HRE R ERRRRRRER RN RN R RN RN R R RRRRRRRRRERS

* %% *RR
wEa QSAL Assembler Manual *E*
#* % % YY)

BN RN RN R RN R RRRRRRERRERRRRRRRERRRRNRRRRRRRRENR

Manual Revision 1.0

June 1, 1983

Written by

Carl Galletti

Copyright 1983 by Computer Design Labs

CORRECTIONS

Please note the following corrections to this manual.

Throughout this manual "Q" is used instead of "QSAL". They may be
thought of as the same. "QSAL" is a trademark of Computer Design Labs and "Q"
is a shorthand for "QSAL".

On your disk you have three versions of QSAL, QSAL1.COM,QSAL6.COM, and
QSAL7.COM. QSAL1 runs at 0100 hex and assembles programs at 06000 hex. You
should hardly ever need this version. QSAL6 runs at 06000 hex and assembles
programs directly for 0100 hex to O5FFF hex without using an offset. This is
the version you should use most of the time. Rename it to "QSAL" or "Q".
QSAL7 is provided to get an extra UK before having to use an offset. However,
since few assembly language programs are (or need to be) greater than 24K, it
will most likely never be needed.

On page 8, % and # are not allowed.

On page 9, arithmetic currently evaluates from left to right NOT by the
MDAS method mentioned.

On page 12, there is no "CON" data type. Same for section 2.3.2 and
4.7 (page 22).

On page 24, there is no IMAGE function. You must use the SAVE function
in the DOS (after exiting QSAL, of course).

On page 25, there is no LOAD function.
On page 32, there is no "S." nor "L." function.
On page 32, section 5.7, there is no apostrophe function.

Sections 7.0, 8.0, and 9.0 have been replaced with new sections that
look much different from the rest of the manual.

Section 10.0 has been removed.

In section 12.0, ignore "/BRKS->P" construction. Also, due to hardware
limitations, there is no N,S,H,T, nor U command. The "R," command is also not
functional.

Section 13 is not fully implemented.

The information provided in section 14 is for advanced programmers. If
you wish to use it, be advised that you are on your own. We cannot provide
support for this information in the form of tutorial.

NOTE: MOST OF THE ABOVE CHANGES WERE MADE BECAUSE THE MANUAL WAS
INITIALLY WRITTEN FOR A SPECIFIC COMPUTER WHERE THE HARDWARE FEATURES WERE
DIFFERENT FROM A STANDARD CP/M (R) SYSTEM AND CONSEQUENTLY SOME OF THE
FEATURES COULD NOT BE MOVED OVER. OTHER FEATURES WERE NOT IMPLEMENTED IN THE
FINAL VERSION BECAUSE OF TIME CONSTRAINTS.

-que |-

YEELE EF EEAVERYS

INTRODUCTION e p4
01 SURVEY OF FEATURES . p4
02 ENTERING Q p5
03 AUTO ASSEMBLY p5
0.4 WRITING PROGRAMS INQ .. p5
05 ERROR HANDLING p6

1.0 STANDARD ASSEMBLY USING ZILOG MNEMONICS s p7
11 FORMAT p7
12 COMMENTS p7
13 MULTIPLE INSTRUCTIONS PER LINE . p8
1.4 HEX VERSUS DECIMAL NUMBERS .. p8
15 ASCII VALUES p9

2.0

3.0

4.0

1.6 NUMERIC VALUES, ARITHMETIC OPERATORS, AND ORDER OF EVALUATION ... p9

1.7 INSTRUCTIONS NOT IMPLEMENTED

SYMBOLS, VARIABLES, AND CONSTANTS

2.1 SYMBOLS

2.2 "HERE" (8) SYMBOL
2.3 CONSTANTS

2.3.1 EQU

2.3.2 CON

2.3.3 DEFL

2.4 VARIABLES -
2.4.1 BYTE

2.4.2 WORD

2.4.3 DEFB AND DETW
2.5 FORWARD REFERENCES

ASSEMBLER DIRECTIVES
3.1 ORG

32 DEFM

3.3 DEFT

3.4 DEFS

3.5 WRITE

3.6 GLOBAL

3.7 stop

IMMEDIATE MODE

41 // [EXIT FROM Q]

4.2 /* [ENTER DEBUG MODE]
4.3 *Q [EXIT DEBUG MODE]
4.4 /DO '

45 /LIST

46 /START

4.7 /MAP

- Pape 2 -

Y R S p23

49 /PACK & s B pR3
a10 /CLEAR pR3
T . p24
412 [mask] (not a . I R | pR4
5.0 SPECIAL REGISTER HANDLING EXPRESSIONS ™7 p26
51 ADDITIONAL REGISTER DESIGNATIONS 7 pR6
52 @ EXPRESSIONS o e pR7
ss UPARROM 0 o oowe o e e pR7
54 A-EXPRESSIONS T pe8
&5 HL-EXPRESSIONS p30
56 "S! AND "L EXPRESSIONS p32
57 INCREMENT BY APOSTROPHE () 77 p32
58 "B AND "W." EXPRESSIONS p32
6.0 BLOCK STRUCTURED (PASCAL-LIKE) EXPRESSIONS e p34
61 PROCEEDURE p37
62 if.then.else.endif T p38
63 beginend p39
B p40
65 repeat.until p40
66 case.of.else.end T p4l
7.0 RE-ASSEMBLING FOR ACCURATE OBJECT CODE LISTING - p44
8.0 CONDITIONAL ASSEMBLY . pas
9.0 ASSEMBLING WITH OFFSET p46
10.0 CROSS REFERENCING p48v
#0SymBOL TABLE oo pA9
12.0 DEBUGGING WITH QBUG p51
80 PATCHNG T p54
14.0 SUBROUTINE LIBRARY AVAILABLE TO USER e p55
15.0 SOFTWARE NoTES p58

- Page 3 -

0.0 INTRODUCTION

Q is a one pass assembler for the Zilog Z80 microprocessor. It has many features
which go beyond the conventional assembler’s ability to translate mnemonics and
pseudo-ops into native machine language instructions. Q is capable of special register
handling and block structured notation as well as other features which have the
potential of making assembly language easier to write and comprehend. Like any
powerful tool it can also be misused to achieve the opposite effect. Since Q allows the
programmer a great amount of freedom and power, he is also expected to assume a
greater responsibility for its proper use. He is expected to follow the form used in
examples and especially the section on Software Standards (15.0).

This documentation assumes enough familiarity with the Z80 registers and
mnemonics and assembly language in general to be able to enter, assemble, and run
conventional assembly language programs. Those not so oriented should first study an
introductory text on the subject. "Z80 Assembly Language Programming” written by
Lance A. Leventhal and published by Osborne/McGraw-Hill is an excellent choice and is
also useful to the experienced assembly language programmer because of the description
of the Z80 instruction set in chapter 3.

0.1 SURVEY OF FEATURES

Q is an extension of the standard Z80 assembler (ASM) which provides several
unique features, including:

--Speed of exccution.
--Long symbol names (up to 31 characters, upper/lower case distinct).

--Pascal-like "structured” expressions to permit self-documenting control
structures. ‘
Five types are introduced:

. if...then...else
. repeat...until
. while...do

. case...of

m a o T e

. begin...end
(Note lower case letters.)
Sce chapter 6.0, "BLOCK STRUCTURED EXPRESSIONS®, for details.

--Simple register handling expressions. Two Lypes are introduced; thosethat are
computed in 8 bit precision whose values are left in register A (A-expressions), and,
those that are computed to 16 bit and whose values are left in the HL register (HL-expre-
ssions). In addition, results can optionally be stored in onc or more places. For detailed
information, refer 1o section 5.0, "SPECIAL REGISTER HANDLING EXPRESSIONS."”

--Command mode, in which commands from the console are executed on a line
by line basis. :

- Page 4 -

--Immediate mode, in which statements preceded by me op /" are interpreted as
commands and exccuted immediately without adding to the run time code.

—-Direct code generation into memory, with offset capability
--Symbolic debugging locally.

--Multiple instructions per line separated by " (Comments are introduced by "."
instead of ';"). For example: INC DE; INC DE; INC DE ...skip 3

--Conditional assembly
--Disassembly of code when using versions which include DEASM (optional).

--Features may be temporarily added by using the Extend capability (optional).

0.2 ENTERING Q

To evoke Q, type: A>Q ("A>" is a prompt of TPM)

The system will respond with the prompt "-", awaiting the first line of input
from the console. At this point several types of response are possible. A source file may
be brought in and assembled, a procedure file may be loaded, a loaded program may be
run and debugged, code may be directly entered from the console, etc. This is the most
versatile method of evoking Q.

0.3 AUTO ASSEMBLY

- A file name may also be given in the command line when evoking Q,
A>Q TEST.PGM

Q is first loaded by the TPM operating system which in turn loads TEST.PGM. 1f TEST.PGM
is a source file, Q automatically assembles it. If it is a procedure file, Q just loads it.
[t may also be a MAKE file.

A MAKE file is an ASCIl type file which contains commands as they would be
entered from the console while in Q. It may contain any instructions which could be
entered from the console including directives to assemble/load other files. In fact, there
is little difference between a source file and a MAKE file since they may each contain
source instructions intermixed with console commands. In practice, convention dictates
that files containing mostly source are called source files and those with predominantly
console commands are MAKE files.

0.4 WRITING PROGRAMS IN Q

- Page €

Although instructions may be entered and assembled directly while in Q, this is
not the normal mode of opération. Entering code directly is only useful for patching or
as a tutorial to examine the object code generated for a given source statement (see
section 4.5 /LIST).

The normal sequence of actions for writing Q programs is similar to
conventional assemblers. First, the source file is written using an editor to enter the
source statements; then, Q is loaded and the source file assembled.

0.5 ERROR HANDLING

Q flags errors by re-writing the source line containing the error with a question
mark (?) inserted at the point where it could no longer continue the assembly.
Note that this is NOT always the precise point that the error is located. It is merely
the point where it is impossible for Q to continue assembly of the remainder of the
line/file. 1f no error can be found in the immediate area, check backwards from the
mon A "begin” without a matching "end” often causes this type of error.

- Page 6 -

1.0 STANDARD ASSEMBLY USING ZILOG MNEMONICS

It is possible for Q to function similar to a conventional assembler because it
assembles standard Zilog 780 mnemonics. These may be intermixed with more advanced
Q statements as they are learned. Covered in this chapter are some basic points to
follow when using either the standard assembly or advanced Q features.

11 FORMAT
All Q source lines contain up to three fields:
LABEL FIELD STATEMENT FIELD COMMENT FIELD

Each of these fields is optional but if included must be in the left-to-right order
indicated.

The LABEL FIELD must start in the first column. It consists of a symbol name
which must start with an upper case€ letter and may contain lower case letters,
numbers, or underlines (which on some terminals arc back arrows). A trailing colon ()
may be used but is not necessary. For example,

LABEL: and
LABEL are both treated as the same symbol.

Lines which do not have labels are allowed to start in the second column but
good programming practice dictates that they are indented more, usually at least one
tab (8 spaces) in.

Comments with 3 periods, "." and may start in any column.

The statement ficld consists of one or more Q statements separated by
semicolons (;). In its simplest form, a Q statement is the mnemonic representation of
any 780 instruction (for example: LD AC).

Blank lines are allowed.

780 instructions and register names must be uppercase only. Some examples:

_This line is a comment only, beginning in the first column.
Label: LD A,(DATA) _.labels can be here also.
CPL
Label_2 _.the above line was a statement field only. This label has no i

1.2 COMMENTS
All comments begin with three periods "." as:

...this is a comment

Anything from the right of the "." to the end of the line is part of the comment field.

- Page 7 -

1.3 MULTIPLE INSTRUCTION.S PER LINE

More than one instruction may be placed on a single line by separating each
instruction/statement by a semicolon (;). For example:

Test: LD A,(Status)
BIT O,A
JP Z,Test
RET

may be written as:

Test: LD A,(Status); BIT 0,A; JP Z,Test; RET ...comment

1.4 HEX VERSUS DECIMAL NUMBERS
The rule to distinguish between hex and decimal numbers is:

Any number beginning with a zero (0) is hex and any number beginning with -
a non-zero is decimal.
Conventional assemblers usually put a trailing "H" to indicate hex. In Q
a trailing "H" is optional and has no effect. The reason it allows this is
so programs written in conventional assembly language are less trouble
to convert.

Some examples:

OF000 ..hex

500 ...decimal

0500H ...hex

014 ...hex

14 ...decimal

9 ...technically decimal but anything 9 or less is the same for hex or decimal.

Numbers representing addresses in JP, CALL, or ORG statements, or the START
command, are always considered to be hex, even without the leading "0".

Some extra capabilitics were added to Q which enabled it to assemble code
having a percent (%) sign preceding binary numbers and a cross-hatch (#) preceding hex
numbers.

LEXAMPLES:
LD A,%1100001 [3EC3]
LD B,#48 [0648]
...of course #48 and 048 are the same

It is strongly recommended to use the preceeding 0" as the means for indicating hex
numbers.

- Pare 8 -

1.5 ASCIl VALUES

String values used in instructions are indicated by single quotes before and
after. For example:

LD A/'X' ..loads register A with the ASCIl value for X (058).
cp 'C' ...compares register A with ASCIl C (043)

1.6 NUMERIC VALUES, ARITHMETIC OPERATORS AND ORDER OF EVALUATION

Q allows some compile time evaluation of numeric values as used in expressions
like

LD HL,2*(VALUE+512) or ORG $+OFF&OFFO0 or DEFB 2**3

There may be any number of terms and parentheses are used to group values.
However, no spaces are allowed.

"My Dear Aunt Sally” rule or Multiplication and Division before Addition and
Subtraction (MDAS). In either method Anding (&) and exponentiation were given the
same order as multiplication and division.

Therefore:
LD BC,1+2*3 ...[010700]

now results in loading BC with a 7 because 2 is multiplied by 3 before 1 is added.
Another might be to use

LD BC,(1+2)*3 ...no good

However, this expression does not assemble and the reasoning is as follows. When
Q scans the instruction from left to right, it gets to the point where it sees LD BC,(1+2),
which is a valid and COMPLETE instruction. According to the assembler rules, there can
be nothing clse attached to this expression. It may only be followed by a space,
semicolon, comment or end of line. When it next sees the * it must flag this as invalid.
Note that a "load BC with the value at address 3" is what the scanner sees as a valid
expression. In other words, when Q sces an open paren, "(", in the operand field, it
branches into the LD BC(nn) portion of the evaluation tree which does not allow
anything to follow the close paren, ")". The key in the branch is the open paren
immediately following the comma. e, --->>> LD BC(<LL==-.

Another possibility which at first looks good and assembles without error

LD BC,((1+2)*3) ..[ED4ABO9YOO]
This expression evaluates Lo a 9 but note that the instruction generated is NOT a "load

BC with 9" but a "load BC WITH THE VALUE AT ADDRESS 97, a big difference.
Alas, Q may be “tricked” into evaluating the LD BCnn form by inserting some

- Page 9 -

valid character other than the open paren as the character immediately following the
comma. Acceptable possibilities are:

LD BC,3%(1+2) ...[010900]
...moving the *3 to the front

LD BC,1*(1+2)*3 : ...[010900]
...adding the neutral "1*"

LD BC,0+(1+2)*3 ...[010900]

..literally adding a neutral zero

All numeric values are calculated as 2-byte quantities; if only one byte is
needed, the value is truncated to the low-order portion. Numeric values may consist of
hex or decimal numbers, symbols, single ascii characters in quotes (e.g. 'A’), "2**n" (2
raised to the nth power-where "n” is another numeric value), or the expression "value(---
---)" (to be described below). The above forms may also be preceded by a "-" sign, or
combined and modified using addition (+), subtraction (-), multiplication (¥), division (/),
or anding (&) operations.

The expression “value(----- Y* works as follows: Inside the parentheses is an
instruction list which is executed immediately (at compile time) to put a value in R.HL
which becomes the numeric value. The instruction list may be any number of
instructions separated by semicolons and must not include undefined labels. An example
is

DEFW value(P.GETVAL)*3

which makes a call to the subroutine GETVAL, multiplies the value in RHL by 3, then
stores it as a word variable in the memory.

If numeric values contain an undefined symbol, they must not also contain a
modification to the symbol value. As an example, the statement

LD HL,NOTKNOWN+3 ..NO GOOD

where NOTKNOWN is undefined is an error. (This is because of the way Q handles
undefined symbol references). Statements like

LD HL,NOTKNOWN ...0OK
or JP KNOWN+3 ...0OK

where KNOWN is defined and NOTKNOWN is not, are finc.

1.7 INSTRUCTIONS NOT IMPLEMENTED

Not all of the 780 instructions are directly supported by Q. Some instructions
which are Lhough‘L to be used rarcly arc left out to make the assembler somewhat
smaller. 1f these instructions are nceded by a program, there are Lwo ways to
implement them. The first and simplest is to substitute a BYTE variable (see section
241 for details) with the value of the instruction. For example, to create a "LD Al"

- Paoge 10 -

which generates OED 057,

BYTE OED 057 ..LD Al

The following is a list of all instructions currently unimplemented:

LD Al ...BYTE OED 057

LD AR ...BYTE OED O5F

LD LA ...BYTE OED 047 LD RA ...BYTE OED 04F
NOP ...BYTE 00 M O ...BYTE OED 046
M1 ..BYTE OED 056 M 2 ...BYTE OED O5E
IND ..BYTE OED OAA INDR ...BYTE OED OBA
INI ...BYTE OED OA2 INIR ...BYTE OED 0B2
ouTD ...BYTE OED OAB OTDR ...BYTE OED 0BB
RETN ...BYTE OED 045 RST O ...BYTE 0C7
RST 10H ..BYTE 0D7 RST 18H ..BYTE ODF
RST 20H ..BYTE OE7 RST 28H ..BYTE OEF

RST 30H ..BYTE OF7 RST 38H ..BYTE OFF

KNOWN BUG: Consider the following,

ADD IX,HL
ADD 1Y,HL
ADD HL,IX
ADD HL,IY

Although they are illegal instructions, Q does NOT flag them as errors. Instead it
assembles them as the following LEGAL instructions (in respective order):

ADD 1X,IX
ADD 1Y,IY
ADD HL,HL
ADD HL,HL

- Pace 11 -

2.0 SYMBOLS, VARIABLES.. AND CONSTANTS

2.1 SYMBOLS

There is only a subtle difference between labels and symbols. Labels are,
technically, those symbols which are defined by the assembler as the next available
address. All other symbols are assigned a value by the programmer or left unassigned.
In Q as in most assemblers, the difference is mainly academic since they are treated
similarly. The syntax is therefore the same.

Symbols must be defined in some part of the progam by using a name which
starts in the first column and begins with an upper case letter. The rest of the name
may contain lower case letters, numbers, or underlines (which on some terminals are
back arrows). A trailing colon () may be used but is not necessary. _

Conventional assemblers make two passes, one chiefly to pick up symbol
definitions and the other to do the actual assembly using those definitions. Q
assembler, on the other hand, is a one pass assembler and therefore must handle
symbols in a special manner. In Q before symbols are defined they are called "forward
references.” 1f how they are handled is of interest, refer to section 2.5, FORWARD
REFERENCES. The only consideration of concern to the user is discussed in the section
on "B. and W. expressions”, chapter 5.

211 SYMBOL TABLE

All symbols, whether defined or not, are placed in a buffer referred to as the
symbol table. Each symbol is assigned a "type" byte which describes it. The following is
a table indicating the significance of each bit in the type byte:

xxxx 0000 if Label:

xxxx 0001 if defined as BYTE (see section 2.4.1)

xxxx 0010 if defined as WORD (see section 2.4.2)

xxxx 001 if PROCedure definition (see section 6.1)

xxxx 0100 if defined by DEFL (see section 2.3.3)

xxxx 0101 if defined by EQU (see section 2.3.1)

xxxx 0110 if defined by CON (see section 2.3.2)

XXXX IXXX it undefined

xX1xX XXXX if symbol reuseable (ZAPed-see section 4.8)

XIXX XXXX if undefined, indicates forward reference chain exists

if defined, indicates no references to symbol exist.
IXXX XXXX if symbol is GLOBAL

The symbol table may be viewed by using the /MAP command, which is described
in section 4.7.

2.1.2 UNDEFINED SYMBOLS

Undefined symbols may be detected by using the command:

- Pape 12 -

/MAP 08

Since Q does not otherwise warn that a symbol is left undefined, this command
should always be inserted at the end of the source code to detect those which are not
intentional.

There are two symbols in Q which should always be left undefined. They
are:

USERCC and EXTEND

2.2 "HERE" ($) SYMBOL

The ""$" symbol (pronounced "here") does not have to be defined with
a label. Its value is internally understood to represent the current value of
the program counter. For example, a commonly used test mechanism is to insert
an infinite loop operation in a program to signify that, "if the program got to
'this' place, something is drastically wrong; so, loop and don't do anything
else”. This may be done with a jump relative instruction which jumps to
itself. That is,

JR $...generates an 18 FE
In regular programming, a label might be defined with 8,

Label: DEFL $

which set "Label” equal to the current program counter.

2.3 CONSTANTS

Constants arc those symbols representing values which are never changed by the
program while it is running. There are three basic types: equates (EQU), constants (CON),
and defined labels (DEFL).

2.3.1 EQU

An cquate is a constant which, once defined, can not be changed. It is defined
by assigning a symbol name in the label field and putting the letters "EQU" followed by
the value in the statement ficld. For example:

ESCAPE: EQU 018 ...escape character

defines the symbol name "ESCAPE” as being equal to the value 01B which is the
hexadecimal representation in the ASCIl code for the escape character. After this
definition, the letters "ESCAPE" can be used in place of the number "01B" Equates

should be used in place of the actual number wherever possible to make changing the
code much easier.

- Page 13 -

For instance, in the above example, if the program had to be moved to another
computer which did not use the standard ASCII value for escape, the new value could be
substituted for "01B" in the definition and the program reassembled. If the actual
value, "01B", had been used instead of the equate, every occurrance of "01B" would have
to be found and changed before reassembly.

2.3.2 CON

When an EQU is used in a "W.” expression, it results in RHL being loaded with
the value pointed to by the EQU rather than the value of the EQU. Observe,

1122 EQUATE: EQU 01122
om W.EQUATE [2A2211]
.EQUate is used as a pointer to the word to--->"*"""* be put into R.HL

This is a peculiarity of the way Q handles EQUs.

At some point in Qs evolution, it was decided to have a way to load
RHL with the actual EQU. However, to not require that existing programs be
changed, the CON function was added.

A symbol defined with CON acts the same as an EQU in all but "W
expressions; where, RHL loads the actual value of the symbol rather than the
value pointed to. The following demonstrates the difference between CON and
EQU:

1234 CONSTANT: CON 01234...defines a constant as opposed to an equate
1122 EQUATE: EQU 01122
010E W.CONSTANT [213412]

..The CONstant is put into R.HL as an address-->""""""
..i.e., RHL now has the value of CONSTANT.
om W.EQUATE [2A2211]
“ __EQUate is used as a pointer to the word to---> """t
...be put into R.HL. lLe., RHL is loaded with the word
..at the memory location EQUATE is pointing to.

The CON function was to have the same effect on “B." expressions. Unfortunately,
due to an oversight, it does not. For A-type expressions it works the same as the EQU.
This is a bug which will hopefully be corrected in future versions. However, for now,
CON defined constants should not be used in A-type expressions such as,

LetterA: CON oa1 ...Ascii for letter A
B.LetterA->@HL ...DON'T DO THIS !t

2.3.3 DEFL

The "DEFL" or "defined label” is exactly the same as the "EQU" except that the
value assigned to the symbol name may be changed by redefining it with another DEFL
statement. For instance,

ORG 0100 ...current program counter is forced to 0100 (hex).

- Page 14 -

HERE: DEFL $...HERE is defined as the current value of the program counter.
LD HL,HERE ..loads register pair HL with 0100

|->>>>>>>...some program statements here
HERE: DEFL $...HERE now takes on the new current value of the program

...counter which for this example will be assumed to be 0152.
LD HL,HERE ...now loads HL with 0152.

2.4 VARIABLES

Variables are defined by the following format:

{Symbol name> (keyword> initial values>

The symbol name can be any valid symbol name starting in the first column.
The keyword may be: BYTE, WORD, DEFB, or DEFW. One or more "initial values” may be
assigned. The first value is assigned to the symbol name and the succeeding ones
occupy the next available bytes/words.

2.4.1 BYTE

The "BYTE" variable definition reserves one memory location (byte) whose
address can be referred to by the symbol name. It initially has the value indicated in
the definition. For example,

Count: BYTE O

reserves the memory location at the current program counter for the symbol name
"Count” and initializes the location to 0. From then on the value referred to by "Count”
may be changed by writing a new value, such as,

LD A,(Count) ...gets present value
INC A ..increases it by 1
LD (Count),A ...puts back the new value

A numecric value may be assigned to a BYTE as,

StartCount: EQU 022
Count: BYTE Star_tCount ..initialized to 022 hex

Also, more than one byte may be defined. Example:
TABLE: BYTE 6 0 StartCount+3
defines TABLLE as a 'BYTE' variable and in addition assembles and stores the BYTE

expressions which follow into each successive memory location. If "TABLE" was assigned
the memory location 5000, then a 05 would be in location 5000, a 0 in location 5001, and

- Page 15 -

a 025 in 5002. .
By putting a number enclosed in square brackets, [}, after the value, multiple
byte locations will be initialized to the value. For example,

Buffer: BYTE 0[22] _.reserves 22 bytes starting at "Buffer" and initializes them to O.
Buf: BYTE [33]..If the value is omitted, then the bytes are reserved but not initialized to any value.
2.4.2 WORD

Word quantities work similarly, eg:

ADR_TABLE: WORD 0100 Vector+index TABLE O[4] ..reserves 6 words, clears last 4 to O.
REG_SAVE: WORD (R

except that instead of one byte, one word (two bytes) is reserved. That is, REG_SAVE is
11 words or 22 bytes long.

2.4.3 DEFB AND DEFW

These are similar to BYTE and WORD respectively. However, they should not be
used in new code. Their purpose is to make the conversion from existing ZILOG
assembly language to Q easier by not requiring these symbols types to be converted.

2.5 FORWARD REFERENCES

The subject of forward reference must be considered in the development of any
assembler. If a symbol name is referred to before it is defined, how does the assembler
know what address or value to use? Conventional two pass assemblers handle this by
getting all the symbol name definitions in the first pass. In fact the primary purpose
of the first pass is to get the symbolic definition. Q is able to define symbols on the fly
which is one reason why it is faster than conventional assemblers.

When Q cncounters a reference to a symbol name which is undefined, it inserts a
zero byte or word (dcpending on the operation) and marks this location as the
beginning of a chain. The next time that symbol is referred to, instead of a zero, the
address of the previous reference (or in the case of one byte references, a relative
offset) is used. As a result, a chain is built. When Q finally gets to the definition, the
chain is followed backward and the correct value substitued until all references have
been resolved. Subsequent references Lo the symbol name get the correct value
immediately.

Before a label is defined, all references to it must be of the same type; that is,
cither all one-byte (rclative) references, as in JR instructions, or all two-byte (absolute)
references, as with JP or CALL or two-byte loads. This is because, depending on the type
of reference, cither a one or two-byte chain is set up in order to resolve the references
when a symbol becomes defined. (Other than with JR, one-byte references to undefined
symbols are not supported.) '

- Page 16 -

3.0 ASSEMBLER DIRECTIVES

Assembler directives are commands given to the assembler to perform some
special manipulation. o .

341 ORG

The ORG or '"origin” directive instructs Q to set the current value of the
program counter to the value following. For example, if a program started assembling
and got up to address 01F0, and it was necessary to then insert the next piece of code
starting at location 1000:

01F0 ORG 01000
1000 ...program counter now set to 1000

3.2 DEFM

DEFM stands for "defined message”. It has the form:

Label: DEEM 'This is any "ASCI" text'
OR
Label: DEFM "This is to allow 'single quotes' in the message"

For each character in the message, it inserts a byte into memory which corresponds to
its ASCIl code. Note that either single or double quotes may be used. If the message
starts with a single quote (), the body of the message will consist of all characters
following, including double quotes ("), until the next single quote is reached. The reverse
is true if the message starts with a double quote.

3.3 DEFT

DEFT or "defined text” is essentially the same as DEFM except that it inserts a
byte at the beginning of the message which is a count of the number of characters in
the message. This is useful for loading a register with the count byte and decrementing

until zero for cach message character transferred.
5000 Msg: DEFT 'HELLO'

Generates the following code at address 5000:

5000 05 48 45 4C AC 4F _.first byte (05) is the count byte.
HE L L O <LL=--ASCll

3.4 DEFS

- Pace 17 -

"Defined storage" reserves a specified number of bytes in memory without
changing them from their existing values. It is primarily used to reserve space for
buffers.

Buffer: DEFS 0100

Reserves 100 hex (256 dccimal) bytes.

3.5 WRITE

While assembling, it is often convenient to have a message, address, or some
other data printed out to the console and an output file if open . The WRITE directive
can be used to do this. It should be preceeded with a slash (/) or star (*)--see chapter 4
for more details.

-/WRITE "TITLE -- 1/0 Routines"
Will print the message: TITLE -- 170 Routines

Also, byte and word quantities may be output. Byte values are output from the
A register by any valid A-expression (see section 5.4) and word values come from the HL
register pair by any valid HL-expression (section 55).

Strings, A-cxpressions, and HL-expressions are separated by commas in the WRITE
statement:

-/WRITE "IMAGE FROM ",“Begin,” for ",LD A,(Count)," bytes"

If the address of "Begin” was 0100 and a 3F was in "Count”, the following would be
output:

IMAGE FROM 0100 for 3F bytes

Any "begin-end” blocks, separated by commas, may also be included within the
‘write' statement to do calculations or output data @DE.

The procedures 'WSbgn', 'WSend', ‘Copy’, ‘HLout', and 'Outhex’ (which are in Q) must
be present (and in the symbol table during compilation) in order to use the ‘write’
statement.

The WRITE keyword may be substituted with a question mark (?), as in:
-/?"Print this string"
The write statement may also be used by a program during its execution if Q is
resident:
2"VALUE=",W.VALUE," X=",R.C+2

assuming VALUE=9999 and R.C=030,
then VALUE=0999 X=32

will be written during program ecxccution.

- Page 18 -

Note that during the execution of a program, if the write statement is used to
output the value of register pair DE, special handling is required. Since RDE is used by
the write statement as a pointer to the output buffer, its value is saved in LASTDE
before executing the write statement and then restored afterward. 1f the true value of
R.DE is to be written, use LASTDE.

2"The true value of DE is " W.LASTDE

This prints the correct value of register pair DE.
Any A- or HL- expression in the write statement will use RA and RHL
Therefore, they may easily be overwritten in the write statement. For example,

2"BC= ",R.BC," HL=",R.HL

is incorrect because HL was destroyed when R.BC was output. The same thing happens
with RA except a little worse. Once an A-expression is written, RA is no longer valid
. even if RA was the only thing written. Examine:

2"RA="R.A" "R.A

If RA contains 055, the following is written:

R.A=55 35

The 35 is the ASCII for the number 5 which was the last thing in RA (used to output
the second 5 of the last A-expression).

3.6 GLOBAL
Symbols are made global throughout an assembly by appearing in a GLOBAL
statement of the form

GLOBAL symboll symbol2 etc.

The word GLOBAL starts in any column but the first. For the best speed of assembly,
put GLOBAL statements after the symbols in them have been referenced. There is no
EXTERNAL statement.

3.7 stop

Placing a “stop” in the source code causes Q to generate a BYTE OFF. This can be
used in places where reaching that point indicates something major has gone wrong.
It provides a mcans of stopping the action similar to a breakpoint but without having
to enter it repeatedly. It may be in any column other than the first.

- Page 19 -

4.0 IMMEDIATE MODE

The immediate mode in Q is a command mode with no relationship to the 7Z80's
immediate addressing mode. In Q, immediate commands are those which are executed
immediately at assembly time rather than run time.

The following is a list of immediate commands. They are entered from either
the console, a MAKE file, or a program file. All must start with either a "/ or a "
and be the first character on a line. ("/" and "*' are generally interchangeable except
during conditional assembly, described in chapters 8). In addition, any instruction or
instruction list may be executed immediately (from the console or during compilation)
by entering

JINSTRUCTION.LIST ...e.g. /LD B,2; TEST()

Some instructions or commands, in particular those needing to do some
calculations or immediate execution, may temporarily use a few extra bytes in the code
area (where the object code is generated). However, ORG, DEFS, EQU and DEFL
statements, and the QBUG commands, do not.

4. // [EXIT FROM Q]

While in the /" or "*' modes, a "//" may be used to exit Q. "//" exits the
program, closing files and returning to the TPM operating system.
/TOF (in a file) marks the end of file. (It will be closed at that point.)

4.2 I* [ENTER DEBUG MODE]

Q contains a symbolic debugger. To enter debug mode, from the command mode
type "/*' (this can also be in a file; any open input or output files will be closed).
The prompt is a "*'. From dcbug mode, any instruction (or instruction list) that is
typed will be executed immediately, with registers preserved from one line to the next
(including any changes made). All of the commands beginning with a "/" are also valid.
In addition, there is a set of special QBUG commands (see chapter 12.0 for info).

43 *Q [EXIT DEBUG MODE]

If in debug mode (" prompt), type "Q" to return to normal command mode ('-"
prompt) or "//" to exit to TPM.

4.4 /DO

The "/DO” command form is used to assemble a file (and/or execute commands
from it). Therefore,

- Page 20 -

/DO <source file name>

will assemble <source file name>. Note that the file may contain assembler commands
which will be executed as if they were entered from the console. It may also contain
other files to assemble.

4.5 JLIST

This command has many useful purposes. It can be used for self tutorial by
entering the command

JLIST ..without a file name will generate a listing to the console.

Instructions entered are immediately assembled and the results displayed on the
console. This mode resembles an interpreter in its ability to give instant feedback
about the acceptability of the source. However, it is much more powerful in that it also
gives a display of the generated code. This feature, if wisely used, accelerates the
learning process.

LD A,033 ..sample line of code with list display [3E33]

Note the numbers between the brackets which indicate the code generated from the
source.

By entering files to be assembled (with /DO command), the /LIST can also be
used as a debugging tool, catching spots where code is being overwritten by watching
the addresses on the console. Of course an entire listing can be generated and printed
to accomplish the same, however, a partial console listing is often adequate and faster.

The "/LIST" command is also used to obtain a source listing with a display of
gencrated object code. While in immediate mode and before entering '"/DQ", enter:

JLIST (listing file name>

CAUTION: The <listing file name> should be DIFFERENT from the source file name. When
the above command is entered, Q opens a file with the specified file name. If that file
name alrcady exists, then Q will erase it prior to opening the new file. Therefore, if the
listing and source file names are the same, THE SOURCE FILE WILL BE ERASED!

For example, if a listing is needed for the source file named PROG.S,

JLIST L.PROG ...opens the list file " PROG" erasing any previous "L.PROG".

/DO PROG.S ...simultaneously assembles PROG.S and generates the listing to L.PROG.
JLIST END ...turns the listing off and closes L.PROG

To get a printed listing, first list to a file as above, then print the file. Note the use of
“/LIST END” in the above. There are two other variations:

JUIST OFF turns the listing off but leaves the listing file open

- Page 21 -

JLIST ON turns the listing back on after a /LIST OFF
JLIST END turns the listing off and closes the listing file

Therefore, selective portions of a source file may be listed by using "/LIST OFF" and
w/LIST ON". Also multiple list files may be generated by:

JLIST L.FILE1

JLIST END
JLIST L.FILE2

JLIST END

Another list option, /LIST SHORT, gives an easy to read list where the generated
code is not required but the addresses are. Without the short list a piece of sample
code looks like this:

0100 Example: LD A,04 [3E04]
With the short list the above code appears:

0100 Example: LD A,04
Notice the lack of listed code here RAAARY

4.6 /START

/START name or /START Ohhhh causes control to be transfered to the given
address, closing [iles first.

4.7 /MAP

/MAP [mask] or /MAPA [mask] (where mask is optional and will be described
below) will display a compact listing of the source symbols and their addresses (or
defined values) plus a byte in hex representing the symbol type on the console (and in a
file if open for listing). /MAP prints symbols in the order of their occurrence, while
/MAPA prints them alphabetically. The bits in the 'type’ byte have mecaning as follows:

xxxx 0000 if Label:

xxxx 0001 if defined as BYTE (see section 2.4.1)

xxxx 0010 if defined as WORD (see section 2.4.2)

xxxx 001 if PROCedure definition (see section 6.1)

xxxx 0100 if defined by DEFL (see section 2.3.3)

xxxx 0101 if defined by EQU (see section 2.3.1)

xxxx 0110 if defined by CON (sece section 2.3.2)

XXXX 1XXX if undefined

xx1X XXXX if symbol reuseable (ZAPed-see section 4.8)

XIXX XXXX if undefined, indicates forward reference chain exists

- Page 22 -

if defined, indicates no references to symbol exist.
IXXX XXXX if symbol is global

The above bit definitions are used for the [mask] byte used in the ZAP ALL and PACK
ALL commands below.

4.8 /ZAP

/ZAP (list of symbol names>

e.g.
|/ ZAP SYM1 SYM2

effectively deletes (zaps) those symbols from the table, although they still take up space
in memory.

/ZAPALL [mask] ...zaps all symbols not masked out.
..space between ZAP and ALL is optional
.NOTE: the space between the ZAP and ALL is
...optional. '

Use the bits as described in section 47 (/MAP) to compose the [mask] byte. The bits are
active true. For instance, to ZAP all symbols which are in bank 2, use

JZAP ALL 010 ...all bank 2 symbols are zapped.

Note that undefined symbols cannot be zapped.

4.9 /PACK

The "PACK" serics of commands usually follow the 7AP command and are used to
pack the symbol table into minimum space by saving only undefined symbols, symbols
masked out, and, except for /PACK ALL, global symbols.

“/PACK" gets rid of all symbols which are not global or undefined. In other
words, it climinates all defined local symbols.

w/PACK ALL" will pack even the global symbols. The space between PACK and
ALl is optional.

"/PACK [mask]’ packs the symbol table saving only undefined symbols and global
symbols which have not been zapped or masked oul.

v/PACK ALL [mask]" packs the symbol table saving all symbols not zapped or
masked out.

Note: undefined symbols cannot be zapped or eliminated through packing.

4.10 /CLEAR

JCLEAR clears the entire symbol table.

- Page 23 -

an /IMAGE

Q is able to IMAGE a "object” file that uses following format:
JIMAGE <filename> $(?(symbol:) addrl addr2)

where $(--) ..means some no. of' (one or more of), and
2(--) ..means optional'
This command will
--image a file of name (filename>
.between and including memory addresses addr1 and addr2 (up to 16 sets of addrl,addr2 pairs)
Also:
--"symbol:" has to do with associating an offset with addrl and addr2
this is described
in more detail in chapter 9.0, Assembling With Offset')
--addr1,2 may be either a hex number, an HL-expression, or a "yalue(---)" expression
(as described in section 1.6) of 80H, otherwise the record length is set to 200H

Examples:

/IMAGE TASK1 0100 03000 04000 05000

images a file named TASK1 with the code from memory location 0100 to 03000 and the
code from memory location 04000 to 05000.

/IMAGE FILEX "START “END

images a file named FILEX with the code beginning at the memory location symbolized
by START and ending at the location indicated by END.

4.2 - [mask] --- not a command

The form and meaning of the mask allowed in some of the commands above is
more extensive than indicated. The full form is as follows (where the brackets indicate
optional constructions):

mask=[c [m]] [R=[n1](,n2]] ..where c and m are one-byte hex numbers.

¢ is compared with the 'type’ byte while m is used as a mask. A symbol is accepted if
the bits of ¢ which are " in m agree with the corresponding bits in the 'type’ byte.
In other words, the mask, m, is anded with c, the result is compared to the type byte,
and all symbols whosc type byte compares true arc accepted.

If m is not given, it is sct equal to ¢ if neither ¢ nor m is given, they are 0 by
default (and thus all symbols arc accepted).

"

“R=n1n2" specifies that the symbol must be within the range nl-n2 (inclusive) to
be accepted. nl and nZ are cither HL-expressions or hex numbers, eg. ~L0+3. (nl1

defaults to 0 and n2 to OFFFF)

Examples:

/MAP 8
will produce a map just containing all the undefined symbols.
/MAPA 2 7 R=,5000

will produce an alphabetic map just containing symbols defined as WORDs with addresses
<=05000. .

J/ZAPALL R="ABC,"XYZ
will zap all symbols whose values are between ABC and XYZ.

/PACK 0 40
will pack the symbol table saving only global symbols which have been referenced (as
well as any undefined symbols).

4.13 /LOAD

Q is able to LOAD any file (typically an object file) into RAM memory and it uses
following format:

/LOAD <filename>

This command will:
load a file of name <filename> into memory starting at location 0100.

- Paoe 25 -

5.0 SPECIAL REGISTER HANbLING EXPRESSIONS

This chapter deals with special symbolic representations which are peculiar to Q
and not found in any other language. In general, they help in visualizing data flow by
achieving a decgree of graphic representation not realized by conventional assembly
language.

There are two types of implicit register operations known as A-expressions and
HL-expressions. A-cxpressions assume that certain operations are performed with the
accumulator (register A). Likewise, HL-expressions assume operations with the HL
register pair. Both types make heavy use of the special register designations described
in scction 3.1

The expressions presented in this chapter make use of the following general
form:

C(LOAD PART> <MODIFIER PART> <STORE PART>

where the
LOAD PART causes an implicit load of either the A or HL registers
VODIFIER PART causes a modification to the A or HL registers, usually
after it has been loaded
STORE PART causes the value in the A or HL registers to be stored in
either memory or another register/register pair. The load part may
begin in any column other than 1, however, good form calls for indenting one or more
tabs. The modifier and store parts are optional.

Whether A or HL is used as the implied register is usually apparent by the form
of the load part. In certain instances where a symbol is used in the load part, the type
may not be clear since whether it is a byte or word quantity is unknown. In these
cases the modifier and/or store parts make the type of operation clear. However, since
these two parts are optional, it is still possible to have a load part who's operation is
unclear. At such times it is the responsibility of the programmer to make it obvious by
using appropriate comments.

5.1 ADDITIONAL REGISTER DESIGNATIONS

There arc expressions in Q which refer to register names in places where it
could just as easily be a symbol. For this reason, register designations have been added
to Q. In general, ’

R.r ..refers to register(s) r, where r Is A, B, C, D, E,
..H, L, BC, DE, HL, IX, or IY.
That is,
R.A ...the accumulator, register A
R.B ...register B R.C ...register C
R.D ...register D R.E ..register E
R.H ...register H R.L ..register L
R.BC ...register pair BC R.DE ..register pair DE
R.HL ..register pair HL
R.IX ..register pair IX R.IY ...register pair 1Y

- Page 26 -

5.2 @ EXPRESSIONS

@ expressions are actually not expressions at all but parts of A or HL
expressions. They may be used as either load parts or store parts and are always used
in conjunction with a register pair which is used as a pointer into memory.

By placing an at-sign (@) in front of one of the special register pair designations,
that register pair is used as a pointer to a location in memory. If it is used as a load
part, then RA is loaded with the byte pointed to by the register pair. For example,

@R.HL ..generates the same code as LD A,(HL) but is easier to type
...and aids in other expressions yet to be covered.

There are several variations. First, for @ expressions, the "R." is optional. So,

@HL and @R.HL are the same and the former is the preferred form.

Also, if an offset is to be added to the register pair first, use

@(R.HL+2) ...which increments HL twice before loading R.A with the
...byte pointed to by R.HL.

Note that in this example the "RHL" cannot be substituted by the "HL". It is only when
the @ and register designation are not separated by the paren, (", that the "R may be
dropped.

Register pairs can also be used as pointers to word locations where they load
RHL with the word pointed to. These operations are part of HL-expressions which are
covered in detail in section 55. To specify that a word is to be stored in RHL rather
than a byte in RA, the @ sign is followed by a 2,

@2DE _.loads R.HL with the word pointed to by R.DE.
@2(R.HL+2)...first increments R.HL by 2, then loads itself with the
..word it is pointing to.

When used as store parts the byte in RA (for A expressions) or the word in RHL
(for HL expressions) are stored into the memory location(s) pointed to by the register
pair following the @. For example,

R.A -> @HL...stores R.A where HL is pointing to
R.HL -> @2DE ..stores R.L where DE is pointing to and R.H at DE+1
..R.DE is restored to its starting value.

5.3 UP ARROW ()

When an up arrow precedes @ symbol name, it usually indicates that RHL is
loaded with the ADDRESS of that symbol. The exception is when the symbol name is
defined as a constant (ie, CON, EQU, or DEFL) in which case RHL is loaded with the
value of the constant. However, examine a listing of Q and observe that, when the

- Page 27 -

constant is defined, its value is placed in the far left 4 columns; the same place that
symbolic addresses are put.' Therefore, it is obvious that

THE UP ARROW (%) LOADS THE VALUE THAT A
LISTING WOULD PLACE IN THE ADDRESS COLUMNS.

In the case of byte, word, or label values, it is the address; but for constants, it is the
actual value. For example,

0765 PROM_ ADR: EQU 0765 ...prom subroutine

0100 COUNT: BYTE 012 ...count
“PROM_ADR ..loads RHL with 0765
“COUNT ..loads R.HL with 0100

5.4 A-EXPRESSIONS

A-expressions deliver a value to RA and consist of a load part followed by any
number of modifier parts and/or store parts. These parts are described as follows:

Load Parts Mnemonic Equivalent
@RBC or @GBC e LD A,(BC)

@RDE or GDE e LD A,(DE)

@RHL or GHL e LD A,(HL)

@RIX or @IX e LD A,(IX)

@RIY or @Y e LD A,Q1Y)

@RIX(n) or @IX(n) e LD A,(IX+n)

@RIY(n) or @IY(n) e LD A,(IY+n)
: where n is an arithmetic expression
for a 1-byte quantity (see section 16)
Examples: (OFF EQU 012 and SS EQU 032)

@IY(OFF) e LD A,(IY+012)
also

@hl where "hl" stands for an HL-load part

(see 'HL-Expressions' below) e Load HL,---

LD A,(HL)
RB (or RCDEHL) e LD AB (or LD AC etc)
RA e No code
BVARNAME e LD A,(VARNAME)
VARNAME (if defined as a BYTE) .t LD A,(VARNAME)
BPROCEDURE() (see 'Procedures') CALL PROCEDURE
00 (this affects the flags) oo XOR A
99 or other decimal number e LD A,99
0C3 or other hex number . LD A,0C3H
1z L e LD A'Z' .
CONST (defined by "EQU" or YDEFLY) sissesee LD A,CONST
-a where "a" stands for an A-load part Code for load part, NEG

- Pare 28 -

Modifier Parts Mnemonic Equivalent

+carry+ RB or C, etCe e ADC AB etc

scarry+ (HL) or (IX#n), etCue oeeeeeee ADC A,(HL) etc

+carry+ 99 (or other constant) ADC A,99

+carry+ GHL ADC A,(HL)

scarry+ @IX (or @Y) e ADC A,(IX); (or ADC A,(1Y))

+carry+ @IX(n) (or @IY(n)) e ADC A,(IX+n); (or ADC A,(IY+n))

+carry+ @ DATA (or other HL-load part) ... LD HL,DATA (or other HL-load)
ADC A,(HL); (*see note below)

-carry- (options are same as +CATTY+) e SBC A,---

1 e INC A

T DEC A

Note: the space between the + or - and the 1 is significant Omitting

the space generates the single byte increment/decrement whereas,

putting it in generates a two byte ADD A,---

+ (options are the same as +carry+) e ADD A,---

- (same as +carry+) SUB A, ---
XOR (same as +carry+) XOR A,---
& or AND (same as +carry+) AND ---
| or OR (same as scarry+) e OR ---
= or :: (same as scarry+) e Ccp ---
(except note "=0" below)
=0 (or =0y e OR A
XD e ADD AA
2 e SRL A
Store Parts Mnemonic Equivalent
-> BABC e LD (ABC),A
-» ABC (where ABC prev classified as BYTE) LD (ABC),A
- @GRBC or @BC e LD (BC),A
- @GRDE or @E e LD (DE),A
. @RHL or @HL e LD (HL),A
-» @RIX or @IX (same with 1Y) e LD (1X),A; (or LD (1Y),A)
-> @RIX(n) or @IX(n) (same with 1Y) s LD (1X+n),A; (or LD (1Y+n),A)
-> @hl where "hl" stands for an HL-load part
(see '‘HL-Expressions' below) e Load HL,---
LD (HL),A; (*see note below)
SRA e No code
-> RB (or RC, D, --- etc) e LD B,A (etc)

Additional 8-bit stores may be indicated directly by:

RA -> @HL -> SAVE -> RB. e LD (HL),A
LD (SAVE),A; LD B,A

- Pace 29 -

5.5 HL-EXPRESSIONS

HL-expressions deliver a 16-bit value to the HL register. They also consist of a load part
followed by any number of modifier and/or store parts.

Load Parts Mnemonic Equivalent
RDE e LD H,D; LD L,E
RBC e LD H,B: LD L,C
RHL e No code
RIX e PUSH 1X; POP HL
RIY e PUSH 1Y; POP HL
“VARNAME LD HL,VARNAME
W.VARNAME LD HL,(VARNAME)
VARNAME (where VARNAME previously defined
as WORD) e LD HL,(VARNAME)
W.PROCEDURE() (see 'Procedures' section below) CALL PROCEDURE
W.099 (or other decimal number) . LD HL,999
W.OEFF (or other hex number) e LD HL,OEFF
@2HL goes | level indirect e LD A,(HL); INC HL
LD H,(HL); LD LA
(*note use of R.A)
@2BC or @2R.BC e LD H,B; LD L,C
LD A,(HL)
INC HL; LD H,(HL)
LD LA
(*note use of R.A)
@2DE or G2R.DE e EX DE,HL; LD E,(HL)
INC HL
LD D,(HL); DEC HL
EX DE,HL
@2IX or @2R.UX e LD L,(IX); LD H,(1X+1)
@2lY or @2RAY e LD L,(IY); LD H,(1Y+1)

@21X(n) or @2R.IX(n)
@21Y(n) or @2R.IY(n)

where n is an expression for a 1-byte numeric value
(see 'Numeric Values' below)
........ LD L,(IX+n)
LD H,(IX+n+1)
[or LD L,(IY+n); LD H,(IY+n+1)]

also
@2hl e Load HL,---, where "hI" stands for an HL-load part
@2HL (as above)
Astring" e CALL #1; DEFT 'string'
(effectively points HL to in-line assembled DEFT)
#1: POP HL
(RHL+R.BC)*2 e whatever is generated by HL-expr

- Page 30 -

Modifier Parts

+carry+ R.BC (or DE or HL or SP)
-carry- R.BC (or DE or HL or SP)
+ R.BC (or DE, HL, SP)

+ 1

+2

.........

Mnemonic Equivalent
ADC HL,BC etc.
SBC HL,BC etc.
ADD HL,BC etc.
INC HL

INC HL; INC HL

Note: a + or - with a number less than T is not very efficient since 1

bytes of code are generated whereas,
will save bytes.

R.HL+2+2+2
and R.HL+6
- R.BC (or DE, HL, SP)
-1
-2
+ R.[B] or other A-load part or
+(R.A&OF)

(A-expression)

x2

/2

= 0 (or : 0)
R.BC (or R.DE)

Store Parts

-> R.BC (or R.DE)

->» R.IX (or R.IY)
=) @2BC or @2R.BC

-> @2DE or @2R.DE

-y @2IX or @2R.X (or 1Y)

-> @21X(n) or @2R.IX(n) (same with 1Y)
-> W.VARNAME

- VARNAME (if defined as WORD)

-> RHL

Note: Incrementing and
cannot be used to set the flags for a relation test.
R.A; thus

Note: Some HL-cxpressions can modify

original R.A.

decrementing R.HL doecs not sct the flags;

using +2 and/or +1 several times

......... only generates 6 bytes, all INC HL.
generates 7 bytes.

OR A ,Reset Carry, SBC HL,BC (etc.)
DEC HL

DEC HL; DEC HL

LD A,[B] etc. (Note: A-expression may reuse R.HL)
ADD AL; LD L,A; JR NC,$+3; INC H

- R[B] or other A-load part or

LD A,[B] etc.

CPL; ADD AL; LD L,A; JR C,$+3; DEC H; INC HL
ADD HL,HL

SRL H; RR L

LD AH; OR L; (*note use of R.A)

OR A; SBC HL,BC (or DE); ADD HL,BC

Mnemonic Equivalent

LD CL

PUSH HL; POP IX

LD A,L; LD (BC),A

INC BC; LD AH; LD (BC),A; DEC BC;
EX DEHL; LD (HL),E; INC HL
LD (HL),D; DEC HL; EX DE,HL
LD (IX),L; LD (IX+1)H

LD (IX+n),L; LD (1X+n+1)H
LD (VARNAME),HL

LD (VARNAME),HL

No code

..(*note use of R.A)

thus, the expressions: (HL-load part) +1, +2, -1, or -2

R.A+@(@2HL) or R.A+@("DATA+32) don’t do the addition on the

- Page 31 -

5.6 "S.* AND "L." EXPRESSIONS

These expressions arc used as a shorthand for @ expressions. "L can
mnemonically be referred to as "Moad the <?> register with @HL" and "S" can
mnemonically be referred to as "store the <?> register @HL". For example,

o114 LB [46]
..load R.B with (HL), or LD B,(HL)
o115 s.B [70]

..store R.B at (HL), or LD (HL),B

uen or "-" ysed to the right of a register in an "L" or "S."

expression means "INCREMENT” or "DECREMENT" R.HL respectively. For example,

0116 L.C+B [4E2346]
..generates LD C,(HL)
INC HL
LD B,(HL)
...an often used sequence, also...
0119 S.E+D- X [73237228B]
..generates LD (HL),E
INC HL
LD (HL),D
DEC HL

...preserves R.HL

"&'" causes a logical AND between R.A and the byte @HL and "|" causes a logical
OR between R.A and the byte @HL. For example,

011D L.A+|+&- [7E23B623A62B]
0123 - S.A+|+&- ‘ [7723B623A62B]
..notice that the &,-, and + have the same function in both
...the "L.* and "S." expressions.

5.7 INCREMENT BY APOSTROPHE (')

The appostrophe () may be used to indicate increment immediately following an
N
@RR expression where R is a 16-bil register pair (eg. DE). For example,

0129 @DE' [1A13]
0128 @HL' [7E23]
_Note that a double ' (e.g., @DE") does not work

5.8 B. AND W. EXPRESSIONS

The “B” and "“W." prefix must be used in circumstances where there is an

- Page 32 -

ambiguous forward reference. Until a symbol name is defined, whether it is a byte or
word quantity is ambiguous. Q is able to handle this only if the programmer removes
the ambiguity with the "B or "W." prefix.

Placing the "B’ in front of the symbol name identifies it as a propose'd byte
quantity. Q will properly build a single byte relative chain until the symbol is defined.
The "W has a similar effect in identifying word quantities. Examples:

B.BSYM->R.A ..= LD ABSYM
W.WSYM->R.HL ...= LD HL,WSYM

Another type of expression using these prefixes has to do with procedure calls.
By placing a prefix in front of the call, as,

B.GETBYTE()->R.B ..=CALL GETBYTE; LD B,A
or W.GETWORD()->R.DE ...=CALL GETWORD; LD D,H; LD E.L

the register to be uscd (either R.A or RHL only) is specified. In other words, for the "B
example, the prefix notifies Q that it is an A expression and upon returning, RA is to be
used in the data transfer. The "W." prefix has the same effect in signaling an expression
with R.IL to be used.

- Page 33 -

6.0 BLOCK STRUCTURED (P_ASCAL-LIKE) EXPRESSIONS

Q supports a set of relational expressions grouped as "if", "while", "repeat”, and
ncase” statements which take the following forms:
[Brackets indicate optional constructions.]
"Keywords are in quotes”

lltllllllllllllllllllll!tllllllllllllll!llllll!llltlltll!lllllllllll!llll!lllll

"if* RELATION.BLOCK "then" INSTRUCTION [“else" INSTRUCTION] [“endif"]

lllllllllllllll!llll!llllllllllll!lllllllltl!lltllllllllllllllllllllllll!llllll

lllllllllllllllllll!llllllllllllllll!llll!ltllllll!llll!llll’llI!ll!!llllllllll

“while" RELATION.BLOCK "do" INSTRUCTION

lxlllll!llllll!ll!l!llxll!llll!l!lllllllllll!ll!ll!llllll!lll!ll!llll!lll!lllll

ll!lllxlllllllllIXIlll!lllll‘l!‘llll!l'l!l’lllll!ll'!ll!!l!lllll‘l.!!l‘l!!lllll

“repeat" INSTRUCTION.LIST "until" RELATION.BLOCK

llllllllllllllIllll!ll!Illlllllllllltl].llll!lll‘llllll!ll’lllll!!llllllll!!lll

"case" INSTRUCTION "of"
CP.OPERAND or PROCEDURE or BEGIN.END ":" INSTRUCTION
CP.OPERAND or PROCEDURE or BEGIN.END ":" INSTRUCTION

etc.
["else" INSTRUCTION]

uendu

e EE KK XEEEEEEAKEE KA EEERAK A ERKIEIEEE IR KA AE R AR AR KA ARAIXXAXXA L
where:

INSTRUCTION is any single Z-80 assembler or Q statement. In RELATION.BLOCK it
is used to sct the zero and carry flags. In "case” statements it is used to place a value
in R.A which will be compared.

[xamples:

LD AVar ..Z80 instruction
R.A->Var ..Q instruction

INSTRUCTION.LIST is any number of instructions separated by ""s or on different

lines and may also include labels (at the beginning of a line) or comments. (Remember
that comments must start with ".")
Fxamples:

~Start; LD DE,End; LD BC,Count; LDIR ..instruction list

is same as:

- Page 34 -

~Start ..start of same list put on separate

LD DE,End ..lines
LD BC,Count
LDIR ...end of instruction list

BEGIN.END is the sequence "begin” INSTRUCTION.LIST "end". In the "case' statement, it is
used the same as a PROCEDURE to set the zero flag. Note: The BEGIN.END construction
is considered an INSTRUCTION. In other words wherever an INSTRUCTION is called for in
the above rclational expressions, an INSTRUCTION.LIST set off by "begin'" and "end” may
be used. Examples:

begin LD A,Var; R.A->@HL; INC HL end ..= an INSTRUCTION

CP.OPERAND is any single operand which may be compared to RA. That is, a numeric
value such as O1F or 28, an 8 bit register such as RA (also B.CDEH, or L), or an "@"
term (including @1X(n), or 1Y). In general, it is anything that works with:

R.A = CP.OPERAND

T.OPERAND defines a class of operands which are used in tests. It is only used to define
RELATION and TEST, described below.

T.OPERAND depends on the preceding instruction. If the instruction is NOT an
HL expression, then a T.OPERAND may be a CP.OPERAND, a '"zero”, or a "carry".
If the instruction IS an HL expression, then it may be a 0, an R.BC, or an R.DE.

The default for T.OPERAND is "zero". Therefore, in expressions which call for
TOPERAND but don't have one, an operand of "zero” is assumed.

A "zero' causcs a test of the zero flag (bit 6 of the flag register). A branch will
then occur based on the result. This is useful when the zero flag contains the
information for the branch but RA does not. For example,

DEC B .decrements R.B and sets zero flag (among others)

if R.C zero then _loads R.A with R.C which does not set any flags;

INC A _.therefore, the branch is based on the zero flag condition
else DEC A ..set by the DEC B rather than the existing value of R.A.

A “0" or any numeric value, causes a compare of the value with R.A before any
flags arc tested and is used when the branch nceds to be based on a comparison
between a numeric value and the existing value of RA.

The "carry” causes a test of the carry flag (bit 0 of flag register). The resulting
branch will be based on the condition of this flag rather than the zero flag.

RELATION is an opcrator which specifies the type of test to be made on the test
operand (T.OPERAND). The following is a list of the valid relation operators:

= ...equal to

O ...NOT ecqual to
not ..same as <O
< ...less than

> ..greater than

(= .less than or equal to

- Page 35 -

o= ...greater than or equal to
[none] _.default of no operator is the same as equal to

Note that most relational operators cause a single jump relative to be generated in a
TEST. However, ">" and "<=" each cause two jump relatives. Therefore, consideration
should be given to avoiding these when convenient. TEST is of the form:

INSTRUCTION RELATION T.OPERAND

When INSTRUCTION is omitted, it is assumed to be RA. Recalling that an
omitted RELATION and T.OPERAND assume = and "zero" respectively, observe the
following expressions containing tests which are equivalent:

if then...

if zero then...

if = then... [all these statements are equivalent]
if = zero then...

if R.A then...

if R.A zero then...

Note that two possibilities are left out. These two are special cases which are NOT allowed:

if R.A=zero then... [these two are NOT VALID]
if R.A= then...

Also note that if the = is changed to any of the other relational operators, such as < or
even <=, the above two statements ARE VALID.

RELATION.BLOCK is a group of logical TEST's "and’ed and ‘"or'"ed together without
parcntheses, ie: TEST1 and TEST.2 or TEST3 . Higher priority is given to "and's.
For example,

if R.A>='0' and <='9' or >='A' and C='F' then RET;

first tests the character in RA to see if it is greater than or equal to ASCIT 0.
If it is. then the test is said to be "true” and it then checks to see if it is also less than
or cqual to ASCII 9. If this test is also true, the RET will be executed. If either of these
two tests fails, the lest to the right of the "or" would be tried. If either of the two
tests to the right fails, the statement after this if statement is executed next.
And, if both tests to the right of the "or" are true, the RET is executed. Note that in
the 2nd, 3rd, and 4th tests the RA was implicd.

PROCEDURE, as used in the “case” statement, refers to Q-type procedure call; that is,
PPROCNAME or PROCNAMI(optional args.). When this is used in the case of a
CP.OPERAND compared with RA (sce above), the zero flag is tested upon return from the
procedure; if set, it is the same as if a match is found.

NOTE: End-of-lines (including possible comments) may go after INSTRUCTION,RELATION, “then”, "else”, “do”, "until®,

or "of".

- Page 36 -

6.1 PROCEEDURE

A procedure in Q is essentially a subroutine and has the same significance.
Any symbol namec may be used as a subroutine/procedure call. The only difference
between a symbol name used for a procedure call and one used for a subroutine call is
that the former is defined in the symbol table as a PROC type and the other is not.
Of the three methods of indicating a subroutine/procedure call, only one requires the
name to be declarcd as a PROC type. :

The first method of procedure call is to put an open and close paren after the
procedure name:

Pname()

A variation of this allows that within the parenthesis, INSTRUCTIONS, separated by
semicolons, may be added:

pname(~Start; RB->R.D) will generate a LD HLStart; LD AB; and LD
DA before the call to Pname.
A second method is to precede the procedure call with a "P."":

P.Pname

And lastly, is to merely state the name of the procedure:

pname This last method requires that the procedure name be
defined as type PROC. This is accomplished by putting "PROC" in the statement field
immediately after the symbol name. For example,

Pname: PROC ...this declares Pname to be a procedure.

Note that only this last method 'REQUIRES the label name to be declared a procedure.
The "P." and "()" forms not only do not require this but can even be defined after
reference to them has bcen made.

As a statement of proper software form, it is strongly recommended that the ()
form of procedure call be used. It is not only the most versatile but also the most
rcadable.

Some examples:

PROCEDURE() e CALL PROCEDURE
PPROCI(RH) e LD AH; CALL PROCI
PROC2(BVARNAME->RB; 93->RA) .o LD A,VARNAME; LD B,A
LD A,99; CALL PROC2
PROC3(WVARNAME) e LD HL,(VARNAME); CALL PROC3

Also, when procedures return values to be used in expressions, the type of value
returned can be specificd by the W. or B. prefix. For example,

W.Pname()->R.BC .word returned in RHL by Pname is placed in R.BC

- Page 37 -

or B.Pname()->@DE ..byte returned in R.A by Pname is placed in memory
..lo¢ation pointed to by R.DE

A subroutine is defined as a section of code beginning with a label (so it can be
referred to) and ending with a return (RET). Some subroutines have an implied return.
That is, since the instruction prior to the RET is another subroutine call, the RET is
dropped and the call is changed to a jump to the subroutine. Consequently, a
superfluous RET is eliminated. For example,

Sub1: R.B->R.C; Sub2(); RET ...subroutine #1
Sub2: R.HL->R.BC; RET ...subroutine #2

Subl may be changed to:
Sub1: R.B->R.C; JP Sub2 ...new subroutine #1

When Subl is called from wherever, the return address is pushed onto the stack.
Subl then jumps to Sub2 with "JP Sub2’ which then executes up to the RET.
The RET pops the stack which contains the return address in the routine which called
Subl.

Q contains an optimizer which is trained to spot these occurrances, substitute
the jump for the call and drop the RET. The source statement will still show the call
and RET but the code in the [] brackets will show the optimized version.

6.2 if...then...else...endif

!llll!l!llllllllllixl!llll!lXlllll!IlllIlll!lllll!llllllllﬂl!ll!!llll!llll!llll

nif" RELATION.BLOCK "then" INSTRUCTION ["else" INSTRUCTION] ["endif"]

llxlllullnllllllxllxll!llllxlllll!x!xllit!llulltllllxxxlxllll!!!xxllltx!lllll!x

If the RELATION.BLOCK test is true, the “"then" INSTRUCTION is executed. If it is false, the "else"
INSTRUCTION is executed. At the end of execution, the program continues at the statement following the "if"
statement. If the RELATION.BLOCK tests false and there is no "else", the program also continues at the
statement following the "if" statement.

The “endif" is not normally needed. Its main use is to make the end of an if statement clearer in
the midst of several "begin...end" constructions.

EXAMPLES:

if R.A=0 then INC A ...insure that R.A is non zero
if R.AY='0' and <='G' or >='A' and <='F' then RET ...test for Hex digit
if begin LD A,Var; R.A->@HL; INC HL end =0 then INC A ...notice how the

...begin-end equals one instruction.

if R.A=0D then begin ..notice use of multiple lines to improve
LD C,0 ...readability and
Puti(R.A) ...allow comments
0A ...on each line.

- Page 38 -

end

else begin
DEC C
if R.A<>8 then begin ...backspace?
INC C; INC C ...no
if R.AC' ' or R.A=07F then '#' ..non-character
end
endif ..not really needed but makes the end of the if
\ ..statement clearer. Also gives an additional check
_on the begin-end pairs matching.
end
endif ...ditto reason for previous endif.
Getlif: PROC ...get 1 char. from console->R.A if ready; ret. Z=0 iff got one
if begin IN A,(CONRDY); BIT INRDY,A end <> then begin ...char waiting?
IN A,(CONIO) ..yes, get the char.
RES 7,A ..reset bit 7 to mask off parity
end
RET

6.3 begin...end

In the definitions of the block structures at the beginning of this chapter,
wherever there is INSTRUCTION indicated, a multiple instruction INSTRUCTION.LIST may
be substituted if it is preceded by "begin" and followed by "end". Example,

begin LD AVar; R.A-D@HL; INC HL end ..= an INSTRUCTION

Errors causcd by a "begin" without a matching "end” are fairly common and
sometimes difficult to locate. So, particular attention should be given to using proper
form with them. Notice the examples in section 52 The "end" should be in vertical
line with the preceding code. For more dectails on proper structuring of begin.end
cxprcésions, consult chapter 15, Software Notes.

There are some common indications which help to locate errors caused by lack
of a matching “end”. Understanding the following description will provide some insight
into locating this typec of error.

If a "/MAP 8" is placed at the end of the source file to catch undefined labels
(EXTEND & USERCC are OK as undefined labels), it or some other illegal statement will
be flagged as an error. If some other error is in the source file, the /MAP 8 will work
and show an undcfined label with a symbol name that is a two digit number followed by
a # such as 004 'The address associated with this undcfined label will give a clue of
where to start looking. It will be at a "begin” but not necessarily the one without the
matching "end”. 1f it isn't, look for another nested inside.

There is a limit of 255 bytes coming between the "hegin" and "end”. It is not
necessary to be concerned with the exact length when coding because an error message
during assembly signals this condition. It is casily handled by creating a subroutine
from some of the code and replacing it with a subroutine call within the begin-end
bracket.

= Pape 39 -

6.4 while...do

Illll!llllllllllllIllllll!xllllllll!l!ll!llllllll!!‘ll!ll“llllillll!ll!xl'!ll!

“while" RELATION.BLOCK "do" INSTRUCTION

IlllllllllllIIlIIlll!III!X!ll!Xll!!xl!ll!lllllllﬂﬂ!ll!illll!ﬂ!l!lllxlx!l!ll!ll!

There are two basic types of loops in Q The while-do loop which makes a
relational test before executing the conditional instruction and the repeat- until loop
which executes the instruction(s) first and then exits based the result of a relational
test at the end. The repeat-until loop is covered in the next section.

Note that after the "do" is INSTRUCTION. Since an INSTRUCTION.LIST is more
likely to be needed, a "begin” INSTRUCTION.LIST "end" construction which is equivalent
to an INSTRUCTION will often be needed. For example,

while R.A>0 do begin
LD (HL),B
INC HL
DEC A
end ..from "begin" to here = an INSTRUCTION

6.5 repeat...until

ll!Xlll!llllllllllIXll!!llXll!llllllI!Illl!!l!lKll!llll!lllll!lllllllllxlxlllll

"repeat" INSTRUCTION.LIST "until" RELATION.BLOCK

llll!l!lll!lll!!lRll!llllIlIlIlllllllﬂll!!lllllIlll!lllllll'!ﬂlll!lllll!llxl!ll

In this type of loop the INSTRUCTIONLIST is executed first. Therefore, the loop
code will always be exccuted at least once. This is in contrast to the "while" loop which

may not exccute any of its code should the RELATION.BLOCK test false the first time
through.

Special code utilizing the 780 DINZ instruction is gencrated for "repeat” loops
ending with "until DEC B zero;” ("zero” is optional). (The ";" must be present; if left off,
the normal DEC B; JR NZ8-n code will be generated) Be aware that the zero flag is
not automatically set in the DINZ form of the loop. Example,

LD B,(MaxCount); LD HL,(Pointer1); LD DE,(Pointer2)

repeat
@GHL ...get char
if R.A=0D then LD B,1 ...quick exit if carriage return
R.A->@DE ...transfer to line buffer

INC HL; INC DE
until DEC B zero;

- Page 40 -

Some further examples:) .
Getl: PROC ...get 1 char. from console->R.A (wait If one not ready)

repeat Getlif() until not zero
RET
Echo: ...echo char. & keep track of col. in R.C

if R.A=9 then begin
repeat Puti(*); INC C until R.C&7=0

RET
end
if R.A=OD then begin LD C,0; Puti(R.A); OA end
else begin
DEC C
if R.A<>8 then begin
INC C; INC C
if R.AC * or R.A=O7F then '#
end
end
Putl: PROC ..put out 1 char. (in R.A) to console
PUSH AF

repeat IN A,(CONRDY) until BIT OUTRDY,A not zero ..check console rdy.
POP AF; OUT (CONIO),A; RET ...print char.

6.6 case...of...else...end

lxlllllﬂXllllll!lllll!Xﬂlll!ll!XXll!ﬂ!llllllll‘Xllll!XleXllll!lllll’ll!!xl!‘l!

ncase" INSTRUCTION "of"
CP.OPERAND or PROCEDURE or BEGIN.END ":* INSTRUCTION
CP.OPERAND or PROCEDURE or BEGIN.END ":" INSTRUCTION

etc.
["else" INSTRUCTION]

"end"

IllllllllllllllllllllﬂlﬂIIllllllll!ll'll!llllllIlllll!!llll!!!l!il!!llllll!‘lll

First the INSTRUCTION between the words "casc" and "of" 1is executed. This
usually loads RA with a value which is to be compared. Following the "of" is a list of
possibilitics. In its simplest form when CP.OPERAND is used, RA is compared to the
operand. If the comparison is true, that case is selected and the following INSTRUCTION
is exccuted; otherwise, it is skipped and the next casc is checked. After execution of the

"

sclected INSTRUCTION, program flow continues with the statement following the "end".

For instance,

case GetChar() of _.GetChar returns a char from console in R.A
Y EraseFile()
end

“Buffer ...program continues here

- Page 41 -

If the character from the console is Y, EraseFile is executed after which
program flow continues at ~Buffer. 1f it is any other character EraseFile is not
executed and program continues at ~Buffer. This example is obviously oversimplified.
If a few lines are added,

case GetChar() of ..GetChar returns a char from console in R.A
L & EraseFile()
'N": begin “FilePointer; NextFile() end ...skips to next
'A% repeat EraseFile() until not zero ...erase all
else DisplayErrorMsg()
end
“Buffer ...program continues here

Then one of three choices is given plus a default (else). If R.A contains either a
Y, N, or A, the INSTRUCTION to the right of the colon () is executed after which flow
continues at ~Buffer. Otherwise (else), DisplayErrorMsg is executed; then, flow continues
at ~Buffer. Although the code generated by the case statement is less efficient than
using straight assembler techniques, it can be written and modified with relative ease
and is easy to understand at a glance.

When using the "begin..end” or PROCEDURE options, upon completion of the code
between the begin.end or alternately upon return from the PROCEDURE call, the zero
flag (bit 6 of register F) is tested. If true (=1, =zero), that line is selected and the
corresponding INSTRUCTION is executed after which program flow continues skips to the
end of the case statement.

Note that the INSTRUCTION on the compare line MUST begin on that line.

HOW THE CASE STATEMENT WORKS:

The following listing (modified with an editor to put in explanations) examines
the mechanism of a simple case statement. All case statements, regardless of
complexity, have the same structure. Only the number of choices is increased.

5000 Subroutine: EQU 05000 ...a hypothetical subroutine call
5100 ChoiceA: EQU 05100 ...a hypothetical INSTRUCTION call
5200 ChoiceB: EQU 05200 ..ditto

0100 case Subroutine() of [CD00S0 ...call to Subroutine
ES ...push HL because...
211014 ...load HL with adr of code

...following the end of case
..statemtent (Next:), then
E3] ..exchange stack pointer with
...HL; this puts the adr of
.."Next:" on the stack so RET
...will cause exectution to

...continue after end of case.

0108 Y ChoiceA() [FE59 ...compare with 'Y'
2004 ...No?, jump to next choice.
CD0051 ...Yes, call ChoiceA, then
c9a] ..returns to Next

0110 else ChoiceB() [CD0052] ...default-call to ChoiceB

- Page 42 -

o113 end [co] ..must clean up stack
o114 Next: ...this is the next statement to be executed after the case
..statement has made a selection.

The case statement uses the stack to store an address while it is executing.
Thus, if jumping out of the case statement (without returning), the stack should be
popped. Observe:

case GetChar() of)
CarriageReturn : begin POP AF; JP Continue end wEXIE

etc.
end

The various cascs may alternatively be separated by ns instead of end-of-lines.

- Page 43 -

- | Gp— i

¥

©

7-0

RE-ASSEMBLY FOR ACCURATE OBJECT CODE LISTING

The hexadecimal code (between the [] brackets) in the listing generated

by Q does not always correspond to that which ultimately resides in
memory. Specifically, all printed code associated with forward references
is inaccurate because Q is a one-pass assembler which lists the values
deposited in memory before the forward references are resolved.

It is possible to make a second assembly run, once all forward references
have been resolved on the first pass, to obtain a more accurate listing.

This is done by ORGing to the original starting address and re-assembling
the same file once more (with the symbol table now starting fully populated).
To prevent all of the REDEFINED LABEL error messages which would normally
occur on the second pass, Q provides a special BYTE variable call REDEFSW,
whose normal value of @ prevents redefinition of labels. A non-zero

value permits redefinitions Thus, the second pass should begin with the
immediate command:

/1=>REDEFSW (executed in bank 1).

The only inaccuracies which will remain in the listing will be due to the
fact that, in the translation of certain control expressions, Q generates

and then ZAPs some temporary labels. These references will still appear
as zeroes.

4.4

tesdadidd

Fro———p. 7, i
€510 sl

T

oo

™Y

P W
telad

IRV

s

o Look

[

8.0

CONDITIONAL ASSEMBLY

An assembler having conditional assembly features 1s able to ignore (skip
past) certain subsets of statements in a source fi{le when corresponding
user-specified parameters are set properly. This permits different
versions of the same program to be incorporated into a single source file.
Q is capable of a form of conditional assembly via use of its global
symbol Skip. ("Skip" is defined as a BYTE variable. Each memory bank
has its own "Skip" byte.) The value of this variable affects whether or
not Q skips any statements in the source file and, 1f so, which. The
following rules apply:

Skip value Q’s response
@ : Normal assembly. No statements skipped.
1 Any statement beginning with * will be

skipped (not compiled) .

2 Only statements beginning with / will be
taken. All others will be skipped.

Notice especially that an immediate statement such as

*D0 FILE2

can materially change a program, if skipped. It 1is assumed that a source
program taking advantage of this conditional assembly feature will include
one or more immediate commands (possibly {nitially entered from the keyboard)
to set the Skip value (which starts at @)« For example,

/2->Skip or [/if CONDITION then 1->Skip
may be used. Normal assembly may be restored via /¢g->Skip, for example.

It is also possible to make a numeric value within a statement conditional
on certain immediate parameter values. Whenever a two-byte numeric value
may be used, you may also use the form:

value (INSTRUCTION)

where INSTRUCTION, as defined earlier, 1is one Or more statements separated by
semicolons. Whenever Q encounters this form, 1t immediately executes the
statements inside the parentheses and uses the resulting value left in

R.HL as the two-byte number. As an example,

DEFW value (P.GETVAL) *3

assembles the two-byte number which is three times the value in R.HL returned
by immediate execution of the subroutine GETVAL.

45

Q.0 ASSEMBLY WITH AN OFFSET

Q includes the capability to assemble code at one location for execution
(after relocation) at another. Q maintains a special global variable
(with attribute BYTE) whose name i8 OFFSET and whose value is the signed
difference, in number of pages (where one page 1is 256 or ¢l¢@ bytes),
between the location of the assembly area and the location of the ultimate

execution area. The default value for OFFSET is, of course, zero. For
example,

/-@44=->0FFSET

at the beginning of a run, will assemble code which should ultimately be
loaded at location zero before execution begins.

Q assigns the offset value (torresponding to the location at execution time)
to all symbols (including the special "g" symbol) except those defined

by EQU or DEFL. An EQU or DEFL symbol may be offset, if desired, by equating
it to an offset label. Since the ORG statement is meant to control the

value of the location counter, which is an assembly time parameter, if the
first item following "ORG" is a symbol (or "$'"), the offset value 1is
subtracted from it, thus cancelling the offset. (The values of any items
after the first are taken as 1is.)

One warning: During assembly with offset, no error checking for out-of-
range JR instructions is done.

Note: Fases #27 + 48 have been remove&.

46

1.0 SYMBOL TABLE

The symbol information is stored in a ‘symbol table’ in memory. (This table
initially contains global symbols from Q which may be needed for extensions, debugging,
etc.) The symbol table can be altered with the following commands:

/ZAP (list of symbol names separated by a space>

effectively deletes (zaps) the specified symbols from the table (although they still take

up space in memory).
J/ZAPALL [mask]

zaps all symbols not masked out. Use the bits as described in section 4.7 (/MAP) to
compose the [mask] byte. The bits are active true.

The "PACK" scries of commands usually follow the 7AP command and are used to
pack the symbol table into minimum space by saving only undefined symbols, symbols
masked out, and, except for /PACK ALL, global symbols.

JPACK

gets rid of all symbols which are not global or undefined. In other words, it eliminates
all defined local symbols.

/PACK ALL
will pack even the global symbols.

/PACK [mask]

packs the symbol table saving only undefined symbols and global symbols which have
not been zapped or masked out.

/PACK ALL [ma sk]

packs the symbol table saving all symbols not zapped or masked out.

s4s%%4 Nope: undefincd symbols cannot be zapped or eliminated through packing.

/CLEAR
clears the entire symbol table.
$MOVING THE SYMBOL TABLE
[L is possible to move the symbol table clsewhere in memory Or change the

amount of space allocated for it. The word at TABBSE is the starting address of the
symbol table and at TABHSE+2 is the address of the location after the cnd of the table

- Pare 49 -

The first word in the table is its current size.
Simply move the table as desired and patch into TABBSE and TABBSE+2 its new
position.

Example:

Suppose the symbol table starts at OAOCO and it is desired to move it to start at 0S000.
The following code will accomplish this:

*@2TABBSE->R.BC; TABBSE->R.HL; LD DE,09000; LD (TABBSE),DE; LDIR

The symbol table may now be re-imaged (along with the rest of Q if desired) between
the addresses TABBSE and @2(TABBSE->R.BC)+R.BC-L

12.0 DEBUGGING WITH QBUG

QBUG is the name given to the debugging facility provided within Q. It is entered
while in Q by typing "/*" (can also be in a file; any open input or output files are
closed). The prompt is a "#' (To return type "Q")

From here, any instruction (or instruction list) that is typed will be executed
immediately, with registers preserved from one line to the next (including any changes
made). All of the commands (beginning with a /") are also valid in the debugger.

Upon entering Q breaks (opcode "FF") are set to go to the Q-debugger rather
than the RIO prom debugger. To change back to the prom debugger, Uuse the
command

/BRKS->P
/BRKS->Q ...sends them to Q again.

On leaving Q, breaks are again sent to the PROM.

In addition to the regular Q instructions, there are Some debug instructions
which may only be executed from the debugger:

D address,n

Displays n lines of memory, 16 bytes per line, starting at "address". "n" is optional and
defaults to n=1. If "D" alone is typed, one line starting at the value of the stored program counter (R_PC)
will be displayed. vaddress" may be either a hex number or an HL-expression, e.g. D ~ABC+012.
Also note that R.HL is initialized to the starting address of the previous line dumped before the HL-expression
is evaluated; thus, for example, a linked list (where the link address is the 1st word of the previous dump)
may be followed by doing D @2HL. A special case of this command is when either n=0 or there is a comma
with nothing following. One line is dumped and the cursor positioned under the 1st byte. The cursor may be
advanced by typing a space or tab (to advance to the next word) or backed up using the backspace.
Memory can be changed a nibble at a time by typing the desired hex digit when the cursor is in position.
Hitting return or line feed completes the operation and displays the changed line. Line feed additionally
causes the operation to be repeated on the next line.

B address,n

Sets a breakpoint with a repeat count of n at waddress". "address" may be either a hex
number or an HL-expression, as described above for "D". There may be a maximum of 8 different breakpoints
at one time. A repeat count of n means the break will not occur until the nth time the breakpoint is hit.
(After the break occurs, the repeat count is left at 1) ",n" may be left off, with n defaulting to 1.
In addition, just typing ng" will cause a listing of all the currently active breakpoints.

X address

Removes breakpoint at waddress" where “"address" takes the same form as above.
nx" by itself causes all breakpoints to be removed.

N n
Execute next n instructions (after a breakpoint has been hit or a previous step)

displaying registers that change. |f nis not given, it defaults to 1.

Sn

- Paoen 51 -

Same as "N" above, but skips over procedure calls. Note: CALL instructions at the PC are
disassembled (including the procedure name) after breaks and steps. (If DEASM is present, all instructions are
disassembled.)

G

Resume execution after a break--or any time there are valid values for the saved PC,
SP, etc. (as shown with the "R" command)--with all registers restored. Note: if R_PC is at a set breakpoint, a
"Next" will be executed first in order to restore the breakpoint; otherwise will just "go".

J address

Sets the stored program counter (R_PC) equal to vaddress", where "address" takes the
same form as above with "D", then begins execution, initializing the registers with the values as shown with
the "R" command. Note that regular jump or call instructions may also be used to start execution (without
initializing the registers).

R

Displays the values of the registers that have been saved following a break or after an
uNe, "S" or "T" command

R,

Displays the values of the saved registers and puts the cursor underneath.
The cursor may then be moved along to under any nibble in any register and the value there changed in the
same manner as used to change memory (see the "D" command above). Hitting return completes the operation.

RI
Displays the values of the shadow registers (refer to ZILOG Z80 CPU manual for
explanation of these).

Hn

History: displays the last n addresses or values on the stack (including corresponding
symbol names if any) following a break (or step, etc.). If nis not given, it defaults to 1.

Tn

Starting after a break, traces program execution displaying the names of all subroutines
entered indented to subroutine depth (as measured by the stack pointer), up to a depth of n (or infinitely
deep, if n is not given). Continues until depth is less than original depth.

L address,hh

Locate a string in memory; hh is a pair of hex digits representing a byte. This may be
extended for any number of bytes by adding, without intervening spaces, extra pairs of hex. digits.
The search starts at "address", which takes the same form as above with "D". (If "address" is left 6ff, the
search siurts after the starting address of the most recent line dumped.)

U address,n

(valid only if DEASM is present; Indicated by "Qx.D") Unassemble (dissassemble) n
instructions starting at "address". "address" takes the same form as above with "D".

\liscellancous:

1. During operation of the "S" or "T" commands, when ‘skipping’ a subroutine (in
the "T" command, this happens when going bclow the maximum level lo be traced),

Nave B2 &

QBUG checks to sce if it can set a temporary break at the return address and ‘go’
rather than stepping all the way through. This will be done if after 4 instructions of
the subroutine there have not been any pops or exchanges with the stack (which might
indicate an altered return address). If the return address is otherwise changed,
oops

2 During execution of a multiple step command, eg N 255 or S 255, or the "T"
command, 'escape’ can be pressed to cleanly abort the operation at that point.

3. The debugger uses disassembler to stepping through programs (used by the "N,
»s” and "T".

4. If a user's program uses some routines in Q also used by QBUG (in par ticular
those associated with the ‘write’ statement), a potential conflict exists. This would
generally arise when stepping through that part of the program (including when using
the "T" command).

5. If necessary, QBUG's stack pointer can be reset by doing "Q", then "/*".

6. Normally when an instruction list is typed following the "*' (for immediate
execution), the code goes at the next code location. However, if a "/ is typed first, it
will be put at an out-of-the-way location instead. This might be necessary if there was
code at the next code location still to be executed, as in the following situation:

*B "ABC
xCALL ABC (this actually generates CALL ABC; JP Debug)

After the break at ~ABC, there still remains the code "JP Debug" to be executed when

ABC ecventually returns. Thus, to execcute something else at this point, one should
do:

x/TEST(2) (or whatever)

7. The [following procedures in QBUG may be called from a user's program
(referenced via the global symbol Dbug):

Regs: EQU Dbug+6 writes out the current value of the registers (preserves registers)
Dump: EQU Dbug+3 displays memory starting at RHL with R.A=number of 16-byte lines to
display (if R.A=0 then does 1 line) (preserves registers other than HL and AF)

Also, the global symbol R_AF points to the registers stored in Q after a break (or after
the "N", "S", or "T" commands). These are stored in the following order: R_AF, R_BC,
R_DE, R_HL, R_IX, R-IY, R_SP, R_PC.

Also note: to add extensions to the debug commands, the place to patch in is at ~Dbug.
This would be called immediately before the debug commands arc parsed.

- Page 63 -

13.0 PATCHING

To do patching of code, a "patch” statement of the following form is provided:

patch address,instlist

This inserts at "address” a JP to the current code area; there the given in- struction list
is inserted, followed by the 3 bytes of instructions displaced by the JP, followed by a JP
back (to "address"+3). (A JP back to "address"+n, where n is a digit in the range 4-9,
can be generated instead by replacing "address” by "address[n]’) "address” takes the
form of either a hex number or an HL-expression.

Example: patch “ABC+012, R.A->@HL; INC HL
An alternate form of the ‘patch’ statement is:

patchr address,instlist

This is the same except that the 3 (or n) bytes of instructions displaced by the JP to
the patch arca are not copied into the patch area.

Note that the ‘patch’ statement must be entered during assembly (as opposed to debug)
mode.

- Paae 54 -

14.0 SUBROUTIME LIBRARY AVAILABLE TO USER
These subroutines are contained in Q and are accessible to the user by making
referrence to the subroutine name. Many other symbol names are listed in Qs symbol

table but the following are the most useful.

Input and Input Checking:

Test:

Checks whether a sequence of bytes pointed to by R.DE matches a literal (in DEFT form at the
return address). If all bytes match: Z flag =1; R.DE incremented past byte sequence; original R.DE->LASTDE
If no match: Z=0; R.DE restored
Calling seq: CALL Test; DEFT 'STRING'

Id:
Upper case letter followed by a sequence of upper or lower case letters or digits.
7=1 iff match; original R.DE->LASTDE; R.DE updated to next non-matching character.

Digit:
Tests whether R.DE points to an ASCI digit. R.BC, R.HL unchanged. |f match: Z=1, GDE->R.A-
H R.OE->LASTDE; R.DE+1->R.DE No match: Z=0, R.DE unchanged.

Hexd:
Tests whether R.DE points to one digit or one of the upper case letters A through F.
Input and output same as for digit.

Num:

Converts a sequence of decimal digits pointed to by R.DE to their binary equivalent,
storing that in R.HL, and updating R.DE. Input R.A contains assumed high order digit. Normal usage
is:

CALL Digit
JR NZ,NOTDIG
CALL Num ... SET RHL to value
LD (NVAL)HL ... save it
NOTDIG:

or: if P.Digit then begin P.Num; R.HL->NVAL end

HNum:
Converts a series of hex digits pointed to by R.DE to their binary equivalent, storing that
in R.HL, and updating R.DE. On entering, R.DE is assumed to be pointing to first hex digit; if there are none, a

value of O will be returned.
Sr:

Gets a string from at R.DE, advancing R.DE until a " is found (always takes at least one
character). Original R.DE->LASTDE, Z=1.

Getcon:

When called, R.A should contain desired prompt character. This wilk be put out; then, one

- Page 55 -

line of input will be accepted from the console and stored in an internal buffer. Returns with starting address
of the input buffer stored in R.DE ‘and LASTCR.

Getl:

Gets 1 character directly from keyboard and returns it in R.A (with bit 7 reéet).
Saves registers except AF.

Output and Output Assembly:

Outset:

Stores R.DE in NEXTDE and sets R.DE to the first byte of an internal buffer.
Other registers unchanged.

WSbgn:
Pushes all registers used by Q onto stack, stores DE in LASTDE and sets R.DE to the first
byte of an internal buffer (other registers unchanged). Meant to be used with WSend'.

Copy:
Copies a literel into an area pointed to by R.DE. R.DE updated past copied literal.
Other registers (except flag) unchanged. Calling seq: CALL Copy; DEFT 'STRING'

Copyin:
Copies data into an output area pointed to by R.DE, updating R.DE. The data is addressed

by the pointers LASTDE which contains the address of the first byte to be copied, and NEXTDE which
addresses the byte after the last one to be copied.

Outhex:

Converts R.A. to the equivalent two characters hexadecimal ascii representation, storing
the two characters at R.DE an:' R.DE+1. R.DE+2->R.DE. Other registers (except flag) unchanged.

HLout:
Puts out @DE R.H in hex followed by R.L in hex. R.DE+2->R.DE. Other registers unchanged.

Outp:
Will output the characters in the internal buffer up to R.DE (adding a carriage return) to
list file if open, otherwise to the console. ("Up to R.DE" means not including R.DE.) NEXTDE->R.DE, Z flag=1.

Outmsg:

If a list file is open, will put out characters in the internal buffer up to R.DE (adding a CR)
to both the file and the console, otherwise just to the console. (Note: calling Outmsg+4 skips adding the CR.)

Putcon:

Outputs characters in the internal buffer up to R.DE just to the con sole (without adding
a CR).
WSend:

Calls Outmsgq', then pops &ll the registers from stack. Meant to be used with WSbgn'.
Putl:

Puts out the character in R.A to directly to console. Saves registers.

- Page 56 -

Debugging:

Regs:
Writes out the current value of the registers (preserving registers). Call via Dbug+6.

Dump: Displays memory starting at R.HL with R.A=number of 16-byte lines to display (if R.A=0 then does 1
line); preserves registers other than HL and AF. Call via Dbug+3.

Miscellaneous:
ittt cblhnbbeade it

Lkup:

. Looks up symbel pointed to by R.HL and followed by a space in Q's symbol table.
If not found, it is added in. Returns R.HL and R.IY pointing to the symbol's stored value (or chain link).
Z=1 if found, Carry=1if referenced but not defined. (R.DE preserved.)

Lkupnl:
Same as Lkup but does not add symbol to table if not found.

Name:
Enter with an address in R.HL (call $); returns R.HL=pointer to symbol (in symbol table) of
greatest value <=8 (call “LOC), R.BC=$-(LOC); preserves R.DE; Z=1 if found. Call via Dbug+9.

Err:
Calls Q's error routine (R.DE should point to the error in the source code) and then
restarts starting at the next line.

Errm:
same as Err except first prints out an error message which follows the call in DEFT form.
(Also, it is not necessary for R.DE to be pointing to source.)

Effl:
Deletes instructions of the form 2000H (JR NZ,$+2) from the code area (and decrements
by 2 the variable NCODE, which points to the current position in the code area).

RDaHL:

Do LD A,(HL) from whichever memory bank is set in Q.
WRaHL:

Do LD (HL),A from whichever memory bank is set in Q.
Qutopn:

Opens an output (list) file. Enter with R.DE pointing to 'FILENAME' (in text) followed by a
delimiter. Call via Dhug+OF.

Quit:
Closes all open input or output files. To just close the output (list) file, call Quit+3.

- Pann K7 -

15.0 SOFTWARE NOTES
Notes on coding techniques using Q with Z80 architecture.

15.1 WRITING FOR READABILITY/MAINTAINABILITY:

The programmer should enforce a system of nesting when dealing with Q's block
structures:

Following an "if", indent all statements that are conditionally executed (including
begins and ends) i.e. DON'T use

if----then begin) ...INCORRECT
R.HL -> R.DE end

Line up "end” with preceeding statements that are executed. That s,
while ---- do
begin
end

Generally, lining up statements indicates they will be executed in the natural,
sequential order. Also, the "lines” can be left to right for brevily as in

repeat INC DE; DEC L until GDE="1"

15.2 IN PLACE BYTE REGISTER TESTING FOR ZERO:
When R.A must be saved, then

if begin INC L; DEC L end zero then ...

is an cffcctive means of testing an 8 bit register.

15.3 WORD TESTING FOR ZERO:

Q cencrates optimal code for cases like

- Page 58 -

if R.HL=O then ...

generating: LD AH: OR L; JR NZ- (NOTE: if RHL<>0 also works) but since word
expressions always leave the value in RHL, forms like the above with RDE, ie.

repeat ...
until R.DE=0 ...

unneccessarily copy RDE into RHL. Preferable would be the use of the direct from as
in

until R.D|R.E zero ...
while R.B|R.C not zero do ...

which is reasonably self-documenting plus more efficient.

15.4 COUNTING TESTS FOR BYTE QUANTITIES:

The 780 makes special use of RB in the DINZ instruction. Q will generate this
instruction for the case

..-> RB
repeat

until DEC B zero;

Omission of the trailing semicolon may cause the generation of two intructions (DEC B;
JR NZ. $-?) at the end of the loop rather than the DJNZ instruction.

NOTE: The Z-flag is not set in the DINZ form of the the loop.

15.5 COUNTING TESTS FOR WORD QUANTITIES:

If efficient code is needed for counting higher than 255, the following pattern

could prove uscful:

LD DE,0-number ...place negative of count in register
repeat

.. code ...
until INC E zero and IlIC D zero;

this generates optimal code and is superior to the cquivalent

LD DE,O-numter
repeat
repeat
... code

- Page 69 -

until INC E zero
until INC D zero

15.6 WORD EQUALITY COMPARISONS:

Frequently it is desired to compare a word variable to a constant or some other
register value without modifying the variable in RHL. Since the ADD HLDE or ADD
HL,BC instuctions do not affect the Z flag, the following cases work:

LD DE, ENDVAL
if R.HL-R.DE+R.DE zero then ... HL equals ENDVAL

However Q now generates this code directly when

if R.HL=R.DE then ...
or if R.HL=R.BC then ...

is specified. Note that >, <, >=, <=, and <> cases are also supported.

15.7 INCREMENTING/DECREMENTING BYTES:
Users should be aware that
VAR: BYTE N

VAR+1-> VAR ...

generates 7 bytes of code (LD A, (VAR)INC A; LD (VAR)A) while modifying R.A, of course.
Often an alternative form is preferable, namely:

“VAR; INC (HL)

which generates 4 bytes of code, and is faster. RIL is modified in this case, but RA is
not.

15.8 AVOIDING USE OF R.IX:

These registers provide a more convenient means of addressing elements of
complicated structures than use of RIL, but their use consumes memory space at a
relatively high rate. Remembering that structures can have negative as well as positive
adresses, some data can be kept just prior to the structure pointer (ie. a reverse link,
ctc.). Consider:

PREV: WORVD 0-0 ... pointer to previous item
RECORD: ... base of record

NEXT: WORD 0-0 ... pointer to next

DATA: DEFS SIZE

- Page 60 -

PREVD:
NEXTD:

with RIX used

GONEXT:

GOPREV:

EQU RECORD-PREV ... displacements
EQU RECORD-NEXT ...

as a pointer with the value RECORD,

LD L,(IX+NEXTD)
LD H,(IX+NEXTD+1)
PUSH HL

POP IX .../ 9 bytes

LD L,(IX+PREVD)
LD H,(IX+PREVD+1)
PUSH HL, POP IX .../9 BYTES

whereas with RHL we have:

GONEXT:

GOPREV:

15.9 CAUTIONS:

Certain

@HL-> R.A;INC HL

Some examples are:

the "next" function is:

LD H,(HL)
R.A-> R.L /4 bytes (This is identical to @2HL
@(HL-1)-> R.A ;DEC HL
LD H,(HL) .
R.A-> RL /5 BYTES
pleasing constructions expressible in Q generate excessive code.
EntryWidth: EQU 6

R.DE - EntryWidth -> R.DE

which generatces:

LD H,D; LD LE 6268
LD A6 BEOG6
CPL A 2F

ADD AL 85

LD LA 8F

JR C,$+3 3801
DEC H 25

INC HL 23

LD DH; LD EL 645D / 13 bytes

Preferable would be:

If the result is

LD HL,0-EntryWidth
R.HL+R.DE -> R.DE

21FAFF

needed in R.HL the relative improve

- Page 61 -

19345D / 6 bytes

ment is greater, 11 bytes to 4 bytes.

Also,
W. EntryWidth -> R.BC
“Entry -> R.DE
“BUFFER -> R.HL
LDIR ... copy input

looks quite readable, but remember that Q has a policy of leaving the values of HL-Expr-
essions in R.HL. Consequently, the first two lines generate 5 bytes each instead of the 3
generated by

LD BCEntryWidth
LD DEEntry

- Page 62 -

