CDL DEBUG I and II

User’s Manual

Sept. 3@, 1979

2-83 and 3080/8085 Debugging Tool

Operates on Z-80 only

Copyright 1979 by Computer Design Labs

CDL Debug I and II User”’s Manual
Table of Contents

Table of Contents

1 Introduction to DEBUG I and II
2 Overview of ZBUG
2.1 Data Format

2.1.1 Data MODE
2.1.2 Data RADIX
2.1.2.1 Data Display
2.1.2.2 Data Type-in
2.1.2.3 Address Display
2:2 Examining and Modifying Data
2.2.1 Memory Data
2.2.1.1 Display Data
2.2.1.2 Replace Data
2.2.1.3 Examine/Modify Data
2.2.1.4 Search for Data
Registers and Flags

2.2.2
2.3 Program Execution and Breakpoints
2.3.1 Executing a Program
2.3.2 Breakpoint During Execution
2.4 Tracing and Traps
2.4.1 Tracing a Program
2.4.2 Traps During Tracing
3 Starting Out
3.1 ZBUG’s Operating Environment
3.2 Executing ZBUG

3.3 A Sample Session

CDL Debug I and II User’s Manual

Table of Contents

The Commands = A Detailed Description

N<MXEUNUTDTOYWOIH-QEEOO

Calculate

Display

Examine

Fill

Goto

Instruction Interpret
List ASCII

Mode

Open File

Put String

Quit

Radix

Set Trap/Conditional Display/Wait
Trace

Examine Register/Flag
Search

Zap CP/M fcb’s

Going Beyond the Basics

The ZBUG Expression
5.1.1 Operator

o, O oo,

Advanced I

-

e

N O N

, —» !, and ~ Operators

y /o @, &, <, and > Operators
?EQ, ?NE, ?LT, ?LE,

?GT, and ?GE Operators

t, =, #, @, \v

and ! Unary Operators

Symbols

“"Constants”

1.7.1 Numbers

7.2 Strings

7.3 Registers and Flags
7.4 Instructions
as

#* +1

5
5.1.
S5.1.
5.1.
de

A Quick Reference to the Commands

4
4-1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

5
5.1
5'2

Appendixes

A

B

Error Messages

b

CDL Debug I and II User’s Manual
Section 1 - Introduction to ZBUG
Section 1

Introduction to DEBUG I and II

Debug I is a subset of Debug II and throughout this manual a
distinction will be made only when there is a difference between
the two. Debug I and II each consist of two seperate programs:

DEBUGI.COM ZBUG.IMG

Debug II

DEBUGII.COM ZBUG .REL

DEBUGI.COM is a program which 1loads the working debugger,
ZBUG.IMG. DEBUGII.COM likewise loads ZBUG.REL. In this manual,
reference to ZBUG pertains to the working portions of Debug II.
It also pertains to Debug I unless specifically stated otherwise.

The terms Debug I~ and "Debug II" refer to the overall
debugger——i.e. both the loader and working debugger.

ZBUG is CDL’s dynamic debugging utility, designed to
facilitate assemdbly language programming. ZBUG, when used with
CDL”s Macro Assembler, provides a powerful and versatile set of
techniques for developing assembly language programs.

ZBUG provides standard debugging tools 1including memory and
register examination/modification and program execution with
breakpoints. However, ZBUG extends these common tools
considerably with wuser-controlled data formatting, powerful
expression evaluation for user—entered data, and extremely
flexible trap capability with tracing.

This manual 1is intended as a guide for the user of ZBUG,
beginning and experienced. For this reason, the sections of the
manual are organized for general ease of access to basic and
specific information.

Section 2 is provided as a guide to the first—-time user,
describing the tasic features of ZBUG in a very general manner.
It is not intended as a complete description, by any means, but
is intended to give the flavor of ZBUG s possibilities.

Section 3 helps to demonstrate the use of ZBUG, indicating
how to start execution of ZBUG, and giving a sample session to
show the use of some of the basirc commands. This section is
intended to show the wuser how to begin wusing ZBUG as a useful
tool.

CDL Debug I and II User”s Manual Page 2
Section 1 - Introduction to ZBUG

Section 4 is a reference quide to the commands available in
ZBUG, offering a complete description of each command’s use and
operation.

Section 5 is primarily concerned with giving the more
experienced user an idea of the flexibility of the ZBUG command
set. Included 1is a detailed discussion of the arithmetic
expression capabilities of ZBUG for data type in, and an advanced

session” with ZBUG to demonstrate ZBUG’s muscle in handling
different debugging situations. It is hoped that this section
will lead to a more intimate understanding of ZBUG’s abilities.

Finally, two appendixes are provided: a gquick reference guide
to the ZBUG command set, and a list of ZBUG's error messages.

This manual also documents ZBUG.IMG, a subset of ZBUG.REL
which occupies less memory. Notes throughout the manual define
the ZBUG.REL features not available in ZBUG.IMG.

Please note that this manual assumes that the ZBUG user is
familiar with the Zilog 283 CPU’s register and flag organization,
the 282 instruction set, the Computer Design Labs Macro Assembler
(the 288 instruction mnemonics), and CP/M (tm-Digital Research)
or Computer Design Labs”’ TPM (tm—=CDL) Operating System.
References are made to the following publications:

"280-CPU Technical Manual”
Zilog

12464 Bubb Road

Cupertino, California 95014

“An Introduction to CP/M Features and Facilities”
"CP/M Interface Guide'

Digital Research

Post Office Box 579

Pacific Grove, California 93950

“"Macro I User’s Manual or "Macro II User’s Manual’
Computer Design Labs

342 Columbus Ave.

Trenton, New Jersey 98629

-

CDL Debug I and II User’s Manual Page 3
Section 2 - Overview of ZBUG
Section 2

Overview of ZBUG

The following is a discussion of the main features of ZBUZ's
operation. It is intended to be a general introduction to the
capabilities of ZBUG and a description of 1its use. For a
complete description of each command available, please refer to
Section 4.

The description of ZBUG is broken up 1into four general
categories: data format, data examination and modification,
execution and breakpoints, and tracing and traps. Each section
mentions the commands offered in the particular category, and
makes reference to the appropriate sub-section(s) of Section 4.

2.1 Data Format

Data can be interpreted in many ways. The length of the data
(in 8 bit ©bytes for the 282), 1its numeric representation, and
whether considered as instructions or not are each important to
the proper interpretation of data. ZBUG provides means for the
user to interpret or specify data in different ways.

2:1.:1 Data MODE

In ZBUG, memory data can be considered as a list of "cells”
of a fixed 1length of one to four bytes, or as a list of 289
instructions, each of varying length of one to four bytes.

In order to specify the manner or MODE memory data is to be
displayed or accepted by ZBUG, the user employs the M command
(see Section 4.8). This command sets the mode in which memory
data is to be displayed/accepted, until overridden (see Sections
4.8 and 5.2) temporarily or the M command 1is used again to
change the mode to another default .

The modes that may be specified by the "M" command are byte,
word (two byte), three byte, double word (four byte), and
instruction. With all but 1instruction mode, data displayed and
accepted is numeric, while in instruction mode, it is in CDL Z82
instruction mnemonics (refer to the CDL Macro I/II Assembler
User”s Manual) with numeric operands as applicable.

Note that MODE and the "M" command are associated only with
memory data. As registers and flags are of a fixed length, they
may be considered as having a fixed mode - byte or word (two
byte) for registers, and bdit for flags.

CDL Debug I and II User”s Manual Page ¢
Section 2 - Overview of ZBUG

2.1.2 Data RADIX

Numeric data, regardless of the mode in which it is
considered, must have an understood RADIX 1in order to Dbe
interpreted properly. ZBUG provides the means to specify the
radix for three different types of data - contents of memory

‘cells” or registers displayed by ZBUG, any numeric data typed by
the user, and addresses of memory cells as displayed by ZBUG.
The radix of each type of data may be separately specified by the
user via the R command (see Section 4.12) and may be ASCII
(with the exception of the address type), binary, decimal,
hexadecimal, octal, split octal (3 digits per byte), and relative
(signed) decimal.

. The radixes specified by the "R" command determine the

default wused by ZBUG regarding the specific data types, and
remain in effect until overridden (see Sections 4.12 and 5.2)
temporarily or reset by another use of the R command.

Debug I displays all data in hexadecimal, and therefore does
not provide the R command. Data type—in may be in hexadecimal
or ASCII (see Section 5.1).

2.1.2.1 Data Display

All numeric memory data (such as the contents of a cell” in
modes 1 (byte) through 4 (four byte), an instruction operand in
mode instruction, or the contents of a register) are displayed by
ZBUG in the radix set by the "“RD" variation of the "R command
(see Section 4.12). This radix may bde temporarily overridden in
certain cases by a spec1al application of the R command (see
Sections 4.3, 4.12, 15 and 5.2), bdbut always reverts to the
radix last set by the HD command.

2.1.2.2 Data Type-—in

All numeric data typed ,by the user is agsumed to use the
default radix set by the RT variation of the "R command. This
radix may be temporarily overridden with the wuse of the radix
cperator and/or modifier (see Sections 5.1, 5.2, and the CDL

Macro I/II Assembler User s Manual), but always reverts to the
radix last set by the "RT" command.

2:31:8:3 Address Display

Each address displayed by 2BUG, whether the address of a
“cell”, an instruction, or the address operand of an instruction,
is displayed in the radix set by the RA wvariation of the R
command. This radix may only be changed by the application of
the RA command.

Addresses displayed by ZBUG are in one of two basic froms:
absolute (the address displayed represents an actual physical
address), and relative (the address displayed is a displacement
relative to some absclute address).

ZBUG provides two wvairs of ‘“relocation registers” (see
Sections 4.15 and 5.2) which are wused by ZBUG to calculate

—

—

=

)

CDL Debug I and II User’s Manual Page 5
Section 2 - Overview of ZBUG

relative addresses. The addresses contained in these registers
(the RR - “RR and DR - ‘DR pairs) may be set to the beginning and
ending addresses of any area of memory. If an address value lies
between the beginning and ending addresses found in either pair
of relocation registers, ZBUG will subtract the beginning
address from the address to be displayed, forming a relative
offset. This offset is ‘then displayed, followed by a single
quote () if the offset 1is relative to the RR - ’RR pair, or a
double quote () if relative to the DR - ‘DR pair.

If an address cannot be relocated to either base pair, or if
ZBUG is commanded not to display relative addresses (via the RA
command), the address is displayed as an absolute value.

Debug I will always display addresses as absolute, and does
not feature the RR or DR relocation register pairs.

If ZBUG finds that an address to be displayed lies between
its own bounds, the address will be displayed as an offset
relative to itself, followed by a pound sign (#).

2.2 EFxamining and Modifying Data

With the ability to specify the mode and radix data is to be
displayed and accepted, the standard facilities of data
examination and modification are greatly enhanced. ZBUG provides
several commands facilitating manipulation of memory and register
data.

221 Memory Data

ZBUG has six different commands for the manipulation of
memory data - two for displaying data, two for replacing data,
one for examination/modification of data, and one for searching
for data.

2.2.1.1 Display Data

The "D command (see Section 4.2) 1is used to display
sequential cells (or instructions) in the current mode (as set
by the M command) and radix (the ,RD command) along with their
addresses (in the radix set by the RA command).

Debug I displays both the data and their addresses in
hexadecimal only.

The "L” command (see Section 4.7) 1is used to display ASCII
printable data only, along with the associated address.

CDL Dedbug I and II User”s Manual . Page 6
Section 2 - QOverview of ZBUG

2.2:1.2 Replace Data

Using the "F" command (see Section 4.4), an area of memgry
may be filled with a numeric constant 1in the mode set by the M
command (except for instruction mode - in this case, byte mode is
used).

The "P" command (see Section 4.18) makes it easy to enter an
ASCIT string anywhere into memory.

The "0° command is used to lgad a CP/M format "COM" or "HEX"
file (refer to Digital Research "An ,Introduction to CP/M Features
and Facilities”) or a CDL ,TPM "HEX" or "REL" file (refer to CDL

'Macro I/II Assembler User’s Manual) for debugging purposes.

The "Z" command is used to reproduce the effects of entering
a command string at the CP/M command level (see Section 4.17, and
the Digital Research "CP/M Interface Gnide”). With the aid of
this command, the CP/M fcb’s TFCB and TFCB+16, and the buffer
TBUFF are set (or cleared) as defined in the CP/M Interface
Guide . This command is not avaiable in Debug I.

2:2:1.3 Examine/Modify Data

, . One of the most powerful commands in ZBUG”s repertoire is the
E command (see Section 4.3), which provides the means to
examine and optionally modify memory. The cell” is displayed,
and modifying data accepted, in the current mode and data display
radix, either of which may be overridden (see Sections 4.3, 5.1,
and 5.2) temporarily. With this command, the ‘cell’ currently
under examination or opened may optionally be changed (merely by
typing a replacement value or instruction), recexamined in a
different mode/radix, or closed. Closing a ' cell can be
followed the opening of the next sequential ,one, the last
sequential one, a called” one, a ‘returned from’ one, or none -
all with one keystroke (see Sections 4.3 and 5.2). With this
commandi, a single memory cell or many may be examined and
changed, a single 1instruction or a number of instructions
examined and/or entered.

Debug I will display both the data and addresses in
hexadecimal always. A cell may be re-examined in a different
mode, but not a different radix.

2.2.1.4 Search for Data

With the "Y' command (see Section 4.16), a string of “cells’
or instructions (depending on the mode set by the M command)
may be searched for in memory. ZBUG displays the addresses of
each occurrence of the string found.

CDL Debug I and II User”s Manual Page 7
Section 2 - Overview of ZBUG

2.2.2 Registers and Flags

The "X" command (see Section 4.15) is provided to examine and
optionally modify the contents of a machine register gr flag (see
Section 4.15, and the Zilog Z80-CPU Technical Manual) or a ZBUG
psuedo register (see Sections 4.15, 5.1, and 5.2). .The contents
of a register are displayed in the radix set by the "RD command,
which can be overridden (see Sections 4.15 and 5.2) temporarily
by special application of the R command. Flag values are
always displayed as a @ or 1.

Debug I displays register values in hexadecimal, and the
special application of the R command does not apply.

2.3 Program Execution and Breakpoints

ZBUG implements the standard "goto with breakpoints” in the
form of the G command (see Section 4.5).

2.3.1 Executing a Program

With the "G" command, complete transfer of control from ZBUG
to the address specified is made - i.e., the machine is no longer
under ZBUG’s supervision. Until a ©breakpoint is reached, the
user”s program has complete control at normal execution Speed.

2:.5:2 Breakpoints During Execution

The use of the "G° command includes the setting of up to
seven individual software ©breakpoints by ZBUG ©before tranfer of
control to the user program 1is effected. These breakpoints take
the form of a restart 6 1instruction (RST 6 - or 9F8 hex), and
ZBUG assumes the user program does not use this instruction and
does not modify locations 239-832 hex in memory.

2.4 Tracing and Traps

Perhaps the mcst useful and powerful features of ZBUG are its
tracing and trap capabilities.

2.4.1 Tracing a Program

Utilizing the "T command (see Section 4.14), it is possible
to execute a program while wunder ZBUG’s full supervision. The
user may specify the number of instructions to be traced. Unless
interrupted (by a trap condition, 1invalid instruction, or user
intervention), ZBUG will execute the program, simulating actual
execution at a speed of 250-2500 times slower (depending on
various conditions).

CDL Debug I and II User’s Manual Page 8
Section 2 - Overview of ZBUG

While tracing, ZBUG may be instructed to display the
instructions executing, and the values of certain machine
registers modified by those instructions.

Debug I will always display the executing instructions and
modified machine registers.

2.4.2 Traps During Tracing

The "S” command (see Section 4.13), in combination with the
trace capability of ZBUG, provides the ability to trace a progran
until any one of four arbitrary conditions occurs. With the S
command, up to four ©boolean expressions (see Sections 5.1 and
5.2) may be saved. Each of the saved expressions are evaluated
after each instruction traced. If any one of the evaluated
expressions returns a non-zero value, ZBUG halts tracing,
notifying the user of the trap.

As traps are determined and controlled by arbitrary boolean
expressions, traps may be set to monitor register/flag/memory
value compared to a constant or other register/flag/memory
value(s). A register or flag may be compared to its own value
prior to the last instruction execution, in order to monitor a
change in value. It is possible to trap when a
register/flag/memory value reaches a certain valué (or range of
values), or when a specific instruction is about to be executed.

The potential of this feature is limited only by the user’s
understanding and use of the conditional expressions that may be
devised.

Debug I does not provide the trap features found in Debug II,
and tracing interruption is left to user intervention or invalid
instructions.

]

CDL Debug I and II User’s Manual Page 9
Section 3 - Starting Out

Section 3

Starting Out

This section is provided to introduce the wuser to ZBUG.
Included in the discussion following 1is a description of the
environment under which ZBUG runs, how to execute ZBUG in order
to debug an existing program, and ©basic debugging operations
using a few simple commands.

3.1 ZBUG’ s Operating Environment

ZBUG is designed to operate under the Digital Research CP/M
Operating System or the Computer Design Labs” TPM Operating
System. The files DEBUGII.COM and ZBUG.REL must be present on
the currently logged-on drive (or drive A) in order to run ZBUG.

The program DEBUGII.COM 1is initiated at the CP/M (TPM)
command level (refer to the Digital Research An Introduction to
CP/M Features and Facilities), which 1loads ZBUG from the
ZBUG.REL file. ZBUG is loaded, following CP/M (TPM) convention,
as high in memory as allowed by the operating system, leaving any
low memory free to contain the program to be debugged.

All ZBUG disk and console I/0 is performed uging CP/M (TPM)

system functions (refer to the Digital Research CP/M Interface
Guide).

ZBUG.REL currently occupies approximately 13.25 K bdytes,
including all data areas.

ZBUG.IMG operates in the same manner as ZBUG.REL, with the
files DEBUGI.COM and ZBUG.IMG replacing DEBUGII.COM and ZBUG.REL.

ZﬁUG.IMG occuplies approximately 9.25 K bytes.

CDL Debug I and II User’s Manual Page 12
Section 3 - Starting Out

3.2 Executing ZBUG
There are two methods of invoking ZBUG....
While at the CP/M (TPM) command level, the command:
A> DEBUGII <cr>

will cause the file DEBUGII.COM to ©be loaded and executed.
DEBUGII will display 2BUG’s current size (in bytes) and load
address (which indicates the size of free memory), 1in hex.
DEBUGII will then load the ZBUG.REL file, relocating it to the
highest available memory address. If ZBUG.REL is not located on
the currently logged—in drive, DEBUGII will 1look for it on drive
A. DEBUGII will finally pass control to ZBUG, which will display
a sign—-on message and prompt, after which the wuser may begin
entering commands to ZBUG. -

The alternate method of executing ZBUG is as follows. Again
at the CP/M (TPM) command level, the command:

A> DEBUGII <name> <cr)

will cause DEBUGII to 1load the file <name>.COM at location 1029
hex (after signaling a successful load of ZBUG), and display the
size (in bytes), the 1load address, and the end address, before
passing control to 2BUG. This action 1is the same as executing
ZBUG in the previous manner, and 1immediately entering the
following command to ZBUG:

* o <name> <cr>

Please note that in the examples above, <name> 1is a CP/M
(TPM) filename (i.e., [device :] name [. extension]). With the
gBUG" 0O command, a file with the -extension coM , HEX , or
REL may be loaded, as described in Section 4.9. If DEBUG loads
the file, however, only files with the COM extension are
loaded. DEBUG ignores any extension entered at the CP/M (TPM)
command level, changing it to COM .

If DEBUG encounters an error while loading either ZBUG or the
optionally specified COM file, a short error message will be
displayed, and control returned to the operating system.

o=

——

e = S e |

-

-t

CDL Debug I and II User’s Manual Page 11
Section 3 - Starting Out

3.3 A Sample Session

This following is a sample workout with ZBUG. A few basic
commands will be explored, with the idea of presenting ZBUG's
usefulness without getting bogged down with the more involved
features.

For this session, assume that the following 1is a listing of
an assembled program which exists on the logged-in drive as the
"cOM” file PRINT.COM:

A program to list the 1@ bdbytes
starting at location 82 hex on the
console in hex

“e we we we 0o

.pabs

.phex
2100 +loe H100 .
9120 21 0989 print: 1xi h, HBQ jstart at. HBQ
2193 @60A mvi b,le y and list 18 bdytes
2195 7E loop: mov a,m yget a byte
@196 CD Q13F call hex H and list in hex
9129 23 inx h sbump to next byte
@13A 12F9 djnz 1loop y and loop if more
@12C C3 20392 Jmp] yleave when done
@10F FS hex: push Dpsw ysave byte
9119 1F rar yrotate
2111 1F rar ’ to get
9112 1F rar ’ high
@113 1F rar y nibble
@114 CD 911F call nibble jprint high nibdble
@117 F1 pop psw syrestore byte and
@118 CD 911F call nlbble H print low nibble
911B J3E29 mvi a,’ yprint a space
11D 18%4 Jmpr output ; and return
@11F E60QF nibble: ani HZF ymask out nibble
2121 (639 adi ‘9’ H and add ASCII zero
2123 C5 output: push b ysave <BC
@124 ES push h H and <HL
3125 5F mov e,a ;CP/M convention
P126 OEQ2 mvi Cy2) to print character
09128 CD @905 call 5 H on console
212B E1 pop h yrestore <HL
@12C C1 pop b H and <BC
12D C9S ret yreturn
21929 .end print

CDL Debug I and II User”’s Manual Page 12
Section 3 - Starting Out

The following is a verbatim 1listing of a terminal session.
The user’s input is in lower case alphabetics, the computer’s
response in uppercase. Comments of the related user and _ computer
actions are enclosed 1in_ curly brackets ("{ ...). The
constructions "<erd” and "<1f> in the session are user-typed
carriage return and line feed, respectively.

{ starting at the CP/M (TPM) command 1level, we'll try
executing PRINT, to see what happens....

A>print <cr>
90 @9 42 55 47 2= 34 20 20 44
A>

N { Obviously, something appears to be wrong - where did the
2=" come from ? }

A>DEBUGII print <cr>

ZBUG s length - H@351F and
load address “HP3AE1

ZBUG 1is loaded....
loading COM file.... N
"HP®200 bytes loaded -— (from "HGO100 to ~HOQ2FF)

CDL 783 CP/M DYNAMIC DEBUGGER VERSION 1.28 <NOTE: Signon for
your version may not be exactly as the above line.>
*

{ First. let“s take a 1look at location 82 hex to see the 19
bytes we re supposed to be listing....

* e 80 <cr>

2089 19 <1fF>
2081 : D8 <1£>
2082: C3 <1£>
29283 : 2A <1f>
go84: 25 <1f>
2@85: CD <1f£>
2986 41 <1f>
2987 . 20 <1f>
0088: CA <1f>
2289: 2A <1f>
Ga8A : 25 <cr>

{ Okay, now let’s execute it to see the results, but with a
breakpoint at the jump back to CP/M }

* g 190, 108c <cr>
10 =8 <3 2: 05 <= 41 @@ <: 2: *%% BREAK (@) -—-> 018C: JMP
2000

{ Yes, folks - something is definately amiss. For each hex
digit greater than 9 (as near as we can tell so far), we have a
garbage character - ¢ for A, < for C, and = for D. Let’s

L

|

b

| ¥

)i

CDL Debug I and II User’s Manual Page 13
Section 3 - Starting Out

start it up again, stopping after getting the second byte (the
first with a problem) from memory. }

* g 100, 10f <cr>
%*%% BREAK (@) --> @10F: PUSH PSW

{ That was the first, loop for the second.... }

* g, 10f <cr>
190 *%%* BREAK (@) —-> 910F: PUSH PSW

{ okay, now look at that byte, in the A register }

* xa <cr>
D8 <cr>

{ Yes, it”s the right byte, alright. Now go until we’ve
isolated the top nibble — the one with the prodlems... }

* g, 11f <crd
*%% BREAK (@) —-> @11F: ANI oF

{ ... and look again. }

* xa <cr>
2D . <cr>

{ Right - the nibble in set up properly. So, we’ll go ahead
and mask it and add the “¢°... }

* g, 123 <cr>
%% BREAK (@) -=-> 9123: PUSH B

{ ... and look at the result - in ASCII since we’re ready to
print out what’s left. Note that in Debug I we can’t do this -
we’d have to stay in hex }

* xa <cr>
3D yra <cr>
= {cr>

{ There’s the problem. We now remember that a 2D hex added
to a “9” (30 hex) is not the ‘D’ (44 hex) we wanted. All we have
to do is add a check to see if the character we’re going to print
is greater than a “9” (39 hex), and add enough to get the proper
character. We”ll need to know what that extra value iS SO.... }

* ¢ ‘D’-34 <cr>
a7

{ We see that to get a ‘D" instead of a ‘=", we have to add a
7. Now, we’ll modify the program to include the check and add.
First, we should take advantage of ZBUG’s assembler/disassembler
capabilities, and get into instruction mode. }

* mi <cr>
MODE: INSTRUCTION

CDL Debug I and II User”s Manual Page 14
Section 3 - Starting Out

{ Now, let’s change that "nidble” routine.... }
¥ e 11f <crd>

@11F: ANI aF 1>

@121: ADI 39 <1e>

{ we’ll put the check right on top of where the "output”
routine is, making it garbage....

@123: PUSH B cpi ‘97+1 <1f>
@125: MOV E,A jre +4 <16
@127: STAX B adi 7 <1£>

{ Now we must relocate the "output” routine.... }

2129: DCR B push b <1f>
@12A: NOP push h <1f>
@123 POP H mov e,a <1f>
912C: POP B mvi c,2 <1£>
@12E: JRNZ 2150 call 5 <1f>
P131: MOV B,H pop h <1f>
0132: MOV D,H pop b <1£>

2133: JRNZ 2183 ret <cr>
P

{ Okay, now to fix up the relative jump to "output”... }

¥ e 114 <cr>)
@11D: JMPR 2123 jmpr 129 <cr>

y { i.. and try it out, stopping again before running off to
CP/M.

* g 100, 1%c <cr>

10 D8 C3 2A @5 CD 41 0@ CA 2A *%%* BREAK (8) --> 816C: JMP

0000
e

{ Fine, all’s well. We’ll leave ZBUG... }
* q <cr>

A>

{ ... and save it. }

A>save 2 print.com <cr>
A>

{ One last time.... }

A>print
00 00 42 55 47 2D 34 20 29 44

{ A1l fixed ! }

CDL Debug I and II User’s Manual Page 15
Section 4 - The Commands - A Detailed Description

Section 4

The Commandé — A Detailed Description

The following 1is a 1listing of the commands ZBUG provides,
with a detailed description of the use and operation of each.

This section is intended for use as a detailed reference guide to
ZBUG.

The format of each command is as follows:

Command character = Command name
Command format

Description

Example

The following symbols are used to describe the format to the
various ZBUG commands:

<CR> represents a carriage return,
<LF> a line feed,

{BS> a backspace (control-H),
<ESC> an escape (or altmode)

<FF> a form feed (control-L)

[...] means contents are optional,

{ ... } means contents are mandatory,

¢ee | «.. means or = i.e., a choice can be made
ees)]+ —0r- ...}+ means one or more

ee.]® =or- ...}* means zero or more

Please note that ZBUG is only blank (”) sensitive where
expressly stated. Normally, blanks may be used freely during
type—-in to facilitate easier reading. Note also that more than
one command may be typed on the same 1line, separated by
semicolons (“7”) and terminated by a <CR>. ZBUG will attempt to
execute each commang in "ogder of appearance, unless a) an error
occurs, or b) an E, X, or Y command has been executed,
after which any remaining commands will be ignored.

Ugless explicitly defined otherwise, all constructions of the
form < ... > 1in the command descriptions (such as <expression>,

<address>, <count>, etc.) are properly formed ZBUG expressions
(see Section 5.1).

In each of the command examples, the ZBUG prompt ("*") is
followed by the user input (in 1lower case alphabetics), and then
by any ZBUG response. Unless otherwise stated, the mode is byte
and the radixes (address display, data display, and default
tvpe-in) are hexadecimal.

CDL Debug I and II User’s Manual Page 16
Section 4 - The Commands — A Detailed Description

4.1 C - Calculate
C <expression>

Calculate the value of {expression> and display 1in the
current mode and data display radix.

The <expression> is evaluated and its value displayed in the
current mode and data display radix. If the <expression> is
omitted, no value is displayed.

Debug I will display the resulting value in hexadecimal.
{ calculate 1+2 }

* ¢ 1+2 <cr>
23
*

{ calculate 3*5 }

* ¢ 3*%5 <cr>
oF
b

4.2 D = Display
D [<address>] [, <count)>]
Display memory in the current mode and data display radix.

Starting at <address>, display <{count> sequential cell
addresses (in the current address display radix) and cell
contents (in the current mode and data display radix). If
address> is omitted, the default is 3. If <count> is omitted,
the default is 1. ZBUG formats the display, placing an address
and one, two, four, or eight values per 1line (depending on mode
and data display radix).

Debug I will display both the data and addresses in
hexadecimal.

{ display cell at @ }

* d <cr>

2099 : F8
%*

{ display 5 cells starting at 1900 }

* d 109, 5 <cr>
0120 : 37 23 40 F7 EA
s

{ set instruction mode (see Section 4.3), then
display 4 cells (instructions) starting at 200 }

CDL Debug I and II User’s Manual Page 17
Section 4 - The Commands - A Detailed Description

* mi <erd>
MODE: INSTRUCTION
* 4 200, 4 <cr>

0200 : ANI 24
2202: JRNZ 2019
0204 : POP PSW

@205: RET
*

4.3 E - Examine
E [<address>]
Open cell at <address> for examination and modification.

Open the cell at <address>, displaying <address> 1in the
current address radix, and the contents of the cell 1in the
current mode and data display radix. Accept from the user an
optional replacement value - assumed to be in the current mode -
followed by a valid closing character. Note that if the current
mode 1is instruction, the user may type an instruction
(mmnemonic/operand(s) sequence). When accepting an instruction as
a replacement value, ZBUG 1is blank sensitive, as a blank or tab
MUST separate a mnemonic from any operand(s) required by the
particular instruction.

Debug I will display both the <cell data and address in
hexadecimal.

After the replacement value has been typed, or instead of it,
the user must close the location to continue on. To close the
location, he/she may do one of the following:

type a <CR> to close and exit the E command,
type a <LF> to close and open the next sequential cell,

type a comma (“,”) to close and open the next sequential cell
on the same line (not valid in instruction mode, as a 7,
separates instruction operands),

type a <BS> to close and open the last sequential cell (in
instruction mode, the mode is first
changed to byte (see * Note)),

type a <ESC> to close and open the cell pointed to by the
last value (gr address, if instruction mode) typed or displayed,
pushing the “return” address of the next sequential cell on the
call stack,

type a <FF> to close, popping the “return” address from the
“call’ stack and cpening that cell,

type a semicolon (";") followed optionally by “Mn" (see
Section 4.8) and/or Rn (see Section 4.12), followed by a <CR>,
to optionally change the <current mode and/or data display radix
temporarily (see * Note) and reopen the cell. (Note that the

CDL Debug I and II User’s Manual Page 18
Section 4 — The Commands — A Detailed Description

"Rn" option is not available in Debug I)

Note that, for each newly opened cell, ZBUG goes to a new
line, displays the cell’s address (in the current address display
radix) and the cell’s contents (in the current mode and data
display radix).

* Note: The changing of the mode and/or data display radix as
indicated above changes same only until a) it is changed again in
the same manner or b) a cell is closed with a <CR>, exiting the E
command and restoring the mode/radix of before. Note also that
the radix cannot be changed in Debug I.

Note that the special value ~." ("here”) always contains the
address of the <cell currently open, and on exit from the E
command, contains the address of the last cell opened. For more
information regarding . , refer to Section 5.1.

{ examine cell at 1090 }

* @ 100 <cr>

2100 : C3 {cr>

»

{ examine and modify cells... }

* e 190 <cr>

2100 c3 <11
9121: 29 25 <1£>
2102: 34 {cr>

*

{ set instruction mode, and try a few things... }

* mi <cr>

MODE: INSTRUCTION

* e 100 <cr>

2120 : JMP 3405 AAf>
0133 : CALL 2156 <1f>
2106: JRNZ 2113 <esc>

2113 CPI 41 sjra <cr>

2113 CPI ‘A’ <1f>

2115: JRZ 0134 <Pf>

g198: ANI “TA7 ;yth <cr>

2128: ANI 21 ANI 22 5 <cr>
0108: ANI 92 <cr>

P

Please refer to Section 5.2 for more discussion.

4.4 F - Fill
F [<address>] , [<count>] , <value>

7111 cells with constant.

.

r

= =2

=3

CDL Debug I and II User’s Manual Page 19
Section 4 - The Commands - A Detailed Description

Starting with <address>, fill <count> sequential cells in the
current mode (if instruction mode, assume byte) with the value

<{value>. If <address> is omitted, default to @. If <count)d is
omitted, default to 1.

{ £111 starting at 190 with 4 “!" s }

* £ 100, 4, ‘17 <cr>
x

{ put a @ in cell 120 }
* f 100, , @ <cr>
o

4.5 G - Goto
G [[<start> 1 [, <break> 1%]
Goto <start> with bdbreakpoints at <break>.

Clear any previously set ©breakpoints. For each <break)>
address (ZBUG provides up to seven) indicated, set a software
breakpoint. Begin execution (complete transfer of control) at
the address <{start>. If a breakpoint 1is encountered, interrupt
execution and notify the user of the break, indicating which trap
occurred (@ - 7) and displaying the address and associated
instruction. If no breakpoints were specified, do not set any.
If {start> was omitted, default to the address in the program
counter (register <PC).

ZBUG utilizes a "restart 6° (RST 6 —-or— @F8 hex) instruction
for software breakpoints, which require that 2ZBUG place a jump
instruction at locations 0039 to @@32 hex for proper operation of
breakpoints. This implies that the wuser program must NOT use
this instruction or modify these 1locations, or undefined actions
may result.

When a break has been encountered and the user notified, ZBUG
places the address of the break (kept in the program counter -
register <PC) in the special value . . For more information,
refer to Section 5.1.

{ start execution at 1909 }

* g 102 <cr>

{ start execution at the address in the program counter, with
a dbreakpoint at 349 }

* g, 340 <cr>

#*%% BREAK (@) --> 2340: CALL 2351
*

CDL Debug I and II User”’s Manual Page 20
Section 4 - The Commands - A Detailed Description

4.6 1 = Instruction Interpret
I <instruction>
Interpretively execute the <instruction>.

After "assembdling” the <instruction)>, interpretively execute
it.

This command provides the capability of executing an
arbitrary instruction, in order to effect the actions determined
by the particular instruction. Unless the instruction performs a
transfer of control (i.e., jumps, calls, returns, restarts, or
indirect register jumps), the program counter will not be
changed.

ZBUG effectively traces the one instruction and returns to
the user.

Note that if the <instruction> is a «call or restart
instruction, the associated return address pushed on the stack
will be within ZBUG which, when transfered to by a matching
return (or any other means), will cause ZBU3 to notify a
breakpoint, and return to the user.

This command is not available in Dedbug I.

{ execute an increment register A instruction checking the
contents before and after }

* x a <cr>

23 <cr>

* § inr a <cr>
* x a <cr>

24 {cr>

-3

{ execute a push register pair HSL instruction and check the
stack pointer }

* x sp <cr>
2546 {cr>

1 push h <cr>
¥ x sp <er>
2544 <cr>

x

4.7 L = List ASCII
L [<address>] [, <count>]
Starting at <address>, list <count> ASCII characters.
Starting at <address>, display <count> sequential printable
ASCII charaters (if nonprinting, print a .), preceding each

group of up to 32 characters with the address (in the current
address display radix) associated. If <address» 1is omitted,

CDL Debug I and II User”s Manual Page 21
Section 4 - The Commands — A Detailed Description

default to 9. If <count> is omitted, default to 1.

ZBUG formats the display, so that for every line displayed
contains one address and up to 32 ASCII characters.

Debug I will display the address in hexadecimal.
{ 1ist the 22 characters starting at 1090 }

* 1 129, 23. <cr>

0108: ...A.+;Q....%0ha*:....]
*

{ 1ist the character at @ }

* 1 <cr>
20009 : .
*

4.8 M = Mode
M [<modifier>]
where <modifier> is { B ! W | I ! 1 | 2! 31| 4}
Set current mode. -

Set the current mode to byte“(:B" or "1"), word or double
byte (W or 2), triple byte (3), double word or four bdbyte
("4), or instruction (I), and display a message reflecting the
change. If the mode modifier 1is omitted, display the current
setting.

A special application of this command is available during the
execution of the E (examine) command. In place of the
replacement value accepted by ZBUG (or immediately following it),
the user may type: yMn , where n is one of the modifiers
described above. This changes the current mode for the remainder
of the execution of the command, unless changed by another
application of this feature.

When ZBUG is first executed, the mode is set to byte.
{ change mode to instruction }

*mi {cr>

QODE: INSTRUCTION

{ change mode to word (two byte) }

*m2 e

MODE: WORD
*

{ display the current mode setting }

CDL Debug I and II User”s Manual Page 22
Section 4 - The Commands — A Detailed Description

* m <ecr>
MODE: BYTE
x

4.9 0 = Open File
0 <filename> [, <bias>] [, <relocation>]
Open <filename> for debugging.

Load CP/M disk file <filename> 1into memory, with optional
bias of <bias> and relocation (if a CDL .REL" file) of
{relocation>. If <bias> is omitted, default to g. 1If
{relocationd> is omitted, default to 100 hex.

{filename> is a CP/M filename of the form:
[<drive> :] <name> [. <extension)]

where the extension is COM for a binary image file, "HEX" for
an Intel-compatible ‘hex” object file (whether binary or ASCII),
and REL or a CDL relocatable object file (binary or ASCII). If
the extension is omitted or not COM , "HEX or REL’ , a "CcoM
type file is assumed.

Files are loaded to the actual phySical addresses found as
follows:

COM files: The <bias> (defaulting to @ if omitted)
plus 109 hex.

HEX files: The <bias> (defaulting to @ if omitted)
plus the load address supplied in the
HEX format.

REL files: The <bias> (defaulting to @ if omitted)
plus the <relocation> (defaulting to
180 hex if omitted).

If the file <filename> cannot be found, or if an error has
occurred while reading it, or the file attempts to be loaded
within ZBUG’s ©bounds, an error will result, and ZBUG will
discontinue loading.

During the loading, ZBUG displays the starting load address
and the ending 1load address. If an error 1{is encountered in a
HEX or REL file’s format while 1loading, the address of the
last byte loaded will be displayed.

Note that ZBUG is blank sensitive within a filename, assuming
any blank encountered terminates the filename.

{ open COM file TEST, loading it starting at 100 }
* 0 test <cr>

2129: LOAD ADDR
@5FF: END ADDR

1

B—

3

CDL Debug I and II User’s Manual Page 23
Section 4 - The Commands — A Detailed Description

*

{ open file TEST.REL, loading and relocating it at 229 }
* o test.rel, , 200 <cr>

2200 : LOAD ADDR

342 : END ADDR

E-3

{ open COM file FILE from drive A }

* o0 a:file <cr>

2100 : LOAD ADDR
@37F: END ADDR
=

4.10 P - Put String

P [<address)>]

Put an ASCII string into memory starting at <address>

After displaying the <address> in the current address display
radix, accept ASCII charaters from the wuser, storing them in
sequential memory bytes starting at <address>, until a control-D
is typed. If <address> is omitted, default to 2.

Debug I will display the address in hexadecimal. .

{ put a string at 100 }

* p 192 <cr>

gl@@: this is a string <control-D>

{ put a string at 2 }

* p <cr>
9000 : example <control-D>
x

4.11 Q = Quit
Q
Exit ZBUG, returning to CP/M.
{ quit and go to CP/M }

® q <cr>
A>

CDL Debug I and II User’s Manual Page 24
Section 4 - The Commands — A Detailed Description

4.12 R - Radix
R [<type> [<modifier> 1]

where <{type> is { A

I D
and <modifier> is { A |

i T}
B!D/HE{O! RS}

Set current address display, data display, default type-in
radix.

Set the current address display (<type> A "), data display
(<type> "D"), or default, type-in (<type> "T") radix to either
ASCII (A), binary ("B"), decimal ("D)& Jhexadecimal (' ‘57),
octal ("0"), relative or signed decimal ('R’ "), or split octal
('S'), and display a message reflecting the change. If the radix
modifier is omitted, display the current setting for the radix
type <type>. If the radix type is omitted, display the current
settings of each radix type.

A special application of this command is available during the
execution of the E (examine) and X (examine register/flag)
commands (see Sections 4.3 and 4.15). In place of the replacement
value accepted by ZBUG (or immediately following it), the user
may type: yRn , where n is one of the radix modifiers
described above. This changes the data display radix for the
remainder of the execution of the command, unless changed by
another application of this feature.

Note that the ASCII ("A") radix is not valid for the address
display radix type.

An additional flexibility 4is provided for the address radix
application. If the radix is being modified, and the command is
followed by an "A (i.e., "RAHA"), ZBUG recognizes that addresses
will be displayed as absolute values, and not relocated (see
Sections 2.1.2.3, 4.15, and 5.2).

When ZBUG 1s first executed, each of the radix types are set
to hexadecimal, and relative addresses are permitted (i.e., the
A option for the address radix is not in effect).

This command, and all its wvariations, are not available in
UZBIG.

{ change data display radix to hexadecimal }

* r dh <cr>
DATA DISPLAY RADIX : HEXADECIMAL
-]

[display the current address display radix setting }

* ra <cr
ADDRESS DISPLAY RADIX : BINARY
%

{ set the address radix to hexadecimal, specifying absolute
addresses only }

CDL Debug I and II User”s Manual Page 25
Section 4 - The Commands - A Detailed Description

* r aha <cr>
ADDRESS DISPLAY RADIX : (ABSOLUTE) HEXADECIMAL
*

{ display the current settings of each of the radix types }

* pr <cr>

ADDRESS DISPLAY RADIX : BINARY
DATA DISPLAY RADIX : HEXADECIMAL
2EFAULT TYPE-IN RADIX : DECIMAL

4.13 S - Set Trap/Conditional-Display
S [D] [*] [<id> [, <expression>]]
where <¢id> is { @ | 1 | 2 | 3} |
Set trap/conditional display.

This command performs several different functions, depending
on the options used. Each is described separately below.

S [<id> [, <expression>]]

Set trap <id> to boolean expression <expressiond. If the
{expression> is omitted, display the expression set currently for
trap <id>. If <id> is omitted, display the expressions currently
set for each trap.

s* [<id>]

Reset trap <id>, removing its currently set expression, and
effectively clearing the trap. If <id> is omitted, display the
id“s of each cleared trap.

SD [<id> [, <expressiond> 1]

Set conditional-display <id> to boolean expression
{expression>. If the <expression> is omitted, display the
expression saved currently for conditional=-display <id>. If <id>
is omitted, display the expressions currently set for each
conditional-display.

SD* [<id>]

Reset conditional-display <id>, removing 1its currently set
expression, and effectively clearing the conditional-display. If
iad> is omitted, display the id”’s of each cleared
conditicnal-display.

For each trap or conditional-display set, ZBUG saves the
{expression> specified, after surrounding it with parentheses and
preceding the resulting expression with a unary radix change
operator for the current default type—in radix. This 1is to
insure the user that the expression will ©be evaluated during
tracing in the default radix active when the expression was

CDL Debug I and II User”’s Manual Page 26
Section 4 - The Commands — A Detailed Description

originally entered, regardless of any subsequent 1later changes
with the R command. Each expression entered, whether trap or
conditional-display, must be no more than 59 characters long,
including any spaces or tabs contained within.

During tracing (see Section 4.14), each expression saved is
evaluated after every 1instruction traced. The effects of and
uses of both types of expression (trap and conditional-display)
are described further in Section 4.14 and 5.2.

This cammand, and all 1its variations, 1s not available in
Debug I.
{ set trap @ to fire when register A changes }

: s@,<a ?ne <la <cr>

{ set trap 3 to fire when the next 4instruction to be traced
is a pop register pair D&E }

* s3, 1. ?eq [pop d] <cr>
x

{ display all currently set traps }

* s <cr>

-~

“H(<A ?NE <!A)
H(!. ?EQ [POP D])

display all currently cleared trap 1d’s }

{

* g¥ derd
1 2

x

{ set conditional—-display @ to display if the program counter
is between 1002 and 1296 }

: sd@,(<pc ?ge 1200) & (<pc ?le 1296) <cr>

1{ display currently set conditional-displays }

?d <cr>

*
(2 AH(((PC ?GE 1020) & (<PC ?LE 1296))
%

{ display currently cleared conditional-displays }

* sd <cr>
123
*x

P e v

prv——

v P

r

— =3

(s Y W

W

—

CDL Debug I and II User’s Manual Page 27
Section 4 — The Commands — A Detailed Description

4,13.1 SW - Set Wait
SW [<count>]
Set a delay time of <count> * 1@ msec (at 2 MHZ) for tracing.

Set tracing delay time of <count> (default type-in radix is
alway decimal for this command) centi-seconds. If <count)> is
omitted, display the current setting in decimal centi-seconds.

During tracing, ZBUG will wait for the count set by this
command after displaying an instruction and before executing it.
This gives the user time to see what is about to be executed, and
interrupt ZBUG before anything happens if desired. The count is
considered by ZBUG to be between @ and 255 centi-seconds, giving
the user up to just over 2.5 seconds to make the decision to
interrupt, or enough time to follow the trace with a listing.

{ set delay to maximum }

:.sw 255 <cr>

{ display setting }

* sw <cr>
255
*

4,14 T - Trace
T [<address>] [, <count> 1 [, { 0} C }]
Trace <count)> instructions starting at <address>.

Starting at <address>, trace up to <count> instructions. If
{count> is omitted, default to 1. If <address> is omitted, start
at the address in the program counter.

If the "0" or "C” options are omitted, the automatic display
is in effect. This implies that before the execution of each
instruction, ZBUG will display the address of the next
instruction to be executed (in the current address display radix)
and the instruction (with any operands in the appropriate current
address or data display radix). 2ZBUG will not go to a new line
(the cursor will remain on the same 1line as the instruction)
until the instruction displayed is executed.

After the instruction has been executed, display the contents
of the SP, IX, IY, AF, BC, DE, and/or EL registers if they were
modified by the instruction, and then display the next
instruction.

If the "0" option is used, turn off automatic display.

If the "C" option 1is used, turn off automatic display only
when tracing a subroutine (code entered by a call instruction and

CDL Debug I and II User’s Manual Page 28
Section 4 - The Commands — A Detailed Description

left by a matching return instruction) in a deeper level (up to
128 calls deep). With this option, the <count> refers only to
instructions that are displayed.

Before executing each 1instruction, evaluate -each currently
set conditional-display expression. If a non zero value 1is
found, display the id (of the expression causing 1it) and the
instruction to be executed. If no expression value is non-zero,
display without an id if the automatic display 1is in effect,
otherwise do not display.

If the current 1instruction has ©been displayed (by the
automatic display and/or a conditional-display), wait for the
time specified by the SW command before executing it and going to
a new line. The ©pause before new—line gives +the user time to
interrupt tracing by the use of a control-E.

Before executing each instruction, save the present value of
all machine registers and flags as the next old values.
. After executing each instruction, set the special value "."
(here - see Section 5.1) equal to the value in the program
counter.

After executing each instruction, evaluate each currently set
trap expression. If any non—-zero values are found, display the
related id“s and expressions, the next instruction, and stop
tracing.

If, during tracing, the user types a control-E, or a halt
(HLT) instruction or 1invalid 1instruction 1is encountered, halt
tracing at the current location.

If, during tracing, the user types a control-T, display the
current instuction being traced.

Note that the <{count> specified by the wuser in this command
is treated by ZBUG to be a positive 16-bit value, with a default
of 1. If it is desired that ZBUG trace indefinitely, a count of
@ will result in an infinite trace.

Debug I does not provide the "0° or "“C” options, traps,
conditional display, or the control-T features available in Debug
i3

{ trace the next instruction }

* t <cr>

9238: INR A - AF (1501)
%

{ assuming the trap and conditional-display settings of the S
command examples of Section 4.13, ©begin an infinite trace to
see what happens

* t 190, @ <cr>
2100 : ORA A - AT (1500)
2191: JNZ 1229

s

o)

CDL Debug I and II User’s Manual
Section 4 - The Commands — A Detailed Description

(2) 1200 MV I
(9) 1202: LX1
(2) 1295: CCIR
(2109)
(@) 1297 INZ
1450: PUSH
1451 MOV

B,21
H,0000

1450
D
A,B

*%:x TRAP (@) —=> "H(<KA ?NE <!A)

i452: ORA A

{ ... and going on from there...

*t, 8 <cr>
1452: ORA
1454: JRZ
*%% TRAP (3) --> "H(!.
iéGA: POP D

{ now, do it all again,
display off }

* t 100, @, o <cr>

(9) 1200 : MV I

(2) 12092 LXI

(2) 1205 CCIR
(2120)

(9) 1297: JINZ

A
1464
?EQ [POP

but this

3,21

H,0900

1459

#*%% PRAP (@) —-> "H(<CA ?NE <!A)

i452: ORA A

{ start a trace, assuming trap
program counter is between 145 and 14E }

* t 100, 0
9100 MVI
2122: LXI

9105: CALL

1230: PUSH
1231: PUSH
1232: MOV
1233: XCHG
1234 : MVI
1236 DJINZ
1238: PCP
1239: POP
123A: RET
2198: JMP
2140: LXI

2143: LXI

sk TRAP (@) —-> “H((<CPC 7GE 145) & (<

2146: XRA A
*

A,21

B,FFFF

- BC
=1 HL
= AF

- SP
« AF

D])

time,

- BC (
- HL (0009)

(2109)
(0222)
(@212)

(950C)
(9012)

(go44)

Page 29

- BC (9@90) — HL

turn off the automatic

2100)

- AF (9012) - BC (0290) - HL

@ 1is set

- AF
- DE
= SP
- SP
= SP
- BC
- DE

- BC
= SP
= SP
= 3P

= HL
- BC

(9100)
(0209)
(95F0Q)
(ZSEE;
)
)

(0000)
(FFFF)
PC ?LE

{ now, do the same, but with the C option }

to fire when the

AL (09200)

BC (1537)
HL (@912)

14E))

CDL Debug I and II User’s Manual Page 39
Section 4 — The Commands - A Detailed Description

* t 100, 0, c

2183: MVI A,01 - AF (0129)
g@192: LXI D,0000 - DE (0090)
2195: CALL 1230 - SP (@5F2)
2198: JMP 2140
9140 : LXI = H,0000 - HL (0080)
2143 LX1I B,FFFF - BC (FFFF)
*%% TRAP (@) -=> "H((<KPC ?GE 145) & (<PC ?LE 14%E))
0146: XRA A
%
4.15 X - Examine Register/Flag

X [[<] <register-name> | > <flag-name)>]

where <{register—-name> is:

(r1 071 { AF ! BC ! DE ! HL !
sp ! pc ! Ix ! 1Y !
IR | RD | WR | RR |
DR |
A!'!F!B!'!Cc!D!
EJE! LV IN R
M}

and <flag-name> is:
(r1C°1T{ctHEINIPIS IV]Z}
Open register/flag for examination and modification.

Open the specified register or flag, displaying its contents
in the current data display radix <(or a 2 or 1 if display a
flag). Accept from the user an optional replacement value
followed by a valid closing character.

After the replacement value has been typed, or instead of it,
the user must close the register or flag, by doing one of the
following:

type a <CR> to close the register or flag and exit the X
command ;

type a semicolon (";") followed optionally by "Rn" (see
Section 4.12), followed by a <CR>, to optionally change the
current data display radix temporarily (see * Note) and reopen
the register (note that this does not work if examining a flag).

* Note: The change of data disvlay radix as indicated above
is in effect only until a) it is changed again in the same manner
as above or b) the register is closed with a <CR>, exiting the X
command and restoring the previous mode.

If no register or flag name 1is specified, display the
contents of all the machine registers, the pseudo registers, the
top four word values on the stack, and the instruction pointed to
by the program counter.

=

e T =3

= =3

s S e

—

1

CDL Debug I and II User”’s Manual Page 31
Section 4 - The Commands — A Detailed Description

The register names defined above are further described below:

The 16-bit registers:

AF — The Z8@ register pair commonly known as PSW
BC - The 280 register pair B&C

DE - The 72882 register pair D&E

HL - The 280 register pair H&L

SP - The Z89 stack pointer

PC - The Z82 program counter

IX — The Z80 index register X

IY - The 289 index register Y

IR - The Z8@ register pair made of the combining

— of the interrupt register and the refresh
- register

RD — The ZBUG pseudo register containing the
= address of the last traced memory read
- access

WR — The ZBUG pseudo register containing the
— address of the last traced memory write
- access

RR - The ZBUG pseudo register containing the
- user defined <code relocation address

DR - The ZBUG pseudo register containing the
- user defined "data relocation address

The 8-bit reisters:

- The 280 register A (accumulator)
- The Z&9 flag register

- The Z83 general register
- The Z&0 general register
- The 7280 general register
The 289 general register
- The Z8@ general register
— The 280 general register
- The Z80 interrupt register I

- The 780 refresh register R

- The 2892 "register” M (byte pointed
- to by register pair HSL

To~OOEHOQW A P
|
AdEO QW

The flag names described above are further defined below:

- The Z8@3 carry flag

- The Z8@ half-carry flag

— The 282 add/subtract flag
The 232 parity/overflow flag
- The 282 sign flag

- The 239 varity/overflow flag
. —= The Z89 zero flag

N<Whh=zZmhma
I

For a complete description of the 780 registers and flags,
please refer to the Zilog 283-CPU Technical Manual

The optional "!" is wused to access the “old" value of a
machine register or flag — the value of the register/flag before
the last instruction traced. As ZBUG does not save the, "old’
values of the pseudo registers (RD, WR, RR, or DR), the ! will

CDL Debug I and II User’s Manual Page 32
Section 4 - The Commands - A Detailed Description

have no affect if used to to refer to them.

The optional "“" used to refer to a register generally means
to consider the Z80 auxiliary register of the same name. This
refers to the A, ¥, B, C, D, E, H, L, M, AF, BC, DE, and HL
machine registers, and all of the flags. In the case of the
other machine registers, the “° has no affect.

The "*" does have significance with the three ZBUG pseudo
registers, and each are described below.

The ZBUG pseudo registers RD and ‘RD are set during tracing.
Bach instruction that accesses memory for a read sets these
registers as follows: The RD register is set to the address of
the lowest byte accessed by the instruction, and the “RD register
is set to the highest. An instruction that does not access
memory for a read will not disturbd the contents of either
register (the access by the program counter to get the
instruction is not considered a read access _by ZBUG). For
example, if the 1instruction being traced is a MOV A,M , both
register RD and ‘RD will be set to the address cgntajned in the
register pair H&L. If the instruction 1is a RET , the RD
register will be set to equal the address contained in the stack
pointer, and the “RD will be set to that address plus one. If
the instruction is an LDIR , the RD register will be set to the
address contained in the register pair H&L, and the “RD will be
set to that address plus the contents of register pair B&C minus
one. Finally, if the instruction 1is an LELD @108 , the RD
register will be set to 9109, and the “RD set to 9131.

The ZBUG pseudo registers WR and “WR act like the RD and ‘RD
registers, but are set for memory write accesses.

The RD, “RD, WR, and ’“WR registers facilitate the monitoring
of memory read and write accesses.

The ZBUG pseudo registers RR, “RR, DR, and ‘DR are registers
gtilized by the user and ZBUG to facilitate access to memory with
relocatable addresses. For example, if a wuser wishes to debug
code in a certain sub-set of a program (such as a single module
of the program), he sets register RR (or DR) via the X command to
the address of the start of the sub—-set or module. The “RR (or
“DR) register is then set to the end of the module. ZBUG will
then always display any addresses which 1lie between these two
values as being a relative positive offset from the contents of
register RR (or DR). Any addresses lying outside this range will
be displayed as absolute. ZBUG signals the difference by
following any relocated addresses with a single quote if relative
to RR, or a double quote if relative to DR. Absolute address are
not flagged in this manner. To any address (or any expression,
for that matter) that the user types with a following single or
double quote, ZBUG will add the contents of the RR or DR
register, resulting in an absolute address.

If the register RR (or DR) is equal to 2 (its default value),
ZBUG will not relocate any addresses displayed, and any typed by
the user with the " signal for relocation will be taken as
absolute values (offset plus a base address of @).

= =3 2

— =23

CDL Debug I and II User’s Manual Page 33
Section 4 - The Commands — A Detailed Description

This feature of ZBUG makes debugging a module with a listing
showing only relative addresses a simple matter of typing a
relocatable address instead of an offset plus a constant. By
using the RR pair to refer to the code of a module, and the DR
pair for a separate data module, following a listing is easier.
For further discussion, refer to Section 5.1.

When ZBUG is first executed, all registers are initialized.
The SP, RD, ‘RD, WR, and “WR are set to point to the bottom of
ZBUG - the highest memory address that a debugging program may
use. The PC is set to 109 hex. The other registers are set to
2.

Debug I does not prov%de" the RR, DR, RD, or WR register
pairs, or the re-examine (Rn) feature found in Debug II.

{ examine the A register }
* x a <er>

20 <cr>
*

{ examine and modify the register pair H&L }

* x hl <cr>
2001 g <cr>
%

{ examine the B register in various radixes }

* x <b
09 yra <cr>
e yrd <cr>
") yrr <cr>
+0 Lcrd>
b

{ examine and modify the carry flag }

* x >c <cr>
(<a + 1) > 8 <cr>

*

—

examine all }

#*

x <cr>
AF (909F) BC (90901) DE (1253) HL (Q9¢0) FLAGS:VNC
AF“(Q0FQ) BC’(Q20¢@) DE (Q@30¢) HL (0¥09d) FLAGS: SZ.H....
IX (0000@) 1Y (2000) 1P (QQ0Q) - INTERRUPTABLE
RR (@109) RR”(2229) DR (@393) DR’ (0229)
RD (3900) RD (3900) WR (3908) WR (3909)
SP (@090#) —-> gac3 C379 5734 11F3
PC (9008°) —--> MOV A,M

CDL Debug I and II User”s Manual Page 34
Section 4 — The Commands — A Detailed Description

4.16 Y = Search
Y [<start>] [, <end>]
Search memory from <start> to <end> for string.

Following this command by up to 32 bytes of data cells in the
current mode, separated by semicolons (;) and terminated by a
<CR>, search memory within the range <start> to <end>, displaying
the addresses (in the current address display radix) of each
occurrence. If <end> is omitted, assume @FFFF hex. If <{start>
is omitted, assume 9.

Debug I will display the addresses in hexadecimal.
{ search for 1,2,3,4 throughout all of memory }

* y <cr>

1 25 35 4 <cr>
100F

3451

AGO3

FF45

ste

{ assuming instruction mode, look for all calls to location 5
between 100 and 1029 }

* y 100, 1000
call 5 <cr>

2134
2562
%

4.17 Z - Zap CP/M fcb’s
Z <string>

Set up CP/M input as if <string> were part of command at CP/M
command level:

A> <program> <string> <cr>

Set up CP/M°s TFCB, TFCB+16, and TBUFF with <string>, as
defined by the Digital Research CP/M Interface Guide . If
{string> is omitted, clear TFCB, TFCB+15, and TBUFF as also
defined.

Note that ZBUG 1is sensitive to blanks 1in parsing filenames
from <{string> — any encountered are assumed to be terminators.

Debug I does not provide this command.
{ set up a filename }

* 7z file.asm <cr>
*

CDL Dedbug I and II User”’s Manual Page 35
Section 4 - The Commands — A Detailed Description

{ set up a string }

: z 3/24/78 10:15:908 <cr>

CDL Debug I and II User’s Manual Page 36
Section 5 - Going Beyond the Basics

Section 5

Going Beyond the Basics

Although ZBUG can be used after getting to know how to use a
few commands, much can be gained by becoming familiar and
comfortable with Z2ZBUG’s most flexible, and therefore most
consequential, feature - the expression.

The majority of this section will be used to discuss the ZBUG
expression (5.1). The remainder will be used to dramatize the
ZBUG s potential capabilities by giving specific examples of
commands utilizing expressions as arguments, along with
suggestions and hints to help utilize ZBUG to it fullest.

s, [u—onl[

)

o R W— S —

s { e s - S— A

l«-

¥

CDL Debug I and II User”s Manual Page 37
Section 5 - Going Beyond the Basics

5.1 The ZBUG Expression
ZBUG expressions follow a relatively small set of recursive

rules. To help visualize these rules, the following 1is the
syntax or structure of all expressions in BNF (Backus Naur Form).

{exp> s2= {sub-exp> [<c—-op> <{sudb—exp>]*
{sub-exp> ::= <term> [<t-op> <termd> 1*
{term> ::= <bool> [<b-op> <boold>]=*
<boold> ::= {factor> [<f-op> <factor>]* .
{factor) ::= { <con> | <sym> | (<exp>) } [“!"] |
<u-op> <factor>
<cond> 3= <reg> | <flag> | <numd
{reg> $i= < <register—name>
{flag> ::= > <flag-name>
<num> $e= {string> |
<number> |
{instruction>
{c-0p> ::= _ .
{t=-op> ::= +] =11
<b-op> ::= * /1@ &)<t
{f-0p> ::= ?EQ | 2NE | ?LT ! ?L§ ! 2GT | ?GB
{u-op> ::= + -1 #1 @\ ! i 1

The symbols <sym>, <register-name>, <flag-named>, <stringd>,
<number>, and <instruction> will all be defined in the discussion
following.

Debug I provides for a very restricted expression, defined in
the following BNF:

<{exp> se= {factor> [+ | =] <factor>
{factor> ::= <con> | <sym> | (<exp>) |
[@1 \] <factor>
<con> := <reg> | <flag> | <num>
{reg> 1= < <register—name>
{flag> ::= > <flag—name>
<num> $= {string> | <hex>
Note that the + and - operators are define in Section 5.1.2,

the @ and \ in Section 5.1.5, and <hex> 1is a hexadecimal number
as defired in 5.1.7.1.

CDL Debug I and II User”s Manual Page 38
Section 5 - Going Beyond the Basics

5.1.1 <exp> and the "_" Operator
As defined earlier, an <exp> (expression) is:
{sub-exp> [<c-op> <sub—eip>]*

g

a subexpression followed by zero or more occurrences of a .
followed by a subexpression

The "_" operator 1is defined as the CONCATENATE operator in
ZBUG. It is dyadic, meaning that it requires two arguments. It
operates by concatenating 1its two arguments in the following
manner: Argument #1 (the 1left one) is shifted right by the
length of argument #2. Argument #2 (the right one) is masked to
its length (always an integer number of bytes from 1 to 4), low
order bytes being masked first. The two resulting values are
then or“ed together, forming one value.

Normally, the default 1length of an arbitrary argument is 4
bytes, the largest value ZBUG can manipulate. Certain values
have an implied length, however - such as a register (one or two
bytes), or the result of the @, \, , and ! unary operators
described later.

The concatenate operator has the lowest precedence of all the
operators — unless overridden by parentheses, any concatenate
operations will performed last, from left to right.

Note that thils operator is not available in Debug I.
Examples....

<A _ <BC ... concatenate the current value of
... the A register with that of the
... B&C register pair

\120 _ @191 ... concatenate the byte at location
ees 100 with the word at 1091

B:1.2 {sub-exp> and the +, -, !, and ~ Operators
As defined earlier, a <{sub—exp> (subexpression) is:
<term> [<t-op> <term>]*

g s

a term followed by zero or more occurrences of a +, =, !, or
followed by a term

The +, -, !, and ~ operators are defined as the ADD,
SUBTRACT, INCLUSIVE OR, and ZXCULSIVE OR operators, respectively.
They are each dyadic, requiring two arguments. The operations
they perform are two’s complement add and subtract, logical
inculsive and exclusive or, respectively. Both arguments are
considered to be 4 byte values, with no overflow or underflow

_— Sl 23 3

|]

CDL Debug I and II User’s Manual Page 39
Section 5 - Going Beyond the Basics

indication - the sign bit interpretation is left to the user.

The +, —, !, and ~ operators have the 2nd lowest precedence,
and are executed from 1left to right ©before any concatenate
operators (unless overridden by the use of parentheses, of
course).

Note that the ! and ~ operators are not available in Debug I.

Examples....

1 + 2 .. add 1 to 2

35 - 28 ... Subtract 28 from 35
63 i 128 ees inclusive or 63 and 128
63 128 ... €xculsive or 63 and 128
5.1.3 {term> and the *, /, @, &, <, and > Operators

As previously defined, a <term> is:
<bool> [<b-op> <bool)]*

a boolean expression followed by =zero or more occurrences of
ax*,/, @, &, <, or > and a boolean expression

The *, /, @, &, <, and > operators are defined as MULTIPLY,
DIVIDE, MOD, LOGICAL AND, LEFT SHIFT, and RIGHT SHIFT,
respectively. They perform an integer multiply, integer divide,
integer modulo, 1logical and, 1left 1logical shift, and right
logical shift, respectively. They are dyadic, requiring two
arguments, each considered to be 4 byte values, except for .the <
and > operators, which use only the low order 5 bits of the 2nd
argument to determine the numter of ©bits to shift the 1st
argument.

The *, /, @, &, <, and > operators have 3rd precedence, being
performed from left to right bvefore the +, -, !, or operations
(unless overridden by parentheses).

Note that the *, /, @, &, <, and > operators are not
available in Debug I.

Examples....

ee. multiply 4 and 2
c.. divide 4 by 2
+.. modulo 4 by 3
«.. and 1 and 5

«e. shift 5 by 1 bit
... shift 6 by 1 bit

DO

VA @\ #*
PR OWNDN

CDL Debug I and II User’s Manual Page 40
Section 5 - Going Beyond the Basics

5.1.4 <bool> and the ?EQ, ?NE, ?LT, ?LE,
?GT, and ?GE Operators

BEarlier, the <bool> was defined as:
<factor> [<f-op> <factor> 1%

a factor followed by =zero or more occurrences of ?EQ, °?NE,
?LT, ?LE, ?GT, or ?GE followed by a factor

The ?EQ, ?NE, ?LT, ?LE, ?GT, and 7GE operators are the EQUAL,
NOT EQUAL, LESS THAN, LESS THAN OR ©EQUAL, GREATER THEN, and
GREATER THAN OR EQUAL operators, respectively. They are dyadic,
requiring two arguments, each considered to be a 4 byte value.
Each performs an arithmetic compare of the two arguments (signs
-are significant), and return a zero if the condition is false and
a -1 if true.)

These operators have 4th precedence - the highest of the
dyadic operators, meaning that wunless overridden by parentheses,
these operations will be the first dyadic ones performed.

Note that the ?EQ, ?NE, ?LT, <?LE, ?GT, and ?GE operators are
not available in Debug I.

Examples...

<A ?EQ 1 ... does register A equal 1 ?

2 ?LT 3 ees is 2 less than 3 ?

-3 7GE 78 ees 1s -3 greater than or equal to 78 ?
5.1.5 {factor> and the +, -, #, @, \, ~, and !

Operators

Previously, the <factor> was described as:

{ <con> | <sym> | (<exp>) } [~ ! " 11
<u-op> <factor>

a constant or a sympol or an expression 1in parentheses

(optionally followed by a or), ora +, —, #, @, \, 7, or !
followed by a factor

This is a recursive definition - describing a factor in terms
of an expression or a factor. Later we will discuss constants
and symbols and the optional ° , but now to the unary operators,
etc.

The +, -, #, @, \, =, and ! operators are defined as PLUS,
MINUS, NOT, WORD INDIRECT, BYTE INDIRECT, EXPLICIT LENGTH or
RADIX CHANGE, and INSTRUCTION INDIRECT, respectively. These
operators are monadic, requiring only one argument.

The +, =, and # operators consider their arguments to be 4

{ J
— T S W ot

)

[P

—i e - ke 2D - &

B—

CDL Debug I and II User”’s Manual Page 41
Section 5 - Going Beyond the Basics

bytes values, performing a arithmetic plus, arithmetic minus
(two’s complement), and a logical not (one’s complement),
respectively.

The @, \, and ! operators use only the 1low order 2 bytes of
their argument, treating the 16-bit value as an address and
returning the word, byte, and instruction value pointed to by the
address. These three operators also return an implied length of
their results (for use by the concatenate operator) - 2 bytes for
@, 1 byte for \, and 1-4 bytes for ! depending on the instruction
located by the argument.

The operator is further refined by following it with a
modifier. . - .y

If the is followed by a 1, 2, 3, 0or 4, it is an
explicit length operator, which means that its argument will be
considered to be 1, 2, 3, or 4 bytes long for the concatenate
operator (the only operator which uses length). "

If the is followed by a B, D, H, 0, R, or S , it
is a radix change operator, which means that 1its argument will
use binary, decimal, hex, octal, relative decimal, or split octal
as the default type-in radix instead of that defined by the use
of the RT command of ZBUG.

The unary operators have the highest precedence or all the
operators (unless overridden by parentheses), and are performed
first.

P "

Note that the +, -, #, ~, and ! operators, and the and

modifiers are not availabdle in Debug I.

Examples....

+1 ... return a plus one (no real
... effect)
=1 ... return a negative 1
#1 ... return the one’s complement
ee. Or not of 1
Q129 ... g8t the word pointed to by
... 100 (the word at location 199)
\<HL ... get the byte pointed to by

... register pair H&L (actually
..+ another way of saying <M,
... Or contents of register M)

1I<PC ... return the instruction
... pointed to by the program

. ... counter

1(<HL + <A) ... calculate the value of
... register pair H&L added to
... register A and specify a
... length of one byte

“D(123 + 32) ... calculate 123 decimal plus
cee 32 decimal
-—1 ... return a minus minus 1 (or 1)

CDL Debug I and II User”’s Manual Page %2
Section 5 - Going Beyond the Basics

5.1.6 "Symbols”

Although ZBUG does not recognize symbols per se, several
permanent symbols are defined by ZBUQ to facilitate instruction
operand encoding by the user. These symbols are register names
commonly used in 280 assembler language, and are as follows:

A = 7
B = 2
C = 1
D = 2
E = 3
H = 4
L = 5
M = 6
SP = 6
PSW = 6
X = 4
Y = 4

Although these "symbols” may be used as a constant value in
any ZBUG expression, their usefulness is probably confined to use
in instruction operands typed by the user.

The special symbol “." refers normally to the current
location. When using the E command, ~ . contains the address of
the currently open <cell. When a breakpoint 1is encountered from
the use of the G command, . conntains the address of the break.
When tracing via the T command, . contains the adress of the next
instruction (identical to the <PC).

5.1.7 "Constants”

ZBUG provides for a wide variety of constants, including
numbers (in the conventional sense), strings, register and flag
contents, and even instructions. Each is described below:

5:1.7.1 Numbers

Numbers in ZBUG are one or mgre digits, followed optionally
by a radix modifier (B, D, H, O, R, or S representing
binary, decimal, hex, octal, relative decimal, and split octal,
respectively). If the modifier is not present, the number is
assumed to be in the current default type-in radigagunless
overridden by the wuse of the radix change operator). In
certain cases, a radix modifier typed by the wuser might be
interpreted by ZBUG to be a digit. For example, if the current
default type-in radix is hex, and the user types 19B intending
the number 1@ binary (2 decimal), ZBUG will read it as 10B hex.
The same is true for the "D modifier. In order to overcome this
misinterpretation, the use of the radix change operator will
suffice - i.e., B1@. As an added aid, ZBUG provides the . as
an additional decimal radix modifier.

If digits found in a number do not correspond to-the radix
assumed, an error will result. Valid digits are:

CDL Debug I and II User’s Manual Page 43
Section 5 - Going Beyond the Basics

Binary: 9,1

Decimal: 2,1,2,3,4,5,6,7,8,9
Hex: 2,1,2,%3,4,5,6,7,8,9,A,8,C,D,E,F
(number must start with 3-9)
Octal: 0,1,2,3,4,5,6,7
Relative Decimal: same as decimal
Split Octal: same as octal (however, the number is

checked to conform to 3 digits per bdyte,
with the 3rd being ¢,1,2, or 3)

Note that only hexadecimal numbers are acceptable to Debug I.

Examples = assuming default type-in radix of hex....

19 .o« 10 hex

190. eeo DA hex (10 decimal)

345S ... OE5 hex (345 split octal)
3450 ... BE5 hex (345 octal)

Improper Numbers....
“D124A ... "A" is not a decimal digit
34565 ... the 4 is not proper in the
... 3rd place of a group of 3
ees (i.e., 456 is not 1 byte value)
AD1 : ... does not start with 9-9

5:.1.7.2 Strings

ZBUG provides the capability of using ASCII character strings
as constants. These are a string of characters (not including a
<{CR>) bdracketed by a pair of matched single or double quotes.
Strings may be of arbitrary length, ©but the last four characters
are the only ones used. .

Examples....

"this is a string” ... only got “ring”
‘A’ ... g0t a 41 hex value
‘AB” ... and a 4142 hex

Improper Strings....

“oops”’ ... quotes are not matched
bad one ... missing quote
S5eluad Registers and Flags

Since the 288 machine registers and flags, and the ZBUG
pseudo registers contain values, it stands to reason that the
user should be able to access their values in expressions easily.
ZBUG provides this useful capability.

The general form to access a register value is:

<[v]1 [71 <register—-name>

CDL Debug I and II User’s Manual Page 44
Section 5 - Going Beyond the Basics

where <register-name> is as described in Section
4.15

The general form to access a flag value is:
>[V] [7] <flag-name>
where <flag-name> is as described in Section 4.15

The optional "!" specifies to ZBUG to return the value of the
register or flag before the last 4instruction trace. ZBUG saves
all Z89 machine registers and flags before tracing an instruction
to provide access to the previous and current values. This
facilitates checking to see if a register/flag value changed
during the last instruction traced. For example, the expression

“>IC_?NE >C" would return a -1 if the carry flag had changed.
The ! option has no effect if used to access a ZBUG pseudo
register, as these registers are not saved during tracing.

The " " option specifies the auxiliary register set of the
280, as described in Section 4.15.

The register values have an implicit 1length associated with
them — one or two bytes, depending on the register specified.

Examples....

<A ... return the byte value of
... register A
<{AF +«+. return the word value of

... register pair AF (also
... known as the PSW)

>Z ... return the bit value of
... the zero flag

5.1.7.4 Instructions

As an 1instruction certainly has a numeric value, ZBUG
provides the means to use an arbitrary instruction as a numeric
constant.

The form is a [followed by the instruction_ and any
operands (separated from the mnemonic_ by a space (.) or tab
(control-I)) and terminated by a 1. If the] is not
immediately following the instruction, or if the instruction is
not properly formed, an error will result. See the CDL Macro
I/I1 Assembler User’s Manual for the correct formats of
instructions.

Note that instructions as numeric values are not available in
Debug I.

Examples....
(MOV A,B] ... return a 78 hex

[CALL 5] ... return a 20@5CD hex
[MVI B,1] ... return a 9196 hex

CDL Debug I and II User’s Manual
Section 5 - Going Beyond the Basics

Improper Instructions....

[MOV A,B) ... need that 1"
[INR 2] ees What’s a Z ?

Page 45

CDL Debug I and II User’s Manual Page 46
Section 5 - Going Beyond the Basics

5.2 Advanced Ideas

Learning to use ZBUG should be a growing process. After
learning and using a few commands, such as those demonstrated in
the example of Section 3.3, more advanced features of ZBUG can be
incorporated in the user’s repetoire of well-used capabilities.

The following is an informal discussion, intended to give the
user an idea of how to get the most out of ZBUG, After becoming
familiar with ZBUG s sophistication, less time will be spent

fighting with the debugger than the debuggee”. Please note that
these suggestions are no more than quidelines....

When first entering ZBUG, use the "M" (mode) and/or "R
(radix) command to set up the mode/radix environment you’re most
comfortable in or will ©be working in most. For debugging a
program with a listing, instruction mode and hex radix are usual.
Then, if it becomes convienient later to 1look at some value in a
different mode/radix, the temporary settings available with the

E (examine) and X (examine register) commands will usually be
sufficient.

With the E command, it is possible to change the mode and
radix together.

{ this is a demonstration of the mode/radix changing within
the "E” command }

* e 109 <cr>

01090: 21 ymi rd <cr>

010@: LXI B, 2 sm4& rb <cr>

0100 : 00101111000000000000002900032001 sro <cr>
2100: @5700002091 im2 <cr>

0100 : 009991 ;rr <cr>

2100: +1 <er>

X

{ radix changing within the "X" command }

* x hl <cr>

1234 syra <cr>

‘P4’ ;jrs <cr>

222:964 ;;rb <cr>
P001001200110109 <cr>
*

The more comfortable you are with expressions, and what
they ‘re capable of, the less you’ll have to type to get the job
done, and the more you “11 be _able to accomplish. For example,
remembering that “<3C means the value in register pair B&C ,
whenever you want to see the value pointed to by the address in
B&C, you can use "<¢BC as the address for an application of the

E command. This way you save yourself the trouble of examining
the contents of the B&C register, and then typing that value.
This of course applies for any address, data, count, etc. value
expected by any command, for any register or flag value, and for
instructions and byte or word memory values. In a sense then,
these special values may be thought of - and used 1instead of -

=l

L

CDL Debug I and II User’s Manual Page 47
Section 5 - Going Beyond the Basics

numbers.

{ examine the instruction pointed to by the program counter }

* e <pc <cr>
21925: ANI oF {cr>

{ using the ‘"L" command, 1list the ASCII string, whose
starting address is in the word pointed to by register H&L, and
whose lenth is in the byte following the address word }

* 1 @ <hl, \ (¢hl + 1) <cr>
4DA2: 123 PRINT X
*

The "S” command expects a boolean expression in order to set
a trap or conditional display. This may actually be ANY
expression - ZBUG evaluates it and traps or displays if the
result is non-zero. Due to the flexibility of the expressions
recognized, the trap/conditional display capability is extremely
powerful and versatile.

{ set a trap to fire when the next instruction to be executed
is a PCHL and the address in register H&L is 2 }

* s@,(1. ?2eq [pchl]) & (<hl ?eq @) <cr>
s

{ set a trap to fire |if the last instruction wrote in the
area of @ to @FF - note that we’ll only use the low byte register
of the write access pair, and we can’t be certain that an LDIR or
LDDR instruction wrote here due to those instructions” "wildness

}

* s@, (<wr ?ge @) & (<wr ?le OFF) <cr>
*

set a trap to fire whenever the carry flag is set (not @) }

{
* s@, >c <cr>
%

{ set a trap to fire whenever the zero flag changes }

* s@, D'z ?ne >z <cr>
%

If you're going to be debugging a single module of a large
program, for which you’ve got a listing with only relative
addresses, the relocation registers can save you a lot of time
and trouble. All that 1is necessary 1is to know the absolute
address of the start of the module (from a linkage editor load
map), and set the RR register (or the DR) to that address via the

X command. If the ending address (or start address plus
length) of the module is known, set the “RR (or “DR) to it. From
then on, if ZBUG displays an address that is in the module, it
will be displayed as a relative offset from the start, followed
by a * (or). To access an address within the module, you only

CDL Debug I and II User”’s Manual Page 48
Section 5 - Going Beyond the Basics

have to enter the relative offset, followed by a ”~ (or "). This
alleviates a common frustration of trying to figure out the
absolute address. In addition, any addresses outside the module
will be displayed as absolute.

Since it is possible to have more than one relocation base
(refer to CDL "Macro I/II Assembler User’s Manual") for a module,
such as a code base and a separate data base, the RR-"RR pair can

b? used for one (code ?) and the DR-’DR pair for another (data
1)

{ knowing the absolute address, examine a routine to see it
with absolute addresses }

* e 1fed <cr>

1FED: PUSH PSw <1f>
1FEE: LXI B,1 <1f>
1FF1: RAR <1f>

1FF2: JRNC 1FF8 <1f>
1FF4: LBCD 2455 <1f>
1FF8: LXI H,? <1£>
1FFB: RAR <1f>
1FFC: JRNC 2001 <1£>
1FFE: LHLD 2459 <1f>
2001 : POP PSW 1>
2002 RET <cr>
Xe

{ okay, now set up RR and “RR }

* xrr <cr>

2000 1fed <cr>

* x’rr <cr>

2000 2002+1 <cr>
% .

{ now look at the routine, remembering that addresses refered
to inside the routine will be relative offsets to register RR,
and those refered to outside will be absolute }

* e Z’ {er>

@200 °: PUSH PSW <1£>
9001°: LXI B,1 <1f£>
@224": RAR <1f>
@005 °: JRNC P00B” <1f>
@087 : LBCD 0455 <1f>
220B°: LXI Hi,0 <1f>
@20E : RAR <1f>
@O@F“: JRNC 214" 1>
99¢11°: LHLD 2459 <1f>
@214°: POP PSW <1f>
9015 ¢ RET <cr>

Remember the current type-in radix that you’re operating
under - it is easy sometimes to enter a number thinking it is one
value, while ZBUG calculates another. For example, the sequence

19B alway means 10B hex if the current type—-in radix is hex,

r'—‘*'

CDL Debug I and II User”s Manual Page 49
Section 5 = Going Beyond the Basics

and not 19 binary with a "B modifier. The same goes for 10D " -
it ‘s not 10 decimal.

To alleviate this confusion, use the radi x-change
operator.... B1@ for 10 dinary, D108 (or 18.) for 10 decimal,
etc.. Since the radix-change operator is a unary operator, you
can follow it with an expression in parentheses to include more
than one number.

ZBUG uses this, in fact, to enclose each trap and conditional
display expression entered. This insures the wuser that the
expressions will be evaluated wusing the type-in radix in effect
when the expression was originally entered, in case the user
decides to change the defualt later.

Although the use of carriage return and line feed are fairly
standard for examining memory (such as Digital &E®quipment
Corporation’s DDT), additional flexibility may be gained with the
escape ('call”) and form feed ("return”) methods of closing a
currently open cell and moving on. They are especially useful
when examining a section of code with a jump or call instruction
- facilitating examining the code at the jump or <call address
with one keystroke, and returning to the instruction following
the jump or call with another.

CDL Debug I and II User”s Manual Page 50
Appendix A - A Quick Reference to the Commands

Appendix A

A Quick Reference to the Commands

The following is a
and special characters.

quick reference to the ZBUG command set

C <expression> - Calculate

D <address>,<count> - Display

E <address> = Examine

F <address>,<count>,<valued - Fill

G <address> [,<break>]* - "Goto"

I <instruction> - Execute

L <address>,<count> - "List’

M <mode> - Mode

0 <name>,<bias>,<{rel> - Open

P <address> - Put string

Q - Qu t

R <type><radix> - Set radix

S <id>,<expression> - "Set trap’

S* id> - Clear trap

SD <id>,<expression> - Set cond. disp.”
SD* <id> - Clear cond. disp.’
SW <time> - Set wait

T <address>,<count>,<op> - Trace

X <reg/flag> - "Examine reg/flag”
Y <address>,<address> - Search

Z <string>

control-D
control-E
control-T
<CR>

<LF>
<BS>
{ESC>
<FF>

.
y

Note that the

"o

- “Zap CP/M fcd’s”

end ASCII string

halt trace’

"show current trace location’
command terminator, close cell
and close reg/flag

open sequential cell

open last sel uential cell
called cell

open’
open

Ru

commands, and the control-T

“returned” cell
command separator, re-—-open current cell

’

s*, "s*", "sp”, "sp*", and "2"

feature are not available in Debug I.

CDL Debug I and II User’s Manual

Page 51

Appendix B - Error Messages

Appendix 3B

Error Messages

The following is a list of various ZBUG error messages.

All errors encountered are flagged by ZBUG with “#*¥* ERROR :"

followed by a two digit error code. An explaination of each
error code is follows:
"Unknown Command Name" — An unidentified command character

20

g2:

1352

14:

15

“Can”

“"Bad

"Missing arg"

"Bad

was encountered

t use byte addr” - While in E command and currently in
byte mode, an <ESC> was used to close the open cell.
ZBUG will not permit this operation.

mode” - While in E command and using ‘5’ to close the

cell, an inproperly formed “Mn” was found.

- ZBUG expected an
that was omitted.

argument for the command

cmnd mod” - An improper modifier for the command was

encountered.

o 7

find a

"Missing “,°, ‘37, or <CR>" - 2ZBUG expected to
separator or command terminator.

"Expr too long” - The specified expression for the S or SD
command exceeds 59 characters. ’

"Bad reg” - Unknown register name in X command.

"Bad radix” - While in E or X commands using “iRn” to close,
an improperly formed ‘Rn” was found.

"Bad flag" - Unknown flag name in X command.

"Bad mnemonic delimiter” - An improper character was found
delimiting an instruction mnemonic.

"Bad mnemonic” - An unknown instruction mnemonic was found.

"Bad “hlt‘" - The sequence 'mov m,m" and related indexed
instructions are not premitted.

"Can’t use 2 index regs - An instruction may not use more

than one index register.

CDL Debug I and II User”s Manual Page 52
Appendix B - Error Messages

16:
17:

23:

24 :

253

26

27

28:

29:

30 :

31

323

98:

"Bad rel addr” - The relative branch is out of reach.

" "

Bad reg / disp (index) - The register or
displacement(index) operand is improperly formed.

"Too many args” - Too many arguments were encountered.

“Bad file name/ext” - The file name/extension specified in
the 0 command is improperly formed.

“Can’t open file” - The file specified in the O command
doesn’t exist. :

""Read error” - A read error has occurred while reading the

file specified in the O command.

"Record error” - An improperly formed .HEX or .REL record was
found while 1loading the file specified in the O
command. Try re-assembling the program.

"Program too 1large” - The program being loaded with the O

command has attempted to load within ZBUG’s bounds.

"Improper Relational Operator” - ZBUG found a relational

operator (“?XX”) that was improperly formed.

" - ZBUG found a “(” that was not matched by a

"Missing”l
)
"Improper or Missing Unary Operator” - ZBUG found an

improperly formed radix change/explicit length

operator, or expected a unary operator and didn’t
find it.

“Improper Register Name” - ZBUG found a register reference

with an unknown register name.

“Improper Flag Name" — ZBUG found a flag reference with an
unknown flag name.

"Missing String Terminator” - ZBUG could not find a matching
string terminator before finding a <CR>.

"Improperly Formed Number” - ZBUG found an improper digit for

the assumed radix.

“Unidentified Symbol” - General catch all for unrecognizable
constructions.

"Missing ‘17" - ZBUG conldn’t find a "]’ while processing an
instruction number .

"Operand Stack Underflow - ZBUG system error. If this error
happens repeatedly, please gather any pertinent
information (command executing, user entered

information, ZR®UG generated results, etc. resulting
in the error) and notify Technical Design Labs, Inc.,
attention Manager of Technical Services.

CDL Debug I and II User’s Manual Page 53
Appendix B - Error Messages _

99: “Operand Stack Overflow - The expression ZBUG is evaluating
is too complicated - parentheses are nested too

deeply or too many operations are pending.

