 to the total number of characters in the
string, where 1 is the first character in the string, 2 is the second character
in the string, etc. Expression 2 of the substring is its last character posi-
tion within the string. The number must be an integer from 1 to the total
number of characters in the string, where 1 is the first character in the
string, 2 is the second, etc. It is not necessary to enter the ending posi-
tion; if no value is determined, it is assumed that the end of the string is
the end of the substring. The ending number must be greater than or equal to
the starting number of the substring.

Substrings may be used within a list or wherever an expression value is re-
quested. They may be assigned a value with the "=" statement. In the follow-
ing examples of substrings, assume X is "THIS IS A STRING".

X$ (1,4) is "THIS"
X$ (6,6) is "In

X$ (11,16) is "STRING"
X$ (11) is "STRING"

In the next examples, X is .3456:
X$ (1,1) ig n.v
X$ (4,5) is "56"
X$ (1) is ".3456"

To reference a substring of a matrix element, assume a two-dimensional matrix,
where M(2,3) has the value "1A2B3C". Then:

M(2,3)$(2,4) is "A2B"
M(2,3)$(6) is "C"

If a substring 1s to be assigned a value, the number of characters affected in
the string will be the lesser of the length of the specified substring and the

assigned value.

Let X = "ABCDEFG"; the following assignments will make these changes to X:

X$(1,3) = "Xyz» X: "XYZDEFG"
X$(1,3) = n¥n X: "¥BCDEFG"
X¥$(5,5) = "BOO" X: T"ABCDBFG"
X$(3,3) = mv X: M“ABCDEFG"

VI-4

VII. INPUT/QUTPUT OPERATIONS. ..t iiiieineiieseenneenseenesasecoans VII-1

A.
B.

—_

Fundamentals. ..ot iiiiitiiiteneeeenensenetossorosnsosnsas VIii-1
[L= T o 1 v e o TP ViIi-2
£ 5 3O AP VII-2
2. INPUT . .ttt it i i ittt te s te st acasssnsenasnnenn VII-3
3. PRINT ... ittt ititeeieeoenneeeuoneeasassssanssenaannns VII-4
L QU PUL . e ettt it i ie ettt seeeesanaeesaneneanaenananns VII-5
5. Print Formatted.....u.iiiitineneinineenronennennnnoes VII-6
B. LINE. ' iireeeneeeeeeooeseeeaeenesuneonnoanaeasanannans VII-8
T e SPACE . ittt it ereeoeeanoeneenassaseseasssasssasssasas VII-9
G S R VII-10
9, Compiled SAVE......ciititiiiinrieensoineeataaansnsansons VII-11
0. GET....... PP VII-12
1. LOAD.........con.. et et et eee ettt ettt VIii-13
*

VII-O

VII. INPUT/QUTPUT OPERATIONS

A. FUNDAMENTALS

The statements included in this section all deal with either sending characters
to a peripheral device (output) or receiving characters from a peripheral de-
vice (input).

All input/output statements optionally use device numbers to determine the
source of input or output. Each serial device on the system, including ter-
minals, cassettes, and paper tape units, are assigned a device number during
system generation. The device numbers start with 1 and increment sequentially.

If a device number is not specified in the statement, the current terminal will
always assume the default value.

The statements in this section include commands to send or receive string or
number data, and commands that will save or load programs from a serial device.
The latter commands will normally be used only with cassettes and paper tape
units.

VII-1

B. DEFINITIONS

INput

This command transfers input control from one device to another.

Format: 1IN expr

The expression must be the valid device number of the device that is to have
input control. OPUS will now accept input only from this new device. Should
input control be sent to a device that is not currently on the system, an
error will result.

ViI-2

INPUT

The INPUT command requests data to be entered from some perpheral device,
which is then assigned to a variable(s).

Format: INPUT <device #:> list

The device number must be specified if input is to be received from a
peripheral other than the current input device. Any valid device number (as
defined during system initialization) is allowed. The list is a list of
variables, constants, or expression values. OPUS will scan the list from left
to right and operate according to the type of parameter:

Variable: OPUS will request input (assumed to be in ASCII

characters) from the device. It will accept data, character by
character, until a carriage return is received. It will then convert
the line of data into valid string format and assign it to the vari-
able. It is important to remember that all input is in string format,
even if a number is entered,

Constant/Expression Value: OPUS will print the value to the current
output device and continue scanning the list. It should be thought
of as an INPUT statement containing a PRINT statement.

No carriage return/line feed will be sent to the device until the entire

list has been scanned and appropriately executed. Thus, it is possible to
enter several variable values on one line. If a carriage return is received
by OPUS and no data has been entered, the INPUT operation terminates (even
though there may be more variables in the list) and program execution cont-
inues to the next operation. The value of the variable that was to be assign-
ed the line of input will remain unchanged, i.e., it will have the same value
after the INPUT operation as it did before the operation. The NONE

function may be used to determine whether or not data was entered.

INPUT A,B; IF NONE [PRINT "NONE"; END;];
This example requests input for A; when a carriage return is received, it
requests input for B. If a 2nd carriage return is entered, the program types

'NONE' and terminates.

10 INPUT "TYPE SOMETHING: ", A; PRINT A;

TYPE SOMETHING: TRTRTRTR
TRTRTRTR

VII-3

PRINT

The PRINT statement is used to send data to a specified output device.
Format: PRINT<device #:> <list>

The device number is the number of the desired output device. If none is
given, the output device is assumed to be the current device. The list

is any combination of variables, constants, or expressions. OPUS will scan
the list from left to right, printing the value of each (in ASCII characters).
It will print three spaces after each value and, at the end of the list, a
carriage return/line feed will be generated only. There is no way to format
the list differently (fewer or more spaces between values, suppress carriage
returns, ete.). The programmer should use the Print Formatted (PF) state-
ment for this.

10 INPUT "TYPE SOMETHING: ", A;
20 PRINT A; PRINT "TEST"; PRINT 1+ 2;

TYPE SOMETHING: THTHTH
THTHTH

TEST

3

Note that a matrix variable may be part of the list.

10 DIM A(5);

20 LOOP K, 1 to 5;
30 A(K) = K;

40 NEXT;

50 PRINT 4;

VII-14

OUTput

The OUTput statement transfers output to a designated device.

Format: OUT expr

The expression must be a valid device number as declared in the system
initialization. After this operation is executed, any output from the
computer will go to this device. This does not affect the input device.

VII-5

Print Formatted

The PF statement is used to control the format of data sent to output devices.

Format: PF <device #: Dexpr<, list >

The device number is the number of the desired output device. If none is spec-
ified, it is assumed that the device is to be the current output device. The
list is one or more expression or variable values that are to be generated to
the output device according to the format string. The expression must return a
string value, which is the format string. The following symbols may be used in
any combination to compose the format string:

Bn n blanks (spaces) are to be printed. If n is not given, one
space will be printed.

Ln The corresponding value in the list of the statement will be left-
justified in a field of n characters. If the length of the value is
greater than n, the value will be truncated to fit into the field.
If the length of the value is less than n, spaces will be generated
to fill out the field.

Ln.m The corresponding value in the list will be scanned for a decimal
point. If one is found, all digits or characters to the left of the
decimal point will be left-justified in the field of n characters.
The decimal point will then be printed. All digits or characters to
the right of the decimal point will be left-justified in the field of
m characters, with trailing zeros filling out the field. This field
will be printed after the decimal point. If no decimal point is
found in the value, all digits or characters will go into the n
field, followed by a decimal point and zeros in the m field. Spaces
will fill out the n field if necessary.

Rn The corresponding value in the list will be right-justified in a field
of n characters. If the length of the value is less than the n field,
spaces will be filled in to the left of the value. If the length of
the value is greater than the n field, the value will be truncated on
the left.

Rn.m The corresponding value in the list will be scanned for a decimal
point. If one is found, all digits or characters to the left of the
decimal point will be right-justified in the field of n characters.

The decimal point will then be printed. All digits or characters

to the right of the decimal point will then be left-justified in the
field of m characters, with trailing zeros filling out the field. This
field will be printed out after the decimal point. If no decimal

point is found in the value, all digits or characters will go into the
n field, followed by a decimal point and zeros in the m field. Spaces
will be filled in to the left of the value in the n field if necessary.

VIT-6

Jta

The corresponding value in the list will be printed "straight",
i.e., the field will be the actual length of the value -- there
will be no spaces on either side of the value.

/ OPUS will immediately send a carriage return and line feed to the
output device. It is important to remember that after the PF
statement is completed, NO carriage returns or line feeds are
automatically generated. Thus, the slash is normally inserted at
the end of the format string to force a carriage return/line feed.

- A carriage return will be sent to the output device; there will be
no line feed.

+ A line feed will be sent to the output device; there will be no
carriage return.

n(...) All format symbols enclosed in the parentheses will be executed
n times.

, Commas may be optionally inserted between format symbols for
clarity. OPUS ignores them.

In all of the above, n and m must always be integers greater than @ but less
than 128.

In the format string, these symbols with their parameters may be combined in any
manner. OPUS scans the format string from left to right while simultaneously
scanning the list values from left to right. If a symbol in the format string is
found that does not require a list value, it is executed immediately. If a list
value is required, the next value in the list is formatted to the particular
specifications and output as ASCII characters to the specified output device.
There must be at least the same number of values in the list as there are symbols
in the format string requiring values, or else an error will occur. If there are
more values than are needed, they will be ignored,

10 A: "QQQ " ;
20 PF "L3,R30", A, A;

QQQ QQQ
or

10 A= 1234.567;
20 PF "R6.2/", A;

1234.56

Note that a matrix variable may be part of the list to be output.

VII-T7

LINe

The LINe command will generate a certain number of line feeds to a specified out-
put device.

Format: LIN <e:»cpr'l >: expr.,

Expression 1 is the device number to which the line feeds are to be sent. If not
entered, the current output device is assumed. Expression 2 is the desired number
of line feeds and must be an integer greater than zero. This command should not
be included in a PRINT statement. It will generate the line feeds as a stand-
alone operation.

VII-8

SPAce

This function will cause a given number of spaces to be immediately generated
on the output device.

Format: SPAKL expr, D> expr,,
Expression 1 is the device number on which the spaces are to be printed. If

not specified, the current output device is assumed. Expression 2 is the number
of spaces to be printed and must be a positive integer less than 256. OPUS

will generate these spaces (blanks) to the output device immediately upon exe-
cution of this SPAce function.

10 INPUT "NUMBER? ", A;
20 SPA A; PRINT "¥v;

NUMBER? 30

VIiI-9

SAVE

The SAVE command must be used to store a source program on a peripheral device.

Format: SAVE <device #:>expr

The device number is the number of the device on which the program is to be
stored (i.e., cassette, paper tape, etc.). If no device number is specified,

it is assumed the device is the disc (see Section VIII). The expression must be
the name of the program -- any ASCII string not exceeding 7 characters in length.

SAVE 4: "TEST1"

VII-10

Compiled SAVE

This command may be used to save a compiled (object code) program on a
peripheral device.

Format: CSAVE<device #:> expr

The device number designates the serial device upon which the program is

to be saved, normally cassette or paper tape. If this number is entered,
it must be followed by a colon. If no device is specified, it is assumed
that the program is to be saved on disc (see Section VIII). The expression
is the name of the program, not to exceed 7 characters.

If a program is saved in its compiled form, it may not be recompiled prior

to execution. Use the LOAD command to retrieve the object program from the
peripheral device.

CSAVE 3: "TEST2"

VII-11

GET

This command must be used to retrieve a source program from a peripheral device.

Format: GET <device #:> expr

The device number is the number of a peripheral device, normally cassette or

paper tape, from which the program is to be retrieved. . If no device number is
given, it is assumed the program is to be loaded from the disc (see Section VIII).
The expression is the name of the program, previously given to the program with
the SAVE command. The name may be up to seven ASCII characters in length. The
GET command will act as an append if another program is in core, i.e., it will

add the new program to the end of the current program. Therefore, it is best to
execute a NEW command to clear the program buffer before executing this command.

GET 4: "TEST1"

VII-12

LOAD

This command must be used to retrieve object programs from a peripheral device.
Format: LOAD<device #:> expr

The device number determines from which device the object program is loaded. If
no number is given, the program is LOADed from the disc (see Section VIII). The
expression is the name of the program previously assigned when it was SAVEd. The
length may be no more than seven characters. The LOAD command will act as an

append if another object program is currently in memory, i.e., it will add the
new program to the end of the old.

LOAD 4: n"TEST2"

VIiI-13

VIIT. DISC OPERATTIONS. .ttt e itinneireeeneeanansnreneennnaseenneaaanns VIII-1

A.
B.

Fundamentals. ciu i inie i ornoreeranersesnessoescnennnnnnes VIII-1
Program Storage and Retrieval.........ciiiiiriiiininnenennnn VIII-4
S 7 N VIII-5
2. Compiled SAVE Or DUMPiie ettt iennnneneennnneennnns VIII-6
TS €3 VIII-7
L 0 ¥ 1 VIII-8
Data Storage and Retrieval............ ettt ettt VIII-9
LS)23 0 P VIII-12
2. ASSIGN. . ittt ettt eetsssanenasossssssssnsesanannnns VIII-13
TP 3§ 1 VITII-14
7 8 1 VITI-15
B CLOSE ..ttt ittttateesoesnunnecnaeasneseonnennnecnannnnnns VIII-16
6. PURGE ..ttt iiiininioninnnneeaansssassseesonnnannennns VIII-17
T FILE. . iiiiiiiin it iieeitenaneaatsassossesneannaennns “VIII-18
General...ivereeseonernnnaes e VIII-19
O < 1 7 PO VIII-19
2. End Of File: EOF ..t iiiiiiiinenoitnorecnsesennonananns VIII-20
3. End of FILE: EFILE ...ttt ciiiiarernasrneatonacnnnnnns VIII-21
b DISC...iiiveiirerncennnnnns et reat i tet et et VIii-22
By LIBrary . ceiesieeneeereeasosessasnessnsssssasnsssasanens VIII-23

VITII-O

VIII. DISC OPERATIONS

A. FUNDAMENTALS

Disc operations include all statements that in some manner will affect data
stored on diskettes. The cassette/paper tape version of OPUS/ONE will not
contain any of these commands.

Disc Layout

A diskette used by a floppy disc drive is divided concentrically into physical
tracks, with each track divided into sectors. The number of sectors and tracks
is dependent upon the type of drive being used. Each sector holds a certain
number of bytes of data, most commonly, 128. OPUS will handle any disc drive
with the number of tracks, sectors, and bytes less than 256.

The first track of the disc is reserved by OPUS for a directory of all pro-
grams and files. The directory (or library) keeps the file name, the location
on the disc, and other pertinent parameters that have to do with the file type.
Also included on the first track is the sector-free table which keeps track of
all sectors that are being used for data and those that are available.

The rest of the disc is available for programs and files. Programs are stored
in a sequential manner with each sector in the program pointing to the next
sector. Data files are treated by a random-access method. The file consists
of two portions, the map and the actual data sectors. The map is in a conti-
guous block on the disc and thus, by implementing a simple algorithm, it is
possible to directly access any portion of this map. The map contains pointers
to the sectors holding the data. These sectors may be located anywhere on the
disc. Appendix C. gives a much more detailed explanation of the disc layout.

Disc Formatting

Before any data can be stored on a disc, the disc must be formatted to OPUS
specifications. The formatting routine is in the System Generation Routine.
The primary function of formatting is to put zeros in all the sectors on the
first track, therefore declaring that there are no files and that all sectors
are available for data. Optionally, the format routine will zero out the rest
of the diskette, checking primarily for tad sectors.

Disc Tag

With the format routine, it is also possible to assign a tag or label to each
diskette. The tag may be any sequence of ASCII characters not to exceed a length
of 7. The tag may be used by the following commands:

VIII-1

SAVE
CSAVE
DUMP
GET
LOAD
KILL
ASSIGN
OPEN
LIB

The tag determines which disc is to be accessed by the command. By specifying
the tag as a parameter, the diskette may reside in any drive, and if it is
enabled, OPUS will find it. :

Note that if a tag is specified and either the diskette is not in the system

or has not been enabled, OPUS will enter the Disc Swap Routine to allow.the
user to insert the correct diskette.

Disc Numbers

The above commands may also specify a disc number as a parameter instead of a
tag. These disc numbers are assigned during the System Generation Routine.

The numbers will start with @ and increment sequentially. Normally the numbers
will directly correspond to the physical drive number. However, in OPUS/TWO
and OPUS/THREE, it is possible to have different sets of drives in the system;
in which case, the disc numbers will be different.

Disc Swap Routine

If a disc tag has been specified in a command and the diskette is not present,
OPUS will enter the following routine:

(TAG) DISC MUST BE LOADED - ENTER DRIVE #:

Enter the number of the disc where the diskette is to be inserted.
DO NOT remove the old diskette at this time. All files will be closed
on this old diskette at this time.

SWAP DISC & HIT RETURN

Remove the old diskette (if any) now and insert the new one. Hit:
carriage return to designate that this has been accomplished.

If the new diskette does have the correct tag, the operation will continue. If
not, the routine will be repeated. It is possible to terminate the routine by
typing Control C.

By taking advantage of this Disc Swap Routine, the programmer can write pro-

grams that may implement several diskettes. Diskettes can be swapped in and
out easily by the user of the programs.

VIII-2

NOTE: In QPUS/THREE, running under the TEMPOS Multi-User Operating System,
if this disc swap routine is entered and another user is using the
disc specified in the first prompt, OPUS will return with:

DISC IN USE BY JOB XX

The routine will be repeated until a drive is declared that is free.

Removing and Inserting Diskettes

Once a disc has been accessed by the DISC command or some other command spe-
cifying a disc number, the disc is considered to be enabled. It must not be
removed and another diskette inserted without heeding the following precautions.
Failure to follow these procedures may result in a lost cause disc!
To remove a diskette:

1. Use the CLOSE command to make sure all files are closed on the disc.

2. OPUS/ONE: Remove the diskette
OPUS/TWO: Execute the SWAP command to remove the disc

To insert the diskette:

1. Insert the new diskette
2. Execute the DISC command to enable this disc

Never remove an old diskette and insert a new diskette without notifying OPUS
in this manner (see Section XV. for the details on how to mess up a disc!),

VIII-3

B. PROGRAM STORAGE & RETRIEVAL

Both source and object programs can be saved and loaded on discs. The programs
are stored as sequential files. The program must be given a name consisting
of not more than 7 ASCII characters. The type designation may be optionally
included with the name. The types for OPUS programs are:

S Source program
0 Object program

To include the type in the name, use the following format:
"NAMENT™
where T is the type.

The following commands are used to save programs:

SAVE Saves a source program
CSAVE Saves an object program
or

DUMP

These commands are used to load programs:

GET Loads a source program
LOAD Loads an object program

Program files may not be accessed as data from a program. Only random-access
files can hold accessable data.

Programs are appended in memory unless the NEW command is used before each
GET and LOAD,

VITII-Y4

SAVE

The SAVE command must be used to store a source program on a peripheral
device.

Format: SAVE <device #:> expr, <,expr-2 >

The device number is the number of the serial device on which the program is
to be stored (i.e., cassette, paper tape, etc.). If no device number is
specified, it is assumed the device is the disc. Expression 1 must be the
name of the program -- any ASCII string not exceeding 7 characters in length.
If the program is saved on disc, there may be no other program or file on the
disc with the same name. If the user has made changes to a program that was
previously saved on disc, and wishes to save the updated version with the
same name, the program must first be KILLed and then SAVEd.

Expression 2 defines the disc drive, if the device specified is the disc.
This may be one of the following:

a. drive number from @ to n, where n + 1 is the number of drives on the
system, or

b. disc tag (an ASCII character string identified with the diskette
during the disc format procedure in the System Generation Routine).

If the diskette is not present, or the drive containing the diskette was not
previously enabled, OPUS will enter the Disc Swap Routine. If expression 2 was
not entered, OPUS will assume that the diskette is in the drive last declared
by the DISC command.,

SAVE "TEST1"

VIII-5

Compiled SAVE or DUMP

This command must be used to save a compiled (object code) program on some
peripheral device.

Format: CSAVE <device #:> expr <,expr2>
or

DUMP <device #:> expr <,expr'2>

1
The device number designates the peripheral device upon which the program is

to be saved, normally cassette or paper tape. If this number is entered, it
must be followed by a colon. If no device is specified, it is assumed that the
program is to be saved on disc. Expression 1 in the format is the name of the
program, not to exceed 7 characters in length. Expression 2 defines the disc
drive, if the device specified is the disc. This may be one of the following:

a. drive number from # to n, where n + 1 is the number of drives on the
system, or

b. disc tag (an ASCII character string identified with the diskette during
the disc format procedure in the System Generation Routine).

If the diskette is not present, or the drive containing the diskette was not

previously enabled, OPUS will enter the Disc Swap Routine. If expression 2

was not entered, OPUS will assume that the diskette is in the drive last de-

clared by the DISC command.

Use the LOAD command to retrieve the object program from the peripheral device.
CSAVE "TESTZ2"

or

DUMP "TEST2"

VIII-6

GET

This command must be used to retrieve a source program from a peripheral
device.

Format: GET< device #:>expr=1<,expr2>

The device number is the number of some peripheral device, normally cassette
or paper tape, from which the program is to be retrieved. If no device number
is given, it is assumed the program is to be loaded from the disc. Expression
one is the name of the program, previously given to the program with the SAVE
command. The name may be-up to seven ASCII characters in length.

Expression 2 defines the disc drive, if the device specified is the disc. This
may be one of the following:

a. drive number from @ to n, where n + 1 is the number of drives on the
system, or

b. disc tag (an ASCII character string identified with the diskette during
the disc format procedure in the System Generation Routine).

If the diskette is not present or the drive containing the diskette was not
previously enabled, OPUS will enter the Disc Swap Routine. If expression 2

was not entered, OPUS will assume the diskette is in the drive last declared by
the DISC command.

The GET command will act as an append if another program is in core, i.e., it
will add the new program to the end of the current program. Therefore, it is
best to execute a NEW command to clear the program buffer before executing this
command. The GET command should not be used within a program; it will cause
program termination and a return to command mode.

GET "TEST1",?

VIII-7

LOAD

This command must be used to retrieve object programs from a peripheral
device.

Format: LOAD <device #:> expr, < ,expr‘2>

The device number determines from which device the object program is load-
ed. If no number is given, the program is LOADed from the disc. Expression
1 is the name of the program previously assigned when it was CSAVEd. The
length may be no more than seven characters. The LOAD command will act as an
append if another object program is currently in memory, i.e., it will add
the new program to the end of the old.

Expression 2 defines the disc drive, if the device specified is the disc. This
may be one of the following:

a. drive number from @ to n, where n + 1 is the number of drives on the
system, or

b. disc tag (an ASCII character string identified with the diskette
during the disc format procedure in the System Generation Routine).

If the diskette is not present, or the drive containing the diskette was not
previously enabled, the Disc Swap Routine will begin.

LOAD "TEST2"

VIII-8

C. DATA STORAGE & RETRIEVAL

Data Files

All data files in OPUS must be opened as random-access files. Each file is
divided into logical records which may be accessed (read from or written into)
in any order. Any record may be directly accessed without having to reference
others. OPUS disc files have the following attributes:

1. All references made to the file are by the file number.

2. All references made to data within the file are by logical record
number. This number starts with 1 and increments sequentially.

3. The length of the logical record (number of bytes that it contains) is
user-determined when the file is created; the maximum is the number of
bytes in a sector. All logical records within the file will be the
same length.

4. Data is written in a logical record either as a string or number item.
As many items as will fit may be written in one record.

5. Logical record boundaries may not be crossed by either a READ or WRITE
command.

6. When a file is created, no disc sectors are allocated for the logical
records. Only when a record is written does OPUS allocate an empty sector.

7. Sequential files must be set up as random-access files -- within the
program, logical records must be sequentially addressed.

8. Programs may not be saved in a data file. They are treated in a com-
pletely different manner by OPUS and may not be accessed as data.

9. To change one item in a logical record, it is necessary to read the
entire contents of the record, change the item, and write all items
back again.

10. An end-of-record marker is written after the last item in a record.

File Name

Every file created on the disc must be given a name for future reference. The

name may be any string of characters (from ASCII decimal code 1 to 254) not ex-
ceeding 7 characters in length. These data files have a type "F" designation,

which must be used in conjunction with the KILL command.

File Number

The file number is a number temporarily assigned to a file in the ASSIGN state-
ment. This file number, instead of a file name, will be used to reference (READ
or WRITE) the file. 'During system generation, the user declares how many files
may be assigned simultaneously in a program. This will determine the maximum
valid file number. The file number is an integer greater than zero, but less
than or equal to this maximum. It makes absolutely no difference which files
are assigned what file numbers. In fact, files may be assigned to different
file numbers during execution of the program.

VIII-9

File Access

Data files may be created on the disc to hold numbers, strings or matrices.
To facilitate understanding, the following example shows how a simple data base
may be created and accessed.

The user wishes to set up a data base from which to generate mailing labels for
letters. It is decided that a disc file is the logical medium for such a data
base. How should this be set up and implemented?

1. Define the logical record. Every disc file is broken down into logical
records, each of which corresponds to a specific item in the data base.
In this instance, the item would be a person to whom a letter will be
sent.

2. Define the contents of the logical record, that is, define what inform-
ation should be kept on each person, for example, a name and address.
The address should be separated into street address and city/state
because the two parts must be printed on separate lines.

3. Define the length of the logical record. How many bytes are required
to store a name and address? Assume that a name will never be longer
than 16 characters, the street address no more than 25 characters, and
the city/state no more than 20. Because these items must be stored as
strings, the name will require 17 bytes, the street address 26 bytes,
and the city/state 21 bytes. Thus a total of 64 bytes will be required
in the logical record.

by, Determine the maximum number of logical records. How many people must
there be in the mailing 1list? Let us assume there will be 1500.

5. Open the file to the required specifications.
DISC @
FINE
OPEN "MAIL",2,1500
FINE

The DISC command enables drive @; if another drive holds a tagged diskette, this
tag may be used in lieu of the drive number. '"MAIL" is the file name. The
second parameter, 2, gives the number of logical records in each sector. A
sector contains 128 usable bytes; since the logical record requires 64 bytes,
there can be 2 logical records in each sector (the integer of the number of bytes
per sector, divided by the number of bytes per Logical record). The third para-
meter, 1500, is the maximum number of logical records determined in step 3.

The file has now been created, and data may be written in it.

6. Write a program to enter the data.

10 ASSIGN "MAIL",1; POS=z1;
20 "START";

VIII-10

6. Write a program to enter the data (cont.).

30 INPUT "NAME? ", NA; IF NONE [CLOSE; END] ;
40 INPUT "STREET ADDRESS? ", ST;

50 INPUT "CITY, STATE? ", CS;

60 WRITE 1, POS: NA,ST,CS;

70 POS=POS +1;

80 GOTO "START";

The file "MAIL" is first assigned and given a file position number (ASSIGN
"MAIL", 1). All READs and WRITEs must refer to the file number, not to the name.
After the name and address are entered at the terminal, it is written on the file
(WRITE 1, POS: NA,ST,CS;). The first parameter, 1, is the file number; the second
parameter, POS, is the current logical record. It starts with 1 and increments
by units with each person. "NA" is the variable containing the name, "ST" the
street address and "CS" the city/state portion of the address. The program will
loop indefinitely until the user is finished and hits RETURN to "NAME? ".

The data is now in the file,

7. Write a program to print the file contents in specified format.
Because labels are to be printed, the name, street address, and city
and state are on three separate lines, with three blank lines between
each person. '

10 ASSIGN "MAIL",1; EFILE 1,1;

20 POS=1;

30 "START";

40 READ 1, POS: NA,ST,CS; IF EOF 1[END] ;

50 PRINT NA; PRINT ST; PRINT CS; LIN 3; POS=POS + 1;
60 GOTO "START";

The program must again assign the file "MAIL" to a file number (ASSIGN "MAIL",
1;). Then the end-of-file flag is set (EFILE 1,1). The first parameter here,

1, determines the file number; the second parameter, 1, if given a non-zero value,
tells OPUS that if an end-of-file is reached (that is, there is no more data in
the file), no error message should be printed -- instead, look for an EOF state-
ment to determine what to do next. POS is the variable that determines which
logical record is to be accessed. The program then reads the record in "MAIL"
determined by the logical record pointer, POS. The first item read in the

record is assigned to the variable, NA, the second to the variable, ST, and the
third to CS. If there is no data in the record (end-of-file), EOF will be set to
1 and the program will terminate. However, assuming that there is data, the
program will print on the terminal the name and address of the person, increment
POS by 1 (to get to the next logical record), and return to read the next record.
The program loops until all records have been read and the data written on the
terminal.

VIII-11

OPEN

This command is used to create a disc file.

Format: OPEN eXPr,, expr,, expr3< y&Xpr), >

Expression 1 is the name of the file -- any string of ASCII characters not exceeding
7 characters in length. Expression 2 is the number of logical records per sector.
It must be an integer from 1 to 128 (the maximum number of bytes in a sector). The
length of the logical record in bytes must be predetermined by the user according

to data that must go into one logical record. The number of logical records per
sector may then be calculated by dividing the number of bytes in a sector by the
number of bytes in a logical record. Expression 3 is the maximum number of logical
records necessary in the file. Its value must be an integer from 1 to 65535,

The command enters the name of the file into the disc directory and creates the
file on the disc. OPUS does not immediately allocate all sectors needed to hold
the maximum number of logical records. Instead, as data is written into logical
records, empty sectors will be retrieved as necessary. Therefore, one may open a
file that potentially will require 19008 sectors, but none of these sectors will
be reserved for the file until data is actually written into them. Example:

OPEN "SCRATCH", 1, 7290;
Expression U4 defines the disc drive. This may be one of the following:

a. drive number from # to n, where n + 1 is the number of drives on the
system, or

b. disc tag (an ASCII character string identified with the diskette during
system generation). If the diskette is not present, or the drive
containing the diskette was not previously enabled, OPUS will enter the
Disc Swap Routine.

If expression 4 was not entered, OPUS will assume that the diskette is in the
drive last declared in the DISC command.

ViIiI-12

ASSIGN

This command will retrieve a specified file from the disc and assign it a file
number.

Format: ASSIGN expry , expr'2 <expr'3>

Expression 1 must be the name of a disc file that was previously created on the
disc, and expression 2 must be a valid file number, i.e., an integer from 1 to
the maximum number, as declared in system initialization. A file must be ASSIGN-
ed before data may be read from, or written on, the file. At any point during a
program, a different file.may be assigned to the same file number. Only one

file may be assigned in one ASSIGN statement.

Expression 3 defines the disc on which the file resides. This may be entered as
one of the following:

a. drive number from @ to n, where n + 1 is the number of drives on the
system, or

b. disc tag (an ASCII character string identified with the diskette during
the disc format procedure in the System Generation Routine). If
the diskette is not present, or the drive containing the diskette was
not previously enabled, OPUS will enter the Disc Swap Routine.

If expression 3 is not entered, OPUS will assume that the file resides on the
drive last declared in the DISC command.

10 ASSIGN "XFILE", 1;

20 INPUT "WHAT DO YOU WISH TO WRITE? ", N;

30 WRITE 1, 1: N;

40 PRINT N, "HAS BEEN WRITTEN INTO THE FIRST RECORD OF XFILE.";
50 PRINT "IT READS BACK AS: ";

60 READ 1, 1: N; PRINT N;

WHAT DO YOU WISH TO WRITE? THIS IS A TEST

THIS IS A TEST HAS BEEN WRITTEN INTO THE FIRST RECORD OF XFILE.
IT READS BACK AS:

THIS IS A TEST

VIII-13

READ

The READ statement must be used to read data from a disc file.

Format: READ expr expr variable list

1’ 2"

Expression 1 is the required file number -- the number to which the file was
previously ASSIGNed. If no file was assigned to this number, an error will occur.
Expression 2 is the logical record to be read within the file. The value must

be a positive integer greater than zero and less than or equal to the maximum
number of logical records as declared in the OPEN command. The variable list is a
list of variable names that are to be assigned the values of data that are in the
logical record. The data in the logical record will be read sequentially and assign-
ed to the variables from left to right. If a variable in the list is a matrix
variable, data in the record will be assigned sequentially to each matrix element.
There must be at least as many data items in the record as there are variables and/
or matrix elements in the list, or an end-of-record (EOF/EOR) error will occur.

If there are more data items in the logical record than in the variable list, the
remaining data items will be ignored. The READ statement always starts at the
beginning of the designated logical record and will never read past the end of it.
It is not possible to read data sequentially from a file, disregarding logical re-
cord boundaries. The logical record MUST be specified.

10 ASSIGN "XFILE", 1;
20 READ 1, 1: A;
30 PRINT A;

THIS IS A TEST

VIII-14

WRITE

The WRITE statement is used to write data into a disc file.

Format: WRITE expr expr,: list

1’ 2

Expression 1 is the file number to which the requested file was previously
ASSIGNed. All files must first be assigned a file number before any reference
(READ or WRITE) can be made to them. Expression 2 is the logical record that is
to be written. This number must be an integer greater than zero and less than or
equal to the maximum number of logical records in the file, as initially declar-
ed in the OPEN statement. The list consists of one or more variables, constants,
or expression values that are to be written in the logical record. If a matrix
variable is listed, the entire contents of the matrix will be written on the
record.

An entire logical record must be written at once. It is not possible to change
one portion of the record, leaving other values unchanged. One must first READ
the entire contents of the record, change the appropriate variable, and then
WRITE all the variables back on the record. It is not possible to write data
across logical record boundaries. If one attempts to write more values on a
record than will fit, an end-of-record (EOF/EOR) error will occur, unless supp-
ressed by the EFILE command.

10 ASSIGN "XFILE", 1;
20 INPUT "VALUE? ", A;
30 WRITE 1, 1: A;

VALUE? THIS IS A TEST

VIII-15

CLOSE

This command will close a file that was previously assigned in the ASSIGN state-
ment. The disc will be updated and the file released.

Format: CLOSE <expr >

The expression is a file number to which the file was previously assigned.
Example:

10 ASSIGN "XFILE", 1;
20 READ 1, 1: A;

30 PRINT A;

40 CLOSE 1;

Simply using CLOSE with no designated file will release all files and update the
disc. It is good practice to use a CLOSE statement at the end of any program which

changes data on the disc, to assure that the disc has indeed been updated.

40 CLOSE;

VIII-16

PURGE

This command will delete all data from a specified disc file logical record.

Format: PURGE expr., expr

1 2

Expression 1 is a valid file number to which a file was previously assigned.
Expression 2 is the number (an integer from 1 to the maximum number in the file)
of the logical record that is to be purged from the file.

VIII-17

FILE

This function will return certain information regarding a disc file.

Format:

FILE expr expr2

17

Expression 1 is the file position number -- the number to which a file has pre-
viously been assigned, within the program. Expression 2 is an integer from 1 to
6, whose value will cause the function to return the following:

1
2
3

(e NV]

10
20
30

50
60
70

Name of the file assigned to this position

The number of bytes per logical record

The number of logical records per sector, as established at the
time of file creation

The maximum number of logical records allowed in the file

The number of logical records that have had data written in them
The number of logical records that are empty (have had no data
written in them)

ASSIGN "XFILE", 1;

PRINT "THE NAME OF THE FILE IS:", FILE (1, 1) ;

PRINT "NUMBER OF BYTES PER LOGICAL RECORD:", FILE (1, 2) ;
PRINT "NUMBER OF LOGICAL RECORDS PER SECTOR:", FILE (1, 3) ;
PRINT "MAXIMUM LOGICAL RECORDS:", FILE (1, 4) ;

PRINT "LOGICAL RECORDS USED:", FILE (1, 5) ;

PRINT "LOGICAL RECORDS EMPTY:", FILE (1, 6) ;

THE NAME OF THE FILE IS: XFILE v
NUMBER OF BYTES PER LOGICAL RECORD: 128
NUMBER OF LOGICAL RECORDS PER SECTOR: 1
MAXIMUM LOGICAL RECORDS: 1

LOGICAL RECORDS USED: 1

LOGICAL RECORDS EMPTY: 0

VIII-18

D. GENERAL

KILL

This command is used to delete (purge) either a program or a data file from
the disc.

Format: KILL expr; <,expr-2 >
Expression 1 must be a valid name of a program or file currently on the disc.

The name should be followed by a backslash (\) and one of the following type
codes:

S = Source program

0 = Object program

F = Data file

D = OPUS/TWO dimensioned data file

If the type code is not entered, it is assumed to be a source program.

Expression 2 defines the disc drive, if the device specified is the disc. This
may be one of the following:

a. drive number from @ to n, where n + 1 is the number of drives on the
system, or

b. disc tag (an ASCII character string identified with the diskette
during the disc format procedure in the System Generation Routine).

If the diskette is not present, or the drive containing the diskette was not
previously enabled, OPUS will enter the Disc Swap Routine. If expression 2 was
not entered, OPUS will assume the diskette is in the drive last declared in the
DISC command. Examples:

KILL "TEST\OQO"
KILL "FILE\F",1
KILL "SOURCE"

A program or file is erased from the disc by this operation. KILL will not
affect any program that may currently be in memory. If an updated version of a

program is to replace an old version on the disc, the latter must first be
KILLed and the new version then SAVEd or CSAVEd.

VIII-19

End Of File: EOF

This function will be executed only if the EFILE command has been declared TRUE
for the appropriate file. If so, this statement will determine whether or not

an end-of-file or end-of-record has been reached by the last READ/WRITE statement
affecting the file.

Format: EOF expr

The expression must be a valid file number, corresponding to the same file de-
clared under the EFILE statement. The function will return a TRUE value (1) if
an end-of-file was reached in the last READ or WRITE command. It will return a
FALSE value (@) if no end-of-file was reached, or no READ or WRITE statement was
executed. See End of FILE (the EFILE command).

10 ASSIGN "XFILE", 1;

20 EFILELl, 1;

30 INPUT "RECORD #? ", R;

4o READ 1, R: A;

50 IF EOF 1[PRINT "NO SUCH RECORD"; END];
60 PRINT A;

RECORD #7? 5
NO SUCH RECORD
FINE

VIII-20

End of FILE: EFILE

This command determines whether or not an end-of-file/end-of-record reached
by a READ/WRITE/PURGE command is under program control, i.e., may or may not
be suppressed.

Format: EFILE expr,, expr

1 2

Expression 1 must be a valid file number, an integer from 1 to the maximum
number declared in system generation, declaring which file is to be af-
fected. Expression 2 must have either of the following two values:

TRUE (non-zero): After this command has been executed, if an end-of-file
is encountered during a READ/WRITE operation, OPUS will
not print the normal end-of-file error message and
terminate the program. Program execution will continue
as if no end-of-file has been reached.

FALSE (zero) : If an end-of-file is encountered, OPUS will print the
appropriate error message and terminate the program. Un-
less this operation was previously executed with a TRUE
operand, end-of-record/end-of-file errors will terminate
the program.

By itself, this command will do nothing but suppress program termination when
an end-of-file is reached. Generally, it will be used in conjunction with the
EQF statement. Note that there is no way to determine whether an end-of-record,
as opposed to an end-of-file, was reached.

10 ASSIGN "XFILE", 1;

20 PRINT "THE FILE NAMED 'XFILE' SHOULD HAVE BEEN OPENED TO ONE";

30 PRINT "LOGICAL RECORD. 1IF WE TRY TO READ THE SECOND, WE WILL";

40 PRINT "GET AN 'EOF/EOR' ERROR. HOWEVER, IF 'EFILE' IS FIRST SET,",
50 PRINT "THEN THE PROGRAM WILL CONTINUE EXECUTION.";

60 PRINT ;

70 EFILE 1, 1;

80 READ 1, 2: N;

90 IF EOF (1)

100 [PRINT "THERE WAS NO RECORD 2, BUT EXECUTION CONTINUED."; 1 ;

THE FILE NAMED 'XFILE' SHOULD HAVE BREN OPENED TO ONE LOGICAL RECORD. IF
WE TRY TO READ THE SECOND, WE WILL GET AN 'EOF/EOR' ERROR. HOWEVER, IF
'EFILE' IS FIRST SET, THEN THE PROGRAM WILL CONTINUE EXECUTION.

THERE WAS NO RECORD 2, BUT EXECUTION CONTINUED.

VIII-21

DiISC

This command will enable a particular disc, declaring this as the default disc
in instances where a specific disc is not given with other disc commands.

Format: DISC expr

The expression must be the drive number from @ to n, where n + 1 is the number
of drives on the system, or the disc TAG which was entered when the diskette was
formatted. In the latter case, the disc must have been previously enabled or
OPUS will go into the Disc Swap Routine.

Note: It is not necessary to use the DISC command before accessing a disc if

one specifies the disc number with a disc command (GET, SAVE, OPEN, ASSIGN, etc.);
the DISC command simply sets up a default value. If the DISC command has not
been executed and another command is given, assuming a default disc, the error
message "~NO DISC DECLARED-" will occur.

Vili-22

LIBrary

The LIBrary command will print out all programs and files residing on a disc.

Format: LIB expr.,: expr,
Expression 1 is an optional device number to which the directory will be printed.
If not specified, the current terminal will display the directory. Expression 2
is either a valid disc drive number from @ to n, where n + 1 is the number of
drives on the system, or a disc tag. If not specified, the disc is assumed to

by the one last declared in the DISC command. For each program, LIBrary lists
the name of the program, whether it is a source or object program, and the length
in number of bytes. For each file, LIBrary lists the name of the file, the
number of logical records per sector, the maximum number of logical records
allowed.

NAME TYPE LENGTH LR/SECTOR MAX LR
TESTF F 2 190
FIXIT S 2345
HELP 0 346
DFILE D 3 PP1436
NAME : Name of the program or file
TYPE : F = Data file
S = Source program
0 = Object program
D = Dimensioned data file (OPUS/TWO)
LENGTH : The length (in bytes) of a program
LR/SECTOR: Number of logical records in one sector
MAX LR : Maximum number of logical records allowed in the file.

VII1-23

IX. DBRANCH & BLOCK OPERATIONS .« vttt et teeetteeeeeee e eeeeeaannn IX-1

A.

.................................... I1X=1
L €1 O IX-3
2. GOSUB...RETURN i iiteriiiteteerearaenssensasnsnnnenn IX-4
Conditional Block Operations.i ittt nnnnnans IX-5
I IX-6
I 1 70 IX-7
3. LOOP. .. .TO. . . NEXT ittt ittt it e it i e ettt saiaescacnns IX-8
B, WHILE...CONTIiNUE ...uv vueenrtnunnmnneeeneanansacannaens IX-10
5P 1 IX-11

I¥-0

IX. BRANCH AND BLOCK OPERATIONS

A. UNCONDITIONAL BRANCHING

There are two statements in OPUS that will unconditionally send program execu-
tion to a different part of the program, the GOTO and the GOSUB commands.

Labels

The section of the program which 1s to pick up execution is identified by means-
of a 'label'. The label is simply a string constant of any value and length
that is located at the starting location of the program section. It may or may
not be connected with a certain operation. ;

These commands require, as a parameter, a value that is equivalent to the laBel
value. The characters, and the length of this command parameter, must be iden-
tical to the string constant label to which execution is to be transferred.

The parameter may actually be a variable or other expression, but the value is

what is considered.

When one of these statements is encountered, OPUS will take the label value and
scan from the start of the program for a matching string constant. All state-
ments requiring a label operand will be skipped. The first matching string it
encounters is considered to be the location of the label constant. All block
boundaries are ignored; that is, it is possible to jump into the middle of a
block.

Because the object code is stored in Postfix notation and the operands precede
the operators, a label constant may be part of another operation. That opera-

tion will be executed upon receiving control.

The following example shows the easiest method of program transfer. The label
is "XYZ123". '

50 GOTO "XYZ123";

Loo "Xyz123"; PRINT "HERE I AM";
In the following example, the two strings, X & Y, are concatenated to form the
label value for the GOTO statement. After execution of the GOTO, the program
will print "THIS IS A LABEL".

10 X="THIS IS "; Y="A LABEL";
20 GOTO X&Y:

100 PRINT "THIS IS A LABEL";

IX-1

The programmer should be forewarned that using the GOTO to jump out of the
middle of blocks may cause problems. See Section XV. for the details of such
problems,

Subroutines

The GOSUB statement is an unconditional jump to a subroutine block. After exe-
cuting the subroutine, control will be transferred back to the statement fol-
lowing the GOSUB. Program code is normally put in a subroutine when it is neces-
sary to repeatedly execute that code in several places within the main body of
the program. The normal format of subroutine usage is as follows:

Main program:

10 . . .
20 GOSUB LABEL This line sends control to the subroutine.
30
o . . . :
50 GOSUB LABEL - Another call is made to the subroutine.
Subroutine:
100 LABEL (of subroutine) The subroutine must have the label as the
110 . . . ' heading of the subroutine.
200 RETURN A RETURN statement sends control back to the

operation following the GOSUB statement.

There is no limit to the number of calls that may be made to the subroutine. Code
within a subroutine may call another subroutine. Subroutines may be nested as deeply
as necessary, dependent only upon the amount of memory in the system.

Subroutines are normally placed at the end of programs. A subroutine should
never be executed without going through a GOSUB statement. If it is, a "STACK
OVERFLOW" error will occur.

A1l variables used outside and inside the subroutine are global; that is, their
values will be the same wherever they are used. No local variables may be de-
clared.

OPUS/TWO and OPUS/THREE have more extended subroutine capabilities with local
variables (see Section XIV.).

GOTO

This command will unconditionally force program execution to the location de-
termined by the argument.

Format: GOTO expr

The expression may be any number, string, or variable whose literal string
value appears at the location at which the program should pick up execution.
This literal string will be called a label of the routine. OPUS will scan
the program, from the beginning, until a matching label is found. An error
will result if no matching label is found. If more than one label exists,
the first one will be assumed. All matching literal strings used by other
GOTOs, GOSUBs, SCANs and EXTs will be ignored.

If the programmer keeps in mind that operands precede their operators in the
object program, GOTOs may refer to a label that is an operand for a PRINT,
INPUT or other statement. NOTE: GOTOs cannot refer to a line number, since
all line numbers are deleted when a program is compiled.

10 PRINT "THIS IS AN INFINITE LOOP...";

20 PRINT "BREAK BY HITTING CONTROL + C...";
30 "START"; GOTO "START";

THIS IS AN INFINITE LOOP...
BREAK BY HITTING CONTROL + C...

IX-3

GOSUB. ..RETURN

A GOSUB causes the program to jump to the specified subroutine, and when
a RETURN statement is reached within the subroutine, to return to the state-
ment following the initial GOSUB.

Format: GOSUB expr

The expression is the label of the subroutine to which control is to be trans-
ferred. It may be a constant, variable, or expression. The value of the
expression, in literal string format, must be the first item in the subroutine
that is being called. An error and program termination will result if there is
no such label. TIf the user keeps in mind that operands always precede their
operators in the object program, GOSUBs may refer to a label that is the operand
of the first statement in the subroutine. NOTE: GOSUBs cannot refer to a line
number, since all line numbers are deleted when a program is compiled.

10 GOSUB "ROUTINE";
20 PRINT "NOW BACK TO MAIN ROUTINE...";

30 END ;
40 "ROUTINE"; PRINT " NOW EXECUTING SUBROUTINE...";

50 RETURN ;

NOW EXECUTING SUBROUTINE...
NOW BACK TO MAIN ROUTINE...

RETURN

The RETURN statement must be used at the end of a subroutine to force program
control back to the main routine.

Format: RETURN

There are no parameters. When the program counter reaches this statement, it
will return to the statement directly following the GOSUB that initially called
the subroutine. An error will occur if a RETURN statement is attempted and
there was no prior GOSUB.

B. CONDITIONAL BLOCK OPERATIONS

The statements included in this section will execute blocks of code if certain
conditions are satisfied.

A block of code is defined as a section of program code delimited by a block
initiator and a block terminator. The operations using this block format are
as fcllows:

Initiator Terminator
[]
LOOP NEXT"
WHILE CONTinue

The bracket block is explained at length in Section IT.

The LOOP and WHILE blocks of code are conditionally executed only if the
parameter of the block initiator results in a TRUE condition.

Upon executing a block initiator, OPUS will put this location and any other per-
tinent information in the function stack. Execution of the block terminator will
remove this data from the stack. With this in mind, it should be apparent that
attempts to jump out of or into the middle of a block may result in errors. If
a block is exited without executing the block terminator, OPUS assumes the
following code is still in that block. Thus blocks become needlessly nested
until a stack overflow error occurs. If a block terminator is executed without

a previous block initiator, a stack overflow will also occur, as OPUS pops
everything off the stack looking for the initiator.

Blocks may be nested within each other as deeply as memory allows.

Subroutines may also be considered blocks of code with the GOSUB as the block
initiator and the RETURN as the block terminator.

There are three statements that conditionally execute a bracket block of code:
IF
ELSE
ON

In the first two statements, a TRUE/FALSE condition must exist, determining

whether the following block is to be executed. The ON statement will execute
a specific block of code, depending upon the value of the parameter.

IX-5

IF
This conditional command may be used when certain program code is to be execut-
ed only if a specified condition is TRUE.

Format: IF expr block

If the expression returns a TRUE (non-zero) value, the block will be executed. 1If

it returns a FALSE (@) value, the block will be skipped, and program execution

will continue after the block. The code within the block must be inserted within
brackets ([1) unless it consists only of one statement, one variable, or one constant.
The ELSE statement may be used in conjunction with the IF statement to execute a
block of code should the IF condition fail.

10 INPUT "NUMBER? ", N;
20 IF N# TRU (N) [PRINT "DECIMAL POINT MAY NOT BE USED"; 1] ;

NUMBER? 1.2
DECIMAL POINT MAY NOT BE USED

1%-6

IF...ELSE

The ELSE command may be used in conjunction with the IF statement.

Format: IF expr block1 ELSE block2

If the previous IF statement has failed, the ELSE statement will execute the
succeeding block of code. Otherwise, the block will be skipped. The code
within the block must be inserted within brackets ([]) unless it consists
only of one statement, one variable or one constant. If there was no previous
matching IF statement, a stack overflow error will occur.

If the expression is TRUE (non-zero value), block 1 will be executed and block
2 will be skipped. If the expression is FALSE (zero value), block 1 will be
skipped and block 2 will be executed.

10 "START";

20 INPUT "TYPE A NUMBER: ", N;

30 IF NONE [END ;] ;

40 IF N >5 [PRINT "YOUR NUMBER IS GREATER THAN 5";]

50 ELSE [IF N < 5AND N# 5 [PRINT "YOUR NUMBER IS LESS THAN 5";]
60 ELSE [PRINT "YOUR NUMBER IS EQUAL TO 5"; 1 1

70 GOTO "START",

TYPE A NUMBER: 7

YOUR NUMBER IS GREATER THAN 5
TYPE A NUMBER: 3

YOUR NUMBER IS LESS THAN 5
TYPE A NUMBER:

FINE

IX-7

LOOP...TO...NEXT

The LOOP statement allows the section of program code within a loop block to
be continuously executed until the loop variable reaches a specified value,

at which point program execution continues on after the loop block. The block
initiator is the LOOP statement, and the block terminator the NEXT statement.

Format: LOOP variable, expr TO expr ..NEXT<:expr3)>

5°

The variable must be any valid simple variable name or variable matrix element
name. The expression values should be any numerical value (strings are con-
verted to numbers). When the program counter encounters the LOOP statement,
the value of expression 1 is assigned to the variable. This is the starting
value of the loop variable. The TO statement compares the value of the loop
variable to expression 2. If the variable is less than or equal to the expres-
sion (numerical value), the program code within the loop is executed. However,
if the variable is greater than expression 2, the program skips to the program
code immediately following the corresponding NEXT statement.

When the loop is executed and a NEXT statement is reached, OPUS checks for the
expression 3 value. If such a value exists, it is added to the loop variable;

if there is no such parameter, the loop variable is incremented by one. The

NEXT statement then causes program execution to return to the previous TO
statement, which in turn checks to see if the loop variable has reached the
maximum. The program loops in this fashion until the loop variable has exceeded
expression 2; at this point, it skips to the statment following the NEXT statement.

Loops may be nested within each other. There must always be a corresponding

NEXT for every LOOP. It is not recommended to jump out of loops. OPUS allocates
a stack buffer for loop parameters. The parameters are not purged from the stack
until a loop has completed its cycling normally. Therefore a jump out of a loop
will leave these loop parameters in the stack. These may be picked up by other
operations further down the line, causing unexpected results.

10 LOOP K, 1TO 5;
20 PF "SB", K;
30 NEXT ;

12345

1X-8

10
20
30

50
60

Rl

AN OYON O

REM
LOOP I, 1TO
1TO

"LOOP

LOOP J,
PF "SB", J;
NEXT 5; PRINT ;

NEXT

11
11
11
11
11

’

16
16
16
16
16

21
21
21
21
21

WITH INCREMENT OF 5",

5;
30;

26
26
26

26

26

1X-9

WHILE...CONTinue

The WHILE statement is used to repeatedly execute a section of program code
until a condition becomes FALSE. The WHILE statement is the block initiator,
and the CONTinue the block terminator.

Format: WHILE expr; . . .CONT

The value of the expression is determined to be TRUE (numerical value not equal
to @) or FALSE (numerical value equal to 0). If TRUE, the program will continue
executing sequentially until it hits the CONTinue statement, at which point,
control will be transferred back to the WHILE statement and the expression re-
evaluated. As long as the expression remains TRUE, this loop will be executed.
However, once the expression becomes FALSE, the program will skip out of the loop
to the statement following the CONTinue statement.

10 X= 10;
20 WHILE X»0; PF "SB", X;
30 X= X- 1; CONT ;

10987654321

1X-10

on

The ON statement is a conditional statement that will execute a sperific
block of program code, depending upon the value of the argument.

Format: ON expr block1\block2\. . .\block
n

If the expression has the value of 1, block 1 will be executed, and following
blocks in the operation will be ignored. If it has a value of 2, only block 2
will be executed; all others will be ignored. 1If the expression has the value n,
only the nth block will be executed. The code within each block must be inserted
within brackets ([1) unless it consists of only one statement, one variable, or
one constant. The same logic holds with the following format:

Format: ON expr, statement operand1\operandé\. . .\operandn

If the expression has a value of n, for instance, the statement will use the
nth operand and ignore all other operands.

The expression must have an integer value greater than zero, or an error will ocour .

5 "START";

10 INPUT "TYPE A NUMBER: ", N;

20 ON N[PRINT "ONE"]\ [PRINT "TWO"] \ [PRINT "THREE"]
30 GOTO "START",

TYPE A NUMBER : 1

ONE

TYPE A NUMBER: 2
TWO

TYPE A NUMBER: 3
THREE

NOTE: Line 20 may also be written as:

20 ON N, PRINT "ONE" \"TWO" \ "THREE":

TX=11

X. BOOLEAN & RELATIONAL OPERATIONS..... ettt ettt e X-1

A.

Boolean Operations...... e et e e s et e et et X-1
1. AND........ et eenee et e N o aenea X-2
2. OR.veviiernnnnnnes C e et et ene e e et e e e X-3
3. NOT...vevuvens C e et seaeeieee et X-4
Relational OperalionS..v.ie e veeeieeerroeeosnerocsnesnennnanses X-5
1. Less Than: < et iteae e X-6
2, Greater Than: > ittt eirereeennnneeeassoneesananaens X=-7
3. Not Egual: # et et aeeseete ettt X-8
b, 1s........ et et et et ettt et X-9
5. Less Than or Equal To: it eetereta ettt X-10
6. Greater Than or Equal TO: D= i.iiiiiierenrneneannnnnnns X-11

X. BOOLEAN & RELATIONAL OPERATIONS

A. BOOLEAN OPERATIONS

Boolean operators will treat the required operand values as logical numbers.
Operands will first be converted to number format. If the numerical value is
non-zero, the operand is TRUE. If the value is zero, the operand is FALSE.
Given this TRUE/FALSE condition of the operands, the Boolean operator will
return a TRUE (1) or FALSE (#) value, depending upon the operation. The Boolean
operators in OPUS are:

Binary: AND Returns TRUE if both operands are TRUE.
OR Returns TRUE if either operand is TRUE.

Unary : NOT Returns TRUE if the operand is FALSE.

FALSE

FALSE is one of two logical values of any number or string. An operand value
will be considered FALSE if, and only if, its numerical value is equal to zero.
A string such as "HORSE" is FALSE because its numerical value is @. However,
"34" is TRUE because its numerical value is 34 (non-zero).

TRUE

TRUE is a logical value of an expression. If an expression has a non-zero '
numerical value, it is considered to be TRUE, whereas a zero numerical value will
be FALSE. Thus numbers such as 34, -_44 and 109.4 are TRUE; strings such as
n35v, w_g" - and "UDDD" are TRUE because their numerical forms are non-zero. How-
ever, "HORSE" is FALSE because conversion to a number results in #. Some state-
ments will return a TRUE or FALSE value to the operand table, depending upon the
condition met. A TRUE value will always be returned as 1, a FALSE value as 0.

AND

This Boolean binary operator may be used to determine whether or not two express-
ions are TRUE.

Format: expr. AND expr

1 2

If the numerical value of expression 1 is TRUE (non-zero) and the numerical value
of expression 2 is TRUE (non-zero), the value returned will be TRUE (1). If
either expression is FALSE (#), the value returned will be FALSE (8).

10 INPUT "FIRST NUMBER? ", A, " SECOND? ", B;
20 PRINT A, "AND", B, "=", AAND B;

FIRST NUMBER? 1 SECOND? O
1 AND 0 = 0

OR
This is a Boolean binary operator that determines whether or not one of two
operands has a TRUE value (non-zero).

Format: expr. OR expr

1 2

If either expression 1 or expression 2 has a non-zero numerical value, this
operation will return a TRUE value (1). If both expressions have a FALSE value
(@), the operation will return a FALSE value.

10 INPUT "FIRST NUMBER? ", A, " SECOND? ", B;
20 PRINT A, "OR", B, "IS", AOR B;

FIRST NUMBER? 1 SECOND? O
1 OR 0 IS 1

NOT

The NOT function logically negates its argument.

Format: NOT expr

If the expression has a numerical value of zero, the NOT function will return a
TRUE value (1). If the expression has a non-zero value a FALSE value (8) will
be returned.

5 "START";

10 INPUT "TYPE A NUMBER: ", N;

20 IF NOT N[PRINT "THAT WAS ZERO";] ;
30 GOTO "START";

TYPE A NUMBER: 1
TYPE A NUMBER: 0O
THAT WAS ZERO

B. RELATIONAL OPERATIONS

Relational operators compare the values of two operands and return a TRUE or
FALSE value, depending upon the relationship of the two. A relational operation
will always be a binary operation.

Format: expr'l operator expr-2
The following operators are available in OPUS to compare one value with
another:

< The first expression is less than the second

> The first expression is greater than the second

The first expression is not equivalent to the second

IS The first expression is equivalent to the second

<= The first expression is less than or equal to the first

>-= The first expression is greater than or equal to the first

The expression values may be in either string or number format, but before the
compare operation is actually executed, OPUS will make the appropriate conversions
to make sure they are in the same format. The following rules apply to the conver-
sions and comparisons:

1. If both of the values are in number format, the numerical value of the
first is compared to the numerical value of the second.

2. If both of the values are in string format, the ASCII code represent-
ation of each character in the first value is compared numerically (from
left to right) to the corresponding character in the second value. Refer
to the ASCII Table for the code representation of zach character.

3. If one expression value is in string format and the other is in number

format, the one in number format will first be converted to a string.

At this point, the string with the least number of characters will be
given enough leading zeros to make it the same length as the other. The
two strings will then be compared according to Rule 2. above. Note that
decimal points will not be lined up. Should the user specifically want
a numerical comparison and the format of the values is in doubt, the
NUMber function should be used.

X-5

Less Than: f;

This symbol designates the relational binary operation of "less than".

Format: expr, < expr,,

The value returned from the operation will be TRUE (1) only if the value of express-
ion 1 is less than the value of expression 2. If the value of the first is greater
than or equal to the second, the value returned will be FALSE (#). OPUS will

make sure that the value formats of the two expressions are the same prior to this
operation.

PRINT 2<3
1

X-6

Greater Than: 2

This symbol designates the relational binary operation for "greater than".
Format: exprl > expr'2

If the value of expression 1 is greater than the value of expression 2, the
operation will return a TRUE value (1). If the former is less than or equal
to the latter, the returned value will be FALSE(@). OPUS will make sure
that the value formats of the two expressions are the same prior to this
operation.

A=10; IF A>5[PRINT "TRUE"};
TRUE

Not Equal: #

The octothorpe (pound sign) is a relational binary operator that determines the
equivalency of the two operands.

Format: expr, #‘expr

1 2

If the two expressions are not equal, the operation will return a TRUE value (1).
If they are the same, the operation will return a FALSE value {(@). OPUS/ONE will
make sure that the value formats of the two expressions are the same prior to this
operation.

10 INPUT "NUMBER? ", N;

20 IF N# 3 [PRINT "NO GOOD. . .TRY AGAIN";GOTO "NUMBER? " 1}
NUMBER? 2

NO GOOD. . .TRY AGAIN

NUMBER? 3

X-8

IS
This relational binary operator scans the two operands and determines whether
or not they are equivalent.

Format: expr, IS expr

1 2

This IS operator will return a TRUE value (1) if the two expression values are
the same. It will return a FALSE value (#) if they are different. For instance:

3.4 IS 3.4 Returns a TRUE value

3.4 IS "3.4" Returns a TRUE value

mysn IS U5 Returns a TRUE wvalue

@ IS "DOG" Returns a FALSE wvalue
10 INPUT ":", A;

20 IF AIS "CAT" [PRINT "TRUE";] ;

:CAT
TRUE

Less Than or Equal To: <=
This symbol designates the relational binary operation of "less than or equal
to".

Format: expr1 <= expr,

The value returned from the operation will be TRUE (1) only if the value of
expression 1 is less than or equal to the value of expression 2. If the value
of the first is greater than the second, the value returned will be FALSE (@).
OPUS will make sure that the value formats of the two expressions are the same
prior to this operation.

PRINT 3 < =3;
1

Greater Than or Equal To: =

This symbol designates the relational binary operation for "greater than or
equal to".

Format: expr, >= expr,
If the value of expression 1 is greater than or equal to the value of expression
2, the operation will return a TRUE value (1). If the former is less than the

latter, the returned value will be FALSE (@). OPUS will make sure that the
value formats of the two expressions are the same prior to this operation.

A=5; IF A>z5[PRINT "TRUE"];
TRUE

X=11

XL, FUNCTIONS. ot ettt it it i iintnnsesnesoenenosenssneesannsaannans XT-1

A.

Exponential and Logarithmic Functions...................... XI-2

1. EXPonent.ottt ittt et et it e XI-3

2. LOGarithm....uit ittt eenteeeneeeneneaeesnsanenannnas XI-4

Trigonometric Functions......c.e ittt iineneeenanas XI-5

TR 1 1 XI-6

2. COSINME . i vrernrennsnaeeeseeeaenoneneensoneeeensannnnaens X1-7

3. TANZENE . it ittt i it et ittt e e e e e, XI-8

T 3 e == =Y s v XI-9

General FunClions. .. ii ittt ittt ittt eneensscnonnsanesas XI-10
LI (1 2 5. T A D 1 XI-10
2 AS I, ittt ittt taenaaasnasesacanonsasseasnansossnnssnas XI-11
3 BREAK . c vttt i tae i st eees vt XI=12
b DA . ittt it ittt et aeeeeteesaaasoatonetaasoasssesnananas XI-13
5 0] P XI-14
6 10 20 = 8 o XI-15
7 MAXimum......... C et e e trr ettt et XI-16
8 MINIMUM . ¢ ettt e e enesasnsanenaesesoesnssonaannsoasainss XI-17
9 NONE .. it iet e ieiteternerensenaasnansas ettt XI-18
TO. NUMDEP . i ittt ettt nenecnessensaoannensossesssessansnsnnns XI-19
TT. RANDOM. .ttt it ittt ensnensnansessoasossseasansensanas X1-20
12, SIiGN. ittt ittt it i iie i toentsneesetenetannseatonsnansnns XI-21
13. SQuare RoObttt iiiiiiiiirieeanenensessnnoesensannans XI-22
T, ST RINE. ettt ettt teneeaeseaenseaeeonaseneseesacnaascnnss X1I-23
15 . STUFF it ittt ittt tteeesnnsesenosatatoeassassossnsnsonases XI-24
16, TRUNCALE. .ttt tie i iteiteeirensecnetoneaasensoenoannanas XI-25

XI-0

XI. FUNCTIONS

A function is a statement that operates on some given parameter(s), and then
optionally returns a result to the operand table for use by another statement.
The following functions are available in OPUS:

ABS

ASC

ATN

BRK

Cos

DATE

EXP

FETCH

LEN

LOG

MAX

MIN

NONE

NUM

RND

SGN

SIN

SQR

STR

STUFF

TAN

TRU

Returns the absolute value of the operand

Returns the ASCII character representation of the operand

Returns the arctangent of the parameter

Suppresses program interrupts

Returns

Returns

Returns

Returns

Returns

Returns

Returns

Returns

the

the

the

the

the

the

the

the

cosine of the parameter

day, month, or year, depeﬁding upon the parameter
value of eX, where x is the parameter

contents of a specified memory core location
length (characters or digits) of the parameter
natural logarithm of the parameter

greater of two numerical values

lesser of two numerical values

Returns a value specifying whether or not there was data entered
in the last INPUT statement

Forces the argument into number form and returns that value

Returns

Returns

Returns

Returns

a random number between @ and 1

the

the

the

sign (negative, zero, positive) of the argument
sine of the argument

square root of the argument

Forces the argument into string format and returns that value

Changes a byte in memory

Returns the tangent of the argument

Truncates the argument into integer form

XI-1

A. EXPONENTIAL & LOGARITHMIC FUNCTIONS

The following exponential and logarithmic functions are available in OPUS:
EXP Returns the value of the Euler constant, e, raised to the power, X,
where x is the value of the argument
LOG Returns the natural logarithm of the argument

No more than 6 digits may be considered accurate on all calculated values.

fach function is a unary operator; that is, one operand is required for execution,
and the resulting value is returned for use by another statement.

XI-2

BXPonent

The EXPonential function returns the exponential constant, e (2.71828...),
raised to the power of the argument.

Format: EXP expr

The expression may be any negative or positive rational number.

PRINT EXP 4;
54.5982

XI-3

LOGarithm

The LOGarithm function will return the natural logarithm of the argument.

Format: LOG expr

The expression must have a numerical value greater than zero.

PRINT LOG 2
.301029

XI-4

B. TRIGONOMETRIC FUNCTIONS

The following trigonometric functions are available in OPUS:

SIN To determine the sine of an angle

CoS To determine the cosine of an angle

TAN To determine the tangent of an angle

ATN To determine the arctangent of the argument

No more than 6 digits may be considered accurate on all calculated values.

XI-5

SINe

This trigonometric function will return the sine of its argument.
Format: SIN expr
The expression is assumed to be a value expressed in radians. The SINe func-

tion returns the sine of this angle, from -1 to +1 (inclusive).

PRINT SIN 2
-.909297

XI-6

COSine

This trigonometric function will return the cosine of an argument.
Format: COS expr
The expression returns an argument which is assumed to be in radians. The

value returned by the function will be between -1 and 1 (inclusive).

PRINT COS 2
-.41646

XI-7

TANgent

This trigonometric function determines the tangent of the given argument.
Format: TAN expr

The expression is a numerical value assumed to be in radians, and this function

returns its tangent.
o

PRINT TAN 2
-2.18503

X1-8

ArcTaNgent

This trigonometric function is used to find the arctangent in radians, of an
expression.

Format: ATN expr

The expression may have any numerical value. The value returned (in radians)
will have a value between -%/2 and %/2,

PRINT ATN -2.18503
-1.14159

XI-9

C. GENERAL FUNCTIONS

ABSolute

The absolute value function is a unary operator.

Format: ABS expr

If the numerical value of the expression is negative, this operation will return
the corresponding positive value. If the numerical value is zero or is positive,

there will be no change, and the same value will be returned.

10 INPUT "NUMBER? ", N;
20 PRINT "THE ABSOLUTE VALUE OF", N, "IS", ABS (N) ;

NUMBER? -4.2
THE ABSOLUTE VALUE OF -4.2 IS h.2

XI-10

ASCII

This function will determine the ASCII character of the corresponding decimal
number code.

Format: ASC expr

The expression must have a value between # and 255 (inclusive), corresponding to
the decimal representation of an ASCII character of this number. For example:

PRINT ASC 7

will generate a bell (control G) on terminals with the bell capability.

10 INPUT "DECIMAL EQUIVALENT? ", N;
20 PRINT "THE ASCII CODE WHICH CORRESPONDS TO", N, "IS", ASC (N)

b

DECIMAL EQUIVALENT? 65
THE ASCII CODE WHICH CORRESPONDS TO 65 IS A

XI-11

BReak

The BReaK function is used to disable or enable terminal interrupts during
program execution.

Format: BRK expr

If the numerical value of the expression is zero, interrupts are enabled,
i.e., by pressing any key during output or computation, program execution will
be terminated. Unless previously set to a non-zero value, interrupts will
automatically be enabled. If the numerical value of the expression is not
zero, the user will be "locked out", i.e., nothing will interrupt the program
except a machine HALT or normal termination.

Note that the terminal must have had an interrupt routine specified during the
System Generation Routine in order for interrupts to work. If not, this
function and Control C have no meaning, because interrupts are not possible in
any situation,

10 PRINT "WHEN THIS LINE IS COMPLETED, YOU WILL NOT BE ABLE TO ";
20 PRINT "BREAK THE PROGRAM EXECUTION.";

30 BRK (1) ;

4o "START";

50 LOOP K, 1TO 5;

60 ON X+ 1 [PF "SB", "ENABLED";] \ [PF "SB", "DISABLED";] ;

70 NEXT ;
80 IF XIS1 [END ; 1
90 PRINT ;

100 PRINT "'BREAK FUNCTION NOW DISABLED.";
110 BRK (p) ;

120 X= 1;

130 GOTO "START";

WHEN THIS LINE IS COMPLETED, YOU WILL NOT BE ABLE TO
BREAK THE PROGRAM EXECUTION.

ENABLED ENABLED ENABLED ENABLED ENABLED

BREAK FUNCTION NOW DISABLED.

DISABLED DISABLED DISABLED DISABLED DISABLED

FINE

XI-12

DATE
This function determines the current day, month and year.

Format: DATE expr

If the expression value is "1", the function returns the day, a number from 1 to
31: if the value is "2", it returns the month, a number from 1 to 12: and a value
of "3" returns the year, a number from 00 to 99. Thus, if OPUS is up and

running on November 25, 2001, the following values will be returned when using the
date command:

DATE 1 Returns 25
DATE 2 Returns 11
DATE 3 Returns 01

Apparently the user must determine the century by himself.

Please NOTE: The DATE function is dependent on the date entered
when OPUS is initially brought up. If the user enters
the wrong date, OPUS has no way to pull the correct date
out with this function.

10 PRINT "DURING INITIALIZATION, TODAY'S DATE WAS ENTERED";
20 PRINT "THE DATE TODAY IS:";
30 PRINT DATE (2) & "/"& DATE (1) & "/"& DATE (3) ;

DURING INITIALIZATION, TODAY'S DATE WAS ENTERED
THE DATE TODAY IS:
10/25/76

XI-13

FETCH

This function may be used to read a byte directly from memory.

Format: FETCH expr

The expression is the memory address expressed as a decimal integer from ¢

to 65535. The function will return the contents of this specified location as
a decimal integer from @ to 255. If a memory location is referenced that does

not exist within the bounds of the memory configuration, a 255 will be returned.

10 A= FETCH (1099) ;
20 PRINT A;

128

XI-14

LENgth

The LENgth function will return the length of an operand (number of characters
or digits).

Format: LEN expr

If the expression has a string value, the LENgth function returns the number

of characters in the string. If it has a number value, this function first
converts it to a string and then returns the length. The sign of the number and
the decimal point will be counted as characters. For example:

LEN "HORSE" Returns a length of 5
LEN 1.34 Returns a length of U

10 INPUT ":", A;
20 PRINT "THE LENGTH OF", A, "IS", LEN (A) ;

110867
THE LENGTH OF 10867 IS 5

XI-15

MAXimum

This binary operator will determine the greater numerical value of the two
operands.

Format: expr, MAX expr

1 2

If the numerical value of expression 1 is greater than that of expression 2, MAX-
imum will return the value of expression 1. Otherwise, it will return the numer-
ical value of expression 2.

10 INPUT "FIRST NUMBER? ", A, " SECOND? ", B;
20 PRINT "THE LARGER IS:", AMAX B;

FIRST NUMBER? 1 SECOND? 2
THE LARGER IS: 2

XI-16

MINimum

This binary operator will determine the lesser numerical value of the two
operands.

Format : expr‘l MIN expr,

If the numerical value of expression 1 is less than that of expression 2, MIN
will return the value of expression 1. Otherwise, the value of expression 2

will be returned.

10 INPUT "FIRST NUMBER? ", A, " SECOND? ", B;
20 PRINT "THE LESSER IS:", AMIN B;

FIRST NUMBER? 1 SECOND? 2
THE LESSER IS: 1 :

X1 -17

NONE

The NONE function may be used to determine whether or not the user entered
data in an INPUT statement.

Format: NONE

If, during the previous INPUT statement, the user had hit the RETURN key
(had entered no data), the NONE function would return a TRUE value (1). If
the user had entered data, this function would return a FALSE value (#).
Similarly, if an input device other than a user-controlled terminal (e.g.,
paper tape reader or cassette) is accessed, if only a carriage return is
received to an INPUT statement, the NONE function will return a TRUE value;
otherwise, it will return a FALSE value.

10 "START";
20 INPUT "TYPE SOMETHING ", A;

30 IF NONE [END] ELSE [PRINT &] ;
40 GOTO "START";

TYPE SOMETHING HGHGHG
HGHGHG

X1-18

NUMber
The NUMber function may be used to force a string value into number format:
Format: NUM expr

If the value of the expression is a string, this function will return the numeri-
cal value. If the expression value is already a number, the function will simply
return this value.

Since OPUS automatically handles number-to-string and string-to number
conversions, this function is rarely needed. The most important use, however,
is insuring that data is correctly formatted when writing on a disc file. Files
are created with a certain number of bytes per logical record. If a number in
string format is written on the disc, it will usually take more bytes than the
same number in number format. For example, '"-23" requires U4 bytes and -23
requires 3 bytes. Such differences may throw off the initial calculations of
the number of bytes needed in one logical record.

X1-19

RaNDom
The RND function will produce a pseudo-random number.

Format: RND

There are no arguments for the function. The value returned will be a random
number between @ (inclusive) and 1 (exclusive). It will be carried out to

the number of digits as declared for precision. OPUS determines the first
random number (which will not always be the same) when the system is first
brought up. New random numbers will be generated at each request, regardless
of whether the same or different programs are being executed. The length of
the sequence (number of random numbers that will be generated before the same
sequence is repeated) is 216, It is not possible to request a repeat of a
random number sequence.

10 A= RND ; PRINT A;

.269515991

XI~20

SiGN

The SiGN function determines the sign (negative, zero, or positive) of the
argument.

Format: SGN expr

If the numerical value of the expression is less than zero, SGN will return
-1. If the value is zero, a zero will be returned. If the value is greater
than zero, the returned value will be 1.

10 INPUT "NUMBER? ", 'A;
20 PRINT SGN (A) ;

NUMBER? -3
-1

XI-21

SQuare Root

This function determines the square root of a given argument:
Format: SQR expr

The expression must have a positive numeric value.

PRINT SQR 4
2

No more than 6 digits may be considered accurated.

XI-22

STRing

This function forces the argumentkinto string format.

Format: STR expr

If the value of the expression is a number, the STRing function will return

this value as a string. If it was already a string, no change is made, and
the expression value is returned.

XI-23

STUFF

The STUFF command may be used to directly change a location in memory.

Format: STUFF expry, expr2
Expression 1 is a valid memory address, an integer from @ to 65535, specifying
the particular location that is to be changed. Expression 2 is the value of the
byte that is to replace the old byte at the memory location. This must be an
integer from @ to 255. After the command is executed, the byte in the memory
location will have the new value. NOTE: Do not use this command casually
anywhere in memory. It is very easy to wipe out the OPUS operating system,
causing the computer to crash, should the wrong bytes be changed.

10 INPUT "ADDRESS? ", A, " VALUE? ", B;
20 STUFF 4, B;

ADDRESS? 16000 VALUE? 101

XI-24

TRUncate

The TRUncate function may be used to truncate a number to the next least
integer.

Foermat: TRU expr

If the numerical value of the expression is a fraction, the TRU function will
return the integer value which is less than the fraction. If the value

of an expression is already an integer, TRU will do nothing but return the
same value. Some examples follow:

TRU 3.45 Returns 3
TRU -2.888 Returns -3
TRU '"iysn Returns 45
TRU .09 Returns @
TRU "XX" Returns 90
TRU =10 Returns -10

10 INPUT "NUMBER? ", A;
20 PRINT "TRUNCATED:", TRU A;

NUMBER? 1.334
TRUNCATED: 1

XI-25

XII. MATRICES

A. Fundamentals
B. Matrix Operations...ciieiii it ittt ieeteeaseeennnneaans XI11i-3
1. DIMension
2. Matrix Element: !

X1I-0

XIT. MATRICES

A. FUNDAMENTALS

Matrices are used for data storage and retrieval within a

program. The matrix may be of any size that memory will hold, i.e., up
through 255 dimensions, with as many elements in each dimension as necessary
or possible., Each element may contain either a number or a string. All
matrices must be initially dimensioned with the DIMension statement. This
allocates a buffer in memory for the matrix. The DIM statement will cause all
elements within the matrix to be set to zero. A matrix may be re-dimensioned
within the program at any time. A DIM statement may appear anywhere in the
program, but must precede any reference made to the matrix. Once a variable
has been declared a matrix, it will remain a matrix throughout the program,
though it may be re-dimensioned. If a variable has been used as a

string or number variable, it may also be converted to a matrix by use of the
DIM statement. 1In the following example, the matrix has been given 3 dimen-
sions and will contain 60 elements:

DIM M(3,4,5)
And the next one has one dimension and 100 elements:
DIM CAT(100)
A particular matrix element must be referenced in the following manner:

Format: Variable (exprl, expr . exprn)

29
The variable is any valid simple variable name previously declared in a

DIM statement. Expression 1 is the element position of the first dimension,
an integer greater than zero and less than or equal to the maximum number of
elements as declared in the DIM statement. Expression 2 is the element
position of the nth dimension, where n is the number of dimensions the DIM
statement initially declared.

A matrix element may be assigned a value in the assignment statement;
a matrix element reference may be used in any expression; a matrix
element substring may be referenced in this manner:

Format: Matrix element $(exprl,< expr, >)
Expression 1 is the first character position of the substring. Expressiocr 2
is the last character position of the substring. See Substrings for further

explanation. Some examples of matrix element reterences follow. The first
one assigns "HORSE" to the element:

XII-1

M(1,1,2) = "HORSE"
In the next one, the substring, "OR", of the string, "HORSE", is printed:
PRINT M(1,1,2)$(2,3)

And finally, the matrix element is used in an expression; X is assigned the
value of "HORSE CART":

X = M(1,1,2) & " CART"

There are no specific statements, other than the DIM statement, that operate on matrices
only.

XII-2

B. MATRIX OPERATIONS

DIMension

All matrices of any dimension must be dimensioned prior to any matrix
operations. The DIMension command reserves a memory buffer to hold the matrix
contents.

Format: DIM variable (expr-l<, expr, . . . exprn>)
Where n = the number of expressions in the 1list.

The variable must be any valid variable name assigned to the matrix. Exp-
ression 1 is the number of elements allowed in the first dimension (row); exp-
ression 2 is the number in the second dimension (columns); expression n is the
number in the nth dimension (n may not exceed 255). All expression values must
be an integer greater than #. The DIM operation automatically sets all elements
of the matrix equal to #. A matrix may be re-dimensioned at any point in a
program with the DIM statement.

10 DIM A(10, 10) ;

20 LOOP J, 1TO 10;

30 PRINT ;

40 LOOP K, 1TO 10;

50 PF "S,B5", A(J, K) ;
60 NEXT ; NEXT ;

Co0O0OCO0O0OO O
o000 0000
cocoocococooo :
CoooO0OocoCOOO
CoO0OO0OO0CO0OOOOO
CcooocoooO0 OO
Cocoocooo0O0
CO0DO0OO0OOCOOO
CoooO0OoOO0OOO
Coo0OO0O0O0O0O OO

XII-3

Matrix Element: !

This statement may be optionally used to specify a matrix element.
Format: matrix variable ! (list)

The matrix variable must be a valid variable that was previously DIMensioned.
The 1list includes all element numbers defining the location within the matrix.
Each element number must be an integer from 1 to the maximum, as declared in
the DIM statement.

The use of this statement is optional. 1If not given, OPUS will automatically

insert it during compilation. If a matrix error occurs (the variable has not

been previously DIMensioned or one of the elements is out of range), an excla-
mation point (!) will be printed.

XIT-4

XIII.

................ D S e a B
A. END.......iiivieenn, Sttt iastees et e ese s e XIII-1
B. REMark....... et iateteaeateee ettt XIII-2
O 10 XITI-3
D. THEN............ Ceerecaaceueraasan ettt et XIII-4

XI11-0

XI1Y. MISCELLANEQOUS OPERATIONS

END

The END command may be used anywhere in a program to terminate program exe-

cution. When OPUS reaches END command, it automatically returns to command
mode.

Format: END

An END command, however, is not necessary to stop program execution. When
OPUS reaches the end of the program, it automatically returns to command
mode .

XITI-1

REMark
The REMark statement may be inserted at any point in the source program to
store comments.

Format: REM "comment"

The comment may be anything the programmer desires and must be enclosed within
quotes. All REMark statements and the following string will be deleted in
the object code. Statements on the same line will be executed.

10 REM "¥ % ¥ THIS A REMARK * % #n
20 PRINT 1 + 2 / 3;
30 END;

1.666666

XIII-2

SCAN

The SCAN statement is used to read data contained within the program.

Format: SCAN<label:> <variable list or matrix variable>

The label determines the location of data and must be a literal string cont-
ained somewhere in the program. By specifying this label in the SCAN state-
ment, a pointer is set to the label in the program code in preparation to read
data. If no label is specified, it is assumed that the pointer was set by

a previous SCAN statement. If not, an error will occur. The variable list is
a list of variable names that receive the values read. The first variable will
be assigned the first item, the second variable the second item, and so forth,
until all variables have been assigned a value. The pointer to the data loca-
tion will move forward as each variable is assigned a value.

Any section of program may be considered data. There are three types of data
items: constants, variable names and statements. Constants will simply be
assigned to the list variable as 1s. Variable names will first be converted

to a string and then assigned to the list variable. Statements will be assign-
ed to the list variable as a number. This number corresponds to the position of
the statement as listed in the Statement Table (see Section XIII).

Should a label be included in the SCAN statement, the first variable read
will be given the label value.

If the user just wants to read specific constants as data, these constants may
simply be listed at the end of the program, separated by commas. It is wise
to keep this data section out of program execution reach, because if execut-
ed, OPUS will try to use the data as operands for some statement it has yet to
reach. This will most likely cause an overflow in the operand table.

10 SCAN "HERE": A,B,C; SCAN D,E;
20 PRINT "HERE", "I", "X";
30 END;

After execution of the above program, the following data will be read into
the variables:

will be "HERE"
will be "I"
will be "X"

will be 28 (PRINT)
will be 83 (;)

Mo QW

NOTE: Remember that the object program is stored in postfix notation --
that's why the PRINT is after the string values.

XI1T-3

THEN

The THEN statement may be used whenever a parameter is indirectly implemented
in an operation.

Format: THEN list

The list contains one or more expression values. The THEN statement does not
in itself perform any operation on the parameters, but instead sets the para-
meters up for use in a different operation. In general, its use determines
only the order of compilation, i.e., where the operand appears in relationship
to the operators in the object program.

PRINT (IF X [THEN "X IS TRUE"] ELSE |[THEN "X IS FALSE"])

In this example, the THEN statement will set for the PRINT statement either
"X IS TRUE"™ or "X IS FALSE", depending upon the value of X.

XITI-4

XIV. OPUS/TWO & OPUS/THREE SUPPLEMENT......outiruunnnennnnnnncennnns XIV-1

R 0§ S 0 T XIV-2
1. Error TrappPing. . v i ee i ineteenenneeneenenoenecenennnns X1v-2
= TN o X1v-2
b. Question Mark: 2 ...ttt ittt ittt XIV=-3
2. External Subroutines and Functions........cieeivivennn. XIv-4
. EXTernal.....iiiiiiiiieeeeetneeeenenneeesneenennens XIV-4
D, GLOBAL . .ttt it ittt et ettt ettt e e e XIv-5
G, CALL . it ittt ittt ettt aneeeeeaanneaaasanaeannnas XIV-6
o S s 3 1= < Y XIv-7
€. SUBroubine. ...ttt ittt tittteentneannaneas XIv-8
. RETUrn. .. it i i i it e iean e XIv-9
3. Extended String Manipulation.......... i, XIv-10
A, SEEK. ittt ittt ieetitietneteetaneenenaeaneenenns XIV-10
L, Extended File and Disc Manipulation............c..ee.o... XIv=-11
a. Dimensioned Files....ciiiiiiiiiniineeeenennnnnnnans XIV-11
b. Expansion of the Disc Command...........ciiuinveenns XIV-13
C. SEQUENtial...iiienineinieineieeeeneeeneeoeneanannannnn XIv-14
d. ESEQuential.......ciieiiininnenrnneenenaennenanans XIv-15
€. RECOPA....iitiiinieneeneeaeeaeenneneeannaennennnans XIv-16
T 1 XIv-17
1 XIv-18
5. Machine Code Subroutines.......c.iiiiiiiiniiinineennn. XIV-19
a. Machine CALL.iei ittt inineeeenneneeneenaanns X1v-19
B. OVEPr LAY ..ttt it ittt i ettt teeeaaseeeeneneneennnennnnnns XIV-20
a OVEePrLAY . . ittt ittt ittt et e e acaaen et XIV-20
7 Miscellaneous Statements.. ... ittt tineenennans XIvV-21
= T 7 o XIV-21
b 20) XIv-22
C. Byte IN. ... i i i it ettt eantaeenansananns XIvV-23
d. Byte OUT. ...ttt tteeennnnenannenenn XIv-24
B. OPUS/THREE. ... 'uiueievieeoenossoessasscssasanesonsosnsascnes XIV=-25
1. ASCII Program FilesS......uieeeeiirinennnnronenoaneennns XIv-26
2. TRACE. . ittt it ittt tanencansaneansanaseanssosananasas XIv-27
3. Multi-User CommandsS......coeeiieereceansennsenanssaaonsn XI1V-30
B. TIME. ...t itretiriereoeoetvesensacasenssonnssssnnasns X1v-30
D. HANG. .ttt ittt eioeenoenonoeesnssesescssnannasnens XIV-31
L., Machine Code Relocatable Files......ouininiinennennnn XIv-32
a. OPUS Subroutines......ieeieiinreneecenceorennnonnes XIV-33

XIv-0

XIV. OPUS/TWO & OPUS/THREE SUPPLEMENT

In order to further enhance the capabilities of OPUS, several additional
features have been added to OPUS/ONE. All OPUS/ONE programs are upward
compatible with OPUS/TWO and OPUS/THREE.

Twenty-three new commands have been added, as well as additional file and
disc handling capabilities.

XIV-1

A. OPUS/TWO

Error Trapping

All OPUS statement errors may be trapped by automatically sending program

execution to a pre-defined subroutine. The subroutine may attempt to take
corrective action after determining what type of error has occurred. Two

statements are used to implement error trapping: ERRor and the "2?",

ERRor

This command must be used to notify OPUS that error trapping is in effect, and
to specify a subroutine to which all errors are to go.

Format: ERR expr

The expression is a label that is equivalent to the literal string at the be-

ginning of the error subroutine, Upon hitting an error, OPUS will essentially

execute a GOSUB to this subroutine. The user should terminate the subroutine

with the RETURN if program execution is to return to the statement following

the statement where the error occurred. All statement errors will be sent to
this subroutine.

No buffer overflow errors may be trapped. End-of-record and end-of-file errors
will be trapped by this statement.

More than one error declaration may be made, in a stack fashion. The last ERR
label executed will be in effect until the ERR statement is removed from the
stack. This will automatically happen at the termination of a block, if the
ERR command is inserted within a block, or may be abnormally removed by use of
the POP command.

ERR is an executable command and will have no effect until it is executed.

X1V=-2

Question Mark: 2

The question mark will return a number specifying the type of error just
encountered.

Format: *?

The question mark may be thought of as a variable whose value is the number

of the error last reached. These error numbers are listed in Appendix D. The
normal use for this command is at the beginning of an error subroutine to de-
termine what type of error has occurred.

The "?" must be used in the error subroutine before any blocks ([], LOOP...
NEXT, etec.) are executed. Otherwise, the "?" will not reflect the statement
error number.

This "?" statement actually pops the last value off the function stack and
returns it as a numerical value to the operand table. Errors that are trapped
send the error number to the function stack to be used by the "?". Therefore,
if the "?" is not used in conjunction with the ERR statement, some other value
will be received.

PRINT?
X=7

XIV-3

External Subroutines and Functions

There are two types of subroutines in OPUS/TWO: The familiar GOSUB/RETURN

and the expanded CALL/RET. The latter allows execution of a separate and
distinct section of program code with unique variable and operand tables.
Parameters may be passed between the main body of code and the subroutine. The
subroutine may be entered as a part of the main code or may be loaded from the
disc during program execution.

EXTernal
The external command declares .a subroutine.
Format: EXT expr, <, expr,, >

Expression 1 must be either a label indicating the start of the subroutine,
should the subroutine reside within the program, or a disc file name, should
the subroutine be loaded off the disc.

Expression 2 is an optional drive number or disc tag, if the subroutine is to be
loaded off the disec.

OPUS will first scan the program for a matching label, indicating the start of
the subroutine., If it does not exist, it is assumed that the label is a file
name residing on disc. If no disc tag or number is specified, the current disc
in use is searched and the file appended to the end of the object program. The
start of the subroutine is stored in the function stack and retrieved with each
call to that subroutine.

A variable is automatically set up with the variable name equivalent to that

of the label or file name. Thus the latter must be a valid variable name. All
references to the subroutine will be made through this variable. The variable
may be given any value and may be treated as a passed parameter to the subroutine.

Normally OPUS object programs are declared as externals. However, any type of
file is permissible, if the file type is specified.

EXT "TEST",

EXT "DX", 1;
EXT "ABS", "DISC1";

XTv-4

GLOBAL

The GLOBAL statement declares certain variables to be treated as global or common
variables.

Format: GLOBAL identifier, variable list

The identifier must be a one character literal string identifying the GLOBAL
list. Any ASCII character is permissible.

The variable list is any list of those variables whose values are to remain in
common to any subroutine with the same GLOBAL identifier.

Normally, upon entry to a subroutine, a new variable table is set up for the
subroutine and there is no connection between variables in the calling routine
and the subroutine. The exception to this is those variables declared in the
GLOBAL statement. Their values are automatically passed to the subroutine. This
subroutine must also have a GLOBAL statement with the same identifier. The
variable list may be different - the same values will be assigned to different
variable names.,

When a GLOBAL statement is encountered, OPUS/TWO will first search the stack for
a prior GLOBAL with the same identifier. If it exists, the new variables are
assigned the values of the prior global variables. If no GLOBAL does exist, the
command enters the variable list into the stack to be used by a future GLOBAL
command.

The GLOBAL command need not be the first command in a program or subroutine.
If the size of the variable list of the second GLOBAL does not match that of the

initially declared GLOBAL, OPUS will only treat the smaller of the two lists as
GLOBAL variables. The rest will be ighored.

Main program:
10 GLOBAL "A",X,DOG, FUDGE; EXT"SR";

20 X= 1.5; DOG= "HI"; FUDGE= X & DOG;
30 CALL SR;

Subroutine:

1000 SUB "SR", SR; GLOBAL "A"™, A,B,C;

At entry of the surbourtine, A is 1.5, B is "HI", and C is "1.5HI".

XIv-5

CALL
The CALL command calls a subroutine previously declared in an EXTernal statement.
Format: CALL variable name <(list)>

The variable name must be identical to a label or file name previously declared
in the EXTernal statement.

The list must be a parameter list of variables, expressions or constants enclosed
within parentheses. These parameter values will be passed to the subroutine and
assigned to variables declared in the subroutine.

Should a variable be passed to the subroutine, any changes made to the value of
that variable in the subroutine (even if the name is different) are reflected

in the main routine. These are treated in the same fashion as GLOBAL variables.

EXT "TEST" ;
CALL TEST(1,X,3*T+4);

XIV-6

€ Sign
The @ sign calls a function.
Format: @ variable name <(list)>

This command behaves identically to the CALL command. It is included here only
to allow the user to differentiate between subroutines and functions. In
actuality, the two commands may be interchanged. A function is determined by
whether or not any operand is left in the operand table prior to exiting the
subroutine. If one is, that value will be returned to the main routine to be
used as needed.

Main program:

100 X = @TEST(2,5,10);
200 PRINT X;

-

Subroutine:

1000 3UB "TEST", TEST, A,B,C;
1010 RET A+B+C;

.

Upon execution, X will be printed:

17

XIv-7

SUBroutine
This command declares code to be an external subroutine.

Format: SUB < label,> variable name < variable list >

The label must be the literal string declared as the subroutine name, if the sub-
routine is included in the main body of code and is not to be loaded off disc in

the EXT statement. If it is to be loaded during the EXT statement, the label is

optional. The label must be identical to the string in the EXT statement.

The variable name must be the same variable by which the subroutine was called.
The list corresponds, element by element, to the list in the prior CALL or @
statement. The value of each parameter in the CALL (@) list is assigned to the
corresponding variable in this list. If the lists are of different length, all
values or variables in the longer list not corresponding to an element in the
shorter 1list are ignored.

The SUB command must be the first statement in a subroutine.

If a REM statement is at the start of a subroutine, make sure that no semicolon
follows it or else all passed parameters will be lost.

EXT "TEST" ;
CALL TEST (2,A,3%T,Z);

SUB "TEST", TEST,A,B,C,DOG;

X1v-8

RETurn

This command terminates an external subroutine and returns control to the main
routine.

Format: RET <1list >

If the list exists, the value of these parameters will be returned to the main
routine in the operand table to be used as needed.

RET
RET 3%A+B;

Miscellaneous Notes:

1. Subroutines may call other subroutines (limited only by memory size).
However, if a subroutine is defined externally in one section of code
and called in a different subroutine, the name must be either passed as
a parameter or put in a GLOBAL statement. This is because a subroutine

name is a variable and treated as such.

2. External subroutines are recursive.

XIv-9

Extended String Manipulation

SEEK

This function searches a string for a matching substring and returns the starting
character position within the string of the substring.

Format: SEEK expr1, expr'2
Expression 1 is the string which is to be searched.
Expression 2 is the substring which is to be sought for in expression 1.

If no match is found, the function will return a @ (zero). Otherwise, it returns
the first character position of the substring within the string.

X="HORSE";
PRINT SEEK X, "SE";
i

XIvV-10

Extended File and Disc Manipulation

Dimensioned Files

There are now two types of data files in OPUS/TWO: The standard random file of
type F and the new dimensioned file of type D. Unless the D type is specifically
declared, the F type will be assumed as a default. Refer to Section VIII.

for a description of the F type file.

The dimensioned file is treated much as a matrix. There exist from one to six
different dimensioned fields, with each field having the range from § to 9. The
logical record number defines the element of this psuedo-matrix, where each digit
in the number corresponds to one dimension.

For example, a matrix element M(1,2,3) can be compared to a logical record number
of 123.

The purpose of dimensioned files is to allow the user to directly access logical
records where the logical record is an identifying number with each digit having

a separate meaning. A good example of an application is a general ledger system,
where the account number may have digit 1 representing the account type (equity,
assets, income and expense), digit 2 specifying the sub-account number, and digit

3 the contra-account status. Instead of either going through a long hashing routine
or opening an F-file to handle the maximum account number, a D-file allows the

user to treat the account number as a logical record number. There is no room
allocated on the disc for 'gaps' in the logical record seguence.

The following procedure should be followed in handling D-files.
1. Opening a D-file
OPEN "TEST\D",L,D
The file type D must be specified after the name of the file. L is the number of
logical records/sector (like the F-files). D defines the dimensions of the file.
Each digit in the number declares the maximum element for the corresponding
dimension.
Example: OPEN "TEST\D",1,234
There are three dimensions:
Dimension 1 has elements from

0-
Dimension 2 has elements from 0O-
Dimension 3 has elements from 0O~

=w

If the file were listed sequentially, the record numbers would go:

0,1,2,3,4,10,11,12,13,14,20,21,22,23, 2L,
30,31, 32, 23, 34,100,101, 102, ..., 234

2. Assigning D-files

ASSIGN "TEST\D",F,D

XIV-11

The D type must be specified in the assignment. F is the file position number.
D is the drive number or disc tag.

3. Accessing D-files

D-files are accessed the same way as F-files, by giving the logical record
number.

An End-0Of-File will occur if a record number is specified that is not within the
range of the dimensions.

Remember that logical record @ is a valid record number.

For reading sequentially through a D-file, it is urged that the user utilize the
REC command for finding the next logical record number.

X1v=-12

Expansion of the Disc Command

In OPUS/ONE, the command DISC will always read tables from the specified disc
drive into memory. The drive number is mandatory. It is possible to change
diskettes simply by inserting a new diskette and using this command.

In OPUS/TWO, the command DISC will only read the tables on the disc if the disc
has not been previously enabled. Otherwise, it is assumed that the table is
already residing in memory. The SWAP command must be used to change diskettes
under OPUS/TWO. 1In addition, the parameter to the DISC command may be either a
drive number or a disc tag.

XIv-13

SEQuential

This function returns the next logical record number of a file that has had
data written in it.

Format: SEQ expr expr2

1’

Expression 1 is the file number of a file previously assigned.

Expression 2 is the starting logical record number from which OPUS is to begin
its search for a record with data.

The number returned by the function will be a logical record number that contains
data.

If an invalid logical record number is given or the function fails to find a
record with data, an End-0f-File (EOF) will be reached. In such a case, no

value will be returned to the operand table.

PRINT SEQ 1,1;
X=(SEQ 3,R);

XIv-14

ESEQuential
This function returns the next logical record of a file which contains no data.

Format: ESEQ expr expr2

1’
Expression 1 is the file number of a file previously assigned.

Expression 2 is the starting logical record from which OPUS is to begin its
search for an empty data record.

The ESEQ function will return the logical record number of the next record with
no data.

If an invalid logical record number is given, or the function fails to find an
empty record, an End-Of-File (EOF) will result. 1In such a case, no value will be
returned to the operand table.

PRINT ESEQ Z,5;
X=(ESEQ 1,X);

XI1vV-15

RECord
This function will return the next sequential logical record of a file.

Format: REC expr expr2

17

Expression 1 is the file number of a file previously assigned.
Expression 2 must be a valid logical record number.

This function will return the next sequential logical record number from the
given record number.

Obviously, for type 'F' files, the record numbers are in sequential order and
the REC command will simply increment the record number by one. However, for
type 'D' files, where each digit in the record number has its own upper boundary,
the REC command is useful in retrieving the next logical record number.

ASSIGN "FFILE",1; ASSIGN "DFILE\D",2;
PRINT REC 1,5;

6
PRINT REC 2,156;

200 (DFILE OPENED TO 256 MAX LR)

XIV-16

TAG

This funection returns either the tag of a specified disc or the disc number of
a specified tag.

Format: TAG expr1, expr2

Expression 1 must have an integer value of one (1), two (2) or three (3):

If expression 1 is one (1), expression 2 must be a disc tag of 1 to 7 ASCII
characters previously tagged to a diskette. The function will return the drive
number (@ to n) of the drive where the tagged diskette is located. 1If no dis-
kette with this tag is present, a -1 will be returned.

If expression 1 has a value of two (2), expression 2 must be a disc drive number.
The function will return the tag on the diskette currently in the specified
drive as a string. If the drive is not enabled, a -1 will be returned.

If expression 1 is three (3), expression 2 must be a valid disc tag. The

diskette in the drive last declared in the DISC command will be given this
disc tag. No value will be returned to the operand table.

XTV=-17

SWAP
The SWAP command must be used to swap diskettes in and out of drives.
Format: SWAP expr

The expression must be a drive number or disc tag, identifying the disc that
is to be swapped (current diskette removed and a new one inserted).

SWAP @;
SWAP"XXX",

A new disc need not be inserted. It will not be enabled by this command.
The SWAP command wutilizes the same Disc Swap Routine that is automatically
executed during disc commands that request a disc tag not currently on the

system. OPUS will type:

SWAP DISC & HIT RETURN

The user should swap the diskette and press the carriage return.

Multi-User OPUS/THREE Only:

The command is a function that will return a 1 (one) if the disc may be
swapped and a # (zero) if the disc is being used by another job. In the latter
case, OPUS will print:

DISC IN USE BY JOB XX

DO NOT swap the disc.

NOTE: IT IS EXTREMELY IMPORTANT THAT THE DISC BE SWAPPED ONLY UNDER THESE
CONDITIONS, BECAUSE TABLES MUST BE UPDATED ON THE DISC.

XIV-18

Machine Code Subroutines

The user has the capability of calling machine code routines from an OPUS/TWO
program. There is one command with which to call this subroutine.

Machine CALL

Transfers program execution to the user machine code subroutine (executes a
machine code CALL).

Format: MCALL expr, < (expr expr'3) >

2’
Expression 1 must be the absolute machine code subroutine starting memory
address. The subroutine must lie at an absolute location in memory.

Expression 2 has a value that will be converted to a two-byte number and stored
in the B and C Registers. These registers will be passed to the subroutine.
String values will first be converted to an OPUS number.

Expression 3 has a value that will be converted to a two-byte number and
stored in the D and E Registers. These registers will be passed to the sub-

routine. String values will first be converted to an OPUS number.

QOPUS will execute a machine code CALL (315 in Octal) to the subroutine. The
subroutine must terminate with a RETurn (311 in Octal).

XIvV-19

Overlazs

In OPUS/TW0O, an overlay is defined as a buffer of memory allocated at the end of
the object program to be utilized for program or data storage.

OverLAY
Sets up a memory buffer of a specified number of bytes.
Format: OLAY expr

The expression must be the number of bytes determining the size of the buffer.

The buffer will be located at the end of the current OPUS object code. The
buffer may be used for any purpose, but its primary function is as an area
into which OPUS object code subroutines may be loaded. This is useful if
different code needs to be loaded at different times during program execution.
The normal loading procedure will append the new code to the end of the object
code program, never clearing out unused code, whereas code lcaded into the
overlay will always replace any previous code located there.

To load a file into the overlay, the user must use either the LOAD or EXT
commands, followed by a backslash, the file type and "O". The "O" specifies
the latest overlay block.

OLAY 2000,
EXT "TEST\OO";

More than one overlay may be declared, but they are treated in stack fashion.
That is, the last overlay declared will be used until the overlay is cleared (by
use of the POP command or, if the overlay was declared within a block, the
exit from the block will clear the area).

An error will occur if the length of the file to be loaded into the block exceeds
the size of the buffer.

An OPUS program loaded into an overlay will be followed by an end of program
marker. Thus if more code is loaded normally following the overlay, nc command
in previous code referring to a label in the latter code will be successful. All
label references scan the program for a matching label until and end of program
marker is reached.

The start of the last overlay declared may be referenced with a label of "2".

For example, the command, GOTO "?", will automatically send execution to the

start of this overlay even though there is nota matching label of "?" at the start
of the overlay.

XIv=-20

Miscellaneous Statements

DATA
This command will store data directly in a matrix.
Format: DATA wvariable : 1list

The variable must be a matrix variable previously defined in a dimension state-
ment.

List is any number of expressions, variables, or constants that are to be stored
in the matrix.

Each computed value in the list will be stored in the operand table and then all
values in the operand table dumped into the matrix. Should the number of values
exceed the size of the matrix, only as many as needed will be withdrawn from the
operand table. Should the number of values be less than the size of the matrix,
the remaining matrix elements will remain unchanged.

Because all values are stored in the operand table, it is easy to overflow the
table if there are many values. Use the SET command to change the size of the
table if necessary.

Given a matrix, M(D1,D2,...,Dn), if K is the dimension position, then Dg is the
maximum number of elements in the dimension. The data statement will fill the

matrix in the following order:

M(1,1,.0.,1,1)
M(1,1,...,1,2)

M(1,1,...,1,D.)

n
M(T, 1, eer2,1)
M(1,%,...,2,Dn)
M(D1;D2,...,Dn)
Example:
DIM M(2,2);

DATA M: "BOOM,X¥Y+U,5.666,"X"&Z;

M(1,1) IS "BOO"
M(1,2) IS X¥Y+4
M(2,1) IS 5.666
M(2,2) IS "X"&Z

XIv-21

POP
This command will cause program execution to abnormally leave a block.
Format: POP expr, <, expr'2>

Expression 1 determines the block level that is to be exited. It may be one of the
following:

1. The number of blocks to exit --an integer greater than or equal to 1.
2. The block type to exit --a one character string defined below.

Expression 2 is an optionalllabel defining the location to which program execution
is to transfer, once it has left the block. If no label is given, execution trans-
fers automatically to the statement following the block terminator.

The POP command is similar to a GOTO in that it unconditionally transfers program
control. However, using a GOTO to leave blocks will usually result in unfortunate
errors because the stack still contains block terminators and other data that will
be picked up by later statements. The POP command clears the stack and leaves
everything in normal condition. Examples:

POP 2 Exits 2 blocks
POP 1,"LABEL" Exits 1 block and sends control to "LABEL"
POP "LV Exits a LOOP/NEXT block

Table of Block Types for the POP Command

Type Initiator Result of POP Execution

B [Execution leaves the bracket block

G GOSUB Execution leaves the subroutine

L LOOP Execution leaves the LOOP...NEXT block

0 OLAY Removes last overlay buffer

R CALL, @ Execution leaves the subroutine

S : Returns original start of operand table

W WHILE Execution leaves the WHILE...CONTinue block

Execution of the POP command will start through the function stack and remove
parameters as requested. This stack has additional functions other than those
listed above, but, although they will be removed, they do not count as true
block POPs.

If a certain number of blocks, n, is specified, OPUS will remove the first n
blocks among those listed above on the stack, starting with the current block.
If n is greater than the actual number of blocks on the stack, the stack will
be completely cleared, but no error will occur.

If the block type is specified, OPUS will continue to POP all blocks off the

stack until it encounters the requested type. A "STACK OVERFLOW" error will
occur if the type is not present.

XIV-22

Byte IN

This command may be used to read in one or more distinct bytes from an input
device.

Format: BIN <expr:> variable list

The expression is the device number from which the byte is to be received.

If it is not given, the current input device is assumed.. The variable list
contains all variables which are to be given the value of the byte as it is
received. The first variable will receive the first byte, etc. The value of
the byte will be the ASCIT decimal number representation from @ through 255
(parity bit included). The byte will not be echoed on the output device.
OPUS will look only for as many bytes as there are variables. A matrix var-
iable may be specified. See Appendix E. for an ASCII table. Examples:

BIN X;

(user types "A")
PRINT X;
65

BIN 3: A,B,C;

(received "1", "2", and "3" from Device 3)
PRINT A,B,C;
49 50 51

XIV-23

ASCII Program Files

OPUS programs written in ASCII code (under the A.S.I. Text Editor) may be loaded
by OPUS/THREE and compiled into normal OPUS source code. ASCII files have the

type identifier of "$". This procedure would be as follows:
LOAD "TEST\$" Loads the ASCII file into memory.
CoM "av Compiles the ASCII to source and automatically assigns

line numbers starting with 10 and incrementing by 10,
The ASCII program buffer may be cleared by:
NEw " A"
If compiled, the source and/or object will remain.

OPUS/THREE has no capability of creating ASCII program files, but only of
reading them in and converting them to source.

An ASCII file contains each character in the program in its ASCII code repre-
sentation. The ASCII file must not contain any OPUS line numbers.

TRACE

This command allows a program to be traced, step by step, through execution.
Format: TRACE expr

The expression must have either a TRUE (non-zero) or FALSE (zero) value.

TRUE : TRACE function turned on
FALSE: TRACE function turned off

Upon enabling the TRACE function, with each statement executed, OPUS will print
the location in the program of the statement and the statement name, and will
go into an input mode. In standalone OPUS, all locations will be printed as

a two-byte decimal address; in re-entrant OPUS, they will be either Octal or
Hex, depending upon the mode.

In the input mode, the user has four options:

1. Carriage Return: OPUS will go to the next statement.

2. 0: The contents of the operand stack will be printed. The first value
printed is the first on the stack. The format is:

location< buffer>value

The location gives the memory address of the start of the value. The buffer
is a character designating where the value is stored. It may be one of the
following:

P Program area
V Variable Value Table
C Constant Table

The value is the value of the operand that is to be used by the current
statement. Remember that code is stored in Postfix notation and operands
precede the operator.

3. F: OPUS prints the number of bytes free in the job area. This is the
number of bytes between the function stack, which works from top memory
downwards, and the Variable Value Table, which is the last buffer following
the program, working upwards to the function stack.

4. S: OPUS prints the contents of the function stack. The first value printed
will be the last item entered on the stack. The format is:

type value < buffer >

The type is a one-character code defining the operation that used the

stack at this point. The value depends upon the type and will be printed

as a two-byte number as it is stored in the function stack. The high order
byte will be followed by the low order byte. In standalone OPUS, the
numbers will be in decimal; in re-entrant OPUS, the numbers will be Octal or
Hex, depending upon the mode.

XIvV-27

The following table lists possible types and values if the "S" option is

used:

Type Operation Value
B [...] Block Initial start of Operand Table
G GOSUB. . .RETURN Return address
L LOOP...NEXT Location following LOOP
0 OLAY Number of bytes in overlay and starting

location

R CALL/@...RETurn Return address
S | Initial start of Operand Table
W WHILE. ..CONTinue Starting location of block
A Block Operations Initial address in Variable Value Table
C GLOBAL Identifying label character
E ERRor Location of error routine
I IF...ELSE TRUE (1) or FALSE (@) condition
X EXTernal Location of ekternal subroutine

The buffer gives the general location that is affected by the value. The
possibilities are:

Program area (or non-applicable)
Operand stack

Constant Table

Variable Name Table

Variable Value Table

<200

After any of the three latter options are requested, OPUS will return to the
input mode for further options. When through with that statement, the user must
hit carriage return in order to continue. Example:

LIST
10 TRACE 1;

20 LOOP I, 1TO 2;
30 PRINT I* I;

40 NEXT ;

50 TRACE @;

60 END ;

FINE
CoM

FINE

RUN

@71/361

$71/366 LOOP

0 p76/127 <V > /)
P71/364 < P>

-

XIV-28

S

F 13478

@71/372 TO

S A @76/7126 <UD
L 2717367 <P>

@71/373

g71/376 *

0 g76/127 <V > 1
P76/127 K V> 1

[

@71/377 PRINT

1

@72/000

@72/9@1 NEXT

@71/372 TO

S A @76/7126 LV >
L @71/367 <P>

@p7T1/373

@71/376 *

@71/377 PRINT

0 p72/078 < C> b

y
972/000

@72/@@1 NEXT

@71/372 TO

0 g71/370 <P D 2

@72/002

F 13478

@72/0@6 TRACE

0 g72/88% <P > /

FINE
OPUS will trace all statements either in the program or in command mode until
the user either gives a "TRACE @" to disable it or types "NEW". TRACE is

automatically turned off with the NEW command.

This TRACE function can be a valuable tool for both debugging and finding out
how OPUS executes statements. The user is urged to utilize it freely.

XIV-29

Multi-User Commands’

The following two commands are specifically implemented for use in OPUS/THREE
under the TEMPOS Multi-User/Multi-Tasking Operating System.

TIME

This function will return the current time in seconds, minutes, or hours.
Format: TIME expr

The expression must be an integer from 1 to 3 that designates which of the fol-
lowing times will be returned to the Operand Table:

1 Second
2 Minute
3 Hour

The designated value will be returned to the Operand Table for use by another

operation. The value is dependent upon the time that was entered when TEMPOS
was first brought up.

XIV-30

HANG
This command should be used to lock out data files from other users during
critical READ/WRITE operations.

Format: HANG exXpr, expr2

Expression 1 is a file position number designating the data file that is to be
locked out. The file must have been previously assigned to this number.

Expression 2 must be either a true (non-zero) or false (zero) value, where:

True The operation will attempt to lock out the file. 1If no
other user has previously locked out the file, other
users attempting to HANG the file will be put in a wait mode,
until a HANG operation with a false value is executed.

If another user has previously locked out the file, this
operation will be suspended until the other user releases
the file with a false value.

False This operation will release the file. Any other user current-
ly locked out will be released and allowed to access the file.
If more than one user is waiting for the file, the first user
to be released is determined by the sequence of the clock -
who gets the next time silice.

The HANG operation does not prevent any user from reading from or writing to the
file. It simply locks out an other user who is also attempting to use the HANG
operation.

The HANG command should be used in any program that may be run simultaneously
by different users and that changes data in a file. This will prevent situations
such as the following:

User 1 Reads a logical record and makes changes in it.

User 2 Reads the same logical record and makes different changes.

User 2 Finishes first and writes the record back on the file.

User 1 Finishes and writes the record back.

Result: The changes by user 2 have been completely wiped out - do not
exist any more.

If there was a HANG operation prior to accessing the file, user 2 could not have
even read the record before user 1 had finished making changes and updating the
record.

If is quite important that a HANG operation with a false value be executed after
the critical operation. If this is not done, the file will be permanently
locked out until the user terminates the job.

Note that it is possible to lock oneself out by executing two HANG operations with
a true value sequentially.

The HANG command will clear all flags set by the EFILE statement. EFILE must again
be declared following a HANG release.

XIv-31

Machine Code Relocatable Files

Machine code relocatable files may be loaded, executed, and dumped from OPUS/THREE.
The relocatable file must have been created with the A.S.I. Assembler. After
being located at an absolute address, these files are in directly-executable
machine code.

The relocatable file must be 1lcaded and treated as an external subroutine by
using the EXTernal command with a type designation of "R":

EXT "TEST\R";

The file will be appended to the end of the OPUS object program and all memory
address references updated to reflect the location.

Relocatable files may be loaded into overlays:
EXT "TESTA\RO";

The overlay buffer must be large enough to hold both the code and the relo-
catable table of the file.

The name of the subroutine must be the name of the relocatable file and a valid

~ variable name.

To execute the machine code subroutine, the MCALL command must be executed, using
the name of the subroutine:

MCALL TEST;
MCALL TEST(A);
MCALL TEST(3,50);

OPUS will send control to the subroutine. The values within the parentheses are
optional. The first value will be assigned to the B and C register pair, the
second assigned to the D and E register pair. Only integer values from @ through
65535 will be recognized. The machine code subroutine may do what it likes with
these values.

To return control to OPUS, the subroutine must terminate with the RETurn (311 in
Octal) instruction. All register values may be destroyed in the subroutine. The
subroutine may call external subroutines either in the primary operating system
or in OPUS.

A relocatable file contains two sections:

1. Actual machine code
2. Address relocatable table

The second section contains all locations in the code to be updated prior to
execution.

XIv-3z

With a machine code program, it is possible to separate a relocatable file into
two files reflecting the above. Under 0OPUS, these two files may be re-combined
to form the original relocatable file. The machine code portion must be a file
of type "S", OPUS source, and the relocatable portion a file of type "O", OPUS

object. They may be combined into a single type "R" file by the following:

GET "CODE"; (machine code)
LOAD "RELOC"; (relocatable table)
DUMP "FILE\R"; (creates relocatable file "FILE")

The need for this may never arise, but may be useful for transferring relo-
catable files from one disc to another using only OPUS.

OPUS Subroutines

The following subroutines in OPUS may be called by any user machine code pro-
gram, OPUS must be in memory. The user must simply use a CALL command followed
by the name of the subroutine. Upon loading the program, the address of the
subroutine will be inserted after the CALL. The user should assume that all
register values may be lost during the subroutine.

The specifications for the subroutines, as shown in the following table, are:

Label Name of the OPUS subroutine

Description Description of what the subroutine accomplishes

Required These registers must contain these values when the subroutine
is called

Returned The subroutine will return these register values from the
subroutine

The following abbreviations are used:

'R'- Register pair 'R' points to memory location

'R'= Register (pair) 'R' has the specified value

BUF Miscellaneous buffer within the program used temporarily by
the subroutine

VALUE The start of an OPUS number or string constant

An OPUS number (the format is described in Section II.)

$ An OPUS string (the format is described in Section II.)

TYPE Number identifier (number of bytes in mantissa) or string
identifier (number of bytes in string + 128)

START The starting location of the buffer containing data

END The last location of data in a buffer plus one

Z: Zero status bit high

C: Carry status bit high

NC: Carry status bit low

XIV-33

Label Description Required Returned
OPSST Converts OPUS constant to string, constant DE-BUF HL-#
either $ or # HL-VALUE+1
A=TYPE
OPSNO Converts OPUS constant to number, constant DE-BUF HL-$
either $ or # HL-VALUE+1
A=TYPE
OPSSTR Converts OPUS number to ASCII characters HL-# HL-START
DE-BUF DE-END
OPSHL Finds sign of OPUS number HL-# Z: =@
C: <@
NC: >@
OPSCONA Converts byte in Register A to an OPUS A=? HL-#
number
OPSOSN Retrieves one value from operand stack None HL-#
in number format
OPSO0SS Retrieves one value from opérand stack None HL-$
in string format
OPSRET Returns value to operand stack, either HL-VALUE None
number or string
OPSCMP Compares two values, either number or HL-VALUE Z: HL=DE
string DE-VALUE C: HL>DE
NC:HL<DE
OPADDR Location of OPUS Statement Table -- the

starting address of each statement sub-
routine in OPUS resides in this table.
Two bytes are required for each address.
The location of the statement in the
table is the corresponding statement
number listed in Appendix D. This is not
a subroutine to be called, merely a loca-
tion to be accessed to find statement
routines.

To call statement subroutines, values
must be pushed onto the operand stack to
meet the requirements of the particular
statement.

XIV-34

XV.

THE WHYS AND WHY NOTS OF COMMON PROBLEMS.........cviinivnnennn. XV-1
A. Imbedded Spaces Within Key Statements..........ccceviev.. V-2
B. Illegal Block Entries and Exits.. ..ttt it vneeennn Xv-4
C. Clearing the Operand Table.....uu et ineteeeeneneinnnceeenns XV-6
D. The Format of Disc Statements.........ciuiiiriiiininennn, Xv-8
E. The Care and Feeding of Data Diskettes.................... XV-9
F. Why OPUS Won't Do Anything...veee it ittt tiennennns Xv-12

XV-0

XV. THE WHYS AND WHY NOTS OF COMMON PROBLEMS

The following section is designed to give the user more detailed insight intc
problems or idiosyncracies that may often have one tearing one's hair out. 1If
the user is having trouble with a program, this section should be the first
place to look. The following topics are covered:

A. How imbedded spaces within key statements cause strange and unusual
program execution

B. Why Jjumping out of or into the middle of blocks is not always a good idea
C. How to get an error with a valid command in command mode

D. The difference between BASIC and OPUS program SAVE and KILL commands

E. How to destroy a data diskette

F. How to get OPUS to ignore every command

Xv-1

A. IMBEDDED SPACES WITHIN KEY STATEMENTS

Have you ever tried the following program:

10 "STARTY;
20 PRINT "THIS IS A TEST";
30 GO TO "START";

and, upon execution, had this happen:

THIS IS A TEST
STACK OVERFLOW!

Obviously the program should indefinitely print out "THIS IS A TEST", right?
Upon careful scrutiny of line 30, one notices that there is a space between the
GO and the TO of the GOTO statement. This is an error and will cause problems.
Spaces within key statements will always cause problems unless the user is con-
sciously aware of the act.

What is happening in the above program? Because of the space, OPUS assumes that
the GO 1is a variable name and of course the TO 1is a valid statement by itself
(LOOP I,1 TO n). But a TO statement requires a prior LOOP statement for
execution, and, if the LOOP is not present,will bomb on a "STACK OVERFLOW" error.
(The LOOP statement pushes the variable on to the stack and the TO statement
looks for that variable).

Unfortunately, a listing of the above program will not show the imbedded spacé:

LIST

10 "START";

20 PRINT "THIS IS A TEST",
30 GOTO "START",

Note the following rules that OPUS follows when listing a program:

1. A space will always be typed after every statement key-word.
Note that this includes semicolons, commas, and parentheses.

2. No spaces will be typed after variables or constants.

Thus in the above program, no space is typed after GO - it is a variable - but

a space is typed after TO since it is a statement word. The crucial point is
upon entering the line in the program. Upon a line entry, the line is scanned for
all commands, constants, and variables and stored in a compacted source form.

Although this will often cause problems, the user can look at it from a different
point of view and see it as a way to use reserved statement words within a variabla
name. By typing a space in the middle of a statement, thus breaking that statement
into two non-statement names, it is possible to have a variable "GOTO", "PRINT",
"XLOOP", ete. It is important that the statement word be broken in a place that
does not produce a new statement, as the program above shows. If the user had typed
in "GOT O", then indeed the variable "GOTO" would have been created. Upon listing

XV=-2

this version, line 30 would have been:

30 GOTO"START"; (note the lack of a space after GOTO)
Further examples:

PRINT statement "PRINT"

PR INT wvariable "PR", statement "IN", variable "T"

PRI NT wvariable "PRINT"

XLOOP variable "X", statement "LOOP"

XL OOP wvariable "XLOOP"
XL,00P wvariable "XL", variable "OOP"

XV~-3

B. ILLEGAL BLOCK ENTRIES AND EXITS

One of the most common forms of a statement used by beginning OPUS programmers
is the following:

100 IF X#Y [GOTO "END"];

What the user had in mind is obvious - If X does not equal Y, transfer program
execution to the label "END". What could be simpler? Nothing, except that problems
may arise. The program is jumping out of the middle of a block (in this case a
bracket [] block) without successfully terminating that block. The stack is used
by OPUS to store the start of the block (with any required parameters). If the end
of the block is not reached (here it would be:]), this parameter on the stack will
not be removed and OPUS assumes that the program is still in the block at execution
of the code following the label.

If this only happens once or a couple of times, the user will probably not be aware
of anything wrong. Who cares if the program is nested a couple of blocks deep.
However, continuous use of this statement will quickly eat up memory and a "STACK
OVERFLOW!" error may occur.

Before commenting on possible solutions, it is necessary to take a closer look at the
structure of blocks. A block may be not only a bracket block but may be a LOOP...
NEXT, WHILE...CONTinue, or subroutine block.

A block is a unique section of program code that has a specific reason for being
treated in this manner. The best program code will always enter and leave a block
by first executing the block initiator ([, LOOP, WHILE, GOSUB) and later executing
the block terminator (], NEXT, CONT, RETURN). Attempts to enter the middle of a
block or leave the middle of a block will almost always result in errors unless the
Jjump is made to the same type of block at the same block level.

The following illustration may clarify this concept:

[4 Ll L L]
1. Illegal 2. Legal) 3. Illegal
1. The program jumps from code not in a block into the middle of a block. When

the block terminator is reached, a "STACK OVERFLOW" error will probably occur
because there 1s no matchir:y block initiator.

2. The program jumps from the middle of one block into the middle of another block
of the same type. No error will occur because the program is at the same block
level. The first block terminator and the second block initiator are essential-
ly not there.

3. The program jumps out of the middle of a block into code not included within &
block. ©No error will occur immediately. However, since the block was never
terminated, it is still reserving room in the stack. Continuous use of this
statement may cause a "STACK OVERFLOW" error. Also, if the first block was
nested within another block, a "STACK OVERFLOW" error may occur when the terminator

Xv-14

for this latter block is reached. This terminator will look for the matching
initiator on the stack. If this initiator is not the first item on the stack,
an error may occur. (In this case, the first item would be the initiator

of the first block that was illegally exited).

Back to the problem above with the GOTO. What are the possible solutions? One
quick and dirty solution to this problem is to put brackets around the label:

100 IF X#Y [GOTO "END"];

999 [n"ENDY];

As should be apparent, the program will go to the "END" label and execute the right
hand bracket (]), thus terminating the block that was entered following the IF
statement ([). This works quite well if the program always jumps to this label
from the middle of a bracket block. If any attempt is made to jump there from a
GOTO that is not in a bracket block, a "STACK OVERFLOW" error will occur when the
"]" is executed and there was no previous "[".

The best solution to the problem of jumping out of or into blocks is to re-write
the program code so that the need does not arise. Take a long look at the program
and see if it would not be possible to take advantage of the "IF . . . [JELSE [I"
or "WHILE . . . CONT" capabilities. It is the writer's experience that any program
can be written in OPUS without a single GOTO statement. See the sample programs
in the Appendices for ideas on writing GOTO-less programs.

XvV-5

C. CLEARING THE OPERAND TABLE

Anyone who has programmed in OPUS 1s well aware of the situation where a valid command
has been entered in command mode (such as LIST or NEW) and a statement error is
returned. Repeating the command normally works. What is happening?

Look at the operation preceding the command just entered. Was there an error in that
statement, or did that operation leave a value in the operand table (such as "=")?
More than likely so. The secret lies in what was left in the operand table. Remember
that OPUS executes code in a Postfix sequence, i.e., all operands that are to be used
by a statement are first stored in the operand table prior to executing the statement.
When a statement is executed, it will pull from this operand table all parameters it
may need. If optional parameters are allowed, and there is anything in the operand
table, the statement will pick them up as user-desired parameters.

When an error occurs in a statement, some or all of the parameters used by that state-
ment may be left in the operand table. Upon executing another command, this command
will retrieve those left-over parameters and attempt to use them as its own parameters.
More than likely, this will cause another error, since these parameters will probably
not meet the format required by the current command. One may ask why errors do not
clear the operand table automatically. They easily could. However, many times it is
useful in debugging a program to know what was in the operand table at the time of an
error (a PRINT statement works quite well in printing out these values).

Similarly, a parameter will be left in the operand table by any operation that is
specifically designed to return a value, such as assignment or any binary or unary
operation. The following operation will pick up this parameter as its own, possibly
resulting in an error.

What is the solution? As mentioned above, a repeat of the command that produced the
error will work. However, it saves time and frustration simply to enter a semicolon
(;) prior to the command. Remember that the semicolon is a valid operation (not only
a delimiter), functioning specifically to clear the operand table of unnecessary para-
meters.

Keep in mind that operating in command mode is almost identical to running a program.
In programs, the user normally enters a semicolon after every operation: thus, in
command mode, semicolons are likewise needed to clear miscellaneous parameters from
the operand table.

Examples of operations in command mode ("FINE" not printed here):

A="HORSE" (leaves HORSE in the operand table)

PRINT "DOG"

HORSE DOG (prints all values in the operand table)

X+Y (leaves sum in the table)

NEW

NEW ERROR (new attempts to use sum of X and Y as a parameter)

XV-6

READ 1, 1:X,Y
READ ERROCR (no file assigned to file number 1)

; NEW (successful - if no semicolon, a new error would have occurred
since the read statement above left the list parameters in the

operand table)

Xv-7

D. THE FORMAT OF DISC STATEMENTS

Many BASIC programmers often have a problem with OPUS when trying to SAVE, KILL or
retrieve a program from the disc. In most basic languages, the format of a SAVE
command is similar to:

SAVE-TEST (TEST is the name of the program)
In OPUS, the format is:

SAVE expression (the value of the expression is TEST)
The problem seems to arise when the programmer types:

SAVE TEST (example 1)

And no program by the name of TEST appears in the library of the disc, although a
zero most likely will.

This seems logical if one notes that it is the value of the expression, not the
expression itself, that becomes the name of the programn. In example 1, TEST is a
variable because it is not enclosed in quotes. The value of that variable will
probably be zero, unless the user had previously given it another value.

Here are various examples of saving a program called TEST:

SAVE "TEST" (value is the literal string "TEST")

X="TEST";
SAVE X

X="TE"; Y="ST";
SAVE X&Y

This also applies to the CSAVE, GET, LOAD, KILL and OPEN commands.

XV-8

A ey - . T

E. THE CARE AND FEEDING OF DATA DISKETTES

One day the programmer sits down at the terminal all ready to create more new and
wonderful programs. Upon accessing files and/or programs on the current develop-
ment disc, things go hay-wire, such as:

1. Upon listing a program that was on the disc, lots of garbage spews forth.

2. A particular logical record in a file may suddenly contain something other
than what was previously written into it.

3. A LIB of the disc reveals strange programs, most often lots of zeros.
by, A disc failure occurs, listing the track as some outrageous number such as 200
or 300.

Panic sets in, followed by frustration, ending with anger as the realization hits
that a lot of previous work has gone for naught.

The problem? (Carelessness (or ignorance) in swapping diskettes in and out, not
closing data files that may have been open before halting the system, or a hardware
failure causing the system to crash at a critical point.

This may not help the programmer solve the problems with the destroyed disc, but
carefully reading the following will help prevent similar problems in the future.

Each data diskette contains a map of all sectors on the disc which are currently in
use by a program or file. This resides on track @ on the first two or three sectors.
Upon enabling a disc with the DISC command this map is transferred into memory. Any
operation which saves aprogram or writes data into a file logical record uses this

map in memory (!) to determine available sectors in which to put the data. The KILL
and PURGE commands use this map to return sectors to an empty status.

Problems will occur when:

1. The syStem is crashed before the current map in memory is written back on the
disc. The old map will be used the next time the diskette is accessed, thus
inaccurately reflecting the status of empty and full sectors.

2. The diskette is removed and another inserted without going through the correct
disc swapping procedu:c. The map of the first diskette is written onto the
second diskette. New programs or data written onto this latter diskette may
well write over programs or files already there, thus causing chaos on the disec.
Different files may have logical records in the same sector. File data could be
located within a program, causing a disc failure the next time the program is
retrieved. A program may suddenly contain part of another program or garbage if
the bytes are not lined up correctly.

The updated map is written back on the diskette during various operations:

XvV-9

1. Immediately following a SAVE, CSAVE, DUMP, KILL or QOPEN command.

2. Upon execution of the CLOSE command. The map will be written back on each
disc determined by the file(s) specified or all files if no parameter list is
given.

3. Upon executing one of the following commands if a file had been previously
assigned:

NEW, COM, GET, LOAD, DEL, BYE

L, Upon adding, changing, or deleting a line in the source program if a file had
been previously assigned.

With the understanding of when the map gets updated on the disc, by studying the
following, and assuming no hardware failures, data diskettes will always be good:

PREVENTIVE MEASURES - OPUS/ONE

1. Upon inserting a new data disc into a drive, before doing anything else, type
the command DISC with the specified drive number or tag. This will enable the
diskette by bringing the map into memory.

2. Before removing a data diskette or crashing the system, be sure to CLOSE all
files. Even if none have been open, it cannot hurt to get in practice.

3. Once a disc has been enabled with the DISC command, do not use this command
again with the same diskette unless all files have been closed with the CLOSE
command. This command will always read the map from the disc and put it in
memory .

PREVENTIVE MEASURES - OPUS/TWO

1. Before removing or inserting a data diskette, always give the command SWAP
with the specified drive number. All diskettes will be updated that had files
assigned on them. The system will print:

SWAP DISC & HIT RETURN

Remove the current diskette (if any) and insert the new diskette. Hit carriage
return to the prompt. The system now knows there is a new diskette in the drive.
The next attempt to access this disc will automatically first enable it by
bringing the map into memory.

2. Before crashing the system, CLOSE all files to be sure that all diskettes are
updated,

3. The DISC command in OPUS/TWO differs slightly from that in OPUS/ONE. It will

only retrieve the map from the disc and put it in memory if the diskette has not
been previously enabled. If the diskette had been enabled, it will simply declare

XV-10

the specified drive to be the default diskette (to be accessed when no other
disc is specifically stated). Therefore note that if the user has enabled two
drives and inserts a different diskette in the one not currently in use,
failing to use the SWAP command, typing DISC D for this disc will not

(1) enable the new diskette. The map of the previous diskette in this drive
is still assumed to be the current map.

TIPS IN GENERAL

It is recommended that disc tags instead of drive numbers be used in specifying
disces as much as possible. If a diskette suddenly does notf respond to a tag,
the user may be sure .that the map from a different diskette has been written

on this one. The tag of a diskette is included within the map, to be read into
memory when the diskette is enabled.

Once it becomes apparent that a diskette has not been properly updated, do
not write on this disc again. Attempts to do so will simply destroy it
further. Retrieve as many programs and as much file data as possible off the
diskette and save it on a new one. The diskette must be re-formatted before
it can be of much use again.

XV-11

F. WHY OPUS WON'T DO ANYTHING

Several times a user will plunge through the System Generation Routine,
generate the tailored version of OPUS, bring OPUS up, and OPUS will respond to no
command other than to say "FINE".

The top page of memory has been entered incorrectly during system generation,

The above will happen if more memory is specified than is actually in the system.
OPUS uses top memory for the stack and consequently for compiling all commands. If
the memory does not exist, the commands are not compiled and thus not executed.

The solution is simply to go through the System Generation Routine once more,
paying close attention to the memory specifications, and entering the correct number.

XvV-12

KVI. GLOSSARY

QQ.
RR.
SS.
TT.
uy.
VV.

) et e e e e s e et e et e e s e e e et e et et e e et ee e e XVI-1
.. XVI-1
Append..... f et e s e e s et et ettt et e, XVI-1
2 = 11 ¢ XVI-1
N oD = XVI-1
ASCII Code Representation...........c.ciiiiiniiniinenneennn XVI-2
LT =4 o1 11T o 2 XVI-2
Binary Operator........... et ettt it et e XVI-2
Bracket....... e s e eaea e e ettt XVI-2
=3B 0 =D XVI-2
7L O XVI-2
0] 4 E= 0 = L oL o XVIi-2
Comment,.......... ettt ettt et e e XVI-2
1000 o< T v 1 /O XVIi-3
Control Characters......... ettt et e e XVI-3
Crash.......... Gttt e e ettt ettt et e, e XVI-3
F = e (R oL o P XVi-3
Editing....... e et tae et ettt e XVI-4
Execute ., ioiiiiienenrorenennnnncnns ettt ety XVI-}
JO 4 oF o o1 £ s K o) o XVI-5
FlopDPY Do .. siniiiineienetenneoneneeoensanneneenennsnnnnn XVI-5
Infinite LoOD .. et eenereineenrernnennocnannncnacacacnnnnns XVI-5
Interrupts............ st et et v e et e et a et XVI-5
=1 o = 1 XVI-5
Line Numbers......vieiernnneeoneanans et e et eee..XVI-5
List. ittt et einnnnnannen e ee e ettt XVI-6
List Delimiter................ ottt ea et e ...XVI-6
Literal String...eeeeeseereeneeoecieensaasoeensesassansannes XVI-6
Memory Requirements..... Ceeaan ettt e et e a e XVI-6
Number-to-String........ ettt et i veeXVI-T
Object Program. . v.ee e eeeseieinetieneenesanoeesanonananonans XVI-T7
Operand......ccv.e ettt ettt ettt e e XVIi-8
6] 01=7 &= v o) NN O ...XVI-8
Operator. . .veieenennansns P XVI-8
Parentheses..,...... Ceeeeeea ettt sttt et XVI-8
=R e = TGO .XVI-9
Peripheral DevicCe...uv.veeereentoneneneronacscnsonneronnans XVI-9
Postfix Notation., i i i iioneeenoncnannsons .. XVI-G
Priority Structire.......ueeeveueuen.. e Ceereeeeaan XVI-10
o a0 Y= = 1 (1 XVI-10
Program Code...... e v ae st e e s eae e a et aa XVI-10
Program Counter.,......... e et te e e et caa e XVI-10
PROM. .. ieevinnn.n et eme et et ettt et e XVI-11
Protected MemoOry . .vuee e o eeeeieeeeeenensonssesssoosasansssas XVI-11
Quotation Marks i it e et e e XVI-11
RAM ceteaeanean f et et et it ettt XVI-11
Restart....... J N et ae et e eee ettt e XVi-11
ROM............ ot ee e e te et ettt XVi-12
SOUPrCE ProOgram. . v e ivseeeeeesosoeeeesaoscnsnsesssnsensss XVI-12

XVI-0

XX.
YY.
ZZ.
AAA.
BBB.
CcccC.
DDD.
EEE.

IR 0% =) 11 =3 o XVI-12
Statement Delimifer. ... ottt ittt ieneniennnnns XVI-12
String-to-Number...... et e e e et et e e e XVI-12
BT 118 = I XVI-13
Unary Operator.ottt ittt iiireesaennens XVI-13
Value Format. ..ottt eiie it cerenennnanansannnns XVI-13
Variables. .ottt it it ettt et et annan it naaans XVI-13

XV1-0.5

XVI. GLOSSARY

b

The comma is used to delimit lists of variables, constants, or operations.

Format: expr1, expr2, expr3, . exprn

Where n = the number of expressions in the list.

Generally, the comma will be used simply to make source code easier to read.
When a program is compiled into object code, all commas are deleted. There-
fore, the comma is not an operation and has no function except as a separator.
At no time is it required by OPUS.

PRINT A, "HORSE",CAT
10 HORSE 555

The colon is used to delimit list fields for a particular operation. Several
commands require the following:

Format: command list1: list2

Listq contains one or two expression values designating such things as device
number, logical record, or label. List, contains other operands required by the
command for successful operation.

Append

This term refers to appending, or adding, one program to the end of another.
The GET and LOAD statements will both append a program on a peripheral device to
a program currently in memory. There is no separate command for append.

Argument

The argument of an operatic . may be defined as the value of the expression re-
quired by an operator for execution. Thus the argument of the operation "LEN A"
is the variable "A",

Array

An array is defined as a one dimensional matrix.

XVI-1

ASCII Code Representation

Every character in OPUS is stored internally as a number from @ to 255. This
number is called the ASCII (American Standard Code for Information Interchange)
code representation of the character. Relational operators comparing string
values use this numeric code to determine the relationship of one string to

another.

Assignment

A variable or matrix element may be assigned values by using the "=" operator.

Binary Operator

A binary operator is a statement that pulls two values from the operand table,
performs the desired operation, and returns one value (the result) to the operand

table.

Format: expr, operator expr

1 2

Bracket

Square brackets ([]) are used to delimit blocks of program code in IF and ON
operations.

Buffer
A buffer is a section of computer memory dedicated to some particular task. Thus
there may be disc buffers which hold data retrieved from the disc, or variable

buffers which hold the values of variables during program execution. OPUS
utilizes many others besides these.

Byte

A byte is a group of bits (binary digits), each bit having a value of zero (off)
or one (on). Eight-bit microprccessors utilize bytes (or words) of 8 bits. One
byte will hold one ASCII character, or part of a number.

Character

A character is defined as the ASCII representation of a decimal number from @ to
255. One character will require one byte of memory.

Comment

Non-executable comments may be entered in source programs using the REM s<atement.

XVi-2

Constant

A constant is defined as either a literal string or a numerical value. Some
examples of constants follow:

3.555

-.009
"THIS IS A STRING"

Control Characters

Control characters are special ASCII characters dedicated to a particular editing
or controlling feature.

Control H Deletes the last character entered in either command mode or a

(or under- program INPUT statement. Control H will backspace the cursor one

line char- character. The underline character will type an underline after

acter) the character. This control character may be typed in repeatedly,
each time deleting the corresponding character previously entered.

Control X Types a backslash (\) and deletes the entire line of input
entered either in command mode or in an INPUT statement. OPUS
will ignore the line altogether and the user may re-enter the
correct line.

Control C May be used to interrupt program execution, either during an
INPUT statement or while the program is running.

Control

%)

Suppresses all output until a Control Q is typed.

Control Q Releases output. It is ignored if Control S was not previously
typed.

Crash

Should the computer "crash'" (i.e., should OPUS become inoperable due to hard-
ware or software failure), the user will lose the program in memory and must
re-boot the system. If a crash occurs during an operation that changes data
on the disc, it is possible that the disc may become unusable. If it does,
the only option left to the user is to re-format the disc in the System
Generation Routine.

Delimiters
Delimiters may be defined as special charaters that set the boundaries of

particular operations or procedures. For example, square brackets delimit (define
the boundaries of) a block.

XVI-3

Editing

Editing source programs in OPUS is much the same as in any BASIC language.

Each line entered must be preceded by a lihe number from 1 to 9999. All source
lines must be edited in the command mode. The following procedures are avail-
able:

1. Entering New Code: A line of code is entered simply by typing a line
number, followed by the line of program code. As many operations as
desired may be entered on one line; the only restriction

is that the line must be no longer than the length of the input 1line,

as specified during the system initialization routine. Lines will be
automatically inserted in the program by OPUS according to the numerical
value of the line number. Lines may be entered in any order and OPUS
will determine where they go by the numerical value of each line

number.

2. Replacing Code: Should a line have to be changed, the programmer need
but enter the same line number followed by the correct code; OPUS will
automatically replace the old code by the new. The entire line must
be re-entered -- it is not possible to change only a portion of the
line.

3. Deleting Code: 1If only one line of program code needs to be deleted,
the programmer should type the line number associated with the line and
hit the RETURN key. The line will immediately be deleted from the
program. If more than one line of program code needs to be deleted
(all in the same numerical sequence), the programmer should use the DELete
statement.

4. Renumbering Lines: Many times the programmer will not allow enough gap
between line numbers to be able to insert another line of code. If this
happens, the RENumber command may be used to renumber the entire program,

or just one section, in intervals far enough apart to allow further inser-
tions.

It should be kept in mind that, in command mode, OPUS/ONE determines whether a line

is being edited or an operation is being entered by determining if the first character
input is a number. If the first character is a number, it is assumed that a program
is being edited. Otherwise, OPUS/ONE will assume that an operation is being entered
which is to be executed immediately. All spaces in a line are ignored by OPUS/ONE
(unless contained within a literal string).

Execute

A program is said to be executing when it is in the RUN mode, i.e., OPUS is performing
all operations specified by the user in the program. '

XVI-4

Expression

An expression may be defined as a constant, a variable, or one or more operations
which produce a value (return a value to the operand table). Following are some
examples of expressions:

99.9 7= 34
"GOOGLE" (BB IS NOT CC)
CAT X < "HORSE"
A¥B-C

Fioppy Disc

Floppy discs are mass storage devices that may permanently store programs and
data files, by means of a head reading or changing magnetic flux on a diskette.

Infinite Loop

Program execution is in an infinite loop if it is looping continuously through

a section of code with no way of terminating. Unless the BReaK function is enabled,
the user may strike Control C to interrupt the loop. However, if interrupts have
been disabled by the BReaK function, it will be necessary to HALT the computer and
follow the restart procedures.

Interrupts

A program or operation may be interrupted at any time by striking Control C from
the current input device. This may be overridden only by setting the BReaK command
to a non-zero number. When an interrupt 1is received, control will return to the
command mode., Some operations must finish execution before the interrupt is
acknowledged. A Control C also will interrupt a program during an INPUT state-
ment. OPUS does not utilize the vectored interrupt system. Instead it scans

for interrupts from the current input device.

Label

A label is a literal string within a program to which a statement refers. A label
may simultaneously be an orcrand of another statement. It may be of any length
(up through 127 characters) and may contain any ASCII character; the label must be
enclosed within quotes.

Line Numbers

Line numbers are used for editing (adding, changing, and deleting lines of code) a
source program. The range allowed for line numbers is from 1 to 9999, and all must
be integers. When a source program is compiled, line numbers are ignored and will
not appear in the object code. Therefore no statements will ever refer to line
numbers.

XVI-5

List
A list is defined as one or meore constants, variables, or expression values that
are optionally separated by commas. Several commands will require lists of

parameters. Example of a list:

-78, CAT, 5%66/4, "HI THERE", X

LList Delimiter

The comma is the most frequently used delimiter to separate variables, constants,
and expressions within a list. However, the comma is not necessary if the value
types are different. For example:

PRINT A, "HI", 36

can be entered as:

PRINT A "HI" 36

Literal String

A literal string is defined as one or more ASCII characters enclosed within quotes.
The maximum length is 127 characters. Here are two literal strings:

"THIS IS A LITERAL STRING"
ng .u532n

Memory Reguirements

The following considerations should be taken into account when determining how
much memory is needed to satisfactorily run OPUS:

1. OPUS/ONE cassette/paper tape version requires 16K for the operating system,
OPUS/ONE disc version requires 20K, and OPUS/TWO, 2UK.

2. Memory requirements increase correspondingly with greater number preci-
sion. The number routines require a buffer of 50 bytes for 6-digit
precision; for 126 d.gits of precision, the buffer utilizes 650 bytes.

3. The sizes of the operand table, the constant table and the variable
name table are all user-determined during system generation, and
may be shortened or lengthened depending upon memory restrictions and
program requirements. .

4. The variable value buffer may be controlled by reusing variables in

the program -- the more variables used, the more memory required.
Matrices, in particular, will consume memory.

XVI-b

5. The user determines how many disc files are assigned at one time with-
in a program. Each file requires about 160 bytes of memory.

6. Each disc drive on the system will require about 412 bytes of main memory.
7. User-defined I/0 drivers will add to the memory requirements.
8. Keep in mind that both a source program and its corresponding object
code must reside in memory when the former is compiled. However,
the object code may be saved, the source deleted, and the object re-
loaded to reside in memory alone for execution.
9. 1If a source program cannot be compiled without memory overflow, it can

be compiled in sections, i.e., sections may be saved as object programs
and linked together for execution.

Number-to-String

Any operation that requires string values, such as LEN and & will automatically
make sure that the argument is in string format by converting any numerical value
to a string prior to the operation. Every digit in the number (including decimal
point and sign) will be changed to the corresponding ASCII character. If the
value in question is a variable, the converted value form will not replace the
variable value but will be used only temporarily for the operation.

Object Program

The object program is produced from the source program with the COMpile command.
The following comments about object programs explain the differences between them
and source programs:

1. The object program contains no line numbers or line separations, bt is
treated as one continuous line of operators and operands.

2. All operations are stored in postfix notation -- the operators follow
their operands; i.e., A-B¥C would be stored as ABC¥-, The source,
however, is store. in the order in which it is entered.

3. The conversion to postfix notation requires that all statements be
given a priority number. This priority determines the order of
execution. All parentheses and commas are deleted in the object code
because of this priority order. Usually, in other languages, only
mathematical expressions are converted in this manner, but in OPUS,
the entire program is compiled into this notation. See the Statement
Table in Appendix D. for the priority order,

L4, The object program may not be listed or edited in any manner.

XVI-7

5. The object program may be stored with the CSAVE command and retrieved
with the LOAD command.

6. The object program is the program that actually is executed. No source
program may be run without first compiling it into object code.

Operand

An operand is a constant or variable value that is used by a statement during the
particular operation. The operand will be in number, string or matrix (combination
of numbers and strings) format. Expression values and arguments are often referred
to as operands.

Operation

An operation is defined as one statement with its required argument(s). The
following is an operation:

PRINT "HI THERE"

Operator

An operator is a statement or instruction.

Parentheses
Parentheses are used in three instances:

1. To give priority to specific operations. The operation within the
parentheses will be executed before those outside. 1In this example,
though it normally has a lower priority, subtraction is executed before
multiplication:

3¥(4-2)=6 Where as: 3I¥4-2=10

And in the next example, the IF statement is executed prior to the PRINT statement:

PRINT (IF X IS "CAT" [THEN "MEOW"])

2. As matrix, or matrix element, delimiters. Parentheses must enclose the
element positions in each dimension.

M(3,4)
DIM XX%(5,5,5,5)

3. As substring delimiters. If a substring (part of a string) is referenced,

XVi-8

the starting and ending character positions must be enclosed by parentheses.
PRINT S$(3,4)
Z = X$(6) & z$(1,D)
Patches
A patch is a revised or new section of machine code incorporated in the operating

system. The user of OPUS may conveniently make I/0 and disc driver patches
(during system generation).

Peripheral Device

This is any I/0 device (disc, cassette, terminal, etc.) which communicates with
the central processing unit.

Postfix Notation

Postfix notation refers to a method of representing expressions in which operands
precede the operator. Normally, expressions are written with infix notation, i.e.,
the operators are between the operands. This works well when it is possible to
look at an expression and immediately see which operations should be considered
first. However, the computer has not yet developed to the point where it can
glance at an expression and make such decisions easily. By putting the expression
into postfix notation, it becomes a simple task to scan the expression from left to
right and operate accordingly. Some examples of the two types of notation follow:

Infix Notation Postfix Notation
A-B AB-

5-(X-Y) 5XY--
(2.3-H)/X*¥Y 2.3H-X/Y¥

PRINT A,B AB PRINT

LOOP I, 1 TO 5 I 1 LOOP 5 TO

As the computer scans the expression, it pushes all operands (constants or variables)
onto a stack (operand table). When an operator is reached, it pulls the required
operands from the stack, performs the operation and optionally returns a value to

the stack. Postfix notatic.i is dependent upon the priorities of every operator.
Higher priority statements must be executed before lower priority statements and
will, therefore, appear first in postfix notation. As can be seen from the

examples, parentheses are not needed in postfix expressions due to this priority
structure.

In OPUS, not only mathematical expressions are converted to postfix notation, but
also all statements and commands. In fact, the entire source program is translated
into this notation and is then called the object program. It should be noted also
that source programs may actually be written in postfix notation and be accepted by
QPUS as valid code.

XVI-9

Priority Structure

Every statement in OPUS is given a priority value to determine the order of execution.
A statement with higher priority will be executed before one with lower priority.

If the priority is the same for two operations, they will be executed in the order
that they are entered.

The user is no doubt familiar with this concept, when applied to mathematical
operations: multiplication has higher pricrity than addition, the same priority as
division, and lower priority than exponentiation. For example: 3¥4.2 is 10
(multiplication operated on before subtraction); 3-U4¥2 is -5 (multiplication still
higher priority). If subtraction is to take priority, parentheses are required:
3%(L4-2) is 6. In OPUS, this concept applies to all statements. Therefore,

parentheses must be used to force execution of a lower priority command before a higher
priority command. For the following examples, remember that assignment normally has
higher priority than the conditional IF statement.

A= (IF X [THEN 3] ELSE [THEN 4])

Because parentheses enclose the conditional statement, it is executed first. Thus,
this example assigns either 3 or 4 to A, depending upon whether X is true or false.
If parentheses are left out, an assignment error will result because there is no
value to assign to A.

A = IF X [THEN 3] ELSE [THEN 4]
= ERROR

See Statement Table for the priority values for all OPUS statements. A higher
number designates a higher priority. It is the relative difference that is important
to remember -- not the actual values of each.

Program

A program is a group of instructions given to the computer to solve a problem. In
OPUS, the programmer enters the source program, which is then compiled into the object
program. The latter may then be executed (RUN); and theoretically, it produces 2
solution to the problem.

Program Code

Program code is defined as the statement, constants and variables composing a program.

Program Counter

This is a pointer in OPUS giving the location within the program of the statemen:
currently being executed.

XVI-10

PROM

PROM is an abbreviation for Programmable Read-Only-Memory. Machine code programmed
into PROM may be executed at any time, but normally may not be changed under program
control. PROM is non-volatile, meaning that the contents of memory will not be
affected when the power is shut off. A great deal of time and effort is saved if
the OPUS loader is put in PROM or ROM. 1Instead of having to enter the loader byte
by byte through the front panel switches, one need only examine the starting loca-
tion of the PROM and RUN.

Protected Memory

Protected memory is memory‘which may not be written on or changed. PROM and ROM
are examples of protected memory. The term may also refer to memory locations that
are outside of the boundaries of memory in the current system configuration.

Quotation Marks

Quotation marks are used to delimit literal strings.

RAM

RAM is an abbreviation for Random Access Memory. This is memory that may be read
from or written into randomly at any specified location. It may be either
volatile or non-volatile.

Restart
If a program is in an infinite loop that cannot be interrupted, or some mal-
function has occurred causing OPUS to be inoperable, the system may be manually

restarted. This will force control back to the start of OPNS. The following
steps should be taken:

1. HALT the computer.
2. EXAMINE memory at location ¢@g¢ 1@ octal. (2848 hex)

3. Make sure that the sense switches are set to the correct device number
(see Bringing Up Initialized OPUS, Section I.E.).

4. Push RUN.
OPUS should return to command mode and print the heading and DAY? If this does
not happen, it is most likely that memory data has been destroyed, and the user

will have to relocad OPUS from the beginning; program and table buffers will be
cleared.

XVI-11

ROM

ROM is an abbreviation for Read-Only-Memory. The description under PROM also
applies to ROM.

Source Program

The source program is the program that the user enters., OPUS abbreviates the
actual ASCII code as it comes in by converting all numbers to number format,
strings to string format, commands and statements to numbers, and deleting all
spaces. A source program may be LISTed and edited, but not executed until it
has been COMpiled into the object program.

Spaces

All spaces entered from the input device that are not contained in a string will
be deleted immediately if in the command mode. Spaces will not be deleted from
data entered in response to an INPUT statement.

Statement
A statement is a general term to describe all commands, functions, and unary or binary

operators. Any reserved symbol or word which is a direct instruction to the computer
is called a statement. Note: No spaces may be imbedded within a statement.

Statement Delimiter

Since multiple statements may go on one line in a program, they need to be separated
by a symbol. The semicolon is a convenient statement delimiter, though it is in
itself a valid operation (see ;). It should be stressed that OPUS does not

check for any statement separator, but will take the statements as they come and
execute them according to priority.

String-to-Number

All statements requiring an arciment in number format will convert all string
arguments to number form prior to the operation. OPUS determines this number form
by scanning the string from left to right until it reaches either a non-numerical
character or the end of the string. If the first character in the string is not a
numerical character, the number returned will be @. A numerical character may be
any of the following: a digit (from @ to 9), "-", "y" " " opr "E" (exponential
format). Following are some examples of strings converted to numbers:

nwizn becomes 12
n-z2.5" becomes -2.5
"CATY becomes @

XVI-12

"3DOGS" becomes 3
"3.5E2" becomes 350
"y 10" becomes 10

If the value in question is a variable, the converted value form will not replace
the variable value, but will be used only temporarily for the operation.
Terminals

Terminals are input and/or output devices which send and recieve data to and from

the computer under user control. Terminals operating with OPUS must send and receive
ASCII characters.

Unary Operator

A unary operator is a statement that requires one argument and returns one value.
Perhaps the most common unary operator is the negation sign (-).

Value Format

Every value of an operand is either stored in number format or string format.
The former is a BCD (Binary Coded Decimal) flecating point number and the latter,
a string of ASCII characters.

Variables

A variable is a name given to a numerical value, a string value or a matrix.
The following rules apply to variable use:

1. The variable name must consist of upper case alphabetical characters
only. No digits or other ASCII characters may be imbedded within the
name. The name is not delimited by quotes.

2. The name may not contain any reserved OPUS statement word. Thus the
variable CAT is valid, but HORSE contains the reserved statement OR,
and therefore is invalid.

3. The length of the¢ variable name must be less than 128 characters.

4. A variable may have the following values:

Number (any negative or positive number)
String (any sequence of ASCII characters)

Matrix (determined by a DIM statement)

5. The variable value may, at any point in the program, be changed from a
number to a string, or a string to a number.

AVI-13

A simple variable (string or number value) may be changed at any time
into a matrix variable by using the DIM statement. However, once a
variable has a matrix value, it cannot be changed back to a simple
variable.

If a statement using a variable requires a different format (number/-
string), the value will be temporarily converted to the format required.
However, upon completion of the operation, the variable will have the
same value in the same format as that prior to the operation.

XVI-14

XVIT. APPENDICES . .t i e et et e e e et e e e, XVIiT-1

o

Standard DriverS . .o un ittt it e e e e e e XVIIi-1
1. Serial I/0 Interface Routines......... iiinennan. XVIIi-1
2. Port Initialization Routines.......... ..o eeeanenn XVIiIi-5
3. Disc Drivers. ...t e e e e e XVII-7
o= o L= o T XVII-14
1. DI Lol S . ittt ittt it e e e e e e e e XVII-1Yy
a. MITS Altair Disc Loader: Octal en. XVITI-16
b. MITS Altair Disc Loader: Hex i, XVIi-20
¢c. 1iCOM Disc Loader: Qctal ..., .. v inininnnnn XVII-24
d. 1COM Disc Loader: Hex i it inienannn XVIiI-28
2. Paper Tape Loader......... i, XVII-32
a. Paper Tape Loader: Cctal iiiiiiiiinnn. XVII-33
b. Paper Tape Loader: FeXuiunieir e enanennnnn XVII-36
3. Cassette Loader. it it et e e e e XVII-39
a. Cassette Loader: Octal it ininieannn. XVII-40
b. Cassette Loader: Hex i iiiinnnnnennnn XVII-b2
Disc & File Format.. ...ttt ittt it it ieeae s sananenn XVITI-4Yy
1. Table Descriptions..t iiaaeann. XVIT-UY
2. Disc Lay-0Utb ...t ittt e it ettt e e et e, XVII-48
Statement Table. ..t it e e e et e e XVII-49g
] O =+ Y11= O O XVII-h5
Technical Data..oueeiteeee i iieeneeesreeneennecennesaannans XVII-56

XVIT-0

XVII. APPENDICES

A. STANDARD DRIVERS

This Appendix lists all standard drivers that may be used with each version
of OPUS under the System Generation Routine.

The three sections listed here give the drivers for the serial I/0 devices,
the port initialization routines, and the disc driver routines. Under each
section is listed the mnemonics for each available driver, applicable hard-
ware specifications, and the machine code listings for the drivers.

Serial 1/0 Interface Routines

The code is the switch code determining the interface with which the system
generation is to communicate (defined in Section I. C.).

Code Mnemonic Interface
11 MS MITS 2SI0 interface board
12 MT MITS SIOC teletype board
I3 IA IMSATI SIO, channel A
1B IMSAI SIO, channel B
MP MITS UPIO parallel board
MC MITS ACR board

The following table gives the channel specifications for each interface; the
heading definitions are:

Status Lowest port number + status = status port number

Data Lowest port number + data = data port number

Inp Bit Bit position in the status byte for "data byte received"

Active @ = Inp Bit low when data received and 1 = Inp Bit high when data
received

Out Bit Bit position in the status byte for "okay to send”

Active # = Out Bit low when okay to send and 1 = Out Bit high when okay
to send

Mnemonic Status Data Inp Bit Active Out Bit Active

MS @ 1 @ 1 1 1
MP @ 1 6 1 7 1
MC i 1 2 ? 7 2
MT ? 1 2 @ 7 @
IA 3 2 1 1 2 1
IB 5 h 1 1 2 1

XVTT-1

MITS 2810

Input Subroutine: LOOP

Output Subroutine: LOOP

Interrupt Subroutine:

MITS 4PIO
Input Subroutine: LOOP
Output Subroutine: LOOP

Interrupt Subroutine:

MITS 5I0C

Input Subroutine: LOOP

Driver Listings

IN @ Loop until data received
RRC

JNC LOOP

IN 1 Input data byte

RET

IN @ Loop until OK to send

ANI 2

JZ LOOP

MOV AR Move byte in B to Register A
OUT 1 Qutput data byte

RET

IN ¢ Input from status & check for data
RRC
RET

IN @ Loop until data received
ANI 190

JZ LOOP

IN 1 Input data byte

RET

IN 2 Loop until OK to send
ANT 200

JZ LOOP

MOV AB

OUT 3 Output byte

NOP

IN 3 Clear input

RET

N ¢ Input status
ANT 100

RAL

RAL

RET

N @ Loop until data received
RRC

JC LOOP

IN 1

RET

XVIiT-2

Output Subroutine:

Interrupt Subroutine:

MITS ACR

Input Subroutine:

Output Subroutine:

Interrupt Subroutine:

IMSAI SIO Channel A

Input Subroutine:

Qutput Subroutine:

Interrupt Subroutine:

LOOP

LOOP

LOOP

LOOP

LOOP

IN @
RLC

JC LOOP
MOV AB
OUT 1
RET

IN ¢
RRC
cMC
RET

IN @
RRC
JC LOOP
IN 1
RET

IN @
RLC

JC LOOP
MOV AB
OUT 1
RET

IN @
RRC
cMC
RET

IN 3
ANT 2
JZ LOOP
IN 2
RET

IN 3
ANT 1
JZ LOOP
MOV AB
ouT 2
RET

IN 3
RRC
RRC
RET

XVII-3

Loop until Q0K to send

Output byte

Input status

Loop until data received

Input data byte

Loop until OK to send

Output byte

Input status

Loop until data received

Input data

Loop until OK to send

Output byte

Input status

IMSAI SIO Channel B

Input Subroutine:

Qutput Subroutine:

Interrupt Subroutine:

LOOP

LOOP

IN 5
ANI 2
JZ LOOP
IN 4
RET

IN 5
ANT 1
JZ LOOP
MOV AB
OUT 4
RET

IN 5
RRC'
RRC
RET

Loop until data received
Input data

Loop until OK to send

Output byte

Input status

XVII-4

Port Initialization Routines

Mnemonic Interface
MS MITS 2SI0
MT MITS SIOC teletype
IS IMSAI SIO (both channels A and B)
MC MITS ACR cassette
MP MITS 4PIO parallel

Driver Listings

MITS 23I0

MVI A,3 Master reset

QuUT @

MVI A,25 Clock: /16, 8 data bits, 1 stop bit, no parity
oUT @

RET

MITS SIOC

IN 1 Clear data
RET

MITS ACR

IN 1 Clear data
RET

MITS 4PIO

XRA A
oUT @
NOP

ouT 1
NOP
ouT
CMA
ouT
MVI
ouT
MVI
ouT
RET

N

nN = =W

XVIT-5

IMSAT ST0

MVI
ouT
MVI
ouT
MVI
ouT
MVI
ouT
XRA
0uT
MVI
ouT
MVI
OouT
MVI
0ouT
MVI
ouT
XRA
OouT
RET

A,201

A,109

= W
—
-
N

b

N =
= -~
N

-
-
—_
)

Er U0 U0 NN W Ww
“_r_- .
-3 =
=

XV1I-6

Disc Drivers

Mnemonic

Interface

Bytes/Sector

Sectors/Track

Tracks/Disc

MD MITS Altair drive
IC iCOM drive

NOTE:

128
128

Driver Listings

of A.S.I.'s 8080 Assembler.

KoKk Ok

ALTAIR

DISC DRIVER

b EEPE A RITE & FCTOR e XK

MW RITED

MW ORITE Qo

MUT RelOs

FUSH Hy

Aok Aok K

FUSH O

X-ENARLE» FOSTTION HEADG-X

*-SET

¥~ TRANSF

MW RITE A

MW RITE R>-

CaAlLL. MRENARLES

PUSH H#

LXT HyeMREUF #
INX H¥

MOV MAS

ER DATA TO MREUF BUFFER

INX M3
XRA RS

FOF He
MOV AHs
JC MURITERS

NCR s
FUSH B

FUSH H#
ORA& A

F-READ FREVIOUS SECTOR

Call. MRTRKS

UP SECTOR FORMAT-X

MOV CLs
MYI Me»3035
MOV Mo
INX M

LOax s
MOV BAS

MOV MBS
MUY By2005
MUT BR300
MOV Al

LHLY PRISS
FOF M

(MO VAL TEAT 0N X

XVII-T7

& CaALCULATE

7
7

The format of the code listed below is according to the specifications

FUSH R

MOY AH$
INX H3
INX M3
FUSH M3

MOWV MaAs
LDCR CF

FOP s
CRI 433

AML Z7:

nex Hs
SNE MWRITERA

CHECKSUM-¥

MO g

X
LxX

INX
JNEE

MOu L

Mt

Ba2ha

s
MUR TS S

ERE

caLl MRSECE JME MUWERTTERD S
¥-READ AND VAL TOATE FREVIOUS SECTOR-%

<Pl RETE BAX MVUL T4 LT T MUWELE S Catl, MREFART S
SE MURTTEZ '

IMWORITE B MOV Al Tf & TR S ML L
PO ks
MUE HelLs VT O 20673 LY T DieMBEUEF S HOHGs

*-WALT FOR CORRECT SECTOR-%

<MW RITE BR: IN
MW RITE BC: IN

i Febel 8 JNE MWRTTERRS
15 : 5
ANT 373

R SO MWETTERD
Cimr s AME MWRTTEZL S

¥-QUTHUT RBUFFER TO DI50-%
MOV AR OouT 1§ MOV EMs L Ms
<MW RITE Cx IN OF AMG D JNE MWRTITELDS S
AU Es QUT 2% MOV AMs IMx Hs
NDCR C# MOY M IN¥ Hs L2 MURITEDS
nCR C§ ouT 23 JNE MWERLITEC:
G0 TO READ ROUTINE FOR VERIFICATION-%
MW RITE I FOF RS PO T PO MHE SME MEREAD S
K-FATLED TO WRITED TRY AGATN-X

MW ORITE 2 FOPF Rs PO Rs FOF e P M
DER Ry SNE MUWRTTEQRS

*-FALLURE~%
MUT Ay 103 OuT 1% GUT &% RET$
¥-BUFFER TO HOLD FREFIX OF FREVIOUS SECTOR-X
MW BUF BUF 43
e REAT BECTOR——X
MR READ MUT Ey103
“MRREAD A FUSH Hé FUSH I FUSH Eé FUSH D
*-ENABLE s GET TO TRAGK-X
Call MEEMARLES CaLL MRTRKS LT D MERUF MUT © e 053

K-READ SECTOR-%

XVII-8

CAll. MRFARTS MUT A»103% T 13 JIMRREADE
X-GECTOR GOODY TRANSFER TO SPECIFIED XUFFER-¥

XCHG§ TMX H# PO s FLISH M
LXT Re2003%

MR READ G INX H3 MOV AMs STaX s T s
XRiy Ré MOV Bivs DER G SN MRREADG

FOF H3 CMF M3
FOF B3 FOF 1 FOF H3 INZ MEREADZAS

¥-CHECKSUM 0Ky RETURN A=0 T0O OFUS-X
XRé& As RETS
¥-NOT REAL CORRECTLYs TRY AGATIMN-¥
MR READ Z% PO s FOF &3 PO T FOF Hi
MR READ ZA DCR 8BS SNE MEREADA
¥-FATLURE RETURN A=2 TO OPUS-¥
MUT ay2s RET $
*wwwREﬁH GIVEN % RBYTES FROM SECTOR---3
MR PART MUI Ey1O¥
IMR PART A CALL. MRSECS FUSH B _ FUSH Its
MR PART R IN OF Rl s Q0 MRFARTR S
IN 2% S5TAX 13 INX Dis neE Cs
NOF § JEMRFARTC S neR Cs IN 2%
STAX [INX 115 SN MRFARTES
MR FART C» XCHGS FOF Hs FUSH Hs
¥-VERIFY FREFIX-%
MOV AN CRI 3033 JNZ MRFARTZ # INX My
MOV AMs CMP ESs SNZ MRPARTZE INX H3#
MOV AME CMP D SNZ MRPARTZ S INX M
MOV Ak xR 03 CMPE M3 SNZ MRFARTZS

XCHG# Ofdsy B
FOF ks FOP My RETS

MR PART 2 XOHGS PO 1 FOF s
DR R SHE MREFARTA S

XVII-9

¥ FATLURE X%

FLUSH Hé FUSH T FLIGH s

LXT HeMRF§ LA ML MOW Cas MUY Rafis
nan ks MUT MeOd PO T

PO Tis PO Hs AP MRTRE A

Koo GET TO TRACK=k

MR TRK: MUT Ar4s OuT 1+
FUSH s FUSH H# LXT HepdRFs
MUTL BeQ3 nan ki MO B HXTHL ¥

¥-CHECK FOR TRACK Q/8ECTOR O-%

MOV Al ‘ e M JZMRTREZ s
MOV ARs SLE M MUT .28
JNC MRTRKA $ CMtys IME A nee Es
ORA As MOV Das MOY AHE
XTHL. # SEMETRED S

MOV Masd

MR TRK &

¥-STEF CORRECT # TRACKS-#

IN O3 ANT 23 JNZ METREE S
MOV Ak ouT 1 LI S R SN MRTRERS

MR TRK R

SMROTRI I FOPF Ha FeOu> Tos RETS$

*-MOVE HEADS TOQ TRACK O-%

MR TRR

MR TRK

L XTHL. #

ZA% IN OF
MVUI A2
IN OF

MUIL M.04 FoF He
ANL
aur
ANT

i
2> 2>

foute fb
o=
b
-

ONZ METRRZA S

JHT MRETRRZAS

FOF

Ies

RET §
A BUFFER HOLDING TRACK LOCATIONS FOR EACH DRIVE---X
LMRE RUF 14003
MR BUF 13 F-CURRENT DISC
¥o---GELECT AND ENARLE IS0 %

STd MRDS
SZ2MREENARLE S

MOV ACS QUT o
IN 08 CRI X72:

RET §

MR ENARLE:

¥ GET T TRUE SECTOR---%

XVII-10

Mk HECEH IN 03 ANT 43 JNE HRSED

TMROBEC A TN 13 e
ANT 37% CHMF s

Fo =DEEC BUFFER~ -

MR RUF RUF 1383

olkokick ICOM DISC MRIVER dsodkoksokk
- WRITE SECTOR - %

W RITE FUSH s FUSH HE MUL a.2015 Call
MUT Ry.1283

¥-TRANSFER DATA TO SHIFT REGISTER-%

“IW RITE AX LIDAX D3 QUT 134 MUT Beb1 Call
LCR RS INX T ANE TWRITESS

*-ENABLE AND' LOCATE HEADS-%
CALL IRTRKS MUT Cr10%
X~WRITE SECTOR-X

SIW O RITE RE MUT A58 Cal.l IRLOOFS MUL A 75 CALL
In 03 ANT 103 SLOTWRITEDS

¥-FAILURE TO WRITEs TRY AGAIN-X

MUI Ar 135 Call. TRLOOFS DCR C# SN
¥-FOTLURE, RETURN A=2-%

FOF Hs FOP Ts MUL A RET#
K-SUCCESSy RETURN A0k

SIW RITE Cx FOF Hy FOF Dis AR CE RET#

Koo READ SECTOR %
STR READ:S FUSH 0 FUSH H3 MUT ArR015 CALL
X-ENARLEy LOCATE HEADSG-K

Call. TRTRRE: MUL Ce103

XVII-11

TR Q0O s

IRLOOF

TRLOOP

213

£33

TuRITERS

ITRLOOF -

¥-READ

IR READN AX

X-FALLURE »

*-FATLURE .

X-MOVE

IR REAT B

IR READ CX

K-GUCCESS »

IR READ I

Koo BUF FER

IR TRACK

Koo ENABLE

TR TRK:

IR TRK A

IR TRK B>

K- SEER

IR TREK G

A LOOF UNTIL.

TO HOLD

NISCy

INTO SHIFT

MUT Ar3s
JETRREADE

CALL IRFL.AGS
PO H
ATA

MUTL Ay1003%
MUT C» 1289

CalLL
MUT
JHMF

ArlOls
IRREARC

RETURN

FOF Hé

RUF 105

GET TO TRACK
FUSH H#

XTHL. §

ORa Ls

MOV ARE
IN O3
Call. TRFLAGS
MOV AlLs

SME TRTRRC S

TRACK O SECTOR

MUT Arl%3
MUT Avdls
CMF M3

OuT 13

CALL TR ODE

RE ALY ek

TRY AGATN-X

RETURN =32

TO MEMORY-

TRLOOF2

BTG 4

&

REGISTER-X

Call IRLOOFS

neE Cs

POF X1

ouT D%

INX I
ouT 0%

FOF T8

TRACK LOCATIONG--—%

SECTOR %

LXT MHe IRTRACK S
MOY Als

INRC A§

ouT 1s

ANL 403§
JMPTRTRERA S

ORA HE

%

CALL
AT

IRLOOF §
TRLOOF §

MOW Mas

MUY me213
MUL delldls

XVII-12

IN OF

SNE TRREEADA S

MUL A2

IM 03

DeR Gy
IN O3

XR& A

MUT B0
REC#

MOU Ras
MUT A-415
SO TRTREERS

Moy AH

MOU ARG
XRa A3

FOF e

Call. IRLOOFS

ANL 103

RETS

STHX Ind

ST IRREADDS
STAX Ds

RET 3

nan &

RECE

Calkl

XTHL

auT

13

RET §

TRLDCE S

L

IR OFLAGH MVI As133
IR LOOP: QuT 0% SUR Af DuUT Os

IR LOOF Ak IN O3 RARS JC IRLOOFAS
RETS$

XVII-13

B. LOADERS

Machine code listings and a description of the loader format are given for
our standard A.S.I. loaders:

Section 1: Disc loaders for MITS Altair drive and iCOM drive
Section 2: Paper tape loader using Intel Hex format
Section 3: Cassette loader for MITS ACR

'All loaders assume the peripheral devices are strapped to a certain port number.
These may easily be changed in the loader.

The loaders are all located at 177/@0@8 Octal (7F@@ Hex). This location may be
changed by updating all JUMP references within the loader. 1In the listings,
these reference locations are noted by an "@" symbol.

At the end of each loader there is a specific I/0 port initialization routine.
This is optional. 1Its presence makes sure that the terminal on which OPUS is

to come up is initialized. Refer to the specifications of the interface board
to make sure it is being initialized correctly. A sample port initialization

routine has been inserted in the loader listings. Check it carefully.

Both Octal and Hex listings are given for each loader to accomodate all user
preferences.

The method in which OPUS resides on each medium is described with each section.
Special loaders may be written following these guidelines.

Disc Loaders

The MITS loader assumes that the disc drive has been strapped for ports 8, 9
and 19 (12, 11 and 12 Octal).

The iCOM loader assumes that the disc drive has been strapped for ports 192,
and 193 (C@ and C1 Hex).

If the loader is to be burned into ROM or PROM memory, because this memory nor-
mally runs slower than RAM, the loader portion must be first shifted into RAM
prior to execution. A short routine should be inserted preceding the loader to
accomplish this shift. The addresses in the loader should remain the same.

Shift Routine:

LXI H,LOADER Set HL to point to loader location
LXI D, 7748@ Octal Set DE to start RAM location
or
TF@@ Hex
MVI C,255 Decimal C = number of bytes to shift

XVII-14

< LOOP > MOV AM Move byte from PROM to Register A

STAX D Store Register A in RAM
INX H Increment HL Register pair
INX D Increment DE Register pair
DCR C Decrement byte counter
JNZ LOOP If more, continue to shift
JMP 7T748@ Octal Jump to start of RAM for execution
or
TF@@ Hex
< LOADER > Insert normal loader at this point

The following specifications describe the format of OPUS as it resides on the
disc. This should be studied carefully if the user needs to write a loader
for a non-standard disc drive. Both OPUS with the System Generation Routine
and the initialized version of OPUS will be dumped on the disc in this format.

1. OPUS resides on the disc sequentially as it appears in memory. The
number of bytes of OPUS in each sector is the maximum number of data bytes
per sector, minus one (normally 127).

2. Track @, Sector # holds the first block of OPUS. The sector number is
incremented by two for the next block. After the even numbered sectors
are full, Sector 1 will be specified, followed by the rest of the odd
sectors. After a track is full, the track number will increment by one
and the sector number starts over with Sector 4.

3. The first data byte of each sector is an end-of-file mark. It will be
1 (one) if more sectors follow or a @ (zero) if the sector is the last
sector of OPUS. The rest of the bytes of each sector contain OPUS code.

B4, The loader should read in each sector, check for a bad read (checksum),
shift the OPUS data bytes sequentially into memory, and finally check to
see if this sector is the last one. If not, it should increment the sec-
tor and/or track numbers and continue to read.

XVITI-15

MITS Altair Disc Loader: Octal

FaGE LOG LAREL

ODE MIMEMOMTT ERTETER

HEW LOADER FOR ALTATR DRIVES (EFFECTIVE 12512597 vkl

000 <L DA
001
G2
003
Q04
05
Q06

LxX Do DI

xR 2
oLy .

I + 8

177 12 S L.Ga
177 013

177 0L

¥-LOAT HEADRS AND GET TO TRACK 0%
V77 QLS MU fro
177 014

177 Q17

177 020

177 Q21

177 Q22

177 Q23 <L OADA
177 024

177 025

127 0248

177 027

1?7 030

177 031

177 QA2

177 0D33F

177 034

our L

MUl el

ikl STER

In : 8

AN Y

JNE LOSTA

Lxl Byd

177 036 D00
l 77 0 ’:' "" 4 l::‘ 8 ‘!,:.l

LET DD
177 047 aAn
¥-READ SECTOR AT TRACK Ry SECTOR e DUMF TO MEMORY AT DE-¥

177 043 L OATIE A M @
177 044 011
177 045 OF7
177 046
177 047
177 0%

177

FaGE

L.OC

053
0%4
Q5%
O%dH
057
Q460
061

062

0463
064
065
04é
0467
070
071
072
073
074
075
076
0?7
100
101
102
103
104
105
104
107
110

CLOADC:

¥-VERIFY FPREFIX-X

177
177
177
177
177
177

111
112
113
114

115

<L OADT:

LAREL

COE

271
302
043 @
177
Q0
205
325
333
010

':..) -y ..,:‘,

0632 @
177
333
012
022
023
000
05
312
111 @
177
055
333
012
022
023
302
062 @
177

XVII-17

NN
S

MU T

FLUSH
I

[l
M

M

STHX
TN
MOF
neE
S

DR
T

STaX
THX
SN

FOF
MOY
MOV
MO
CF T

SMZ

ITNX
MOy
CMF
AN

T
MOy
CiF

JE

R
........

MNEMONTL

RFSTETERE:

|
LOATIER

LOADE

: 10

I
0

L.
LOAD

L.
10

n
I
LOADC

H

I
£l
AM

« 195

LOADR

H
AM
C

H
M

Laln

FAGE 1.0OC LAREL. CODE MNEMONTC FAGE#! 3

177 137 171 MOV A
177 140 250 X B
177 141 aA76 CHP M
177 142 302 JNZ L.OAN
175 143 000 @

1?7 144 127

177 145 043 INX H
177 1446 305 FLSH B
177 147 10& MOy B
177 150 043 INX H
177 151 114 MOV M
1727 152 A05 FLSH B
177 153 101 MOV BC
177 154 ‘ 01L& Myl Co 127
177 153 1727

¥-SHIFT DOWN ONE RYTE & CALCULATE CHECKSUM-X

177 156 <L OADHE 043 INX H

1727 157 174 MOy AM
177 1&0 023 STAX I

177 161 023 TNX I

177 162 250 XRd 2

177 163 107 Moy BA
177 1464 DL DCE i

177 1465 X032 ANE LOADE
177 166 156 @

177 L&7 177

177 170 301 FOF &

177 171 270 CHF e

1727 172 312 JSZ LOATF
177 173 176 @

177 174 177

¥-CHECKSUM ERROR-X
177 175 148 HLT
¥-CHECK FOR END-QOF -F TLE~¥%

177 176 LLOADF 171 MOV AC
177 177 267 ORA A
177 200 312 JE END
177 201 244 @

1727 202 177

H-TNCREMENT SECTOR/TRACUK AND RETURN FOR MORE-¥

177 203 F01 FOF B

177 204 014 INR >

177 205 014 IHR C

177 2046 171 MOy A
177 207 A4 NN « 33
177 210 040

177 211 Xx2 A0 LOADE

XVII-18

FAGE 1LOC LABEL V COnE MNEMONIC FAGEE®: 4

............................ DABL 0s G0sa sere Sors Sedu sdes SUTS Sbes S0es 1000 Sast S40k 008 dbmr s aves ases sesa SRp—

177
177
177
177
177
177
177
177
177
177
177
177
177
177
177
177
177

043 @

177

016 MVI Cel
001

312 JZ L.OADR
043 @

177

015 DCR G

056 MU Lel
001

315 Call STEF
233 @

177

004 INR B

303 JME LUOADER
043 @

177

k¥ SURBROUTINE TO STEF ONE TRACK XXX

177 233 “STER X 333 IN +8
1727 234 010

177 235 ‘ 344 ANT 2
177 234 002

177 237 302 SNZ STEF
177 240 233 @

177 241 1727

177 242 175 MOV Al
177 243 3323 ouT 9
177 244 011

177 245 311 RET

¥xkxk LOAD COMPLETE- UNLOAD HEADS XXXXX

177 246 SENDC 074 MVI Ay . 128
177 247 200

177 250 3323 ouT 8

177 251 010

¥-INITIALIZE OFTIONAL FPORT-X

¥ THE FOLLOWING IS FOR MITS 2610, FORT 16 X

076 MVUI Ard
003

323 ouT + L&
0320

076 MUI fe 21
025

323 ouT +14
020

J03 JHP 0
000

000

177
177
177
177
177
177
177
177
177
177
177

XVII-19

MITS Altair Disc Loader: Hex

LAREL COE FMEMON L Franfatd

fhakk NEW LOADER FOR ALTAIR DRIVES (EFFECTIVE LR/10°77) bty
i 00 £LOADE 31 LXT Gl sl

F 01 o0 @

7 03 7K

o F

r

0% AF AT
4 (14 03 U i
Ho (% 0%

7F OR LU T

F-LOAD HEADS AND GET TO TRALDK O-¥%

7 on 3E MUT Aaa

I O 04

7F OF 10 ouT L9

7F 10 0%

7F 11 2 MUT L2

7F 12 02

7 13 “LOADA W CaLL STEP

(3 14 PR @

7 15 7

7F 16 02 M 5

7F 17 08

7F 18 0 ANI 44
19 40

7 14 o JNZLDADA

i 1R 1z

7 1 7F

7 10 01 LXT Be0

3 1E 00

TE 1F 00

I 20 11 LRI D0

7F 2 00

2 28 {0}
A-READ SECTOR AT TRACK B SECTOR O DUMP TO MEMORY AT DE-®

T .

LN T

S LOkS

2

FAGE LOC LAREL CODE MNEMONT PAGES

............ 4400 5005 aaes S350 Hebe 400e 4400 Ser SuvE emak Sers Bere S340 sers bere " ors srar amee rer ame sere srea voen sen o ere sse0 sere sure

FF 26 Be CME o

I 20 ' o2 W LOALE
FF 20 2F

FF 2F 7F

3 2F 2 MU loe s 1EZ
2 30 : 8%

7F X1 ne FUSH I

JF 32 <L OADCH Tif It » 8

FF 33 08

JF 34 17 Fil.

7F 5 Ty S0 LOADE
7F GE) X2

7F 37 ¥

JF 38 ' g I 10
7F X8 0A

7F A 12 STAX I

7F 3 13 INX n

F 3C Q0 N

JF 3N 20 neR L.

7F 3E Ca S L.OAann
7F AF 49 @

F 40 7F

7F 41 20 NCR .

ZF 42 ne In <10
7F 43 0n

7F 44 12 STax N

7F 45 13 INX It

7F 44 c2 SN LOSNC
FE 47 32 @

7F 48 7F

¥-UERIFY PREFIX-X

¥ 49 <L OALI: Bl PO H

7F 40 G4 MOV I+

7F 4R Sl MOV L.

7F 4C 7E MOV AM

yaa 41 FE CkI « 195

7F 4L v C3

7F 4F c2 JNZ LOADER
AF 50 23 @

7F 1 7F

7F G52 23 INX H

7F 53 7E MOV AM

¥ B4 R G G

7F H% .2 SNE L.OAnE

7F 58 : 23 INX H
7F 59 7E MOy AM
FF S B3 CHE B
7F HE G2 SNE LOANR
ZF GG 23 @

a S 23 TiNX H

FaGE 1L.0C LAREL. ‘ CODE MNEMON L FaGEg:

7F 5F 79 MOU Al
HE 60 A8 Xke B

7F 61 RE CHMF

F 42 £2 JHE O LDAT
7F &3 00 @

7F 44 7F

7F &% 23 INX H

7F 66 i FUSH

7F &7 46 MOU B

7F 58 23 INX M

7F 69 4E MOU M

7F &A 5 FUSH B

7F 61 41 MOY BO

7F 6T ‘ OF MUT O o127
7F 41 7F

¥-SHIFT DOWN ONE RYTE & CALCULATE CHECKSUM-X

7F &E “LOADE 23 INX H

F &F 7E MOV A

7F 70 12 STaX D

7F 71 13 INX I

7F 72 A XA I

7 73 47 MOy B

7F 74 on neR C

7F 75 22 SN LOADE
7F 74 &4E @

7F 77 7F

F 78 Ci FOF B

P 79 Ba CMFP B

7F 70 CA S LOADE
FF 7R 7E@

F G 7F

¥-CHECKSUM ERROR-X

7 70 76 HL.T

~G

7F 7E “LOADF = 79 MOV AC
7F 7F ®7 ORA A
7F 80 Ca Jz END
7F 81 Ab @

7F 23 7F

K- INCREMENT SECTOR/TRACK AND RETURN FOR MORE-%

¥ 83 o1 B B
a 84 00 Tk L
FF 845 0 TR £
7F B4 by Moy 1M
P a7 FE N 2 X3
7F 88 20

PF a9 JAF2) AU L

XVIiT-22

/‘ IZZ‘
7F
P
7F
7F
7
7F
7F
7F
7F
7F
7F
7F
7F
7F
TF

TF
ok

7F
TF
7F
7F
7F
7F
7F
7F
7F
7F
7F

*-INITIALIZE UPTIONQL FORT-%

*

7F
7F
7F
7F
7F
7F
7F
i
7F

e
s

26
BH
80
B
8E
8F
20
71
92
93
94
95
94
w7
98
99
90

¥ SURBROUTINE

THE

LAREL

TO STER

7R HTERP

9
E30
PE
9F
AO
a1
AR
A3
A4
A%

L.OAD COMPLETE-

4T SEND

A7
a8
(%

FOLLOWING

“f
AR
A
fall
Ak
ﬁ '22‘
BO
Rl
B3
B3
B4

s FOR

ONE. TRACK 30k

MITS

R
08

Eé

.....

UNLOAD HEADS XXk

3k
80
3
08

260 FORT 14

K4
O3
3

CONE

®

@

@

@

) 4

10 .

3E
15
03
10
03
00
00

XVII-23

MNEMOMTC

MU T
S

nCk

MYl

Call.

INE
JME

ANT

Moy
ouT

RET

MUI

ouT

el

LOSDE

l.el

STER

"
LOADR

+ 8

PN
ER=

STER

Al

e . 128

« 82

¢ l -f)

iCOM Disc Loader: Octal

FaGE LOC LAREL. CODE MNEMONIC

kxkk LOADER FOR ICOM DISC DRIVES kXX

1727 000 “L.OAD 061 1.XT SyL.OAD
177 001 000 @
127 0% 177

¥~ENARLE DRIVE O-X

177 003 <LOADA a . 076 MVUT Ay 129
177 004 201

177 005 315 catl LOOF
177 006 157 @

177 007 1727

177 010 076 MVI Ay 13
177 011 : 015

1727 012 315 cal.l. LOOF
177 013 157 @

1727 014 177

177 . 015 333 IN 192
177 016 300

177 017 344 AN « 32
177 020 040

177 021 302 JNZ L.OADA
177 022 003 @

177 023 177

177 024 001 LXT Byl
1727 025 001

177 026 000

177 027 041 o LXI HyO
177 030 000

177 031 000

¥-READ SECTOR AT TRACK Ry SECTOR Cy DUMP TO MEMORY AT HL-X

177 032 <L OADRE 171 MOV AL
177 033 323 ouT + 193
177 034 301

177 035 076 Myl fe e 33
177 036 Q41

177 037 315 oLl 1LOOF
177 040 : 157 @

177 041 177

1?27 042 076 MVl As3
177 043" 003

177 044 315 call. LOOF
177 045 157 @

177 046 177

177 047 333 IN « 192
177 050 300

177 051 344 ANT « 8
1?7 QU2 Q10 '

XVII-24

FAGES?

1

FaGE LOC : L.AREL CODRE MNEMONIC FaGER: 2
177 053 : 312 S LOADG

177 054 057 @

177 Q5% 177

¥-CRO ERRORT HALT-X
177 W) lé&é HLT
X-REAL BYTES INTO MEMORY-X

177 057 “L.OARCH 074 MUI fiy .64
1?27 0460 100

177 0&l i 323 QU + 192
177 042 300

177 063 333 IN « 192
177 064 300

177 0645 127 MOV Iy
177 06b6 034 MUT Ey 127
177 047 177

177 070 “E.OADD: 3135 Call. LOOFA
177 071 1461 @

177 D72 177

177 073 074 MVI Ay 65
177 074 : 101

177 075 I23 auT « 192
1727 074 300

177 077 X33 IN 122
177 100 ' 300

177 101 ' 147 MOV My
177 102 B I INX - M

177 103 035 NCR £

177 104 302 JNZ L.OADD
177 LOS 070 @

177 106 177

177 107 315 call. LOOPA
177 116 161 @

177 111 177

*¥-CHECK FOR END-QF ~F ILE-%

177 1
1727 1
177 i
177 1
177]

287 ORA A
312 JE ENT

2 173 MOy AL
i 173 1@

XK~ INCREMENT SECTOR BY TWO-X

177 117 014 Tk i
177 014 TNF 0
177 171 MO o
177 374 R el
i
177

177

G LOADR

LAREL

o6 aen besn dume ssus ases ese asee srva sers ne

¥-DELAY LOOF SUBROUTINE-X

177
177
177
177
177
177
177
177
177
177
177
177

*-0FUS LOADED?

- THE

177
177
177
177
177
177
177

177

157
160
161
162
163
1464
165
166
167
170
171

172

FOLLOWING

173
174
175
176
177
200
EANR
202

203

<L 00>

<L OOFA

<L O0OF R

OFTIONALLY INITIALIZE

SEND

CODE

1727
Qlé
002
12
N32
177
004
1720
323
301
074
021
315
157
177
074

011

323
300
227
333
300
333
300
037
332
1464
177
11

074
201
323
043
076
100
J23
043
07 b

@

2@

@

INTTIALIZATION FOR IMSAT

XVII-26

MNEMOMILC

OuUT

HUw
ouy
IN
AR
JC

RET

FORTS-X

510 LOW

MVI
Quy
MY I
QuT

MYl

15

‘ﬁB

:19E

e, 17

RIS

ﬁs--.«‘?

L.COF

el

LOADER

192

A

+ 192

« 192

LOOPR

FORT 32-%

Ay 129

« A5

iy s &4

EETEI Y

FaGE 1.00C LAREL

COLE MNEMONTC FaGER: 2

137 204 112

177 208 323 ouT + 3G
V77 206 043

127 207 076 MUl By 39
177 210 047

177 211 3323 Uy .t
1?7 212 043

177 213 257 KR A
177 214 3323 our o 34
177 215 042 .

177 214 303 JHE 0
177 217 000

177 220 i o110

XVII-27

iCOM Disc Loader: Hex

FAGE LOC LAREL COnE MMEMONTC SEATETER R

Kkkkk LOADER FOR ICOM DISC DRIVES sokkkk

7F 00 “LOAL: 31 LXI SsL0AT
7F 01 00 @
7F 02 7F

¥-ENARLE DRIVE O-X%

7F 03 “LOADAS - 3E MUT A lR9
7F 04 81

7F 0% Co CalLL LODOF
7F 06 6F @

7F 07 7F

7F 08 3 MUT Ar .13
7F 09 on

7F 0A o CALL LOOF
7F OR 6F @

7F oC 7F

7F ox 0 IN L1932
7F O o

7F OF Eé ANT .32
7F 10 20

7F 11 W JNZ O LDADA
7F 12 03 @

7F 13 7F

7F 14 01 LXI Byl
7F 15 01

7F 16 00

7F 17 21 LXI He0
7F 18 00

TF 19 00

¥-READ SECTOR AT TRACK By SECTOR Cr DUMF TO MEMORY AT HL-X

7F 1A CLOATERE 79 MOV A
7F 1R n3 ouT 193
7F 1C Gl

7F in JE MVUT Ay s 33
7F 1E 21

7F 1F cu Catl. LOOF
7F 20 &HF @

7F 21 7F

7F 22 JE MUI i3
7F 23 03

7F 24 oo Call. LOOF
7F 25 &F @

7F 26 7F

7F 27 e I 193
¥ 28 Lo

7F 29 Eé AN -8
7F 26 08

XVII-28

FAGE LOC

,? F?‘
i
7F

¥-CRC ERRORS

7F

¥--READ

7F
7F
7F
7F
7F
7F
7F
7F
7F
7E
-
oE
oE
-
7F
e
7F
7F
SE
7F
7F
7F
7F
7F
7F
l} F’
7F

¥-CHECK FOR ENI-QF ~F TLE-X

7F
7F
7F
7F
7F

¥ INCREMENT

7F
7F
7F
7F
7F
7F

2B
20
20

2E

2F
K.1¢)
31
32
33
34
35
26
37
38
39
3n
3R
3C
an
JE
IF
40
41
42
43
44
4%
44
47
48
49

4h
4%
4C
411
41

4 II.”
=0
a1
ad
53
54

R

SECTOR

LAREL

HAL.T %

INTO MEMORY %

<L OADC:

<LOADID:

BY TW(-%

CONE

CA
2F

7F

23
in
c2
38
7F
cn
71
¥

Qf:
00
79
FE
LE
2}
1

@

@

@

@

@

XVII-29

MMNEMONYC

S

HLT

MUI

our

MOV
MUIL

Cat.l.

MUT
ouY
IN

MOV
THX
neR
SN

cat.l.

MOw
OfRA
JZ

IR
TR
Mo
UM N

L.OSDC

iy . 64
192
192

i)e]

P

LOOFS

e &5
1932
192
MA
H

E
L.OAIM

LOOFA

ATl
A
MY

LOADER

FAGE® !

-y

FAGE LOC LAREL. COnE MNEMONTC EFCTELE R

7F 5 3
7F 57 OF MUL e
7F 58 oJe]

7F 59 CA N LOANE
7F 56 in @

7F 5R 7K

7F 50 04 MR B

7F 51 78 MO AR

7F SE 03 DUT L 1w3
7F 1o c1

7F 60 k{3 MUT Ao l7
7F 41 11

7F 42 - co CaLl LOOF
7F 63 &F @

7F 64 7F

7F 4% 3E MUL Ar.9
7F b6 09

7F &7 Co Call LoD
7F 68 bF @

7F 49 7F

7F b OF MUL Col
7F 4R 01

7F 4C C3 JHFO LOADE
7F 41 16 @

7F bE 7F

¥-DELAY LOOP SUBROUT INE-X

7F 6F £LOOF 3 ouUT L9
7F 70 o

7F 71 “LOOPAS 97 SUE A

7F 72 I3 ouT 192
7F 733 Co

7F 74 “LOOFE= I N 192
7F 7% Co

7F 76 1F KRR

i 77 1A Je LOOFE
7F 78 74 @

7F 79 | 7F

7F 78 Y RET

¥-0FUS LOADED?! OFTIONALLY INITIALIZE FORTS-X

¥-THE FOLLOWING INITIALIZATION FOR IMSAL SI0 LOW FORT 32-X

7F 7R ZEND 35 MUT Ay e 129
7F 70 81

7F 7T ik OUT 3%

7F 7E 2

7F 7F 3E MUT Ay b4
(i 80 40

7F 81 03 ouT 30

7F 82 ' 23

7F 83 3E MUT Ay .74

FaGE 1L.0C LAREL COnE MNEMOMNTC PaGESD 4

¥ 84 4f

paa 85 n3 (RNF « 20
FF 84 23

7F 87 3k MUT fre o 39
FF a8a 27

7F 89 3 OuY o X
- 7F 8n 23

7F Be aF XRA £
7F 8c I3 our L
7F gu 23

7F 51 o3 M i
7F 8F 00

7F 20 : Q0

XVII-31

Paper Tape Loader

Paper tapes of OPUS with the System Generation Routine will be received in
Intel Hex format. This loader assumes that format. The byte input routine in
the loader is for MITS SIOC teletype or Processor Technology 3P+S (serial)
interface boards. The port numbers are # and 1. This input routine may be
easily modified to reflect a different interface.

In Intel Hex format, OPUS is divided into blocks. Except for the first char-
acter of a block, all bytes are divided into two Hex characters. The high-
order four bits and the low-order four bits are the two characters. Each
character is converted to an ASCII character, # - 9 or 8 - F. If the initial
four bits represents a number less than 10, then U8 is added to produce ASCII
@ through 9; otherwise 55 is added to produce ASCII A through F. The high-
order character precedes the low-order character sequentially.

In each block, there are 9 header characters defining the following:

Character # Description
1 ":" Block initiator
2,3 Number of bytes in the block; this will be

when no more data is present
High-order starting location in memory
Low-order starting location in memory
Not used in OPUS dumps

o B p I =
O -1WU,

'
?
?

Following the header bytes is the number of specified data bytes of OPUS, each
byte represented by two Hex characters.

The last byte of the block (2 characters) is the checksum byte. This byte will
be the complement of the sum of all data bytes.

The loader sequentially reads the data, putting each data byte into the

correct location in memory. If a checksum error is detected, the computer will
halt. After all data is in, execution will be immediately sent to the start of
OPUS.

NOTE: It is important to note that only the OPUS with the System Generation
Routine will be in this format. If initialized OPUS is dumped on a
paper tape, the format will be identical to that listed under the cas-
sette section. It will be in straight Binary form.

XVII-32

Paper Tape Loader: Octal

FaGE 1L.0C LAREL CODE MMEMONIC FoGES: 1

¥kkkk LOADER FOR INTEL HEX FORMATTED FAFER TaPE oklook

177 000 «1.0A0x 061 .41 Sl Al
177 001 000 @
177 002 1727

*-WAIT FOR START OF BLOCK-X

177 003 <LOADA: : 315 Call. INP
177 004 131 @

177 005 177

177 004 374 CHY v
177 007 , 072

i77 010 302 JNZ LOADIA
177 011 003 @

177 013 1727

¥-GET BLOCK SIZE & CHECK FOR END-OQF-FILE-X

1727 013 315 Cal.l. DINF
177 014 Q72 @

1727 015 177

177 014 312 JZ END
177 017 061 @

177 020 177

¥-GET REST OF RLOCK PARAMETERS-X

177 021 127 MOou nA
177 022 315 Call. DINF
177 023 D72 @

177 024 177

177 025 147 MO My
177 024 , 1 Call. DINP
177 027 072 R

177 030 177

177 031 157 MOy [.A
177 032 315 CaLl. DINP
177 033 072 @

177 034 172

177 D3RG 004 MUl Ba)
177 034 OO0

K-READ IN DATA-X

177 037 L OADNR ILG CAall. DEMe
1F7 040 075

177 041
177 042
177 043
177 044

MO M
I H
AT O A

XVII-33

¥--GET

177
177
177
177
177
1727
177

L.OC

045
046
047
0G0

AN

Q%51
Qu2
053
054
095
054
Qa7

l.AREL.

COMFARE CHECKSUM-X

¥~CHECKSUM ERROR? HALT-%

177

¥-L.0AD COMPLETE?

177
177
177
1727
177
177
1727
177
177

Fopokokok

¥-INFUT DOURLE BYTEs CONVERT TO

177
177
177
1727
177
177

040

0641
0632
063
064
06%
066
067
070
071

SEND

SUBROUTINES dokskokxk

Q72
073
074
075
076
077
100
101
102
103
104
103
106
107
Lo
i1l
14
1

1

2
3
4

CRTNP

302
037 @
177
110

15
07 @
177
201
312
003 @
177

166

START EXECUTION-X

315
072 @
177
147
315
072 @
177
157
3351

BRINARY-X

B
131 @
177
315
115 @
177
007
007
007
007
137
B8
131 @
177
315
11% @
177
2073
311

XVII-34

MMNEMONTC

CALL

AT
JZ

HL.T

Al

MOV
call

MOV
FOHL.

(T
Call

RIL.C
LG
Ri.C
FLC
MO
CalLl.

Catl.

Al
RET

LOADE

oR

I L NFe

«
LOADA

DINF

HA
LINF

LA

TiMF

HEX

EdA
INF

HEX

FAGE !

sy

FAGE 100G LAREL CODE MNEMONTC FAGESR? 3

*-CONVERT HEX CHARACTER TO BINARY-X

177 115 SHEX X465 FUSH 8
177 11 200 AL R
177 117 107 MOV BA
177 120 341 PO 4
177 121 324 GSUL .48
127 122 040

177 123 376 Chy + 10
177 124 012

177 125 330 R

177 126 i 324 SUL o 7
177 127 007

177 130 K RET

P
154

~F o

¥-INFUT BYTEs LOW FORT O-X

177 131 L INF> 333 IN 0
177 132 000

177 133 017 RRC

177 134 332 JC INF
177 135 131 @

1727 136 1727

177 137 333 IN 1
177 140 001

177 141 344 ANT « 127
177 142 177

177 143 311 RET

XVIi-35

Paper Tape Loader: Hex

FAGE LOC LAREL CODE

MMEMONTC FatEs: 1

ook LOADER FOR INTEL HEX FORMATTED FAFER TAFE ok

7 00 £1L.OAL 31 LXI SeLOAD
7F 01 00 @
IF 02 7F

¥-WATIT FOR START OF BLOCK-X%

7F 03 “L.OADA ' cn Call. INP
7F 04 59 @

7F 05 7F

7F 0é FE CrI "t
7F 07 3A

ZF 08 C2 JNZ LOADA
7F 09 03 @

7F 0f ¥

¥-GET BLOCK SIZE & CHECK FOR END-QF-FILE-X

7F OR co Call. DINF
7F oC Ia @

7F 0N 7F

7F OF Ch JZ END
7F oF 3 e

7F 10 7F

¥-GET REST OF BLOCK FARAMETERS-X

7F 11 57 MOy DA
7F 12 co CALL DINP
7F 13 3 @

7F 14 7F

7F 15 &7 MOV HA
7F 16 v co Call. DINF
7F 17 In @

7F 18 7F

7F 19 &F MOY LA
7F 1A oo CALL DINP
¥ e X @

7F 10 7F

7F 1 04 MU Yad
7F 1E 00

X~READ IN DATA-X

¥ 1F CLOADE: oo CaLl DIMF
7F 20 In 2

7F 21 7F

7F a8 77 MOy MA
7F 23 23 INX H

7F 24 15 neE A

XVII-36

FaGE LOG LAEEL CODE MMNEMONITT Py 2

7F 25 2 JNZ LDADE
7F 24 Foe

I 27 7F

P 28 48 MOU CR

F-GET AND COMPARE CHECKSUM-%

7F 29 Co CALL DINF
7F 20 TR

TF 2 - 7F

7F 20 81 ALD O

7F 20 Ca JZ o LDana
7F 2E : 03 @

7F 2F 7F

K-DHECKSUM ERRORS HALT-X
7F 30 74 HLT
X-LOAD COMPLETE?! START EXECUTION-¥

7F 31 wENDE cn Call. DINP
7F 32 3 @

7F 33 ¥

JF 34 &7 MOV HA
E 35 _ (Y CALL DINF
7F 3é In @

I 37 77

7F 38 &F MOY L.A
7F X9 £ FLHL

Kook SUBROUTINES d0kkkKX

¥-TNPUT DOURBLE BYTEs CONVERT TO BINARY-X

7F 34 DTN oo Ccakl. TN
7F 3B A

7F AC ' 7F

7F A Co CAlL HEX
7F 3E 4N @

TF 3F . 7F

PF 40 07 Rl C

PF 41 07 RL.C

7F 43 07 RL.C

CFF 4% 07 Rl

7F 44 s13 MOV EA
7F 4% Lo cakl. INF
7F 4 59 @

7F 47 7F

PE 48 GO Call HEX
7F 4% 40 @

TF A 7F

PF A% 83 an E
7F AL 0y RET

XVII-37

L.AREL. CODE MNEMONIC PAGE®: 32

¥-CONVERT HEX CHARACTER TO BINARY-X

7F 41 SHEX > F FUSH
7F 4 80 AL F
7F 4F 47 MOV RA
7F 50 Fl FOF 8§
7F 51 ué SUI .48
7F 52 30

7F 53 FE CPI 10
7F 54 0A

7F 55 08 RE

7F 5 . né sUL .7
7F 57 07

7F 58 Cy RET

T L2

X-INFUT BYTEy LOW FORT O-X%

7F 59 S INF 0 IN 0
7F 5A 00

7F 5 H OF RRC
7F 50 A Je
7F 51 59 @

7F SE 7F

7F 5 g IN 1

7F 60 01

7F 61 . Eé ANI 127
7F 62 7F

7F 63 Cy RET

INE

XVITI-38

Cassette Loader

OPUS dumps on cassettes will be for MITS ACR interfaces. Ports 6 and 7 are
assumed. These may be easily changed in the loader.

OPUS is dumped on cassettes in blocks of data. FEach block consists of 137
Binary bytes. The first byte is a checksum byte: the sum of all data bytes
in the block with bits 6 and 7 forced high (ORed with 3@@ Octal). This check-
sum byte will be a zero when there is no more data to load. The remaining

136 data bytes are Binary OPUS code.

There will be a leader of at least 188 null bytes (@) at the beginning and
at the end of the tape.

The first non-zero byte on the tape will be a 255 to designate the start of

the file. The first block immediately follows. Blocks are dumped sequentially,
i.e., the first block contains the first 136 bytes of OPUS, the second block
contains the next 136 bytes, etec.

After loading all data, this loader will initialize a port for the MITS 2SI0O
board and immediately begin execution of OPUS. This may be modified.

NOTE: When dumping initialized OPUS in the System Generation Routine, if a
serial device is specified, the above format describes the manner in
which OPUS will be dumped. This includes paper tapes, terminals,
cassettes, etc.

XVIT-39

FeGE

AKX

177
177
127
177
177
177
177
1727

¥-WAIT

177
177
177
177
177
177
177

*-REAX

177
177
177
177
177
177
177
177
177
177
177

*-READ

177
177
177
177
177
177
177
177
177
177
177

Cassette Loader:

Octal

LAREL COnE

LOABER FOR MITS CASSETTE kXXX

000 <L OAD: 333
001 007
002 061
003 000 @
Q04 177
008 041
006 : 000
007 000

FOR START-—-%

010 <L OADAL 315
011 0%h4 @
012 177
013 267
014 312
013 010 @
016 177

CHECKSUMy CHECK FOR END-~X

017 L OALERE 3145
020 054 @
021 177
22 267
Q21 12
024 065 @
Q25 1727
026 107
027 021
030 210
031 ' D00

BLOCK OF 1346 RBRYTES-X

032 CLOADC:
033
034
DR
03&
037
040
041
043
043
044

ARE CHECKSLUM %

XVII-40

MNEMONIC

I

LXT

l.x1

Al

ORA
JSZ

Cal.lL.

ORA

JE

MOV
A

CAlLL

MOy
T
AN
MO
[
HHE

oy
¢/

&y l.0a0

He

INF

i
LOADNA

INF

END

o

INF

MA

H

n

AT

£
L.OAD

FOGEST

FAGE 1L.OG ' L.AREL CODE MNEMONIC SFSTET

177 04% -
177 044
177 047
177 050
177 0%1

177 052

ORI s 192

C4F |2
2 S LOADE
@

177 053 Laé HILLT
¥-GURROUTINE TO INFUT BYTE-X

177 054 S INF X33 In -
177 053 004

177 0546
177 047 X332 G INF
177 0460 054 @

177 061 127

177 &2 333 IN o7
177 063 007

177 064 : 311 RET

$-LOAD COMPLETE? INITIALIZE PORT IF NECESSARY-X

X-MITS 2810 PORT INITIALIZEI-X

1727 Q&5 NI 076 MUI fro. 3
177 Qo646 003

77 047 323 QuT 14
177 070 ' 020

177 071 074 MUl fe .21
177 Q72 025

177 073 323 QuT + 14
177 074 0320

177 Q7% 303 JME 0
177 074 g Q00

177 077 ' 000

XVIT-41

Cassette Loader:

Hex

FAGE LOC L.AREL.

¥kkxkx LOADER FOR MITS CASSETTE

7F 00 SLOAI
7F 01
7F 02
7F 03
7F 04
7F 05
7F 06
7F 07

X-WaAIT FOR START-X

7F 08 <L OATNA
7F 09
7F 0A
7F OR
7F oc
7F Ol
F OF

¥-READ CHECKSUMy CHECK FOR END-X

7F OF £LOADE:
7F 10
7F 11
7F 12
7F 13
i 14
7F 1%
7F 16
7F 17
7F 18
7F 19

¥-READ ELOCK OF 136 BYTES-X

7F 1A “LOADCS
7F 1E
7F 1c
7F 10
7F 1E
7F iF
7F 20
7F 21
7F 22
7F 23
7F 24

K-COMPARE CHECKSUM-X

CODE

HOKHK K

DE
07
31
00
?F
21
00
00

ch

20

7E

R7
CA
08
7F

co
20
7F
E7
ca

15

7F
47
11
88
00

@

@

@

@

XVIT-42

IN

L.XT

LXT

Call

OFRA
J

CALL

ORA
2

MOy
L.XI

CALL

MOw
INX
AL
MOV
LR
ANZ

MNEMONIC

vy

G.1.0A0

FeQ

INF

A
END

EA
D!algé

INF

MaA
H
1
DA
£

L.OADC

FAGE

7F
7F
7F
oE
IF
7F

25
26
27
28
29
2A

1.0C

LABEL

¥~-CHECKSUM ERROR-X

7F

2K

¥-SURROUTINE TO INFUT BYTE~X

7F
7F
7F
7F
7F
7F
7F
7F
7F

¥-LOAD

*ﬁMITS 2510 PORT INITIALIZED-X

7F
7

‘ 7F

I
4
7F
7F
7F
7F
7F
7F

2C
20
2E

2F

30
31

32

33

34

COMFLETE?

35

36
37
38

39
- 34

ES

3R

3C

- 3D

3E
3F

S INP

“END

INITIALIZE FORT IF

CODE

Fé&
Co
Brg
Ca
oF @
7F

76

20 e

3E
03
n3
10
BE
15
03
10

00
00

XVII-43

ORI

CMF

JZ

HL.T

IN
RRC
JC
IN

RET

NECESSARY~X

MYI
ouT
MUT
ouT

JMF

MNEMONIC

192

R
LOALDR

vb
INF

o7

Ar.3
16
Ay 2l
.ié

0

P

)

C. DISC & FILE FORMAT
The format of discs operating under all A.S.I. software will vary according
to the particular drive being implemented.

The following parameter values are stored in a table in all operating system
software, defining the format of the particular disc:

Value Description Formula #
NB Number of data bytes per sector
NS Number of sectors per track
NT Number of tracks per disc
SP Number of sectors in disc parameter table (n
SD Number of sectors in directory (2)
35 Number of data sectors per disc (3)
BP Size of disc parameter table ' ()
BF Size of sector-free table (5)
BD Size of directory-free table (6)
DB Number of bytes per directory logical record (7)
DR Number of directory records per sector (8)
DD Number of directory records (9)
Formulas for Value Calculation Formula #
1. SS = (NT -1) ¥ yNs (3)
BF = INT ((SS - 1) / 8) + 1 (5)
DB = Minimum 17 : 7
DR = INT (NB / DB) (8)
SP = INT ((BF - 1) / NB) + 1 (n
2. X = SP ¥ NB
SD = NS - SP (2)
DD = SD ¥ DR (9)
BD = INT ((DD - 1) / 8) + 1 (6)
BP = BF + BD + 8 (4)

3. IFBP>X: SP =SSP + 1; GO TO STEP 2.

Table Descripiions

A. Disc Parameter Table

Three buffers constitute the disc parameter table, which resides both on
disc and in memory during operating system execution.

They sequentially follow each other on the disc, overlapping sector boun-

XVIT-44

daries, in the following order:

1. Sector-Free Table

The sector-free table keeps the status of all data sectors on the
disc, enabling the operating system to find free sectors for data and
to return full sectors to free status.

Each data sector on the disc requires one bit in this table with the
value:

@: Sector empty (available for data)
1t Sector full (in use by some file)

The location of any data sector (Track T, Sector S) in this table
may be calculated as:

POS = (T -1) ¥ NS + S
BYTE = INT (POS / 8)
BIT = POS - BYTE ¥ 8

2. Directory-Free Table

The directory-free table keeps the status of all directory records,
enabling the operating system to find a free record quickly for a
new file name or to return a record to free status.

Each directory logical record (see definition below) requires one
bit in this table with the value:

@: Directory
1: Directory

The location of a
this table may be

record empty
record full

directory record (Sector S, Logical Record L) in
calculated as:

POS = (S - SP) ¥* DR + L
BYTE = INT (POS / 8)
BIT = POS - BYTE ¥ 8

3. Disc Tag

The disc tag (identification label of any ASCII character string not
exceeding a length of 7 bytes) follows the directory-free table.

The disc tag buffer requires 8 bytes.

B. Directorz

Every program or file stored on the disc requires one directory record in
the directory to store such data as the name, file type, and location of
the file. The parameters in the record depend solely on the type of file.

XVIT-45

Each record requires a minimum of 17 bytes.
NB, this number may be maximized to distribute wasted bytes throughout
the records in a sector, possibly allowing room for additional file para-

meters.

Depending upon the value of

The following tables describe the lay-out of the directory record:

Byte Description

0-6 File name (ASCII character string)

7 File type (ASCII character; see below)

8-16 File parameters (see below)

Type Description Byte Description

$ ASCITI sequential data file 8 Starting sector
9 Starting track
10-11 Number of bytes in file
12-13 Number cof sectors in file
14-16 Not used

B ASCII back-up data file 8 Starting sector
9 Starting track
10-11 Number of bytes in file
12-13 Number of sectors in file
14-16 Not used

R Relocatable assembly program 8 Starting sector: machine code
9 Starting track: machine code
10-11 Number of bytes: machine code
12 Starting sector: label table
13 Starting track: label table
14-15 Number of bytes: label table
16 Not used

@ Batch ASCII output file 8 Starting sector
9 Starting track
10-11 Number of bytes
12-13 Number of sectors
14-16 Not used

S OPUS source program 8 Starting sector
9 Starting track
10-11 Number of bytes
12-13 Number of sectors
1h-16 Not used

0 OPUS object program 8 Starting sector
9 Starting track
10~11 Number of bytes
12-13 Number of sectors
14-16 Not used

XVII-46

Type Description Byte Description

F

D

OPUS random data file 8 Starting sector: data map
9 Starting track: data map
10-11 Maximum # of logical records
12-15 Not used

16 # of logical records per
sector
OPUS random dimensioned data 8 Starting sector: data map
file 9 Starting track: data map
10 Max. value of highest dim.
11
12
13
14
15 Max. value of lowest dim.
16 # of logical records per
sector

If other file types are specified, they will normally be sequential files
with the same parameters as type $.

Data Sectors

The rest of the disc is available for data, including all programs and
data files. These may be broken down into two file types:

1.

Sequential Files

Sequential files must be accessed sequentially through each data sec-
tor. Data sectors may reside anywhere on the disc and are linked by
means of a pointer.

The first two bytes of all sequential files are reserved and indi-
cate the following:

Byte #: Sector number of next record in the file
Byte 1: Track number of next record in the file

The last sector of the file has both bytes = #. The remaining bytes
of a sector are available for data.

Random Files

Any data logical record in a random file may be accessed with a maxi-
mum of two disc reads.

Random files are broken down into two sections:

a. Data Map

The data map contains pointers to all data sectors in the file.

XVIT-=47

The sectors of the map are contiguous, the size being determined
by both the number of logical records per sector (LR) and the maxi-
mum number of logical records (MAX) in the file.

SIZE = INT ((INT ((MAX - 1) / LR)) / NB / 2) - 1

Each sector of the map contains (NB/2) number of logical records,
each logical record consisting of 2 bytes:

Byte #: Sector number of data sector
Byte 1: Track number of data sector

Given a file logical record, L, the data sector may be found in the
map:

DS = INT ((L - 1) / LR) Data sector position
DL = L - DS ¥ LR LR in data sector
MS = INT (DS / NB / 2) Map sector position
ML = DS - MS # NB / 2 LR in map sector

Data Sector

Each sector of data may contain 1 or more logical records, depending
upon user specifications. Each logical record contains any data,
and is terminated by either a null byte (#) should the data require
less than the reserved number of bytes, or a software-determined
boundary should the data require the exact number of reserved bytes.

Data sectors are not contiguous and may reside anywhere on the disc
in any order.

Disc Lay-Out

Track

Sector Description

- |

@ through SP-1 Disc parameter table
SP through NS-1 Directory

through NT-1 @ through NS-1 Data sectors

KVIT-48

D. STATEMENT TABLE

?he.table on the following pages gives a brief description and the character-
istics of every statement available in OPUS, These definitions describe the
table categories:

NO: Statement Number. This number is returned when a statement is read
during a SCAN statement.

STMNT: Statement. Statements must be used exactly as they are shown in
this column.

NAME: Statement Name Unabbreviated.

DESCRIPTION: Description of the statement operation.

STMNT TYPE: Type of operation:

C: Command 0: Operator
F: Function S: Statement (unclassified)
EXEC MODE: Execution mode in which the statement may be implemented:

C: During command mode only
P: 1In a program only
E: Either during command mode or in a progranm

ARG FORMAT: Argument format:

i:

5

o=zX e

ARG REQ:
S
n-n.

Ne

ARG RET:

The argument(s) will be converted to a number prior to
operation

The argument(s) will be converted to a string prior to
operation

Any type of argument (number, string or matrix) allowed

Either a number or string allowed as the argument value

The argument must be a matrix variable

No arguments are used

Ordered mixture of argument formats, structured according to the
operation

Number of arguments required by the statement:

The statement uses exactly this number of arguments

The first is the minimum number and the second the maximum
number of arguments

This is the minimum number; there is no maximum number of argu-
ments (the statement uses all operands in the operand table)

Number of arguments returned to the operand table by the
operation

PRIOR: The priority value determining the order of execution. Larger
numbers connote a higher priority than smaller numbers and will be execut-
ed first should there be a mixture of statements in an expression.

Asterisks

(*) appearing in any of the categories indicate that the statement is

non-executable, i.e., it does not exist in the object code, but only in source code.

XVIT-149

0G-I1IAX

o 1 O J1 = w = O

Ne

10

12
13
14
15
16
17
18
19
20

22
23
24
25

STMNT EXEC ARG

ARG # ARG

STMNT NAME DESCRIPTION TYPE MODE FORMAT REQ RET PRIOR
ASSIGN ASSIGN ASSIGN A FILE NUMBER TO A DISC FILE C E 0 2-3 0 2
BRK BReak ENABLE/DISABLE INTERRUPTS FROM THE INPUT DEVICE C E # 1 0 2
CoM COMpile COMPILE SOURCE CODE TO OBJECT CODE C C 0-1 0 2
CONT CONTinue DETERMINE THE END OF A WHILE...CONT LOOP C E 0 0 2
CSAVE Compiled SAVE DUMP AN OBJECT PROGRAM TO A PERIPHERAL DEVICE C E 0 1-2 0 2
DEL DELete DELETE A SPECIFIED SECTION OF A SOURCE PROGRAM C E # 1-2 0 2
DIM DIMension DETERMINE MATRIX VARIABLE; ALLOCATE BUFFER C E M 1 0 2
EFTLE End of FILE DECLARE IF END-OF-FILE I8 TO BE PROGRAM CONTROLLED C E i 2 0 2
ELSE ELSE EXECUTE A BLOCK OF CODE IF A FALSE CONDITION EXISTS C E N 0 0 2
END END TERMINATE PROGRAM EXECUTION C E N 0 0 2
GET GET LOAD A SOURCE PROGRAM FROM A PERIPHERAL DEVICE C E 0 1-2 0 2
GOSUB GO SUBroutine CALL A SUBROUTINE IN THE PROGRAM C E $ 1 0 2
GOTO GO TO EXECUTE AN UNCONDITIONAL JUMP TO A PROGRAM LOCATION C ' E $ 1 0 2
IF IF EXECUTE A BLOCK OF CODE IF A TRUE CONDITION EXISTS C E # 1 0 2
IN INput DECLARE THE INPUT DEVICE C E # 1 0 2
INPUT INPUT REQUEST DATA INPUT FROM A PERIPHERAL DEVICE C E 0 1- Q 2
KILL KILL PURGE A PROGRAM OR FILE FROM THE DISC C E 0 1-2 0 2
LIB LIBrary LIST DISC LIBRARY OF FILES AND PROGRAMS C E # 0-2 0 2
LIN LINe GENERATE LINE FEEDS TO THE OUTPUT DEVICE C E # 1-2 0 2
LIST LIST LIST A SOURCE PROGRAM TO AN OUTPUT DEVICE C E # 0-5 0 2
LOAD LOAD LOAD AN OBJECT PROGRAM FROM A PERIPHERAL DEVICE C E 0 1-2 0 2
LOOP LOOP EXECUTE A SECTION OF CODE A SPECIFIED NUMBER OF C E 0 2 0 2
TIMES
NEW NEW CLEAR PROGRAM AREA C C $ 0-1 0 2
NEXT NEXT DECLARE THE END OF A LOOP OPERATION C E # 0-1 O 2
ON ON EXECUTE A SPECIFIC BLOCK ¢ CODE C E # 1 0 2
OPEN OPEN CREATE A4 DATA FILE ON IHE DISC C E 0 3-4 0 2

LG=TIAX

28
29
30
31
32
33
34
35

37
38
39

40
41
42
43
iy
15
u6
b7
48
49
50

STMNT EXEC ARG

ARG # ARG

STMNT NAME DESCRIPTION TYPE MODE FORMAT REQ RET PRIOR
OouT OUTput DECLARE THE OUTPUT DEVICE C E # 1 0 2
PF Print Formatted GENERATE DATA TO AN OUTPUT DEVICE IN FORMATTED C E 0 1- 0 2
FIELDS
PRINT PRINT GENERATE DATA TO AN OUTPUT DEVICE C E 0 0~ 0 2
PURGE PURGE DELETE ALL DATA IN A DISC FILE LOGICAL RECORD C E # 2 0 2
READ READ READ DATA FROM A DISC FILE C E 0 3= 0 2
REN RENumber RENUMBER THE LINES OF A SOURCE PROGRAM C E # 0-4 0 2
RETURN RETURN EXIT FROM A SUBROUTINE TO THE MAIN PROZRAM C E N 0 0 2
RUN RUN START EXECUTION OF AN OBJECT PROGRAM C | C N 0 0 2
SAVE SAVE DbUMP A SOURCE PROGRAM TO A PERIPHERAL DEVICE C E 0 1-2 0 2
SCAN SCAN READ DATA CONTAINED IN THE PROGRAM C E 0 1- 0 2
SPA - SPAce GENERATE SPACES TO THE OUTPUT DEVICE C» E ## 1 0 2
STUFF STUFF WRITE A BYTE INTO A MEMORY LOCATION C E # 2 0 2
THEN THEN SPECIFY ARGUMENTS FOR ANOTHER OPERATION C E E 0= 0- 2
TO TO DETERMINE MAXIMUM NUMBER OF LOOPS IN A LOOP C E # 1 0 2
OPERATION
WHILE WHILE EXECUTE A SECTION OF CODE WHILE A CONDITION IS TRUE C E # 1 0 2
WRITE WRITE WRITE DATA ON A DISC FILE C E 0 3= 0 2
ABS ABSolute DETERMINE THE ABSOLUTE VALUE OF THE ARGUMENT F E it 1 1 12
ASC ASCii DETERMINE THE ASCII CHARACTER OF THE ARGUMENT F E # 1 1 12
ATN ArcTaNgent DETERMINE THE ARCTANGENT OF THE ARGUMENT F E # 1 1 12
Cos COSine DETERMINE THE COSINE OF AN ANGLE F E # 1 1 12
DATE DATE DETERMINE THE CURRENT DAY, MONTH, OR YEAR F E # 1 1 12
EOF End Of File DETERMINE IF AN END-OF-FILE HAS BEEN REACHED F E # 1 1 12
EXP EXPcnent DETERMINE EXPONENTIAL E RAISED TO A POWER F E #] 1 12
FETCH FETCH RETRIEVE THE CONTENTS OF A MEMORY LOCATION F E i 1 1 12
FILE FILE DETERMINE SPECIFICATIONS ABOUT A DISC FILE F # 2 1 12

]

24-TIAX

71
72

STMNT EXEC ARG # ARG # ARG

STMNT NAME DESCRIPTION TYPE MODE FORMAT REQ RET PRIOR
LEN LENgth DETERMINE THE NUMBER OF CHARACTERS IN THE ARGUMENT F E $ 1 1 12
L.0G LOGarithm DETERMINE THE NATURAL LOGARITHM OF THE ARGUMENT F E # 1 1 12
NONE NONE DETERMINE IF DATA ENTERED DURING PRIOR INPUT F E N 0 1 13
NOT NOT LOGICALLY NEGATE THE ARGUMENT F E # 1 1 12
NUM NUMber DETERMINE THE NUMBER FORMAT OF THE ARGUMENT F E # 1 1 12
RND RaNDom DETERMINE A RANDOM NUMBER BETWEEN O AND 1 F E N 0 1 12
SGN SiGN DETERMINE THE SIGN OF A NUMBER F E # 1 1 12
SIN SINe DETERMINE THE SINE OF AN ANGLE F - E # 1 1 12
SQR SQuare Root DETERMINE THE SQUARE ROOT OF A NUMBER F E # 1 1 12
STR STRing DETERMINE THE STRING FORMAT OF THE ARGUMENT F E $ 1 1 12
TAN TANgent DETERMINE THE TANGENT OF AN ANGLE F E # 1 1 12
TRU TRUncate TRUNCATE A NUMBER TO AN INTEGER F E # 1 1 12
it # 'DETERMINE WHETHER OR NOT TWO EXPRESSIONS ARE EQUAL 0 E 2 1 8

& CONCATENATE TWO STRINGS 0 E $ 2 1 9
* MULTIPLY TWO NUMBERS 0 E # 2 1 10
+ + ADD TWO NUMBERS 0 E # 2 1 9
- - NEGATE THE ARGUMENT 0 E # 1 1 12
- - SUBTRACT TWO NUMBERS 0 E # 2 1 9
/ / DIVIDE TwWO NUMBERS 0 E # 2 1 10
<= <= DETERMINE IF ONE EXPRESSION IS LESS THAN OR EQUAL 0 E E 2 1 8

TO ANOTHER

= = ASSIGN A VALUE TO A VARIABLE 0 0 2 1
>= >-= DETERMINE IF ONE EXPRESSION IS GREATER THAN OR 0 E E 2 1

EQUAL TO ANOTHER

€G-1TAX

STMNT EXEC ARG # ARG # ARG
STMNT NAME DESCRIPTION TYPE MODE FORMAT REQ RET PRIGR
AND AND DETERMINE IF TWO EXPRESSIONS ARE BOTH TRUE 0 E # 2 1 7
1S IS DETERMINE TF ONE EXPRESSION IS THE SAME AS ANOTHER 0 E E 2 1 8
MAX MAXimum DETERMINE WHICH EXPRESSION HAS THE GREATER VALUE 0 E # 2 1 8
MIN MINimum DETERMINE WHICH EXPRESSION HAS THE LESSER VALUE 0 E # 2 1 8
OR OR DETERMINE IF ONE EXPRESSION HAS A TRUE VALUE 0 E # 2 1 6
1 t RAISE ONE NUMBER TO THE POWER OF ANOTHER 0 E # 2 1 11
SUBSTRING/MATRIX LEFT DELIMITER ST * % * 0
)) SUBSTRING/MATRIX RIGHT DELIMITER SR * * % 1
: : LIST OR OPERATION DELIMITER s % * * * y
LIST DELIMITER WITHIN AN OPERATION S E E 1-2 0 y
; ; STATEMENT DELIMITER; CLEARS OPERAND TABLE S E A 0- 0 1
REM REMark ALLOW ENTRY OF A COMMENT IN THE SOURCE PROGRAM s % * * * 2
[[LEFT HAND DELIMITER OF A BLOCK OF CODE S E N 0 0 1
\ \ DELIMIT BLOCKS OF CODE S E N 0 0 4
]] RIGHT HAND DELIMITER OF A BLOCK OF CODE S E N 0 0 1
z ! MATRIX ELEMENT REFERENCE F E 0 2- 1 15
$ $ SUBSTRING REFERENCE F E 0 2-3 1 15
< < DETERMINE IF ONE EXPRESSION IS LESS THAN ANOTHER 0 E 2 1 8
> > DETERMINE IF ONE EXPRESSION IS GREATER THAN ANOTHER 0 E E 2 1 8
SET SET DECLARE BUFFER SIZES & SET PRECISION C E # 2 0 2
BYE BYE TERMINATE OPUS/ONE c' E N 0 0 2
CLOSE CLOSE CLOSE A DISC FILE C E # 0-1 0 2
DISC DISC DECLARE AND ENABLE A DISC DRIVE C E E 1 0 2

7SG-IIAX

NO

97

98

99
100
101
102
103
104
105
106
107
108
109
110

12
113
114
115
116
117
118
119
120

STMNT EXEC ARG # ARG # ARG
STMNT NAME DESCRIPTION TYPE MODE FORMAT REQ RET PRIOR
ERR ERRor DECLARE ERROR SUBROUTINE C E $ 1 0 2
DATA DATA FILL MATRIX IMMEDIATELY WITH DATA C E M 2= 0 2
GLOBAL GLOBAL DECLARE GLOBAL VARIABLES C E 0 2- 0 2
CALL . CALL CALL AN EXTERNAL SUBROUTINE C E 0 1= 0 13
@ @ CALL AN EXTERNAL FUNCTION F E 0 1= 0- 13
EXT EXTernal DECLARE AN EXTERNAL SUBROUTINE C E 0 1-2 0 2
SuUB SUBroutine SPECIFY START OF AN EXTERNAL SUBROUTINE C P 0 2~ 0 2
RET RETurn RETURN FROM AN EXTERNAL SUBROUTINE C E N 0 0 2
POP POP REMOVE BLOCKS FROM THE FUNCTION STACK C E 0 1-2 0 2
? ? GET STATEMENT NUMBER OF LAST ERROR F E N 0 1 12
HANG HANG HANG A DATA FILE UNTIL FREE C E # 2 0 2
SEQ SEQuential GET NEXT FULL LOGICAL RECORD F E # 2 1 3
REC RECord INCREMENT LOGICAL RECORD F E # 2 1 3
TIME TIME GET THE TIME F E # 1 1 12
SEEK SEEK SEARCH STRING FOR MATCHING SUBSTRING F E $ 2 1 3
OLAY OverLAY SET UP AN OVERLAY BUFFER C E # 1 0 2
DUMP DUMP DUMP AN OBJECT PROGRAM TO A DEVICE C E 0 1-2 0 2
ESEQ ESEQuential GET NEXT EMPTY LOGICAL RECORD F E ## 2 1 3
MCALL Machine CALL CALL A MACHINE CODE SUBROUTINE C E E 1-3 0 2
TAG TAG DECLARE OR GET DISC TAG C E # 2 0-1 3
SWAP SWAP SWAP OUT A DISKETTE C E # 1 0 2
TRACE TRACE TRACE PROGRAM EXECUTION C l E # 1 0 2
BIN Byte IN INPUT A BYTE FROM A DEVICE C E A 1- 0 2
BOUT Byte OUT OUTPUT A BYTE TO A DEVICE C E A 1~ 0 2

E. ASCII TABLE

ASCII DEC O0OCT HEX CTL ASCII DEC 0OCT HEX ASCIT DEC OCT HEX

NUL @¢@ o9 290 + gu3 @53 2B v @86 126 56
SOH 981 @21 21 A , pLy gsL 2C W @87 127 57
STX @92 @92 @2 B - gus5 @55 2D X. 988 138 58
ETX @993 283 23 o . gu6 @56 2E Y 289 131 59
EOT @¢g4 gg4 ou D / gu7 @57 2F y4 9@ 132 5A
ENQ @@5 @95 @5 E 2 gu8 p@6@ 39 [#91 133 5B
ACK @¢g6 @@g6 @6 F 1 gug @61 31 \ @92 134 s5C
BEL @87 @7 @7 G’ 2 . @g58 @62 32] @93 135 5D
BS g28 @19 @8 H 3 g51 @63 33 4 @94 136 SE
HT 209 @11 @9 I 4 @52 @64 34 _ @95 137 SF
LF 219 @12 @A J 5 @53 @65 35 v @96 148 60
VT @11 @13 @B K 6 @54 @66 36 a 297 141 61
FF @12 @14 gcC L 7 @55 @67 37 b @98 142 62
CR 213 @15 @D M 8 856 @79 38 c @99 143 63
S@ @14 @16 QE N 9 @57 @71 39 d 19¢ 144 64
S1 #15 @17 @F 0 : @58 @72 3A e 181 145 65
DLE @16 @20 10 p ; 259 @73 3B f 192 146 66
DC1 @17 @21 11 Q < g6@ @74 3C g 193 147 67
DC2 @18 @22 12 R = @61 @75 3D h 184 156 68
DC3 @19 @23 13 S > @62 @76 3E i 195 151 69
DCh g20 @24 14 T ? @63 @77 3F j 186 152 64
NAK @21 @25 15 U @ g6l 19@ ug K 197 153 6B
SYN @22 @26 16 v A @65 181 U1 1 198 154 6C
ETB @23 @27 17 W B @66 182 42 m 199 155 6D
CAN @24 @3¢ 18 X C @67 183 43 n 118 156 6E
EM @25 @31 19 Y D @68 1g4 4y o 111 157 6F
SUB @26 @32 1A yA E 269 195 U5 p 112 1698 79
ESC @27 @33 1B F @78 186 U6 q 113 161 T1
FS g28 @34 1C G 271 187 47 r 114 162 72
GS 29 @35 1D H @72 119 48 s 115 163 73
RS @39 @36 1E I @73 111 U9 t 116 164 T4
Us $31 @37 1IF J g74 112 LA u 117 165 75
SPA 932 gup 20 K 275 113 4B v 118 166 76
! @33 @41 21 L g76 114 U4cC W 119 167 77
" @34 gu2 22 M @77 115 4p X 120 179 78
@35 @gu3 23 N @78 116 4B y 121 171 79
$ @36 @44 24 0 @279 117 UF z 122 172 7A
% @37 @45 25 P P88 120 50 § 123 173 1B
& @38 @u6 26 Q g81 121 51 | 124 174 TC
' @39 @4t 27 R g82 122 52 3 125 175 7D
(gup @5@ 28 S @83 123 53 ~ 126 176 TE
) guh1 @51 29 T @84 124 54 DEL 127 177 7%
* gu2 gs2 24 U @85 125 55

XVII-55

F. TECHNICAL DATA

Lay-Out of OPUS

First 64 bytes available to user for hardware interrupt routines, etec.

OPUS Operating System

User-defined drivers

Disc Parameter Table, approximately 400 bytes per disc
Machine Stack, 48 bytes

Job Parameter Table, 112 bytes
Working Buffers, 414 bytes
ASCII Program

Source Program

Object Program

Operand Stack

Constant Table

Variable Name Table

Input Buffer

Command Mode Buffer

File Buffers, approximately 150 bytes per file number
Buffer for number manipulation

Variable Value Table

Function Stack

Top Memory
XVII-56

Notable Memory Locations in OPUS, REV. 2.0

09
gg2
poL
p@6
210
g12
833
@35
837
LY
g43
gus
ou7
251
853
@55
@57
@61
@63
265
g67
T
181
183
185

g9
g2
gu
@6
28
@A
1B
1D
1F
21
23
25
27
29
2B
2D
2F
31
33
35
37
3F
4
43
45

[ASECIN SRS S EEACIR AV IR AC R AV RN AR AC IR AO BN AC B ACRE AU RN AC I AC TN \C R AU IR A BN AV ZR SRR AV BN AC BN AV}

Address
QOctal Hex # Bytes Description
@82 173 @27B - Starting address to restart OPUS without losing pro-
grams in memory :

gp2 2@2 @282 2 Number of bytes in memory (top memory)

ga2 2g4 @284 1 Maximum number of terminals
“@@2 295 @285 1 Maximum number of discs
#@2 2@¢6 #3286 2 Start of disc parameter table
g@2 219 8288 2 Start of disc specification buffer

pg2 214 @28C 1 Number of interrupt routines
ga2 215 @28D 2 Start of machine stack
ga2 217 B28F 2 Start of job parameter table
@@z 221 #3291 80 Table of I/0 routine addresses

g2 341 @2E1 20 Table of initialization routine addresses
The following locations are relative to the start of the job parameter table:

Size of Operand Table

Size of Constant Table

Size of Variable Name Table
Size of input buffer
Maximum assigned files
Number of bytes precision
Start ASCIT program

Start source program

Start object program

Start operand stack

Start operand stack block
End operand stack

Start Constant Table

End Constant Table

Start Variable Name Table
Start Variable Name Table block
End Variable Name Table
Start input buffer

Start command buffer

Start file buffers

Start number buffers

Start Variable Value Table
End Variable Value Table
Start of function stack

End of function stack (top memory)

XVII-57

XVITI. SAMPLE PROGRAMS . . ittt i ittt entetsnnnnenanonanaan XVITI-1

A. Programs Which Run Under OPUS/ONE.o iiiiiiimennnannn XVITI-1
1. Bubble Sort..... .ttt intiatoasssenonecansnsnnns XVIII-1
2. Calculator. ..ttt itinieinrseoeasiansoetesoroanencnannns XVITi-2
3. Loan Payment Calculator........veiiieurenneancnennennnn XVIII-U4
B. Programs Which Run Under OPUS/TWO...... it iieernnnnnn XVITI-5
1. QUICK SO ittt et ittt it et ettt e XVIIT-5
O o Y= S /= VO XVIII-6

XVIII-0

XVIIT. SAMPLE PROGRAMS

A. PROGRAMS WHICH RUN UNDER QPUS/ONE

Bubble Sort

“Ffﬁnlll OF BUBRRLE SORT IN OPUSSONE"

k1 AN RANDOM NUMBERS®

Iy !YH W MO Iy o= KRNI & MEXT 3
2 "ORTGIMNAL QRDER"§ GOSUE "MATRIX:":
P "‘Uh) NUMBERE

. Fe LTO 243
3 1% O B & O i
. T ; NEXT &
"HRORTED ORDER"$
RN Y L

REM "SURBROUTINE TO PRINT MaTRIX®
PRINT "MaTRIXE"y X& LIN 1%

140 LOOF e 170 S3%
Lot PP O"SIRI4 "y |
1éa0 WEXT 3§

A0 LI 29

180 RETLREN @

LOOF Je L+
[oXem MO

LT0O 2%
Py &8 MO 1) = M(

GOSUR "MATRIX:E"S

LOOF e

MaTiRIX: ORIGINAL ORDER
P OEAINYRN
s LEEERERGE7 s LHZL 772
s Q4462036 « FRL7PIBL
LPTUIHAIR LRTEAGTR2
f 31428418 2248

cB6ABAHP24

2086353
L4511 108E~02
ARSEBLE41
+B70437862
40861889502

a»l.\/'»,\"

SORTED OROER

MATRIX

L1993
. “x)»ﬂ*‘”q
HHITHYAR
LHAEIREPIAE
LPFOL&VOTV

XVIII-1

170 50 MO S% ¢ I

1y + ay

fHITOII0N
+ 9RH0BHAT
W GATTALTE
¢ 72LEA709T
¢ FHEQ2VDE

o?iﬁﬁufﬁﬁ

= X

NEXT 1) ¢

12219238
LOT0OLEDPOT
BROO!

Calculator

1@

20

20

= 19]

S0

&0

70

80

70

100
110
1260
130
140
L850
140
170
180
190
200
210
220
230
240
250
260
270
280
290
Z00
310
320
330
340
350
360
FA0
380
390
400
410
430
430
440
450
4460
470
480G
490
HO0
10
H20
53O

G40

REM "THIS CALCULATOR

FRENT "Xk

FRINT 3
TF X4 (

L FRINT

FRINT
FRINT

FRINT
FRINT
FRINT
FRINT
FRINT
FRINT
FRINT
FRINT
FRINT
FRINT
FRINT
FRINT
FRINT
PRINT
PRINT
PRINT
FRINT
FRINT
PRINT

FRINT
INFUT
LIN 27

INFUT
1y 12

"THIS

CNUMELE
“RINAR

CRINARY > CUNARY = INUMBER >

FROGRAM RUNS

CALCULATOR FROGRAM

UNDER OFUS/ONE"

L3222 0

"DO YOU WANT INSTRUCTIONS? ", X3

Ig °y"®

FROGRAM WILL KEEP

R

Yo NUMBE R

"RINARY OFERATORS!"

+

X
/

2

ADDITION®
SURTRACTION®
MULTIFLICATION"
DIVISTION"
FOWER "

"UNARY OFERATORS:"

-

nDIM BOL
nIM uog

WHILE

{

LOOF By

NEG
SAR
SIN
cas
TAN
ATN
k= XF
1.0G

NEGATION®
SQUARE ROOT"
SINE*®

COSINE"
TANGENT*
ARCTANGENT "
EXFONENTIAL E*
LOGARITHM"D

A RUNNING TOTAL OF ARITHMETIC®
FRINT "OFERATIONS. AFTER THE PROMPT CHARACTER 17y ENTER DONE QF®
CTHE FOLLOWINGS®

SETS TOTAL TO THIS ValLUE"

FPERFORMS THE RINARY OPERATION USING®
THE TOTAL AND THE NUMERER® '
FERFORMS UNARY OFPERATION ON NUMRER®
AND THEN RINARY OFERATION WITH TOTAL

ENTER NUMRER DIGITS PRECISION? "y X5 X= (XMAX 2) 5 GET & X3

6) ¥
9) §

INFUT

SCAN "BINARY": Xo»
SCAN "UNARY®§ X

BO3
uos

"1 "y X5 ONOT NONE D

Y

¥ 1

1T0 %% ¢ X4 ¢ 1y 1) & RBOC B)Y) 5 NEXT

M= NUM X§ IF
WHILE X4 ¢ 1»

X X4
CONT 3

{

2) ¥

e MUM X3

LEN X 1AaND B 60

Ko

1Y I8 * "AND LEN X

X$ ¢ 2) 3

13

TFOLEN Xx 20 LODR Ue 170 8% C X$ (1 3 # UDC WD) 5 NEXT 3

XVIII-2

s IR IIN X JAND U 9L X= X% (4) 5
S0 WHILE X$ ¢ 1y 1) IS * "AND LEN X 13
GAD O X Xk OO2) 8 _

CONT ¥

R

AHOOD Ka NUM X3

A0 Ne O ON WD S8R KT N L -~ KI N LD GINKI N L COS KT N B TaN KIS AT KT~

A20 L EXP X1 N L LOG X3 N KT »y 131 5

B A0

G40 T (ON

290 L

&40 L

&20 L
r
|

v bTH NI N

PV Vg -

a8o
690
700
2100 SFa 20%F PRINT T3

220 CONT #

730

740 END 5

7H0

760 REM "RINARY OFERATORSG®

270 ‘

780 "BINARY"y "4y "oy TXM, /Ry NTR, AR5
90

BOO REM "UNARY OPERATORG®

510

B20 "UNARY"» "SQR"y "NEG"» "SIN"y "COS"» "TAN"» "ATN"y "EXP*» *LOG", ®*"i

. XVIII-3

Loan Payment Calculator

LA : :

Lo REM "%kk¥ CALCULATE LOAN PAYMENTS dsoxkx®
20 FRINT "kokkoksokkokkokksk FROGRAM TO CALCULATE LOAN FAYMENTS sobckidefolriink g
R0 PRINT 3)

A0 INFUT "TOTAL LOAN AMOUNT? *, A

S0 TNPUT "INTEREST RATE? ®"» 1

A0 INFUT "TERM (IN MONTHS)I? "y N3

7O INPUT "OUTFUT DEVICE? "y Dys

A0 INPUT "IF FRINTERy FOSITION FAFER & RETURN " Q0%

Q0 I= I/ 100/ 123

100 Fa O TRU O O C Ik A% C ¢ ¢ I+ 1) ™ My /

110 ¢ C C TR Ly T Ny = Y 0y ok LO0Y 4 LEY Y /1003

120 Y= A%

130 PF IVE "//LS+BAsL7sBA LB BAs LYy R4S L7/

140 "MONTH"y "FAYMENT®y "INTEREST"y "FRINCIPLE", "RALANCEYS
150 LOOF Xe 1TO N :

160 Q= ¢ TRU ¢ ¢ ¢ A% I) % 1000 + .5)) / 1003

170 H= e QF A= A HE

180 FF DVE "REyHAPRA. 2y BA RS, 20 RARE. 2/ RAsRE 27"

190 Xy Py @y Hy AS ‘

200 NEXT 3

210 LIN DV 24

220 PRINT "TOTAL FRINCIFLE + INTEREST! "% (P NY

230 PRINT "TOTAL INTEREST: "8 ¢ (FX N)Y - ¥Y) 3

FINE
COM

FINE
RN
AololokkKIIokK k. PROGRAM TO CALCULATE LOAN FAYMENTS soloiokiopkokokiokokksk

TOTAL LOAN AMOUNTT 6400

INTEREST RATET 18

TERM (IN MONTHSY7T 12

OQUTRUT DEVICE? 4 :

IF PRINTERy FOSITION FAPER & RETURN

MUTH FAYMENT INTEREST FRINCIFLE - RALANCE

586 .75 R4, 00 A0, 7S 5906, 25
2 586 . 75 08,64 498,11 S411.14
3 586 .75 81,17 505, 56 4905 .56
4 584,75 73,58 RS N P s 4392 .39
g S84 .75 65 89 520, 84 AN71.53
b 584 .75 58,07 528,68 B340, 85
7 BHE . 7H 50, 14 536 .61 2806 .24
2 B8& . PN 433,09 44,66 2R61.58
Q 586,75 33,92 B LR 1708.75

10 B8 . 7 LRG3 S61 .12 1147.63

11 GHS 7Y 17.21 TOBAD 54 BP0, 09

12 BRG, 75 B.67 578, 08 N3

Py

TOTAL PRINGCIFLE + INTEREST: 7041
TOTAL TNTERESTI 441

MNE
XVITI-4

B. PROGRAMS WHICH RUN UNDER OPUS/TWO

Quick Sort

O REM EXAMPLE OF A QUICK SORT ALGORITHM USING OPUSATWO"
200 REM "259 RANDOM MUMEBERS ARE GENERATED AND SORTEDY

A0 EXT "PRNT": EXT "GRK®"F DIM MATC 25) 3

A0 LOOF T ATO 29% MATC L) = RND § NEXT 3

Cald, PRNTO "ORIGINAL ORUERD " MAT)Y 4

LAl il MATy 1y 2E) 8

Al PRNTCO "SORTED ORDERD"» MATY

SN :

.....

E
o
—

.
e
m—

Lo REM "SUBKOUTINE TO FRINT MATRIX®

1o SUE "FRNT"y PRNTs X» Mé

L2000 LIW 35 PRINT X3 LIN 13

133G LOOF Ty 1TO 53

140 PFO"SRI4Y /7"y C LOOF Jy 1TO S0 MO Sk C I~ 1) 4+ 0 1 NEXT 12
159 NEXT 3

Lad RET @

180 REM "RECURSIVE SURROUTINE TO SORT A MATRIX®

190 SUR "QR"s QKe T» Sy E$ '

200 I= 8% J= Ej

210 WHILE I J3

220 IF TC Iy = TC 0y L Xe= TC LY 5 TC L) = TC J) 5 TCO U = X& F= NOT FI
QAGIF OFL I= I+ 11 BELSE © J= J- 11 §
240 CONT 3

S50 IF 4 1 EL CALL Qe Te J+ 1y EY 3
2860 TF T 1 50 CALL QRO Ty S I~ 13 1
270 RET § ~

wr g>

ORTGINAL QRDERS

s A2V e RAATLATY 1796875 CPR22L647
G.1116943E-03 «1AH131H92 1. 83246841E-02 ¢ A7R24829
FHBHI02T +ALHP0094 22208374 LEHRYPE0ES
49915 LHOOHLET LI 2 37113953 LHPF2168

LHONHETARE « 37400818 LH1243894 « S5415HB02

SORTED OROERS

« L7RLHBTE
Rt IAIAL R R

Se110APAZE-03 1.

1174

a") v

XVIII-5

The Maze

ookl THE MAZE kdokiok®

"THES PROGRAM RUNS UNDER OPUS/TWO. "

PTT WAL ENTERED IN THE TEXT EDITOR ANMD THE LISTING REFLECTS THIz®
CFORMAT . IT MAY BE MODIFIED TO RUM UNDER OPUS/OMNE BY CHAMGING THE"
TEXTERNAL SUBRODUTINE REFERENCE XY/ TO & /GOSUERS SUBRCOUTINE"

EXTO"KYME OPF 'S .ARC 26§ ESUC={ABE 27)&"="5

FRINT *EXPERIMENT $#QZ200218 TOF SECRETy CONFIDENTIALL!I™G GG
FRIMTS

TFOCINPUT 18 A DESCRIPTION OF THE EXPERIMENT NECESSARYT Y. X3
X$E<leld I8 "Y")

LFRINT S
PRINT *THIS EXFERIMENT HAS BEEN SET UF TO DETERMINE WHETHER A RAT
FRINT "INJECTED WITH INTELLIGENCE POTION #2002 (THIS IS YOUY H¢
FRINT "DEVELOFEG TO THE FOINT OF REING ARLE TO OME THE SUFERIOR
FRINT "MENTALITY OF THE WORLI‘S MOST RESPE STENTIST (THE |
FRINT "TO DISCOVER THE QUTCOME OF THIS QUESTION OF GREAT MAGMITULE.
FRINT *A MAOZE WILL EE BUILT BY THE SCIENTIST. THE SCIENTIST WILL FIRST
FRINT "DISCOVER HIS OWN FATH THROUGH. THE RAT THEN HAS A CHANCE TO 00
FRINT "IT IN LESS TIME (OR FEWER TRIES). |

FRINT

FRIAT "4 SCOREBOARD OF THE NUMBER OF THE RAT‘S MOVES (LEFT SIUE)
SRINT "AND THE SCIENTIST/S MOVES (RIGHT SIDE) WILL RE KEFT IN THE
FRINT "RIGHT-HAND CORNER. THE RAT: RECAUSE IT TIRES MORE EASILY: WILL
FRINT *HAVE THE OFTION TO TRY MORE MAZES. A FINAL TARULATION WILL BE
FREINT "GIVEN AT THE ENI.

HRINT

FRINT *THE SCIENTIST WILL ASK FOR THE RAT’S ‘MOVE’. THE RAT SHOULD.

T UENTER ONE OF THE FOLLOWING TOQ DETERMINE IN WHICH DIRECTION THE
"FATH SHOULD GO?

" L UPWARDS

" I DOWNWARTIS

v f RIGHT

" L. LEFT

CTHE SCTENTIST WILL INFORM THE RAT WHEN THE CENTER IS REﬁQHEﬁe'
"NOTE THAT IF THE RAT RUNS INTO A RBRARRICADE. THIS WILL

CHNONETHELESS COUNT A% A& MOVE.

FIWT "THE FOLLOWING SYMBOLS DEFINE TFJEE M LE
RINT ® ? B X SﬁUI

FANT " ¥ RésT 85 PaTH

RINT + BOTENMTIST S PATH

HINT ! & BOTH SCIENTIST S AND RAT S FATH

!

f

t

l

l

f
FRI
FREMN
o

I

B

i

=

I

I

WHIELE o PEb o S85ER70-"» B850y A00 1S540 325
PHFUT " LE CTHE RaT P ARET FOR THE NEXT MAZET ® X6
MOT NOME ANDD X010 Yt

XVITI-6

MELITEE Y,

REM "GENERSTE MAZE® :
FEOr857"eaB0 6y "THE SCIENTIST IS BUILDING THE MAZE..."s
Die MOR323) %
LOGE Fyel T L1
LOOF b T TO 2413
MCOLe o= tMO e D)= (M (24 Lo By MO lp 24T 0= @Y 3208
NEXT$

REM "CREATE RANDOM GATES AND BARRICADES"
FRINT "THE SCITENTIST SETS UF THE BARRICADES AND GATES..."$

O T2 T 95
FeTRUCRNDF (L3141 4

LOCE Jed TO R

CALL, XY (LeXoY)s

MOY X0 =(1F 1/72 IS TRUCLZZ2) 0/ ELSE ['-"1)3
NEXT 3§

NEXT 3

REM "CREATE FATH THROUGH MAZE"

FRINT "THE SCIENTIST IS NOW FINDING & FATH THROUGH. .. "3§
CTTLﬁQﬁ C=@XY(LeBXr8Y) 5 X=8X5 Y=8Y§ MOYeX)m="4"§

LOOP 1.2 TO 105
CALl, XYC(I»AeRY§ D=2%TRUCRNIKE) - 13

WHILE (X#d OR YH#R) S

IF € DX=X4+D1 ELSE [Y=Y+Ds
IF MOYeX) IS @' OR M(YsX) I§ "
EIF © EX=X-D3 D=(IF Y912 011 ELSE [-171)7
ELSE [Ys=Y~-D§ D=CIF X<12 011 ELSE [-11)1%
Ca=NOT G

ELSE CMOY XD 4% 5 CTTL=CTTLALLS
CONT
TF 0 EY=Y+l-2% (Y1100 ELSE DXsmX+l-2K(XH11973
MUY 30 =4 CTTL=CTTLALS
NEXT 2

MOL2ed 2048 CTTL=0TTLALS

PER CPRIHET MEaEE"

XVIII-T7

LRF "G888" yESCyASBCII4H3IL) »ASCCIX24Z0) » "2 5

NEXTS NEXTS
EOTRESE Y ESCyAB0 43,A80 U4t 1ty

REM "PLAYER ATTEMPT"

KXmBX5 Y=8YF TRY="UDLR?"F M_IYeX)="8"5
P ESCyABCIYHIL) s ABC OXK24+30) o " k" 5

WHTLE (X912 OR YH1L2) 5
PEOCPHGERARAG " dESCyASE B2.A80C P2.PTTLCTTLS

WHILE (FF "S8885" yESC»ASC 42yA80 0 "RAT MOVESY "5 A=03F INFUT A?
LOOF T3 TO 4%(TRY$SCLe T2HAS {11028 NEXTS I.- 4%
FTYTL=RTTLAL S

CONT $

TY=Y s TXuXi
ON T ErYusY L INCTY =Y 4L IND T XX o LANE T X X000 6

ITF O TY=0 ANIDN TYS24 AND TX:0 AND TX«24
CIF CI=MOTY s TXO 04" @® AND SR /"
CY=TY$ X=TX$ MOY 2= (IF JE"+" [%*] ELSE [& 1)
FF "S888" yESCyASCIY+31) yABCIXKR2HE0) 9 " X" 1715

FTTL=FTTLYL S
CONT S

Il "G“ﬁ“vFSGyﬁSG S5eAG0 325
I

" l "

¥

COMN @y (AGNCCTTL-FTTLYH2)) THEN
"FOTION #2002 I8 FAILING..."N
"FOTION #2002 NEEDS PERFECTING..."N
TTHE SCIENTIST I8 DISRELIEVING. . ")y
"HERE IS THE SCIENTIST S ATTEMPT®

FEAME=FGAME+FFTTL ¢ COAME=CGAME+CTTL S TGAME=TGAME+ L1

LOGE Tel TO 233 LOOF Jel TO 233
TF (a=MOTe) T8 "4° QR & I8 "8
CFFO"SSE8S "y ESCABC (T4 v ABCCIR24Z0) » A0 8
MEXTS NEXTS
FFOPLSESH Y ESCASC 43»AB0 S54. %103

COMT S

FFO"SERABIGS S G80 246 "EXPERIMENT SUMMARY FOR® » TGAME » "ATTEMFTS " ¢
FORAGLARILS A PHOCTENTIST e "HAT" 3 M= "L 20RPR2R9/" 3

" TOTAL MUULﬁ"yﬁGﬁMEyPGﬁME?

A ul BT JFHﬁMF/TGﬁNF FﬁhMF’TPﬁWF“
p N LAY 2O0-DEAME S THAME » 200-FOAME/TOAME

XVIII-8

FRINT ¢
Of SENCCEAME-PGAMEY 42 PRINT

PEOTLION #2002 I5 NO GOOD AND MAMRIND MATNTAING SUPERIORTTY "

CIMPOSETRLE RESULTS . EXPERIMENT MUST BE RE-DONE"N
"FOTION #2002 WILL CHANGE THE WORLIIDI"S

Dy

L)
4 ol
s

PGURROUTINE TO GEMERATE RANDOM CODROINATES AT GIVEN LEUVEL"
LooT8 MATRIX LEVEL l-12°

YAOTE GENERATED COLUMNY

Y OIS GENERATED ROW" :

CRETURN C=0 TF VERTICAL COMROLy C=1 IF HORIZONTAL CONTROL®

=

=

KE
RE
I
RE
RE

)
"
\

4

=

=

SBUR "XY e XYeleXeYy
A TRUCRNI 2L -TRUCL /284 2424 TRUCLZ20%2 5 B=TRUENDXA) 41§
N B [X=ts Y
DXl Ye=n
Y o :‘“

Lim=py Y ¥
[X=24-l3 Y=A5 (=013

XVIII-9

XIX.

...

XIX-C

XIX. INDEX
! (Matrix element)................ XII-4 Assignment................ TV-l, Xvi-y
(Not equivalent)...........cvvun.. X8 ATN . e e XI-9
$ (Substring)......oovvinnnonn. ee VI-H BIN . i s Xiv-23
& (Concatenation)....... e e VI-3 Binary operator..... II-14, V=1, XVI-2
¥ (Multiplication).......vvueuvnnnn. V-5 Block....ioveeennnn. 17-16, IX-5, XV-4
+ (Addition)....vvevuvnnn. e V~3 Boolean operatorsS.......veeevenen. X-1
- (Negation, Subtraction)........... V=l BOUT....cviiiiiiiiiiiiiennnnnns XIv-24
/ (Division).....eveiiriiiiiinnnenn V-6 BrackebtS......viveeeennn. II-16, XVI-2
< = (Less than or equal to)........ X-10 BREK . et ittt et e e e e aee e, XI-12
< (Less than)...eieeeeeennnneeennnn X=6 BUF Bttt it iinnnennnnn XVI-2
= (Assignment).......cvevirereenennn Iv-2 BYE......... et es et IT1-9
> = (Greater than or equal to)....X-11 CALL . vttt ittt it e i eeans ...XIV-6
> (Greater than)......eeeeieernn.n. X-7 CLOSE........ et VIIT-16
2 (Error number) . vv. e i e enenns XIV-3 (070 Ko} ¢ W I1-18, XVI-1
@ (Function call) ... ennnnn. XIV-7 000 SRR B i P00
ABS .t it iiiinnann e XI-70 Comma....vvevuerenenenenn. II-19, XVI-1
L X-2 Command......coviiireiernnennennn ITI-1
Appending programsS........ VIII-U, XVI-1 Command mode......coveeivennnnn. I7-3
Array. ..o it eennerones I1--11, XVI-1 Comments. . e eenennns XI11-2, XVIi-2
I Xvi-2 Common variables.............. .. XIV-5
ASCII Programs. . veeeeeeeeneannens XTV=26 Compile.verenenenenenennnnns 11-6
ASCIT Table. .. ven v, .. XV1T1-55 Concatenation.................... VIi-3
3] P XI-11 Constant.................. I1-8, XVI-3
ASSIGN. oottt e e VIII-13 Constant Table............. 1-9, T1-24

XTX=-1

CONT .o vivmeenenrcoronenseneeaness LX=10

Control characters......... I1-5, XVI-3
COS . st iiiineererronearennens eeees JXI-T
CSAVE...... ceeereenesens JVII=-11, VIII-6

DATE .ttt iie e seeronsansnosens N XI-13
DEL . ittt iiieeereannoennss e e e I1I-3
DelimitersS...ieeeeeseencreenoneenes XVi-3

Device number.........I-9, II-19, VII-1

DIM....... e ettt XII-3
Dimensioned files.......... e XIvV-11
DISC..... tereseeesenaanaessesa, VIII-22
Disc destruction......cvcvveevnnnnn XV-9
Disc errors......... T Y X 4
Disc files....... ee..1-9, II-19, VIII-9

Disc format....ceeeeee. .VIII-1, XVII-U4
Disc formatting......I-14, I-18, VIII-1
Disc number...I-14, I-17, II1I-20, VIII-2
Disc swapping....eeeeee.. JI-21, VIII-2

Disc tag......I-14, I-18, II-20, VIII-1

Driver.......... seae s e e I1-9, XVIi-1
DUMP......... Ch etVIII-6
Editing......coeiiiiiinnn.. II-U4, XvI-Y4
EFILE......... N VIIT-21
8 IX-7

XIX-2

END......... e e XITI-1
End-of-file......ciiveuvunennnn. I1-25
End-of-record......cciviieniennn. II-25
EOF Sttt et et e VIII-20
ERR......... et raar it XIV-2
Error trapping.....evevieeeeenn. XIv-2
Errors. .. ittt I1-23
ESEQ. evennnnsnn N XIv-15
EXP ittt iis i tiitiiesicneaannn XI-3
Exponent....,...cciiiiiiieenannan.. I1-9
Expression........... II-7, v-1, XVI-5
EXT....o.... e Ceereaeaaa XIV-4
False. . viiiiieniieinnnnns e X-1
FETCH....vovnu.. Ve ceveean XI-14
FILE. .ot iiiniiiinnnnns ceiev.. . VIIT-18
File format........... I1-19, XVII-Uu7
File name..... ..11-22, VIII-4, VIII-9
File number........ccvuveeeen.. VIII-9
File type...... e I1-22, VIII-4
Floating point.....ciievinecneenn I1-3
Formatted output........... e.ee . VII-6
Function.....ieieenennoaens XI-1, XIV-7
Function stack.......... IT1-25, XIVv-22
GET........ Ceeeena e VIT=12, VIII-T
GLOBAL........... Ceseeseaaaaeans XIV-5

GOSUB...... seese s ereesean eeo IX-0
GOTO...ovvun. ceceecre e . eee . IX-3
HANG.....c.... o cens XIV-31
TF ettt iineneenenns .. IX=6, IX-T
IN..... e eeearareen e . e VII-2
INPUT. .. inivenennnn . oo .. VII-3
Input buffer............... .I-9, II-16
Interrupts..ceceveve e .I-10, XVI-5
Integer.....veveeveeeess.. . LI=-8, XI-25
IS..... e et st as e .. X-9
JumpS...... e asrearasans veaIX-2
KILL..oooerennsn teersessarasse . VIIT-19
Label..veeiiriieeneininnnnns 1, XVI-5
LEN.......... Cereiaeenn creeee. . XI-15
LIBiweieeaennnn cersaeanan e . VITI-23
LibPary.eeeeeeseneeeessnennens VIII=23
LIN. ettt eennoconnasenncennanss . VII-8
Line construction................ II-16
Line numbers..... e .. II-4
LIST...cievinann Seeresanreaaaana LIII-5
List delimiter..... II-14, II-19, XVI-6
LOAD..... Che s teeeaeae VII-13, VIII-8
Loaders.......... eeeenan I-2, XVII-14
LOG. s enineiaann, i e .o XI-U
Logical record.......... I1-20, VIII-10

XIX-3

LOOP ..t Gt et estes e I1X-8
LoopS..vv.e. Ceeecen e e e JX=5
Machine code subroutines..............

...... CeieeensenseessXIV-19, XIV-32
Mantissa...... et eee et I1-9
MatriX...ooeieiiinnniennn, I1-11, XII-1
Matrix element..... II-12, XII-1, XII-4
1 S XI-16
MCALL. .ot ennnnann .. .XIV-19, XIV-32
MIN.......... e rereeeae e XI-17
NEW. . eeeoeieieennnnnn et ITI-6
NEXT..... Ceeeseerasaeaas cresnecane IX-8
NONE....... e NP ceeaes XI-18
NOT... ceaeen Ceattaaeenas et X-4
NUM et e ceaea s e teeaeean XI-19
Number............. ceeeen vevsess II-8
Number to string conversion...........

eeetreetans beteeean ees . II-12, XVI-T
Object. i euneeunennns ceev...II-8, XVI-T
OLAY......... . et eiae e ... XIV-20
ON..... Ceeeaae et s IX-11
OPEN...... N 1 I i ¢
Operand.....cccu.. cieeeea...II-8, XVI-8

Operand stack..I-9, II-14, II-23, XV-6
OPUS layout......... Chee e ... XVII-56

OPUS memory locations.......... XVII-57

OPUS termination................ LIII-9
OR....... et eereee e X-3
OUT..... ereaenae o eee ey ViIi-5
OverlayS. i eie e eeioeanenaneenns X1V-2Q
Parentheses................ II-7, XV1i-8
28 e e e VII-6
POP........... Ceeer et et enae e XIV-22

Precision..ieiereeceeneronnes I-9, 11-9
PRINT .. iiiiiiverennennnanas eee.. VITI-U
Priority........... . II-7, V-1, XVI-10

Program data...... .. XITI-3, XIV=-22

Program editing............ II-4, XVI-H
Program name......vov0een.. e esen 11-22
Program termination.......... o -XIII-1
PURGE......ivveiiiian... eeeas VIII-17
Quotation marks........... Vi-2, XVI-11
READ......... . et s e VIII-14
REC........ S hesensear e ee e XIV-16
Relational operators......cceeeeve.: X-5
REM.....iviiiiiennn. cheeeen v. . o XITI-2
REN. ittt ittt iiiii ittt ennans I11-8
0 XIv-9
RETURN....... et ee ettt e IX-4
RND . ot i e e e i X1-20
RUN. ..o i i e i i eeeans IIT-7

SCAN fr ettt et XITI-3
Sector..ieei it e VIII-1
SEEK. . i iie ittt et e e XIV-10
SemicOloneeviene e oennnns II-15
S X s eeas e XIv-14
SET PN I11-4
) XI-21
1 1 XI-6
SOUICE . v s e tavsteenesnnnnns I1-6, XVI-12
3 VII-9
Special characters......... I1-5, XVI-3
SQR..evvann. ettt XI-22
Statement........... I1-8, XV-2, XVI-12
Statement errors.......... ... I1-23
Statement Table................ XVII-49
STR..... et eeri e et X1-23
String.....ccevnenunn I1-10, VI-1, XVI-6
String to number conversion...........

................ ceve.. II-12, XVI-12
STUFF..... c e N XI-24
SUB.veveernnnnnnnnnn e XIV-8
Subroutines.......cevenuenn.. IX-2, XIV-i
SUbString.eee e ieeeesrenenns VI-1, VI-4
SWAP . i ettt ittt it XIV-18
7 XIvV-17
L X1-8

TIME.......cccvh e e e e XIv-30
TO.evivnnn Ches et Cere s IX-8
TRACE .. . i it e veirrnnnonnns cevee.XIV=27
Track....ooiiieiiniee., ceeaans VITI-1
True. . n it it e e e X-1
TRU...evvenenennnn e te e X1-25
Unary operator..... eee..1I-13, XVI-13
Variable Name Table..... ‘...I-9, I1-24
Variable Value Table............ I1-24
Variables....vcoveveeee.. I1-10, XVI-13
WHILE .. oot iiiimnneannns IX-10
WRITE...ieieiiniiieeneenneenns VIII-15
\ (Backslash)........ ceeees . IX-11
P (Power) veovvveennnnnn. Ceeeeaeas V-7

XI1X-5

N BQB Administrative Systems, inc.

ORDER FORM

O My check or money order for the full amount is enclosed
0O C.0.D. (C.0.D. fee will be added) -- UNITED STATES ONLY
O Please bill my O Master Charge 0O VISA (BankAmericard) Account:

Account No. Expiration Date

QTY, # ITEM MEDIUM PRICE
D-1a OPUS/ONE Language, Disc Version
D-1b OPUS/ONE Language, Cassette/Paper Tape Version
D-1d OPUS/TWO Language, Disc Version
D-1x Change starting location of OPUS/ONE or OPUS/TWO
Language (normal starting address: £00) to
_____ D=1z FORTE/TWO Monitor
—_ D-Im OPUS User's Manual
FERRERRRERRRERERERRRERERRREERR
: U-1 Upgrade OPUS/ONE to OPUS/TWO
U-2 Copying Charge
REREREREREARRERREERRXRERRRERES
D-2 TEMPOS Multi~User/Multi-Tasking Operating System
Includes: Assembler, Text Editor, Utilities Programs,
and OPUS High-Level Language
D-2m TEMPOS User's Manual
RERRERREERRRXRFERRERRRXRERRRHER
A-1a Clinical Accounts Receivable/Billing System
A-1b Clinical Accounts Receivable/Billing Source
A-1d Clinical Accounts Receivable/Billing Demo Package
A-1m Clinical Accounts Receivable/Billing User's Manual
" FERRRRRRRRBRRERRERXRRRRRRRRIONR
____ M-1 PROM Loader for (software) 17024 I.C.
M2 Billing Forms ——
RERREXRXXRERREERRIXRFARRERRXNH
SUBTOTAL. & v v v v v e v v e e e e e e e e e e e e e e e e e
Colorado Residents ADD 3% Sales TaX . . « ¢ « o o ¢« & o o & o & o
SHIPPING for prepaid and bank card orders (ADD: $1.00 per manual
or $2.00 per language medium ordered) . . . « « « + o« & & + o
TOTAL v v v v 4 4 v v o o o o s o o o o o s s s o s s o o o o s o

Master Charge Interbank #

Signature
(We must have your signature to process credit card sales.)

PLEASE SEND THE ABOVE ITEMS TO:
NAME

COMPANY

ADDRESS

CITY STATE ZIP

MY HARDWARE CONFIGURATION:

Please allow 30 days from receipt of order for processing.

222 Milwaukee, Suite 102, Denver, Colorado 80206 (303) 321-2473 —J

