INTRODUCTORY EXPERIMENTS IN DIGITAL
ELECTRONICS, 8080A MICROCOMPUTER PROGRAMMING,
AND 8080A MICROCOMPUTER INTERFACING

114

TABLE OF CONTENTS

PREFACE
UNIT NUMBER 1, DIGITAL CODES

INEroduction « « & v o« v 4 e w e e e b e e e e e e e e e s 171
Objectives . . . T A
Languages , Communications, and Information « ¢ & ¢ . . 1-2
Binary Coding S 1-2
Bit . . . O I R 1-3
Digital Codes e 1-3
Binary Code .+ o o« v o 4 v 4 0 e e v e 4 e e e e e e e e e e s 1-4
O0Ctal Code « v v « 4 o o o o o o v s o o e e e e e . 125
S
ANBWETS « v « v o v o vt e e e e e e e e e e e s 1710

UNIT NUMBER 2, AN INTRODUCTION TO MICROCOMPUTER PROGRAMMING

[
V

Introduction . « v v & v ¢ v 4 0 e e e e e e e e e e e e e e e
Objectives . . . P
What is a Computer? P T T
What is a Microcomputer? . S
What is a Computer Program? e e e e e e e e e e e e e e e e
INStrUCtiONS + « o o v o « o o o & s & 4 s s e e s e s s e s e e
Mnemonics .« . ¢ 0 4 4w v e e e e e ke e s e e e e e e e e e e
Machine Language . « + + o o o o o o 4 s o o o o s s o o s o= oe b
A Simple Program . . . ¢ « « & « o o s o v s s e v e e a4 s

PRRR R

L =« T

Memory . . . T
Memory Addtess PR O A
Range of Memory Locations F R T I
HI and LO Memory Addresses . . . + + & « s o o o o 1 o o s o o s

ROVIEW « v 4 o v o v v o 4 s & s 4 s 4 e e e e e e s e e
ANSWETS + ¢ v 4 4 4 e e e s 4 e s s s e e e s e s e e e e e e

BYLE o v v 4 v o v 4 h e s e e e e e e s e e e s e e e e e e

v
MR EENORRUD &S W NN

~ o

RRRPRPRYY

UNIT NUMBER 3, SOME 8080 MICROCOMPUTER INSTRUCTIONS

Introduction . . o v v 4 o 4 4 e e e e e e b e e e e e e e e e e 3-1
Objectives . . . T R 3-1
What is an Opetatlon" TR 3-2
Multi-Byte Instructions . . . o o o v o o o o o o ¢ o o o o o oo 32
Types of Memory Bytes “ s e s e e 3-4

Operation Code , . . e e e e e e e e e e oo e e 3-5
Data Byte . . ¢ ¢ ¢ v o o ¢ o s o b b e e e e e e e 3-5
Device Code , ., . . PO A P 3-5
HI and LO Address Bytes C e e e e e e e e s e e e “ e 3-5

Some 8080A Instructions . . « « v v v ¢ o o o ¢ o s s s e e e 0 s 36
Instruction Byte Nomenclature « o o o o o o o o o » s o o 3-6
AcCUMULAtOT o 4 4 « « + o & o o s s 4 o e e s v e e e e e w37
No Operation: NOP v 4 v ¢ v o o o o o o s o o o o o oo 3-7
Halt: HLT S - 24
Increment Accumulator. INR A o v v v o o o o o s o s s o o o s o o 3-8
Move Immediate to Accumulator: MVI A . . « & o v v v o o o o v o 0 3-8
Output Data from Accumulator to Output Device: OUT . . . « « « o & 3-9
Unconditional Jump: JMP . . & ¢ « o o ¢ o 0 v e e e e s 0w e e 3-9

iv

Store Accumulator Direct: STA

Review . . . v v v v v v v e e e e

ANSWELS v o 4 4 4 4 4 e e s e e e e

UNIT NUMBER 4, THE MvD-1 MICROCOMPUTER

WNIT

Introduction . « « « ¢ + 4 o 4 4. ..

Objectives . . . e e e e e e
The Basic Microcomputer S e e e e e
Purpose

How the MMD-1 M1rmcompurer is Used

Description P
Rules for Setting up Experiments e e
Experiment Instructions Format
Purpose . .
Pin Configurations of Inmgra:ed
Schematic Diagram of Circuit . .
Program . . + 4 v 4 4 440w
Steps + v v . e v e e e e ..
Questions
A Word of Caution . . e e e e
Introduction to the Experiments e 0 e
Experiment No. 1, ,
Experiment No. 2
Experiment No, 3 e e .
Experiment No. 4, . . .
Experiment No. 5
Experiment No. 6
Review « v v v v v v v v v i e e e
ANSWETS & v« v 4 4 4 e v e e e e e

NUMBER 5.

Introduction « + . v v 4 4 4 4440w,
Objectives ., e e e
What is a Computer Program’ v
Review of Several 8080A Instructions . .
How are Programs Listed? ,
Choice of Program Starting Address -
First Program . . . « v v ¢ v « 4 o &
Second Program C e e e e
Variations of Second Program e e
Third Program . . « + « o o o « « o o &
Fourth Program . . . « « v & v o & & &
Fifth Program « v « « « . &
Sixth Program . . .
Introduction to the Expetiments c e e
Experiment No, 1
Experiment No,
Experiment No.
Experiment No,
Review « . & v v v v 0 v v v e h e e e
AnSWers . . . 4 0 . e e e e e e e 0

RN

SOME SIMPLE 8030 MICROCOMPUTER PROGRAMS

3-10

3-12

4-12

4-20

4=26
4-28

LI R R ER R R R RV RERLRCRE
PREEPHEEONOOU VA RWRDNRN R

LN RO

UNIT NUMBER 6. REGISTERS AND REGISTER INSTRUCTIONS

Introduction . .« . v . v 4 . L . e 0 e e e e e e e e e e e e e
Objectives . . . P R)
What is a Register” “ . P B R
General Purpose Registers e e e e e e e e e e e e e e e e e
8080A Imstruction Set . . . o ¢ v o o ¢ o+ 4 e 4 e e e e .
Register Decoding .« + « v o v ¢ o o 0 v 0 4w wa e e e e e e
Move Register Data: MOV . . « & &« & & v & v o o o o o o o v 0 o
Move Immediate to Register: MVI« . ¢ o ¢ v o o v o o o o @
Increment Register: INR . . . & v & v o o v o o o o o o s o o o 0
Decerment Register: DCR . &+ & + & o o v o o s o o o o o 4 o s o
Jump if not Zero: JNZ . 4 v & v 4 4 0 s e e e e 0 e e e e e
First Program . o + o o = s o« o o o v oo v e e e e e e e
Second Program o+ o 4 o o o o « o o = &+ o & o s o s v o4 oo o
Third PYOGTAM . « « o o & o o o o o o o o o o o s o s o v s s o 0
Fourth Program . . . + « « o o o o o ¢ o o s o s s o o s o s s o o
Fifth Program ., . . F T
Introduction to the Experiments P

Experiment No. 1

Experiment No. 2

Experiment No. 3

Experdment No. 4 . v v v v ¢ v 0 v v v e 0 e a e e e e 6-19

5
6

o1t

1
HOOOUNAO N WWNN =

1
o

crrocoacaaaaaaaaaa
=
=

-
o)

2 1

Experiment No. S 6-22
Experiment No. [R 6-25
REVIEW & o 4 v v v v o e o s o b o b e e e e e e e e 6729
ANSWETS + v v 4 v+ v 4 e s e e w s e s e e e e s e e e 6-31

UNIT NUMBER 7. LOGIC GATES AND TRUTH TABLES

~
!

Introduction . . « « v ¢ o o v 0w e e e e e
Objectives . . . P Y
What is a Digital Device” S
What is a Gate? . . T T
What is a Truth Table" P
Why are Truth Tables Used? « « « « o v v v o v o v 0 oo
Uses fOr Gates . « « o o o « o o s o o & o+ s 4 s 0 s os s

Gate SYmbOLS « v = o o + s s 4w e e e e e e e e e e e e e e
AND GAte . v v v + o 4 o o 4 e e s s e e e s e e r e e e e
NAND Gate o o ¢ & « o o o o o o & o « o s o o o o s s s o 0 0 e
TAVETLET & o o o o o o o o = o & s & s o+ 4w s os e s e v s e
OR GBEE « 4 « s o & o o o s s v = o s o o o s o s o o o o o s o »
NOR GAEE 4 v v v o s o o o o o s o o o s o o o s o & o s s s = ¢
Exclusive~OR Gate . . « & v & o o & o o ¢ o e 0w e e v e s e
AND-OR-INVERT GAte « o + o & & o s s o s o = o o o o s s o s o & ®

N~
NN

1)
I T v N X R S S
HoWwWwNREO

Buffer/Driver . . e e e e e e e e e e e e e e e -
More Complex Gating Circuits e -
Review . . . P -

PFYYYYYRYYYYREYY

Answers.............................

vi

UNIT NUMBER 8, LOGICAL INSTRUCTIONS

Introduction . « v « v v v ¢ v e 0 4. 04w
Objectives e e e e e
What is a Logical Insttuction” e e e e e
Truth Tables for One-bit Logic Operations .

Boolean Algebra . . . e e e e s
Multi-bit Logic Oparations e e e e e e e
NOT . . v ¢ v v v v v i
De Morgan's Theorem . . + + « v & & + « &

Complement Accumulator: CMA
AND Register with Accumulator: ANA
Exclusive-OR Register with Accumulator: XRA
OR Register with Accumulator: ORA .

Immediate Logical Operations: ANI, XRI, and ORI

Summary of Logical Imstructions . . e
Why Do You Need Logical Instruccions" N
Input Data from Input Device to Accumulator
First Program . . T
Variation of First Program e e e e e
Second Program . . « « « ¢ 4 v 0 4w e 0 e .
Third Program . . « « o o « o o o »
Fourth Program . . . e e e e
Introduction to the Ex‘periments e e e e
Experiment No, 1 . . . « . . .
Experiment No. 2 +« « . . .
RevIiew . « ¢ v v o v ¢ v v o 1 s s v e e

ANSWETS 4 & v v o 4« 4 v e 4 s 4 e e e e

IN

1

1

% ® ®w o
[OSNE

1

1
[A R]

1
oo

@ G 00 G om0 MeE

[
1
-
~

8-13

i
ey
GE

8-16
8-18
8-19
8-21
8-23
8-25

UNIT NUMBER 9. AN INTRODUCTION TO BREADBOARDING

Introduction . « « +» « & o ¢ . .
Objectives . . + « + + « + o o« &
What is Breadboarding?
A Plastic Solderless Breadboar

Use of Solderless Breadboards .
What is an Auxiliary Function? .
Applying Power to th& Breadboard
What 1s an Outboard®?
Symbols and Schematic Diagrams .
Some Simple Schematic Diagrams .
Rules for Setting Up Experiments
Experiment Instructions Format .

Purpose . . . o

Pin Configurations of Integrated

Schematic Diagram of Circuit

Program . . . + + « &
Steps . . 4 4 e v e 0.
Questions . . + + + .
Helpful Hints and Suggestions
Wire

Solderlesg Breadboarding .

Auxiliary Function Outboards

Introduction to the Experiments
Experiment No.
Experiment No.
Experiment No.
Experiment No.
Experiment No.
Experiment No.
Experiment No.
Experiment No.
Experiment No.
Experiment No.

Review . . + « + « &

Answers o4 . .

HO M NOU W

o

UNIT NUMBER 10, INTEGRATED CIRCUIT CHIPS

Introduction . + « « ¢ o 4 oo« .
Objectives « « v ¢ o »
What is an Integrated Circuit? ,

Symbolic Representations of Integrated

7408 Two-input AND Gate ., . . .
7400 Two-input NAND Gate . .
7432 Two-input OR Gate . . .
7402 Two-input NOR Gate . .
7486 Exclusive-OR Gate
7404 Inverter
7410 Three-input NAND Gate
7420 Four-input NAND Gate . . .
7430 Eight-input NAND Gate
7411 Three-input AND Gate . . .
7421 Four-input AND Gate

Circuit

Circuit Chips .

vii

1 LU
e VBN N
N&eE68 e

O D 10 10 00 O WO W VO
I

9-17
9-17
9-17
9-17
9-18
9-18
9-18
9-18
9-19

9-21

10-1
10-1
10-2
10-3
10-6
10-7
10-8
10-8
10-9
10-10
10-11
10-11
10-12
10~12
10-13

viii

7427 Three—-input NOR Gate ., ., . ., v v v v « & o« o o o o« o o o » o 10-14
7451 AND-OR~INVERT Gate ¢ v v v v v o s v o o o+« « .+ 10-14
TTL Subfamilies v v v o v v e v o v s o v v« 10-15
Fan In and Fan Out 4 & &« ¢+ o v o ¢ o o s o o v o+ o o« 10-16
Unconnected Inputs . . T 1 S 4
Chip Numbers and Date Codes . (£S5
Helpful Hints and Suggestions + ¢« ¢ ¢« ¢ « ¢ « « o « « « « 10-21
Tools . . & « + & A [RVA
Electronic Components T [S5 §
Integrated Circuit Chips 10-22
Introduction to the Experiments « . « & & & « « o « + o « 10-25
Experiment No. S I ¢ £ 1)
Experiment No. C e e e e e e e e e e e e e e e e s 10-32
Experiment No. © e e e e e e s e e e e e e e e s e s e . 10-34
Experiment No. C e e e e e e e e e e e e e e e e e e s 10237
Experiment No. e e e e e e e e e e e e e s e e e s 10-39
Experiment No. P [2/
Experiment No. R R [0 21
Experiment No. C e 10-49
ReVIEW , , 4 v 4 4 v s & 4 o o v o s s s s s s e s e s e e e e s s 10-51
ANSWETS o 4 4 v o« 4 o 4 o o 4 s s s b e e e b e e e e e e e e e 10-52

N SN

UNIT NWMBER 11, FLIP-FLOPS AND LATCHES

Introduction + + o « 4 o 0 o0 e e v e s e e 0 s e e e e s e e, 11-1
Ob3eCtiVES + & v v o ¢ 4 o 4 b e e e e e e e e e e e e e 11-1
ClockedLogic.........................11—2
Memory Elements: FLIP=flops .« « « v « o o o o o o o o o o o o o o 112
Some Simple FIIPp=flopsS « « & « v o o = o o o o o o s o o+ o o o o 11-3
ASimple Latch . v v v v v v ¢ o+ o o b o s e e e e e e e e e 11-6
Positive and Negative Edges . + o o « v o o o v o » o o v o o+ o 119
Inversion Circles . . . TS b £
7474 D-Type Positive—edge—triggered Flip-flop W e e e e e e e e . 11-15
A Simple 7474 Circuit F O B R M
Preset and Clear Inputs S B £ ¥}
Edge- and Level-triggered Flip—flops P b B £
7475 Latch . . T S A 1)
Comparison of 7107A and 7475 Latches e e e e e e e e e e e e e e 1121
74100 Latch . . . e e e e e e e e s e e e e e . 11-23
Hewlett-Packard Latch/Displays PN e e e e s e e e s 11-25
74174 and 74175 D-Type Positive-edge- triggered Flip—flops e e . 11-27
Introduction to the Experiments . . « + o « o o ¢ o o o« o o o o o 11-29
Experiment No. 1 e e e e e s . 11-30
Experiment No. 2 e e e e e 11-32
Experiment No. 3 . . . e e e e . 11-34
Experiment No. 4 + v ¢ v v o v o o b e e e e e e e e e 11-37
5
6

Experiment No. . . e e e e e e e 11-42
Experiment No. T b €247
ROVAEW « o o o o o o o o o o o o ot e e e e e e e e 11247
ANBWELS « « o « o o v o o n e o et e e h e e e e e e e 11-48

ix

UNIT NUMBER 12, DECODERS

INCTOAUCEION « & o « = o o o o o b o 4 o v e e e e e e e s 12-1
ObJECEIVES « v v v o v o 4 o 4 e 4 e m e s e e e e e s e e s e 12-1
Digital Codes .+ « + ¢ o o« o o = « o . .
Hexadecimal COde « « « « = » o o o o o o o o v o a0 o v o e 0w 1222
Seven-gegment Display Code « « « » ¢ = « ¢ o o o ¢ o o v e s o s 12-5
To Encode and To Decode o+ o + + « o o o o o o o s o o o o o o o o« 12-6
Alphanumeric Codes « + « « « o & o s s s e e v e e s e 0. 12-6
ASCIT Code « « o s o o s o s o o o o o o & s o o s o s s o o s o v 12-6
Code CONVELSION =« « = = o s o o o o o o o s o o o s o o s 0 o o o 12-8
7442 DECOdET + o « o o o v o w o o b e e e e e e e e e e s 1229
74154 DEcoder « « « o o o4 o s e e 4 e v e e e e e e e e s oaoe s 12211
3-Line~to-8-1ine Decoders o+ » » « « s = + » s o 4 o s s e 4 o o+ 12-12
74155 Decoder + « ¢ o o s s o o » & s o+ x s e a4 s oa s s e s e e 12-13
Other Decoders and Decoder/DTiVers « + « « = « o + o + » « = » « o« 12-15
Typical Decoder Enable and Select Times .« « « &+ « « « o o ¢ « « 12-16
NOtes =« o « » o ¢ s o o o o T V22 Y
Introduction to the Experiments .« . « « « « « o o « ¢ o o o v o 12-18

ExperimentNo.l.....................12—19

Experiment No. 2 + + « v v & v o ¢« o s s o 0 v o e 12-22

ExperimentNo.3.....................12—25

Experiment No. & o v v v v v o o v v 0 e e e a e e oe s s 12227
REVIEW o 2 o o v o o o s o v o o o o o o s e e h e e e e s e s 12229
ANBWETS o« o v o o o o v ot o o v o e s e e e e e e e e e e ow . 12230

UNIT NUMBER 13, COUNTERS

IRETodUction o o o 4 4 ¢ ¢ b 0 8 e e e e e e e e e e e e e e e 13-
ObJECEIVES « v v v v v o 4t e e e e e e e e e e e e e e e 13-1
What 15 @ CoUNter? . v u 4 o 4 o ¢ o ¢ v s 4 e e s e e s oo oo oe . 1322
Characteristics of Counters v v o o o o o o o v o s o o o 13=2
7490 Decade COUNLEY .+ « « « o « + -« o o o o s v o s o s o« oo 13-4
Positive and Negative Edges of a Clock Pulse . . . « « « &+ « + « « 13-6
Digital Waveforms for a 7490 Decade Counter « « « « + . . 13-7
Cascading 7490 Decade COUNtETS .+ + « 4 « « + o « » o o o o« « o » + 13-8
7490 Biquinary Counter . . « « s « & o+ o o o o o o« s s v o o o oo 13-11
7493 Binary COUBLEr . + o 4 o ¢ o o o o o s o o o o o o o o o oo 13-11
7492 COURLET + + o & & v o o o o v o o o v o o v o o o v o 0w ws 13712
Digital Glitch o o v & v o ¢ v o o 4 v o v o s v e e e e e e e 13-13
Introduction to the Experiments . . . + + &+ ¢ « ¢ & o o ¢ o o o« 13-15
Experiment No. . e e e e e e e e 13-16
Experiment No. PR e e e e e e e e eos 13-18
Experiment No. e e e e e e e e e e e e e e e e e e s 13222
Experiment No. P e e e e e e e e s 1324
Experiment No. e e e e e e e e e e e e e e e e 13227
Experiment No. . « .. 13-30
Experiment No.
Experiment No.

I 4
Experiment No. e e e e e e e e e e e e e e e e e e .. 13-38
Experiment No. . . 13-41

REVIEW o « o o o o v s o e o et e e e e e e e e e e e e e 13243

ANSWETS o v 2 o v v o o s b e e e e e e e e e e e e e e e . 13-4

HOBuOUI R WN R

5]

NIT NUBER 14, GATING DIGITAL SIGNALS

Introduction o v v o v 4 e e e e e e e e e e e e e e e e e e 141
Objectives . . T 2
What is a Digital Signal? C e e e e e e e e e e e e 142
What Operations Can You Perform on a Single Digital Signal? . . . 14-2
Gates as Logic Devices and as Gating Devices . . « « + « . « « + » 14-6
OR Gate as a Gating Element . . « « « « o 4 o = « o« o o o o « + o 14-8
NOR Gate as a Gating Element . « + « o v « « ¢ ¢ o o o o o o « o + 149
NAND Gate as a Gating Element . . e e s s e e s e = e s« 14710
Exclusive-OR Gate as a Controllable Iuverter . 14-12
Inverters, Buffers, and DTivers . . . « « « o « « o « o « » = + o 14-13
Multiple Gating Signals .« « « o v o ¢ « o o o o o o s o s+ o o« Llh-14
The Noun: Gate + F T Y &)
The Verbs: To Gate, To hnable, and To Strobe s« « 4 o« . 14-15
Enable and Strobe Inputs to Integrated Circuit Chips 14-16
The Verbs: To Disable and To Imhibit « ¢ « o ¢ « « « + « 14-20
The Adjectives: Gate, Gated, and Gating . . + » « « = « o + + « » 14-20
Switch vs Gate: What is the Difference? . .. 14-21
Gating a Counter« « « . e e e e e e e e e e e 14222
Types of Counter Measurements . . « + « o « o o o o o s » « o » o 14-23
Introduction to the EXperiments . . « « « o o + « o o o » » o+ + o 1425
Experiment No. L . . v v v v v v v ¢ o o o 0 o« s o oo o 14-26
Experiment No. 2 . o ¢ & & v v 4 4 4 e e o v e e o s . s 14=30

REVIEW + v v o 4 v v o o o o o 4 v o v 4 e 4 e s e s e e e e s e s 14-33
ADSWETS + ¢ 4 4 o v o o o b o v v e h e e e e e e e e e e 1434

UNIT NUMBER 15, ASTABLE AND MONOSTABLE MULTIVIBRATORS

Introduction . o v v v 4 v 4 e w v e e e e e e e e e e s e s s 15-1
Objectives . . . T
Monostable Multivibrators e .
74121 Monostable Multiwibrator e v e e e e e e s e 15-3
74122 Retriggerable Monostable Multivibrator e e e e e e e e s e . 155
74123 Dual Retriggerable Monostable Multivibrators 15-8
555 Monostable Multivibrator R
555 Astable Multivibrator . . e e e e e e e e e e e e e e e s 15-10
Introduction to the Experiments e e e e e e e e e e e e e . 15-14

Experiment No. 1 . 4 v v v ¢« ¢ o v v o o o o 0 o o s s s 1515

Experiment No. 2 « + « 4 s « « o 4 s s v s o o o o e o s . 15220

Experiment No. 3 . & v v v v v v o v o v s e e s e s s .o 1522

Experiment NOu & o o o v v v o ¢ o o o o o s 4 s o v s s« 15-24
REVIEW o + o o o o o 4« v o s o o o o o o v o o a o o e e e w e .. 15227
ANSWETS v v v v v o o v e e e a e e e n e e e e e e s e e e s 15-28

BUGBOOK Wi
TABLE OF CONTENTS

PREFACE
UNIT NUMBER 16, WHAT IS INTERFACING?

Introductiom . « « « « « + o . .
Objectives
The Smart Machlne Revolution ..
Microprocessor vs Microcomputer
Hardware vs Software
What is a Controller?
Where Microcomputers Fit . . .
Computer Hierarchies
A Typical 8080 Mlcrocomputer <.
Address Bus . . . P
Bidirectional Data Bus e e e
Control Bus . . . C e e e

What is Incerfacing" e e
What is an I/0 Device?
Review v « o o v« &

Answers

UNIT NUMBER 17, DEVICE SELECT PULSES

Introduction « + « + « « - .
Objectives . . « . .

What is a Device Select Pulse’ . [N
Hardware: Uses for Device

The Substitution of Software for
Select Pulses

Use of Device Select Pulses to Strobe Integrated

Generating Device Select Pulses
1/0 Instructions . . .

The Fetch, Input, and Output Machine Cycles .

First Program e e
Second Program . . . e e e
Introduction to the Experiments

Experiment No. 1

Experiment No.
Experiment No.
Experiment No.
Experiment No.
Experiment No.
Experiment No.
Experiment No.
Experiment No. PN
Review & o o v v o o o
Answers

CENOUL B LN

Circult

Chips

xi

16~1
16~-1
16-2
16-5
16-7
16-7
16-8
16-10
16-12
16-13
16-14
16-14
16-17
16-19
16-20
16-21

17-2

17-15
17-16
17-17
17-18
17-19
17-20
17-23
17-25
17-30
17-35
17-40
17-44
17-46
17-49
17-53
17-54

xii

UNIT NUMBER 18, THE 8080A INSTRUCTION SET

Introduction + « o ¢ o 4 v 4 e e e e e e e e e e e e e e ... 18-1
ObJECEIVES « + v o v o v o o o o & s &« 4 4 v e e e e e e e e .. 181
Microcomputer Programming . . e e e e e e e e e .. 182
Sources of 8080 Programming Information e e e e e e e e e e, 182 i
8080 Instruction Set Summaries . . . « + « &« v o 4 . 0 18-7 |
8080 Microprocessor Registers 18-8 I
What Types of Operations Does the SOBOA Microprocessor Perform’! . 18-12
8080 Mnemonic Instructions “ e . e e e .. 18-14
Data Transfer Group « « ¢ o o v o + o o o & & o o 4 4 o« o 0 . . 18721
Arithmetic Group « - + « +« & + &« 4 4« 4 o 4 4 4 v 4 e 4 e v 18-30
Logical GrOUP + v ¢« v ¢ v o 4 v 4 b e 4 e e e e e e e e e . . 1842
Branch Group . . e e e e e .. 18-48
Stack, I/0, and Machine Control Group e e e e e e e e e e e e .. 18-59
Summary of Processor Instructions . . . « + « & 4 o 4« 4« 4« 18-68

Introduction to the Experiments « + o . « « 18-69
Experiment No. 1 « + v « v 4 v o o o v v 4w o s o 0 1870

i

Experiment No. 2 . . . ¢ v ¢ v v 4 v 4 o s e s 4 s e e e . 1872 %

Experiment No. 3 C e e ... 18-76 i

Octal/Hexadecimal Listing of the 8080 1nstruction Set e e v . . . 18-83)
8080 Instruction Set SUmMATY + + « 4 & & « « « o 4 & 4 o o « .+ o« . 1889
Review 4 4 v o i et e e e e e e e e e e e e ... 18-90
Answers . . et e e e e e e e e e e e e e .. 18-92

Microcomputer User s Library Submittal Form « . « . . . 18-94

UNIT NUMBER 19, DATA BUS TECHNIQUES USING THREE-STATE DEVICES

Introduction - + v v v 4 4 v v v v e e e e e e e e e e e e e .. 1941
ObJECEIVES v « 4 v ¢ o o vt e e e e e e e e e e e e e e e . 19-1
What s a Bus? . .+ . ¢« & & ¢ o o h e it e e e e e e e e e e e . 1922
Three-state Bussing . . O B4
Examples of Simple Bus Systems S e e e e e s e e e e e e e e s 1955
74125 Three-state Buffer « . « v ¢« v o ¢ v o v 0 0 .. 196
74126 Three-state Buffer . . + « « « v v ¢ « o v s o v o o o v o o 19-7
8095 Three-state Buffer o v ¢« o v o0 o oo 197
Other Three-state Devices . C e e e e b e e e e s e e e o s 19-8
Introduction to the Experiments e e e e e e e e e e e e s e .. 19-10

Experiment No. 1 « + v v v ¢« v v v 4 o o o o s o o o o 0 o 19-11

Experiment No. 2 . + & & v & 4 4 o 4 o s 4 e e a4 s e .. 19-13

Experiment No. 3 . . + v v & v 4 v v v 4 o 4 s e e 0 w . . 19-15

Experiment No. 4 . + + + & ¢ v v 4 v 4 o 4 o v e w0 oa e s 19-17
REVIEW « « o « ¢ 4 o v v o 0 o o v o s o o e s s e e e e e e e 19-19
ANSWETS = o+ « o o « o » o o o s s 4 o s 4 4 s e e e e e .. s 19-20

UNIT NUMBER 20, AN INTRODUCTION TO ACCUMULATOR INPUT/OUTPUT TECHNIQUES

Introduction « « v v 4 4 v 4 v e e e e e e e s e e e e e e e s oeow 20-1
Objectives . . . 0 §
What is Input/Output? e e e e e e e e e e e e e e e e e e e .. 20-2
Microcomputer Output . . . f e e e e e e e e e e e e e e e e e e s 20-5
Some Output Latch CLXcuits « + v v v v v+ v ¢ o v o o v o o o o o+ 20-6

xiii

Output Drive Capability . « + o « ¢ ¢ « o o o o o o o o o o o« o« o 20-12
Microcomputer Input . . - A 5 K
Some Input Three-state Buffer Clrcuits e e e e e e e e e e e e .. 20-13
Accumulator I/0 Instructions . .« « « « o o « + o o ¢ o o o o o o o . 20-15
First Input/Output Program . . « + + = =« « « + « = « o o « « « « « « 20-15
Second PrOGram . + o « « « o o o o o o o v o 4 o o o o a0 20-15
Third Program .« . « « & o « o o o = o + o o o o o v o o v o o oo+ 20-16
Fourth Program « « « o v o s o o o o o o o o v o o o o o s e e oo o. o 20-17
Fifth Program . . . e B
Introduction to the Expenments C e e e e e e e e e e e e e e e .. 20-20

Experiment No. 1 o v & ¢ v v v o v o v v o v e 4w e s e . 2021

Experiment Nou 2 « « v v v« 4 o v e 4 s s 0 a0 w e e o. .. 20-26

Experiment No. 3 & ¢ o o 4 4 o s s e e e e e e s oa e 0w s os 20-33
REVAEW « v o o o o o o o o o o o e o o o e e h e e e e e e e e . s 20-39
ANSWETS « ¢ « o o o o o o s o o o o o o o 4w e w e e e e e a .. 20-40

UNIT NUMBER 21, AN INTRODUCTION TO MEMORY MAPPED INPUT/OUTPUT TECHNIQUES

TAErodUCEION + « o v & o+ o o v b e e e e e e e e e e e e e e e a . 21-1
Objectives . . . 2 £ A
Memory Mapped I/O vs Accumulator I/O “ e e e e e e e e 212

Generating Memory Mapped I/0 Address Select Pulses 21-3
Memory Mapped I/0: Use of Address Bit A-15 « « « « « + + « o+« o o 216
Memory Mapped I/0 Instructions - . -« . « e e e e .. 21-8
Address of Memory Location M is Contalned in Register Pair H 21-8
Address of Memory Location M is Contained in Register Pair B 21~9
Address of Memory Location M is Contained in Register Pair D 21-9
Address of Memory Location is Comtained in Second and Third
Instruction Bytes . « « « « v = = « o o o+ + « « o 21~10
The Memory Read and Memory Write Machine Cycles 21-10
First PrOGEAIM .« « « « o o o o o« s o o 0 o o o s 0 v v s 0 os oo 2111
Some Input/Output CICUILS « « + + « v + o o « o o o o o o v o o o o 21-12
Second PYOZTAM « « o « « o o s o o o o s v o o o o o o 0 o o s oo 2114
Third Program . . « « o « o o o o s o o s o o o o = o o = & o s 0 s 21-15
Fourth Program . « « « + « « o« o « & o o o o o o = o o &+ o o o s s s 21-15
Fifth Program . « « « o « o o o o o o s o o s o s o o o o o o oo 21-16
SIXth PrOGram .« « « « o o o o o o o o v o o 0 o s s s e o0 s .. 21417
Seventh PrOZram . « « « « « = + s o o o o o o o o o o o o 0 oo ow . 21-18
Eigth Program . . . T e 4
Introduction to the Experiments s E VA
Experiment No. L o 4 v v ¢ v v v v v 4 v v e e e e e e e .. 21522
Experiment No. 2 . 4 & 4 v v v o s o o e 4 e e aa e e ... 21227
Experdment No. 3 . . & v ¢ ¢ v o 4 b e e 0 e e s e 0w oa e . 21231
Experiment No. & . o o v v v s 4 o 4 e b v e e e 0w 2134
REVIEW + o o o » o s o o o o b o o o o 4 v e e e e e e e e .. 21237
ADSWETS o + o o + o o o o o o o o o o 4 o o o v o 4 v e e e e s . . 21-38

UNIT NUMBER 22, MICROCOMPUTER INPUT/OUTPUT: SOME EXAMPLES

TNErodUCEION « + 4« o o o s e 4 e e b e a e e e e e e e e . 2271
Objectives e e e e e e e e e e e e e e . 229
Data Logging with an 8080 Microcomputer e e e e e e e e e e 2222
How Many Data Poimts? . « o v @ o o o o o e e e e e e 22-2
Short Term or Long Term Storage? . . + « « « « « o + « + & o 22-2

How Much Information in a Single Data Point?

What Will You Do with the Logged Data? . .

How Many Data Points per Second?
First Program: Logging 64 Eight-bit Data Points .
Second Program: Logging Slow Data Points . . e
Third Program: Output from a Data Logger
Fourth Program: Detecting an ASCII Character .

Other Methods of Generating Time Delays e e e e

Introduction to the Experiments
Experiment No. 1 . . . + « v ¢« o o o v o & &
Experiment No. 2 « . « . . .
Experiment No. 3 . . . + « + « « « « .« o

Experiment No. 4
Experiment No. 5
Experiment No. 6 .
Experiment No. 7 « « « « & ¢ ¢ 4 o 4 o 4 . .
Experiment No. 8
Experiment No. 9
Review « « ¢ v o ¢ o o ¢ o v s s e e e e e e e e e
ANSWETS &+ &+ & ¢ 4 4 4 s s e e e e e e e e

UNIT NUMBER 23, FLAGS AND INTERRUPTS

Introduction « « « + s 4 e . e e e e 4 e e s ..
Objectives . « « « v o ¢ 4 4 4 4 s e e e e e e e
What is a Flag? . . . C e e e e e e e e e
First Example: Interfacing a Keyboard PO
Second Example: Solvent Level Control
Polled Operation . « « « « « ¢ o o o o & «

What is an Interrupt? .« « + + « « « » o 0 0 0. e .
Types of Interrupts .« « « o« o o o o o o o o o o o+ &
Restart: RST X e e e e e e

Enable and Disable Interrupt EI and DI
Third Example: Interrupt-driven Keyboard Interface .

Priority Interrupts e e e e e e e e
Hardware Priority Interrupts C e e e e e e e e e e
Interrupt Software S e e e e e e e e
Introduction to the Experiments e e e e e e e
Experiment No. 1 “ e e e s e e e e e e
Experiment No. 2 © v e e e
Experiment No. 3 P e
Experiment No. 4 “ e .
Experiment No. 5 . . .
Experiment No. 6 . . “ e e e e e e .
Experiment No. 7 . . . e e e s e
Experiment No. 8 . . P . . e .
Experiment No. 9« «. . . P
Experiment No. 10« + « ¢« + v o o v &
Experiment No. 11 . . . « + « « ¢ o o o o
Experiment No. 12 . . . « + + « ¢« « v o o &
REVIGW o « + + o o o o o o o o o o o o o o o o s o o

ANSWEYS . ¢ ¢ v s e s v e e e e e e e e e e e e e

22-3
22-3
22-3
22-3
22-5
22-7
22-7
22-10
22-11
22-12
22-17
22-20
22-24
22-27
22-31
22-37
22-39
22-46
22-51
22-52

23-1

23-1

23-2

23-2

23-6

23-9

23-10
23-10
23-12
23-13
23-14
23-18
23-21
23-24
23-30
23-31
23-34
23-37
23-39
2342
23-46
23-49
23-54
23-58
23-63
23-69
23-73
23-77
23-78

APPENDICES
Appendix 1: References . . . « « + + + « o v ¢ o o v 2 o s v o o+ Al
Appendix Definitions, Bugbook V.. < .« « o o v . . A-2
Appendix 3: Definitions, Bugbook 2 Yt &)
Appendix 4: Outboards PPN Y e]
Power Outboards + « « « + « ¢ ¢ o« 4« o 4 s @ o s oo o . . A-19
Logic Switch Outboards « « v & & v o ¢« o o o o o o A-22
LED Lamp Monitor Outboards . .. C e e e e e e e e .. A-23
Display and Latch/Display Outboards C e e e e e e e . A24
Clock Outboards e e e e e e e e . AS27
Breadboarding Station Outboard C e e e e e e e e e e e .. A-27
Decoder Outboard . . « « « v v v o v o v v 4 o v 0o o . . A-29
Monostable Outboard . . + « v & « ¢ o & 4 o o A-29
Latch Outboard « + v « « + & v & & v o o 0 v v o v v o o o A-29
Multiplexer Outboard « . = « & + +« « « « « - . A-31
Counter Outboards . . e e e e e e e e e e e e . A-3)
Driver/Inverter/NOR Outboard . e e e e e . . A-31
Universal Asynchronous Receiver/Transmitter Outboard . . . A-33
TTL/20 mA Current Loop Interface Outboard A-33
TTL/RS-232C Interface Outboard A-33
Programmable Timer Outboard « + o « « + « + . « A-35
Appendix 5: Octal/Hex Conversion Table « . . « . . . A-36
* Appendix 6: Description of the MMD-1 Microcomputer A-37
Introduction e e e e e e e e e e e e e . A3
Objectives . . . G e e e e e e e e e e e e e . A-37
The 8080 Microprocessor Chip f e e e e e s e e e e e e . . A-38
Power e
Clock INPUES + « & « & « o v o« o = o o + o« « « - - A-40
Memory Address BuS . + « « o 4 4 4 o s 4 v oo o+ . . A-41
Bidirectional Data Bus A-41
Control Signals C e e e e e e e .. A-G2
The 8224 Clock Generatur/Driver Chip T]
The MMD-1 Microcomputer . . e e e e e e e e e e . A48
Power e e e e e e e e e .. A48
8080A Mictoprocessor Chip e e e e e e e e e e .. A-48
Control Lines . . . C e e e e e e e e e e e . . A-50
Bus Drivers . . . « . « « & « « v s v o s o . . . A-50
MEmOTY v o o o o o v o o s o o o o o o = o « o + o A-356
MMD-1 Microcomputer Buses « « + « « « . . A-61
Input/Output e e e e e .. A-61
MMD-1 Microcomputer: The Overall System « e .. . A-63
How KEX Operates P
How the Microcomputer Operates C e e e e e e . . A-TL

* Appendix 6 only present in Bugbook VI.

The information in this book has been checked and is believed to be entirely
reliable. However, no responsibility is assumed for inaccuracies. Furtheremore,
such information does not convey to the purchase of the semiconductor devices
described any license under the patent rights of E&L Instruments, Inc. or others.
E4L Instruments, Inc. reserves the right to change specifications without notice.

Bugback® Bugbook® s Mark 80® Dyna—Micro® , Innovator § ie® » Micro
Desi, r s Mini Micro Desig'ner@, Sof:patch@ » Junior PROM , and Senior
PROM (D) are all trademarks of E&L Instruments, Inc,

xvii

PREFACE

Welcome to the new electronics revolution. In ten years, integrated circuit tech-—
nology has transformed the digital integrated circuit chip from an expensive
electronic component containing only simple logic functions and few transistors
into a highly complex component containing up to ten thousand transistors. The
computer-on-a~chip is here! It contains everything--central processing unit,
read/write memory, read-only memory, and interface circuitry--required of a digital
computer. Within several years, you will be able to purchase a handful of such
chips for $100 to $200. By 1982, there may be ome billion microcomputers in
existence, Right now, only 250,000 minicomputers and large computers in the United
States. A computer revolution? Certainly.

In education, we believe that the new electronics revolution will create important
opportunities and changes:

o More students, including engineers, chemists, biologists, physicists,
agricultural scientists, bilochemists, and experimental psychologists,
will need to learn about digital techmology and microcomputers.

o Theoretical courses on Boolean algebra, Karnaugh mapping, and the like
will become less important for the majority of students who are interested
in digital technology.

o Students of computer science will be exposed to more digital hardware, e.g.,
in laboratory courses on digital electronics and microcomputers. Many
students will have their own microcomputers.

o Hundreds of microcomputers will be present on the typical community
college or university campus. Perhaps thousands.

o Courses in digital telecommunications and digital controls will grow in
importance.

In the face of these changes, one thing will remain essentially invariant: the
time that a student spends in school. If anything, the number of credit hours
required for graduation will decrease. Educators will be faced with the problem
of incorporating the above toplcs into various curricula without cutting back on
other important courses. How can this be done? Perhaps by integrating several
courses together and covering only essential concepts.

This series of modules on digital electronics, microcomputer interfacing, and
microcomputer programming is an attempt to integrate these three subjects into a
single unified course. This course is oriented toward laboratory experiments, for
we believe that this is the best way to convey the excitement and importance of the
new electronics revolution. The three subjects will be given approximately equal
weight: you will learn how to program a microcomputer, how to interface a micro-
computer to external digital devices, and how the external devices operate from a
digital point of view. Important digital concepts will be illustrated both with
integrated circuit chips and with microcomputer programs, usually side by side

in the same or adjacent Units.

For the reader of these modules, little or no background in digital electronics or
microcomputers is assumed. You will first treat microcomputers and integrated circuit
chips as functional modules. With exposure to the modules, you will gradually
learn their basic operational characteristics. We will not discuss how they are

xviii

manufactured, since the technology is sophisticated and changes every several
years.

Bugbooks V and VI are laboratory-oriented texts in a series of books that approach
the field of electronics in a somewhat different manner. Rather than start you,
as is customarily dome in introductory electronics courses, with experiments on
electronic compoments, such as reststors, capacitors, diodes, and transistors,

we instead introduce you immediately to integrated cireuit chips, the so-called
"bugs" of our Bugbooks. We also introduce you immediately to the concepts of
logic switches, lamp monitors, pulsers, and displays; show you how to use such
auxiliary functions; and provide you with many experiments that are based upon
connections between integrated circuit chips and such devices. All this is done
in Bugbooks I and II. Logic & Memory Experiments Using TTL Integrated Circuits.

Once you have mastered the basic concepts of digital electronics and are knowledge-
able with the techniques of wiring digital circuits using integrated circuit chips,
we expose you to more complicated digital chips and digital systems. You learn
how to wire the universal asynchronous receiver/transmitter (UART) as a digital
communications device between your simple circuits and a teletypewriter. You
learn how to interface an 8080-based microcomputer as well as most of the important
concepts associated with microcomputer programming and interfacing. Work on the
UART chip is performed with the aid of a 70-page Bugbook, Bugbook IITA. Interfacing
& Scientific Data Communication Experiments Using the Universal Asynchronous
Recetiver/Transmitter (UART) and 20 mA Current Loops. The principles and techniques
of 8080-microcomputer interfacing and programming are discussed in the 592-page
Bugbook, Bugbook III. Microcomputer Interfacing Experiments Using the Mark 80 R
Microcomputer, an 8080 System. Bugbook IV, which is on the use of the 8255
programmable peripheral interface chip, is still in pereparation at the time of
writing of this preface. We have delayed it in order to permit the completion of
Bugbooks V and VI.

Bugbooks V and VI, which consist of 23 chapters and 870 pages, is an experiment
in digital electronics education. As mentioned earlier, we are attempting to
integrate the subjects of digital electronics, microcomputer interfacing, and
microcomputer programming into a single unified course. In effect, we are
consolidating the material found in Bugbooks I, II, and III into a single labor-
atory textbook. The concepts and techniques of microcomputer programming and
interfacing are discussed at the same time that you learn basic digital concepts
and perform experiments on popular TTL integrated circuit chips such as the 7400,
7402, 7404, 7442, 7475, 7490, 7493, 74121, 74125, 74126, 74150, 74154, 74181,
and 74193. Some material in the earlier Bugbooks has been omitted, and much

new material added, specially in the microcomputer sections.

We believe that the pendulum of digital electronics will now move steadily
towards the use of microcomputers. Such being the case, there will be consider-
able incentive in educational institutions to introduce microcomputers at an
early stage in a student's curriculum. What is true for the college student
should also be true for the professional scientist or engineer who desires to
update his knowledge of digital electronics. Bugbooks V and VI are directed
toward such individuals.

Bugbooks V and VI are self-instructional texts. Answers to all experimental and
review questions will be found in the texts. When you perform an experiment, we
shall tell you what you should observe. Who can use these books successfully?
They are directed toward the same audience as Bugbooks I through III. You need
no initial background in digital electronics or microcomputers. If you have the
ability to organize and grasp new concepts, to extrapolate knowledge to new

xix

situations, and to perform experiments in wiring digital circuits carefully,
you should enjoy these Bugbooks. Bugbooks V and VI lend themselves very nicely
to a self-study program for professionals who desire to update their skills in
digital electronics and microcomputers. Remember that Bugbooks I through III
treat the same material either in greater detail or in a slightly different way.

We have found wide acceptance of our Bugbooks in formal classes as well as by
individual users in the United States and abroad. Selected Bugbooks are being
translated into German, Japanese, French, Italian, Chinese, and Malaysian.

If you are interested in further details concerning such translations, or in
translating the books to other languages, please contact us.

We have also observed a need for additional educational material in the field
of electronics that is experiment-based but is directed towards more specific
topics. This need is being filled by an additional series of Bugbooks called
the Bugbook Application Series. The first book in this series is The 555 Timer
Appliecations and Sourcebook, with Experiments and is written by Howard Berlin.
Howard has just completed his second book in the series, The Design of Active
Filters, with Experiments, and is currently preparing a third book, Designing
with Operational Amplifiere, with Experiments. Dr. Stanley Wolf is writing an
Applications Series Bugbook on the theory and uses of oscilloscopes. We expect
this series to grow rapidly as we identify authors who can £111 in the needed
areas in electronics with experimental-based books along the style lines
characteristic of the Bugbooks.

Short courses on digital electronics and microcomputer interfacing are available
in conjunction with the Continuing FEducation Center and Extension Division at
Virginia Polytechnic Institute & State University. For further information,
please write or call Dr. Norris H. Bell, Continuing Education Center, Blacksburg,
Virginia 24061, telephone (703) 951-6328. The speakers at such short courses
include Peter Rony, David Larsen, Paul Field, and Frank Settle (Virginia
Military Institute; Dr. Settle is editor of Digital Directions, which describes
teaching techniques, applications, and useful products in the digital electronics
and microcomputer areas). Short courses on microcomputers are also given by

Mr. Jonathan A. Titus and Dr. Christopher A. Titus; contact them at Tychon, Inc.,
Blacksburg, Virginia 24060. Jon designed the Mark 80 and Dyna-Micro R (or
MMD-1) microcomputers, and Chris has extensive experience in microcomputer
programming and system design.

We wish to again than those individuals who continue to back our educational
efforts. Mr. Murray Gallant and ESL Instruments, Inc. have supported the
development of the MMD-1 microcomputer by Jon Titus at Tychon, Inc. Mr. Bob
Veltri has provided us with excellent photographs of the hardware. Our wives
are no longer quite so patient. After hearing about the glories of microcom-
puters and reading about the "smart home," the now expect us to interface our
households. Mafiana.

March, 1977 David G. Larsen, Peter R. Rony, and Jonathan A. Titus
Blacksburg, Virginia 24060

XX

UNIT NuMBER 16

WHAT IS INTERFACING?

INTRODUCTION

This unit introduces you to a few of the objectives of interfacing and provides
definitions for some of the concepts involved.

OBJECTIVES

At the completion of this unit, you will be able to do the following:

[

o

o

Distinguish between microprocessor and microcomputer.

Define data processor.

Distinguish between hardware and software, and give examples of each.
Define controller.

Discuss the spectrum of computer-equipment complexity, from hard-wired
logic to the large mainframe computers.

Describe the three important busses in an 8080A-based microcomputer.
List five important control signal lines on the Dyna-Micro microcomputer.

Define synchronous, I/0 device, CPU, and memory.

16-2

THE SMART MACHINE REVOLUTION

In preceding units, we have provided you with information on basic digitael electronics
that you will need as you interface an 8080-based microcomputer. We still have
more subjects to cover--three-state bussing, shift registers, arithmetic/logic
units, and buffers--but you already have been exposed to the logic operatioms, AND,
OR, NAND, NOR, and exclusive OR; the gating characteristics of the four basic
gates; decoders; latches and flip-flops; counters; monostable multivibrators;
input/output devices such as logic switches, pulsers, clocks, and displays;
digital codes; and the important terms, strobe, enable, disable, gate, and inhibit.
Before you jump into the subject of microcomputer interfacing, we believe that it
would be useful to provide you with some perspective on why you would want to
interface a microcomputer in the first place.

For those of you who have access to the McGraw-Hill publication, Buginess Week,
we would direct your attention to the July 5, 1976 issue and the article entitled,
"The Smart Machine Revolution: Providing Products with Brainpower." Some
excerpts from the article are as follows:

o " 'This is the second industrial revolution,' says Sidney Webb, executive
vice-president of TRW Inc. 'It multiplies man's brainpower with the same
force that the first industrial revolution multiplied man's muscle
power. '

The engine of the revolution 1s the microprocessor, or computer—on-a chip,
a tiny slice of silicon that is the arithmetic and logic heart of a
computer. The first surge of products with microprocessor brains is just
now starting to hit the marketplace, and this 1s demonstrating that never
before has there been a more powerful tool for building 'smart' machines--
machines that can add decision-making, arithmetic, and memory to their
usual functions. Included in the first wave of smart machines are:

The smart watch

The smart scale

The smart mobile phone

The smart can-making system
The smart video game

A tidal wave of smart products such as these is on the way. They will
dramatically change the marketplace for consumer, commercial, and industrial
products. The computer-on-a-chip, powering the brains of smart products,
will spawn new industries and thousands of new companies. And in the process
it will wipe out some existing companies, and even some industries."”

o "The key to the sudden surge in sales of microprocessors and to the wave
of new smart machines they will power is simply price. C. Lester Hogan,
vice-chairman of Fairchild Camera & Instrument Corp., demonstrated this
element dramatically at a Boston convention a few weeks ago. He pulled 18
microprocessors from his pocket and tossed them out to his audience. 'That's
$18 million worth of computer power--or it was 20 years ago,' he said.
Hogan explained that his $20 microprocessor is as powerful as International
Business Machines' first commercial computer, which cost $1 million in the
early 1950s. 'The point I'm making,' Hogan said, 'is that computer power
today is essentially free.'

Even a year ago, those $20 microprocessors cost more than $100, and the

16-3

sudden slash in price led designers to start work on the beginnings of

the flood of smart products. Switching from conventional electronic
parts, such as integrated circuits, to the MPU cuts design time and
manufacturing costs because it replaces hundreds of ICs and other parts.
Once the MPU is designed into a product, it can provide tremendous
marketing advantages; a product's functions can be altered not by a

costly redesign of its electronics but simply by changing the instructions,
or software, stored in the MPU's memory. New features can be added with
little increase in cost, and the new smart machines can handle work that
could not be done economically before."

"The most exciting new products to come from the computer—on-a-chip will

be for the consumer, Microprocessors will go into homes, autos, appliances,
and other consumer goods in far greater numbers than into other products.
'Between 7 and 10 microprocessors will be in each home by 1980,' predicts
Andrew A. Perlowski, who heads microprocessor activities at Homeywell Inc.
His company is already hard at work on energy management and security systems
for the home."

"In the factory, the computer-on-a—chip is dropping the cost of electronic
intelligence so low that it is turning the smallest product units into
smart machines. And it is speeding the day of the automated factory by
1linking the smart production machines, sensors, and other instruments into
distributed data acquisition and control systems.

Factory automation has moved slowly, partly because manufacturers did not
want an entire plant shut down because one bit one bit in a computer failed.
advantage of the MPU is that it chops up the control job in smaller pieces,
and an individual MPU won't pull down a whole network if it fails,' says
Sheldon G. Lloyd, engineering vice-president at Fisher Controls Co. 'The
microprocessor makes it economically possible to develop and build hier-
archical systems.'

In a hierarchy, the microprocessors in the smart production machines are
linked to supervisory minicomputers that collect and send management
reports and status information to a central factory computer. At the top
is the big corporate computer, which when linked to the factory system,
will be able to generate up-to-the-second financial reports for the entire
company."

"Many jobs now being done by microprocessors were too small to automate
before. Dow Chemical Co. is considering MPUs for a variety of jobs 'where
computations are required that aren't quite complex enough to justify a
minicomputer,' says Charles R, Honea, process instrument manager at Dow's
Texas Div, For instance, Dow uses microprocessors to calculate the flow
of ethylene piped into the plant. The information was charged manually
and required half a dozen people. 'And it was always a day behind,' Honea
says. 'You had no way of knowing how much ethylene you used today.'

The process industries are' a comservative lot, partly because of the
relisbility needed in control gear to keep their plants running continuously.
It usually takes five to six years for a major technology breakthrough to
find widespread use in the process control industries. 'Microprocessors
will be no different,' says Nicholas P. Scallon, vice-president for marketing
at Fisher Controls. ‘'But the microprocessor will speed up automation,'

he says, 'by bresking up control loops into smaller segments. Instead of
trying to control the whole system, we will use a dedicated microprocessor

16-4

to control such tings as a boiler, an evaporator, or a catalytic
conversion,'"

o "Software is not only the biggest problem now for the MPU users, but it
is also where most of the costs are. 'Software costs are actually even
more for a microcomputer than for a minicomputer,' says Richard Marley,

a New Hampshire consultant who has designed smart products for several
small companies. He says that he spends up to $100,000 on every software

design, while the cost of hardware designs is down to around $20,000."

o "The microprocessor is probably affecting no other single industry as
much as the instruments business. In the next two years, predicts tech—~
nology consultant Lynwood O, Eikrem, analytical instruments using micro-
processors will rise from 2% to 50% of the market. 'Companies are rushing
into microprocessors, and those who don't move fast will lose market,'
he says.

So far the biggest MPU effort is coming in digital test instruments, such
as voltmeters, counters, and frequency synthesizers, and in such analytical
instruments as spectrometers and chromatographs. 'Probably 90% of digital
instruments selling for $2000 or more will use microprocessors by 1980,
says industry analyst Galen W. Wampler."

o "Over the next several years, smart products and machines will gpread at
an ever increasing rate. Software will become available so that anyone
will be able to program a microcomputer. Schools will be turning out a
flood of young pecple familiar with microprocessors and eager to build
products with them. The semiconductor industry will continue to develop
more powerful parts. 'In the next 5 to 10 years we will be able to turn
out 1 million devices on a single chip,' predicts Richard L. Petritz,
vice-president of New Business Resources, a venture capital company. This
will mean that the power either of a large mainframe computer or of a
complete minicomputer with large amounts of memory will be available on
a single chip."

o "Development time is so short for a smart product now and the entry costs
are so low that there will be 'myriad examples of mew companies spawning,
with bright, young fellows developing MPU-based products,' says Fairchild's
Hogan. Petritz says: "The MPU will reduce the application of electronics
essentially to that of writing a computer program, and the average person
can be educated to program a computer.'

That spells danger for the established companies. Already, manufacturers
have to be looking at microprocessors 'or somebody will come along and
obsolete their product,' warns Donald V. Kleffman, a marketing manager
at Ampex Corp. Says Kessler of NCR: '"There will be many new companies
coming in with MPU technology, and they will replace some of the old
companies. A lot of companies will be beaten down.'

When that time comes, microprocessors will be everywhere--from the smart
machines of the factory and the office to the handheld, personal micro-
computers costing less than $100, and the personal mobile telephone."

We shall amplify on some of the above points in the following sections.

MICROPROCESSOR VS MICROCOMPUTER

We have had difficulty in finding a good definition for the term, digital computer.
In looking around for such a definition, we found an excellent pair of paragraphs
by Donald Eadie in his book, "Introduction to the Basic Computer," that provide
gsome ingight into what is meant by the term, processor. Thus:

"This chapter serves as a general introduction to the field of digital
devices, with particular emphasis on those devices called computers, or
more properly, data processors. The name data processor is more inclusive
because modern machines in this general clasgification not only compute
in the usual sense, but also perform other functions with the data which
flow to and from them. For example, data processors may gather data from
various incoming sources, sort it rearrange it, and then print it. None
of these operations involve the arithmetic operatioms normally associated
with a computing device, but the term computer is often applied anyway."

“Therefore, for our purpose a computer is really a data processor. Even
such data processing operations as rearranging data may require simple
arithmetic such as addition. This explains why a certain amount of
imprecision has entered our language and why confusion exists between

the terms computer and data processor. The two terms are so loosely used
at present_that often one has to inquire further to determine exactly what
is meant."

Eadie thus defined the term, data processor, as follows:

data processor A digital device that processes data, It may be a
computer, but in a larger semse it may gather, distribute,
digest, analyze, and perform other organization or
smoothing operations on data. These operations, then, are
not necessarily computational, Data processor is a more
inclusive term than computer.

It is tempting to define the term, mieroprocessor, as follows:
microprocessor An extremely small data processor.

At the moment, the microprocessor does not quite have such a definition. As semi~
conductor manufacturers develop the capability to manufacture an entire computer
on a single chip, including memory and I/0 ports, we believe that the term, micro-
processor, will assume the meaning given above.

At the moment, there is a distinction between a microprocessor and a microcomputer.
To quote the Texas Instruments Incorporated "Microprocessor Handbook:"

"This lesson begins with the word 'microprocessor.' To some people micro-
processor means microcomputer. To other people the words microprocessor
and microcomputer are different. To them, 'microprocessor' is a broader
and more generic term which describes an extremely small electronic system
capable of perfomim§ specific tasks. Thus, microcomputer is an application
of microprocessors." 6

At the moment, we consider a microprocessor to be a single integrated circuit chip
that contains approximately 75% of the power of a very small digital computer.
It usually cannot do anything without the aid of support chips and memory. In

16-6

contrast, a microcomputer is a full operational computer system based upon a
microprocessor chip. Such a system contains memory, latches, counters, input/
output devices, buffers, and a power supply in addition to the microprocessor
chip., There may be as much cost involved in the other hardware components as
there is in the microprocessor chip itself.

While on this subject, we would also like to quote from the article by Laurence
Altman in the April 18, 1974 issue of Flectronies:

"What a microprocessor is . . . but first, what it isn't. A mlcroprocessor
is not a computer but only part of one. To make a computer out of a
microprocessor requires the addition of memory for its control program,
plus input and output circuits to operate peripheral equipment. Also,

the word is not short for microprogrammable central processing unit. For
though some microprocessors are controlled by a microprogram, most are
not."

"What a microprocessor is, then, is the control and processing portion of a
small computer or microcomputer. Moreover, it has come to mean the kind
of processor that can be built with LST MOS circuitry, usually on one chip.
Like all computer processors, microprocessors can handle both arithmetic
and logic data in bit-parallel fashion under control of a program. But
they are distinguished both from a minicomputer processor by their use of
1ST with 1ts lower power and costs, and from other LSI devices (except
calculator chips) by their programmable behavior."

"In short, if a minicomputer is a l-horsepower unit, the microprocessor plus
supporting circuitry is a 1/4-hp unit. But as LSI technology improves, it
will become more powerful. Already single-chip bipolar and CMOS-on-sapphire
processors are being developed that have almost the capability of the
minicomputer.”

As an example of what is coming in the near future, we would like to quote from
an announcement in the June, 1976 issue of Digital Design:

"PROCESSOR, PROGRAM ROM AND DATA RAM FIT ON ONE CHIP

The availability of a microprocessor chip with on-board RAM and ROM may
hasten the day when designers can change their computer applications by
merely plugging in a new cheap computer rather than entering a different
program.

One such microcomputer, priced at under $10 in quantities of 10,000, includes
a 1344 x 8 program ROM and a 96 X 4 data RAM all packaged on a single chip
with a Rockwell PPS-4 processor. Designated the PPS-4/1, the microcomputer
also provides 31 input/output channels with dual interrupt capability.

According to its manufacturer, Rockwell's Microelectronic Device Div.,
Anaheim, California, the microcomputer will cut the cost of electronic systems

for peripheral controllers, appliance controls and other industrial applications.

Input/output options for the 50-instruction IC include two 4-bit channels
which can be simultaneously used for testing or comparing data; two 4-bit
I/0 channels and 10 discrete I/0 lines. Two interrupt request input lines,
one of which can automatically trigger an echo signal, provide priority
input and status capabilities."

16-7

There is more to the announcement, but the point that we wish to make is that

this single chip is much closer to a true computer-on-a-chip than most microprocessor
chips that are currently on the market. The 8080A microprocessor chip discussed

in this Bugbook is still a microprocessor; it contains no built-in read/write
memory, ROM, or I/O capability.

HARDNARE VS SOFTWARE

Hardoare and software are important terms that will be used repeatedly in this
unit. It is appropriate, therefore, to define them early:

hardoare The mechanical, magnetic, electronic, and electrical
devices from which a computer is_fabricated; the assembly
of material forming a :omputer.l5

software The totality of programs and routines used to extend the
capabilities of computers, such as compilers, assemblers,
\-Aarrat:m'ss routines, and subroutines. Contrasted with
hardware.

The Dyna-Micro microcomputer, along with any integrated circult chips, wire,
breadboarding aids, and peripheral devices, are all considered to be the hardware.
The programs and subroutines that you use and write are the software. In time,
you will observe that it requires considerable effort to write good programs that
take maximum advantage of available memory, the instruction set, and the time that
18 required to execute individual instructions.

WHAT 1S A CONTROLLER?

Graf has defined a controller as

controller An instrument that holds a process or condition at a
desired level or status as determined by comparison of
the actual value with the desired value.

Controllers can be analog or digital, and can be electronic, mechanical, electro-
mechanical, or pneumatic, or some combination of these. A digital controller
acquires the actual value of the condition in digital form and compares it to the
desired value contained within the controller. If there is any difference between
the two, a digital signal is sent out to the device, machine, or process to
initiate actions to reduce this difference. The digital controller itself consists
either of integrated circuit chips and discrete components that are wired to a
printed circuit board, or else a computer of any size with a limited number of
chips to serve as an interface between the computer and the external world,

The question of cost becomes an important factor when one considers the use of
computers as controllers. One would not control 100 devices, each with a value

of $500, with a $1,000,000 computer; the use of such a large computer to comtrol
$50,000 worth of equipment is a form of overkill. On the other hand, such a computer
would be useful in the control of a $20,000,000 chemical plant. However, with
today's technology, it is doubtful that a million dollar computer would be required;
probably $200,000 would buy a very large minicomputer system that would serve the
requirements of the plant. One can justify the cost of a computer/controller if

it represents only a modest percentage of the cost of operating a process or
producing a product. The trade-offs in cost and performance comstantly change
as the prices of computer systems decrease. With the advent of microcomputers,
it is quite likely that the cost of controlling equipment will decrease at no
sacrifice in reliability.

WHERE MICROCOMPUTERS FIT

The Business Week article that we excerpted earlier in this unit should provide
you with some perspective concerning the potential applications for microcomputers.
We would like to discuss this subject in further detail with the aid of Figure
16-1 and Table 16-1.

WHERE MICRO COMPUTERS FIT

o

b2

[

o0

z=

=g

80

-]

Sa

xa

Qg

=

0 1 1 L
M\,—#—MV—WM\'—N\M\M
c¢ g2 =3 & 7 ° zge
QO ! T [10]
oo oW Ba o & a - 00
= =5 49 o @ 2
> w o o g o
<< s a
28 3
T o ©
@
a

HARDWARE o > SOFTWARE
LOGIC CONTROL DATA PROCESSING

Figure 16-1. Schematic diagram that depicts applications that are foreseen for
microcomputers, which will carve out their own niche between discrete
logic and inexpensive minicomputers.

169

*TeTa93BW UOTIBI0dI0) B01-01g UOC PBSE] ST IABYD

3Yy3 1BY3 S23IBOTPUT OTOTIIB BYL *802U0X30577 FO ONSST /6T ‘LT 18q0300 °y3 ur L3TT¥ g °de[TeEM £q

9T0F3ae ue woij paidepe ST jieyd syyl ‘Jusmdinbe Bursssooid ejep [eisusd sduswioyiad-y3Ty 03 swalsSLs
97307 paxTm-paey aTdurs woiy ‘£3Txa7dwod Jusudtnba-i9indwod jo wnxjoads ayl s$30Tdep 1IBYD STYL °T-9T 2TQBL

3N0A
TTeWS a81e ONTUNLIVANNMW
wa3sks aIBMIJOS
a8enduey ToAT-ySTY weidoxdoioem wea8oxdoaoTm
weadoxdoadey we1801doIdTR + 91807 o1807 NOISA
3jusmdinba S90TASD S92TASP 1nd1no
3o Tnjwooy xa7dwod swog o7duts mag pa3ieagaquy -1NdNI
PeIUBTIO SINIVYLSNOD
-3ndy3noxyy, wnypaR MOTS Swi3l Tedd @3ads
oTqepeoTay A{uo-pesy WrHS0ud
spios UOTTTTW T
uey3 210K spios UOTTTT® T-000T spiom Q00T-0T spios QT-7 spIos y-0 3z1s
98B AI9A 98ae unypaR 1TRRS Treus AI3p AIOWTA
(p46I) (pL61)
dn puz (PL6T) (pL6I) 00T$
000°00T$ 000°0T$ 000T$ 1spug 1500
gurssedoxd ejep Surssedoad ejep
Teasusd Texausld uot3eindmod
@ouemroyrad-ySTH 3S03-M0T pa3edtTpaq T013u0) NOILVIIddV
Aexxe o807 21801
193ndmod a81B] 19IndmodFUTH 10SS3001dOIOTH I03BTNOTER) pawweadolg poapm-pieg ALIXTNOD
HIONTT

79 (43 9T 8 v 4 T @RIOM

16-10

In Figure 16-1, we have plotted the number of microcomputer applications, on a
normalized scale of O to 1, versus the type of application. As can be observed,
we do not expect many of today's microcomputers to be used as number-crunching
machines or as substitutes for simple relay logic systems. Basically, most

of the exciting microcomputer applications will fall between discrete random
logic (gates and flip-flops) on one hand and inexpensive minicomputers on the other.
Microcomputers are carving out an entirely new market, one that has not been
previously served either by minicomputers--owing to their cost--or by complex
digital circuits. This is the domain of the "smart" machine. The domain will
grow at the expense of both discrete random logic and minicomputers as the cost
of microcomputers decreases.

At the moment, it is not cost effective to construct minicomputers or large
computers from microcomputer chips. The problem with minicomputers is software.
Data General and Digital Equipment Corporation have an important advantage over
Intel, Texas Instruments, and National Semiconductor in the amount of sophisticated
software available for the popular PDP 8, PDP 11, and NOVA minicomputers. We
believe that this advantage will not last for more than several years. Versions
of BASIC are already available for 8080 microcomputers, and an APL package is
currently being developed. The minicomputer manufacturers have responded by
developing microcomputers that have software compatability with the minicomputers.
The best of these is probably the new NOVA microcomputer. We will see a merging
of minicomputer and microcomputer technology.

At the higher end of the computer spectrum, microcomputers are mot currently being
used to replace large number-crunching computers of the PDP 10, IBM 360, and

IBM 370 class. However, one California company has proposed the use of 256 8080A
microcomputers arranged in the form of a "hypercube." According to them, such a
computer would rival or exceed large computers in number-crunching capability.

It is quite possible that future computer generations will take advantage of
distributed computer architecture. Again, the problem is software development.

Table 61-1 depicts the spectrum of computer equipment complexity, from simple
hard-wired logic systems to high-performance data processing equipment. Costs

are declining across the board. Every five years, the cost for an equivalent amount
of computing capability decreases approximately ten-fold.

COMPUTER HIERARCHIES

A hierarchy is a serles of items clagsified according to rank or order.2 Micro-
computers will control the behavior of individual machines or instruments. Mini-
computers will collect data from groups of microcomputers and compare such data
to more complex mathematical models, such as the model of a process that is being
controlled by ten microcomputers. Larger computers might periodically interrogate
minicomputers for the status of entire processes, and might format the received
information in a manner that is easy to understand by production supervisors.

In Figure 16-2, we depict a hierarchy consisting of seven 8080-based microcom—
puters and a single minicomputer. Communication between the microcomputers and
minicomputer most likely will be serial,

‘ma3sLs @1FIue 9yl jJo uojjzerado Iyl siolruom YdIym ‘I9IndwodFufw Iyl
YITA Y3103 puR }OBQ 9IBPOTUNUmOD OSTE Si0Ssa001dororu 9sayj ‘*siosssdoxdordTm (808 UT-3TING £q
POIT0IIU0D 21® H YSINOIY) Y SIUSWNIISUT TENPTATPUT oYL ‘Kyoieiafy 1andwod e jo aydwexs uy -z-9T AnSTi

0808
a

1I6-11

0808
(0508] 9

0808

43 LNdWODINIW l

0808

0808
0808] 3

16-12
A TYPICAL 8080 MICROCOMPUTER

A typical microcomputer comstructed from an 8080A microprocessor chip is shown
below:

cpu
MODULE

Courtesy of Intel Corporation,
Santa Clara, California

Several definitions are in order.

bus A path over which digital information is transferred, from any
of several sources to any of several destinations. Only one
transfer of information can take place at any one time. While
such transfer of information is taking place, all other sources
that are tied to the bus must be disabled.

bidirectional A data bus in which digital information can be transferred in

data bus either direction. With reference to an 8080A-based microcom-
puter, the bidirectional data path by which data is transferred
between the CPU, memory, and input-output devices.

address bus A unidirectional bus over which digital information appears to
identify either a particular memory location or a particular
1/0 device. The 8080A address bus is a group of sixteen lines.

I
|
address A group of bits that identify a specific memory location or 1/0 ;
device. An 8080A microcomputer uses sixteen bits to identify ;
a specific memory location and eight bits to identify an 1/0 i
device. ;
control Those parts of a computer which carry out instructions in prfzer

sequence, interpret instructions, and apply proper signals.

control bus A set of signals that regulate the operation of a microcomputer
system, including I/0 devices and memory. They function much like
"eraffic" signals or commands. They may also originate in the
1/0 devices, generally to transfer to or receive signals from
the CPU. According to the Intel Corporation literature, a control
bus is a unidirectional set of signals that indicate the type
of activity--memory read, memory write, 1/0 read, 1/0 write, or
interrupt acknowledge-~in current process.

16-13

I/0 Abbreviation for input-output.

I/0 device Input/output device. A card reader, magnetic tape unit, printer,
or similar device that transmits data tg or receives data from
a computer or secondary storage device. In a more general
sense, any digital device, including a single integrated circuit
chip, that transmits data to or receives data or strobe pulses
from a computer.

CPU Abbreviation for central processing unit.
central Also called central processor. Part of a computer system which
processing unit contains the main storage, arithmetic unit, and special

(large computer) register groups. Performs arithmetic operations, controls
instruction processing, and provides timing signals and other
housekeeping operations.

central proces- A single integrated circuit chip that performs data transfer,
sing unit control, input-output, arithmetic, and logical operations by
(mieroprocessor) executing instructions obtained from memory.

memory Any device that can store logic 0 and logic 1 bits in such a
manner that a single bit or group of bits can be accessed
and retrieved.

A typical microcomputer constructed from an 8080A chip possesses all of the mini-
mum requirements for a digital computer:

o It is programmable, with the data and program instructions capable of
being arranged in any sequence desired.

o It is digital.

o It is clocked (in most microcomputers, the internal operations in the CPU
chip proceed synchronously).

o It contains an arithmetic/logic unit, located within the CPU chip, that
performs arithmetic and logic operations.

o It can exchange data with memory or I/0 devices.

o It contains "fast" memory; speed is an important requirement for a
functional digital computer.

ADDRESS BUS

The Intel 8080A microprocessor chip contains a 16-bit address bus that is used for
the identification of specific memory locations or specific I/0 devices. It is

a unidirectional bus, which means that address information can only be output from
the 8080A chip. When addressing memory, 2'% = 65,536 different memory locations
can be accessed. We say that the 8080A is a "64K" device, where the "K" is an
abbreviation for kilobyte, or 1024 bytes.

16-14

The Intel 8080A address bus is also used to supply the 8-bit device code for

input and output devices. When addressing input-output devices, the address bus

bus assumes a new identity, i.e., i1t is subdivided into two identical 8-bit device
code bytes, either of which you can use when wiring an interface circuit to I/0
devices. When addressing I/0 devices using the IN or OUT microcomputer instructions,
you can address 2% = 256 different input devices and 2° = 256 different output
devices.

Whenever you encounter the term, bus, you should be alert for the possibility that
different types of information appear on the bus lines at different times. In the
cage of the 8080A address bus, this is certainly true. Most of the time, the
information that appears on the address bus is the address of a specific memory
location. Occasionally, the information that appears on the address bus is a device
code. The microcomputer knows when the bus is being used to access memory and when
it is being used to identify I/0 devices: it provides the appropriate control pulse
that informs you what it ig doing! We shall discuss these control pulses in a
section below. .

BIDIRECTIONAL DATA BUS

The Intel 8080A microprocessor chip contains an 8-bit bidirectional data bus that
permits elght bits of data, known as a byte, to be transferred between the 8080A
chip and memory or I/0 devices. Different types of information appear on the data
bus lines at different times. Much of the time, the data that appears is an
instruction byte from memory. At other times, the data that appears on the data
bus is one of the following:

o A data byte that is being input from an input device.

o A data byte that is being output to an output device.

o A data byte that is being written into or read from memory.

o Control status bits used to derive some of the control bus signals.

o A HI or LO address byte that is being stored in an area of memory called
the stack.

o A HI or LO address byte that is being retrieved from the stack.

o An instruction byte that is being jammed by an I/0 device during an
interrupt.

How do you know when these different types of data transfers are occurring? The
microcomputer tells you, by providing the appropriate control or status pulses that
inform you of the type of activity in current progress. It should be clear now
that an understanding of the control bus is essential to the understanding of the
behavior of the 8080A microcomputer, Such a statement is true for any type of
digital computer that you encounter.

CONTROL BUS

Although called a control bus, the set of signals in question do not actually

16-15

comprise a bus since different types of information do mot appear on the individual
signal lines at different times. Each signal line is uni-directional and uni-
functional. With this caveat, we shall continue to call the set of control signals
associated with the 8080A chip a control bus; the term is too widely used in the
microcomputer literature for us to suggest any reasonable alternative.

The five basic types of activities in which the 8080A microprocessor chip engages
are the following:

1. Memory Read

2. Memory Write

3. I/0 Read

4. T/0 Write

5. Interrupt/Interrupt Acknowledge

Some useful definitions include the following:

read To transmit data from a specific memory location to some other
digital device. A synonym for retrieve.

write To transmit data from some other digital device into a specific
memory location. A synonym for store.

interrupt In a digital computer, a break in the normal execution of a
computer program such that the program can be resumed from
that point at a later time.

Five separate control signal lines are provided, one for each of the above
activities. These lines have the following abbreviations:

1. Memory Read: MEMR

2. Memory Write: MEMW .

3. 1/0 Read: I/0OR or IN_

4. TI/O Write: I/OW or OUT

5. Interrupt Acknowledge: INTA or I ACK

Observe that in all cases the signal is a negative clock pulse,

The pulse width depends on the speed of the 8080A-based microcomputer; for the
Dyna-Micro microcomputer, which is clocked at 750 kHZ, the pulse width is 1.333
us.

The uniqueness of each of the control signals can be seen with the aid of the
truth table given on the following page. These control signals are available
on the SK-10 bus socket on the Dyna-Micro printed circuit board (Figure 16-3).
You will use them, specially IN and OUT, to gate the transfer of data between
digital integrated circuit chips(wired on the breadboard)and the CPU of the
8080A-based microcomputer.

16-16

MEMR M7 i oUT IACK Operation

0 1 1 1 1 Read byte from memory

1 0 1 1 1 Write byte into memory

1 1 0 1 1 Read byte from I/0 device

1 1 1 0 1 Write byte into I/0 device

1 1 1 1 0 Strobe byte into instruction register

during an interrupt, interrupt
acknowledge

i
i
A.O“

Figure 16-3. Signals available on the Dyna-Micro microcomputer bus socket as
of the summer, 1976. AO through A7 are the eight least signficant bits
on the address bus; DO through D7 are the bidirectional data bus; INTE
is the interrupt enable flip-flop output; INT is the interrupt request
input; and MEMR, MEMW, IN, OUT, and IACK are output control signals.
RDYIN and WAIT are used with the single-step circuit described in Unit
Number 11, Experiment No. 5.

16-17
WHAT IS INTERFACING?

Interfacing can be defined as the joining of members of a group (such as people,
instruments, etc.) in such a way that they are able to function in a compatible
and coordinated fashion. By'compatible and coordinated fashion," we usually
mean synchronized. Some important definitions include the following:

synchronous In step or in phase, as applied to two devices or machines.
A term applied to a computer, in which the performance of
a sequence of operations 1s controlled by
clock signals or pulses, At the same time.

synchronous A digital computer in which all ordinary operations are controlled
computer by a master clock.

synechronous Operation of a system under the control of clock pulses.

operation

The type of digital logic used in a system in which logical
synchronous logic operations take place in synchronism with clock pulses.

syne Short for synchronous, synchronization, synchronizing, etc.
to synchronize To lock one element of a system into step with another.

synehronization Pulses originated by the transmitting equipment and introduced
pulses into the receiving equipment to keep the equipment at both
locations operating in step.

synchronous Those inputs of a flip~flop that do not control the output
inputs directly, as do those of a gate, but only when the clock
permits and commands.

The above defintions have been obtained from reference 2. We can thus define
computer interfacing as

computer The synchronization of digital data transmission between a
interfacing computer and external devices, including memory and 1/0 devices.

Although the details of computer interfacing vary with the type of computer
employed, the general principles of interfacing apply to a wide variety of
computers. For the 8080A microcomputer, the basic objectives of interfacing are
summarized in Figure 16-4. If you desire to interface the microcomputer, your
object is to:

o Synchronize the transfer of 8 bits of data between the microcomputer
and each output device.

o Synchronize the transfer of 8 bits of data between each input device
and the microcomputer.

o0 Generate the appropriate imput and output data tramsfer synchronization
pulses, which are called device select pulses. For an B080A-based
microcomputer, you can generate 256 differemt input synchronization
pulses and 256 different output synchronization pulses.

o Service interrupt signals that enter the microcomputer from extexnal
1/0 devices.

16-18

o Program the microcomputer to perform all input—output and interrupt
servicing operations.

interrupt signal
from input or
output devices.

INPUT MICRO- ’ oUTPUT

bits data 8 bits data
DEVICE 8 bits COMPUTER DEVICE
256 different 500nS 500n8 256 different
device select g g B __». device select
pulses fo I pulses to
input devices. output devices.

Figure 16-4. The four principle tasks of interfacing: input, output, device select
pulse generation, and interrupt servicing.

A better way of viewing three of the four tasks of interfacing is given in the
diagram below:

The transfer of 8 bits of data between the CPU and an 1/0 device occurs over the
8-bit bidirectional data bus. The specific I/0 device that is involved in the

16-19

data transfer is selected via the use of 8 bits on the address bus. The precise
timing of the data transfer is determined by the presence of an IN or OUT pulse
on the control bus. Therefore, during the transfer of data between the CPU and
an 1/0 device, all three busses participate!

There is much more to say about computer interfacing, but we will save it for
subsequent units.

WHAT IS AN 1/0 DEVICE?

Two useful definitions include:

input-output, General term for the equipment used to communicate with a
input/output, I/0 computer and the data involved in the communication,

I/0 device Any digital device, including a single integrated circuit
chip, that transmits data to or receives data or strobe pulses
from a computer.

The traditional view of an 1/0 device 1s that it is somewhat large or complex.
Card readers, magnetic tape units, CRT displays, and teletypes fit such a descrip-
tion. However, a single integrated circuit chip, such as a latch, three-state
buffer, shift register, counter, or small memory, can be considered to be an

1/0 device as well. If it is digital, it usually can be an I/0 device.

We have indicated previously that you must synchronize the tramsfer of data between
a computer and an I1/0 device, and that this synchronization 1is accomplished with
the aid of pulses called device select pulses. An important point is that
several device select pulses may be required for a single 1/0 device. TFor
example, the 74198 shift register has a pair of control inputs that determine
whether the register shifts left, shifts right, or parallel loads eight bits of
data. The chip also contains clock and clear inputs. Thus, a single 74198 chip
may require three or four unique device select pulses. The fact that you can
generate 256 different input device select pulses and 256 different output device
select pulses does not mean that you can address 512 different "devices." A
more reasonable number is of the order of 50 to 100 devices. Rarely will you
require so many device select pulses. If you do, there are other tricks that you
can use to generate still more such pulses.

In the following Unit, you will learn how to genmerate device select pulses.
also provided is a discussion of the various uses for device select pulses.

REVIEW

The following questions will help you review a few of the important eoncepts of
microcomputer interfacing.

1.

2.
3.

4.

Which of the following constitute hardware and which constitute software?

a.

b.

h.

i.

cross-assemnb ler

editor

integrated circuit chip

wire

printed circuit board

capacitors and resistors

FORTRAN program
turbo-alternating grundle flusher

thermistor (temperature transducer)

What are the three important busses in a microcomputer?

Why is it useful for the data bus to be bidirectional?

List five important control signal lines in an 8080A-based microcomputer.

16-21

ANSWERS

1. a. software
b. software
c. hardware
d. hardware
e. hardware
f. hardware
g. software
h. hardware, whatever it is
i. hardware

2. The bidirectional data bus, the control bus, and the address bus

3. For an 8-bit microprocessor chip, it reduces the number of pins required by
eight. For a 16-bit microprocessor chip, it reduces the number of pins required
by sixteen.

4. OUT, TN, MEMR, MEMA, and TACK

16-22

71

UNIT NUMBER 17

DEVICE SELECT PULSES

INTRODUCTION

This unit will teach you how to generate input and output device select pulses,

which

are the microcomputer-generated synchromizing signals between the micro-

computer and external I/0 devices, which could be simple integrated circuit

chips.

The most useful circuit is one that is based upon the 74154 decoder chip;

gixteen different device select pulses can be generated.

OBJECTIVES

At the completion of this unit, you will be able to do the following:

o

Define device select pulse.

Explain what is meant by the statement, "the substitution of software for
hardware."

List several different uses for device select pulses.

Give one or two schematic diagrams of circuits that can be uged to generate
device select pulses.

Define state and machine cycle.
List how many machine cycles exist for some typical 8080A instructions.

Wire a circuit that will permit you to single step the Dyna-Micro microcomputer.

WHAT IS A DEVICE SELECT PULSE?

A device select pulse is a synchronization pulse generated by a digital computer

to synchronize the transfer of data between the computer and an input-output device.

Associate the term, device select pulse, with the terms, to enable, to strobe, to
gate, to disable, to inhibit, and to clock. Basically, a device select pulse is
a strobe pulse that strobes some operation in a digital circuit or chip. It can
be either a gate pulse—-a pulse that enables a gate circuit to pass a digital
signal--or a clock pulse in a clocked logic system.

THE SUBSTITUTION OF SOFTWARE FOR HARDWARE:
USES FOR DEVICE SELECT PULSES

Device select pulses are easy to generate and are inexpensive. In a typical
application, a 74L154 decoder chip is used. At a cost of $1.25 per chip, it
will cost you approximately 8¢ for each device select pulse that you generate,
in quantities of sixteen.

In interfacing a microcomputer, your object is to minimize the number of external
chips required, assuming that you are comstructing thousands of units rather than
a one-of-a-kind unit. One way of minimizing external chips is by performing as
much of the digital logic within the microcomputer rather than external to it.

We call this process the substitution of software for hardware. Remember this
theme: software vs hardware. There exists a tradeoff between the two, but your
main objective in using microcomputers is to substitute microcomputer programs
for electronic and mechanical hardware devices. Since many

1/0 devices are slow by microcomputer standards, you will be very successful in
meny applications that incorporate such devices. However, occasionally you will
encounter a situation where the speed of the microcomputer is not fast enough.

It takes time to execute each instructlon in a microcomputer program. If the
program is too long, too much time will be consumed and you may not be able to
accomplish a specific task.

To demonstrate the substitution of software for hardware, we would like to discuss
several different uses for device select pulses. In each example presented, please
keep in mind that there exists an accompanying microcomputer program that times

the generation of the device select pulses.

It is easy to write a program that generates a single device select pulse, such
as the negative pulse, OUT 0, shown below,

oUT 0 —m = ouT 0

For the MMD~1 microcomputer, the pulse width is 1.333 us. In a subsequent
unit, you will learn how to write various types of time delay loops that
repeatedly execute a small group of microcomputer inmstructions. By writing such
a program, you will be able to generate a series of device select pulses,

7-3

as shown for OUT 1,

ouT 1

oUT | — e “TTTT % } timing loop
JMP
The duration between successive pulses is determined by a programmed software time
delay loop.
With a pair of device select pulses and a single preset-clear flip-flop such as the

7474, you can write a time delay loop program that generates a single clock pulse
at the output of the latch,

ouT 2
| T 1-Q } timing loop
U ouT 2
™ OuT 3 oUT 3

By adding a second time delay loop to your program, you can generate a serles
of clock pulse with a known duty cycle that is specified by the program,
OUT &
} timing loop

oUT 5

g } timing loop

JMP

With these last two circuits, you have substituted software for either a

monostable multivibrator or an astable mulitivibrator such as the 555 IC timer wired
as an oscillator. You have already used a number of different Outboards, such as

the pulser Outboard and the clock Outboard. With your ability to substitute

software for hardware, you are now able to replace such Outboards with a 7474

chip (which contains two flip-flops) and appropriate programs in the microcomputer.

In complex digital printed circuit boards, you frequently encounter £1ip~flops and
gates that are used to provide pulses or logic states at certain points within the
circuit at certain instants of time. With the microcomputer, it is relatively easy

to accomplish tasks of this type. You can also use a single bit, DO, on the
bidirectional data bus and a device select pulse, OUT 006, to latch the bit and
thus control the logic state at a particular point in an external digital circuit,

MVI A /Load A with
po —p of—— — 001 /Data = 001
ouT /Output it to
NT479) 006 /Device 006
ouT 6 —>o—{ e

A much more efficient interface circuit is based around an 8-bit latch and single
device select pulse,

07 —§ —
= [—— control MVL A /Load A with
—] — word 013 /Control word
po —] — ouT /Output it to
007 /Device 007

8212

With device select pulse OUT 007 and an 8212, it is possible to latch all eight bits on
the bidirectional data bus and use such bits as individual control lines at various
points in a digital circuit. In the mext unit, you will learn how to wire such

a latch circuit.

You will not be able to substitute software for certain types of chips, such as
latches and three-state buffers. Nevertheless, as long as speed is not your
requirement, you can use software to substitute for most of the important functions
of MSI and many LSI integrated circuit chips. This point is made quite well with
the PACE microcomputer in the manual, "Logic Designers Guide to Programmed
Equivalents to TTL Functions," which is available from National Semiconductor
Corporation for $5.00. All the PACE programs can be converted to operation on

an 8-bit microcomputer such as the 8080A or Motorola 6800. The hardware for which
they have provided equivalent microcomputer software include the following:

7408 quad 2-input AND gate

7409 quad 2-input AND gaté with open collector outputs wired together
7411 triple 3-input AND gate

74H21 dual 4-input AND gate

7432 quad 2-input OR gate

7486 quad 2-input Exclusive-OR gate

7483 4-bit binary full adder

74121 and 555 monostable multivibrators (time felays greater than 10 us)
74150 16-line-to-1-line data selector/multiplexer

74151 8-line-to-1-line data selector/multiplexer

0000000000

-5

74154 4-line-to-16-line decoder/demultiplexer

DMB220 9-bit parity gemerator/checker

7485 4-bit magnitude comparator

74160 to 74163 synchronous 4-bit counters, BCD and Binary
74185 binary-to-BCD converter

74184 BCD-to-bimary converter

74190 up/down BCD counter

74191 up/down binary counter

coo0oo0oco0o0

They have also provided software equivalents for the following types of digital
systems, each of which consists of a number of 7400-series integrated clrcuit
chips:

digital servo (74193, 7485, and various gates)

digital tachometer (74163, 7485, 74123, 7475, 7400, and 7404)
modulo-N-divider (74163, 7485, and 7402)

real-time clock and interval timer (modulo-N-divider, 74160, 7404, and 7400)
pseudo-random number generation (74C14)

state sequencer (DM8551, 7473, and numerous gates)

cooo00o0

Although it is possible to treat a microcomputer as a minicomputer or use it as

a super programmable calculator, the dominant use of microcomputers will be in
digital systems in which software is substituted for much of the hardware originally
present. If you learn how to substitute software for hardware, you
will have learned one of the most important aspects of mierocomputer applications.

USE OF DEVICE SELECT PULSES TO STROBE INTEGRATED CIRCUIT CHIPS

An important application for microcomputers is to strobe the operation of indiv-
idual integrated circuit chips in instruments and electronic devices. For
example, such pulses can,
o Clear counters, shift registers, flip-flops, and latches.
o Load counters, shift registers, and latches.
o Enable multiplexers, demultiplexers, decoders, data selectors,
counters, shift registers, memories, priority encoders, UARTs, and
a variety of other chips.
o Inhibit clock inputs to counters and shift registers.

o Set, clear, toggle, and clock flip-flops.

o Select shift left, shift right, load, and inhibit functions in
shift registers.

By using device select pulses to control the operation of individual integrated
circuit chips, you are substituting software for hardware.

You are already familiar with a number of integrated circuit chips in the MST
category. Some of them require strobing or enabling in order to perform their
digital function. Thus:

7490 decade counter: Logic 1 at pins 2 and 3 clears counter
Logic 1 at pins 6 and 7 sets counter to 9
Clock input is at pin 14

7493 binary counter: Logic 1 at pins 2 and 3 clears counter
Clock input is at pin 14

7442 decoder: Logic 0 at pin 12 enables octal decoder operation
74154 decoder: Logic O at pins 18 and 19 enables decoder
7474 flip~flop: Logic 0 at pin 1 clears first flip-flop

Logic O at pin 4 sets first flip-flop
D input to first flip-flop is at pin 2
Clock input to first flip-flop is at pin 3

7475 latch: Loglc 1 at pin 4 enables first two latches
Logic 1 at pin 13 enables second two latches

In microcomputer systems, the 7442 and 74154 decoders are used to help in the
generation of device select pulses. However, they can also be used as general
decoders that are enabled by such pulses.

GENERATING DEVICE SELECT PULSES

To generate a device select pulse, you require two types of information from the
8080A microcomputer:

1. The 8-bit identification code, called a device code, of the 1/0 device.

2. A single-bit synchronization pulse, either N or OUT, that synchronizes
the decoding of the device code.

The origin of both types of information is in software, 7.e., the IN and OUT
instructions that you encountered in the early modules in this Bugbook. These
instructions include the 8-bit device code and cause the microcomputer to generate
the appropriate IN or OUT synchronization pulse. The location of the IN and OUT
instructions in the program determine the specific instant when the
device select pulses are generated.

In other words, during the generation of a device select pulse, both the address
bus and the control bus are active, As shown in Figure 17-1, the 8-bit device

code is_obtained from the 16-bit address bus, and the two synchronization pulses,

IN and OUT, from the control bus. In the 8080A microcomputer, the 16-bit address
bus is subdivided into two 8-bit device codes. For the Intel 8080A chip, both codes
are identical during the execution of the third IN or OUT machine cycle.

What do you do with the 8-bit address bus and synchronization pulses? You might wire
them to a 74154 4-line-to-16-line decoder, as shown in Figure 17-2. With a

single 74154 decoder, you use only four of the eight address bus bits and either

IN or OUT. A more ambitious device select pulse decoding circuit is shown in

Figure 17-3. All eight address bits are used, and seventeen 74154 decoders

provide you with the opportunity to generate 256 unique pulses. To generate

all 512 input and output device select pulses, two circuits of the type shown in

Figure 17-3 would be required. This is rarely done in actual interfacing applicatioms.

MEMORY

s

€%

£

53

© ° 8-bit oddress for
external Input /output
devices.

F—— N
8080 CPU 1/0 synchronization
0T pulses.

Figure 17-1. To generate a group of device select pulses, you require eight
IN and OUT,

bits from the address bus and two synchronization pulses,
from the control bus.

A-3 —
Memory A-2
address Al
bits 2-0

> Sixteen different
device select pulses.
u-

SN74154

To generate sixteen different device select pulses, you need
N or OUT synchronization

Figure 17-2.
four bits from the address bus and either the 1

pulse, for input and output devices, respectively.

A=3 D ——
A-2 c —
A- | B —
A-0 A —
0—f62 —
al —
SN74154 No.I5
o —
c —
B —
A —
20 17 — G2 —
A-7—2H0 Ilg 16 0 2, —
A-s—=c s —
a-5-22] g 3
A_4T3 A — SN74154 No.14
—
— o —
— ¢ — |
SN7415¢ |— B — 256 different !
— A — device select ¢
_— E pulses. !
_ 0 12 2 — 0 ~—{ 62 —
IN -] —
or L1815 =
ouT 0 SN74154 No.13
L]
L]
L]
.
L]
D l— |
c — |
2 = !
A — &
0 —f62 —
SN 74154 No. 0

Figure 17-3. Circuit for gemerating 256 different device select pulses.

179

It is not likely that you will need to generate 512 different device select pulses.

A more limited decoding circuit that is based upon Figures 17-2 and 17-3 is
shown in Figure 17-4 below:

+S5V GND
124 |
a7 ‘° D
~t c
A5 "; B
4 A
74154
No. 2
0 &l
0-—2c2 o}
— 19
'y s G2 N
ouT 1] 10 Device select
ouT pulse 004g
74154
No.1 4
pozofy 3 4 9D 8 5
a 21 2 3___-—§Do§—- c LAMP
A-2 271¢ 2 3 4
Al 8 1[F—=2Dot——B wmoNITORS
a-0—-23{ A ————{>o—— A
[+ 1 7404
+5V GND

Figure 17-4. One possible decoding circuit for generating sixteen absolute
decoded device select pulses.

The circuit includes an absolute decoding of the complete 8-bit device select
address byte, i.e., all eight bits, not just four. This is not a widely used
circuit and is mentioned for illustration only. It may be more useful to use
one of the 74154 chips for input device select pulses, and the other ome for
output pulses.

The preceding circuits are ones that we use to gemerate device select pulses.
However, there exist alternative schemes to decode the address and control
buses, and we would like to illustrate them. In Figure 17-5, we use a pair
of 74154 decoders, and thus absolutely decode the 8-bit address bus byte.
Each device select pulse that we generate requires a separate 7402 (or 7432)
gate, as shown in Figure 17-6. This circuit is useful only if the device
select pulses in your system are scattered randomly in the range, 000 to
377g and all functions are centrally located. Only two 74154 decoder chips
and four 7402 2-input NOR gate chips--which contain a total of

17-10

+5v GND !
i
24 12 §
a7 —22] 15 |
a6 —2lL —
A—5 =22} -
A-a =23 -
74154 p—
No.2 7
02462 —
N —
o—
i I
or L. Device
ouT select
pulse
7402
1816 15HL (or 7432
0 19 62 OR gate)
— |
74154 |
No.t —
4—-}
5——
A_3 —20 [
Ap —2l —
A- —2& —
a—o0 —232 o2
24 12
+5V GND

Figure 17-5. Absolute decoding scheme for device select pulses that requires a
7402 or 7432 gate for each device select pulse desired.

+8V GND 7-11

24 |12
20
A-7 —=-D
A6 ——id C
A-5 ~224 B
A—4—A A
74154
no connection
0'—‘3 62 7402
LN YR (I\
[
— 2] 3
IN ar
or ———¢ 7402
D
out c LAMP
B MONITORS
o A

+5V GND

Figure 17-6. Circuit that demonstrates how 2-input NOR gates are employed to
generate individual device gelect pulses.

sixteen NOR gates-—are required to obtain gixteen different device select pulses.
1f the device codes are sequential, then this circuit is not preferred.

A related decoding technique is shown in Figure 17-7. Rather than conmnect the

IN or OUT control signals to a decoder, instead you comnnect them to individual

7402 (or 7432) gates. Such a decoding scheme is used in the Dyna-Micro micro-
computer (Figure 17-7). Four address bus bits are connected to a 74L42 decoder, the
output channels of which are then gated with 7402 2-input NOR gates to provide

the necessary device select pulses for the 7475 latches on the microcomputer board.
Note in Figure 17-7 that address bus bits A3 through A7 are wired to 74LS05
inverters, the outputs of which are all connected together and them tied to the

Figure 17-7, Decoding circuit in the Dyna-Micro microcomputer. A 74142 decoder
is used to generate individual channel output pulses, which are then
gated with 7402 2-input NOR gates to produce the desired device select
pulses.

D input of the 74L42 decoder. The D input must always be at logic 0 if device
select pulses are to be generated. The technique employed here is the open
collector bussing technique of tieing the outputs of special open collector
integrated circuit chips to a common bus line. We have essentially constructed

a five-input OR gate, which enables the 74L42 decoder. We shall discuss this later.

It is also possible to decode 8-bit device code bytes using gates and comparators.
This is particularly useful in real situations where only a few device select
pulses are needed. For example, consider the circuit shown in Figure 17-8. On
the left, two distinct device select pulses are generated with the aid of a pair
of 7430 8-input NAND gate chips. The device code for the top 7430 gate is
11000110.,, or 306 in octal code, whereas the device code for the bottom gate is
110011115, or 317 in octal code. The unique output state from the 7430 NAND gate
is logic 0, which occurs only when the proper device code has been applied to the
gate. If the OUT control signal is also at logic 0, the unique output from the
7432 2-input OR gate, i.e., logic 0, either clears or presets the 7476 flip-flop.

The circuit of Figure 17-8 demonstrates how you can use device select pulses to
control AC power. Optically-isolated solid state relays permit you to use digital
signals to turn on and off AC loads operating at either 115 Volts or even 220 Volts.
Relays can be obtained that will switch 10 amperes at these voltage levels, and they
cost only $15 in quantities of ome. This subject has been discussed in greater
detail in Bugbook III, Unit Number 5.

Note that the device codes correspond to the 8-bit ASCII codes for the characters
"F" and "O" , in which the parity bit is at logic 1.

17-13

apodop ATa3nfosqe o3 sa3e8 aNyN Indur-g pgy/ Jo ifed ® skordms 3Jeyy ITNOATO ABT21 33BIS PITOS

Aojey

8IS plios

YOLOW
Nvd

v AON

pooT
v

00 AZ¢
of AE

AG+

+

Jeynq

o

Sivl

o

r
1989,

2

2evL

*sasynd 30919s 80TA2p 3Indino omy

*g-LT @an814
400 40 U} =0
ov
o~
(323
o_ ov
I
m 3
]
1 Ll
1no uo upj =4

17-14

A final decoding circuit consists of a pair of 7485 comparator chips, the pin
configuration and truth table for which are given below:

85, ‘585 L85
JOR N DUAL-IN-LINE OR
W FLAT PACKAGE (TOP VIEW) DUAL-IN-LINE PACKAGE (TOP VIEW)
e oz s

TYPICAL TYPICAL
POWER DELAY

TYPE Disst taBr
PATION WORDS) AL RS ANBAB B A D L oo ki

85 275 mw 2305 I

T
|

s 20mw 9005
's85 365 mW Tins 2 T e T T2 1
oty g e A T
INPUT CaSCADING INPUTS ouTRUTS 20 CasCAOMG INPUTS.
positive logic: sse function tables positiv fogic: see function tables

description
These four-bit magnitude comparators perform comparison of straight binary and straight BCD (B-4-2-1} codes. Three
fully decoded decisions about ixo 4-bit words (A, B) are made and are externally available at three outputs. These
devices are fully expandable to any number of bits without externa! gates. Words of greater length may be compared by
connecting comparators in cascade. The A > B, A < B, and A = B outputs of a stage handling less-significant bits are
connected to the corresponding A > B, A < B, and A = B inputs of the next stage handling more-significant bits. The
stage handling the Jeast-sig ant bits must have a high-level voltage applied to the A = B input and additionally for the
“L85, low-level voltages applied to the A > B and A < B inputs. The cascading paths of the ‘85 and 'S85 are implement-
ed with only a two-gate-leve! delay to reduce overall comparison times for long words.

FUNCTION TABLES

COMPARING CASCADING
INPUTS wpuTs
[A3.83 [Az.82 [A1.81 |A0BO| A B A- 8B A-B|A 8 A-B A-8

outpuTs

z
ez

X% % %

2
B
B

A3=83 [A2-82 [A1=81 |A0> 80|
Aa=83 [A2+82 | A1 81 |A0 < 60|
Aa-83 A2-B2|A1-81 | A0- O]
A3+ 83 |A2-82 |AT=81 | A0 B0|
A3-83 | A2 82 | A1-81 | A0- 8O

T xoxox X x % X X
e

S

P TEXAS, INSTRUMENTS

1= nign leve), L= low lovel, X = irvalavant

We are providing information for both the high-power (7485, 74585) and low-power
(74185) chips since they have different pin configurations and truth tables. You
may wish to minimize fan-in through the use of the 74L85 chip.

As can be seen in Figure 17-9, the only condition that you use is A = B. If

the address bus byte A is equal to the byte B that you set at the B imputs to the 7485,
you will obtain a logic 1 at the A = B output from the 7485 chip at the top right.

You invert this signal and then gate it with the OUT control signal to obtain

desired device select pulse.

17-15

—_— 7432

+5V GND

Figure 17-9, Decoding circuit using a pair of 7485 4-bit comparator chips.
This circuit produces an absolutely decode single device select
pulse. However, you can change the device code simply by altering
the 8-bit B input to the comparators. In this case, the B input
corresponds to 11000110, or 306 in octal code.

1/0 INSTRUCTIONS

There are only two 8080A input/output instructions:

323 <B2> oUT Place the 8-bit device code on the address bus, the accumulator
contents on the bidirectional data bus, and generate an OUT control
signal. The contents of the accumulator remain unchanged.

333 <B2> IN Place the 8-bit device code on the address bus, permit data on
the bidirectional data bus to be input into the accumulator, and
generate an IN control signal.

The second byte of each instruction is the 8-bit device code. You use the control
signal and the information on the address bus to generate the required device select
pulse. A more succinct way of stating the two above imstructions is:

33 <B2> OUT Output the accumulator contents to the output device selected
by the device code in the second byte.

333 <B2> IN Input into the accumulator the contents of the input device
selected by the device code in the second byte.

17-16

Although device select pulses are frequently used to transfer information between
the accumulator and an I/0 device, they also are used to strobe the operation of
I/0 devices under conditions where data transfer to or from the accumulator does
not occur.

THE FETCH, INPUT, AND OUTPUT MACHINE CYCLES

Having described several circuits that you can use to generate device select
pulses, we will shortly provide you with several programming examples that
illustrate the behavior of the IN and OUT instructions, both of which are two-byte
instructions. If you execute either the IN or OUT instruction in the single-step

mode and monitor the contents of the 8-bit data bus, you will observe something unusuall
a third byte appears that does not correspond to a byte present at that point in your|

program. What is this extra byte? It is the 8-bit byte being transferred to or
from the 8080A's accumulator register during an IN or OUT instruction cycle. It is
during the execution of this third machine cycle that:

o Either an IN or OUT pulse is generated on the
control bus.

o The device code appears on the 16-bit address bus
as two identical 8-bit bytes.

o The external bidirectional data bus and the internal
data bus within the microprocessor chip are
to permit direct data communication between the accumulator
and the I/0 device, whether input or output.

When you single step through an 8080A microcomputer program, you single step through
machine cycles rather than instruction bytes. Without going into great detail,
we can define machine cycle as follows:

machine cycle A subdivision of an instruction cycle during which time a
related group of actions occur within the microprocessor
chip. All instructions are combinations of one or more
machine cycles.

As an example of a machine cycle, there is the FETCH machine cycle, during which

the instruction code 1s fetched from the memory location addressed by the program
counter. Simple arithmetic and logical operations involving the 8080A's internal
registers are also performed during the FETCH cycle.

The output instruction, OUT, consists of two FETCH machine cycles in sequence,
i.e.,the instruction code and then the device code, followed by an OUTPUT machine
cycle--the third step that you observe when you execute an OUT instruction-~during
which the contents of the accumulator are made available on the bidirectional
data bus, The output device code appears as two identical 8-bit device code bytes
on the address bus and an OUT pulse is generated. The IN instruction consists of
two FETCH machine cycles in sequence,i.e.,the imstruction code and then the device
code, followed by an INPUT machine cycle--the third step that you observe when you
execute an IN instruction--during which the input buffer/latch within the 80804
chip is enabled to permit input data on the bidirectional data bus to be transfer-
red to the accumulator. Two identical 8-bit device code bytes appear on the address
bus, and an IN pulse is generated.

ey
FIRST PROGRAM

Let us first consider the program given in Experiment No. 5 in Unit Number 11:

LO memory Instruction
address byte Mnemonic Description
000 074 INR A Tncrement contents of accumulator by 1
001 323 QouT Output accumulator contents to device
given in following byte
002 002 002 Device code for port 2
003 303 JMP Unconditional jump to the memory address
given by the following two bytes
004 w - LO address byte
005 [IB - HI address byte

If you would execute this program using the single-step circuit, you would cbserve
the following bytes, in succession, on the bidirectional data bus:

Address Data bus
bus byte byte Comments
000 74 FETCH machine cycle for INR A instruction code.
001 323 FETCH machine cycle for OUT instruction code.
002 (4074 FETCH machine cycle for device code for port 2.
002% aqecunmilator OUTPUT machine cycle, during which the accumulator
contents contents is made available on the bidirectional data
bus_and the device code appears on the address bus.
An OUT pulse is also generated during this machine
cycle.
003 203 FETCH machine cycle for JMP instruction code.
004 000 FETCH machine cycle for LO address byte.
005 003 FETCH machine cycle for HI address byte.

You observe such information on the data bus because (&) all instruction bytes
move over the data bus from the memory to the instruction register within the
8080A chip, and (b) the contents of the accumulator is output on the data bus
during the third machine cycle of the OUT instruction.

The program increments the contents of the accumulator during each loop. Also,
it outputs that contents to port 2 during each pass through the loop. You
observe this at an 8-bit port that increments from 00000000, to 11111111 and
then repeats the counting sequence.

* NOTE: This is the I/O device address that appears at bits A0 through A7 on
the address bus. :

17-18
SECOND PROGRAM
With the second program, you actually modify the device code in the OUT
instruction:
LO memory Instruction
address byte Mnemonic Description
314 074 INR A Increment contents of accumulator by 1
315 323 OUT Output accumulator contents to device
given by the device code stored at
memory location HI = 003 and LO = 316
316 <B2> <B2> Device code for output device
317 ol 1XI H Load immediate two bytes into register
pair H
320 316 <B2> L register byte
321 003 <B3> H register byte
322 06l INR M Increment the contents of the memory
location pointed to by register pair H
323 303 P Unconditional jump to the memory address |
given in the following two bytes
324 314 - L0 address byte
325 003 - HI address byte |
|

This program permits you to output the accumulator contents to 256 different
devices in sequence, starting with the device given at HI = 003 and LO = 316.
On every loop of the program, the device code at LO = 316 is incremented by one.
This is not a very useful program, but it does demonstrate the fact that the
device code is not inviolate within a program. With very few instructions,

you can alter the device code and thus sequence through a series of devices.

In practice, the device code of the output device of interest would probably

be stored in a register, and a MOV instruction used to transfer the register
contents to memory location M addressed by the register pair H.

Would you obtain a useful result if this program were in ROM, PROM, or EPROM?
No, because then you would not be able to alter the contents of memory location
L0 = 316.

INTRODUCTION TO THE EXPERIMENTS

The following experiments demonstrate how you can generate, and use, device
select pulses. You will also wire a bus monitor and gain experience with the
use of a single-step circuit.

Experiment No. Comments

1 Demonstrates a bus monitor circuit based upon the TIL311
numeric indicator that permits you to monitor all data
that passes over the bidirectional data bus.

2 Demonstrates a bus monitor circuit based upon the HP 5082-7300
numeric indicator that permits you to monitor all data that |
pass over the bidirectional data bus.

3 Demonstrates the use of a single-step circuit for the MMD-1
microcomputer. You will single step through the first
thirty-eight machine cycles of the KEX program.

4 You count IN and OUT strobe pulses with the aid of a 7490 counter
while the microcomputer is operating in the single-step mode,
You also determine the bit pattern for the keyboard.

5 You comstruct, operate, and test an interface circuit that will
permit you to generate sixteen different device select pulses.

6 Demonstrates how the decoded channels on the MMD-1 printed
circult board can be used to generate device select pulses.

7 Demonstrates the use of a device select pulse to clear a 7490
counter.
8 Demonstrates the use of a pair of 7485 comparator chips to generate

a single absolutely decoded device select pulse.

9 Demonstrates the use of a 7430 8-input NAND gate to generate a
single absolutely decoded device select pulse. Also demonstrates
the use of two such pulses, a 7476 flip-flop, and a solid-state
relay to turn on and off a fan motor.

EXPERIMENT NO. 1
PURPOSE
The purpose of this experiment is to wire a bus monitor, a three-digit octal

display that monitors the data that appears on the bidirectional data bus.

PIN CONFIGURATION OF NUMERIC INDICATOR

o o
o W

= PINY LED SUPPLY VOLTAGE
PIN2 LATCH DATA INPUT B
i st aax PIN3 LATCH DATA INPUT A
. PIN4 LEFT DECIMAL POINT CATHODE

PINS

LATCH STROBE INPUT

ot 23R,

PING OMITTED
PIN 7 COMMON GROUND

PINB BLANKING INPUT

PINS OMITTED

PIN 10 RIGHT OECIMAL POINT CATHODE
PIN 11 OMITTED

PIN 12 LATCH DATA INPUT D

PIN 13 LATCH DATA INPUT C

PIN 14 LOGIC SUPPLY VOLTAGE, Vec

o "f
e
IS A

]

SCHEMATIC DIAGRAM OF CIRCUIT

+5V +5V
GND GND
14l8h IT 14]8]1 |7
0 —& 0
0 — D2
07 & DI
D6 — oo
5
STROBE _

step 1
Wire the circuit shown or use a LR-27 bus monitor Outboard. When you wire the

above circuit, as with any interface circuit in this Bugbook, do so with the
power to the microcomputer turned off!

STEP 2

Connect the latch STROBE input to logic 0. This enables the displays so that

-2
each numeric indicator display follows the imputs.

Apply power to the MMD-1 microcomputer. You should observe that most of the
dots in the numeric indicators are lit. What you are observing is the wait
loop in the Keyboard EXecutive EPROM being executed at a clock rate of 750 kHz.
The only thing that you can learn from the fact that all of the numeric indi-
cator dots are lit is that the microcomputer is executing a program.

STEP 3

Now connect the STROBE input to the OUT control signal line on the SK~10 bus
socket. If you cannot find OUT, please refer to Figure 16-3.

STEP 4

Press the RESET key on the MMD-1 microcomputer. What three-octal-digit byte
appears on the bus monitor? Write it in the space below.

What three-octal-digit byte appears at Port 2? Write it below.

Are they the same?

Yes.

STEP 5

What is the significance of the information that appears on the bus monitor

when the STB input is connected to OUT? If you are not certain how to answer
this question, load some arbitrary octal values into read/write memory and
observe what information appears on the bus monitor. Also examine your "program"
and again observe the relationship between the byte on the bus monitor and the
byte displayed at Port 2. What do you conclude?

We conclude that the information on the bus monitor (an output port for the
microcomputer) and at Port 2 are identical. The two output ports give the

contents of the memory location addressed by the 16-bit address given in

Ports 0 and 1, or the byte to be loaded into memory, the LO address register, or the
HI register. The bus monitor makes it easier to enter and check a program.

Save this circuit for all of the remaining experiments in this Bugbook.
Experiment No. 2 is similar to thie onme, but employs a different numeric
indicator, the HP 5082-7300.

v-2

APPENDIX TO EXPERIMENT NO. 1

A less expensive bus monitor circuit can be constructed from Port 1 on the
MMD-1 microcomputer. Rather than three octal digits, the monitor consists of
eight LEDs that continuously monitor the state of the bidirectional data bus,
DO through D7. To construct this bus monitor, place a switch in the ENABLE
input line to the Port 1 7475 latch chips, as shown below,

7475

PORT |

Closed = Port |

7475

When the switch is closed, 7475 chips IC24 and IC25 operate normally as Port 1.
When the switch is opened, they operate as an 8-bit bus monitor.

It is likely that this modification will be incorporated in future models of the
MMD-1 microcomputer.

17-23
EXPERIMENT NO, 2
PURPOSE

The purpose of this experiment is to wire a bug monitor using the HP 5082-7300
numeric indicator. This experiment is identical to Expermiment No. 1.

PIN CONFIGURATION OF NUMERIC INDICATOR

FRONT VIEW REAR VIEW

0—1D |
05 rc s +53V
D4 B [6ND
D3 A p=

=3 - — + 5v
D2 -—-—O——Lg 'G—G:D
o1 ——H8 5
Do PRS——V '} b-

HP 5082- 7300

STROBE (STB)

sTEP 1

Wire the circuit shown. We recommend that you do so with the power to the
microcomputer turned-off.

STEP 2

Connect the latch STROBE input to logic 0. This enables the displays so that

17-20

each numeric indicator display follows the inputs.

Apply power to the MMD-1 microcomputer. You should observe that most of the dots
in the numeric indicators are lit. What you are observing is the wait loop in
the Keyboard EXecutive EPROM being executed at a clock rate of 750 kHz. The
only that that you can learn from the fact that all of the numericindicator dots
are lit is that the microcomputer is executing a program.

STEP 3

Now connect the STROBE input_to the OUT control signal line on the SK-10 bus
socket. If you cannot find OUT, please refer to Figure 16-3.

STEP 4

Press the RESET key on the MMD~1 microcomputer. What three-octal-digit byte
appears on the bus monitor? Write it in the space below.

What three-octal-digit byte appears at Port 2?7 Write it below.

Are they the same?

Yes.

STEP 5

What is the significance of the information that appears on the bus monitor

when the STB input is connected to OUT? If you are not certain how to answer
this question, load some arbitrary octal values into read/write memory and
observe what information appears on the bus monitor. Also examine your "program"
and again observe the relationship between the byte on the bus monitor and the
byte displayed at Port 2. What do you conclude?

We conclude that the information on the bus monitor (a microcomputer output
port) and at Port 2 are identical. The two output ports give the contents of
the memory location addressed by the 16-bit address given in Ports O and 1,
or the byte to be loaded into memory, the LO address register, or the HI
address register on the MMD-1. The bus monitor makes it easier to enter and
check a program.

Save either this circuit or the ceircuit in Experiment No. 1 for all of the
remaining experiments in this Bugbook.

EXPERIMENT NO» 3

PURPOSE

The purpose of this experiment is to construct a single-step circuit for the
Dyna-Micro microcomputer.

PIN CONFIGURATION OF INTEGRATED CIRCUIT CHIP

SCHEMATIC DIAGRAM OF CIRCUIT

0= Full speed

1
1= Single step ‘I
|
|
N }
_2‘1 PRESET READY :
1=1° o or sxrob—2{rovn 8080A
socket) ! 8224
7474
CLOCK ‘. ReADY (2 2 reapy
or o3 ! e
Glock
PULSER oK A 1‘
I
' 1
1
i
L WAIT II
sTep 1

Wire the circuit shown. Use the READY and WAIT locations on the SK-10
breadboarding socket. Note in the above diagram that the chips to the right of
the dotted line are already wired on the printed circuit board as shown.

7474
{pin 1)

STEP 2

Connect the latch enable input (STB) of the bus monitor to logic 0 (GND). This
permits you to observe all information that appears on the bidirectional data
bus. Place the single-step circuit in the single-step mode (pin 4 of the 7474
chip connected to logic 1). If you are using the single-step Outboard, set the
logic switch to the position that corresponds to single-step operation.

Press the RESET key. You should observe a 33 on the bus monitor. This is the
first instruction byte in the KEX software routine.

STEP 3

Using the pulser, single step through the keyboard executive (KEX), which starts
at memory location HI = 000 and LO = 000. Compare your observations with the
sequence of bytes that we observed on the bus monitor, as given below. The
purpose of this listing is th show you how the single step operation works. You
may not understand every instruction below.

Memory Instruction

address byte Mnemonic Description

000 000 303 JMP Unconditional jump to the memory address
START given by the following two bytes

000 001 070 START LO address byte of START

000 002 00 - HI address byte of START

000 070 061 LXI SP Load immediate two bytes into the stack

pointer register

000 071 000 000 10 stack pointer byte

000

000

000

000

000

003

000

000

000

001

000

000

000

000

000

000

000

072

073

074
075

076

000

077

102

103

104
000

105

o4l

E&8

Xyz

74

001

003

175

000

1
33

004

000
003

MOV

XYz

MoV

ouT

001

003

Mov

ouT

000

000

Mov

oUT

002

AH

A,L

A,C

V-7
HI stack pointer byte

Load immediate two bytes into register
pair H

L register byte
H register byte

Move contents of memory location M (which
is pointed to by register pair H) to
register C

MEMORY READ machine cycle, in which the
contents of memory location HI = 003 and
LO = 000 are moved to register C. You
observe this memory byte on the bus
monitor. Your XYZ value is the value
contained in the first read/write memory
location on your MMD-1 microcomputer.

Move contents of register H to the
accumulator

Output accumulator contents to the
output port given in the following byte

Device code for output port 1

OUTPUT machine cycle, during which the
contents of the accunulator are output to
port 1. The device code is output as two
identical 001 bytes on the address bus for
the Intel 8080A chip.

Move contents of register L to the
accumulator

Output accumulator contents to the output
port given in the following byte

Device code for output port O

OUTPUT machine cycle, during which the
contents of the accumulator are output to
port 0. The device code is output as two
identical 000 bytes on the address bue.

Move contents of register C to the accumulator

Output accumulator contents to the output
port given in the following byte

Device code for output port 2

-8

002

000

000

000

003

003

000

000

000

000

000

000

000

000

000

000

002

110

111

112

377

376

317

321

322

323

324

325

XYz

315

315

000

113

160

27

315

315

XYz

KBRD

000

113

IN

000

160

ORA A

315

000

TIMOUT

OUIPUT machine cycle, during which the
contents of the accumulator are output to
port 2. This is the byte from read/write
memory retrieved earlier. The device code
is output as two identical 002 bytes on
the address bus.

Call subroutine KBRD located at memory
address given by the following two address
bytes

LO address byte of KBRD
HI address byte of KBRD

STACK WRITE machine cycle, during which the
HI address byte in the program counter is
moved to the stack in memory

STACK WRITE machine cyele, during which the
L0 address byte in the program counter is
moved to the stack in memory

Input byte into the accumulator from the
input port given by the following device
code

Device code for keyboard on MMD-1 micro-
computer

INPUT machine cycle, during which a byte
i8 input from the keyboard. The byte,
160, is input if you do not press any key.
The device code is output as two identical
000 bytes on the address bus.

OR contents of accumulator with itself

Jump if accumulator contents are minus

(D7 bits is logic 1) back to memory location
given by the following two address bytes

LO address byte

HI address byte

Call subroutine TIMOUT located at memory
address given by the following two address

bytes

10 address byte of TIMOUT, a 10 msec time
delay subroutine

HI address byte of TIMOUT

79

We will stop here as we enter the time delay subroutine. Clearly, the value of
the single-step and bus monitor circuits is that they permit you to observe data
being transferred between memory or I/0 devices and the interior of the 8080A

microprocessor chip, Z.e., you are able to observe machine cycles other than the
FETCH cycle. This is particularly important when you check and test new programs.

STEP 4
Return the microcomputer to its full operating speed, 750 kHz.

Now load 3// into the HI register (port 1), the LO register (port 0), and the
data register (port 2). All twenty-four lamp monitors should now be lit.
Execute KEX in the single-step mode once again starting at HI = 000 and LO = 000.
When does the HI register change from to 003? You will have to single-step
the program at least to the first OUT instruction. Why?

At the machine cycle that immediately follows the execution of the instruction
byte at HI = 000 and LO = 101. The only time that this data is changed 1is
during the execution of an OUT 00l instruction. These LEDs are not connected to
the address bus. The are only used to represent the HI address byte.

STEP 5

Con&xﬁue to single step through KEX. When does the LO register change from 377
to ?

At the machine cycle that immediately follows the execution of the instruction
byte at HI = 000 and LO = 104. The only time that this data is changed is during
the execution of an OUT 000 instructionm.

STEP 6

Continue to single step through KEX. When does the data register change from 377
to whatever is stored at memory location HI = 003 and LO = 000?

At the machine cycle that immediately follows the execution of the instruction
byte at 10 = 107. The only time that this data is changed is during the
execution of an OUT 002 imstruction.

Save your bus monitor and single-step circuits and continue to the next experiment.

EXPERIMENT NO. 44

PURPOSE

The purpose of this experiment is to count input and output strobe pulses, N
and OUT, with the aid of a 7490 counter while the microcomputer is single
stepped.

PIN CONFIGURATION OF INTEGRATED CIRCUIT CHIP

7490
SCHEMATIC DIAGRAMS OF CIRCUITS
+5V GND
s
— py L)
ouT = chs C LAMP
o =1 HD B MONITORS
2 A
0= M
7490
PROGRAM
LO Address Instruction
byte byte Mnemonic Description
000 333 IN Input byte into the accumulator from
the keyboard
001 000 000 Device code for keyboard
002 323 ouT Output contents of accumulator to

output port in following byte

7-31

003 000 000 Device code for port O
004 303 JMP Unconditional jump to memory location
given by the following two address bytes
005 000 - LO address byte
006 [D3 - HI address byte
sTEP 1

This program is an interesting one, since it demonstrates a number of important
concepts associated with input and output instructions and the
operation of the MMD-1 microcomputer.

STEP 2

Before you wire the 7490 circuit, load the above program into memory and execute
it at 750 kHz. What bit pattern do you observe at port 07

We observed 011100002 at port 0.

STEP 3

Now press the following keys in sequence: 0, 1, 2, 3, 4, 5, 6, and 7. Write the
bit pattern that you observe at port 0 in the space below for each of these keys.
What correlations do you observe between the key numbers and the bit pattern?

We observed the following:
Key Bit pattern at port 0

11110000
11110001
11110010
11110011
11110100
11110101
11110110
11110111

“ouUusrWNEO

-3

Note that whenever you press a key, bit D7 becomes logic 1. For keys 0 through
7, the least significant three bits correspond to the octal equivalent of the
key.

STEP 4

Press the remaining keys with the exception of RESET. Write the bit pattern that
you observe in the space below.

We observed the following:
Key Bit pattern at port 0

11111000
11111010
11111011
11111100
11111101
11111110
11111111

ErHZOoon

Again, whenever we pressed a key, bit D7 became logic 1. This is the bit that

is used by KEX to determine whether or not a key is pressed. Refer to Experiment
No. 2 in this unit and the instruction at LO = 320. This is where KEX detects a
key closure.

STEP 5

Wire the counter circuit and connect the OUT output to the counter. With the
microcomputer executing the program at the full clock rate, switch the logic
switch (or wire) connected to the 7474's pin 4 input to the logic 1 state. The
microcomputer is now in the single-step mode.

STEP 6

1f you do not have a bus monitor, all that you will be able to do in this
epxeriment is to count the OUT control signal pulses. Single step through the
program and observe that you obtain a single count for every nine times that
the single-step pulser is pressed in and out. If the use of the pulser becomes
tedious, substitute a clock Outboard that is operating at a frequency of
approximately 0.3 to 1 Hz.

17-33
STEP 7

Remove the wire conmecting OUT to pin 14 of the 7490 counter. Comnect IN to
pin 14. 1IN is adjacent to OUT on the SK-10 breadboarding socket. Continue
to execute the program in the single-step mode. You should observe a single
count on the 7490 counter for every nine clock pulses applied to the single
step circuit.

STEP 8
If you have a bus monitor, connect the latch enable (STB) input to logic 0.

Now single step through the program. You should observe the sequence of bytes
given below. Even if you do not have a bus monitor, please study the following:

Memory Instruction

address byte Mnemonic Description

003 000 E IN Input byte into the accumulator from the
keyboard

003 001 000 000 Device code for keyboard on MMD-1 micro-
computer

000 000 160 160 INPUT machine cycle, during which a byte
is input from the keyboard. The byte,
160, is input if you do not press any key.
The device code is output as two identical
000 bytes on the address bus.

003 002 323 ouT Output accumulator contents to the output
port given in the following byte

003 003 000 000 Device code for port 0

000 000 160 160 OUTPUT machine eycle, during which the
contents of the accwmilator are output to
port 0. This is the byte that is input
from the keyboard. The device code ie
output as two identical 000 bytes on the
address bus.

003 004 303 JMP Unconditional jump to the memory location
given by the following two bytes

003 005 []D 000 L0 address byte for the start of the program

003 006 003 003 HI address byte for the start of the program

. ete. .

This program repeats itself every nine machine cycles. Why does a seven-byte
program take nine steps to execute?

-3

Each step is a "machine cycle," and the IN and OUT instructions require an
additional machine cycle for proper execution. This extra machine cycle is
preset within the 8080A chip and is characteristics of other types of
instructions as well, including memory reference instructions, calls, returms,
PUSH, and POP.

Once source of difficulty in this experiment is that you must execute a program
at 750 kHz initially before you enter the single step mode of operation. If you
forget to do so, you will never leave the KEX program.

STEP 9

Press key 7 and keep it pressed. If you have a bus monitor, what byte appears
during the INPUT and OUTPUT machine cycles?

We observed the byte 3f/ during both the INPUT and OUTPUT machine cycles. This
byte was also output to port 0. By being able to monitor information on the

bidirectional data bus, we were able to observe data moving into the accumulator
from the keyboard, and data moving out of the accumulator into the port O latch.

Save the 7490 counter, single-step, and bus monitor cireuits and continue to the
following experiment.

i
|
|
|
|

17-35
EXPERIMENT NO. 5

PURPOSE

The purpose of this experiment is to construct a decoder circuit based upon the 74154
decoder chip that can generate sixteen different output device select pulses.

PIN CONFIGURATIONS OF INTEGRATED CIRCUIT CHIPS

weuTs ouTeuTs

S T b -v-ﬂ

LB e T e o oo

W Ve outhuTs

4154
7490

SCHEMATIC DIAGRAM OF CIRCUIT

o

N
>
I=— 2

A-3 D 15 2
Address | a-2 2'2 c };E
lines A=t :3 B 12 i
—0 A i
6 i
o -
srt .
74154 6 L _______’_"ll To pin 14 of
46 i l 7490 counter
3
2
o q=2
0 —]G2 o -
ouT 8l

LAMP
MONITORS

i
»m 00

17-3

PROGRAM
LO address Instruction
byte byte Mnemonic Description
000 333 IN Generate device select pulse for the
input device given in the following
byte
001 000 000 Device code for input device 000
002 3723 ouT Generate output device select pulse :
for the device given by the following :
byte
003 <B2> <B2> Device code for output device
004 303 JMP Unconditional jump back to the
beginning of this program, the address
of which is given by the following
two address bytes
005 000 - L0 address byte
006 003 - HI address byte
step 1

In the circuit shown, you can generate sixteen consecutive output device select
pulses. Wire the circuit using a 74154 decoder chip.

If you have a three-digit octal bus monitor, you may wish to observe the contents

of the bidirectional data bus as you execute the program in the single step mode.
Wire the latch enable (STB) input on the bus monitor to logic 0.

STEP 2
In the program, use device code (003 at L0 = 003. Load the program into read/write

memory. Be sure that the lamp monitor and pin 14 of the 7490 counter are connected
to pin 4 of the 74154 decoder.

STEP 3

Execute the program in the single step mode. Count how many OUT control signal
pulses occur every nine machine cycles, and write your answer in the space below.

You should observe one OUT pulse every nine machine cycles.

STEP 4

It is common to denote a device select pulse by the notation, DS xxx, if it is
a logic 0 (or negative) pulse and by DS xxx if it is a logic 1 (or positive)
pulse. The letters, 'xxx' , denote the three-digit octal device code. The
bar.on the top of a functional pulse code is the standard notation for a
logic zero active level.

In the schematic diagram, there is a wire connection between the No. 3 output
channel of the 74154 decoder and the 7490 counter. With the 8080A operating
at full speed, test some of the other decoder outputs and determine if any
other channel generates an output DS 003 pulse. Which channel is it?

Channel 3 at pin 4 on the integrated circuit chip should be the only one to
cause the counter to count at a rapid rate. All others are non-functional for
a device code of 003.

STEP 5

Now change the instruction byte at LO = 003 to 017. At which output channel on
the 74154 decoder do you observe the device select pulse? What would be the

proper way to deonte such a pulse, i.e., as DS xxx or DS xxx? What is Txxx'?

We observed the device select pulse at channel 15]_0 (pin 17). The proper way
to denote this pulse is DS 017.

STEP 6

During the machine cycle when a device select pulse is generated, what is the
logic state of lamp monitor A?

Lamp monitor A is logic O whenever an OUT instruction is executed. A machine
cycle is a subdivision of an instruction cycle during which time a related
group of actions occur within the microprocessor chip. When you single step
through a microcomputer program, you single step through machine cycles, not
instructions.

STEP 7

At which machine cycle for the OUT instruction is a device select pulse generated,
the first, second, or third machine cycle?

The third machine cycle. The first two machine cycles are fetch cycles, which
input the operation code, 373 , and the device code, <B2> , from the memory
locations in which they are stored.

STEP 8

By varying the instruction byte at LO = 003, you can vary the 74154 decoder output
channel at which a device select pulse appears. For the device code bytes given
in the table below, at which 74154 output channel does the device select pulse
appear. Remember, when you change the program, you must be executing the KEX
monitor routine at 750 kHz.

Device code byte 74154 decoder
at LO = 003 output channel

000
001
002
003
010
017
020
025
050
377

[ERNSRSY-

We observed the following results for the last six device code bytes:

010 8
017 15
020 4]
025 5
377 15

If you did not observe similar results, please repeat this step.

STEP 9

The 74154 decoder has only sixteen output channels, and you would initially expect
that it could decode only the first sixteen output device codes: 000, 001, 002,
003, 004, . . . 015, 016, and 017. Why do you observe device select pulses for
device codes greater than 0177

-3

Because the 74154 decoder circuit does not absolutely decode the 8-bit device code
byte. Only the four least-significant device code bits are decoded. Though you
can generate only sixteen different device select pulses, each wiique device select
pulse can be generated in sixteen different ways using sixteen different device
codes. This is not good engineering practice in microcomputer interface design.
You should always attempt to absolutely decode both input and output device codes.

step 10

How would you absolutely decode sixteen out of the 256 possible device codes using
a 74154 decoder and one or more additional chips?

You can use another 74154 chip to enable the first 74154 decoder at the Gl input
pin. Alternatively, you can use a 4-input OR gate to enable the 74154 decoder
at the Gl input pin; address bits A-4, A-5, A-6, and A-7 would serve as inputs
to the OR gate, There are many decoder schemes which might be used.

Remove the 74154 decoder and lamp monitor circuit used in this experiment. The
7490 counter and single-step circuit will be used in a subsequent ewperiment.

17-40
EXPERIMENT NO. 6

PURPOSE

The purpose of this experiment is to demonstrate how the decoded addresses on the
Dyna-Micro printed circuit board can be used to generate input and output device
select pulses.

PIN CONFIGURATION OF INTEGRATED CIRCULT CHIP

2 Lamp
B MONITORS
A
Available on the 7402
MMD~- 1 micr " L
13
T —=2
7402
DISCUSSION

You will find five solderless breadboarding pins adjacent to the 74L42 chip

7-41

in the I/0 decoder section of the computer printed circuit board. Look for
integrated circuit IC-18 (or Al8). The wiring diagram for the I/0 decoder

section is shown below:

117

13 17

o c17-4
A
wc17e
w
The circles associated with output channels 3 through 7 on the 74L42 chip
represent either solder pads or breadboarding pins. Note that the computer

employs 7402 2-input NOR gates, which generate positive device select pulses

such as DS 000, DS 001, and DS 002. The circuit in the schematic diagram generates
both input and output device select pulses which we can label "IN 004", "IN 005",
"QUT 006", and "OUT 007".

Note also that the 74L42 is an absolute decoder for the 8-bit device code. Bits
A3, A4, A5, A6, and A7 on the address bus must all be at logic 0 in order for
input D (pin 12) on the 74L42 chip to be at logic 0. The three remaining address
bus bits, A0, Al, and A2, are used in the decoding of eight I/0 chanmels.

In contrast to the 74154 chip, there exists no Gl or G2 inputs to the 74L42 chip
that can _be used to enable and disable the chip, Thus, you will have to supply
OUT and IN along with the decoded channel outputs if you wish to generate device
select pulses.

A single 7402 chip allows you to generate four unique device select pulses.
For most of the experiments in this Bugbook, four such pulses are all that you will
require. If you wish, you can modify input and output device codes to correspond
to those available through the use of this decoder. Such an action can simplify
the interfacing task for many of the experiments and programs that are provided
in this Bugbook.

7-2

PROGRAM
L0 address Instruction
byte byte Mnemonic Description
000 074 INR A Increment contents of accumulator by 1
001 323 ouT Generate device select pulse for output
device 004
002 004 004 Device code for device 004
003 323 our Generate device select pulse DS 005
004 005 005 Device code for DS 005
005 323 our Generate device select pulse DS 006
006 006 006 Device code for DS 006
007 323 ouT Generate device select pulse DS 007
010 007 007 Device code for DS 007
011 303 JMP Unconditional jump to memory location
given by the following two address bytes
012 000 - L0 address byte
013 003 - HI address byte
step 1

Using a single 7402 chip, wire the circuit shown in the schematic diagram, in which
both the IN and OUT control signals are employed as shown. Load the program into
read/write memory.

STEP 2

Execute the program at 750 kHz, then move to single-step operation. What do you
observe on the four lamp monitors?

You should observe that the lamp monitors assocated with the OUT 006 and OUT 007
device select pulses are lit, whereas the other two are off at 750 kHz. These
two lamp monitors are lit once every sixteen machine cycles when the program is
single stepped.

17-43

STEP 3

Why are the lamp monitors for the IN 004 and IN 005 device select pulses off?

Because there are no IN instructions in the program!

STEP 4

Change all of the OUT instructions to IN instructions in the program. Use
the instruction code, 333 , for IN. Execute the program once again at 750 kHz.
What do you observe?

Now, the lamp monitors for the IN 004 and IN 005 pulses are lit, whereas the
OUT 006 and OUT 007 lamp monitors are unlit. The two input instructions

in the program generate two pulses that are detected by the lamp monitors.
The IN 006 and IN 007 device select pulses are not decoded by the circuit
given in this experiment.

Leave your experiment wired and continue to the following experiment.

EXPERIMENT NO, 7
PURPOSE
The purpose of this experiment is to demonstrate the use of a device select pulse

to clear a 7490 counter.

PIN CONFIGURATIONS OF INTEGRATED CIRCUIT CHIPS

SCHEMATIC DIAGRAM OF CIRCUIT

+5V GND
5 _Jio
ouT oo7 =t 2 0
o= DIe D
Crs [LAMP
l + 8 B MONIT
[_]_ C {1 A ORS
7490},]
'
CLOCK 14
PROGRAM
L0 address Instruction
byte byte Mnemonic Description
000 27 SUB A Clear the accumulator
0oL 323 ouT Cenerate device select pulse for the
device given by the following byte
002 007 007 Device code for device select pulse

DS 007.

745

003 203 JMP Unconditional jump to the memory location
given by the following two address bytes
004 000 - 10 address byte
005 003 - HI address byte
step 1

To clear a 7490 decade counter, you will require a positive device select pulse.
Thus, you will be able to use the OUT 007 pulse that you produced in Experiment
No. 6.

Wire the circuit shown. Load the above program into read/write memory. Make
certain that the OUT 007 connection is made between the 7402 gate output and
the 7490 input at pin 14.

STEP 2

Execute the program at 750 kHz, then move to single step operation. The clock
frequency to the 7490 counter should be aRproximtely 10 Hz. We used a 0.05 uF
timing capacitor with our clock Outboard . Single step through the program
with a pulser.

STEP 3

What behavior do you observe on the lamp monitors?

We observed a 10 Hz counting rate on the display LEDs until the third machine cycle
of the OUT instruction, at which time a device select pulse was generated and the
counter was cleared to zero. The counting resumed at the end of the third machine
cycle.

STEP 4

Does the Instruction, 227, which clears the accumulator, have anything to do with
the clearing of the 7490 counter?

No! In this program, it has no effect on the 7490 chip since we have not made
any connection between the bidirectional data bus, DO to D7, and the 7490 chip.
Consequently, the 7490 does not know that the accumulator has been cleared.

You may remove all circuitry from your SK-10 breadboarding socket ewcept the
single-step and counter cireuits, which you will use in a subsequent experiment.

17-46

EXPERIMENT NO. 8
PURPOSE
The purpose of this experiment is to demonstrate the use of a pair of 7485

comparator chips to absolutely decode an 8-bit address.

PIN CONFIGURATIONS OF INTEGRATED CIRCUIT CHIPS

DATA INPUTS i
Veg 4Y 48 4a 3y 3 3A Vg (A3 B2 Az A} BT A0 B0
ul {n] fr] [n] 0] [s] [G5 juifusjlgn]jnf|s

’ T |
E ; J T T T TTT |
A3 B2 A2 Al BT AD
B B3 80 ;
ﬁ‘l [‘%“ A-B A=B A~BA>B A=B A-B |
N TN TN ouT ouT _out
[| L T T T T 1 |
T HH s T H2HsHeAsHs A1 s 1
W A B 2v ZA 78 GND LA E AT8 ABaE 478 A3, G
7402 INPUT CASCADING INPUTS OUTPUTS
7485 :
|
SCHEMATIC DIAGRAM OF CIRCUIT
+5V GND l
Iw h ;

>PB>
FY T3
|5t}

I i

| =457 A=a_ f
| s VP , oUT 306 |
0485 ! i
Usa i
° 7402 ‘
AzB !

+5V GND

7485

-7

PROGRAM
LO address Instruction
byte byte Mnemonic Description
000 227 SUB A Clear the accumulator
001 3723 ouT Generate a device select pulse for
the device given by the following
byte
002 36 306 Device code for output device 306
003 303 JMP Unconditional jump to the memory
location given by the following
two address bytes
004 000 - L0 address byte
005 000 - HI address byte
step 1

You will use the circuit shown in Experiment No. 4 in this Unit to count the
device select pulses that are produced by the pair of 7485 comparator chips.
What change must you make to the 7490 counter circuit that you retained from
the preceding experiment?

Reconnect the 7490 counter RESET input (pin 2) to logic O (GND) and conmnect
the CLOCK INPUT (pin 14) to OUT 306 from the 7402 2-input NOR gate.

STEP 2

Wire the circuit shown and load the above program into read/write memory.

STEP 3
Execute the program at 750 kHz, then move to the single step mode of execution.

Single step through the execution of the program, and explain in the space below
what you observe on the counter's lamp monitor display.

We observed a single count each time the OUT instruction was executed, or one
count every seven machine cycles.

STEP 4

Now change the device code at LO = 002 to 305. Execute the program at 750 kHz,

then single step through it once again. Do you know observe counting on the
output lamp monitors connected to the 7490 chip?

We did not, because the address generated by the OUT instruction no longer
matched the address preset at the comparator circuit.

sTEP 5

Could the preset address be changed to correspond to a new software device
code at LO = 002?

Yes.

Change the address byte at LO = 002 to 3//. Does program execution cause any
counting?

No.

Now rewire BO through B& on the comparator chips so that they are all at logic 1.
Does this cause counting when you execute the program? Why?

Remove the 7485 decoder circuit from your breadboard, but save the counter and
single-step circuite for the following experiment.

Yes. Now the hardware preset address and the software device code match.

17-19
EXPERIMENT NO. 9
PURPGSE
The purpose of this experiment is to demonstrate the use of a 7430 8-input NAND

gate to absolutely decode the 8-bit address bus device code byte.

PIN CONFIGURATIONS OF INTEGRATED CIRCUIT CHIPS

PROGRAM
LO address Instruction
byte byte Mnemonic Description
000 227 SUB A Clear the accumulator
001 323 our CGenerate device select pulse to preset
the 7476 flip-flop
002 36 306 Device code for the preset input to the
7476 flip-flop
003 32_7) ouT Generate device select pulse to clear

the 7476 flip-flop

750

SCHEMATIC DIAGRAM OF CIRCUIT

Kojey
8i0iS piiog

no $10 up} = Q

0L

b

K3

~
o
<

-_00_—

HOLON
NVd

v Aol

poot 90 AZE
v o AE

17-51

004 317 317 Device code for the clear input to the
7476 £lip-flop
005 303 JMP Unconditional jump to the memory location
given by the following two address bytes
006 00 - LO address byte
007 003 - HI address byte
sTep 1

1f you have a solid-state relay and a fan or other appropriate AC power device,
such as a lamp, we would encourage you to wire the entire circuit shown on the
previous page. Otherwise, wire the circuit up to the buffer to the solid-state
relay, but not including it. Use a 7490 counter, as was done in Experiment No.
4, to count output pulses from the 7476 flip-flop.

STEP 2

Wire the circuit shown in the diagram and load the above program into memory.

STEP 3

You will single step the execution of the program. Initiate execution at 750 kHz,
thexmove to the single-step mode. If you are using a solid-state relay, you may
wish to temporarily remove the wire connection between the 7476 flip-flop and the
buffer until you are single stepping the program. Why?

The highest rate at which you can turn on and off the relay is double the line
frequency, or 120 times per second, If you operate the microcomputer at 750 kHz
with the above program, you will be attempting to turn on and off the relay at
a rate that is greater than 10,000 times a second.

STEP 4

As you execute the program in the single-step mode, explain what you observe.

752

We observed a single count each time we made a loop through the program. When
we wired the solid-state relay circuit, we observed that the fan would turn
on when we executed the instruction starting at LO = 001. When we executed
the OUT instruction at LO = 003, the fan would turn off.

We performed the solid-state relay experiment several times, and in each case
observed the result above. This is an important experiment.

STEP 5

What modifications to the program would you have to make in order to execute
it at 750 kHz?

You would need to provide at least two time delay loops to give the solid-state
relay sufficient time to turn on and off. One delay loop would be located between
the OUT 306 instruction and the OUT 317 instruction; the other loop would be located
immediately after the OUT 317 imstruction, but before the OUT 306 imstruction.

17-53

REVIEW

The following questions will help you review device select pulses.,
1. Device select pulses can be used to clear, strobe, trigger, etc. integrated
circuit chips. For the chips indicated below, identify the correct pin number--
and whether a positive or negative device select pulse is required--at which the
indicated operation must be performed.

a. Clear the first flip-flop on a 7474 chip.

b. Reset the second flip-flop on a 7474 chip.

c. Reset a 7490 counter to nine.

d. Clear a 7493 binary counter.

e. Enable a 74154 4-line-to-16-line decoder.

£. Enable the first two latches on the 7475 chip.

g. Clock the second flip-flop on a 7474 chip.

h. Clear the first monostable on a 74123 chip.

i. Strobe the first monostable on a 74123 chip.

j. Strobe the first decoder on a 74155 chip.

k. Trigger the 74122 monostable.
2. With the interface circuit shown in Experiment No. 4, it is possible to generate
sixteen different device select pulses. For what output device codes will a device
select pulse be generated at channel 5 (pin 6) on the 74154 decoder chip. Are you
absolutely decoding the 8~bit device code byte?
3. How many machine cycles are there for the following 8080A instructions?

a. JNZ <B2> <B3>

b. CALL <B2> <B3>

c. OUT <B2>

d, 1IN <B2>

e. MOV C,M

f. LXI H <B2> <B3>

g. MVI B <B2>

h. JMP <B2> <B3>

i, INR A

j. DCR B

7-54

ANSWERS

1. a. negative device select (DS) pulse at pin 1
b. mnegative device select pulse at pin 10
c. positive device select pulse at pin 7, with pin 6 at logic 0
d. positive device select pulse at pin 2
e. negative device select pulse at pin 18, with pin 19 at logic 0
f. positive device select pulse at pin 13
g. positive device select pulse at pin 11
h. negative device select pulse at pin 3
1. negative device select pulse at pin 1, with pin 2 at logic 1
3 negative device select pulse at pin 2
k. negative device select pulse at pin 1, with pins 2, 3, and 4 at logic 1

2. A device select pulse will be produced for the following output device code
bytes (in octal code):

005
025
045
065
105 ‘
125 3
145
165
205
225
245
265
305
325
345
365

You are not absolutely decoding the device code byte. If you were, the only device
code that would provide an output on the 74154 decoder chip would be 005.

3. a, three
b. five
c. three
d. three
e. two
f. three
g. two
h. three
i. one

j. one

181
INIT NUMBER 18

THE 8080A INSTRUCTION SET

INTRODUCTION

This unit summarizes all of the important characteristics of each instruction in
the 8080A instruction set: the number of machine cycles, the number of states,
the type of memory addressing, and the flags that are influenced upon execution
of the instruction. A description of each instruction is provided and, in some
cases, examples of its use are given. Several programming experiments are
provided at the end of the unit.

OBJECTIVES

At the completion of this unit, you will be able to do the following:
o Indicate which flags are affected when a given instruction 1s executed.
o Subdivide the 8080A instruction set into five groups.
o Define program counter, register, accumulator, general purpose register,
stack, stack pointer, instruction register, instruction code, register
palr, and nibble.

o List several sources of 8080 programming information.

o List different types of data transfer operations that occur within an
8080A-based microcomputer.

o Convert an 8-bit instruction code into both octal code and hexadecimal code
with the aid of a table provided in the unit.

o Distinguish between conditional and conditional instruction.

o Describe the characteristics of the five condition flags in the 8080A
microprocessor chip.

o Describe the operation of the stack and the instructions that influence
its contents and the location of the stack.

o Describe the four different accumulator rotate instructions.

o Distinguish between LO and HI address bytes in instructions and programs.

18-2

MICROCOMPUTER PROGRAMMING

Unless you have a background in computer science or possess a special knack for
computer programming, you will probably find machine level and assembly level
programming somewhat tedious and difficult initially. There does not appear to

be any shortcut to learning programming. In due time, you will become sufficiently
familiar with your instruction set and with programming tricks to be able to write
programs of modest size with 1ittle effort. You will be able to apply skills that you
learn with one instruction set to other imstruction sets, whether they are for
microcomputers, minicomputers, or even mainframe computers.

For those of you who are interested in high-level languages, you do not have long
to walt. In addition to the MITS BASIC package, a BASIC 8080 software compiler
from the Livermore Laboratory and an 8080 FORTRAN compiler (Control Logic, Inc.)
are due during the summer of 1976. The Livermore compiler is being donated
royalty-free.

The point that we would like to make, however, is that you probably will need to
learn some assembly language programming. Simple programs and subroutines can

be written as easily and quickly in assembly language as they can in a higher
level language; such programs are also executed more quickly, require less memory,
and are probably easler to understand. You will need to learn assembly language
programming in order to understand other assembly programs that receive widespread
distribution. Finally, a knowledge of assembly language programming provides

the basis for understanding and comparing other instruction sets. If you have
someone else do your programming, it will be expensive; if you do it yourself, it
will also be expensive. However, if you can adapt other programs to your
applications, your programming costs will be less.

SOURCES OF 808) PROGRAMMING INFORMATION

We would like to list some sources for 8080/8080A programming information that
we have found to be useful:

1. Intel Corporation, Intel 8080 Microcomputer Systems User's Manual, Intel
Corporation, 3605 Bowers Avenue, Santa Clara, California 95051, $10.

Chapter 4 provides a summary of the 8080/8080A instruction set. For each
type of instruction, the number of machine cycles required to execute the
instruction are listed. If the instruction has two possible execution
times, both times are listed. Significant data addressing modes are listed,
as are the flags that are affected by the execution of the imstruction.

Other chapters discuss the functions of a computer, the 8080 CPU, techniques
of interfacing to the 8080, and the 8080 family of hardware compoments.

If you are doing serious work with 8080 microcomputers, you should have this
manual.

2. Intel Corporation, Intel 8080 Asserbly Language Programming Manual, Intel
Corporation, 3605 Bowers Avenue, Santa Clara, California 95051.

An excellent manual that discusses such topics as the program counter, stack
pointer, computer program representation in memory, memory addressing,
condition bits, assembly language, and the entire 8080 instruction set.

83

Also discussed is the use of macros, or macro instructions, which are
extremely useful in assembly language programming. This manual is

the one that you will need if you do programming with the 8080 Intel cross-
assembler, or if you read programs that are cross~assembled using the
Intel software package. Many of the programs in the Intel library can

be understood with the aid of this manual.

3. NEC Microcomputers, Inc., The UCOM-8 Software Manual, NEC Microcomputers,
Inc., 5 Militia Drive, Lexington, Massachusetts 02173, $10.

A superb manual that provides the following sample programming problems:
o A simple sensing device

A gated counter

A programmed real time motor controller

An N-way program branch

An interrupt subroutine program

A 10 CPS teletype I/0 subroutine

A 16-digit BCD add or subtract subroutine

A data move in memory operation

Macro programming and conditional assembly

Excellent descriptions are provided for individual 8080 instructioms.

Flow charts are provided for each programming problem.

©cooo0ooo0

For the student who has some experience with 8080 assembly language
programming, this manual will demonstrate a number of very useful
programming techniques.

4, Intel Corporation, Intel 8-bit User's Program Library, Intel Corporation,
User's Library, Microcomputer Systems, 3065 Bowers Avenue, Santa Clara, California
95051. Membership is available on a 12-month basis to those contributing an
acceptable program to the applicable library or by paying a $100 membership fee,

Programs submitted to the User's Library must be accompanied by the
Mierocomputer User's Iibrary Submittal Form, a copy of which is given at

the end of this Unit;full-size copies may be ordered from the Software
Marketing Group at Intel. This form is used by the User's Library Manager
in preparing the catalog and updates, and the description of the "Function"
is used in preparation of the catalog index which 1s sent to prospective
subscribers. This form is also used as the prefix to each program contained
in the library, and therefore should be carefully prepared. On the back of
the Library Submittal Form are detailed instructions for program submittal
which should be closely adhered to. These documentation standards are
maintained to assure the usability of each library program by every interested
member.

We refer you specially to items 2, 3, and 4 in the instructions for program
submittal to the User Library. The program cannot be a duplication of a
program that already is in the library. The program should be error free
and must be in standard Intel language (4004, 4040, 8008, 8080, or PL/M).
Submit a typed source listing and a paper tape.

The original User's Library package had an update on December 8, 1975. A
second update is expected in September, 1976, and will then be updated
every two months. In September, there will be a new library format. As

of September, 1976, there are 200 programs in the library. It is the most
extensive library of programs for amy microcomputer. Source tapes will be
available for a small handling fee starting in September. As of the summer
of 1976, the Administrator of the User's Library is Ms. Marianne Vilas.

184

The User's library saves development time in the development of 8080
programs. All of the programs can be modified or tailored to meet specific
applications. During 1975, the Intel Corporation sponmsored a 22-week
User's Library Contest which reapidly expanded the User's Library. Some
of the programs that you will find in the library include the following:

DATA ARRAY MOVE (8080). A contiguous array of data may be relocated in
memory, regardless of the magnitude and direction of the move. The source
axlxgl destination array locations may overlap., The maximum array size is

2°° bytes.

PAPER TAPE LABELER (8080). Accepts ASCIL character from teletype keyboard
and punches corresponding alpha-numeric character on tape.

TEXT STORAGE PROGRAM (8080). Allows text to be stored in memory using a
letter of the alphabet as a pointer. After the message is etored, it can
be retrieved by depressing a single key on the teletype. Up to 32
messages may be stored and retrieved independently.

CLOCK SUBROUTINE (8080). Maintains a current time of day, decimal adjusted
in BCD, of hours, minutes, and seconds. Must be invoked by external hardware
once each 1.00000 seconds, usually by an external interrupt. Time is stored
in three bytes of memory, in the 24-hour system, or, optionally, in the
12-hour system.

TIMESHARING COMMUNICATIONS (8080). To communicate with medium to large
scale computer system as an external timeshare user.

IBM SELECTRIC OUTPUT PROGRAM (8080). Allows IBM Selectric Model 731 to
be used as an output device.

8080 IDLE ANALYZER FOR APPROXIMATING CPU UTILIZATION (8080). Displays
amount of time 8080 would have spent in an idle loop. When RUN time is
compared with ideal time, the percent of CPU utilization can be calculated.
Time display is in memory in ASCIL.

INTERRUPT SERVICE ROUTINE (8080). Handles multiple-level interrupts, saving
all registers and flags and outputing the status of the current interrupt
to an external status latch,

8080 DIS-ASSEMBLER (8080 PL/M). This program inputs a hexadecimal tape and
generates a symbolic assembly language program suitable for modifications
and/or assembling.

MEMORY DIAGNOSTIC PROGRAM (8080). Writes test bytes in any range of memory
and compares the written bit combination with what is read. Upon detection
of a defective memory location, an error message 1s printed specifying the
address, reference, and actual values.

MATH (8080). Routines for fixed and floating point arithmetic together with
a demonstration program that performs algebraic evaluation (from left to
right with no operator precedence) and allows unlimited parentheses nesting.

ELEMENTARY FUNCTION PACKAGE (8080). Calculates the following floating point
values with five-decimal-digit precision: square root, logarithm, exponential
function, since, cosine, arc tangent, hyperbolic sine, and hyperbolic cosine.
Adds, subtracts, multiplies, and divides with seven-decimal-digit floating

185

point precision. [NOTE: We have used this program and like it very much.
The entire program requires approximately 2 1/2 K of memory.]

8080 FLOATING POINT PACKAGE WITH BCD CONVERSION ROUTINE (8080). Performs
floating addition, subtraction, multiplication, division, fixing, floating,
negation, and conversion from floating point to BCD with exponent.

8080 LEAST SQUARES QUADRATIC FITTING ROUTINE (8080). Performs summations
and matrix manipulation for fitting up to 256 floating point X-Y pairs to
a function of the form:

ax? + bX + ¢ = ¥

N-BYTE BINARY MULTIPLICATION AND LEADING ZERO BLANKING (8080). The program
performs binary multiplication on two numbers and returns a result that may
be up to 255 bytes in length.

8080 CROSS COMPILER ON THE PDP-11 (8080). Accepts input in a format familiar
to PDP-11 users and produces a fully coded listing, symbol table, and
punched tape for use with the standard loader.

PAGE LISTING PROGRAM (8080). Provides facility for listing information in
a pagenated, numbered format. This is accomplished through the system
software with the console printer.

SOURCE PAPER TAPE TO MAGNETIC CASSETTE (8080). Will copy a source paper tape
onto a magnetic cassette. End statement must be followed by a carraige
return. Program will ignore leading blanks.

NATURAL LOGARITHM (8080). Computes the natural logarithm of a number between
1 and 65,535,

BCD MULTIPLICATION (8080). Multiplies up to a 6~digit BCD number by a
4-digit BCD number providing a 10-digit BCD result. All numbers are unsigned,

DOUBLE PRECISION MULTIPLY (8080 PL/M). To multiply two 16-bit numbers,
returning the most significant 16 bits (in address form) through the appropriate
registers to the calling program. The intrinsic PL/M multiply capability is
employed for the byte-by-byte multiplications.

SUBROUTINE LOG. This subroutine takes the log to any integer base of any
positive floating point number.

18-6
5, Scelbi Computer Consulting Inc., 1322 Rear Boston Post Road, Milford, Connecticut
06460.
The following software is available:
Machine Language Programming for the 8008 (and similar microcomputers), $19.95
An 8080 Assembler Program, $17.95
An 8080 Editor Program, $14.95
8080 Monitor Routines, $11.95
SCELBAL. SCientific ELementary BAsic Language for 8008/8080 Systems, $49.00
SCELBI's First Book of Computer Games for the 8008/8080, §14.95

SCELBI's GALAXY GAME for the 8008/8080, $14.95

Nat Wadsworth writes well. You can pick up many microcomputer progranming
techniques from the above.

6. zilog Corporation, Z80~CPU Technical Manual, Zilog, Inc., 170 State Street,
Los Altos, California 94022, $7.50.

You do not obtain many programming hints from this manual, but it is
very interesting to compare the Z80 chip with the 8080A in terms of the

instruction set.

7. BYTE, Byte Publications, Inc., 70 Main Street, Peterborough, New Hampshire,
03458, $12 per year, $22 per two years, Or $30 per three years.

The quality of individual articles vary, but you will find useful programs
and programming techniques discussed in this journal, which is one of the
magazines that are aimed at the hobby microcomputer market.

8. National Semiconductor, PACE Logic Designers Guide to Programmed Equivalents
to TTL Functions, National Semiconductor Corporationm, 2900 Semiconductor Drive,
Santa Clara, California 95051, $5.00.

Though it is for an entirely different microprocessor, the 16-bit PACE,

this book does an excellent job of demonstrating the substitution of

software for hardware, Hardware circuits are provided and described,

Programs are then provided that duplicate the basic functions of the hardware.
With some knowledge of the PACE imstruction set, you should be able to convert
the programs to Intel 8080 language. The advantages of 16-bit operations

are certainly evident.

9. 73 Magazine, Peterborough, New Hampshire 03458, $10 per year.

The magazine, which is directed toward radio amateurs, has a 40-page section
entitled I/0 that is devoted to practical uses for microcomputers. Since
hams are very interested in communications, you should find increasing
coverage of digital data communications in this magazine.

8080 INSTRUCTION SET SUMMARIES
Machine code and assembly language summaries of the 8080 instruction set are
available from a number of different sources:

1. 1Intel Corporation, Intel 8080 Assembly Language Reference Card, Intel
Corporation, 3065 Bowers Avenue, Santa Clara, California 95051.

Provides a hexadecimal listing of the B080 instruction set as well as
a listing by instruction function. Hexadecimal-ASCII listing provided,

2. Tychon, Inc., 8080 Octal Code Card, Tychon, Inc., P. O, Box 242, Blacksburg,
Virginia 24060.

A sliding insert permits you to rapidly find the 8-bit octal imstruction
code for an assembly language instruction. Flag status after an instruction
is also indicated.
3. Martin Research, 8080 Inmstruction Set, 3336 Commercial Ave., Northbrook, Ill. 60062

Subdivides the 8080 instruction set by function. Compact statement of
flag status after different types of instructions are executed.

4, R. Baker, Byte, 84 (February 1976).
Compact octal code listing of the 8080 instruction set.

5. P. R. Rony, D. G, Larsen, and J. A. Titus, Bugbook III
The 8080 instruction set is gilven as an instruction group listing, an
alphabetic listing of mmemonics, and an octal/hexadecimal numerical

listing. The octal/hexadecimal listing provides a handy conversion table
for octal to hexadecimal, and vice versa.

8080 MICROPROCESSOR REGISTERS

The term, register, can be defined as follows:

register A short-term digital electronic storage circuit the capacity
of which usually is one computer word,

Single registers in the 8080 microprocessor chip store a single byte, Z.e., eight
contiguous bits.

There are two different sets of reglsters in the 8080 chip: those that we can
address from a program and those that we cannot. The program addressable registers
are shown in the figure on the following page and include the following:

o six 8-bit genmeral purpose registers addressed singly or in pairs,

register
ragister
register
register
register
register

mEmo QW

o the 8-bit accumulator, also known as register A
o the 16-bit stack pointer register
o the 16-bit program counter register
Two other registers over which, in special cases, you have some control include
o the 8-bit instruction register
o a 5-bit flag register in the arithmetic/logic unit (ALU)

Additional registers that are required to allow the 8080A microprocessor chip to
perform its internal operatioms include two 8-bit temporary registers used singly or
as a pair, W temporary register and 7 temporary register; an 8-bit temporary
aceumulator in the arithmetic/logic unit; and an 8-bit temporary register in the
arithmetic/logic unit, You cannot address or control the contents of these
temporary registers from a program and will not know when the 8080 uses them.

Some useful definitions include:

program counter The 16-bit register in the 8080A microprocessor chip that contains
the memory address of the next instruction byte that must be
executed in a computer program.

aceumulator The register and assoclated digital electronic circuitry in the
arithmetic/logic unit (ALU) of a computer in which arithmetic
and logical operations are performed.

general purpose In the 8080A microprocessor chip, 8-bit registers that can
registers participate in arithmetic and logical operations with the
contents of the accumulator.

189

898Nq [PUIAIXS Syl pue dIYP BYI UTYITA KIITNOITO 9yl ULSAMISq IDBFIoUT Byl Spracid Ieyng
*Pe33TWO 29I TOIIUOD 3IODITP OU 2ABY nok YoFum IsA0

SS2IPPY 9yl puUe YoIe/I9Ijng sng BIRQ YL
§12357891 Axeiodmey -dryo 10§89001dOIDTW Y0908 UP UTYITM 9INIOSITYdIR 193SF801 TeuIaquy 9yy ‘T-gT °In3Ig
— o1k ..::.61— — eikg indul — _»;m ro.._o:—
419 91 siiq g
sng oyog (ouondelIplg

sng ssoippy

‘_ Y2407/194)0g
sng D40Q

— 193508 $SIpPY

T o T] T
01 IH
[iewwod wonss | T a1

sboj4 2040NWN32Y

V0808

18-10

8080A CPU FUNCTIONAL OOt ONAL
BLOCK DIAGRAM DATABUS

88T} e
INTERNAL DATA BUS INTERNAL DATA 8US

—
ecomucaror] [~ Ve, re TETRUCTION
[i) REGISTER 1)) WULTIPLEXER
TG A
ke o l reupnes | temenes
[e T
2 REG, REG
sTRUCTION Tt
- REG. REG
FC R . R
waCHIE E— W[T | |_scawren .
L OVOLE 3 REG. AEG. ARRAY
encoinG g
B[sracxromren
#ROGRAM COUNTER i
TecTAT NREMENTERIOECAENENTER |
o e " RoDRSS LaTOH 1
TG
o
contRoL

poweR ["—= +12v
SUPPLIES| — 45V

I
ADDRESS BUFFER

DATABUS INTERRUPT HOLD WAl
WRITE_CONTAOL CONTROL CONTROL CONT

i
ROL SYNC_CLOCKS|

— s
e GND

SYNE 61 02
ADY

WR DBIN INTE INT HOLD HOLDWAIT nESET
ack RE

Ayg Ay
ADDRESS BUS

Courtesy of the Intel Corporation,
Santa Clara, California 95051

Figure 18-2. Functional block diagram of the 8080A central processing unit (CPU).
Note the internal data bus, which communicates with the external bi-
directional data bus through a data bus buffer/latch located within the
8080A chip.

181

stack pointer The 16-bit register in the 8080A microprocessor chip that stores
the memory address of the top of the stack, which is a region
of memory that stores temporary information.

ingtruetion The 8-bit register in the 8080A microprocessor chip that stores
register the instruction code of the instruction being executed.

instruction code A unique 8-bit binary number that encodes an operation that the
8080A microproceassor chip can perform.

instruction A decoder within the 8080A microprocessor chip that decodes the
decoder instruction code into a series of actions that the microprocessor
performs.

The Intel Corporation Intellec 8/Mod 80 Microcomputer Development System Reference
Manual provides several well written paragraphs that summarize the concepts of
instruction code, instruction register, and instruction decoder. We quote these
paragraphs below. The illustration below should also help.

8-BIT
INSTRUCTION CODE

FEENENY!

I INSTRUCTION REGISTER

INSTRUCTION
DECODER

A series

eration.
of actions. An operation

(TTTFFATTIE e~ TRNNITR

¢| ¢2

— t
CLOCK up to 256

decoded outputs.

"Every computer has a word length that is characteristic of that machine. In most
eight-bit systems, it is most efficient to deal with eight-bit binary fields, and
the memory associated with such a processor is therefore organized to store eight
bits in each addressable memory location. Data and instructions are stored in
memory as eight-bit binary numbers, or as numbers that are integral multiples of
eight bits: 16 bits, 24 bits, and so on. This characteristic eight-bit field is

1812

sometimes referred to as a byte."

"Each operation that the processor can perform is identified by a unique binary
number known as an instruction code, An eight-bit word used as an instruction
code can distinguish among 256 alternative actions, more than adequate for most
processors.”

"The processor fetches an instruction in two distinct operations. In the first,
it transmits the address in its program counter to the memory. In the second,
the memory returns the addressed byte to the processor. The CPU stores this
instruction byte in a register known as the instruction register, and uses it
to direct activities during the remainder of the imstruction cycle."

"The mechanism by which the processor translates an instruction code into specific
processing actions requires more elaboration than we can here afford. The concept,
however, will be intuitively clear to an experienced logic desigmer. The eight
bits stored in the instruction register can be decoded and used to activate
selectively one of a number of output lines, in this case up to 256 lines. Each
line represents a set of activities associated with execution of a particular
instruction code. The enabled line can be combined coincidentally with selected
timing pulses, to develop electrically sequential signals that can be used tp
initiate specific actions. This translation of code into action is performed by
the instruction decoder and by the associated control circuitry."

|

|
The important point here is that the imstruction code is translated into a sequence of }
specific actions. The two-phase clock is vital to this process. The actions may result |
in the moving of data from memory to the accumulator, or adding the contents of ;
register B to register A, or complementing the accumulator, or any of the specific
operations contained in the 8080A instruction set. Nevertheless, each specific i
operation performed by an 80804 instruction is the result of one or more specific |
actions caused by the instruction decoder. |

WHAT TYPES OF OPERATIONS DOES THE 8080A MICROPROCESSOR PERFORM?

The purpose of this section is not to sub~divide the B8080A instruction set into
categories, but rather to identify the basic types of operations that the chip
actually performs.

o MOVE A BYTE FROM ONE LOCATION TO ANOTHER

From one general purpose register to another

From a general purpose register to memory, and vice versa

From the accumulator to memory, and vice versa

From the accumulator to a gemeral purpose register, and vice versa
From memory to the instruction register

From memory to the program counter, and viee versa ¢
From memory to the stack pointer

From the accumulator to am output latch

From an input device to the accumulator

From an external three-state buffer to the instruction register
From the flag register to memory, and vice versa

From a general purpose register to the stack pointer

From the program counter to the stack, and vice persa

From the general purpose registers to the stack, and pice persa
From the accumulator to the stack, and pice versa

From the flag register to the stack, and vice veraa

From input device to general purpose register 18-‘13
From general purpose register to output device

From a general purpose register to the program counter
o0 ARITHMETIC AND LOGICAL OPERATIONS

AND contents of register or memory with accumulator

OR contents of register or memory with accumulator

Exclusive-OR contents of register or memory with accumulator

Compare contents of register or memory with accumulator

Add contents of register or memory to accumulator (with or without carry)

Subtract contents of register or memory from accumulator (with or without borrow

Rotate contents of accumulator

Increment contents of general purpose register, register pair, accumulator,
memory, or stack pointer

Decrement contents of general purpose register, register pair, accumulator,
memory, or stack pointer

Add contents of register pair to contents of register pair or stack pointer

Decimal adjust the contents of the accumulator

o MISCELLANEOUS OPERATIONS

No operation

Halt

Enable the interrupt system
Disable the interrupt system
Complement the accumulator
Set the carry flag
Complement the carry flag

Most of the time, all that the 8080A microprocessor chip does is to move a byte
from one location to another or performs an arithmetic or

logical operation. Rarely, it performs one of the miscellaneous operatioms.

In other words, the chip does not just compute; it moves bytes around.

18-14

8080 MEMONIC INSTRUCTIONS

We encourage you to learn as soon as possible the 8080 mnemonics, so that you
can do assembly language programming, read other assembly language programs for
the 8080 , and improve your capability to understand the instruction sets for
other microprocessor chips. The 8080 mnemonics are listed by groups in the
Intel 8080 Microcomputer Systems User's Manual, which we recommend that you
obtain. Here, we will first list the mnemonics in alphabetic order, and then
proceed to describe them in detail. We acknowledge two reference sources for
this material,

Intel 8080 Microcomputer Systems User's Manual, Intel Corporation,
3065 Bowers Avenue, Santa Clara, California 95051, 1975. $5.00

The UCOM-8 Software Manual, NEC Microcomputers, Inc., Five Militia
Drive, Lexington, Massachusetts 02173, 1975. $7.50

We gratefully acknowledge permission to use the above reference sources.

Instruction code

Mnemonic Octal Hexadecimal Description

ACI <B2> 316 CE Add immediate byte to accumulator (with carry)
ADC M 216 8E Add memory contents to accumulator (with carry)
ADC T 218 + Add register contents to accumulator (with carry)
ADD M 206 86 Add memory contents to accumulator

ADD T 208 + Add register contents to accumulator

ADI <B2> 306 Cc6 Add immediate byte to accumulator

ANA M 246 A6 AND memory contents with accumulator

ANA T 248 + AND register contents with accumulator

ANI <B2> 346 E6 AND immediate byte with accumulator

CALL <B2> <B3> 315 CcD Call subroutine unconditionally

CC <B2> <B3> 334 DC Call subroutine if carry flag is set

CM <B2> <B3> 374 FC Call subroutine if sign flag is set

CMA 057 2F Complement contents of accumulator

CMC 077 3F Complement carry flag

CMP M 276 BE Compare memory contents with accumulator
CMP r 275 t Compare register contents with accumulator
CNC <B2> <B3> 324 D4 Call subroutine if carry flag is reset
CNZ <B2> <B3> 304 C4 Call subroutine if zero flag is reset

CP <B2> <B3> 364 F4 Call subroutine if sign flag is reset

CPE <B2> <B3> 354 EC Call subroutine if parity flag is set

CPI <B2> 376 FE Compare immediate byte with accumulator
CPO <B2> <B3> 344 E4 Call subroutine if parity flag 1s reset
CZ <B2> <B3> 314 cc Call subroutine if zero flag is set

DAA 047 27 Decimal adjust the accumulator contents
DAD B 011 09 Add register pair B to register pair H
DAD D 031 19 Add register pair D to register pair H
DAD H 051 29 Add register pair H to register pair H
DAD SP 071 39 Add register pair H to stack poiater

DCR M 065 35 Decrement memory contents

DCR T 0P5 t Decrement register contents

DCX B 013 0B Decrement contents of register pair B

DCX D 033 1B Decrement contents of register pair D

DCX H
DCX SP
DI

EL
HLT

IN <B2>
INR M
INR t
INX B
INX D
INX H
INX SP

JC <B2>> <B3>
JM <B2> <B3>
JMP <B2> <B3>
JNC <B2> <B3>
JNZ <B2> <B3>
JP <B2> <B3>
JPE <B2> <B3>
JPO <B2> <B3>
JZ <B2> <B3>

LDA <B2> <B3>
LDAX B

LDAX D

053
073
363

373
166

333
064
0p4
003
023
043
063

332
372
303
322
302
362
352
342
312

072
012

032

LHLD <B2> <B3> 052
LXI B <B2> <B3> 001
LXI D <B2> <B3> 021
LXI H <B2> <B3> 041
LXI SP <B2> <B3>061

MVI M <B2>
MVI r <B2>
MOV M,r
MOV r,M
MOV rl,r2

NOP

ORA M
ORA r
ORI <B2>
OUT <B2>
PCHL

POP B
POP D
POP H
POP PSW

066
(024
165
106
10s

000

266
265
366
323
351

301
321
341
361

Decrement contents of register pair H
Decrement stack pointer
Disable interrupt system

Enable interrupt system
Halt unconditionally

Input data into accumulator

Increment memory contents

Increment register contents

Increment contents of reglster pair B
Increment contents of register pair D
Increment contents of register pair H
Increment stack pointer

Jump if carry flag is set
Jump if gsign flag is set
Jump unconditionally

Jump if carry flag is reset
Jump if zero flag is reset
Jump if sign flag is reset
Jump if parity flag is set
Jump 1if parity flag is reset
Jump if zero flag is set

Load accumulator direct with contents of memory
addressed by <B2> <B3>

Load accumulator indirect with contents of memory
addressed by register pair B

Load accumulator indirect with contents of memory
addressed by register pair D

Load L and H with contents of M and M+l, respectively
Load immediate bytes into register pair B

Load immediate bytes into register pair D

Load immediate bytes into register pair H

Load immediate bytes into stack pointer

Move immediate byte into memory

Move immediate byte into register
Move register contents to memory

Move memory contents to register

Move register 2 contents to register 1

No operation

OR memory contents with accumulator

OR register contents with accumulator

OR immediate byte with accumulator

Output accumulator contents

Load program counter with contents of regisger
pair H (indirect jump)

Pop register pair B off stack

Pop register pair D off stack

Pop register pair H off stack

Pop program status word (accumulator and flags)
off stack

18-16

PUSH B
PUSH D
PUSH H
PUSH PSW

RAL
RAR
RC
RET
RLC
RM
RNC
RNZ
RP
RPE
RPO
RRC
RST n
RZ

SBB M

SBB r

SBI <B2>

SHLD <B2> <B3>

SPHL
STA <B2> <B3>

STAX B
STAX D
STC

SUB M
SUB r
SUL <B2>

XCHG

305
325
345
365

027
037
330
311
007
370
320
300
360
350
340
017
3n7
310

236
238
336
042

371
062

002
022

067
226
228
326

353

256
258
356
343

DE

22

32

02

EE
E3

Push register pair B contents on stack

Push register pair D contents on stack

Push register pair H contents on stack

Push program status word (accumulator and flags)
on stack

Rotate accumulator contents left through carry
Rotate accumulator contents right through carry
Return if carry flag is set

Return unconditionally

Rotate accumulator contents left

Return if sign flag is set

Return if carry flag is reset

Return if zero flag is reset

Return if sign flag is reset

Return if parity flag is set

Return if parity flag is reset

Rotate accumulator contents right

Call subroutine at location HI = 000 and LO = On0
Return if zero flag is set

Subtract memory contents from accumulator (with
borrow)

Subtract register contents from accumulator (with
borrow)

Subtract immediate byte from accumulator (with
borrow)

Store contents of register pair H into M and M1,
respectively, where M = <B2> <B3>

Move register pair H contents to stack pointer
Store accumulator contents direct into memory
location address by <B2> <B3>

Store accumulator contents indirect into memory
location addressed by register pair B

Store accumulator contents indirect into memory
location addressed by register pair D

Set carry flag

Subtract memory contents from accumulator
Subtract register contents from accumulator
Subtract immediate byte from accumulator

Exchange contents of register palr D with contents
of register pair H

Exclusive-OR memory contents with accumulator
Exclusive-OR register contents with accumulator
Exclusive-OR immediate byte with accumulator
Exchange top of stack with contents of register
pair H

Not all possible 256 instruction codes are employed by the 8080A microprocessor chip.
Missing codes include the following:

010
020
030
040
050

060 30
070 38
313 CB
331 D9
335 DD
355 ED
375 FD

+ These instructions are not easily translated into hexadecimal notation without
register or other information. This is one reason why we have chosen to work
with octal numbers.

We now shall proceed to describe the 8080 instruction set in detail., We shall use
material from both the Intel 8080 Microcomputer Systems User's Manual and The
UCOM-8 Software Manual, courtesy of the Intel Corporation and NEC Microcomputers,
Inc., respectively. For your use, we provide several pages from the Intel manual
to help you understand the significance of the terms, symbols, and abbreviations
used in the description of each instruction. We shall group the 8080 instruction
set as Intel does:

o DATA TRANSFER GROUP; Move data between registers or between memory and
registers

o ARITHMETIC GROUP: Add, subtract, increment, or decrement data in
registers or in memory

o LOGICAL GROUP: AND, OR, EXCLUSIVE-OR, compare, rotate, or complement i
data in registers in memory. [NOTE: We wonder if compare is really
a logical operation; it appears more arithmetic to us.]

o BRANCH GROUP: Conditional and unconditional jump instructions,
gubroutine call instructions, and return instructions.

o STACK, 1/0, AND MACHINE CONTROL GROUP: Includes 1/0 instructions,
as well as instructions for maintaining the stack and internal control
flags.

18-18

A computer, no matter how sophisticated, can only
do what it is “told” to do. One “tells” the computer what
to do via a series of coded instructions referred to as a Pro-
gram. The realm of the programmer is referred to as Soft-
ware, in contrast to the Hardware that comprises the actual
computer equipment. A computer’s software refers to all of
the programs that have been written for that computer.

When a computer is designed, the engineers provide
the Central Processing Unit (CPU) with the ability to per-
form a particular set of operations. The CPU is designed
such that a specific operation is performed when the CPU
control logic decodes a particular instruction. Consequently,
the operations that can be performed by a CPU define the
computer’s Instruction Set.

Each computer instruction allows the programmer to
initiate the performance of a specific operation. All com-
puters implement certain arithmetic operations in their in-
struction set, such as an instruction to add the contents of
two registers. Often logical operations (e.g., OR the con-
tents of two registers) and register operate instructions {e.g.,
increment a register) are included in the instruction set. A
computer’s instruction set will also have instructions that
move data between registers, between aregister and memory,
and between a register and an 1/0 device. Most instruction
sets also provide Conditional Instructions. A conditional
instruction specifies an operation to be performed only if
certain conditions have been met; for example, jump to a
particular instruction if the result of the last operation was
zero. Conditional instructions provide a program with a
decision-making capability.

By logically organizing a sequence of instructions into
a coherent program, the programmer can “tell” the com-
puter to perform a very specific and useful function,

The computer, however, can only execute programs
whose instructions are in a binary coded form (i.e., a series
of 1's and 0's), that is called Machine Code. Because it
would be extremely cumbersome to program in machine
code, programming languages have been devefoped. There

41

are programs available which convert the programming lan-
guage instructions into machine code that can be inter-
preted by the processor.

One type of programming language is Assembly Lan-
guage. A unigue assembly language mnemonic is assigned to
each of the computer’s instructions. The programmer can
write a program (catled the Source Program) using these
mnemonics and certain operands; the source program is
then converted into machine instructions {called the Object
Code). Each assembly {anguage instruction is converted into
one machine code instruction (1 or more bytes) by an
Assembler program. Assembly fanguages are usually ma-
chine dependent (i.e., they are usually able to run on only
one type of computer).

THE 8080 INSTRUCTION SET

The 8080 instruction set includes five different types
of instructions:
Data Transfer Group—move data between registers
or between memory and registers

Arithmetic Group — add, subtract, increment or
decrement data in registers or in memory
Logical Group — AND, OR, EXCLUSIVE-OR,
compare, rotate or complement data in registers
or in memory

Branch Group — conditional and unconditional
jump instructions, subroutine call instructions and
return instructions

Stack, 1/0 and Machine Control Group — includes
1/O instructions, as well as instructions for main-
taining the stack and internal control flags.

Instruction and Data Formats:

Memory for the 8080 is organized into 8-bit quanti-
ties, called Bytes. Each byte has a unique 16-bit binary
address corresponding to its sequential position in memory.

Courtesy of the Intel Corporation,
Santa Clara, California 95051

The 8080 can directly address up to 65,536 bytes of mem-

ory, which may consist of both read-only memory {(ROM)

elements and random-access memory (RAM) elements (read/

write memory}.

Data in the 8080 is stored in the form of 8-bit binary

integers:
DATA WORD
T T T T T
D7 Dg Ds Da D3 D2
MsB LSB

ID1IDc

When a register or data word contains a binary num-
ber, it is necessary to establish the order in which the bits
of the number are written, In the Intel 8080, BIT O is re-
ferred to as the Least Significant Bit (LSB), and BIT 7 (of
an 8 bit number) is referred to as the Most Significant Bit
(MSB).

The 8080 program instructions may be one, two or
three bytes in length, Multiple byte instructions must be
stored in successive memory locations; the address of the
first byte is always used as the address of the instructions.
The exact instruction format will depend on the particular
operation to be executed.

Single Byte Instructions
T T 17T T77

[0, T DQI 0p Code

Two-Byte Instructions

Byte One lD7I T T T T T T D°| Op Code

1T T T T
Byte Two | D Do | Dataor

[or 21 Address
Three-Byte Instructions

1 T 17T T T
Byte One | D5 Do | Op Code
Byte Two I D,I T T T T Do |} Data

or

ByeeThree[D,] | 1 1 T T T,/ Adaress

Addressing Modes:

Often the data that is to be operated on is stored in
memory, When multi-byte numeric data is used, the data,
like instructions, is stored in successive memory locations,
with the least significant byte first, followed by increasingly
significant bytes. The 8080 has four different modes for
addressing data stored in memory or in registers:

® Direct —Bytes 2 and 3 of the instruction contain

the exact memory address of the data
item (the low-order bits of the address are
in byte 2, the high-order bits in byte 3).
@ Register — The instruction specifies the register or
register-pair in which the data is located,
® Register Indirect — The instruction specifies a reg-
ister-pair which contains the memory

1819

address where the data is located (the
high-order bits of the address are in the
first register of the pair, the low-order
bits in the second).

& |mmediate — The instruction contains the data it-

self. This is either an 8-bit quantity or a
16-bit quantity (least significant byte first,
most significant byte second).

Unless directed by an interrupt or branch instruction,
the execution of instructions proceeds through consecu-
tively increasing memory locations. A branch instruction
can specify the address of the next instruction to be exe-
cuted in one of two ways:

® Direct —The branch instruction contains the ad-

dress of the next instruction to be exe-
cuted. (Except for the ‘RST’ instruction,
byte 2 contains the low-order address and
byte 3 the high-order address.)

® Register indirect — The branch instruction indi-

cates a register-pair which contains the
address of the next instruction to be exe-
cuted. {The high-order bits of the address
are in the first register of the pair, the
low-order bits in the second.)

The RST instruction is a special one-byte call instruc-
tion (usually used during interrupt sequences). RST in-
cludes a three-bit field; program control is transferred to
the instruction whose address is eight times the contents
of this three-bit field.

Condition Flags:

There are five condition flags associated with the exe-
cution of instructions on the 8080. They are Zero, Sign,
Parity, Carry, and Auxiliary Carry, and are each represented
by a 1-bit register in the CPU. A flag is “set”” by forcing the
bit to 1; “reset" by forcing the bit to 0.

Unless indicated otherwise, when an instruction af-
fects a flag, it affects it in the following manner:

Zero: If the result of an instruction has the
value O, this flag is set; otherwise it is
reset.

Sign: If the most significant bit of the result of

the operation has the value 1, this flag is
set; otherwise it is reset.

Parity: 1f the modulo 2 sum of the bits of the re-
sult of the operation is 0, (i.e., if the
result has even parity}, this flag is set;
otherwise it is reset (i.e., if the result has
odd parity).

Carry: If the instruction resulted in a carry
{from addition), or a borrow (from sub-
traction or a comparison) out of the high-
order bit, this flag is set; otherwise it is
reset.

Courtesy of the Intel Corporation,
Santa Clara, Califormia 95051

18-20

Symbols and Abbreviations:
The following symbols and abbreviations are used in
the subsequent description of the 8080 instructions:

Auxiliary Carry: If the instruction caused a carry out rh The first {high-order) register of a designated
of bit 3 and into bit 4 of the resuiting register pair.
value, the auxiliary carry is set; otherwise ot The second (low-order) register of a desig-
it is reset. This flag is affected by single nated register pair. i
precision additions, subtractions, incre- . !
ments, decrements, comparisons, and log- PC 16-bit program counter reglstgr (PCH and i
ical operations, but is principally used PCL are used to refer (vo the high-order and |
with additions and increments preceding low-order 8 bits respectively).
a DAA (Decimal Adjust Accumulator) Sp 16-bit stack pointer register (SPH and SPL l
instruction. are used to refer to the high-order and low-
order 8 bits respectively). i
™ Bit m of the register r (bits are number 7 |
i

ZSPLCY,AC

through O from left to right).

The condition flags:

SYMBOLS ~ MEANING g;':
accumulator Register A Parity,
addr 16-bit address quantity Carry, H
data 8-bit data quantity and Auxiliary Carry, respectively. H
. . (] The contents of the memory location or reg- !
deta 16 16:bit data quantity isters enclosed in the parentheses. |
byte 2 The second byte of the instruction » - i
-— Is transferred to |
byte 3 The third byte of the instruction A Logical AND 1
port 8bit address of an 1/0 device v Exclusive OR ‘
rrtr2 One of the registers A,B,C,D,E,H,L iV, Inclusive OR
DDD,SSS The bit pattern designating one of the regis- + Addition
ters A,B,C,D,E H,L (DDD=destination, S§5=
source): Twao’s complement subtraction
Multiplication
DDD or 88§ REGISTER NAME
-~ *“Is exchanged with”
m A — —
000 B The one’s complement (e.g., (A))
001 c n The restart number 0 through 7
010 o NNN The binary representation 000 through 111
on E for restart number O through 7 respectively.
100 H
101 L |
m One of the register pairs: Description Format: ;
B represents the B,C pair with B as the high- The following pages provide a detailed description of
order register and C as the low-order register; the instruction set of the 8080. Each instruction is de-
D represents the D,E pair with D as the high- scribed in the following manner:
order register and E as the low-order register; 1. The MAC 80 assembler format, consisting of
H represents the H,L pair with H as the high- the instruction mnemonic and operand fields, is ,
order register and L as the low-order register; printed in BOLDFACE on the left side of the first i
SP represents the 16-bit stack pointer line. {
register. 2. The name of the instruction is enclosed in paren- |
. i o H
RP The bit pattern designating one of the regis- thesis on the right side of the first line. !

ter pairs B,D,H,SP:

w

. The next line{s) contain a symbolic description

of the operation of the instruction.

RP REGISTER PAIR

00 B-C 4. This is followed by a narative description of the
01 D-E operation of the instruction.

10 H-L 6. The following line(s) contain the binary fields and
" SP patterns that comptise the machine instruction.

Courtesy of the Intel Corporation,
Santa Clara, California 95051

1821

6. The last four lines contain incidental information
about the execution of the instruction. The num-
ber of machine cycles and states required to exe-
cute the instruction are listed first. If the instruc-
tion has two possible execution times, as in a
Conditional Jump, both times will be fisted, sep-
arated by a slash. Next, any significant data ad-
dressing modes (see Page 4-2) are listed. The last
line lists any of the five Flags that are affected by
the execution of the instruction.

DATA TRANSFER GROUP

This.gl:nup of instructions transfers data to and from registers and memory.
Condition flage are not affected by any instruction in this group.

MV rl, r2
MOV r1, r2 {Move Register) This description of an 80804
(r1) =— (r2) ingtruction, and others like
The content of register r2 is moved to register r1. it in eucceeding pages, appears
in the Intel 8080 Microcomputer
o J b 'p'lpl|s's ! s Systems User's Manual and ig
re-printed in this text through
Cycles: 1 the courtesy of the Intel
States: 5 Corporation, Santa Clara,
Addressing: register California 96051

Flags: none

The MOV rl, r2 imstruction transfers data from the specified source register S

(or r2) to the specified destination register D (or rl). The source or destination
may be any of the single registers B, C, D, H, or L, the accumulator A, and M

(the contents of the memory address specified by the register pair H,L). In the
three~octal-digit byte, the first digit is always a l. The second and third octal
digits vary depending upon the source and destination. The octal instruction, 166,
is a halt rather than a MOV instruction. The contents of the source register are
not changed during a MOV instruction; you are duplicating the register contents
somewhere else.

MOV T,M

The MOV r,M instruction transfers data from M (the contents of the memory address
specified by the register pair H,L) to the specified destination register D,
which may be any of the single registers B, C, D, H, or L or the accumulator, A.
You duplicate the contents of the memory address into a register; the contents
of memory remain unchanged.

182

MOV r, M (Move from memory)
(r) =— ((H} (L))
The content of the memory location, whose address
is in registers H and L, is moved to register r.

Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none

MOV M,r

MOV M, r
((H) (L)) =— ()

(Move to memory)

The content of register r is moved to the memory lo- i
cation whose address is in registers H and L.

T T 11 170 s s/

Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none

The MOV M,r instruction transfers data from the specified source register S to

M (the memory address specified by the register pair H,L).

The source register

may be any of the single registers B, C, D, E, H, or L or the accumulator A. The
register contents are duplicated in memory; the contents of the register remain

unchanged.

MVl r,data

MVIr, data
(r) =— (byte 2)

{Move Immediate)

The content of byte 2 of the instruction is moved to

register r.
oTolo'o o] 1 1" 0
data
Cycles: 2
States: 7
Addressing: immediate
Flags: none

1823

The MVI r,data instruction transfers data from the second byte of the two-byte
instruction to the specified destination register D (or r). The term immediate
refers to the fact that the data byte is contained within the multi-byte
instruction. The specified destination register may be any of the single
registers B, C, D, E, H, or L, the accumulator A, and M (the contents of the
memory address specified by the register pair H,L). When the destination is M,
you have the instruction MVI M,data, which is discussed below. The data can be
any 8-bit binary number between 00000000 and 11111111.

MVI M,data

MVI M, data (Move to memory immediate)
((H) (L)} ~— (byte 2)
The content of byte 2 of the instruction is moved to
the memory location whose address is in registers H

and L.
ol ol 1TaTol 1T o
data
Cycles: 3
States: 10

Addressing: immed./reg. indirect
Flags: none

The MVI M,data instruction transfers data from the second byte of the instruction
to M (the memory address specified by the register pair H,L). The data can be
any 8-bit binary number between 00000000 and 11111111,

{XI rp,data 16

LX1 rp, data 16 (Load register pair immediate)
(rh) =— (byte 3),
(rl) =— (byte 2)
Byte 3 of the instruction is moved into the high-order
register (rh) of the register pair rp. Byte 2 of the in-
struction is moved into the low-order register (rl) of
the register pair rp.

ol o RT P 0T 0T oo 1

low-order data

high-order data

Cycles: 3
States: 10
Addressing: immediate
Flags: none

1824

The LXI rp,data instruction causes a 16-bit data quantity contained in the second
and third bytes of the instruction to be loaded into the register palr specified
by RP. RP can be any of the double registers HL, DE, or BC or the stack pointer,
which are represented by the mmemonics H, D, B, and SP, respectively, The second
instruction byte is loaded into the LO registers L, E, ¢, or the LO eight bits of
the stack pointer; the third imstruction byte is loaded into the HI regilsters

H, D, B, or the HI eight bits of the stack pointer. The 16-bit data word can vary
from 0000000000000000 to 1111111111111111, in binary notation.

The following diagrams illustrate some of the characteristics of the MOV, MVL,
and LXI instructioms. Only two gets of MOV rl,r2 instructions are shown.

LRI

3 '-——';-_.‘

!

Note that LXI rp,data is equivalent to two MVI r,data instructions. Thus,

IXI B
<B2>
<B3>

is equivalent to

MVI B
<B2> (corresponds to <B3> in the LXI B ingtruction)
MVI C
<B2> (corresponds to <B2> in the LXI B inetruction)

The second byte in a two-byte imstruction is always referred to as <B2>. A single
1XI rp,data instruction requires 10 states for its execution, whereas two MVI r,data
instructions require a total of 14 states execution time. Thus, by using the

LXI rp,data instruction, you save 4 gtates of execution time. In many cases, such
a saving is unimportant.

2,
S

/ I 2 l =]

I XCHG

\ \ -
I Stack Pointer l

STA addr
STA addr {Store Accumulator direct}

((byte 3){byte 2)) <—

(A)

PCHL

The content of the accumulator is moved to the
memory location whose address is specified in byte
2 and byte 3 of the instruction.

low-order addr

high-order addr

Cycles: 4

none

The STA addr instruction permits you to store the contents of the accumulator
directly into a memory location without the use of the register pair H,L. The
address of the memory location is specified in the second and third bytes of the
instruction. The LO address byte is byte 2 and the HI address byte is byte 3.
The STA addr instruction is equivalent to the two instruction sequence

IXI H
<B2>
<B3>
MOV M,A

1825

18-26

LDA addr

LDA addr {Load Accumulator direct)
(A) <«— ({byte 3)(byte 2))
The content of the memory location, whose address
is specified in byte 2 and byte 3 of the instruction, is
moved to register A

low-order addr

high-order addr

Cycles: 4
States: 13
Addressing: direct
Flags: none

The LDA addr instruction permits you to load the accumulator with the contents

of the memory location specified by bytes <B2> and <B3> in the imstruction. You
need not use the H,L register pair. The LO addres byte is <B2> and the HI address
byte is <B3>. The LDA addr instruction is equivalent to the two instruction
sequence,

IXI H
<B2>

<B3> |
MOV A,M

LHLD addr

LHLD addr {Load H and L direct)
(L) =— ((byte 3)(byte 2))
{H) =— ((byte 3)(byte 2) + 1)
The content of the memory location, whose address
is specified in byte 2 and byte 3 of the instruction, is
moved to register L. The content of the memory loca-
tion at the succeeding address is moved to register H.

T I

00'10'1'0’1'0

low-order addr

high-order addr

Cycles: 5
States: 16

Addressing: direct

Flags: none

This instruction is useful when memory locations contain address information. Thus,
LHLD addr cause the H register to be loaded with the memory byte addressed by

1827

bytes <B2> and <B3> in the instruction, Z.e., addr. The H register is loaded with
the memory byte located at addr + 1. Thue, you perform a 16-bit transfer of a
memory address to the register pair H,L. Once you learn XCHG, you will observe
that the section of code,

LHLD
<B2>
<B3>
XCHG

is functionally equivalent to

LXI H
<B2>
<B3>
MOV E,M
INX H
MOV D,M

The first section of code requires 20 states for execution; the second section of
code requires 29 states.

XCHG

XCHG (Exchange H and L with D and E)
(H) =— (D}
(L) =—(E)
The contents of registers H and L are exchanged with
the contents of registers D and E

Cycles: 1
States: 4
Addressing: register
Flags: none

The XCHG instruction causes the contents of the register pairs D,E and H,L to be
exchanged. To be specific, the contents of registers D and H are exchanged, and

the contents of registers E and L are exchanged. This instruction permits you

to use register pair H,L as & memory address while another address is held in
register pair D,E. You can modify the contents of register pair D,E without changing
register pair H,L. For example, register pair H,L may specify a memory location

that you use to modify register pair D,E. Two XCHG instructions in sequence,

XCHG
XCHG

is equivalent to a no operation.

18-28

SHLD addr

SHLD addr (Store H and L direct)
{(byte 3)(byte 2)) =— (L)
{{byte 3)(byte 2) + 1} =— {H)
The content of register L is moved to the memory lo-
cation whose address is specified in byte 2 and byte
3. The content of register H is moved to the succeed-
ing memory location.

oTol1 1o ool o]

low-order addr I

high-order addr |

Cycles: 5
States: 16
Addressing: direct
Flags: none

The SHLD addr instruction causes the contents of the L register to be stored at
the memory location given by bytes <B2> and <B3>in the instructionm, i.e., addr.

The contents of the H register are stored in the memory location, addr + 1.

In other words, you perform a 16-bit transfer of an address byte in register

pair H,L to two successive memory locations, addr and addr + 1. This instruction
1s useful in creating a group of memory locations that contain address information
rather than data. As with most 8080A instruction, byte <B2> is the LO address byte
and byte <B3> is the HI address byte of addr.

|
|
|

The section of code,

XCHG
SHLD
<B2>
<B3>

is equivalent to the section of code,

LXI H
<B2>
<B3>
MOV M,E
INX H
MOV M,D

LDAX TP

The LDAX rp instruction permits you to load the accumulator with the contents of
the memory location addressed by a register pair other than register pair H,L.
Thus, with LDAX B, you use register pair B,C to supply the 16-bit memory address;
with LDAX D, you use register pair D,E to supply the address. The section of
code,

188

LXI D
<B2>
<B3>
LDAX D

is functionally identical to

LXIL H
<B2>
<B3>
MOV A,M

LDAX rp (LLoad accumulator indirect}
(A) =— ({rp))
The content of the memory location, whose address
is in the register pair rp, is moved to register A. Note:
only register pairs rp=B {registers B and C) or rp=D
(registers D and E) may be specified.

ORIP1|0i1‘D

o
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none
STAX rp
STAX rp (Store accumulator indirect}
((rp)) =— (A)

The content of register A is moved to the memory lo-
cation whose address is in the register pair rp. Note
only register pairs rp=B (registers B and C) or rp=D
(registers D and E) may be specified.

olo|rTePplolol1To

Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none

The STAX rp instruction permits you to store the contents of the accumulator in the
memory location addressed by either register pair B,D or register pair D,E. The
section of code,

LXI B
<B2>
<B3>
STAX B

is identical to

18-30

LXI H
<B2>
<B3>
MOV M,A

The significance of the STAX rp and LDAX rp instructioms is that you can have
three independent 16-bit memory addresses stored in the general purpose registers
inside the 8080A microprocessor chip. Enough instructions are available to permit
you to use all three addresses.

The condition flags are not affected by any of the instructions in the following
1list:

MOV rl,r2 b
MOV r,M

MOV M,r

MVI r, data
MVI M, data
LXI rp, data 16
STA addr

LDA addr

XCHG

LHLD addr

SHLD addr

LDAX rp

STAX rp

These instructions comprise the data transfer group in the 8080A microprocessor.

ARTTHMETIC GROUP

This group of instructions performs arithmetic operations on data in registers
and memory. Unless indicated otherwise, all imstructions in this group affect
the Zero, Sing, Parity, Carry, and Auxiliary Carry flags according to standard
rules. All subtraction operations are performed via two's complement arithmetic
and get the carry flat to one to indicate a borrow and clear it to indicate no
borrow.

ADD T

ADD r (Add Register)
(A) =— (A) +{n)
The content of register r is added to the content of the
accumulator. The result is placed in the accumulator.

[llo'olololslsls

Cycles: 1
States: 4
Addressing: register
Flags: Z.5P,CY.AC

18-31

The ADD r instruction causes the contents of the source register S to be added
to the contents of the accumulator. The source register can be any of the
general purpose registers B, C, D, E, H, L, the accumulator A, or M (the
contents of memory as addressed by register pair H,L). The ADD M instruction is
described below. The instruction affects all four of the testable flag bits:
Carry, Parity, Zero, and Sign. The Auxiliary Carry flag is also affected.

ADD M

ADD M (Add memory)
(A) =— (A} + ((H) (L))
The content of the memory location whose address
is contained in the H and L registers is added to the
content of the accumulator. The result is placed in
the accumulator.

T T o T o o 1 o]

Cycles: 2
States: 7
Addressing: reg. indirect
Flags: ZSP.CY,AC

The ADD M instruction causes the contents of the memory location M, which is
addressed by register pair H,L, to be added to the contents of the accumulator.
The memory contents remain unchanged after the addition. The instruction affects
all five flags and has two machine cycles.

AD] data

ADI data {Add immediate)
(A) =— (A) + (byte 2)
The content of the second byte of the instruction is
added to the content of the accumulator. The result
is placed in the accumulator.

1 T 1 T 0 T o T [} 1
data
Cycles: 2
States: 7

Addressing: immediate
Flags: Z.5P.CY.AC

The ADI data instruction causes the data present in the second byte of the
instruction to be added to the contents of the accumulator. The instruction
affects all five flags.

18-22

ADC r and ADC M

ADC ¢ (Add Register with carry) ADCM (Add memory with carry)
(A} =— (A} +{n) +(CY) (A) =— (A) + {{H) {L}) + (CY)
The content of register r and the content of the carry The content of the memory location whose address is
bit are added to the content of the accumulator. The contained in the H and L registers and the content of
result is placed in the accumulator, the CY flag are added to the accumulator. The result

T is placed in the accumulator.

I T I T T

[ToToToTi[sTsTs| [T T T 7o
Cycles: 1
States: 4 Cycles: 2

Addressing: ~ register
Flags: 2.SP.CYAC

reg. indirect
Flags: Z$,P.CY,AC

To quote the WCOM-8 Software Manual: "In order to perform add and subtract
operations, some special arithmetic instructions are required. Multiple digit
arithmetic requires that two items be monitored and saved somewhere. These two
items are the sum of the digits as they are added, and the presence or absence
of a carry bit. When a carry bit is produced, it must be added to the sum of
the next digits. Similarly, with subtract operations, the existence of a borrow
must be detected so it can be deducted from the difference of the next digits.
The Add with Carry and Subtract with Borrow instructions provide simple monitor—
ing and saving of carry bits, making multi-digit addition and subtraction quite
straightforward. ADC r, ADC M, and ACI data are the Add with Carry instructions.
ADC r causes the contents of the source S to be added to the sum of the
accumulator contents and the carry bit."

The ADC r and ADC M instructions are similar to the ADD r and ADD M instructions;
the only difference is that the carry bit is added to the least-significant bit
in the 8-bit accumulator byte. All flags are affected by these instructions.
Memory location M is addressed by the contents of register pair H,L.

ACI data

ACI data {Add immediate with carry)
(A) <— (A) + (byte 2) + (CY)
The content of the second byte of the instruction and
the content of the CY flag are added to the contents
of the accumulator. The result is placed in the
accumulator.

1T 1700 "1 11T
data
Cycles: 2
States: 7

Addressing: immediate
Flags: ZSPCYAC

18-33

The ACI data instruction causes the 8-bit data quantity present in the second byte
of the instruction to be added to the sum of the accumulator contents and the
carry bit. The instruction affects all five flags.

SB r and SUBM

SUBr {Subtract Register) SUB M (Subtract memory)
(A) =— (A) — (1) (A} ~— (A) = ((H} (L))
The content of register r is subtracted from the con- The content of the memory location whose address is
tent of the accumulator. The result is placed in the contained in the H and L registers is subtracted from
accumulator. the content of the accumulator. The result is placed

in the accumulator.
[+ ToToTiTa s Ts |

r1'0'0’1’0'1‘1'0J

Cycles: 1
States: 4 Cycles: 2
Addressing: register Sates 7
Flags: ZSP.CY.AC Addressing: reg, indirect

Flags: Z,SP.CY,AC

The SUB r instruction causes the contents of the source register S to be subtracted
from the accumulator. The source register can be any of the genmeral purpose
registers B, C, D, E, H, and L, the accumulator A, or M (the contents of memory

as addressed by register pair H,L). All five flags are affected by the execution
of this instruction. If you wish to clear the accumulator, the single imstructionm,

SUB A

which has an instruction code of 227, will do it.
SuUl data

SU1 data (Subtract immediate)
(A) =— (A) - (byte 2)
The content of the second byte of the instruction is
subtracted from the content of the accumulator. The
result is placed in the accumulator.

r1‘1‘ul1’n‘1'1'o
r data

Cycles: 2
States: 7
Addressing: immediate
Flags: ZSP.CYAC

The SUI data imstruction causes the 8-bit data quantity specified in the second

18-%

instruction byte to be subtracted from the accumulator.

affected.
SBB r and SBRB M
SBB 1 {Subtract Register with borrow)

{A) =— (A) () - (CY)

The content of register r and the content of the CY
flag are both subtracted from the accumulator. The
result is placed in the accumulator,

All five flags are

SBB M (Subtract memory with borrow)
(A) =— (A) = ((H) (L)) — (CY)
The content of the memory location whose address is
contained in the H and L registers and the content of
the CY flag are both subtracted from the accumula-

tor. The result is placed in the accumulator.

1 Tol ol TiTsTsTs] —1—
I 1 o' 0 T T T T DJ
Cycles: 1
States: 4 Cycles: 2
Addressing: register States: 7
Flags: Z.S,P.CY,AC Addressing: reg. indirect |
Flags: Z,S,P,CY,AC

The SBB r instruction causes the contents of the source S to be subtracted from the
difference of the accumulator contents and the borrow bit, The source register can
be any of the general purpose registers B, C, D, E, H, and L; the accumulator A;

or M, the contents of memory addressed by register pair H,L. All five flags are
affected by the SBB r and SBB M instructionms.

SB] data

SBI data {Subtract immediate with borrow)
(A) =— ({A) — (byte 2) — (CY)
The contents of the second byte of the instruction |
and the contents of the CY flag are both subtracted
from the accumulator. The result is placed in the
accumulator.

1 Tt T TaTiTo
data
2
7
Addressing: immediate
Flags: Z.SP.CY.AC

The SBI data instruction causes the 8-bit data quantity specified in the second
instruction byte to be subtracted from the difference of the accumulator contents
and the borrow bit. All five flags are affected.

18-%

Some examples of the various addition and subtraction operations would be appropriate.
Consider the following program:

ADD B
ADD C

If the initial register contents are A = 00111110, B = 11100000, and C = 00101111,
and if the carry bit were initially zero, then the above section of code would
yield the following result in the accumulator:

Carry bit

Accumulator contents
Register B contents

0 00111110
11100000

1 00011110 Sum stored in accumulator
00101111
01001101

Register C contents
0

Sum' stored in accumulator
Note carefully the behavior of the carry bit in this situation. If there is no
carry out of the most significant bit (MSB) in the accumulator, the carry bit is
cleared; if there is a carry out of the most significant bit in the accumulator
during the addition, the carry bit is set, When you added B to the accumulator,
you had a carry. When you added the contents of C to the sum, there was no carry.
The carry from previous operatioms is not preserved, ox "carried forward."

Now let us contrast the above results with the behavior of the following section
of code:

ADC B
ADC C

Assume the same initial values for registers A, B, C, and the carry bit., You
would obtain the following results:

Carry bit
0 00111110 Accumulator contents
+11100000 Register B contents
1 00011110 Sum stored in accumulator

So far, there is no difference. However, when we add the contents of register C
to the above sum, we do observe a difference:

[Sum stored in accumulator
1 Carry bit

1 11 Register C contents
0 01001110 Sum"

++
o
o

Now consider the following section of code,

SUB B
SUB C

for the same initial values of registers A, B, C, and the carry bit. Note that
if you perform a borrow out of the MSB of the accumulator, the carry bit is set;
if no borrow occurs, the carry bit is cleared. You thus ghould observe the following:

18-3%

Carry bit
[} 60111110 Accumulator contents
-11100000 Register B contents
1 01011110 Difference stored in accumulat
-00101111 Reglster C contents
0 00101111 Difference' stored in accumulg
Now, let us perform subtraction operations using the SBB r instructions,

SBB B
SBB C

We have the following results:

Carry bit
0 00111110 Accumulator contents
-11100000 Register B contents
1 01011110 Difference stored in accumulaf

When we perform the SBB C operation, we subtract the contents of register C from
the difference between the borrow bit and the contents of the accumulator:

01011110 Difference stored in accumulat
- 1
-00101111 Register C contents
0 00101110 Difference' stored in accumuls

The ADC r and SBB r instructions are used whenever you perform double or triple
precision arithmetic operations. A double precision arithmetic operation is one
which is performed on two 16-bit quantities to yield a 16-bit result. A triple
precision is one which is performed on two 24-bit quantities to yleld a 24-bit
result. The above examples of addition and subtraction operations are courtesy
of NEC Microcomputers, Inc. in their WCOM-8 Software Manual.

DAA

DAA {Decimal Adjust Accumulator)

The eight-bit number in the accumulator is adjusted

to form two four-bit Binary-Coded-Decimal digits by

the following process:

1. If the value of the least significant 4 bits of the
accumulator is greater than 9 or if the AC flag
is set, 6 is added to the accumulator. i

2. If the value of the most significant 4 bits of the |
accumulator is now greater than 9, or if the CY |
flag is set, 6 is added to the most significant 4
bits of the accumulator.

NOTE: All flags are affected.

00|1|0|OI1|1[1J

Cycles: 1
States: 4
Flags: ZSP,CYAC |

18-37

To quote the UCOM-8 Software Manual: "In order to perform operations in binary
coded decimal (BCD), one special instruction is needed. When the 8080A CPU
performs an arithmetic operatiom, it produces the result in binary. When working
in BCD this does not produce the correct result. To remedy this, a DAA instruction
is used. DAA stands for Decimal Adjust Acccumulator, which is exactly what DAA
does. The DAA instruction treats the 8-bit Accumulator as two 4-bit Accumulators.
Through the use of a non-testable flag known as the Auxiliary Carry, the DAA
operation adjusts the result of a binary addition operation to packed BCD."

"For addition, the DAA instruction causes the following operation. If the Auxiliary
Carry is set to ome or the least significant nibble (LSN) is greater than 9, six

is added to the least significant nibble. Then, if the Carry flag is set to ome

or the most significant nibble is greater than 9, six is added to the most signif-
jcant nibble (MSN)." The term, nibble is defined as,

nibble A group of four contiguous bits that usually represent a BCD
digit.

The least significant nibble (LSN), most significant nibble (MSN), Accumulator,
Auxiliary Carry flag (ACy), and Carry flag (Cy) can be represented as shown below:

ACCUMULATOR

Courtesy of NEC Microcomputers, Inc.

Assume, as is done in an example in the WCOM-8 Software Manual, that the Accum-
ulator contains the BCD representation for 75 (MSN = 0111 and LSN = 0101) and
that the B register contains the BCD representation for 38 (MSN = 001l and

LSN = 1000) and the carry flag is logic zero. The instruction, ADC B, produces
the following result in the Accumulator:

Carry Auxiliary
bit Carry bit

0 - Accumulator contents
Register B contents

0111010
+0011100
1010110 Sum stored in the accumulator

o~

0 0

With the Auxiliary Carry, if the instructlon causes a carry out of bit 3 and into
bit 4 of the resulting value, the Auxiliary Carry flag is set; otherwise it is
reset. In the above example, there is no carry out of bit 3 and into bit 4,

so the Auxiliary Carry bit is zero after the operation.

The DAA command finds ACy reset to O and LSN = 1101, Because the LSN is greater
than nine, six is added to it and the result is 0011 and ACy set to 1. Because the

MSN is greater than nine, both six and the ACy is added to it to yield a result of
0001. The final decimal adjusted result after the DAA operation is,

1 1 00010011 Decimal adjusted sum

1 - 1 3 Decimal number

which is equivalent to the decimal number, 113. The DAA operation can be written
as follows:

Carry Auxiliary |

bit Carry bit
0 1010 1101 Sum
0110 +0110 DAA Operation
1 0001 0011 Result of DAA Operation
1 1 0001 0011 BCD
1 - 1 3 Decimal number

Thus, 75 + 38 = 113.

"In actual operation, the DAA adjustment is done in parallel, rather than in the
serial manner illustrated, However, this serial explanation, courtesy of the
WCOM-8 Software Manual of NEC Microcomputers, Inc, is easier to understand and
illustrates the adjustment better. The DAA instruction should immediately follow
an addition or increment operation, as certain 80804 instructions alter the state
of the auxiliary carry flag. Such an alteration could result in incorrect results."

There is an important difference between the Intel 8080A microprocessor chip and
the equivalent chip, the UCOM-8 chip of NEC Microcomputers, Inc, The UCOM-8 chip
has an extra non-testable flag called Subtract. We quote from the NEC Manual:
"For addition, the Sub flag is set to zero. For subtraction, Sub is set
to one causing the following DAA operation. If ACy is set to one (a borrow
occurred) six is subtracted from the LSN, Then if the Cy is set to ome (a borrow
occurred) six is subtracted from the MSN. The use of a DAA imstruction fmmed-
iately after an operation on two bytes in packed BCD format adjusts the result
to two BCD digits and a carry or borrow in packed BCD format. Note that the DAA
operations performs directly after subtractiom, eliminating the need for 100s
conplement arvithmetic for subtraction."

1f you are doing considerable amounts of BCD manipulation, you would be interested
in the LCOM-8 chip in preference to the 8080A. However, such only would be the
case if you require the full speed of the microcomputer. With additional instruc-
tions, the 8080A can easily accomplish the same task of producing a packed BCD
format after a subtraction.

INNT and INR M

INR (Increment Register} INR M (Increment memory)
() =— (r+1 ((HH (L)) =— ((H) (L) +1
The content of register r is incremented by one. The content of the memory location whose address
Note: All condition flags except CY are affected. is contained in the H and L registers is incremented
T T T I T by one. Note: All condition flags except CY are
o'o |D 'D'D 1 oo J affected.
Cycles: 1 [0|0T1]1[011T0|0]
States: 5
Addressing: register Cycles: 3
Flags: ZSPAC States: 10

Addressing: reg. indirect
Flags: ZS,PAC

183

The INR r instruction causes a one to be added to the destination register D.

The destination register can be any of the general purpose registers B, C, D, E,
H, and L; the accumulator A; or M, the contents of memory as addressed by register
pair H,L. All flags are affected except the carry flag.

DCR T and DCR M

DCRr (Decrement Register)
(N =— {r) =1
The content of register r is decremented by one
Note: All condition flags except CY are affected.

I[1[

Addressing: register
Flags: ZSPAC

DCR M (Decrement memory)
((H) (L) =— ((Hy L) =1
The content of the memory location whose address is
contained in the H and L registers is decremented by
one. Note: All condition flags except CY are affected.

00'1‘1[0|1[oj

Cycles: 3
States: 10
Addressing: reg. indirect

Flags: Z.SP.AC

The DCR r instruction causes a one to be subtracted from the destination register
D. The destination register can be any of the gemeral purpose registers B, C, D,
E, H, and L; the accumulator A; or M, the contents of memory as addressed by
register pair H,L. Only four of the five flags are affected; the carry flag

remains unchanged.

INX rp and DCX TP

INX rp {Increment register pair)
{rh) (rl) =— (rh} () +1
The content of the register pair rp is incremented by
one. Note: No condition flags are affected.

oo R‘Plo‘o'wH

Cycles: 1
States: &
Addressing: register

Flags: none

DCX rp (Decrement register pair)
(rh) (11} =— (rh) (r) — 1
The content of the register pair rp is decremented by
one. Note: No condition flags are affected.

rOrOIR’PII|0|1|1

Cycles: 1
States: 5
Addressir register

Flags: none

The INX rp causes the reglster pair specified by RP to be incremented by one;
the DCX rp causes the register pair specified by RP to be decremented by one.
RP can be the register pair specified by B, D, or H (corresponding to BC, DE,
or HL) or the 16-bit stack pointer specified by SP. INX and DCX do not affect
any flag bits; they are usually not used in arithmetic operations, their main

use being to increment or decrement 16-bit memory addresses.

DAD rp

DAD rp (Add register pair to H and L)
(H} (L) =— (H) (L} + {rh} (s
The content of the register pair rp is added to the
content of the register pair H and L. The result is
placed in the register pair H and L. Note: Only the
CY flag is affected. It is set if there is a carry out of
the double precision add; otherwise it is reset.

0|0|RIP|1JDIO[1J

Cycles: 3
States: 10 |
Addressing: register i
Flags: CY

According to the NEC Manual: '"While the INX and DCS instructions allow incre-
menting and decrementing register pairs, the DAD, Double Add, instruction allows
adding register pairs together. DAD rp causes the register pair specified by

RP to be added to the contents of the HL register palr, with the result remaining
in the HL HL pair. The Carry Flag is the only status flag affected by the DAD 1
instruction. The instructions INX, DCX, and DAD allow the calculation of table |
lookup." Also used for indexed addressing and file data manipulation.

o r and QP M

CMP ¢ (Compare Register) cMP M (Compare memory)

(A) — (1)) (A) = ((H) (L))

The content of register r is subtracted from the ac- The content of the memory location whose address
cumulator. The accumulator remains unchanged. The is contained in the H and L registers is subtracted
condition flags are set as a result of the subtraction. from the accumulator. The accumulator remains un-
Tl?: Z flag is set to 1if (A) = (r). The CY flag is set to changed. The condition flags are set as a result of the
Tif (A) <(r). subtraction. The Z flag is set to 1 if (A) = ((H) (L)).
T The CY flag is set to 1if (A) < ((H) (L)).

S S
Cycles: 1 IDI1|1III1I1[0]
States: 4
Addressing: register Cycles: 2
Flags: ZSP.CYAC States: 7

Addressing: reg. indirect
Flags: Z,SP.CY,AC

To quote the LCOM-8 Software Manual: '“CMP r and CMP M are used to compare two data
quantities without altering them. CMP r compares the contents of the accumulator
with one of the single registers B, C, D, E, H, and L; the accumulator A; or M,

the memory location addressed by the H,L register pair. The instruction does mot

18-41

affect any of the data registers, but affects the four flag bits Carry, Zero,
Sign, and Parity. The compare instructions actually perform an internal sub-—
traction of the source S from the accumulator. The flags are set on the basis
of what would have been the result of the subtraction. Thus Zero is set if the
quantities were equal, Sign 1s set if the result was negative (the most
significant bit is logic 1), Parity is set if the result has even parity, and
Carry is set if there is a borrow out of bit 7 (source data greater than
Accumulator data).™

"Thus, in every case:

Carry is set if a borrow occurs; else reset;

Sign is set equal to the MSB of the result;

Zero is set if the result is zero; else reset;

Parity is set if the parity of the result is even; else reset,

The Compare instructions are best used for unsigned arithmetic comparison (numbers
in the range of 0 to 255;,), also called logical or character comparisons. For
this case, the results for the Zero and Carry flags may be interpreted as follows:

Result of compare operation

Zero flag Carry flag Relationship between accumulator and register
1 X Accumulator = register
X 1 Accumulator < register
1 1 Accumulator < reglster
0 0 Accumulator > register
X 0 Accumulator > reglster

NOTE: X = don't care

Thus, the relations { = , <, > } may be tested using a single jump inmstructiom,
while { < , > } require two. Note that if the operands are reversed, > replaces
< and < replaces 2. "

CP] data

CPI data {Compare immediate)
{A) — (byte 2)
The content of the second byte of the instruction is
subtracted from the accumulator. The condition flags
are set by the result of the subtraction. The Z flag is
set to 1 if {A) = (byte 2). The CY flag is set to 1 if
(A) < (byte 2).

R
data
Cycles: 2
States: 7

Addressing: immediate
Flags: Z,8,P.CYAC

18-12

The CPI data instruction is an immediate operation which compares the contents of
the accumulator with the 8-bit quantity in the second byte of the instruction.
The instruction affects all five flags, but only four of the flags produce useful
results. The flags are set or cleared on the basis of what would have been the
result of the subtraction. The contents of the accumulator remain wnchanged.

See the preceding discussion of the CMP r instruction for additional details.

It can be argued that the CMP r and CPI data instructions are logical rather than
arithmetic operations. In view of the fact that an arithmetic operation--gubtraction--
is performed, we would include it in the group of arithmetic operatioms. The
objective of the compare instructions is to produce decisions that are reflected
in the logic states of the flag bits.

LOGICAL GROUP

This group of instructions performs logical, Z.e., Boolean, operations on data in
registers and memory and on condition flags. Unless indicated otherwise, all
instructions in this group affect the Zero, Sign, Parity, Auxiliary Carry, and
Carry flags according to the standard rules.

ANA r and ANA M

ANA (AND Register) ANA M {AND memory)
(A) =— (A)ALN (A) =— (A)AUH) (L) i
The content of register r is logically anded with the The contents of the memory tocation whose address i
content of the accumulator. The result is placed in is contained in the H and L registers is logically anded !
the accumulator, The CY and AC flags are cleared. with the content of the accumulator. The result is

placed in the accumulator, The CY and AC flags are

T0[110;0 S|S|S cleared.

Cycles: 1 r11011|0’0|1|1|0J

States: 4
Addressing: register Cycles: 2
Flags: ZSP.CY.AC States: 7

Addressing: reg. indirect
Flags: 2ZS.,P,CY,AC

The ANA r instruction performs a parallel bit-by-bit logical AND of the contents of the
accumulator and the contents of the source register S. The source register can

be any of the general purpose registers B, C, D, E, H, and L; the accumulator

A; or M, the contents of the memory location addressed by the register pair H,L.

For example, the ANA B operation performs a bit by bit logic AND operation with

the contents of register B and the contents of the accumulator. The special case of

ANA A

clears the Carry Flag and causes the Zero flag to be set if the result

is zero, cleared if the result is not zero. All of the flags are affected by

the ANA r instruction. Since A * A = A, the data in the accumulator is not changed.
This is a "trick" to clear the carry flat or simply test for zero in the accumulator.

18-43
ANI data

ANI data (AND immediate)
(A} =— (A) A (byte 2)
The content of the second byte of the instruction is
logically anded with the contents of the accumulator.
The result is placed in the accumulator. The CY and
AC flags are cleared.

111!0 0[1l1‘0|
data

Cycles: 2
States: 7
Addressing: immediate

Fiags: ZSP.CYAC

The ANI data instruction performs a bit by bit logical AND of the contents of the
accumulator with the contents of the second byte of the imstruction. All flags
are affected by the instruction.

ORA T and QRA M

ORA ¢ (OR Register)
(A) =— (A} V(1)
The content of register r is inclusive-OR’d with the
content of the accumulator. The result is placed in
the accumulator. The CY and AC flags are cleared.

ORA M (OR memory)
(A) =— (A) V{H) (L))
The content of the memory location whose address is
contained in the H and L registers is inclusive-OR'd
with the content of the accumulator. The result is

ERID T T3 To [s 's 's | placed in the accumulator. The CY and AC flags are
cleared.
Cycles: 1
Addressing: register N
Flags: ZSP.CYAC Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z,S,P.CY,AC

The ORA r imstruction performs a parallel bit-by-bit logical OR of the contents of the
accumulator and the contents of the source register S. The source register can

be any of the general purpose registers B, C, D, E, H, and L; the accumulator Aj

or M, the contents of the memory location addressed by the register pair H,L.

The command,

ORA A

which has the octal instruction code 267, is a convenient way to clear the carry
flag without affecting anything else. Both ORA r and a related two-byte instruction,
ORI data, clear the Carry Flag and cause the Zero flag to be set if the result

is zero, cleared if the result is not zero.

OR] data

ORI data (OR Immediate)
(A) =— (A} V (byte 2)
The content of the second byte of the instruction is
inclusive-OR’d with the content of the accumulator.
The result is placed in the accumulator. The CY and
AC flags are cleared.

1|1]1|1l0|1[1!0J
]

data
Cycles: 2
States: 7

Addressing: immediate
Flags: Z.SP.CYAC

The ORI data instruction performs a bit by bit logical OR of the contents of the
accumulator with the contents of the second byte of the instruction. All flags
are affected by the instruction.

XRA T and XRA M

XRAM (Exclusive OR Memory}
(A) =— (A) ¥ ({H) (L))
The content of the memory location whose address
is contained in the H and L registers is exclusive-OR'd

XRA 1 {Exclusive OR Register)
{A) =— (A) ¥ (1)
The content of register r is exclusive-or'd with the
content of the accumulator. The result is placed in
the accumulator. The CY and AC flags are cleared.

L s 1 g | cleared.
T I T T 1 T T J

Cycles: 1 [R R S

States: 4

Addressing: register
Flags: 2,$P.CYAC

Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z.S,P.CY,AC

The XRA r instruction performs a parallel bit-by-bit Exclusive-OR of the contents
of the accumulator and the contents of the source register S. The source register
can be any of the general purpose registers B, C, D, E, H, and L; the accumulator
A; or M, the memory location addressed by the register pair H,L. All flags are
affected by the instruction.

XRI data
The XRI data instruction performs a bit by bit logical Exclusive~OR of the contents

of the accumulator with the contents of the second byte of the instruction. All
flags are affected by the inmstruction.

with the content of the accumulator. The resuit is
placed in the accumulator. The CY and AC flags are

18-45

XR1 data (Exclusive OR immediate)
(A) =— (A) ¥ (byte 2)
The content of the second byte of the instruction is
exclusive-OR’d with the content of the accumulator.
The result is placed in the accumulator. The CY and
AC flags are cleared.

Cycles: 2
States: 7
Addressing: immediate
Flags: Z.SP.CY,AC

To quote the NEC Microcomputers, Inc. WCOM-8 Software Manual: “The above logic
instructions will be used to implement a programming technique known as masking.
Masking is a technique by which bits of an operand are selectively modified for
use in a later operation. There are three general types of masking,

o Clear all bits not operated upon
o Set all bits not operated upon (seldom used)
o Leave unaltered all bits not operated upon

The first two approaches are called exclusive maskingand the third approach is
called inclusive masking. For example, assume that the accumulator contains
the following value,

Bit: 7654 3210

1101 15 110 Accumulator contents

To test bit 3 for a zero or one and simultaneously clear the other bits, the
accumulator is masked with 00001000. By using the instruction,

ANI
o010

the accumulator will contain zeros with the Zero flag set if bit 3 had been a
zero, and it will contain 010, in octal code, with the Zero flag cleared if bit
3 had been ome."

"In order to set bit 3 to one and leave the other bits alone, the same bit
pattern is used and the imstruction,

ORI
010

is used. The result in this case is 11011110 in the accumulator."

"In order to set bit 3 to zero and leave the other bits alone, the accumulator
is ANDed with 1111011, the complement of the mask of the first example. With
the instructionm,

ANI
367

the accumulator result is 11010110. These are the most commonly used bit manip-
ulation operations, since masking is accomplished in ome step. Many others

18-

are possible, but they often require more than one instruction for implementation,"

ROTATE INSTRUCTIONS

All of the 8080A rotate Instructions are summarized in the diagram below:

RAR:

RRC: [=] |

]
]
i
i

RAL: [rfefsefs]e] o]

ruc: [w] [r]efs]efsfe]ifo]

RAL and RAR

{Rotate left through carry) RAR
(An+1) = (Ag);(CY) =— (A7)

(Agl ~— {CY)

The content of the accumulator is rotated left one
position through the CY flag. The low order bit is set

equal to the CY flag and the CY flag is set to the

value shifted out of the high order bit. Only the cy

flag is affected.

RAL

1847

(Rotate right through carry)
(Ag) =— (Ans1) ; (CY) =— (Ag)
(A7) =— (CY)
The content of the accumulator is rotated right ane
position through the CY flag. The high order bit is set
to the CY flag and the CY flag is set to the value
shifted out of the low order bit. Only the CY flag is
affected.

|0|0|U]1‘1l‘l‘1|1J

Cycles: 1
States: 4
Flags: CY

Cycles: 1
States: 4
Flags: CY

The RAL instruction, or Rotate Accumulator Left, causes the accumulator to rotate
all bits one position to the left through the carry bit, i.e., a 9-bit rotate,

Bit 7 transfers to the Carry flag, the Carry bit transfers to bit 0, bit 0 transfers
to bit 1, bit 1 transfers to bit 2, and so on, as shown on the preceding page.

The RAR instruction, or Rotate Accumulator Right, causes the accumulator to rotate
all bits one position to the right through the carry bit, i.e., a 9-bit rotate.
Bit 0 transfers to the Carry flag, the Carry bit transfers to bit 7, bit 7
transfers to bit 6, and so on, as shown on the preceding page.

RLC and RRC

RRC {Rotate right)
(Ap) <~— (Anq);

(€Y) ~— (Ag}

(Rotate left}
(Ant1) = (Ay) (Ag) =— (A7)
(eY) ~— (A7)

RLC
(A7) = (Ag)

The content of the accumulator is rotated left one
position. The low order bit and the CY flag are both
set to the value shifted out of the high order bit posi-
tion. Only the CY flag is affected.

The content of the accumulator is rotated right one
position. The high order bit and the CY flag are both
set to the value shifted out of the low order bit posi-
tion. Only the CY flag is affected.

rc,lol(]lulol1l,l1 [T oTo o T T T,
Cycles: 1 Cycles: 1
States: 1 States: 4
Flags: CY Flags: CY

RLC instruction, or Rotate Left Circular, rotates the accumulator one bit to

The
left and into the Carry flag, as shown in the diagram on the preceding page.

the

RRC instruction, or Rotate Right Circular, rotates the accumulator one bit to

The
right and into the Carry flag, as also shown on the preceding page.

the

In both of these instructions, the original information appearing in the Carry flag
is lost.

CMA

cMA {Complement accumulator) |
(A) =— (A) |
The contents of the accumulator are complemented i
(zero bits become 1, one bits become 0). No flags are ;
affected. |

|70TUI1ID|1I1|1I1J ;
Cycles: 1 |

States: 4 !
Flags: none

The CMA instruction complements the contents of the accumulator without affecting
any of the flag bits. For example, if the accumulator contained 11010001, the

CMA

instruction would convert it to 00101110, Each individual bit is complemented.

STC anrd CMC
STC (Set carry) cMC {Complement carry)
e —1 (CY) =— (CY) !
The CY flag is set to 1. No other flags are atffected. The CY flag is complemented. No other flags are |
affected. :
oo T T T T T !
[0 T 0 I 1 I 1 T 1 T 1 T 1 T 1 J
Cycles: 1
States: 4 Cycles: 1
Flags: CY States: 4
Flags: CY

The STC imstruction sets the Carry flag to logic 1; the CMC instruction complements
the Carry flag. No other flag bits are affected. i

BRANCH GROUP

This group of instructions alters normal sequential program flow. Condition flags ¢
are not affected by any ingtruction in this group. The two types of branch
instructions are unconditional and conditional. Unconditional transfers simply
perform the specified operation on register PC, the program counter. Conditional
transfers examine the status of one of the four process flags--Zero, Sign, Parity,
or Carry--to determine if the specified branch operation is to be executed. The
conditions that may be specified are as follows:

18-19

CONDITION cce
NZ — notzero{Z =0} 000
Z - zero(Z=1) 001
NC - nocarry {CY =0} 010 NOTE: CCC is the
C —carry(CY=1) 011 three-bit code
PO — parity odd (P =0) 100 for the condition
PE — parity even (P=1) 101 of the flags
P — plus{S=0) 110
M — minus{S=1) m
JMP addr
Main program
© VP,
JMP
F———1 @ JMP addr {Jump)

(PC) ~<— loyte 3) (byte 2)
Control is transferced to the instruction whose ad-

dress is specified in byte 3 and byte 2 of the current

instruction.

low-order addr

high-order addr

Cycles: 3
States: 10
Addressing: immediate
Flags: none

Sub - program

JMP

The program counter is the 16-bit register in the 8080A microprocessor chip that
contains the memory address of the next imstruction byte that must be executed

in a computer program. The JMP addr instruction is simply a byte transfer imstruc-
tion, in which the second and third instruction bytes are transferred directly to

18-50

the program counter. No arithmetic or logical operations are involved, and no {
flag bits are affected. The JMP instruction is a three-byte instruction that
containg the 16-bit memory address to which program control is transferred.

You can jump forwards or backwards to any of the 65,536 possible memory locations,
The microprocessor chip does not remember the point from which it Jumped, in
distinct contrast to the behavior of the CALL and RET instructions discussed below.

The behavior of the JMP instruction can be understood with the aid of the diagram
shown on the preceding page. The first JMP instruction, @, is a backwards Jump
that creates a loop. JMP @ and JMP (9 transfer program control to the sub-program.
The exit from the sub-program is to the same place, that designated by the JMP
instruction.

CALL addr and RET

CALL addr (Call)
((SP) — 1} =— (PCH)
Main__program ({SP) — 2} =— (PCL)

(SP) =— (SP) —2
(PC) =— (byte 3) (byte 2)
The high-order eight bits of the next instruction ad-
CALL @ dress are moved to the memory location whose
address is one less than the content of register SP.
The fow-order eight bits of the next instruction ad-
dress are moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by 2. Con-
trol is transferred to the instruction whose address is
@ specified in byte 3 and byte 2 of the current
instruction.

CALL

low-order addr

high-order addr

Cycles: &
coLL @ States: 17
@ Addressing: immediate/reg. indirect
Flags: none

RET (Return)

_ (PCL) =— {(SP));
Subroutine No. | (PCH) =— ((SP) + 1);
{SP} =— {SP) +2;

The content of the memory location whose address
is specified in register SP is moved to the low-order
eight bits of register PC. The content of the memory
@ location whose address is one more than the content

RET of register SP is moved to the high-order eight bits of
register PC. The content of register SP is incremented
by 2.

T e T i To o)
@ Cycles: 3

RET States: 10
Addressing: reg. indirect
Flags: none

Subroutine No. 2

18-51

Many times you may want to branch out of a main program but return to it later.

To do so, you must not only know your new destination, but you must somehow also
remember your original location. To accomplish this, you have two types of
instructions, call subroutine and return from subroutine. Here we shall discuss
the unconditional instructions CALL addr and RET. To quote the NEC Microcomputers,
Inc. manual: "The call instruction transfers control to a subroutine. The
instruction CALL addr saves the incremented program counter on the pushdown

stack and places the address in the program counter. The pushdown stack is a
block of read/write memory addressed by a special 16-bit register known as the
Stack Pointer which can be loaded by the user (LXI SP, data 16). The stack operates
as a last-in-first-out memory (LIFO), with the Stack Pointer register addressing
the most recent entry into the stack. The Return instruction causes the entry at the
top of the stack to be placed into the Program Counter. Thus a CALL instruction
transfers program control from the main program into the subroutine and a RET
instruction transfers control back to the main program."

The location of the stack is usually at the higher memory addresses in the available
memory of an 8080A-based microcomputer. In the diagram below, the stack is some
distance from the main program or subroutines.

Memory address

H L
000 000
Interrupt
service
routines
000 100
Main
program
0Cl 300
Subroutines
003 300
Stack

18-52
JINZ, JZ, UNC, JC, JPO, JPE, JP, and JM addr

Jeondition addr {Conditional jump) |

If (CCC), {

(PC) =— (byte 3) (byte 2} i

1f the specified condition is true, control is trans-

ferred to the instruction whose address is specified in |

byte 3 and byte 2 of the current instruction; other- |
wise, control continues sequentially.

1[1C'CCOI1|0

low-order addr

high-order addr |
|

Cycles: 3
States: 10
Addressing: immediate
Flags: none

In a conditional jump instruction, if the condition is satisfied, the second and
third bytes of the instruction are transferred to the program counter and a jump
occurs. If the condition is not satisfied, no changes occurs to the program
counter; program control pagses to the instruction immediately following the jump.

The various conditions can be summarized as follows:

NZ: The 8-bit result of the immediately preceding arithmetic or logical
operation is Not equal to Zero, i.e., the Zero flag is cleared.

Z: The 8-bit result of the immediately preceding arithmetic or logical
operation is equal to Zero, i.e., the Zero flag is set.

NC: The 8-bit result of the immediately preceding arithmetic or logical
operations produces No Carry out of the most significant bit; or,
the Carry flag is cleared.

C: The 8-bit result of the immediately preceding arithmetic or logical
operation produces a Carry out of the most significant bit; or, the
the Carry flag is set.

PO: The 8-bit result of the immediately preceding arithmetic or logical
operation has a Parity that is 0dd, i.e., the Parity flag is cleared.

PE: The 8-bit result of the immediately preceding arithmetic or logical
operation has a Parity that is Even, i.e., the Parity flag is set.

P: The 8-bit result of the immediately preceding arithmetic or logical
operation produces a MSB that has a Plus sign, i.e., the Sign flag
is cleared.

M: The 8-bit result of the immediately preceding arithmetic or logical
operation produces a MSB that has a Minus sign, i.e., the Sign flag
is set.

18-53

The value of CCC that corresponds to each of the conditions has been shown several
pages back. The behavior of two of the conditional instructions, JNZ and JZ, can
be understood with the aid of the diagram below:

Main program Main program

JZ

JNZ

instruction instruction

In the JNZ instruction, the jump occurs only if the 8~bit result or an arithmetic
or logical operation is Not Zero. The decision symbol,

previous instruction

which 1is used in flowcharting, indicates that what happens next depends upon the
state of the Zero flag. For JNZ, a jump occurs only if the Zero flag 1s cleared,
i.e., at logic 0. For JZ, a jump occurs if the 8-bit result is equal to zero; in
such a case, the Zero flag is at logic 1.

It is possible to become confused concerning the conditions NZ and Z. Note that
NZ and Z refer to the 8-bit result of an operation, not to the logic state of the
Zero flag. NZ means that the 8-bit result of an operation is not zero; Z means
that the 8-bit result of an operation is zero (though the Zero flag is at logic 1).
In this discussion, we have tried to demonstrate that a condition can be viewed

in terms of the 8-bit result of an arithmetic/logic operation (NZ, Z, NC, c, PO,
PE, P, or M) or in terms of the logic state of the individual flags that test the

1854

result of an arithmetic/logic operation. We prefer the use of the 8-bit result
of an ALU operation, including the letter symbols Nz, Z, NC, etc. We hope that
we have not confused you. {

Nz, €Z, ONC, CC, CPO, CPE, CP, and CM addr

Ccendition addr (Condition call)
1f {CCC),
{{SP) — 1) =— (PCH)
{{SP) - 2) =— (PCL}
{SP} <— {SP} —2
{PC) =— {byte 3) (byte 2)
1 the specified condition is true, the actions specified
in the CALL instruction (see above) are performed;
otherwise, control continues sequentially.

1]1 CC[C1‘O|0

tow-order addr

high-order addr

Cycles: 3/
States: 11/17
Addressing: immediate/reg. indirect
Flags: none

In a conditional call instruction, if the conditjon is satisfied, the subroutine
at the memory location given in the second and third instruction bytes is called.
The contents of the program counter are placed on the stack, so that a return
instruction can return program control to the instruction immediately following
the conditional call instruction,

If the condition is not satisfied, program execution passes to the imstruction
immediately following the conditional call imstruction.

RNZ, RZ, RNC, RC, RPO, RPE, RP, and RM

Reondition (Conditional return)
1 (CCO),
{PCL) =— ((SP))
(PCH) =— ((SP) + 1)
{SP) =— (SP)+2
If the specified condition is true, the actions specified
in the RET instruction {sec above) are performed;
otherwise, control continues sequentially. !

c O|0

Cycles: 1/3
States: 5/11
Addressing: reg. indirect
Flags: none

18-55

In a conditional return instruction, if the condition is satisfied, a return occurs
from the subroutine; the program counter contents on the stack are transferred to
the program counter and program execution resumes at the instruction immediately
after the subroutine call instruction.

1f the condition is not satisfied, program execution passes to the instruction
immediately following the conditional return instruction.

The conditional instructioms, CZ, CNZ, RZ, and RNZ are depicted schematically
in the dlagrams given below. Remember, Z meams that the Zero flag must be at
logic 1 for a call or return to occur; otherwise, program control passes to the
next instruction., NZ means that the Zero flag must be at logic 0 for a call or
return to occur; otherwise, program control passes to the next instruction.

Main program Main program
CALL CALL
Subroutine Subrourine
RZ RNZ
fla fa Tnstruction il instruction
[Rer | RET

18-56

Main program Main program

I
cz TN __.j\ :
1
= = fla lag = O !
insfruction tlag=0 flag: | instruction U vf 2 !
1

Subroutine Subroutine
|
i

RET RET

18-57

RST n

RSTn (Restart)
((SP) — 1) ~— (PCH}
((SP} - 2) =— (PCL)
{SP) =— (SP) -2
{PC) =— 8= (NNN}
The high-order eight bits of the next instruction ad-
dress are moved to the memory location whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction ad-
dress are moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by two.
Control is transferred to the instruction whose ad-
dress is eight times the content of NNN.

Cycles: 3
States: 11
Addressing: reg. indirect
Flags: none

151413121110 9 8 7 6 56 4 3 2 1 0
[o[o]o]e]eo o o o e[s[x[n[o 0[]

Program Counter After Restart

To quote the WCOM-8 Software Manual: "The EI (Enable interrupt) and DI (disable
interrupt) instructions provide control over the acceptance of an interrupt re-—
quest. With this control established, the next problem to be resolved is how does
the external device indicate to the processor where the desired interrupt routine
is located, The 8080A accomplishes this identification by allowing the device to
supply one instruction when the interrupt is acknowledged. Although any 8080A
instruction can be specified, only two are of practical value: a Call instruction,
CALL, and a Restart imnstruction, RST. . . . A RST instruction is actually a spec-—
ialized type of CALL. The instruction RST n is a call to one of eight locations
in memory specified by an integer expression in the range, 0 through 7 in octal
code, indicated by N. The locations specified by the integers 0 through 7 are
listed below.

Value of N Location called
0 HI = 000 and LO = 000
1 HI = 000 and LO = 010
2 HI = 000 and LO = 020
3 HI = 000 and LO = 030
4 HI = 000 and LO = 040
5 HI = 000 and LO = 050
6 HI = 000 and LO = 060
7 HI = 000 and LO = 070

A RST instruction causes the incremented program counter to be pushed onto the

18-58

stack exactly as a CALL instruction does. It then loads the program counter with
HI = 000 and LO = ONO, where N is O through 7. Thus, RST &4 causes the program i
counter to be pushed onto the stack and HI = 000 and LO = 040 to be entered into |
the program counter."

"Program execution then continues from the restart location. If the device service
routine requires more than eight bytes to service (as most do), the imstruction
placed at the Restart point must jump to the interrupt service subroutine. Since
RST is actually a specialized subroutine call, the interrupt service subroutine
must end with a returm instruction, to return control te the interrupted program
by popping the return address.”

"Since the 8080A has only eight RST instructions, any additional levels of interrupt
must be implemented using CALL instructions. This means a CALL addr instruction i
must be supplied by the interrupting device, which is somewhat more difficult to
implement in hardware because CALL is a 3-byte instruction. However, once imple-
mented, a direct call to a routine is slightly faster than a Restart and subsequent
jump operation. Although this is not a major factor, this difference in response
speed should be considered when determing how to implement interrupt service
routines. The primary benefit realized by using the CALL approach is that n-way |
interrupt vectoring is achieved in hardware, eliminating the need for software |
in low order memory (for RST processing). This frees those memory locationms for |
use by user programs and removes a constraint from the system memory design."

PCHL

PCHL {Jump H and L indirect -- move H and L to PC)
(PCH) =— (H)
(PCL) =— (L)
The content of register H is moved to the high-order
cight bits of register PC. The content of register L is
moved to the low-order eight bits of register PC.

register
none

The PCHL instruction causes the program counter to be loaded with the contents of
the HL register pair. Program execution then continues at the point designated
by the content of HL. In effect, this is a jump instruction, but since the HL
register pair can be operated upon arithmetically, it allows the implementation
of a variety of calculated jumps. The instruction sequence,

1XI H
<B2>
<B3>
PCHL

is identical in function to

<B2> '
<B3> |

18-59
STACK, 1/0, AND MACHINE CONTROL GROUP

This group of instructions performs 1/0, manipulates the Stack, and alters
internal control flags. Unless otherwise specified, condition flags are not

affected by any instructions in this group.

PUSH rp and POP TP

PUSH rp {Push)

((SP) — 1) =— {rh}

((SP) — 2} =— {r)

{SP) =— (SP} -2

The content of the high-order register of register pair
rp is moved to the memory location whose address is
one less than the content of register SP. The content
of the low-order register of register pair rp is moved
1o the memory location whose address is two less
than the content of register SP. The content of reg-
ister SP is decremented by 2. Note: Ragister pair

POP rp (Pop)

(rl) =— ({SP})}

{rh} =— ((SP} + 1)

(SP) =—— (SP}+2

The content of the memory location, whose address
is specified by the content of register SP, is moved to
the low-order register of register pair rp. The content
of the memory location, whose address is one more
than the content of register SP, is moved to the high-
order register of register pair rp. The content of reg-
ister SP is incremented by 2. Note: Register pair

tp = SP may not be specified.
P = SP may not be specifie tp = SP may not be specified.

I T T T T
11 R P O 10 |1|1R|P0I01011J
Cvaes: 3 Cycles: 3
States: 11
Addressing: e firect States: 10
S e Addressing: reg. indirect

Flags: none Flags: none

To quote the WCOM-8 Software Manual: "o special instructions ensble program~
mers to save and restore the registers using the stack, PUSH and POP. PUSH rp
causes the register pair specified by RP to be placed at the top of the stack.

The stack is a special portion of read/write memory designated by the user and
treated as a last-in-first-out (LIFO) memory through the use of a 16-bit Stack
Pointer. A PUSH operation causes the Stack Pointer to decrement by one and store
the most significant register (the HI register) in memory at this new location
specified by the Stack Pointer. The Stack Pointer is then decremented again and
the least significant register (the LO register) is then stored in memory at that
address. For a POP operation, the data at the memory location addressed by the
Stack Pointer is moved into the least significant register (the LO register, which
can be C, E, or L); the Stack Pointer is incremented and the data at the new memory
location is loaded into the most significant register (the HI register, which can
be B, D, or H). The Stack Pointer is then incremented again.'

"For both PUSH and POP operations, the register pair, RP, may be one of the three
double registers BC, DE, or HL (identified as B, D, and H, respectively) or the
contents of the Flag register and the Accumulator, indicated by PSW (which stands
for program status word)."

The PUSH and POP instructions are represented schematically in the figure on the
following page. In this diagram, SP is the original stack pointer location before
the PUSH or POP instruction.

18-60

Flags

E &OA
°
5 &

')

'y
PS D
&

<

18-61

PUSH psw and POP psw

PUSH PSW (Push processor status word) POP PSW {Pop processor status word}
((SP) — 1} =<— (A} (CY) =— ((SP))g
{(SP) - 2)g =— {CY) , ((SP) —2)q =— 1 (P) =— ((SP)}
((SP) —2)g =— (P}, ((SP) -2]3«— 0 (AC) =— ((SP))4
((SP) —2)4 =— (AC}, ({SP) — 2)g =— o (Z) =— ({SP)g
((SP) = 20 <— (2), {(SP) =217 ~— (8) (S) ~— ((SP))7
(SP) =— (SP) -2 (A} <— {(SP) + 1)
The content of register A is moved to the memory {SP) -— (SP}+2
location whose address is one less than register SP. The content of the memory location whose address
The contents of the condition flags are assembled is specified by the content of register SP is used to
into a processor status word and the word is moved restore the condition flags. The content of the mem-
to the memory location whose address is two less ory location whose address is one more than the
than the content of register SP. The content of reg- content of register SP is moved to register A. The
ister SP is decremented by two. content of register SP is incremented by 2.
EAKEERERERIAIN
Cycles: 3 Cycles: 3
States: 11 States: 10
Addressing: reg. indirect Addressing: reg. indirect
Flags: none Flags: Z.8.PCY,AC

FLAG WORD

D; Dg D5 Ds D3 Dy Dy Do
p|1

Ls e

I []

Courtesy of the Intel Corporation

The letters, PSW, stand for processor status word, which ig the contents of the
accumulator and the five status flags. We refer you to the description of the
PUSH rp and POP rp instructions on the preceding pages. The flag register, F,
is regarded as the most significant register and the accumulator, A, is regarded
as the least significant register. The program status word is important because
it save the actual machine status as determined by the five flag bits. When it
is restored, machine operation can resume in the correct state, regardless of
how the subroutine which interrupted affected the flags.

In the UCOM-8 integrated circuit chip, which is essentially identical in function
to the 8080A microprocessor chip, there is an extra status flag, SUB. In the
flag register, SUB occupies the Dg bit position. 1In addition, the Dy bit position
is at logic 1 rather tham at logic O (which is the case for the 8080A chip). We
consider the SUB flag to be a useful feature of 8080A-type microprocessors, and
hope that it becomes incorporated in future versions of the chip by manufacturers
such as Texas Instruments, Natiomal Semiconductor, Intel, etc.

18-62

An example of the operation of the Stack is given on the following page. The
section of code employed is,

Subroutine
CALL PUSH B
B> PUSH D
B3> PUSH H

PUSH PSW

The stack pointer originally was located at HI = 003 and LO = 303. After the
CALL subroutine instruction, the two program counter bytes are pushed onto the
stack and the stack pointer moves to HI = 003 and LO = 301, Note that the HI
program counter byte goes on the stack first, but comes off the stack last.

A succession of four PUSH instructions load the stack with the contents of the
six general purpose regster, the accumulator, and the flag register. After all
of this, stack pointer (SP) location is HI - 003 and LO = 271, the top
filled location on the stack.

Once the subroutine has been executed, there is the problem of removing the
contents of the stack and placing them back into the 8080A microprocessor chip.
The section of code, located at the end of the subroutine, that accomplishes this is,

POP PSW
POP H
POP D
POP B
RET

In each case, the LO byte comes off the stack first. Recall that in three-byte
instructions, the LO byte is always the second byte of the instruction. Thus,

the 8080A chip is consistent in its handling of 16-bit address words. Once the
contents of the stack have been popped off, the stack pointer resumes its original
location of HI = 003 and LO = 303.

Registers can be pushed and popped in any order. However, the program counter is
almost always pushed first and popped last. The caution that you must observe is
that you must pop registers in the reverse order with which you pushed them. For
example, with the stack configuration shown on the following page, if you executed
the following section of code at the end of the subroutine,

POP PSW
POP B
POP H
POP D
RET

you would encounter problems with the execution of the main program. The original
register contents would not be returned to their original locations. The chip would
attempt to execute the program, but there is not much chance of a useful result.

If you do not need to push registers on a stack during a subroutine call, do mot
do so. Store only that information on the stack which is needed by the 8080A chip
when it resumes the main program.

SP -1 003 270
SP 003 27)
SP + 1 003 272
003 273
003 274
003 275
003 276
003 277
003 300
003 30!
003 302
003 303
003 304
003 305

003 306

Figure 18-3. The “stack."

Flags
Accumulator
Register L
Register H
Register E
Register D
Register C
Register B

Program Counter
(LO byte)

Program Counter
(HI byte)

The Stack

Top of

Original

stack

SP

location

1863

18-64

XTHL (Exchange stack top with H and L)
(L) = ({SP))
(H) == ((8P} + 1)
The content of the L register is exchanged with the
content of the memory location whose address is
specified by the content of register SP. The content
of the H register is exchanged with the content of the
memory location whose address is one more than the
content of register SP.

T 1T o ToTo Ty Ty J
Cycles: 5
States: 18

Addressing: reg. indirect
Flags: none

The XTHL instruction is used to exchange the contents of the HL register pair
with the top pair of items on the Stack. The contents of the top location, the
one addressed by the stack pointer SP,are exchanged with the contents of register
L. The stack pointer is incremented, and the contents of memory addressed by this
new value of SP, are exchanged with the contents of register H.

SPHL.

SPHL. (Move HL to SP)
(SP) =— (H) {L)
The contents of registers H and L (16 bits) are moved
to register SP.

T AT T T TelT ol

Cycles: 1
States: 5
Addressing: register
Flags: none

The SPHL instruction is used to load the stack pointer register with the contents

of the register pair H,L. The contents of L are placed in the LO eight bits of

the stack pointer, and the contents of H are placed in the HI eight bits of the
stack pointer. As pointed out in the NEC Microcomputers, Inc. manual: "The SPHL
instruction can be used to load the stack pointer with a value which has been
computed using the double resgier arithmetic operations available with the HL
register pair. This should always be done with care, since it is easy to lose

track of where the stack pointer is pointing, with subsequent loss of stack content."

QUT port

The OUT port instruction moves the 8-bit contents of the accumulator to the output
port specified by the second byte of the instruction. Two hundred and fifty-six

18-65

unique output ports can be selected. During the third machine cycle of the instruc-
tion, the device code appears on the address bus, an OUT control pulse is generated,
and the contents of the accumulator appear on the external bidirectional data bus.

OUT port (Output)
(data) =— (A)
The content of register A is placed on the eight bit
bi-directional data bus for tr ion to the spec-
ified port.

port
Cycles: 3
States: 10

Addressing: direct
Flags: none

IN port

N port (Input}
(A) <— (data)
The data placed on the eight bit bi-directional data
bus by the specified port is moved to register A.

1|1|0|1l1

port

Cycles: 3
States: 10
Addressing: direct
Flags: none

The IN port instruction permits the 8080A chip to read the data present at the
input port given by the second byte of the instruction. Two hundred and fifty-six
unique input ports cam be addressed. During the third machine cycle of the
instruction, the device code for the input device appears on the address bus, an
IN control signal appears on the control bus, and information appearing on the
bidirectional data bus also appears in the accumulator.

El and DI
El (Enable interrupts) Dt (Disable interrupts)
The interrupt system is enabled following the execu- The interrupt system is disabled immediately fol-
tion of the next instruction. lowing the execution of the DI instruction.
T
T T T Tatola s AR
Cycles: 1 Cycles: 1
States: 4 States: 4

Flags: none Flags: none

18-66

To quote the NEC Microcomputers, Inc. WCOM-§ Software Manual: 'Whether the 8080A
responds to an interrupt request is determined by the state of an internal interrupt
flip-flop, INTE., When this flip-flop is set to one, the processor responds to
interrupts. When it is reset to zero, the processor ignores interrupt requests.
The INTE flip-flop is affected by both program control and system operation.
System operations which affect INTE are a system reset and the acknowledgement of
an interrupt. Both operations clear INTE and thus disable the interrupt facility.
1f further interrupts are to be acknowledge after a Reset or Acknowledge Interrupt,
the program must re-enable the flip-flop. Iwo instructions, EI, Enable Interrupt,
and DI, Disable Interrupt, provide programmed control of the INTE flip-flop. The
EI instruction sets the INTE flip-flop to one, enabling the interrupt facility,
while the DI instruction clears the INTE flip-flop to zero, dissbling the interrupt
facility. Thus if it is desired that a section of the program be executed with
high speed and without the possibility of being interrupted, the DI instruction
may be used to disable interrupts for that section of code. After the section is
complete, EI re-enables the interrupt facility. Since the acknowledgement of an
interrupt request resets the INTE flip-flop to zero, an EI should be the first
instruction in any routine that services interrupts. (This assumes that the
interrupt acknowledge resets the interrupt request, This must be done to prvent
hanging up the 8080A processor.) An exception should be made when servicing the
fastest 1/0 device. To avoid disturbing service to this I/0 unit, the INTE
flip-flop should be enabled at the end of the routine.”

HLT
HLT {Halt)
The processor is stopped. The registers and flags are
unaffected.
r0l1|1I1I0|1]1|
Cycles: 1
States: 7

Flags: none

Courtesy of the Intel Corporation

The HLT instruction causes the processor to suspend operation until the 8080A
chip receives a RESET signal or receives an interrupt request signal (INT). The
processor accepts the INT request regardless of the condition of the internal
interrupt flip-flop. After processing the interrupt, instruction execution
continues at the next location after the Halt command.

NOP

NOP {No op)
No operation is performed. The registers and flags

are unaffected.

IT‘tHo'n'o'o'o'M

Cycles: 1
States: 4
Flags: none

18-67

The NOP instruction does absolutely nothing except consume a location in memory

and take up four states during program execution. It is used for program

debugging, in which extra NOP instructions are placed in a program for subsequent
modification. When deletions are made to a program, NOPs should be inserted in their
place.

W

With the aid of material in the Intel 8080 Microcomputer Systems User's Manual

and the NEC Microcomputers, Inc. WCOM-8 Software Manual, we have provided a

detailed description of the individual instructions of the 8080A microprocessor

chip. We are grateful to both the Intel Corporation and NEC Microcomputers, Inc.

for their kind permission to let us use information in their manuals. If you

are a serious user of the 8080A chip, you should have both manuals in your possession.

18-68

INSTRUCTION SET

Summary of Processor Instructions

Instruction Codel!! Clockl2!

Mnemonic Description 0 Og D D3 Dy Dp 0 O Cycks Mnemonic
MOV, 5 Move regster 1 register o1 Db oS ss 5 fz
MOV M1 Move register 1o memery o1 1 1 0s s s 7 BNz
MOV LM Move memory 10 reguter o1 D DD 1o 7 &P
HeT Han o1 1 10y o A
MYLE Move mmediat cegster 00 b DDt T 7 RPE
MVIM Move mmediate memory L S T A A AP0
INRY Incrementregater 69 cooD 100 5 AST
OCR1 Decrement regstr 99 0 o001 5 w
INRM lacremant memory 0y T 10100 1 our
OCRM Decrement memory 08 1 010w s
ADOT Addreguter 10A 100 0 0SS s 4
ADCC AddugstertoAwthcny 1 0 0 D 1 S S S 4 wio
SUBI Subtactregster rom A P00 105 s s a
SBBr Sublract regster fram A oo s s s e Lk

with borrow
ANAC And register win A o100 s s s« Lxisp
XRAT ExcusweOrregstewihA 1 D 1 D 1 S S S ¢ PUSH B
OFAC Or roguster with A oo 05 s s e
CMPr Compare reguter with A Voo s s s PUSH D
ADDM Addmemary to A Te oo 0ot o
ADCH Adé memory to A wit [I R T T | PUSHH
SUBM Subirart memary lrom A te oo o
SEBM Subtract memary fram A oo 10 PUSH PSW

with bortow
ANAM And memory with A I I T I] PoPe
XRAM ExclusveOrmemorywihA 1 O 1 0 1 1) 0/
ORAM O memory with T R T T I S PP O
CMPM Compare memary wnth A oo e
ADl Add immediat 1 o0 a0 POPH
act Add mmedate o Awitn 1 1 0 0 1 1 1 0)

ey POP PSW
su Subirect immediate homA 110 1 0 1 1 01
s8I Subiract mmediatefomA 11 0t 1 1t 0 g sTA

with barraw L0A
am And rmmediate with A T oo : XCHG
xR Exclusne 0 mmegiotewty 1 11 0 1 1 1 0)

A XTHL
Rl O inmediate vath A R I I T R B SPHL
cPl Compre mmedarewind 1 1 1 1 1 % 19 PCHL
LG Aotate A [T I T T 0ADE
RAC Rotate A nghc [BT R B} 0AC D
RAL Rotare At throughcary 0 6 0 1 0 1 1 1 & AT H
AR Rotate A ight through 00 0 o T 0AD P

carey STAXB
P Jump uncancitional T o0 0o 10 STAXD
i Jump on carry oo 0 e o Loaxs
e Jump o1 0 carry o6 100w Lnaxs
iz buma 1 w10 e 160w WX B
Nz Jump on o 2aro 16000 10w XD
» Jump o1 pase Tt oo 0 INXH
m Jumg on minus [T T R A T B T 1 INXSP
e Juma o1 party even [R I B B R ST} Doxs
0 Jump on parity odd T 000 0 cxo
AL Callunconditianal o000 W DExH
cc Callon carry oo 06w oxsP
cne Callon no cany Voo 000 A
2 Catt on 2610 Vo0 1100 1y st
cnz Callon o 2200 TUoo o601 o0 nm e
o Call on posiive IR B A ST AR
n Collon minus I BT T B T 111 SHLD
cPE Call on parity even [I B S I B B 111 tHLD
cro Call on parity odd [I B BT &
RET Return 00 T 00 1w ol
AC Aoturn on carry P01 10 00 s nop
ANC Retwrn on 1o carry 10100 00 s

Instruction Codel)) ek 2!

Clo
Description Oy Ug O Dy D3 0 Dy Op Cycles

Return on zero o0 10 00 sm
Return an o zerc 110 0 00 ot o0 &N
Return on positie 111 00 0 0 s
Retuen on minus T 10 00 s
Return on panty even o1 0 1000 sm
Retura on panty odd T 0 00 0 0w
Restart A A AT T n
Ingur L0101 1
tput [S B B R 1
Load smmediate repister D0 0 0 00 01 10
ParB &L
Lot inmed ate register 00 0 1 00 0 1
ParD&E
Load immeiete registec 00 1 0 00 01 10
Pair H & L
Load immediete stack powter ¢ 0t 1 0 0 0 1 0
Push registec Pair B&Con) 1 0 0 0 1 0 1 n
stach
Push register Par D&Ewn 1 1 0 1 0 1 0 1 "
stack
Push ragister Pair H & L on [T B I "
stack
Push A and Flags [R T T B "
stack
Pug register par B & C of 10 0 00 0t 10
stack
Pop regster par 0 Eoft 1 1 0 1 0 0 0 1 10
stack
Pop cegistar gair H & L ol O T T I I I 1
stack
Pog A and Flags o100 0 0
1 stac
Stare A direct G0 1 100 10 13
Loadt A direct GO0 o110 1 13
Exchange 0 8 E, H& T 0101 a
Regsters
Exchongewpulstack HEL 1 1 1 0 0 0 1 1 %
¥ pointer [TR T | 5
H& L to program counter Y1610 0 5
AWBECIHE L G0 0 ¢ 10 0 10
Add D &€ 1o HE L 06 0 1 10 0 "
AdGHE LtoHg L 00 10 10 0t 10
Add stack poter o HEL 0 0 1 1 1 0 0 1 10
Store A indire:t 60 0 e 00 10 ’
Store A indirect 00 9 1 00 10 ?
Load A indirecs C 0 9 0 10t 1
Load A indirect 000 0 1 10 10 7
Increment B & C registers 00 9 0 00 1) 5
Increment D & € regisers 00 0 1 00 11 5
Inccement H & L registers 00 1 0 00 11 5
incremeat stack pointec 00 1 1 00 1 5
Decrement 8 & 00 0 0 1 0 1 5
Dgcrement 0 & € 00 0 1 1 9 1 5
Docrement H & L 90 1 0 1 0 1 5
Oecrement stack pointec 00 1 110 5
Comptement A 00 1 0 111 4
Set carry 00 1 1 01 1)
Complement carry L B N | 4
Decimal adiust A 00 10011 4
Stare H & L direct G0 1 000 10 16
Load H & L direct B0t 0 1010
Enable Intermupts [I T B S | .
Disgble interrugt T 00 4
No-operation 90 0 000 00 4

NOTES: 1. DDD or S5 — 000 B — 001 C — 010D ~ 011 E ~ 100 H — 101 L — 110 Memory — 111 A
2. Two possible cycle times, {5/11) indicate instruction cycles dependent an condition flags.

Courtesy of the Intel Corporation,
Santa Clara, California 95051

18-69
INTRODUCTION TO THE EXPERIMENTS
The following experiments provide a number of interesting programs that you may
need if you are working with digital instrumentation.

Experiment No. Comments

1 Demonstrates the execution of a routine that converts a two-digit
BCD number into an 8-bit binary number.

2 Demonstrates the execution of a program that performs a 1l6-digit
BCD addition of two numbers. The result must be less than or
equal to 9,999,999,999,999,999.

3 Demonstrates the execution of a routine that converts a 16-bit
binary number into a five BCD digit number.

18-70
EXPERIMENT NO, 1 {
PURPOSE
The purpose of this experiment is to load and execute a BCD Input and Direct
Conversion to Binary Routine, No. 80-147 in the Intel Microcomputer User's !
Library., The program was developed by M. H. Gansler. H
!
PROGRAM
LO Memory Instruction
address byte Mnemonic Description
000 076 MVI A Move immediate byte to the accumulator
001 * - Two-BCD-digit data byte that is to be
converted to an 8-bit binary number
002]J] MOV C,A Move contents of accumulator to register
C
003 36 ANT AND immediate byte with contents of
the accumulator
004 017 017 Mask byte that masks out the most !
significant BCD digit {
005]37 MOV E,A Move contents of accumulator to ,
register E
006]_7]_ MOV A,C Move contents of register C to the
accumulator
007 36 ANT AND immediate byte with contents of the
accumulator
010 30 360 Mask byte that masks out the least
significant BCD digit
011 017 RRC Rotate the accumulator contents one bit
to the right and into the carry flag
012 07 RRC Same }
P
013 u] MOV C,A Move contents of accumulator into
register C
014 017 RRC Rotate the accumulator contents one bit
to the right and into the carry flag
015 07 RRC Same
016 201 ADD C Add contents of register C to the
contents of the accumulator

1871

017 007 RLC Rotate the accumulator contents one bit
to the left and into the carry flag

020 203 ADD E Add contents of register E to the
contents of the accumulator

021 323 ouT Output contents of accumulator to
output port given in the next instruction
byte

022 000 000 Device code for output port 0

023 166 HLT Halt

DISCUSSION

The program starts with the two-digit BCD number in the accumulator. The program
can be a subroutine; substitute a RET instruction for the HLT instruction at
memory address LO = 023. The above program can be located anywhere in memory.

We located the origin of the program at HI = 003 and LO = 000.

sTep 1
Load and execute the above program for the two-digit decimal number 56. The

BCD equivalent is 01010110, or 56 in hexadecimal and 126 in octal. What binary
number do you observe?

We observed 00111000 in binary, or 070 in octal.

STEP 2

Change the BCD number at memory address HI = 003 and LO = 001 to the numbers given
in the table below. Compare your results with the results that we observed.

Decimal number Observed binary Predicted binary
number number

1 00000001

10 00001010 !
20 00010100 |
50 00110010
75 01001011
80 01010000
90 01011010
99 01100011

To confirm the last BCD-to-binary comversiom, 99 = 1 + 2 + 32 + 64. Yes, it works.

18-72

EXPERIMENT NO, 2

PURPOSE

The purpose of this experiment is to load and execute a 16-digit BCD addition
subroutine, in which two BCD numbers are added together to produce a result
that is less than or equal to 9,999,999,999,999,999. This program is listed
and described in considerable detail in the WCOM-8 Software Manual and is
given here courtesy of NEC Microcomputers, Inc. The program is started at
memory location HI = 003 and LO = 024,

PROGRAM
LO memory Instruction
address byte Mnemonic Description
024 021 IXI D Load immediate two bytes into registers
E and D, respectively
025 2u7 - Registers D and E contain the 16-bit
address of the least significant digits
026 003 - in the augend
027 ol IXI H Load immediate two bytes into registers
L and H, respectively
030 EY4 - Registers H and L contain the 16-bit
address of the least significant digits
031 003 - in the addend
ADD16: 032 365 PUSH PSW Push the program status word onto the
stack [NOTE: Make certain that you
have loaded the stack pointer before
you execute this program,]
033 305 PUSH B Push the contents of register pair B,C
onto the stack.
034 016 MVI C Move the immediate byte into register C
035 01[) - Binary number equal to one-half the
number of BCD digits. Thus, for 16 BCD
digits, the octal code would be 010.
036 257 XRA A Clear the accumulator and carry flag
LOOP2: 037 032 LDAX D Load the accumulator from the memory
location addressed by register pair
D,E
040 216 ADC M Add the contents of the memory location
addressed by register pair H,L to the
contents of the accumulator
041 OLI7 DAA Decimal adjust the contents of the

accumulator

18-73

042 02 STAX D Store the contents of the accumulator
into the memory location addressed by
register pair D,E

043 015 DCR C Decrement contents of register C by 1
044 312 Jz Jump to the memory location DONE2
if the contents of register C are zero
045 054 - 10 address byte of DONE2
046 003 - HI address byte of DONE2
047 053 DCX H Decrement contents of register pair H,L
by 1
050 033 DCX D Decrement contents of register palr D,E
by 1
051 303 M Jump to the memory location LOOP2
052 037 - LO address byte of LOOP2
053 003 - HI address byte of LOOP2
DONE2: 054 301 POP B Pop contents of register pair B,C off of
stack
055 361 POP PSW Pop the program status word off of stack
056]_72 MOV A,D Move contents of register D to accumulator
057 323 ouT Output contents of accumulator
060 001 001 Device code of port 1
061 173 MOV A,E Move contents of register E to accumulator
062 323 ouT Output contents of accumulator
063 o0 000 Device code of port 0
064 166 HLT Halt
DISCUSSION
This program starts with a 16-digit BCD augend in LO memory addresses 340 through
347, with the least significant BCD digit in location 347 and the most significant
BCD digit in location 340. The 16-digit BCD addend is initially in LO memory
addresses 350 through 357, with the least significant BCD digit in location 357 and
the most significant BCD digit in location 350. The terms, gddend and augend, are
defined as follows:2
augend In an arithmetic addition, the number increased by having
another number (called the addend) added to it.

18-74

addend A quantity which, when added to another quantity (called the
augend), produces a result called the sum. |

Program execution starts at HI = 003 and LO = 024. The sum replaces the augend.

Consider an augend of 1,000,000,000,000,099 and an addend of 8,000,000,000,000,001.
The memory map for these two 16-digit BCD numbers is as follows (all at HI = 003):

L0 memory BCD Octal Binary
address digits code code
340 1,0 020 00010000
341 0,0 000 00000000
342 0,0 000 00000000
343 0,0 000 00000000
344 0,0 000 00000000
345 0,0 000 00000000
346 0,0 000 00000000
347 9,9 231 10011001
350 8,0 200 10000000
351 0,0 000 00000000
352 0,0 000 00000000
353 0,0 000 00000000
354 0,0 000 00000000
355 0,0 000 00000000
356 0,0 000 00000000
357 0,1 001 00000001 |
When these two numbers are added, the sum--9,000,000,000,000,100--replaces the
augend in memory locations HI = 003 and LO = 340 to HI = 003 and LO = 347.
step 1
Load the above program into memory. Load the augend, 1,000,000,000,000,099, and |
the addend, 8,000,000,000,000,001, into memory. Execute the program. What is
the sum, which appears starting at LO memory address 3407
|

1875

We observed the following sequence of BCD numbers in successive memory locations
starting at LO = 340:

which correspond to the 16-digit BCD number, 9,000,000,000,000,100,

STEP 2

Add the following BCD numbers and compare your results with those that we observed.

Augend Addend Sum

3,000,000,000,000,100
0,000,000,000,123,456
0,000,000,000,927,928

9,999,999,999,999,999

1,000,000,000,000,001
0,000,000,000, 240,833
0,000,000,000, 844,992

0,000,000,000,000,001

4,000,000,000,000,101
0,000,000,000,364,289
0,000,000,001,772,920

0,000,000,000,000,000

STEP 3

Change the byte at LO = 035 to 002, which corresponds to the addition of two
four-digit BCD numbers. Perform the following additions:

0099 + 0001 = (100
9999 + 0001 = 0000
0001 + 0001 = 0002
0023 + 0077 = 0100

1876
EXPERIMENT NO, 3

PURPOSE

The purpose of this experiment is to load and execute a Binary to BCD Subroutine,
No. 80-67 in the Intel Microcomputer User's Library. The program was developed
by Niels S. Gundestrup of the Geophysical Isotope Laboratory in Denmark.

10 memory Instruction
address byte Mnemonic Description
222 (1741 LXI D Move immediate two bytes into register
pair D. This {s the 16-bit binary
number that will be converted to a 5
BCD digit number.
223 * - Least significant 8 bits of 16-bit
binary number
224 * - Most significant 8 bits of 16-bit
binary number
225 ou1 LXI H Move immediate two bytes into register
pair D, This is the memory address of
the most significant digit (MSD) of
the 5 digit BCD number. The remaining
four digits are stored in successive
memory locations, ome digit per location.
226 30 - L register byte !
227 003 - H register byte i
BNBCD: 230 %5 PUSH PSW Push contents of program status word on
stack
231 35 PUSH B Push contents of register pair B on stack
232 325 PUSH D Push contents of register pair I on stack
233 35 PUSH H Push contents of register pair H on stack
234 33 XCHG Exchange the contents of register pair H
with the contents of register pair D
235 001 IXI B Move immediate two bytes into register pair
B. (10,000)
236 360 - C register byte
237 30 - B register byte
240 315 CALL Call subroutine DECNO, which performs the
|

241
242

243

244
245
246
247
250

251

252
253
254
255
256
257

260
261
262
263
264

265

266

267

270

271

272

276
003
001

030
34
315
276
003
001

234

315
276
003
001

37
315
2%

&

8 8

31
21

LXI B

LXT B

IXI B

000

STAX D

POP H

POP D

1877

binary to BCD conversion. (MSD)
LO address byte
HI address byte

Move immediate two bytes into register
pair B. (1000)

C register byte
B register byte
Call subroutine DECNO
LO address byte
HI address byte

Move immediate two bytes into register
pair B. (100)

C register byte
B register byte
Call subroutine DECNO
LO address byte
HI address byte

Move immediate two bytes into register
pair B. (10)

C register byte
B register byte
Call subroutine DECNO
LO address byte
HI address byte

Move contents of register L to the
accumulator

Add immediate byte to contents of
accumulator

[NOTE: 260 if ASCII code is desired]

Store contents of accumulator in the mem-
ory location addressed by register pair D

Pop register pair H off stack

Pop reglster pair D off stack

18-78

273 301 POP B Pop reglster pair B off stack

274 %1 POP PSW Pop program status word off stack

275 3 RET Return from subroutine

DECNO: 276 076 MVI A Clear contents of accumulator

277 o0 000 [NOTE: 260 if ASCII code is desired]

300 325 PUSH D Push register D on stack

301 1% MOV E,L Move contents of register L to register E

302]_ZLI MOV D,H Move contents of register H to register D

303 074 INR A Increment contents of accumulator by 1

304 011 DAD B Add contents of register pair B to contents
of register pair H and store in register
pair H

305 33 Jc Jump 1if carry flag is at logic 1

306 01 - 10 address byte

307 003 - HI address byte

310 075 DCR A Decrement contents of accumulator by 1

311 _]53 MOV L,E Move contents of register E to register L

312 hlivi MOV H,D Move contents of register D to register H

313 21 POP D Pop register pair D off stack

314 02 STAX D Store contents of accumulator in the
memory location addressed by register
pair D

315 023 INX D Increment contents of register pair D by 1

316 311 RET Return from subroutine DECNO

DISCUSSION

This program starts with a 16-bit binary number in register pair D,E. The number
is converted into a five BCD digit number that is stored starting at HI = 003

and LO = 340. The most significant BCD digit is stored at this locationm, and

the remaining four digits in subsequent locations. The least significant BCD digit
is stored at 10 = 344. The program BNBCD starts at HI = 003 and LO = 230; however,
the 16-bit binary number must exist in register pair D, and the location of the
most significant digit in register pair H. We have used LXI instructions to set
this information in the registers before BNBCD is executed.

The output can either be as decimal numerals or as 8-bit ASCII code, with the most
significant bit (the parity bit) at logic 1. A slight error in the original
program has been corrected to permit the LSD to be stored in ASCII code.

18-79

The original contribution to the Intel User's library is shown on the following
pages. Note the style of the cross—assembled program, the program comments
(which follow the semi~colon on each line), and the fact that both the memory
addresses and the instruction bytes are listed in hexadecimal code. This listing
gives you important clues concerning the operation of the program.

sTep 1

Load the program into memory. Set the bytes at LO = 267 and LO = 277 to 000.
Load 377 into both LO = 223 and LO = 224. These two instruction bytes correspond
to the 16-bit binary number, 1111111111111111, which has a decimal value of
65,535.

STEP 2
Execute the program. Reset the microcomputer and determine the contents of

memory locations LO = 240 through LO = 344, What sequence of decimal numbers do
you observe in these locations?

We observed 6 5 5 3 5, as expected.

STEP 3

Determine the five-digit BCD equivalent of the following 16-bit binary nunbers,
which should be loaded at memory locations 1O = 223 and LO = 224 before you
execute the program. Check your results with ours.

D register byte E register byte Observed 5 digit
(LO = 224) (L0 = 223) BCD number
377 377 65535
200 000 32768
100 000 16384
040 000 08192
020 000 04096
010 000 02048
004 000 01024
002 000 00512
001 000 00256
000 200 00128
000 100 00064
000 040 00032
000 020 00016
000 010 00008
000 004 00004
000 002 00002
000 001 00001

000 000 00000

18-80

STEP 4

A program to convert a 16-bit binary word to a 5 digit BCD number is quite useful.
Given below 1s a hexadecimal listing of a program that starts at HI = 001 and
10 = 000. We have loaded it into EPROM and can use it as a subroutine.

L0 memory address
BNBCD: 00
01
02
03
04

DECNO: 24

Instruction byte
F5
C5
D5
E5
EB
o1
FO

2100
2101
a182
21083
a1e4
2105
2108
2108
210E
#111
2114
2117
211A
211D
@11E
oLtF
2120
9121
2122
2123

8124
@125
2126
8127
2128
a129
a12a
212D
@12E
@12F
2130
2131
9132
@133

FS5
cS
DS
ES
EB
@1FeD8
cbh2401
@118FC
CD2 491
@19CFF
cD24061
B1F6FF
CD2401
70D
12

D1
c1
F1
c9

AF

SD
54
3C

DA2681
3D
6B
62
D1
12
13
c9

18-81

3BINARY TO BCD SUBROUTINE

5 INPUT: UNSIGNED BINARY NUMBER IN D,E

3 POINTER TO LOWEST BUFFER LOC IN HL
$OUTPUT: S BCD-DIGITS» ONE DIGIT PER MEMORY LOC.
3 HL POINT TO MSD IN LOWEST LOCATION.
BNBGD: PUSH PSW 3 SAVE VARIABLES

PUSH B

PUSH D

PUSH H

XCHG $GET- NUMBER IN HL, ADDR IN DE

LXI B,-10000

cALL DECNO 3GET MSD

LX1 B,~1000

CALL DECNO

LXI B,-100

CALL DECNO

LX1 Bs»~10

CALL DECNO

MOV AsL SGET LSD

STAX D $STORE IT

POP H

POP D

POP B

POP PSW

RET
DECNO: XRA A 59 TO A. USE 30H IF ASCII

PUSH D 5 SAVE ADDR

MOV EsL 3 SAVE BINARY

MOV DsH

INR A 3 INCRENENT DIGIT

DAD B 3 SUBTRACT

JC DECNO+2 SRESULT NEGATIVE?

DCR A $YES, RESTORE DIGIT COUNT

MOV LsE 3BINARY NUMBER

MOV HsD

POP D 5AND ADDRESS

STAX D 5 STORE DIGIT

INX D 3 INCREMENT POINTER

RET

Courtesy of the Intel User's
Library, Intel Corporation,
Santa Clara, California 95051

18-8

2

2000
FFFF
10FF

0020
2850
7053
2056
2959
a95A

285D

Test program for binary to BCD conversion
Using the monitor:

1. Deposit binary value in DE using X-command
2, Type G50

BCD in 1001-1005.

PROM EQU o
RAM EQU NOT PROM
STPNT EQU 10FFH

ORG S@H
31FF10 LXI SP»STPNT
210110 LXI H»1081H
Cbeaa1 CALL BNBCD
CF RST 1
C35600 JMP $-4

ORG 1A@H

13-33
OCTAL/HEXADECIMAL LISTING OF THE 8030 INSTRUCTION SET

On the following five pages, we provide an extemnsive listing of the 256 instruction
codes in the 8080 microprocessor instruction set. This listing provides the
following information:

o The instruction code, in octal

o The instruction code, in hexadecimal

o The instruction code, in the Intel Corporation Mnemonic code

o A brief description of what the instruction code does
You may wish to make a Xerox or IBM copy of this listing and keep it handy. We
have found the listing to be of particular value when we attempt to convert
an octal listing into hexadecimal, or vice versa.
Following the octal/hexadecimal listing, we also provide a one-page summary of

the 8080 instruction set that is arranged according to the number of bytes
in the instruction.

000

002
003
004
005
006
007
010
011
012
013
014
015
0l6
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067

MNEMONIC

NOP
LXI B

DAD H

<B2> <B3>

<B2>

<B2>

<B2> <B3>

<B2>

<B2>

<B2> <B3>
<B2> <B3>

<B2>

LHLD <B2> <B3>

DCX H
INR L
DCR L
MVI L
CMA

LXI sp

<B2>

<B2> <B3>

STA <B2> <B3>

INX SP
INR M
DCR M
MVI M
STC

<B2>

DESCRIPTION

No operation

Load immediate into register pair B and C

Store A indirect into M addressed by B and C
Increment contents of register pair B and C by 1
Increment register B by 1

Decrement register B by 1

Move immediate into register B

Rotate A left

Add contents of B,C to H,L and store in H,L
Load A indirect from M addressed by B and C
Decrement contents of register pair B and C by -1
Increment register C by 1

Decrement register C by 1

Move immediate into register C

Rotate A right

Load immediate into register pair D and E

Store A indirect into M addressed by D and E
Increment contents of register pair D and E by 1
Increment register D by 1

Decrement register D by 1

Move immediate into register D

Rotate A left through carry

Add contents of D,E to H,L and store in H,L
Load A indirect from M addressed by D and E
Decrement contents of register pair D and E by 1
Increment register E by 1
Decrement register E by 1
Move immediate into register
Rotate A right through carry

]

Load immediate into register pair H and L

Store L and H into M and M+l, where M = <B2> <B3>
Increment contents of register pair H and L by 1
Increment register H by 1

Decrement register H by 1

Move immediate into register H

Decimal adjust A

Add contents of H,L to H,L and store in H,L
Load L and H with contents of M and M1, respectively
Decrement contents of register pair H and L by
Increment register L by 1

Decrement register L by 1

Move immediate into register L

Complement A

Load immediate into stack pointer

Store A direct into M addressed by <B2> <B3>
Increment register SP by 1

Increment contents of M by 1

Decrement contents of M by 1

Move immediate into M addressed by H and L

Set carry flip-flop to logic 1

<BL>

OCTAL HEX
070 38
071 39
072 3A
073 3B
074 3c
075 3D
076 3E
Q77 3F
100 40
101 41
102 42
103 43
104 44
105 45
106 46
107 47
110 48
111 49
112 4A
113 4B
114 4C
115 4D
116 4E
117 4F
120 50
121 51
122 52
123 53
124 54
125 55
126 56
127 57
130 58
131 59
132 5A
133 5B
134 5C
135 5D
136 5E
137 5F
140 60
141 61
142 62
143 63
144 64
145 65
146 66
147 67
150 68
151 69
152 64
153 6B
154 6C
155 6D
156 6E
157 6F

MNEMONIC

DAD
LDA
DCX
INR

SP
<B2> <B3>
i
A

DCR A

MVL

CcMC
MOV
MOV

MOV

MoV

A <B2>

FEmRUOEPRCOE@OUQEPREIEUOEPREHEEDOW

PREOEEODOE >R

PR RPN O NI RN N RN AR EE OO OO0 0 000000000 OR FWE W WwE W

PthEbaw

DESCRIPTION

13-8

Add stack pointer contents to H,L and store in H,L
Load A direct with contents of M addressed by <B2> <B3>
Decrement register SP by 1
Increment register A by 1
Decrement register A by 1
Move immediate into register A
Complement carry

love
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move

contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents
contents

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

f1lip~flop

register B to
register C to
register D to
register E to
register H to
register L to
M to register
register A to
register B to
register C to
register D to
register E to
register H to
register L to
M to register
register A to
register B to
register C to
register D to
register E to
register H to
register L to
M to register
register A to
register B to
register C to
register D to
register E to
register H to
register L to
M to register
register A to
register B to
register C to
register D to
register E to
register H to
register L to
M to register
register A to
register B to
register C to
register D to
register E to
register H to
register L to

M to register
register A to

register
register
register
register
register
register
B

register
register
register
register
register
register
register
c

register
register
register
register
register
reglster
register
D

register
register
register
register
register
register
register
E

register
register
reglster
register
register
register
register
H

reglster
register
register
register
register
register
register
L

register

O e HEEEEAED ooooooO oo ®w W Wwww

[l =l ol

1o

188 1> ;

227 97 SUB
230 98 SBB
231 99 SBB
232 9A SBB
233 9B SBB
234 9C SBB
235 9D SBB
236 9E SBB
237 9F SBB
240 A0 ANA
241 Al ANA
242 A2 ANA
243 A3 ANA

Clear register A
Subtract carry and contents of register B from A
Subtract carry and contents of register C from A
Subtract carry and contents of register D from A
Subtract carry and contents of register E from A
Subtract carry and contents of register H from A
Subtract carry and contents of register L from A
Subtract carry and contents of M from register A
Subtract carry and contents of register A from A
AND contents of register B with register
AND contents of register C with register
AND contents of register D with register
AND contents of register E with register
244 A4 ANA AND contents of register H with register
245 A5 ANA AND contents of register L with register
246 A6 ANA M AND contents of M with register A

247 A7 ANA A AND contents of register A with register

OCTAL HEX MNEMONIC DESCRIPTION
160 70 MOV M,B Move contents of register B to M |
161 71 MOV M,C Move contents of register C to M |
162 72 MOV M,D Move contents of register D to M |
163 73 MOV M,E Move contents of regilster E to M B
164 74 MOV M,H Move contents of register H to M i
165 75 MOV M,L Move contents of register L to M]
166 76 HLT Halt |
167 77 MOV M,A Move contents of register A to M !
170 78 MOV A,B Move contents of register B to register A |
171 79 MOV A,C Move contents of register C to register A |
172 7A MoV A,D Move contents of register D to register A
173 78 MOV ALE Move contents of register E to register A i
174 7c MOV A,H Move contents of register H to regilster A :
175 7D MOV A,L Move contents of register L to register A |
176 7E MOV A,M Move contents of M to register A
177 7F MOV A,A Move contents of register A to register A
200 80 ADD B Add contents of register B to register A
201 81 ADD C Add contents of register C to register A
202 82 ADD D Add contents of register D to register A
203 83 ADD E Add contents of register E to reglster A
204 84 ADD H Add contents of register H to register A
205 85 ADD L Add contents of register L to register A
206 86 ADD M Add contents of M to register A v
207 87 ADD A Add contents of register A to register A [
210 88 ADC B Add carry and contents of register B to register A |
211 89 ADC C Add carry and contents of register C to register A !
212 8A ADC D Add carry and contents of register D to register A |
213 8B ADC E Add carry and contents of register E to register A |
214 8c ADC H Add carry and contents of register H to register A
215 8D ADC L Add carry and contents of register L to register A
216 8E ADC M Add carry and contents of M to register A
217 8F ADC A Add carry and contents of register A to register A
220 90 SUB B Subtract contents of register B from register A
221 91 SUB C Subtract contents of register C from register A
222 92 SUB D Subtract contents of register D from register A
223 93 SUB E Subtract contents of register E from register A
224 94 SUB H Subtract contents of register H from register A
225 95 SUB L Subtract contents of register L from register A
226 96 SUB M Subtract contents of M from register A H

A
B
C
D
E
H
L
M
A
B
4
D
E
H
L

EE e

S

<BLl>
OCTAL HEX
250 A8
251 A9
252 AA
253 AB
254 AC
255 AD
256 AE
257 AF
260 B0
261 Bl
262 B2
263 B3
264 B4
265 B5
266 B6
267 B7
270 B8
271 B9
272 BA
273 BB
274 BC
275 BD
276 BE
277 BF
300 co
301 ci
302 c2
303 c3
304 c4
305 c5
306 cé
307 c7
310 c8
311 c9
312 CA
313 CB
314 cc
315 cD
316 CE
317 CF
320 DO
321 Dl
322 D2
323 D3
324 D4
325 D5
326 D6
327 D7
330 D8
331 D9
332 DA
333 DB
334 DC
335 DD
336 DE
337 DF

MNEMONIC

cMP
CMP
oMP
RNZ
PoP
JNZ
JMp
CNZ

PREODEOUOBPRONGODOEPRETIEOD O®

B

<B2> <B3>
<B2> <B3>
<B2> <B3>

PUSH B

ADI
RST
RZ
RET
JZ

cz

CALL <B2> <B3>

ACT
RST
RNC
POP
JNC
our
CNC

<B2>
0

<B2> <B3>

<B2> <B3>

<B2>
1

D
<B2> <B3>
<B2>
<B2> <B3>

PUSH D

SUL
RST
RC
Jc
IN
cc
SBI
RST

<B2>
2

<B2> <B3>
<B2>
<B2> <B3>

<B2>
3

18-87
DESCRIPTION

Exclusive~OR contents of register B with register
Exclusive-OR contents of register C with register
Exclusive-OR contents of register D with register
Exclusive-OR contents of register E with register
Exclusive-OR contents of register H with register
Exclusive~OR contents of register L with register
Exclusive-OR contents of M with register A

Ll

OR contents of register B with register A

OR contents of register C with register A

OR contents of register D with register A

OR contents of register E with register A

OR contents of register H with register A

OR contents of register L with register A

OR contents of M with register A

OR contents of register A with register A

Compare contents of register B with register A
Compare contents of register C with register A
Compare contents of register D with register A
Compare contents of register E with register A
Compare contents of register H with register A
Compare contents of register L with register A
Compare contents of M with register A

Compare contents of register A with register A
Return from subroutine if zero flip~flop = logic O
Pop stack and store address in register pair B and C
Jump if zero flip-flop = logic 0

Jump unconditionally to M addressed by <B2> <B3>
Call subroutine if zero flip-flop = logic O

Push contents of register pair B and C on stack
Add immediate to register A

Call subroutine at address 000g

Return from subroutine if zero flip-flop = logic 1
Return from subroutine

Jump 1f zero flip-flop = logic 1

Call subroutine if zero flip-flop = logic 1

Call subroutine located at M = <B2> <B3>

Add immediate and carry flip-flop to register A
Call subroutine at address 010g

Return from subroutine if carry flip-flop = logic O
Pop stack and store

Jump if carry flip-flop = logic 0

Output to device addressed by <B2>

Call subroutine if carry flip-flop = logic O

Push contents of register pair D and E on stack
Subtract immediate from register A

Call subroutine at address 020

Return from subroutine if carry flip-flop = logic 1
Jump if carry flip-flop = logic 1

Input from device addressed by <B2>

Call subroutine if carry flip-flop = logic 1
Subtract immediate and carry flip-flop from register A
Call subroutine at address 0308

13-8

340
341
342
343
344
345
346
347
350
351
352
353
354
355
356
357
360
361
362
363
364
365
366
367
370
371
372
373
374
375
376
377

<B1>

MNEMONIC

RPO

POP H
JPO <B2>
XTHL
CPO <B2>
PUSH H
ANT <B2>

XRI <B2>
RST 5

RP

POP PSW

<B3>

<B3>

<B3>

JP <B2> <B3>

DL

CP <B2> <B3>

PUSH PSW
ORI <B2>
RST 6

RM

SPHL

JM <B2> <B3>

EL

CM <B2> <B3>

CPI <B2>
RST 7

DESCRIPTION

Return from subroutine if parity flip-flop = logic O
Pop stack and store address in register pair H and L
Jump if parity flip-flop = logic O

Exchange top of stack with contents of H and L

Call subroutine if parity flip-flop = logic 0

Push contents of register pair H and L on stack

AND immediate with contents of register A

Call subroutine at address 040g

Return from subroutine if parity flip-flop = logic 1
Jump indirect to M addressed by register pair H and L
Jump if parity flip-flop = logic 1
Exchange contents of registers H,L with registers D,E
Call subroutine if parity flip-flop = logic 1
Exclusive-OR immediate with contents of register A
Call gubroutine at address 050g ¢
Return from subroutine if sign flip-flop = logic 0
Pop stack and store in register A and flag flip-flops
Jump if sign flip-flop = logic 0 [positive sign]
Disable interrupt

Call subroutine if sign flip-flop = logic 0

Push contents of register A and flags on stack

OR immediate with contents of register A

Call subroutine at address 060

Return from subroutine if sign flip-flop = logic 1
Transfer contents of registers H,L to stack pointer
Jump if sign flip-flop = logic 1 [minus sign] |
Enable interrupt !
Call subroutine if sign flip-flop = logic 1
Compare immediate with contents of register A
Call subroutine at address 070g

8080 INSTRUCTION SET SUMMARY

SINGLE-BYTE INSTRUCTIONS

INR ¢ 0S4 INX B 003 POP B 301 RNZ 300 XCHG 353
DCR r 085 INX D 023 POP D 321 RZ 310 XTHL 343
INX H 043 POP H 341 RNC 320 SPHL 371
MOV r,r, 1DS INX SP 063 POP PSW 361 RC 330 PCHL 351
RPO 340 HLT 166
ADD 1 208 DCX B 013 PUSH B 305 RPE 350 NOP 000
ADC v 218 DCX D 033 PUSH D 325 RP 360 DI 363
SUB r 228 DCX H 053 PUSH H 345 RM 370 EL 373
SBB r 238 DCX SP 073 PUSH PSW 365 RET 311
ANA T 248 DAA 047
XRA T 258 DAD B 011 STAX B 002 RLC 007 CMA 057
ORA r 268 DAD D 031 STAX D 022 RRC 017 STC 067
CMP t 278 DAD H 051 LDAX B 012 RAL 027 CcMC 077
DAD SP 071 LDAX D 032 RAR 037 RST 3A7

SandD:B-O,C=1,D=2,E=3,H=4,L=5,M=6,accumulator=7
A: 0 through 7

TWO-BYTE INSTRUCTIONS

ADI <B2> 306 IN <B2> 333 MVI B <B2> 006

ACI <B2> 316 ouT <B2> 323 MVI ¢ <B2> 016

SUI <B2> 326 MVI D <B2> 026

SBI <B2> 336 MVI E <B2> 036

ANI <B2> 346 MVI H <B2> 046

XRI <B2> 356 MVI L <B2> 056

ORI <B2> 366 MVI M <B2> 066

CPI <B2> 376 MVI A <B2> 076

THREE-BYTE INSTRUCTIONS

JNZ <B2> <B3> 302 Nz <B2> <B3> 304 LXI B <B2 <B3> 001

Jz <B2> <B3> 312 cz <B2> <B3> 314 LXI D <B2 <B3> 021 {
JNC <B2> <B3> 322 CNC <B2> <B3> 324 LXI H <B2 <B3> 041 i
JC <B2> <B3> 332 cc <B2> <B3> 334 LXI SP <B2 <B3> 061

JPO <B2> <B3> 342 CPO <B2> <B3> 344

JPE <B2> <B3> 352 CPE <B2> <B3> 354 STA <B2> <B3> 062

JP <B2> <B3> 362 cP <B2> <B3> 364 LDA <B2> <B3> 072

JM <B2> <B3> 372 CM <B2> <B3> 374 SHLD <B2> <B3> 042

JMP <B2> <B3> 303 CALL <B2> <B3> 315 LHLD <B2> <B3> 052

1890
REVIEW

The following questions will help you review the 8080A instruction set.

1. Which flags do the following instructions influence when they are executed.
Use the following abbreviations: Zero flag = Z; Carry flag = C; Parity flag = P;
Sign flag = S; and Auxiliary Carry flag = AC.

a. JMP

b. POP B

c. INX D I
d. STAX D |
e. RST n

£, LXI SP

g. RET

h., SHLD

1. LHLD

j. DAA

k. EI

1. XTHL

m. PCHL

n. DAD B

o. CMC

p. CMP T

2. The stack pointer is initially HI = 004 and LO = 000. You call a subroutine
and then execute the following instructions in the order given:

PUSH D
PUSH H |
PUSH PSW 1
PUSH B ‘
At what memory locations in the stack do the contents of the internal registers
appear? Answer this question for each register. [
|
l
|
|

3. What instructions can you use to control the location of the stack?
List them.

4, Explain the similarities and/or differences between the following pairs of
concepts. This is a review question that contains material from other umits. i

register vs register pair

byte vs bit

byte vs word

word vs memory address

HI address byte vs LO address byte
jump vs call

conditional vs unconditional instruction
OR vs Exclusive-OR for a 2-input gate
zero flag vs sign flag

carry flag vs auxiliary carry flag
PUSH vs POP

accumulator vs ALU

data byte vs address byte

octal code vs hexadecimal code
increment vs decrement

increment vs ADD

IN vs OUT instructions

ADD vs ADC instructions

MOV vs MVI instructions

MVI vs LXI imstructions

EI vs DI instructioms

SUB A vs XRA A instructions

carry vs borrow

machine code vs mnemonic code

B register pair vs the H register pair

instruction register vs imstruction decoder

1391

13-%2

ANSWERS
1. a. none
b. none
c. mnone (this is very important)
d. mone
e, none
f. none
g. none
h. none !
i. none
j. =all flags affected
k. mnone
1. none
m. none

n. Carry flag only
o, Carry flag only
p. all flags affected

2. LO address Contents
byte (register)
377 HI byte (from program counter)
376 10 byte (from program counter) :
375 D |
374 E t
373 H !
372 L |
371 Accumulator i
370 Flags |
367 B
366 4
3. LXI SP (most useful)
INX SP
DCX SP
SPHL

In addition, all POP, PUSH, subroutine call, and subroutine return instructions
influence the location of the stack.
i
4. a. In the 8080A chip, a register is one of the general purpose registers (8 bits) :
or the accumulator. A register pair is a 16-bit register that is treated {
as a unit and consists of two general purpose registers, such as B and C, or
D and E.
b. These days, one byte consists of eight bits. A bit is a single binary decision.
c. A byte is a sequence of adjacent binary digits operated upon a unit but
usually shorter than a computer word, which may consist of two or more
bytes.
d. A memory address is a sequence of adjacent binary digits that define a
single memory location. A word is a sequence of binary digits that are
treated as a unit, and may represent data, instructioms, or other binary
quantities besides memory addresses.
e. In an 8080A microcomputer, the HI address byte is the eight most significant
bits in the 16-bit memory address word; the LO address byte is the eight
least significant bits.
f. Both are branch instructions. However, in a call instruction, the contents
of the program counter are saved before the instruction is executed. In
a jump instruction, the program counter is ignored.

13-93

Both refer to branch instructions in the 8080A instruction set. In a
conditional branch instruction, whether or not the branch occurs depends
upon the logic state of the selected flag. An unconditional branch
instruction ignores the logic states of all flags.

For an OR gate, when both inputs are at logic 1, the output is also logic 1.
For an Exclusive-OR gate, when both inputs are at logic 1, the output is

at logic 0. In other respects, the two gates are the same in their logic
characteristics.

The zero flag is set only when the result of an arithmetic/logical instruction
is zero. The sign flag refers to the logic state of the most significant
bit in the result, not to the total word or byte. The flags refer to
different things.

The carry flag refers to a carry out of the most significant bit in an

8-bit result in the 8080A microprocessor. The auxiliary carry flag

refers to a carry out of bit D3 (the fourth bit) in the result,

A PUSH instruction adds two bytes to the stack and decrements the stack
pointer, A POP instruction removes two bytes from the stack and increments
the stack pointer.

The accumulator is a single register in the arithmetic-logic unit (ALU),
which contains other digital circuitry required for performing arithmetic
and logic operations.

The data byte never gets loaded in the program counter. An address byte
does.

Octal code is an eight-state code. Hexadecimal code is a sixteen-state
binary code. The first eight states of the two codes are identical.

To increment means to increase by one. To decrement means to decrease by one.
To increment means to increase only by ome. In an ADD operation, the addend
is limited by the byte or word length; it is not limited to unit.

The IN instruction inputs data from an external device into the accumulator.
The OUT instruction outputs data from the accumulator to an external device.
The ADC instruction is an ADD instruction in which you also add the contents
of the carry flag.

The byte being transferred in a MVI instruction is contained within the
program as the second byte of the imstruction. The byte being transferred
in a MOV instruction is originally present in a register or in a specific
memory location.

The MVI instruction transfers one program byte to one register. The LXI
instruction transfers a pair of program bytes to a register pair.

The EI instruction enables the interrupt flag and permits the 8080A chip

to be interrupted. The DI instruction disables the interrupt flag and
prevents the 8080A chip from being interrupted.

Both instructions clear the accumulator and the carry flag.

Both refer to the logic state of the carry flag, but carry refers to the
state of the flag after an addition operation whereas borrow refers to the
flag after a subtraction operation.

Machine code is represented as bimary, octal, or hexadecimal digits.
Mnemonic code is represented as alphanumeric characters, usually alphabetic
characters, Mnemonic code is easier to remember, but must be converted into
machine code before it can be executed by a microcomputer.

The H register pair serves as a pointer address for all imstructions that refer
directly to memory location M. Though the B register pair can serve as a
memory address, it has fewer imstructions associated with it when it is used
as a pointer address. ADD M, SUB M, INR M, DCR M, XRA M, ORA M, CMP M, etc.
are some of the instructions that employ the H register pair as a pointer address.
The instruction register stores the 8-bit operation code in an 8080A chip.
The instruction decoder decodes this 8-bit quantity into a series of actioms.

13-94 MICROCOMPUTER USER'S

: LIBRARY SUBMITTAL FORM
intel

D 4004 (04040 I8008 [J8osc (I 3000

{use additional sheets if necessary)

Program
Title

Function

Required
Hardware

Required
Software

Input
Parameters

Output
Results

Registers Modified:

Assembler/Compiler Used:

RAM Required:

Programmer:

ROM Required:

Company:

Maximum Subroutine Nesting Level:

Address:

Courtesy of the Intel Corporation, Santa Clara, California 95051

98-034C

i
b
{
I
|

1595
INSTRUCTIONS FOR PROGRAM SUBMITTAL TO MCS USER’S LIBRARY

1. Complete Submittal Farm as follows: (Please print or type)

®

Processor (check appropriate box}

o

Program title: Name or brief description of program function

a

Function: Detailed description of operations performed by the program
Required hardware.
For example: TTY onport Oand 1
{nterrupt circuitry
1/O Interface
Machine line and configuration for cross products
e Required software:
For example: TTY routine
Floating point package
Support software required for cross products
1. Input parameters: Description of register values, memory areas or values accepted from input ports
g Qutput results: Values to be expected in registers, memory areas or on output ports
h. Program details (for resident products only)
1 Registers modified
2 RAM required (bytes)
3. ROM required {bytes)
4. Maximum subroutine nesting level
i Assembler/Compiler Used
For example: PL/M
intellec 8 Macro Assembler
IBM 370 Fortran IV
j. Programmer, company and address

2. Asource listing of the program must be included. This should be the output listing of a compile or assembly,
Extra information such as symbol table or code dumps is not necessary.

3. A test program which assures the validity of the contributed program must be included. This is for the user’s
verification after he has transcribed and assembled the program in question.

4. A source paper tape of the contributed program is required. This insures that a clear, original copy ofthe
program is available to photo-copy for publication in a User's Library update publication.

Send completed documentation to:

Intel Corporation

User's Library
Microcomputer Systems
3065 Bowers Avenue

Santa Clara, California 95061

MCS877-476-2K R . :
Courtesy of the Intel Corporation, Santa Clara, California 95051

UNIT NUMBER 19

DATA BUS TECHNIQUES USING THREE-STATE DEVICES

INTRODUCTION

A bus is a set of common conducting paths over which digital information is
transferred, from any of several sources to any of several destinations. The
fundamental objective of a bus is to miniminize the number of interrconnections
required to transfer information between digital devices. In this unit, we
shall describe three-state bussing, the bussing technique that is currently
used in microprocessor chips and microprocessor systems.

OBJECTIVES

At the completion of this unit, you will be able to do the following:

o Define bus and the verb, to bus.

o Describe the characteristics of a TRI-STATE, or three-state, buffer,
including the data and enable/disable inputs as well as the three-state
output.,

o Write a truth table for a three-state device.

o Provide one or two examples of simple bus systems.

o Describe the general characteristics of three-state chips such as the
74125, 74126, and 8095.

o Write a truth table for a three-state latch/buffer.

o List five to ten three-state chips available from National Semiconductor
Corporation.

19-1

19-2

WHAT IS A BUS?

A digital bus is a path over which digital information is transferred, from any
of several sources to any of several destinations. Only one transfer of infor-
mation can take place at any one time. While such a transfer is taking place,
all other sources that are tied to the bus must be disabled. The verb, to bus,
means to interconnect several digital devices, which either receive or transmit
digital information, by a common set of conducting paths, called a bus, over
which all information between such devices is transferred.

The fundamental purpose of a bus is to minimize the number of interconnections
required to transfer information between digital devices. Busses are present
within integrated circuit chips, e.g., the internal data bus within an 8080A
microprocessor chip; between integrated circuit chips, e.g., the address, control,
and bidirectional data busses present in an 8080A-based microcomputer; and

between digital systems and instruments, e.g., the Hewlett-Packard interface

bus that is now a standard interface between digital instruments.

Though not discussed much in textbooks on digital electronics, the concept of a
bus is probably one of the most important concepts in digital electronics. Without
the ability to share information paths, most digital devices would probably require
three to four times the number of wire connections that they presently have.
Printed circuilt boards for microcomputers and minicomputers would be considerably
more complex . . . and expensive.

THREE-STATE BUSSING

In a bus system, the optimum gate should have two digital output states (logic O
and logic 1) and a third disconnected or isolated state. That such should be the
case can be easily seen from the following truth table:

Input Gating
data signal Output
0 enable 0
1 enable 1
0 disable Disconnected from bus
1 disable Disconnected from bus

In other words, the third state is a condition in which the gate is "disconnected"
from the bus and no input data appears on the bus from this specific gate.
®

The solution pioneered by National Semiconductor Corporation is the TRI-STATE ,
or three-state, output. It is appropriate to quote from their catalogue, "Digital
Integrated Circuits," a description of the TRI-STATE concept:

Series 54/74 TTL Compatible

Up to 128 Buffers can be Connected to a Common Bus Line
12 ns Propagation Delay

High Capacitive Drive Capability

Independent Control of each Buffer

"Features:

©oc o000

"This unique TRI-STATE concept allows outputs to be tied together and then
connected to a common bus line. Normal TTL outputs cannot be connected
owing to the low-impedance logical "1" output current which one device
would have to sink from the other. If however on all but one of the
connected devices both the upper and lower output transistors are turned
off, then the one remaining device in the normal low impedance state
will have to supply to or sink from the other devices only a small amount
of leakage current. . . . "

"p typical system conmection is shown in Figure While true that in
a TTL system open-collector gates could be used to perform the logic
function of these TRI-STATE elements, neither waveform integrity nor
optimum speed would be achieved. The low output impedance of TRI-STATE
devices provides good capacitance drive capability and rapid transition
from the logical "0" to logical "1" level thus assuring both speed and
waveform integrity."

"It is possible to conmect as many as 128 devices to a common bus line and
still have adequate drive capability to allow fan-out from the bus."

"Another advantage of these buffers is that in the high impedance state
their inputs do not present the normal loading to the driving device.
This is significant when it is desirable to transmit in both directions
over a common line."

To summarize the above, a TRI-STATE device has three possible output states: (1)

A logical "0" state, (2) A logical "1" state, and (3) A high impedance output state
that is, in effect, disconnected from the bus line. All three-state devices

have an input pin called an enable/disable input, which permits the logic devices
elther to behave normally or to exist in the high impedance state. When
enabled, a TRI-STATE device behaves as a normal TTL device; when disabled, a TRI-STATE
device behaves as if it is, in effect, disconnected from the circuit.

The truth table for a typical three-state device, shown in Figure 19-1, is as
follows:

Input Gating OQutput

data signal Data

0 enable 0 X = irrelevant
1 enable 1

X disable High impedance

enable /disable
input

Figure 19-1. Schematic diagram of a TRI-STATE buffer that is enabled by a logic
1 input.

EXAMPLES OF SIMPLE BUS SYSTEMS

In Figure 19-2, we show a simple four-device one~line bus system that is based
upon the use of a single 74126 three-state buffer chip. We recognize the circuit
as a bus system since the outputs of gates A through D are connected together.
With standard 7400-series TTL chips, it is not possible to do so unless the chips
have special output circuits, either three-state or open collector, that permit
bussing.

DCBA

Figure 19-2. A simple four-device one-line bus based upon the use of four 74126
three-state buffers.

1f we assume that gates A through D in Figure 19~2 are enabled by a logic 1 input,
the operation of the circuit should be clear. Only ome buffer gate may be enabled
at any instant of time; the reamining buffer gates must be disabled. Thus, digital
information from only one of the four buffers appears on the single-line bus at
any give instant of time. Information from the remaining three buffers is blocked
since the corresponding buffers are disabled. The following truth table applies
to the operation of this circuit:

D C B A I Qutput Comments

00 0 1 Q Buffers B, C, and D are "disconnected" from the bu
00 1 90 Qg Buffers A, C, and D are "disconnected" from the bu
0100 QC Buffers A, B, and D are "disconnected" from the bu
1 0 0 0 QD Buffers A, B, and C are "disconnected" from the by

It is important to mote that all other input conditions are considered to be

19-5

"illegal” for this cirewit since they permit i{nformation from more than one buffer
to appear on the single-line bus. In addition, if you attempt to implement any of
these "llegal" input conditions, you will most likely burm out the three-state
chip!

Typical bus systems consist of multi-line busses, as shown in Figure 19-3, rather
than single-line busses. Other than the fact that the gating inputs enable or
disable four buffer gates at a time, this circuit is identical to that shown in
Figure 19-2. For example, the truth table is essentially the same:

D C B A Output Comments

As was previously the case, all other input conditions are "illegal" since they
permit information from more than one device to appear on the bus.

To digital device

0 0 0 1 | Device A Devices B, C, and D are "disconnected" from the bus
0 0 1 0] Device B Devices A, C, and D are "disconnected" from the bus
0 1 0 O] Device C Devices A, B, and D are "disconnected” from the bus
1 0 0 0]| Device D Devices A, B, and C are "disconnected" from the bus

Device |—{ gates gates Device

A A B B

Goti . . .
oting input A gutes gofes \——— Gating input
input C ¢ D Gating input
Device Device
c D

Figure 19-3. A simple four-device four-line bus system.

D

-6

74125 THREE-STATE BUFFER

A typical 74125 three-state buffer contains a separate

addition to the normal input and output pins,

enoble /disable
input

The pin configuration for a 74125 chip, as given in the Texas Instruments Incorporated

"The TTL Data Book for Design Engineers," is shown below:

The four independent buffers can be

First buffer:
Second buffer:
Third buffer:
Fourth buffer:

These four buffers can be

2 3 5 6 9 8 12 [}
| 4 10 13

Based upon our experience, we recommend the use of this chip in preference to the
74126. When an enable/disable input is not connected, the corresponding 74125

buffer is disabled.

Input 1A, output
Input 2A, output
Input 3A, output
Input 4A, output

identified as follows:

1Y, and enable/disable
2Y, and enable/disable
3Y, and enable/disable
4Y, and enable/disable

ically repr: ed as

enable/disable input in 1

input 1C
input 2C
input 3C
input 4C

197
74126 THREE-STATE BUFFER

The pin configuration for the 74126 three-state quad buffer chip is shown below:

The power inputs are at pins 7 and 14, and there are four independent buffers on
the chip,
First buffer: Input 1A, output 1Y, and enable/disable input 1C
Second buffer: Input 2A, output 2Y, and enable/disable input 2C

Third buffer: Input 3A, output 3Y, and enable/disable input 3C
Fourth buffer: Input 4A, output 4Y, and enable/disable input 4C

which can be schematically represented as follows:
2 3 5 6 S 8 12 1]
\ 4 10 13

809 THREE-STATE BUFFER

The 8095 three-state hex buffer chip contains six buffers that are enabled simul-
taneously from the output of a 2-input NOR gate. The truth table and pin config-
uration are:

Enable/disable inputs Input Buffer
DISl I)IS2 data output
0 0 0 0
0 0 1 1
[¢] 1 X High impedance X = irrelevant
1 0 X High impedance
1 1 X High impedance

Ve OIS M 0w m our, W, our,

(S P o P O P

P T

05 WoUT W, oun, W, ot Ao

8095

This is an excellent chip that is frequently ised in microcomputer input buffer
circuits. For example, a single 8095 chip will permit six separate input lines
to be connected to an 8080A microprocessor chip via the bidirectional data bus.

OTHER THREE-STATE DEVICES

Currently, the dominant bussing technology, that which is used in most microprocessor
chips, is three-state. A very common circuit configuration that is found within
microprocessor chips is the three-state latch/buffer, which is shown in Figure

19-4. It consists of a 7475 D-type latch and a three-state output buffer that
requires a logic 1 enable input. The following truth table applies:
Clock Enable I Output condition
0 0 Previous data is latched; three-state output is disabled
0 1 Previous data is latched and output to bus
1 0 Latch follows Data input; three-state output is disabled
1 1 Behaves as simple three-state buffer
Enable
Data—D Q
three state
475
7 output buffer.
Clock =——] Clock
Clear
CLR

Figure 19-4. Three-state latch/buffer circuit that is commonly found within
microprocessor and interface chips associated with microcomputer systems.

Many of the new programmable interface chips, such as the Intel Corporation 8251,
8253, 8255, 8257, and 8259 employ the three-state latch/buffer circuit in 8-bit
internal programmable regilsters.

13-9

Although several chips in the 7400-series, including the 74125, 74126, and 74200,
have three-state outputs, most of the three-state devices are available from
National Semiconductor Corporation, with second sourcing by Texas Instruments and
others. Given below 1s a partial listing of the TRI-STATE devices that are
available. Note that TRI-STATE is a registered trademark of National Semiconductor.

74200 Three-state 256-bit read/write memory
74251 Three-state 8-channel multiplexer

74284 Three-state 4-bit multiplier

74285 Three-state 4-bit multiplier |
74365 Three-state hex buffer (same as 8065) {
8093 Three-state quad buffer (same as 74125)
8094 Three-state quad buffer (same as 74126)
8095 Three-state hex buffer

8096 Three~state hex inverter

8097 Three-state hex buffer

8098 Three-state hex inverter

8123 Three-state quad 2-input multiplexer

8214 Three-state dual 4:1 multiplexer

8219 Three-state 16-line-to-1-line multiplexer
8230 Three-state demultiplexer

8542 Three-state quad I/0 register

8544 Three-state quad switch debouncer

8551 Three-state quad D flip-flop

8552 Three-state decade counter/latch

8553 Three-state 8-bit latch

8554 Three-state binary counter/latch

8555 Three-state programmable decade counter
8556 Three-state programmable binary counter
8598 Three-state 256-bit read-only memory
8599 Three-state 64-bit read/write memory (same as 74189)
8831 Three-state line driver

8832 Three-state line driver

8833 Three-state quad transceiver

8834 Three-state quad transceiver

8835 Three-state quad transceiver

8875 Three-state 4~bit multiplier

Many of the above chips are available from James Electronics, 1021 Howard Avenue,
San Carlos, California 94070.

INTRODUCTION TO THE EXPERIMENTS

The following experiments demonstrate the use of three-state bussing techniques
and three-state buffers.

Experiment No. Comments

1 Demonstrates the operation of a single 74125 buffer with
three-state output.

2 Demonstrates how you create a four-source single-line bus
system using a single 74125 three-state buffer chip.

3 Demonstrates how you create a two-source four-line bus using
a palr of 74126 three-state buffer chips. The sources of
digital information are a 7490 decade counter and a 7493 binary
counter.

4 Demonstrates the operation of a simple latch/buffer circuit
that is based upon a 7475 D~type latch and a 74125 three-state
buffer. This type of one~bit circuit is widely used in
registers within microprocessor chips such as the 8080A.

19-n
EXPERIMENT NO, 1
PURPOSE
The purpose of this experiment is to demonstrate the operation of a single 74125

bus buffer with three-state output.

Pl

=

CONFIGURATION OF INTEGRATED CIRCUIT CHIP

Vec 4C A 4Y 36 3A 3y

SCHEMATIC DIAGRAM OF CIRCUIT

LOGIC LAMP
w
SWITCHES A 2 [\ 3 A MONITORS
1 74125
PULSER
0

step 1

Wire the circuit shown. The 74125 chip contains four independent bus buffers.
You will use only one of them.

STEP 2

Set logic switch A to a logic 1 state. Apply power to the breadboard. Is the
lamp monitor lit or unlit?

19-12

The lamp monitor is unlit, which indicates that the buffer is disabled or burned out.

STEP 3

Now press the pulser button in. Does the lamp monitor become 1it?

Yes. The buffer is now enabled with a logic 0 state.

sTeP 4

With the pulser pressed in, vary the logic switch setting between logiec 1 and logic
0. What do you observe on the lamp monitor?

The lamp monitor indicates the state of the logic switch as long as the buffer
is enabled.

STEP 5

Is the truth table given below the correct one for the operation of the 74125
buffer? If not, write the correct truth table.

A Pulser Lamp monitor

HROO
HO RO
O OO

No,the table is not correct. The correct truth table is:

A Pulser Lamp monitor

HROO
HORHO
oroOO

;
J

19-13
EXPERIMENT NO. 2
PURPOSE
The purpose of this experiment is to bus four different sources of data onto a

single-line bus.

PIN CONFIGURATIONS OF INTEGRATED CIRCUIT CHIPS

weuTs ouTpuTs

SCHEMATIC DIAGRAM OF CIRCUIT

! LAMP

MONITORS

DUAL
PULSER

» OO

CLOCK

X

741253

1 |2]3]4
12 16
Losic o B 3012342 [*5v
74
swiTcHes B—i8 -

13-14

sTeEP 1

Wire the circuit shown. What is the purpose of the 7442 decoder chip?

The purpose of the 7442 chip in the circuit is to enable only one buffer at a
time.
STEP 2

Select in turn output channels 0, 1, 2, and 3 from the 7442 decoder and write
down what you observe the lamp monitor output to be in each case.

We observed the following results:

Channel I Lamp monitor output

[} Output from pulser
1 Clock output

2 1 (1lit lamp monitor)

3 0 (unlit lamp momitor)

STEP 3

What occurs when you choose channels 4 through 9 on the 7442 chip? Do you observe
any lamp monitor output?

We observed that the lamp monitor output remained at logic 0. The reason was that
all four 74125 buffers were disabled.

Keep in mind that in any three-state bus system, only a single data input to the
bus must be enabled at any given instant of time. 1In this experiment, the 7442
decoder ensures the fact that only one 74125 buffer is enabled at a time. The
use of decoders for such a purpose is common in three-state bus systems.

18-15

EXPERIMENT NO. 3

PURPOSE

The purpose of this experiment is to bus two different digital devices, a
7490 counter and a 7493 counter, to a single seven-segment LED display using a
pair of 74126 bus buffer chips.

PIN CONFIGURATIONS OF INTEGRATED CIRCUIT CHIPS

o w ow e

ninininininin
MM n]
7490
sTep 1

Study the circuit diagram carefully. Observe that two 74126 buffer chips are
required. The enagle/disable inputs from each chip are tied either to the "o
or "1" output on a single pulser. Why is only a single pulser used?

To ensure the fact that only one input device is enabled at any given instant of
time.

STEP 2

Wire the circuit and then apply power to the breadboard. Which counter, the 7490
decade counter or the 7493 binary counter, is enabled?

The 7490 decade counter is enabled, since a logic 1 enable imput is required to
enable the 74126 buffers.

19-16

SCHEMATIC DIAGRAM OF CIRCUIT

7- SEGMENT

DISPLAY

> wo o

+8v a0 zes
Py L 12 N
0 —L
'—2" 13
o —] c 8 9 N8
7490 —1
B o 5N_6
JE) 4
14 ale 2R3
nf .V
cLock +5V GND
Is |0
M bl 2 !
13
CL®e I 8
7493 10
sl® 5 N6
4
2
0 — A IIZ 2p .3

DUAL
PULSER

J\74I26]

o —0~—

STEP 3

Press the pulser button in. Which counter is now enabled?

The 7493 binary counter. Is there any possible way in which both counters can
be simultaneously enabled in the above circuit?

18-17

EXPERIMENT No, 4

PURPOSE

The purpose of this experiment is to test a simple latch/buffer circuit based
upon a 7475 D-type latch and a 74125 three-state buffer.

PIN CONFIGURATIONS OF INTEGRATED CIRCUIT CHIPS

%2 aw 30 w49

SCHEMATIC DIAGRAM OF CIRCUIT

LOGIC
SWITCHES
A
+5V GND
cLOGK 5
ca. | Hz 21y aQ 6 2 3 A LAMP
CLK MONITORS
74125
7475
! 13
PULSER © Enable
STEP 1

Wire the circuit shown above. Adjust the clock output so that the clock frequency
is approximately 1 Hz.

1318

STEP 2

The truth table for the operation of the circuit can be summarized as follows:

7475 74125 Three-state

Enable Enable D buffer output
0 0 0 Previously latched D
0 0 1 Previously latched D
1 [0 0
1 0 1 1
0 1 X High-impedance state
1 1 X High-impedance state

X = irrelevant

What logic state disables the 74125 buffer?

A logic 1 state.

STEP 3

Enable both the 7475 latch and the 74125 buffer. What do you observe on the lamp
monitor?

A train of clock pulses that appear at a rate of approximately 1 Hz.

STEP 4

Now disable the 74125 buffer. What happens to the lamp monitor output?

It becomes logic 0. The 74125 buffer output is now in its high impedance state.

STEP 5

Enable the 74125 buffer, but this time enable or disable the 7475 latch. Is it
possible to latch either the logic 0 or logic 1 data imput at D (pin 2)?

Yes, it is possible to operate the 7475 latch independent of the 74125 buffer.
P!

19-19
REVIEW
The following questions will help you review three-state devices and three-state
bussing techniques.
1. What is a digital bus and why is it used?

2. 1In what types of digital devices might you find a bus? List at least three
such devices.

3. Write a truth table for a simple three-state device.
4. Why is a three-state latch/buffer such a useful circuit?

5. List different types of digital devices, e.g., gates, latches, etc., that
are available from National Semiconductor Corporation with three-state outputs.

6. What happens in a three-state bus system when two or more sources of bus
data are simultaneously enabled?

19-20

ANSWERS

1. A digital bus is a set of common conducting paths over which digital informa-
tion is transferred. Only one transfer of information can take place at any one
time. While such a transfer is taking place, all other sources that are tied to
the bus must be disabled. The fundamental purpose of a bus is to minimize the
number of interconnections required to transfer information between digital
devices.

2. Busses are present: (a) within integrated circuit chips such as the 8080A
microprocessor chip and the 8251, 8253, 8255, 8257, and 8259 programmable interface
chips; (b) on printed circuit boards that contains collections of integrated

circuit chips between which information must be bussed; and (c) in digital instruments

such as minicomputers, microcomputers, frequency meters, digital voltmeters, and
the like.

3. Input Gating Output
data signal data
0 enable 0
1 enable 1
X disable High impedance X = irrelevant

4. Such a circuit can act in several different ways: (a) as a latch that stores
input data but does not output it to a bus; (b) as a simple three-state buffer that
does not latch input data; and (c) as a latch that stores input data and outputs
it to a bus.

5. buffer, latch, counter, inverter, multiplexer, read/write memory, read-only
memory, line driver, transceiver, demultiplexer, counter/latch, flip~flop, and
multiplier

6. Two things occur: (a) the receiver of information on the bus becomes confused,
since it cannot interpret the bus information, and (b) the three-state buffers
eventually burn out.

UNIT NUMBER 20

AN INTRODUCTION TO ACCUMULATOR. INPUT/OUTPUT TECHNIGUES

INTRODUCTION

The objective of a microcomputer input/output operation in an 8080A-based micro-
computer is to transfer data between an input/output device and ome of the
internal registers within the 8080A chip. In accumulator 1/0, you employ the
IN and OUT imstructions and data transfer occurs between the accumulator and
the I/0 device. In this unit, you will learn how to write simple 1/0 programs
and wire simple interface circuits that, when working together, permit you

to transfer input/output data to and from the 8080A chip.

OBJECTIVES

At the completion of this unit, you will be able to do the following:
o State the objective of a microcomputer input/output operation.

o Distinguish between accumulator I/0 and memory mapped I/0 in 8080A-
based microcomputers.

o Sketch several simple latch circuits that are useful for accumulator
output in an 8080A-based microcomputer.

o Sketch one or two simple three-state buffer circuits that are useful
for accumulator input in an 8080A-based microcomputer.

o Explain the significance of output drive capability in microcomputer
output circuits.

o Explain how device select pulses are employed to achieve the objective
of accumulator input/output.

o Summarize the accumulator I/0 instructions in the 8080A instruction set.
o Wire a simple microcomputer output circuit.

o Wire a simple microcomputer input circuit.

Q-2

WHAT 1S INPUT/OUTPUT?

When the term, input/output, or I/0, is employed, we usually mean that one

or more data bytes are transferred between an input/output device [see Unit Number
16] and the microprocessor chip. The important concepts associated with this data
transfer are summarized in Figure 20-1 through 20-3.

The objective of a microcomputer input/output operation in an 8080A-based micro-
computer is to transfer data between an input/output deviee and one of the internal
registers within the 80804 chip. As shown in Figure 20-1, available registers
include the accumulator and general purpose registers B, C, D, E, H, and L. It

is not possible to load either the stack pointer or the program counter registers i
directly from an external I/0 device. If the I/0 instructions IN and OUT [see Unit |
Number 17] are used, the data transfer occurs between the external I/0 device and
the accumulator within the 8080A chip. This type of input-output operation is
called isolated I/O by the Intel Corporation and accumulator I/0 by others. If
memory reference instructions such as MOV M,r or MOV r,M are used, the data
transfer can occur between the external I/0 device and any of the seven general
purpose registers. This second type of input-output operation is called
memory-mapped I/0, or simply, memory I/0.

ALl microcomputer input/output occurs eight bits at a time over the 8080A bidirec-
tional data bus. As shown in Figure 20-2, the only path over which data can be
transferred into the 8080A chip is the bidirectional data bus, DO through D7,
which is an 8-bit three-state bus.

+5V GND
+i2v -3V

28)20 {2 |1

13 A-0
D
3 HOL !

Memory and I/0

INT to
12 RESET A-S address bus.
—23 I Reany
Wwr e _
INTe (&
HLDA 'ﬂ—
24
Two-phase =i [WAIT I
clock. —22g, S e
SYNC |18 Figure 20-2. Block diagram of the
D-0 toD-7 8080A microprocessor chip.
The only bidirectional pins
8080A on the chip are those associated

with the 8-bit bidirectional
data bus, DO through D7.

8- bit bidirectionat
data bus.

7

2

*Snq BIEP TRUOTIVPATPTQ 3ITY-§ Y3 IA0 SINOD0 IIJSUBA) BIERp TV °OOTASP /I TPUISIXD BYJ pue 7 pue ‘H ‘%
‘@ ‘D ‘g ‘V 512357391 TRUISIUT USASS 9yl USSMIDQ sInddo dIyd Y0808 Y3l pue 207Aa9p indino/indur ue usaMIBq
133sue1l eyeq -dpyd IosseooxdoIOTW Y808 Y3 UTYITA 2In3109ITYoIe 19357891 9Yy3 jo weiSerp OFIeWEYdS "yI-07 2In8T4

—r.;n :a:_o\— _ oikg :.nc_— — kg Toc_-!_

sitq 91 siq 8
sng sseJppy sng ojog (DuoOKIBIIPIG

— 40401/10}4n8

r 19)3ng $891PPY eng’ 01bd

J84un0) woibouid IH Joi8ib0y
[IH

— sbojg4 — 10}0[NWNIOY

V0808

‘paaassex s3ybra 17y "DIUIOLIIV) DAD]) DIUDS U0FDI0dA0) 12Ul 2y3 fo Aseaanoo uwabvip swYL
‘weaSeTp STYl UT U9ds ATIBITD dI0W 9q UBD SNq BIBP [PUISIUF ITG-§ 9Y3 jJo SOTISFILIdeIEYD duyr dTyd
30559201doAdTW V0808 2Y3 UTYITM 2In3023TYoae I93sT891 2y3 Jo weiSeTp OTILPWOYDS PIITeIop 2iomw V g[-07 2INST4

sns ssawaoy
PR Aavay o
1383 26 1 ONAS | LIVMQTONGION INI 3N NIRO
i N A N |
e —
T03 70UINGO TONINGD TOWINGD S
1M AGH -—
e GIOH Lénwu3aN1 N8 v1va 2o Lgnans
~ouinoD
Gy
o
ECE I |
ﬂ 3LNIWILOIC YILNINIHONI
~ HILINNOD WYHOOHd
GaNIos YovIS 2
oo z owaoana
AvHHY o3y CE I 31943
s3loon e 1 e E SO
o3 B0 e aNY.
3 o3y @ 4300930
o AL L] - NOLLONHLSNI
o3 BT o
I P 4
EETPTETN. ErE
w2 o
waaann a5 et
c
508 viva 3N S8 viva v
it e
SR
S Vivo
sng viva

IVNOILOTYIT IS

20+

. 20-5
Synchronization pulses are required to control all data transfers to and from the
8080A microprocessor chip. For accumulator I/0, they are called device select
pulses [see Unit Number 17] while for memory I/O they are called address select
pulses. In accumulator I/0, the two-byte IN and OUT instructions permit you to
select and synchronize the operation of 256 different input "devices" and 256
different output "devices," as shown in Figure 20-3. For an 8080A-based micro-
computer, such pulses have a duration of about one clock period and can be either
positive or negative pulses depending upon the decoding scheme used. Typically,
such pulses are generated as negative device select pulses from a decoder chip
[see Unit Number 17] and must be inverted if positive device select pulses are
required.

The reference point for the terms "input' and "output" is the microprocessor chip.
The 8080A chip outputs data to an "output" device, and inputs data from an "input"
device. This rule holds in all cases.

interrupt signa!
from input or
output devices.

- OUTPUT
INPUT 8 bits data MICRO 8 bits data
DEVICE COMPUTER DEVICE
256 different 256 different
device select g r r > device select
pulses to = | ' ' ! ' pulses to
input devices. - U = output devices.

Figure 20-3. Schematic diagram illustrating the role of device select pulses in
accumulator I/0.

MICROCOMPUTER OUTPUT

The basic technique that you use to output data from the accumulator to an output
device is quite simple: you generate, via software and hardware, a single output
device select pulse and use it to enable a latch chip at the instant when the
accumulator data appears on the bidirectional data bus. The 8080A microprocessor chip

is responsible for the entire synchronization process. The latch chip plays a
passive role in the data transfer process and latches data only when instructed
to do so by a device select pulse. Depending upon the type of latch chip used,
either a positive or a negative device select pulse is used to latch the data.
Recall Experiment No. 4 in Unit Number 17, in which you used a 74154 decoder
chip to generate sixteen different negative device select pulses [Figure 20-4].

+5V GND
|24 i2
a-3—221p 16 I
a—2—2L1]s [y
22 13—
A=1 >3 B Il% —
A—0Q A o =
s —
74184 65: «_____’LI To 7490 counter
4 b
3
o =
|
oot 07:212 o=
or
x

LAMP
MONITORS

p-3: Nelel

Figure 20-4. Schematic circuit diagram of the use of a 74154 decoder chip to
generate sixteen different negative device select pulses.

It is such pulses that you use, either directly or with inversion, to latch

microcomputer data into chips such as the 8212, 74100, 7475, 74198, 74175, or
74193.

SOME OUTPUT LATCH CIRCUITS

Typical microcomputer output circuits include those based upon the 8212 chip
(Figures 20-5 and 20-6);

20-7

8212

Figure 20~5. Pin configuration of the 8212 8-bit latch/buffer chip.

+SV GND
24 2
D7 22 H
20 2|
D6 G HE
D5 :2 F 6= G LAMP
D4 E Fls F MONITORS
D3 D E E
b2 ———C g212
DI 2 I o he 5
0o——jA: ¢ C LAMP
13 B B MONITORS
—1 DS 2 4
Device select = ! | osi A A
]
pulse 000, I 2 MD
1 —Ysr8

Figure 20-6. Schematic diagram of a circuit in which an 8212 chip serves as an
output latch.

the 74100 eight-bit D-type latch (Figures 20~7 and 20-8); a pair of 7475 D-type
latch chips (Figures 20-9 and 20-10); the 74198 eight-bit shift register and

74175 eight-bit latch, both of which are positive-edge triggered devices (Figures
20-11 and 20-12); and a pair of 74193 up/down counters (Figures 20-13 and 20-14).

20-3

Figure 20-7. Pin configuration of the 74100 eight-bit D-type latch chip.

+5V GND o o
24 17
16 D i
b —= Y Wl C 7-sEamenT ;
10 {
gi T E 8 18 A DISPLAY i
03 —41° 0o—Jp !
02 =1 Fl c7- NT
ol B E B pISPLAY
00 21a p = A ‘
!
74100 o—5
Device select 23 19
pulse 000g _TL g 4 ‘B' 7~ SEGMENT !
12 Y] A DISPLAY

Figure 20-8. Microcomputer output latch circuit based upon the use of a 74100
D-type latch. The output is provided as a three~digit octal word.

enspLe
2

W D @ ENABLE Vo 0 ® @
34

7475

Figure 20-9. Pin configuration of the 7475 four-bit D-type latch chip.

29

45V GND
15 Im
07 LA rryyr) B
D cle o2 G LAMP
o5 sle efs £ MONITORS
D4 2le ep=e E
7475
13
A
Device select —T—
pulse ()0()e
13
4 i
7475
7 9
D3 D D
02 —Hc cfs 2 Lawe
DI 3ls Bf2 B
> e MONITORS
DO A A A
|5 Ilz
+5V GND

Figure 20-10. Microcomputer output latch circuit based upon the use of a pair of
7475 four-bit D-type latches.

Figure 20-11. Pin configurations of the 74198 eight-bit shift register and the
74175 four-bit latch. Both chips contain positive-edge triggered flip-flops
of the 7474 type.

20-10

45V GND
24 12 i
D7 |2 I " ’20___ m !
%5 id a2 6 LAMP
o - A I F MONITORS
D3 D E E
D2 s c !
D} e— B |
3 D 10
B * cl® 2 LAMP [
Dovice setect T 1 ciook s £ B MONITORS
* t 2 iear
12| 7a0e

Figure 20-12., Microcomputer output latch circuit based upon the use of a 74198 {
eight-bit shift register. {

+8V GND |
lls |a |
13 5 |
o7 H H H ¢
s —246 6|2 6 LAMP |
05 s1r fRE2 F MONITORS |
D4 e EeP? E i
74175 l‘
2 clock)‘
] clear 2
Device select _— s |
pulse 000,
! clear
2 clock
74178
13 15
D3 D D D
0z —Zc o2 C LANP
DI 4 B B 2 B MONITORS
Do A A A
IIG le
45V GND

Figure 20-13. Microcomputer output latch circuit based upon the use of a pair of
74175 latch chips.

logic: Low input 1o Joad sets O = A,
Qg =8.0¢ = C,and Q= D

74192, 74193

Figure 20-14. Pin configurations of the 74192 and 74193 up/down counter chips,
which each contain an internal 4-bit latch of the 7475 type.

+5V GND
IIS 8
9 7
D7 ————H H H
DS——I—?‘G G Z 6 LAMP
05 51F F= F MONITORS
D4 E E E
74193
1l load
4] clear
Device select __ o L o
puise 000,
14 clear
g toad
74193
03 —2p DfE B
D2 He ¢ g ¢ LAMP
DI o B B 3 B MONITORS
0o A A A
IIG Ia
+5V GND

Figure 20-15. Microcomputer output latch circuit based upon the use of a pair of
74193 up/down counter chips. This circuilt demonstrates how you would
pre-load a count into an up/down counter directly from the accumulator
in an 8080A-based microcomputer. You would not normally use such a chip
as a general purpose latch.

20-12

When using the 8212 chip as an output latch, you should make certain that the
clear input, CLR, at pin 14 is tied to logic 1 when not in use.

OUTPUT DRIVE CAPABILITY

The characteristics of different TTL subfamilies and the concepts of fan-in and
fan-out have been previously described in Unit Number 10. Such considerations
are extremely important when you construct microcomputer output circuits. Thus,
the fan out of an 8080A microprocessor chip is 1.2, which means that a single
output pin.can drive (sink) a maximum current of only 1.9 mA. The fan-in of a
normal 7400-series input 1s 1.6 mA, so it should be clear that you should always
employ output devices that have a much lower fan—in whenever you make a direct
comneetion to an 80804 output pin.

What chips should you use? We recommend the following:

o Chips in the 74LS subfamily, in which the fan-in of an input is only
0.2, or 0.32 mA.

o Chips in the 74L subfamily, in which the fan-in of an input is only
0.1, or 0.16 mA.

o Microprocessor-compatible chips such as the 8205 decoder, 8212 eight-bit
1/0 port, 8111-2 static read/write memory, and related chips, in which
the fan—in is only 0.15, or 0.25 mA. Such chips are manufactured
specifically for interfacing to an 8080A chip.

Many low-power chips can be tied to the output busses from a microprocessor chip
provided only that such busses are not overloaded.

You should also concern yourself with the fan-out of a low-power chip that is
connected to an 8080A bus. If output signals must travel over a distance that
is greater than several inches, it is good policy to buffer the latch outputs.
Latch and flip-flop outputs are inherently sensitive to drive problems. The
fan-out of a 74LS output is only 5 while that for a 74L output is 2.25.

In constructing a microcomputer, it is common to have bus runs that are as long
as nine to twelve inches. Do not make a bus over one foot long without using
special bus drivers and a termination network.

20-13
MICROCOMPUTER INPUT

The technique that you use to input data from an external device into the
accumulator is analogous to the technique used for microcomputer output: you
gemerate, via software and hardware, a single input device select pulse and use
it to enable a three-state buffer at the inetant when a direct path is opened
up between the bidirectional data bus and the accumulator. As with microcomputer
output, the 8080A chip is responsible for the entire synchronization process.
The three-state buffer chip plays a passive role in the data transfer process
and applies data to the data bus only when instructed to do so by a device
select pulse. Either a positive or negative device select pulse is used to
enable the buffer, depending upon the type of buffer used. Typical three-state
buffer chips are the 8212 and 8095. The 8255 programmable peripheral interface
chip has become popular as an input buffer.

SOME INPUT THREE-STATE BUFFER CIRCUITS

Typical microcomputer input circuits include those based upon the 8095 or 8212
chips, as shown in Figures 20-16 through 20-18. The 8212 eight-bit latch/buffer
chip has been previously shown in Figure 20-5 as an output latch, It should be
emphasized that only one three-state buffer input to an 8080A-based microcomputer
must be enabled at any given time. All input device select pulses should be
absolutely decoded, which means, for accumulator I/0, that all eight bits of

the device code should be used to uniquely identify the desired input device.

If a non-existent device is called to input data, usually the byte, 377g , will
be input to the accumulator.

In Figure 20-17, the enabled three-state buffers permit data to be tramsferred to
the bidirectional data bus lines, DO through D7, which are connected to the outputs
of the 8095 chips. The accumulator acquires the logic switch data during the
clock period of the imput device select pulse, which, for the 8095 chips, is a
negative pulse. The inputs of the 8095 chips can be comnected to amy source of
digital data, such as a laboratory instrument. This data is transferred through
the 8095 buffers, placed on the bidirectional data bus lines, and copied or
"jaomed" into the accumulator during an IN microcomputer instruction. Data is
input to the accumulator each time that the IN imstruction and a device code are
executed. The accumulator need not be cleared before the IN inmstruction, since
both a logic 0 and a logic 1 are jammed into the appropriate bit positions during
the device select pulse clock period.

Ve O e OuT, m, OUT, W, Oul

R PO PO O P PO P

Figure 20-16. Pin configuration of the
8095 three-state buffer chip, which
is inexpensive and widely used in
microcomputer interface circuits.

e rrr

oS, M, OV, W, OUL, W 0T, OWO

8095

20-1%

+5V GND
16 |e |
T ofy wle D7
LOBIC G e o ; D6
SWITCHES F HF P D5
E E E D4
8095
0 —
15
Device select e |
pulse 004, |
15
0 —d
8098
5] °lp o> 03
Logic ¢ e cfL D2
SWITCHES B =18 Bf3 DI
A A A Do
16 8
+5V GND

Figure 20-17. Microcomputer input circuit based upon the use of a pair of 8095
three~state buffer chips. The logic switches can be replaced by any
eight-bit source of TTL data.

+8Y GND
|
i
|24 Lz i
DATA-7 —EH W HE— o7 g
DATA-6] (]] T D6 |
DATA-5 F FHL— o5 !
DATA—4 —=- E EH— o4
DATA-3 0 ofHo— o3
DATA-2 —— C cp2— D2
DATA-| —— B 8 |— oI
DATA-0 —2H A a— po
o & s212
Dovice -~ '] g:_lz
—_—
Belect pulse 0 =2 w0
| -] st8

Figure 20-18. Microcomputer input circuit based upon the use of an 8212 latch/
buffer chip.

2015
ACCUMULATOR 1/0 INSTRUCTIONS

There are only two 8080A accumulator I/0 imstructions, which transfer data between
the accumulator and external I/0 devices concurrent with the gemeration of the
IN and OUT synchronization pulses:

323 <B2> OUT Output the accumulator contents to the output latch selected
by the device code in the second byte. This instruction is
executed in ten clock cycles, or 13.33 us for an 8080A-based
microcomputer operating at 750 kHz.

333 <B2> IN Input into the accumulator the contents of the digital device
and three-state buffer circuit selected by the device code in
the second byte. This instruction is executed in ten clock
cycles, or 13.33 us for a 750 kiz clock rate.

In this Unit, in contrast to Unit Number 17, the device select pulses generated
by the above instructions are used to transfer information to and from the
accumulator.

FIRST INPUT/OUTPUT PROGRAM

A simple program to input the logic switch data in Figure 20-17 into the accum-
ulator and then immediately output it to output latch 000 shown in Figure 20-10
is as follows:

LO memory Instruction
address byte Mnemonic Description
000 333 START, IN Input logic switch data associated
with input device 004, a pair of
8095 three-state buffers
001 004 004 Device code 004
002 323 ouUT Output accumulator data to output
latch 000, a pair of 7475 latch chips
003 000 000 Device code 000
004 166 HLT Halt

This program will input the logic switch data into the accumulator, then output
the accumulator data to an output latch, and finally halt.

SECOND PROGRAM

To continuously input and output the data acquired by input device 004, change the
HALT instruction to a JMP instruction that loops back to HI = 003 and LO = 000.

2315

LO memory Instruction
address byte Mnemonic Description
000 333 START, IN Input logic switch data from input
device 004
001 004 004 Device code 004
002 323 ouT Output data to output device 000
003 000 000 Device code 000
004 303 JMP Unconditional jump to memory location
START
005 000 START LO address byte of START
006 003 - HI address byte of START

THIRD PROGRAM

To store the input data into a memory location and update the memory contents
each time a new eight-bit data point is input, you would use the following program:

LO memory Instruction
address byte Mnemonic Description
Q00 333 START, IN Input logic switch data from input
device 004
001 004 004 Device code 004
002 33 ouT Output data to output device 000
003 000 000 Device code 000
004 062 STA Store the accumulator contents in the é
memory location given by the following |
two bytes
005 200 STORE LO address byte of STORE
006 003 - HI address byte of STORE
007 166 HLT Halt

This program is similar to the second program, but this time a STA <B2> <B3>
instruction has been added to permit you to store the accumulator contents into
memory location STORE, which is at HI = 003 and LO = 200. After the program comes
to a halt, examine location STORE to see if the input logic switch data from
device 004 is present. Change the switch settings, execute the program again, and

20-17

again, and once more examine memory location STORE. You may ask, How can data be
stored when it has previously been sent out to output latch 000? At first glance,
it appears that the input data has been "used up" when it is output to latch 000.
The answer is that when a data byte is transferred from one location to another,

it is copied to the new location. The original data is still present and is not
"used up." This general rule holds for almost all data transfers in a microcomputer
system, from register to register, register to memory, memory to register,
accumulator to output device, ete.

FOURTH PROGRAM

This program is specially interesting if you have a MMD-1 (Dyna-Micro) micro-
computer, in which the keyboard is input port 000 [see Unit Number 4].

LO memory Instruction
address byte Mnemonic Description
000 333 START, IN Input data from keyboard on MMD-1
microcomputer
001 000 000 Device code 000
002 2723 ouT Output data to output port 000 on
MMD~1 microcomputer
003 000 000 Device code 000
004 303 JMP Unconditional jump to memory location
START
005 000 START L0 address byte of START
006 003 - HI address byte of START

When you execute this program, you will be able to determine the encoding for each
of the fifteen keys on the MMD-1 microcomputer. The sixteenth key is RESET, which
is hardwired directly to the 8224 chip. The encoding of the keys can be summarized
as follows:
Input data byte
Key heading D7 D6 D5 D4 D3 D2 DI DO Octal code

No key 160 (irrelevant)
360
361
362
363
364
365
366
367
370
372
373
374
375
376
377

WEPOHQQONNAUN S WN O

FHR HRBRRRRRHBER SR
[e R e el o
e e s el ol ol
e a al el al a i o
MHEPRP HRHHOOOQO OO0
FHH HOOOHFRHHHOOO®O
HFHO OMRORHOOHROOO
HOH OHOOROROHOKOO

20-18

With respect to the above table, you should observe that: (a) bits D4, D5, and D6
are always at a logic 1 state since they are unconnected data bus bits; (b) when
any of the fifteen keys are pressed, bit D7 always goes to logic 1, indicating
key closure and serving as a flag bit; and (c) bits DO, D1, and D2 correspond to
the octal code for the octal digit key, provided that bit D3 is at logic 0.

FIFTH PROGRAM

This program adds one to the contents of the accumulator, decimal adjusts the
accumulator contents, and then outputs the binary-coded decimal result, Z.e.,
two BCD digits packed in an 8-bit data byte, to output port 002.

LO memory
address

000

001

002

003

004

005

006

007
010
011

012

013
014
015
016
017
020

021

Instruction

byte Mnemonic Description

%57 XRA A Clear the accumulator

306 REPEAT, ADI Add the immediate byte to the
accumulator

001 001 Immediate byte

047 DAA Decimal adjust the resulting
accumulator contents

006 MVI B Move the following timing byte to
the B register

040 040 Timing byte

315 LOOP, CALL Call 10 ms time delay loop DELAY
located in KEX

277 DELAY LO address byte of DELAY

- HI address byte of DELAY
mS DCR B Decrement B register
. INZ If B register is not equal to 000,

jump to memory location LOOP; otherwise,
continue to mext instruction

006 LOOP LO address byte of LOOP

(IB - HI address byte of LOOP

323 ouT Output BCD digits to output port 002

002 002 Device code 002

303 M Jump to memory location REPEAT

001 REPEAT LO address byte of REPEAT

003 - HI address byte of REPEAT

2719

When you execute this program, you will observe the BCD numbers 00 through 99 at
output port 002. Once the port reaches 991p, it returns to 00 and repeats the
slow counting process. As a programming tip, we would like to point out that you
should not use the INR A instruction to inmcrement the accumulator immediately
before a DAA instruction. The ADI 001 instruction accomplishes the same result,
and properly adjusts the carry and auxiliary carry bits so that the DAA operation
can be properly performed.

INTRODUCTION TO THE EXPERIMENTS

The following simple experiments illustrate accumulator I/O techniques. More
extensive accumulator I/O experiments are provided in Unit Number 22.

Experiment No.

1

Comments

A simple microcomputer input-output circuit. Demonstrates
the use of 7475 latches and 8095 three-state buffers in
accumulator I/0.

Microcomputer input-output on the MMD~1 micro-
computer. Demonstrates the operation of the keyboard on
the MMD-1 microcomputer.

Characteristics of the DAA instruction. Demonstrates that
the use of a DAA instruction permits you to add two 8-bit
packed BCD numbers.

The accunulator I/0 ports that you wire in Experiment No. 1 will be used, with
very little modification, in Experiment Nos. 1 through 3 in Unit Number 21.
Do not remove the 7475 and 8095 I/0 port eircuits from your breadboard.

el
L

I

3

EXPERIMENT No. 1 1

A SIMPLE MICROCOMPUTER INPUT-OUTPUT CIRCUIT

PURPOSE
The purpose of this experiment is to test the behavior of a simple microcomputer

input-output circuit based upon the 8095 three-state buffer and the 7475 latch.

PIN CONFIGURATIONS OF INTEGRATED CIRCUIT CHIPS

Vee OIS WMo U M, ou, W, our,

o M w0 ow e A A

™ w0 eNABle vec 30 4D 4@ o, w0, om,
24

7475 8095
SCHEMATIC DIAGRAMS OF CIRCUITS
+5V GND
5 |2
o7 —u v}
06 : 6 :g G LAMP
D5 e RS £ MONITORS
D4 E E E
7475
13
4
ouT 003
13
4
7475
7 9
D3 ~——=D D D
€ 10
p2 —{¢C che g LAMP
DI He Bfe MONITORS
DO ——A A A
5 |I2

20-2

&
<
@
o

&
e Z

) = L o7
LogIc G He 62 D6
SWITCHES F 3 F F 3 D5
E E E D4
8098
0 =t
15
IN 004 ___L_J—_‘
15
0 ——d
8095
] 4o o2 03
Loeic ¢ He cH D2
SWITCHES B B B B DI
A A Do
]le Ia
+5V GND
PROGRAM
10 memory Instruction
address byte Mnemonic Description
000 333 START, IN Input logic switch data from input
port 004
001 004 004 Device code 004
002 273 . ouT Output accumulator to output port 003
003 003 003 Device code 003
004 303 JMP Unconditional jump to memory location
START
005 000 START 10 address byte of START
006 003 - HI address byte of START
sTeP 1

This experiment provides you with experience in the wiring both of an input port
and also an output port. If you only wish to have experience wiring the input

VAL
port, do not wire the 7475 latch circuit and skip to Step 7 below.

On a breadboard that has sufficient room for four 16~-pin integrated circuit chips,
wire the 7475 output port and the 8095 input port. Remember that you will also
need decoder circuits to provide the input and output device select pulses [see
Unit Number 17]. If you have only a single decoder chip, you may wish to skip

to Step 7 below and only wire the 8095 chips.

STEP 2

Load the program into memory starting at HI = 003 and LO = 000.

STEP 3

Set the logic switches all to logic 1. Execute the program at the full microcomputer
speed. What do you observe at output port 0037

All of the lamp momitors of output port 003 are lit.

STEP 4

With the microcomputer operating at full speed, return each logic switch, one at
a time, to logic 0. While doing so, explain what you observe on the output port
lamp monitors.

As soon as a logic switch is returned to logic 0, the corresponding output lamp
monitor also returns to logic 0. There is a one-to-one correspondence between
the logic switches and the lamp monitors.

STEP 5

Set the eight logic switches to HGFEDCBA = 11110101, or 365 in octal code. Execute
the program at the full microcomputer speed, and then switch to single-step oper-
ation using a circuit such as that described in Experiment No. 2 in Unit Number 17.
Wire a bus monitor circuit such as that described in Experiment No. 1 in Unit Number
17. The latch enable input should be at logic 0.

STEP 6

Single step through the execution of the program and verify the following sequence
of bytes that should appear on the bus monitor. Note that you are executing a
continuous loop, so you should always be able to start at the beginning through
the application of several single-step pulses.

20-2

Data bus byte
that appears
on the
bus monitor Comments

333 FETCH machine cycle for IN instruction code

m’-l FETCH machine cycle for byte <B2> of the IN instruction
that 1s the device code of the input port

365 INPUT machine cycle, during which information present on
the external bidirectional data bus is transferred directly
to the accumulator and the device code appears on the address
bus, An IN control signal is also generated during this
machine cycle. [NOTES: The input device select pulse 004
enables the pair of 8095 chips and permits logic switch data
to appear on the data bus. In this case, the logic switches
have been set to the octal byte, 365.]

323 FETCH machine cycle for OUT imstruction code

m3 FETCH machine cycle for byte <B2> of the OUT instruction
that 1is the device code of the output port

365 OUTPUT machine cycle, during which the accumulator contents
is made available on the bidirectional data bus and the
device code appears on the address bus. An OUT control signal
is also generated during this machine cycle. [NOTES: The
output device select pulse 003 enables the pair of 7475
latches and permits them to latch the octal byte, 365, that
appears on the data bus. It is this data byte that was
originally input during the IN instruction above.}

303 FETCH machine cycle for JMP instruction code.

000 FETCH machine cycle for byte <B2> of the JMP instruction.
This is the LO address byte of memory location START.

[IB FETCH machine cycle for byte <B3> of the JMP instruction.
This is the HI address byte of memory location START.

As you continue to single step the microcomputer, the above sequence of bytes on
the data bus will be repeated. The important point here is the fact that you can
actually observe the transfer of data between the accumulator and an input or
output device. When you work with more complex interface circuits, you may wish to
have a bus monitor and single-step circuit to verify that the proper data is being
transferred at the proper time.

STEP 7
If you do not wish to wire a 7475 latch circuit and if you have a MMD-1
microcomputer, you can take advantage of the fact that there are three

7475-based output ports on the board. The device codes for these ports are 000,
001, and 002. We recommend that you use output port 002, which requires a change
in the instruction byte at L0 = 003 to (JJ2. Make this change in the program.

20-25
STEP 8

Set the eight logic switches to logic 1. Execute the program at the full micro-
computer speed. What do you observe at output port 002?

All of the lamp monitors on output port 002 are lit.

STEP 9

With the microcomputer operating at full speed, return each logic switch, one at
a time, to logic 0. While doing so, explain what you observe on the output port.

As soon as a logic switch is returned to logic 0, the corresponding output lamp
monitor also returns to logic 0. There is a one-to-one correspondence between
the logic switches and the lamp monitors.,

sTEP 10

Set the eight logic switches to HGFEDCBA = 11110101, or 365 in octal code. Execute
the program at the full microcomputer speed, and then switch to single-step
operation using a circuit such as that described in Experiment No. 2 in Unit Number
17. Wire a bus monitor circuit similar to that described in Experiment No. 1 in
Unit Number 17. The latch enable input should be at logic 0.

step 11

Single step through the execution of the program and verify the sequence of bytes
given in Step 6 of this experiment. Keep in mind that the FETCH machine cycle for
the output instruction device code placee the byte (X} on the data bus instead of
003. Why?

You have changed the output port device code from 003 to 002 in Step 7. Therefore,
device code 002 must appear on the data bus during the FETCH machine cycle.

DISCUSSION

This experiment integrates much of what you have learned so far: the generation
and use of device select pulses, accumulator input-output, and 8080A programming
for input-output operation. A simple three-state input port and latch output port
have been constructed and used under software control.

20-26

EXPERIMENT NO, 2
MICROCOMPUTER INPUT-OUTPUT ON THE MMD-1 MICROCOMPUTER

PURPOSE |

The purpose of this experiment is to demonstrate the operation of the keyboard
on the MMD-1 microcomputer. i

PIN CONFIGURATIONS OF INTEGRATED CIRCUIT CHIPS ;

No interface circuitry is necessary since all of the necessary chips--the 7475
latch, the 8095 (SN74365) three-state buffer, and the 74148 priority encoder-- H
are already present on the MMD-1 microcomputer. The pin configurations of the |
7475 and 8095 chips have been given in the preceding experiment. The pin con-
figuration and truth table for the 74148 chip is given below.

SNS4148, SN74148

SR o 4id ourPuT FUNCTION TABLE !
e, o= © 2 H i ° 2 INPUTS QUTPUTS !
LY 5L Mym " L} B EIJ]O 1 2 3 4 5 6 7|A2 A1 AD[GS EO i
TIITIT1 O e N R R SR |
Llx x x x x x x LjL L L]t W :
- A0 LfX X X X X X L H|L L H|L ® !
L)X X X X X L H H{L H L|L H |
LI N N N L|X X X X L H H H{L H H[IL H
T 1 T 17 b B T R Y IV |
RS Hs s

SCHEMATIC DIAGRAM OF CIRCUIT

The schematic diagram of the inmput/output section of the MMD-1 microcomputer is
given on the following page through the courtesy of Gernsback Publications, Inc. !
(All rights reserved). i

PROGRAM
|
LO memory Instruction !
address byte Mnemonic Description
000 333 START, 1IN Input data from keyboard on MMD-1
microcomputer
001 000 000 Device code 000
002 3723 ouT Output data to output port 002 on
MMD-1 microcomputer
003 02 002 Device code 002
004 303 IMP Unconditional jump to memory location

START

1O address byte of START
HI address byte of START

sinL
891

2 3 2 2

v
=l

START

- o
/ SIOLMS A

003

005

006
Study the following schematic diagram for the input/output section on the MMD-1

microcomputer.

sTep 1

+'S0Vd 430105 NO T1BVTIVAY
S104100 HILYTB 1404 L430X3
= #140d L41NO 43¢ SV 3IM.

SALON

QUYVOIAIN NV SAVI4SIO 031 ~ S1804 LNALNO/LNGN}

(13
Yoo

(73

sz

(778
i

J

202 f

Note the following:

o The input/output section is an example of accumulator 1/0. The clues
that we used to reach this conclusion were the IN and OUT control signals
on the left~hand side of the diagram.

o The I/0 decoder circuit consists of a 74L42 decoder chip and 7402 2-inmput i
NOR gates. For further details, consult Figure 17-7 and the associated H
text as well as Experiment No. 5 in Unit Number 17. [
o There are three 8-bit output ports:
% Output port 000, which consists of 7475 latches IC26 and IC27
* Output port 001, which consists of 7475 latches IC24 and IC25
* Qutput port 002, which consists of 7475 latches IC28 and IC29 |

o There is one 5-bit input port, which is ultimately connected to the keyboard
% TInput port 000, which consists of an 8095 chip, IC31

o The pair of 74148 priority encoder chips and the 7400 2-input NAND gate
provide the circuitry to decode fifteen keys on the keyboard. When
a single key is pressed, the input to the 74148 corresponding to that key
goes to a loglc 0 and output GS on the 74148 chip goes to a logic 0.

The three-bit octal code for the pressed key appears at output pins A, B,

and C on the 74148 chip. Remember that the sixteenth key, RESET, is a
hardwired function and generates no code.

STEP 2
Load the program into memory starting at HI = 003 and LO = 000.

STEP 3

Execute the program at the full microcomputer speed. When you do not press any
key on the keyboard, which bits are lit on output port 002?

Bits D4, D5, and D6 are at logic 1; the remaining five bits are at logic 0. |

STEP 4 |

Press any key on the keyboard except the RESET key. Is it true that bit D7 on
output port 002 always goes to a logic 1 when any of the remaining fifteen keys
is pressed?

Yes. The reason is that this is the bit that indicates to the KEX monitor }
program that a key has been pressed. Once the microcomputer detects that a key

2029

has been pressed, it then proceeds to determine which key was pressed. 1In the
routine that accomplishes this task, there is a 10 ms time delay to eliminate

the common problem of contact bounce. The keyboard input program from KEX is

listed at the end of this experiment.

STEP 5

So far, you have observed that bits D4, D5, and D6 remain at logic 1 no matter
which key is pressed and that bit D7 goes to logic 1 whenever a key is pressed.
You now must determine the function of the remaining four bits, DO through D3.

Press keys 0 through 7 in sequence and observe the bit pattern at the output
port 002 bits DO through D2. What do you observe?

The bit pattern at DO through D2 corresponds to the three-bit code for the keys
0 through 7. Thus, key 5 will have the three-bit code, 101.

STEP b

Press keys H, L, G, S, A, B, and C and explain what you observe at bit D3 on
the output latch. Also explain the significance of bits DO through D2 when
these keys are pressed.

When any one of keys H, L, G, S, A, B, or C is pressed, bit D3 always goes to a
logic 1. The remaining three bits, DO through D2, decode which key is pressed.
You have now verified the encoding of the keyboard. Such encoding can be summarized
by the following truth table, which gives the logic states of the bits when the key is
pressed.

Key heading D7 D6 D5 D4 D3 D2 D1 DO

WPEE@RONNORRWNRO
HiERRRRRER R R
RPREPBRRRERRRRBR PR
[s R o
RFREHRERERRRERRRR R
HFRHRRRRPODOOOOQO
HFRHMOOORHHHOOOO
HHOOHHOKRHOOHRHOO®
HOFROHOOHOHOROKRO

20-30

sTeEP 7

When keyboard keys are activated, the code is input and then output from the
8080A chip to the latched LEDs. It is important to remember that this data :
transfer process is under software control.

Change the device code byte at LO = 001 to (JJ5 in the program, then execute
it at 750 kHz. Does it operate as it has previously? Why?

No. The device address for the input instruction has been changed so that the
keyboard 1s no longer selected.

LISTING OF SUBROUTINE KBRD

The instantaneous input of keyboard data may not match the codes shown previously
because of contact bounce in the non-ideal mechanical switches. A switch bounce
"filter" program is available in the KEX programmable read-only memory (PROM)
starting at address 000 315. This program, called KBRD, may be called with a
subroutine call, and returns with the key code value located in the accumulator.
If you wish to use this subroutine be sure that you have set up a stack area.

A listing for the keyboard input subroutine is shown below.

Memory Instruction }
address byte Mnemonic Comments :
000 315 333 KBRD, IN /Input from keyboard encoders

000 316 000 000

000 317 267 ORA A /Set flags

000 320 372 M /Jump back if last key not released

000 321 315 KBRD

000 322 000 []

000 323 315 CALL /Wait 10 msec

000 324 277 TIMOUT

000 325 000 ¢

000 326 333 FLAGCK, 1IN

000 327 000 000

000 330 267 ORA A

000 331 362 JP /Jump back to wait for a new key to

000 332 326 FLAGCK /be pressed

000 333 000 []

000 334 315 CALL /Wait 10 msec for bouncing

000 335 277 TIMOUT

000 336 000 [

031

000 337 333 IN

000 340 000 000

000 341 267 ORA A

000 342 362 Jp /Jump back if mew key not still
000 343 326 FLAGCK /pressed (false alarm)

000 344 000 P

000 345 346 ANI /Mask out all bits but key code
000 346 017 017

000 347 345 PUSH H /Save H and L registers

000 350 046 MVI H /Zero H register

000 351 000 000

000’ 352 306 ADT /Add the address of the beginning of
000 353 360 360 /the table to the key code

000 354 157 MOV L,A

000 355 176 MOV A,M /Fetch new value from table

000 356 341 POP H /Restore H and L registers

000 357 311 RET

The following translation table converts the code generated by key closures to
the code used by the main KEX program.

000 360 000 TABLE, 000

000 361 0oL 001

000 362 002 002

000 363 003 003

000 364 004 004

000 365 005 005

000 366 006 006

000 367 007 007

000 370 013 013 /s
000 371 000 000 /This code cannot be generated
000 372 017 017 /c
000 373 012 012 /G
000 374 010 010 /H
000 375 011 011 /L
000 376 015 015 /A
000 377 016 016 /B

LISTING OF SUBROUTINE TIMOUT

Memory Instruction
address byte Mnemonic Comments
000 277 365 TIMOUT, PUSH PSW /Save accumulator and flags

000 300 325 PUSH D /Save register pair D

20-32

000
000
000
000
000
000
000
000
000
000
000
000

The
the

301
302
303

304

306

307
310
311

above programs have been written in the way they would appear as output from

021
046
001
033
172
263
302
304
000
321
361

311

MORE,

1XI D
046
001
DCX D
MOV A,D
ORA E

INZ
MORE
[

POP D
POP PSW

RET

/Load D and E with value to be
/decremented

/Decrement register pair D

/Move D to A

/OR E with A

/1s register A = 000? If not, jump
/to MORE at LO = 304 and

/HI = 000. Otherwise, continue to
/next instruction.

/Restore register pair D

/Restore accumulator and flags

/Return from subroutine TIMOUT

Tychon, Inc. 8080A resident assembler/editor program.

RIMENT NO, 3
EXPEI ' 20-33
CHARACTERISTICS OF THE DAA INSTRUCTION
PURPOSE
The purpose of this experiment is explore some of the characteristics of the DAA
instruction.
PROGRAM
10O memory Instruction
address byte Mnemonic Description
000 000 BEGIN, NOP No operation
001 57 XRA A Clear the accumulator
002 306 ADD, ADI Add the following byte to the
accumulator
003 0L 001 Data byte
004 o7 DAA Decimal adjust the resulting
accumulator contents
005 006 MVI B Move the following timing byte
to register B
006 o0 040 Timing byte
007 315 REPEAT, CALL Call 10 ms time delay routine DELAY
located in KEX EPROM
010 277 DELAY 10 address byte of DELAY
011 00 - HI address byte of DELAY
012 005 DCR B Decrement register B
013 3w INZ 1f register B is not equal to 000,
jump to memory location REPEAT:
otherwise, continue to next instruction
014 07 REPEAT 10 address byte of REPEAT
015 003 - HI address byte of REPEAT
016 323 oUT Output pair of packed BCD digits to
output port 002
o017 002 002 Device code 002
020 303 JMP Jump to memory location ADD
021 o2 ADD L0 address byte of ADD
022 003 - HI address byte of ADD
1

29-34

STEP 1

This experiment uses output port 002 on the MMD-1 microcomputer. Our objective
is to demonstrate how the DAA instruction is used to facilitate BCD arithmetic.
operations.

What do we mean by a pair of "packed BCD digits"?

We mean an 8-bit number that is composed of two 4-bit BCD digits, one occupying
the four most significant bits and the other occupying the four least significant
bits.

STEP 2

Load the program into read/write memory starting at HL = 003 and LO = 000.
Execute the program. Observe what happens immediately after the BCD count
in output port 002 reaches 9910. Summarize your observations in the space
below.

We observed that the counts immediately following 99 were 00, 01, 02, 03, 04,
05, 06, 07, 08, 09, 10, In other words, the output port "rolled over"
and started to count up from 00 once again. This type of behavior is what we
would expect.

STEP 3

Now change the following instruction bytes in the program:

002 000 NOP No operation
003 074 INR A Increment accumulator by one
006 200 200 Timing byte

Execute the program, as modified above, and explain what you observe on output
port 002 immediately following 9910.

We observed a strange sequence of digits that are best listed in hexadecimal

code: 00, 61, C2, 23, 84, E5, 46, A7, 08, 69, D0, 31, 92, etc. The least
significant BCD digit was correct, but the most significant BCD digit varied
in an ungedictable manner.

STEP 4

Why did you observe a problem when the INR A instruction replaced the ADI 001
instruction? After all, both increment the accumulator contents by one.

The ADI 001 instruction affects both the auxiliary carry and carry flags,
depending upon the result of the operation. In contrast, the INR A instruction
affeets only the auxiliary carry flag. In order for the DAA imstruction to
operate properly, both the carry and auxiliary carry must respond properly

to an arithmetic instruction that immediately precedes the DAA instruction.
Such 1s not the case for the INR A instructionm.

STEP 5

Consider the following initial steps in the program:

000 076 MVI A Move following byte into accumulator

001 AUG AUG Data byte AUG that serves as the
augend for an addition

002 306 ADT Add the following byte to the accum—
ulator

003 ADD ADD Data byte ADD that serves as the

addend for an addition
Once this addition has been performed, the time delay routine executed, and the
sum output to port 002, the microcomputer execution is halted through the use
of the following instruction byte,
020 166 HLT Halt

The terms, augend and addend, have been defined by Graf2 in the following manner:

addend A quantity which, when added to another quantity (called the
augend), produces a result called the sum.

augend In an arithmetic addition, the number increased by having
another number (called the addend) added to it.

In the above program section in this Step, must the data bytes AUG and ADD be
binary numbers or packed BCD numbers? The answer to this question is crucial to

29-36

the operation of the DAA instruction, so consider it carefully. Please write
your answer in the space below.

The correct answer is as follows:

o If the four steps are not followed by a DAA instruction, the data bytes
AUG and ADD are treated as 8-bit binary numbers and a straight binary
addition is performed to yield a binary number as a sum.

o If the four steps are followed by a DAA instruction, the data bytes AUG
and ADD are treated as 8-bit packed BCD numbers and a BCD correction
18 automatically performed within the 80804 to yield a packed BCD number
as a sum.

This is a very important distinction and one that you must remember. With the
8080A microprocessor chip, you can, in essence, perform simple BCD arithmetic,
which means that the augend, addend, and sum are all considered to be packed

BCD numbers. You should remember, though, that the 8080A and almost all other
computers are binary processors. All data is treated as binary ls and 0s.

Codes such as ASCII, EBCDIC, and BCD are transparent to the computer. To
perform BCD math requires careful attention to programming and the careful use
of the Decimal Adjust Accumulator (DAA) instruction. It should not be considered
as a binary-to-decimal converter!

STEP 6

Change the instruction bytes at LO memory addresses 000, 002, and 020 to those
indicated in Step 5. Perform the following additions between the BCD data
bytes AUG and ADD, and compare the SUM that you observe on output port 002 with
that given in the table below.

AUG ADD SUM Output port 002
(packed BCD) (packed BCD) (packed BCD) (packed BCD)

10 00 10

10 10 20

10 15 25

15 19 34

27 28 55

33 48 81

38 75 13%

99 99 98*

* Carry = 1 for these sums

20-37

What do you conclude?

You should conclude that when an addition operation is immediately followed by
a DAA instruction, the data bytes added must be considered to be packed BCD
quantities and the SUM is also a packed BCD quantity with or without carry.

True BCD additions are being performed by the microcomputer through a binary
addition and a BCD correction called Decimal Adjust Accumulator (DAA). The 8080A
chip from the Intel Corporation can only perform BCD additions. Subtractions
require tricks since the auxiliary carry is not affected by the SUB and SBB
instructions. The NEC 8080A chip has an extra flag bit, SUB, that permits you

to perform packed BCD subtractions using SUB, SBB, and SBI.

STEP 7
Eliminate the DAA instruction by substituting the following NOP instruction byte:

004 000 NOP No operation

Perform the following additions between AUG and ADD and compare the SUM that you
observe on output port 002 with that given in the table below.

AUG ADD SUM Output port 002
(binary) (binary) (binary) (binary)
10 00 10
10 10 20
10 15 25
15 19 2E
27 28 4F
33 48 7B
38 75 AD
99 99 32%

* Carry = 1 for this sum

Note that the AUG and ADD column entries are given in hexadecimal code () rather
than in octal or decimal code. One of the objectives of this experiment is to
give you some practice in comverting decimal and hexadecimal quantities into
octal code, and vice versa.

What do you conclude from the above table?

20-

z0

You should conclude that when an addition of two numbers is not immediately followed
by a DAA instruction, the data bytes AUG and ADD as well as the SUM must be con~
sidered as regular 8~bit binary numbers. The microcomputer is now performing
binary arithmetic, but the sum has not been corrected to give a BCD answer.

This experiment demonstrates that you can input and output either binary or
packed BCD data and perform either binary or BCD additions using such data.
We have simunlated the input of BCD data through the use of the MVI A
instruction.

20-39
REVIEW
The following questions will help you review accumulator input/output techniques.
1. What is meant by the term, "accumulator input/output"?
2. What differences exist between chips used for microcomputer output and those
used for microcomputer input? Explain why the chips for the two different
uses must differ in function.

3. Why is the output drive capability of a microprocessor chip and the fan-in
characteristics of interface chips important in microcomputer output circuits?

4. Based upon the information presented in the Fifth Program and Experiment No. 3,
explain the characteristics of the DAA instruction in the addition of a pair of
8-bit numbers.

20-40

ANSWERS

1. Accumulator input/output is a term associated with 8080-based microcomputer
systems. The I/0 instructions are IN and OUT and the data transfer occurs
between the I/0 device and the accumulator within the 8080 chip.

2. In microcomputer output, the objective is to "catch" data that is being
output for only a short interval of time. The capture of data is accomplished
using an 8~bit latch that is enabled during the short interval of time.

In microcomputer input, the objective is to inmput stable TTL data into the
microprocessor chip during the interval of time when the external input device
has control over the data bus. At all other times, the input device should

not influence the data bus. Such objectives are accomplished using a three-state
8-bit buffer.

3. The drive capability of an output pin on a microprocessor chip may be low,
of the order 1.9 mA or even less. The fan-in of a typical TTL input is 1.6 mA,
so it is not possible to connect more than one standard TTL input to a single
microprocessor chip output. The solution, of course, is to use TTL chips that
have lower fan-ins, i.e., the 74L or 74LS series, or else to use a driver
between the microprocessor chip and output devices.

4. 1In the absence of a DAA instruction, when two 8-bit numbers are added using
an ADD, ADC, ADI, or similar instruction, the sum of the two numbers is in
binary and the augend and addend are assumed to be binary quantities. When

a DAA instruction immediately follows an ADD, ADC, or ADI imstruction, the
augend, addend, and sum must all be considered to be 2-digit packed BCD numbers.
In other words, you can perform pure binary addition or pure BCD addition
depending upon whether the DAA instruction is absent or present.

UNIT NuMeerR 21

AN INTRODUCTION TO MEMORY MAPPED INPUT/OUTPUT TECHNIQUES

INTRODUCTION

In memory mapped I/0, you treat an input/output device as if it were a memory
location and use memory transfer instructions such as MOV, STAX, LDAX, STA,
LDA, SHLD, and LHLD to input and output data. Any of the general purpose
registers can be the source or destination of memory mapped I/0 data. In
this unit, you will use simple memory mapped I/0 programs and wire simple
input/output interface circuits that permit you to transfer data with the
aid of memory-reference instructions. In this unit and the ome that follows,
the term, "memory I/0", will be used as a synonym for memory mapped I/0.

OBJECTIVES

At the completion of this unit, you will be able to do the following:

o Summarize the differences between accumulator I/0 and memory mapped
I/0 techniques.

o Sketch a circuit that can be used to generate memory address select
pulses.

o Explain how memory address select pulses are employed to achieve
the objective of memory mapped input/output.

o Wire a simple memory input circuit.
0 Wire a simple memory output circuit.

o Compare the memory input characteristics of the following three
instructions: LDA, LDAX, and MOV A,M

o Compare the memory output characteristics of the following three
instructions: STA, STAX, and MOV M,A.

21-1

21-2 |
MEMORY MAPPED 1/0 VS ACCUMULATOR 1/0

An input/output device can be a teletype, cathode ray tube (CRT) display,

laboratory instrument, minicomputer, another microcomputer, or a small digital
device such as an integrated circuit chip. All I/0 devices can exchange data
between the 8080A microprocessor chip via either accwmulator I/0 or memory mapped I/0
techniques, which are similar to each other in basic concept. We compare

these two I/0 techniques in Tables 21-1 and 21-2 below.

Table 21-1. Summary of characteristics of accumulator I/0

8080A instructions: OUT <B2>

IN <B2>
Control signals: ﬂ!__T
IN
Data transfer: Between accumulator and I/0 device
Device decoding: An eight-bit device code, AD te A7 or A8 to Al5, that

is byte <B2> in the IN or OUT instruction. We recommend
that it be absolutely decoded, i.e., that all eight bits
be used to designate, or decode, a specific I/0 device.

Terminology: The I/0 processes will be called input and output. The
decoded signal that strobes an I/0 device will be called
a device select pulse.

Table 21-2, Summary of characteristics of memory mapped I/0

8080A instructions: MOV B,M MOV M,H ANA M |
MOV C,M MOV M,L XRA M |
MOV D,M MOV M,A ORA M |
MOV E,M STAX B cMP M |
MOV H,M STAX D INR M i
MOV L,M LDAX B DCR M {
MOV A,M LDAX D MVI M]
MOV M,B ADD M STA <B2> <B3> |
MOV M,C ADC M LDA <B2> <B3> i
MOV M,D SUB M SHLD <B2> <B3> i
MOV M,E SBB M LHLD <B2> <B3> 1§
Control signals: MEMR ’
MEMW i
Data transfer: Between memory 1/0 device and registers B, C, D, E, H, i‘

L, or the accumulator (register A)

Device decoding: A sixteen-bit device code, A0 to Al5, that is contained
either in register pair H; register pair B; register pair
D; or is bytes <B2> and <B3> for the STA, LDA, SHLD, or
LHLD instructions. In some instances, it is useful and
convenient to reserve the upper 32K memory area for

memory I/0 addresses; when Al5 on the address bus is at
logic 1, memory I/0 exists. Bits AO through A7 can be
used to decode a specific I/0 device when Al5 = 1. The
I/0 device is made to look like a unique 8-bit memory
location and the memory reference instructions are used
in their normal manner to read from or write into the
specific memory I/0 device.

Terminology: The memory I/O processes will be called read and write
rather than input and output. The decoded signal that
strobes a memory I/0 device will be called an address
select pulse rather than a device select pulse.

The advantages of memory I/O techniques can be clearly seen from a comparison of
Tables 21-1 and 21-2. Data transfer can be between the I/0 device and any of the
seven general purpose registers within the 8080A chip. If the 16-bit memory
address has been previously stored in register pair H, then the data transfer
can be quicker if either a MOV r,M or MOV M,r instruction is used. In principle,
many more devices can be addressed by memory 1/0 techniques than by accumulator
I/0 techniques. Finally, two-byte data transfers in a single instruction are
possible using the SHLD and LHLD instructions.

An important point is that memory I/O and accumulator I/0 techniques are not
fundamentally different from each other. In each case, a control signal indicates
whether the operation is onme of input or output. Also, in each case the address
bus must be decoded to identify a specific I/0 device. Finally, in each case the
actual data transfer occurs in a machine cycle during the execution of the
instruction. For accumulator I/0, this machine cycle generates with the aid of

a status latch the control signals IN and OUT; for memory I/O, the signals MEMR
and MEMW are generated instead. You can observe the data transfer over the
bidirectional data bus with the aid of a bus monitor [see Experiment No. 1 in
Unit Number 17].

We have observed during our work with memory I/O techniques that it is easy to be
careless when they are used. Most problems can be attributed to the lack of
absolute decoding of the entire 16-bit address bus. When addressing a memory
1/0 device, it is not sufficient to decode bits A0 to A9, since these same bits
are used in any 8080A-based microcomputer system that has at least 1K of addres-
sable memory. Therefore, if you wish to use memory 1/0 techniques, you should
plan to decode some of the highest bits on the address bus, specially bits Al3

to Al5.

GENERATING MEMORY MAPPED 1/0 ADDRESS SELECT PULSES
To generate a memory I/O address select pulse, you need two types of information
from the 8080A microcomputer:

1. A multi-bit identification code, called a memory address, of the external
I/0 device.

2. A single-bit synchronization pulse, either MEMR or MEMW, that synchronizes
the decoding of the device code.

The origin of both types of information is in software, Z.e., in "memory reference
instructions” such as MOV r,M, STAX B, MOV M,r, STAX D, ADD M, MVI M, LDAX D,

CMP M, etc. Such instructions cause the 8080A microprocessor chip to place a
16-bit address on the address bus and also to generate either a memory read,

MEMR (for memory data that is input to the 8080A chip), or a memory write, MEMW
(for memory data that is output from the 8080A chip) control signal.

In other words, as with accumulator I/0, during the generation of a memory I/O
address select pulse, both the address bus and the control bus are active. It
is your responsibility to properly decode the signals on these two busses to
produce unique address select pulses that can be used to transfer data between
the external memory I/0 device and the internal registers of the 8080A.

Figure 21-1 provides a commonly used decoding technique for memory 1/0 address
select pulses. Note the resemblance between this figure and Figure 17-2 in
Unit Number 17. The 74154 decoder is_enabled by two signals: the complement of i
the A-15 address bus bit, and either MEMR or MEMW. The truth tables for the chip i
enable process are given in Table 21-3. Observe that the 74154 decoder is enabled
only when address bus bit A-15 is at logic 1. Data is input only when MEMR is

at logic O and output only when MEMW is at logic 0. When no memory data is being
transferred, both MEMW and MEMR are at logic 1.

A-3 iz T

14—
A—2 13— |
A-1 12— :
A 1= |
° o f— i
=]

74154 g— «,______—u To memory (/0 device

4 b—

3 f—

i

9
A-15—Doi—Ldg, o=

MEMR or MEMW —=2 o181

LAMP
MONITORS

1
»®m OO0

Figure 21-1. Decoder circuit for the generation of sixteen different memory mapped I/|
address select pulses. The HI address byte is 200 and the LO address
byte ranges from 000 to 017, in octal code. This is not an absolute
decoder circuit for the 16-bit address bus.

245

Table 21-3. Truth tables for the decoder circuit shown in Figure 21-1.

A-15 MEMR Decoder behavior A-15 MEMW Decoder behavior
0 0 disabled 0 0 disabled
0 1 disabled 0 1 disabled
1 0 generate read pulse 1 0 generate write pulse
1 1 disabled 1 1 disabled

In Figure 21-2, ten of the sixteen address bus bits are decoded by a pair of
74154 decoders. For the circuit shown, sixteen memory I/0 address select pulses
are produced, starting at HI = 300 and LO = 000 and terminating at HI = 300 and
L0 = 017. The 74154 decoder No. 2 is enabled only when both A-14 and A-15 are
at logic 1. Any one of the sixteen output pins on decoder No. 2 can be used to
enable the G2 input of decoder No. 1.

+8V GND
20 24 |
e
~s—E21p
A4 A
74154
No. 2
A-15 | 18,
A-14 3 L2062 off
74L04
:Z 3
0] |
MEMR or MEMW GI " 10 L Device select
pulse 300 004
74154
No.l 4
wo—2p P °
- A 23————1Do§—0 LAMP
Azt C 2 3t
plguia | ||—-——D°—IE—B MONITORS
A0 A ————-DO———A
24 2 7404
+5V GND

Figure 21-2. Decoder circuit that generates sixteen different memory 1/0 address
select pulses starting at memory address HI = 300 and LO = 000. Ten of
the sixteen address bus bits are decoded by this circuit, which is not
an absolute decoder.

21-5

A final decoding technique is similar to that employed in Figure 17-8 in Unit
Number 17. The high address bits are input into a 74L30 eight-input NAND gate,
which decodes the eight bits into a single unique logic O state. For example,
if A8 through Al5 are input into a 74L30 gate, a logic O output will be
produced only when A8 = A9 = Al0 = All = Al2 = Al3 = Al4 = Al5 = 1. This output
can then be used to enable other decoder chips such as the 74154 or 7442.

MEMORY MAPPED 1/0: USE OF ADDRESS BIT A-15

The Intel Corporation "8080 Microcomputer Systems User's Manual" provides inter-
esting diagrams that demonstrate how to use address bus bit A~15 to distinguish
between memory and a memory I/0 device. In accumulator I/O, four control signals
are generated either by the 8228 chip [Figure 21-3] or by equivalent circuitry:
MEMR, MEMW, IN, and OUT. These signals permit you to distinguish between a memory
location and an I/0 device. In memory I/0, it can be observed from Figure 21-4

that only MEMR and MEMW are used to address both memory and memory I/O devices.
In the figure, address bit A-15 is gated with these two control signals to
produce two new control signals, MEMIOR and MEMIOW,that are used only with 1/0
devices.

g | 1o
Wwory
) _ e || evices
TO MEMORY o
- DEVICES &
sveren ?
sesrem bW, VERTOR
CONTROL Not | MEMIOR
pdlin e [USED | To 10
Y r— oot s
MEMIO!
A
v

Figure 21-3. Control signals used Figure 21-4. Control signals used in one
in accumulator I/0. This figure type of memory I/0. This figure courtesy
courtesy of Intel Corporation, of Intel Corporation, Santa Clara, Cali-
Santa Clara, California. ALl fornia. ALl rights reserved.

rights reserved.

The effect of the use of address bit A-15 is to subdivide the 65K of memory into
two 32K blocks, one for memory and the other for memory I/0 devices. This is
shown in Figure 21-5. In contrast, in normal accumulator I/0, only 256 input

or 256 output devices can be addressed, but the maximum size of the memory can be
as large as 65K.

The accumulator I/O and memory I/0 techniques discussed in this and previous units
do not exhaust the available possibilities. Rather than use a 74154 decoder, the
individual bits in the 8-bit device code could be decoded directly to select six
1/0 devices each of which requires a 2-bit port select code [Figure 21-6]; this
type of accumulator I/0 is very useful when you have only a few I/0 devices.

The same technique can be applied in memory I/0, as shown in Figure 21-7. In the
figure, you can select up to thirteen different memory I/0 devices each of which
requires a 2-bit port select code. Bit A-15, as in Figure 21-4, is used to
distinguish between memory and a memory I/0 device. Finally, if you wish to

21-7

the 32K memory I/O block in Figure 21-5 to a smaller region of memory, you can
simultaneously decode several of the higher bits on the address bus. For example,
if you use a palr of 7420 4-input NAND gates in Figure 21-4 rather than the 2-input
NAND gates shown, you can decode address bits A-13, A-14, and A-15 and restrict
the memory I/0 memory block to 8K and expand the memory block to 57K.

ACCUMULATOR 1/0

i oK |
l |
|
' Wemony |
! 1
|
- = ! aia]sala]a]a s
! tio 1 L
: ! T ronrsrects
e - L
I 32K 65K |
] e —
I —
1
! MEMORY _I/0 | —

Figure 21-5. Memory block comparison Figure 21-6. Example of the use of the

between accumulator I/0 and memory 8-bit device code in accumulator I/0
1/0. Courtesy of Intel Corporation, to address six devices each of which
Santa Clara, California. ALl rights requires a 2-bit port code. Courtesy
reserved. of Intel Corporatiom, Santa (lara,

California. ALl rights reserved.

OEVICE SELECTS

fi\,'

L“’» DEVICE SELECTS

T

Figure 21-7. Example of the use of the 16-bit memory address word in memory I/0
to address thirteen different memory 1/0 devices each of which requires a
2-bit port code. Courtesy of the Intel Corporation, Santa Clara, California.
ALl rights reserved.

21-3

MEMORY MAPPED 1/0 INSTRUCTIONS

There are twenty-two 8080A instructions that permit you to transfer data between
the internal registers and external memory devices. These external devices can
be either semiconductor memory, Z.e., read/write memory, ROMs, EPROMs, etc., or
else they can be input-output devices that are addressed as if they were memory
locations. Implied in any memory-reference instruction is a 16-bit memory address
that uniquely identifies a memory byte. This memory address is contained either
in register pair H, register pair B, register pair D, or else in bytes <B2> and
<B3> of the instruction itself.

In addition to the twenty-two data transfer instructions, there exist eleven
other memory reference instructions. One such instruction permits you to move
an immediate byte in a program to a memory location. Two other instructions
permit you to increment or decrement the contents of a specific memory location.
Finally, eight other imstructions permit you to perform logical or arithmetic
operations between the contents of a memory location and the contents of the
accumulator.

A1l thirty-three memory reference instructions are summarized below. They are |
sub-divided according to the location of the memory address word. i

ADDRESS OF MEMORY LOCATION M IS CONTAINED IN REGISTER PAIR H
Twenty-five of the thirty-three 8080A memory reference instructions are contained
in this group. All require the address of the memory location to be stored in
register pair H before the memory reference instruction is executed.
MOV B,M 106 Move contents of memory location M to register B
MOV C,M 116 Move contents of memory location M to register C
MOV D,M 126 Move contents of memory location M to register D
MOV E,M]36 Move contents of memory location M to register E
MOV H,M 146 Move contents of memory location M to register H
MOV L,M 156 Move contents of memory location M to register L
MOV A,M 176 Move contents of memory location M to register A
MOV M,B 160 Move contents of register B to memory location M
MOV M,C 161 Move contents of register C to memory location M
MOV M,D 162 Move contents of register D to memory location M
Mov M,E - 163 Move contents of register E to memory location M
MOV M,H 164 Move contents of register H to memory' location M |
MOV M,L 165 Move contents of register L to memory location M
MOV M,A 167 Move contents of register A to memory location M
MVI M [56 Move immediate byte <B2> to memory location M
<B2> <B2>
|

INR M 05’4 Increment contents of memory location M
DCR M %5 Decrement contents of memory location M
ADD M 2[5 Add contents of memory location M to contents of accumulator

and store result in accumulator

ADC M 216 Add with carry contents of memory location M to contents of
accumulator and store result in accumulator

SUB M 226 Subtract contents of memory location M from contents of
accumulator and store result in accumulator

SBB M 2% Subtract with borrow contents of memory location M from contents
of accumulator and store result in accumulator

ANA M 26 AND contents of memory location M with contents of accumulator
and store result in accumulator

XRA M 256 Exclusive-OR contents of memory location M with contents of
accumulator and store result in accumulator

ORA M 266 OR contents of memory location M with contents of accumulator
and store result in accumulator

CMP M 276 Compare contents of memory location M with contents of accum-

ulator. Leave accumulator unchanged and alter the flag bits
to correspond to the results of the compare operation.

ADDRESS OF MEMORY LOCATION M 1S CONTAINED IN REGISTER PAIR B

Only two of the thirty-three memory reference instructions are contained in this
group, STAX B and LDAX B.

STAX B 002 Store contents of accumulator at memory location M given by the
contents of register pair B

LDAX B 012 Load the accumulator with the contents of memory location M
given by the contents of register pair B

ADDRESS OF MEMORY LOCATION M 1S CONTAINED IN REGISTER PAIR D

Only two of the thirty-three memory reference instructions are contained in this
group, STAX D and LDAX D.

STAX D Store contents of accumulator at memory location M given by the
contents of register pair D

LDAX D 032 Load the accumulator with the contents of memory location M
given by the contents of register pair D

21-10

ADDRESS OF MEMORY LOCATION M IS CONTAINED IN SECOND AND THIRD INSTRUCTION BYTES]
|

STA %2 Store contents of accumulator at memory location M defined by

<B2> <B2> instruction bytes <B2> and <B3> |

<B3> <B3>

LDA 072 Load the accumulator with the contents of memory location M

<B2> <B2> defined by instruction bytes <B2> and <B3>

<B3> <B3> |

SHLD OLIZ Store contents of reglster L into memory location M defined

<B2> <B2> by instruction bytes <B2> and <B3>; store contents of register

<B3> <B3> H into succeeding memory location, M+1l. |[NOTE: This is a |
two-byte data transfer in a single instruction]. |

LHLD 052 Load register L with the contents of memory location M defined

<B2> <B2> by instruction bytes <B2> and <B3>; load register H with

<B3> <B3> the contents of the succeeding memory location, M+l. [NOTE:

This is a two-byte data transfer in a single instruction].

The SHLD and LHLD instructions differ from the remaining thirty-one memory reference
instructions in the fact that two data bytes are transferred.

THE MEMORY READ AND MEMORY WRITE MACHINE CYCLES

As with the IN and OUT instructions, the 8080A microprocessor has a machine cycle
during which data transfer occurs between the memory location and the internal
registers. The machine cycle is called either a MEMORY READ or a MEMORY WRITE
cycle, during which the following occurs:

o Either a MEMR or a MEMW pulse is generated on the control bus.
o A unique 16-bit memory address appears on the address bus.

o The external bidirectional data bus and the internal data bus
within the microprocessor chip are opened to permit direct data
communication between one of the internal general purpose
registers and the I/0O device, whether input or output.

The SHLD instruction differs from the others in the fact that two successive
MEMORY WRITE machine cycles are executed by the 8080A. With the LHLD instructiom,
two successive MEMORY READ machine cycles are executed. In all other cases, only
one machine cycle, either a MEMORY READ or a MEMORY WRITE, is executed.

FIRST PROGRAM

Consider the following program:

LO memory Instruction
address byte Mnemonic Description !
000 062 START, STA Write contents of accumulator into
the memory output device that has the
following memory address
001 000 000 LO address byte of output device
002 200 200 HI address byte of output device
003 074 INR A Increment accumulator
004 303 JMP Unconditional jump to memory location
START
005 [:&) START LO address byte of START
006 003 - HI address byte of START

In this program, we have made the assumption that there exists no memory at
location HI = 200 and LO = 000. For most 8080A-based microcomputers, this is an
excellent assumption.

If you would execute this program in the single-step mode, you would observe the
following bytes, in succession, on the bidirectional data bus:

Data bus
byte Comments
%2 FETCH machine cycle for STA instruction code
000 FETCH machine cycle for byte <B2> of STA instruction
200 FETCH machine cycle for byte <B3> of STA inmstruction
accumulator MEMORY WRITE machine cycle, during which the accumulator
contents contents are made available on the bidirectional data
bus, the memory address <B2> and <B3> appears on the
address bus, and a MEMW control pulse is generated.
074 FETCH machine cycle for INR A instruction code
303 FETCH machine cycle for JMP instruction code
000 FETCH machine cycle for LO address byte of START

03 FETCH machine cycle for HI address byte of START

You observe such information on the data bus because (a) all instruction bytes
move over the data bus from read/write memory or EPROM to the instruction register
within the 8080A chip, and (b) the contents of the accumulator is output to the
data bus during the fourth machine cycle of the STA instruction.

The program increments the contents of the accumulator during each loop. Also,
it outputs the accumulator contents to the memory I/O device, HI = 200 and
LO = 000. The decoder circuit shown in Figure 21-1 would be used.

SOME INPUT/OUTPUT CIRCUITS

Input-output circuits that employ memory I/O addressing are identical to those
shown for accumulator I/O in Unit Number 20. The only difference is the type
of select pulse used. We provide several examples here to demonstrate the
similarity, and then refer the reader to the preceding Unit.

A memory output circuit that is based upon the 74198 8-bit shift register is shown
in Figure 21-3. The address select pulse is a MEMW pulse coded for memory address
HI = 200 and LO = 000, as would be generated by the circuit of Figure 21-1. A
related circuit is based upon a pair of 7475 D-type latches, and is shown in
Figure 21-4. This time, however, the memory address of the output latch is

HI = 200 and LO = 001. Seven-segment displays are used for two different purposes
in these two output circuits. For the 74198 shift register, we assume that the
output is a pair of packed BCD digits, whereas for the 7475 chips, we assume that
the output is in 8-bit binary, which we decode as three octal digits.

+8V GND
Iz4 12
D7 H 20
H D
o 5 o :: ¢ 7T-SEGMENT
D4 i m B8 DISPLAY
03 71° E A
v2 ——c
D| =—B
3 10
%0 LN I 2 7- SEGMENT
Address select ' W 8FS p DISPLAY
pulse MEMW] clock 12 A
200 000 | ~~3gf clear

|23 |' 74198

Figure 21-3. Microcomputer output circuit based upon the use of the memory I/0
technique applied to a 74198 8-bit shift register chip. The memory
address of this output port is HI = 200 and LO = 000, %.e., address bit
A-15 is used to identify this chip as a memory I/O port.

+5
S
7
07 —H 2 7-SEGMENT

H
ul®
Fed s M 8 DiseLAY
D4 Zle
7475 ol_.
D
2 F2 C T-SEGMENT
4 E B DISPLAY
Address select A
pulse MEMW _JL
200 00!)
13| D 0]
" 2 C 7-SEGMENT
B B DISPLAY
A A
7475
D3 Ho
02 —={¢
Dl ——3p
0o ——24a
I5 llZ
+6V GND

Figure 21-4. Microcomputer output circuit based upon the memory 1/0 technique
applied to a pair of 7475 D~type latches. The memory address of this
output port is HI = 200 and LO = 001.

The third and final circuit is a microcomputer input circuit based upon the 8212
8-bit latch/buffer chip. The address select pulse is generated from the MEMR
control signal and the 16-bit address bus, and has a memory address of HI = 200
and LO = 002. Otherwise, the circuit is identical to that shown in Figure 20-18.

The resemblance between these figures and the corresponding ones for accumulator
1/0 in Unit Number 20 should be clear. In fact, Figures 20-18 and 21-5 are
identical except for the identification of the select pulse. We refer the reader
to Figures 20-6 through 20-17 for other useful microcomputer input/output circuits
that can be adapted to memory 1/0.

20-14

+5V GND 5
24 12
DATA-7 —2E Y W — o7 i
DATA-6 — = 6 67— D6 i
DATA-5 — 2 F Fii— 05
DATA-Q-——Q— E E o D4
DATA-3 D I D3
DATA-2 c cls D2
DATA-| ——-{ B B p—- DI
DATA-0 ——34 A AP— Do |
a— !
" s212 j
Address o~ =082
__ e——
Select pulse o_&_ a?)'
MEMR 200 002 { = 578

Figure 21-5. Microcomputer input circuit based upon the memory I/0 technique
applied to an 8212 8-bit latch/buffer chip. The memory address of this
input port is HI = 200 and LO = 002.

SECOND PROGRAM

A program that is, during execution, identical to the First Program is as follows:

LO memory Instruction
address byte Mnemonic Description
i
000 04] START, ILXI H Load register pair H with the following |
two bytes |
001 000 000 L reglster byte, the LO address byte \
of memory location M
002 200 200 H register byte, the HI address byte
of memory location M
003 167 LOOP, MOV M,A Write accumulator contents into memory
location M
004 o074 INR A Increment accumulator
005 303 IMP Unconditional jump to memory location
LOOP |
006 003 LOOP L0 address byte of LOOP |
i

007 003 - HI address byte of LOOP

THIRD PROGRAM

A third way to accomplish the desired result of the first and second programs is
through the use of a STAX instruction:

LO memory Instruction
address byte Mnemonic Comments
000 001 START, LXI B Load register pair B with the
following two bytes
001 000 000 C register byte, the LO address byte
of memory location M
002 200 200 B register byte, the HI address byte
of memory location M
003 002 LOOP, STAX B Write the contents of the accumulator
into memory location M identified
by the contents of register pair B
004 074 INR A Increment accumulator
005 303 JMP Unconditional jump to memory location
LoOP
006 003 LOOP L0 address byte of LOOP
007 003 - HI address byte of LOOP

Note that this time the identificarion of the output memory location M is contained
within register pair B. Otherwise, the program execution is identical to that for the
first and second programs.

FOURTH PROGRAM

The D register pair can also be used to identify the memory location M. Thus:

LO memory Instruction
address byte Mnemonic Description
000 (1741 LXI D Load register pair D with the
following two bytes
001 000 000 ¥ register byte, the LO address byte

of memory location M

21-16

002 200 200 D register byte, the HI address byte
of memory location M

003 022 LOOP, STAX D Write the contents of the accumulator
into memory location M identified
by the contents of register pair D

004 074 INR A Increment accumulator

005 303 JIMP Unconditional jump to memory location
LOOP

006 003 LOOP LO address byte of LOOP

007 003 - HI address byte of LOOP

This program is essentially the same as the Third Program. It should be observed
that STAX H is the equivalent to MOV M,A.

FIFTH PROGRAM

Memory I/O input programs are as simple as the output programs described above.
Consider a system in which both the input and output ports have the same memory
address, namely, HI = 200 and LO = 000. The following program will permit you to
monitor the input data:

LO memory Instruction
address byte Mnemonic Description
000 001 1XI B Load register pair B with the
following two bytes
001 000 000 C register byte, the LO address byte
of memory location M
002 200 200 B register byte, the HI address byte
of memory location M
003 012 L00P, LDAX B Load the accumulator from the input
port M identified by the contents of
register pair B
004 002 STAX B Write the contents of the accumulator
into output port M identified by the
contents of register pair B
005 303 JMP Unconditional jump to memory location
LOOP
006 QB LOOP L0 address byte of LOOP

007 003 - HI address byte of LOOP

2-17

If the memory address M is contained in register pair D rather than register pair
B, you would substitute LDAX D and STAX D for the instruction bytes at LO = 003
and LO = 004,

SIXTH PROGRAM

A program that, when executed, provides the identical result observed in the
Fifth Program is as follows:

LO memory Instruction
address byte Mnemonic Description
000 oul LXI H Load register pair H with the
following two bytes
001 000 000 L register byte, the LO address byte
of memory location M
002 200 200 H register byte, the HI address byte
of memory location M
Q003]_76 LOOP, MOV A,M Load the accumulator with the contents
of input port M
004 167 MOV M,A Write the accumulator contents into
output port M
005 303 JMP Unconditional jump to memory location
Loor
006 003 LOOP LO address byte of LOOP
007 [xB - HI address byte of LOOP

As with the Fifth Program, the input and output ports have the same memory loca-
tion, HI = 200 and LO = 000. What distinguishes data transfer between the two
ports, which are shown in Figure 21-6, is the way in which the internal data bus
within the 8080A operates and also the existence of the different comtrol signals,
MEMR and MEMW. We present Figure 21-6 as a circuit that has educational value
but not as one that you would wire in a microcomputer interface system. Why not?
The answer is that you need not wire an 8212 input port in order to monitor the
output from the 8212 output port in Figure 21-6. We recommend that you store

the output contents in an internal register or a read/write memory location
before or after you output the 8-bit word to the 8212 output port.

Remember: your objective in most cases is to substitute software for hardware.
Use your read/write memory for the storage of control words and other types of
temporary information. Do not add additional integrated eircuit chips to your
interface circuit unless they are absolutely necessary.

21-18

+ 5V GND
24 12
2i
e PR
D5 —I&1F FHE
D4 —E E Output
03 — 3o D ': P
3'2 = ¢ cles data
B B
Do 2 a aps
| Lo TR
- 13
Address select -r ! | &2
pulse MEMW ~——————7-0f DSI
200 000 ! e MD
| =878
8212 +5V GND
output
port 24 12
22 2!
i EIE el 4
18 17
18 F E] 5]
o E E o 04
7 D D s D3
s c 4 5 D2
B 8 g DI
“3 A ApP— DO
| — CLR
select L 'IT 5.2
pulse MEMR Ds|
200 000 o M Mo
| =—— sTB
8212
input
port

Figure 21-6. Memory I/O interface circuit that demonstrates that an input port and
an output port can have the same memory address. In general, you will
identify the two ports in this figure by different memory addresses.

SEVENTH PROGRAM

It is not necessary to input and output data to and from the accumulator, as was
done with all of the above programs. For example, in the Sixth Program, we could
exchange data with register E. This is shown below.

L0 memory Instruction
address byte Mnemonic Description
000 ol LXI H Load register pair H with the

following two bytes

21-19

001 [I]l 001 L register byte, the LO address byte
of memory location M

002 200 200 H register byte, the HI address byte
of memory location M

003 136 MOV E,M Load register E with the contents of
input port M

004 163 MOV M,E Write the contents of register E into
output port M

005 303 JMP Unconditional jump to memory location
LOOP

006 003 LOOP L0 address byte of LOOP

007 003 - HI address byte of LOOP

Memory I/0 input data can be exchanged with registers B, C, D, or E. We would
recommend that register pair H not be used for such a purpose unless the SHLD
and LHLD instructions are used.

EIGHTH PROGRAM

Consider the following program:

LO memory Instruction
address byte Mnemonic Description
000 ol IXI H Load register pair H with the
following two bytes
001 000 000 L register byte, the LO address byte
of memory location M
002 200 200 H register byte, the HI address byte
of memory locations M through M+3
003]_% MOV B,M Load register B with contents of
input port M
004 054 INR L Increment register L
005 116 MOV C,M Load register C with contents of
input port M+l
006 054 INR L Increment register L
007 126 MOV D,M Load register D with contents of input
port M+2
010 054 INR L Increment register L
011 136 MOV E,M Load register E with contents of

input port M+3

This program illustrates two of the important advantages of memory I/0 techniques:
1. The ease with which the I/0 device code can be changed.

2. The speed with which four bytes of data can be input into an 8080A
chip.

These advantages must be weighed against two possible disadvantages of memory I/0
techniques:

1. The additional circuitry required for absolute address decoding.

2. The loss of memory area when it is subdivided into memory and memory
I/0 blocks.

Disadvantage number 2 is unimportant for small microcomputer systems. With large
systems that require considerable amounts of memory, there is considerable incentive
to add decoders so that only a very small section of memory is absolutely decoded
into memory I/O address codes.

21-21

INTRODUCTION TO THE EXPERIMENTS

The following simple experiments 1llustrate memory mapped I/0 techniques. More
extensive memory mapped I/0 experiments are provided in Unit Number 22.

Experiment No.

1

Comments

A simple memory mapped input-output circuit consisting of

a pair of 7475 latches and a pair of 8095 (74365) three-state
puffers. Address select pulses are generated with the aid

of a 74L20 4-input NAND gate chip.

Memory mapped I/0 to and from the accumulator. Demonstrates
the use of different instructions that can transfer data
between a memory mapped I/0 port and the accumulator, e.g.,
STA, LDAX B, STAX B, MOV A,M, and MOV M,A.

Use of the INR M, DCR M, and MVI M instructions. Demonstrates
how a memory mapped I/0 port can be incremented or decremented.

Use of the ANA M instruction. Demonstrates how a memory mapped
input port can logically operate directly upon the contents of
the accumulator.

The memory mapped I/0 ports that you wire in Experiment No. 1 will be used in all
of the experiments in this unit.

EXPERIMENT NO, 1

SIMPLE MEMORY MAPPED INPUT~OUTPUT PORTS

PURPOSE

The purpose of this experiment is to test the behavior of a simple memory mapped input*ﬁ
output circuit based upon the 8095 three-state buffer and the 7475 latch.

PIN CONFIGURATIONS OF INTEGRATED CIRCUIT CHIPS

enasLe

Ve o,

o,

b o

o our,

[

wl 5] [1] [n] [w] [s][s o o o M e w «© e e L
} JFHELﬂﬂJﬂJ?LﬁlﬁﬂIﬂW
LA S A
8095
SCHEMATIC DIAGRAMS OF CIRCUITS
+5V GND
Is |12
07 — I HS
e —H6 G2 o LAMP
DS I P F MONITORS
e —HE EfE E
7475
13
4
Address select ~TL
pulse MEMW
200 004
3
4
7475
7 9
D3 D D D
0z —Hc cH2 C LamP
DI 18 Bl B MONITORS
po A A A
ls Ilz
+5V GND

PROGRAM

L0 memory
address

000

001
002

003

004

005

006
007
010

011

2-23

+
o
<
[~}
P4
o

—
—

10 9
H H H D7
LOGIC G i G 6 ;’ 06
SWITCHES F > F F 3 DS
E € E D4
8095
0 -
15
Address select '
—
pulse MEMR
200 003 15
0 ——
8098
10 S
D D D D3
Logic ¢ e cf D2
SWITCHES B s B} DI
A A AR Do
16 Ie
+5V GND
Instruction
byte Mnemonic Description
oul LXT H Load register pair H with the follow-
ing two bytes
m} 003 L register byte
200 200 H register byte
106 START, MOV B,M Read 1into tegister B the contents
of memory input port 200 003
043 INX R Increment register pair H
160 MOV M,B Write register B contents into
memory output port 200 004
053 DCX H Decrement register pair H
3[]3 JMP Jump to START and do it again
003 START 1.0 address byte of START
003 - HI address byte of START

21-%

sTep 1

Wire the circuits shown. To generate the two memory address select pulses
required, use either a decoder or use the 74L20 4-input NAND gate circuits
shown below, which do not absolutely decode the 16-bit address bus and thus are
only demonstration circuits. Don't forget the +5 Volt (pin 14) and GND (pin 7)
power inputs to the 74120 chip.

MEMR 5 Address select n
Als — s pulse MEMR iz
| —
AQ —t 200 003 7404
74L20
MEMW ::’ Address select M
AA'g 0 5 puise MEMW 2502
| — 200 004 7404
74L20

1f you plan to acquire address bit Al5 directly from the 8080A chip, we recommend
that you use a 74L20 chip rather than a 7420 in order to minimize fan~in. The
control signals MEMR and MEMW must be inverted before being input into the 74L20.
The write pulse, 200 004, must be inverted prior to being input into the pair of
7475 latches.

STEP 2

Load the program into memory. Execute the program. Change the logic switch
settings and observe the output at output port 200 004. What happens.

We observed a one-to-one correspondence between the logic switch input to the
8095 chips and the lamp monitor output from the 7475 latches.

When the data is input into the microcomputer, where is it temporarily stored?

In register B.

STEP 3

What changes to the program are necessary if you desire to input and output data
to and from register E?

225
All that is necessary is a change in the instruction bytes at LO memory address
003 and 005:
003 136 MOV E,M Input into register E the contents
of memory input port 200 003
005 163 MOV M,E Output register E contents to memory
output port 200 004

Make these changes and demonstrate the operation of the new program.

sTeP 4
What would happen if you changed the instruction byte at LO memory address 005 to

005 16[] MOV M,B Output register B contents to memory
output port 200 004

but left the instruction byte at LO memory address 003 unchanged? Would program
execution change?

Yes. No longer would it be possible to input the logic switch data and then
output them to the memory output port. The problem is that such data is input
to register E where nothing further happens. Data output is from register B,
which is not changed by the modified program. We observed an output of 000 when
we tried this experiment.

STEP 5
Make the following program changes:
003 116 START, MOV C,M Read into register C the contents
of memory input port 200 003
004 w3 INX H Increment register pair H
005 121 MOV D,C Move contents of register C to
reglster D
006 162 MOV M,D Write register D contents into memory
output port 200 004
007 053 DCX H Decrement register pair H
010 303 Jvp Jump to START and do it again
011 003 START 10 address byte of START

012 003 - HI address byte of START

Execute the program. What do you observe on the output port when you change the
logic switch settings.

We observed a correspondence between the logic state of the output port and the
logic switch setting.

STEP 6
Now change the instruction byte at LO memory address 005 to a NOP inmstruction:
005 000 NOP No operation

Execute the program once again. What happens? Why?

There no longer is a correspondence between the data at the memory imput and
output ports. The reason is that we have eliminated the MOV instruction that
transfers the data byte from register C to register D, from which it is output.

STEP 7

What registers may be used when the memory mapped 1/0 technique is used? Which
registers are involved with accumulator 1/0?

Memory mapped 1/0 may use any of the general purpose registers, including A, B,
C, D, E, H, or L, as the source or destination of data. Accumulator I/0 is
restricted to register A as the source or destination of data.

Save the 7475 and 8095 I/0 port circuits and continue to the following experiment.

EXPERIMENT NO, 2

MEMORY MAPPED 1/0 TO AND FROM THE ACCUMULATOR

PURPOSE

The purpose of this experiment is to test various memory reference instructioms that
transfer data between input-output ports and the accumulator.

SCHEMATIC DIAGRAM OF CIRCUIT

Use the memory input and output ports described in Experiment No. 1.

PROGRAM NO, 1

LO memory
address

000

001
002

003

004
005
006
007

010

PROGRAM NO. 2
000

001
002

003

004

Instruction
byte

LOOP,

Loo?,

Mnemonic

LDA

003

200

STA

004

200

LOOP

003
200

LDAX B

INX B

Description

Load the accumulator from the input

port identified by
memory address

LO address byte of
HI address byte of

Store accumulator

the following

input port
input port

contents in the

output port identified by the following

memory address

10 address byte of
HI address byte of
Jump back to LOOP
L0 address byte of

HI address byte of

Load register pair
into two bytes

LO address byte of

HI address byte of

output port

output port

LOOP

LOOP

B with the follow-

input port

input port

Load accumulator from input port iden-
tified by the contents of register

pair B

Increment register

pair B

21-28

005 o STAX B Store accumulator contents in the
output port identified by the current
contents of register pair B

006 013 DCX B Decrement register pair B

007 303 JMp Jump back to LOOP

016 003 LOOP L0 address byte of LOOP

011 003 - HI address byte of LOOP

PROGRAM N0\ 3

000 o1 LXI H Load register pair H with the follow-
ing two bytes

001 003 003 L0 address byte of input port

002 200 200 HI address byte of input port

003 176 LOOP, MOV A,M Load accumulator from input port iden-
tified by the contents of register
pair B

004 o3 INX H Increment register pair H

005 167 MOV M,A Move accumulator contents to the

output port identified by the current
contents of register pair H

006 053 DCX H Decrement register pair H

007 303 IMP Jump back to LOOP

010 003 LOOP LO address byte of LOOP

011 003 - HI address byte of LOOP
sTEP 1

In this experiment, you are provided with three different types of memory reference
instructions that can be used to transfer data between the accumulator and external
input-output devices. Even though the data transfer instructions have different
mnemonics, Program Nos. 2 and 3 are similar.

We assume that you have already wired the circuit described in Experiment No. 1.
Memory address pulses can be generated using the simple 74L20 gate circuits
provided in Step 1 of this experiment. Keep in mind, however, that the pair

of 7475 latches require a positive select pulse; thus, the output from the 74L20
chip must be inverted.

STEP 2

Load and execute Program No. 1. Change the logic switch settings at the 8095

21-9

(74365) input port. What do you observe on the LED lamp monitors connected to
the two 7475 latches that comprise the memory output port?

You should observe a one-to-one correspondence between memory input and memory
output data. The response should be "instantaneous."

STEP 3

By changing the address bytes at LO memory addresses 004 and 005, would it be
possible for you to output the memory input data to one of the three lamp
monitor output ports on the MMD-1 microcomputer? Please explain your amswer.

It would not be possible to convert any of the output ports on the MMD-1 micro-
computer to memory output ports simply by modifying a pair of memory address
bytes in Program No. 1. The three output ports on the MMD-1 are hard-wired as
accumulator output ports. If you wish to convert them to memory output ports, you
would need to make a number of wiring changes on the printed circuit boards.

In addition, you would have to make a number of changes to the KEX monitor

program. We do not suggest that you do this.

The point we wish to make here is that both hardware and software are required
to determine the nature of an input-output port, i.e., whether it is a memory
1/0 port or an accumulator I/0 port.

STEP 4

Load and execute Program No. 2. Change the logic switch settings to the memory
input port and note the correspondence between such settings and the output
from the pair of 7475 latches.

Why are the INX B and DCX B instructions needed in this program?

The memory input port has an address of 200 003, whereas the output port has an
address of 200 004. We use the INX B and DCX B instructions to change the
address existing in register pair B prior to the LDAX B or STAX B instruction.
In this way, we are able to address both ports. Memory I/0 allows us to use
instructions which can modify a memory address. This is difficult to implement
with accumulator I/O.

STEP 5

Load and execute Program No. 3. Again change the logic switch settings to the

21-30

memory input port and note the correspondence between such settings and the output
appearing on the eight lamp monitors.

What differences do you observe in the execution of this program when compared to
the execution of Program Nos. 1 and 2?

You should observe no differences.

STEP 6

Comment on the differences and similarities of the LDAX B and MOV A,M instructions.

Both instructions are similar in that the memory address is contained in a register
pair and that it is this address that specifies the memory address of the memory
input port. The only difference between the two instructions is the identity of
the register pair. For LDAX B, register pair B contains the address, whereas for
MOV A,M, register pair H contains the address.

STEP 7

Comment on the differences and similarities of the STAX B and MOV M,A instructions.

Both instructions are similar in that the memory address is contained in a register
pair and that it is this address that specifies the memory address of the memory
output port. The only difference between the two instructions is the identity of
the register pair. For STAX B, register pair B contains the address, whereas for
MOV M,A, register pair H contains the address.

STEP 8

Why might you prefer the use of a STA or LDA instruction in preference to a STAX,
LDAX, MOV A,M, or MOV M,A instruction?

Save your 7475 output and 8095 (74365) input circuits for the next two experiments.

By specifying a memory address as a pair of immediate address bytes, you eliminate
the need to use a register pair. There exist only three register pairs in the
8080A chip, so use them wisely.

21-31
EXPERIMENT No. 3
USE OF THE INR M, DCR M, AND MVI M INSTRUCTIONS

PURPOSE

The purpose of this experiment is to test the behavior of the INR M, DCR M, and
MVI M instructions on a typical memory output port.

SCHEMATIC DIAGRAM OF CIRCUIT

Use the output port described in Experiment No. 1.

PROGRAM NO. 1
LO memory Instruction
address byte Mnemonic Description
000 ol IXI H Load register pair H with the follow-
ing two bytes
001 004 004 L0 address byte of output port
002 200 200 HI address byte of output port
003 066 MVI M Move following byte to output port
identified by contents of register
pair H
004 m 111 Immediate data byte to be output
005 166 HLT Halt
PROGRAM NO. 2
000 ol LXI H Load register pair H with the
following two bytes
001 004 004 L0 address byte of output port
002 200 200 HI address byte of output port
003 066 MVI M Move following byte to output port
identified by contents of register
pair H
004 111 111 Immediate data byte to be output
005 04 INR M Increment output port
006 166 HLT Halt

N-32

STEP 1

Wire the memory output port consisting of two 7475 latches, as described in
Experiment No. 1.

STEP 2

Load and execute Program No. 1. What do you observe on the output port lamp
monitors?

You should observe the output octal byte, 111.

STEP 3

Change the value of the data byte at LO = 004 and execute the program once again.
For example, try the data byte 333. What do you observe on the output port now?

You should observe an output byte of 333.

If you would repeat this process with other data bytes, you should conclude that
there is a one-to-one correspondence between the immediate data byte at LO = 004
and the output data on the output port once the program has been executed. When
a MVI M, MOV r,M or MOV M,r instruction is used, the address of the memory
location must be stored in registers H and L, They are loaded at the start of
the program with an LXI H instruction.

STEP 4

Load and execute Program No. 2. What do you observe on the output port? What
did you expect to observe, the byte at LO = 004?

We observe an output byte of 000. You probably should observe the same thing.
We initially expected to observe the output byte, 112. The reasons why we did
not observe such a result are discussed in the next Step.

STEP 5

What operations must the microprocessor execute in order to successfully perform
an INR M instruction?

2133

First, the current contents of memory location M must be input into the 8080A.
Next, they must be incremented by one. Finally, the incremented value must be
output back to memory location M. In other words, with a typical read/write
memory location, the INR M performs both a read and a write.

STEP 6

In memory mapped I/0, in order for you to successfully execute an INR M
instruction, what conditions must exist at the I/0 port?

The port must be similar to that shown in Figure 21-6, i.e., you must be able
to read from and write into the port. Such a condition exists naturally in
read/write memory, but may not exist in memory mapped I/0 interface circuits.

sTep 7

Why did we observe 000 as an output byte in Step 4 of this experiment?

We attempted to read from a non-existent memory location, 200 004, and input
the "default" data byte 377 (due to the data bus floating to all logic 1s),
which was incremented and written into the memory output port as 000. The INR M
and DCR M instructions are unusual in that both a read and write operation

occur on a data byte.

STEP 8

1f the 8095 (74365) three-state input port is still connected, change the
address decoding to the following:

MEMR 134 Address select
2 — - JL
A5 :o 8 puise MEMR —_—D——
A2

=2 200 004 7404

74L20

Now the input port and output port have the same address. Change the instruction
bytes at LO = 003 and LO = 004 in Program No. 2 to NOP, 000. Set a value on the
logic switches and execute Program No. 2. What output appears on the lamp monitors?

The lamp monitor output should be your 8-bit binary setting incremented by 1.

EXPERIMENT NO. 4

USE OF THE ANA M INSTRUCTION

PURPOSE

The purpose of this experiment is to demonstrate the execution of an AND operation
between a memory input port and the accumulator.

SCHEMATIC DIAGRAM OF CIRCUIT

Use the input port described in Experiment No.

PROGRAM

LO memory Instruction

address byte Mnemonic
000 ol IXI H
001 003 003
002 200 200
003 076 TEST, MVI A
004 001 001
005 246 ANA M
006 312 JzZ
007 003 TEST
010 003 -
011 323 OuT
012 000 000
013 166 HLT

sTep 1

1 rewired for address 200 003.

Description

Load register pair H with the
following two bytes

LO address byte of input port

HI address byte of input port

Move immediate byte into accumulator
Mask byte

AND contents of memory input port
with contents of accumulator

If result is zero, jump back to TEST.
Otherwise, continue to next instruction.

10 address byte of TEST
HI address byte of TEST

Flag bit is logic 1. Output it to
following output port.

Output port 000

Halt

Wire the memory input circuit shown in Experiment No. 1 if it is not already wired

on your breadboard.

2-3%

STEP 2

Load and execute Program No. 1 with logic switch A at logic 0. Now set the
logic swtich to logic 1. What happens at output port 000?

Bit DO becomes lit.

STEP 3

Change the mask byte at LO = 004 to one of the following: 200, 100, 040, 020,
010, 004, or 002. Set all eight logic switches to logic 0. Execute the program
once again and test each logic switch until you detect the onme that is not
masked. How do you know when you have found the right one?

The bit corresponding to the non-masked bit becomes lit at output
port 000.
STEP 4
You can also test the other memory reference instructions, including
206 ADD M
216 ADC M
SUB M
23 SBB M
2% XRA M
ORA M
276 CMP M

The CMP M instruction does not affect any data or the contents of the accumulator
register. It only sets and clears flags.

STEP 5

Why would it be useful to be able to perform an arithmetic or logical operation
between a memory mapped input port and the contents of the accumulator?

It might be useful if you wish to externally
using a set of eight logic switches.

set a mask byte for an ANA M operation

REVIEW

The following questions will help you review memory mapped I/0 techniques.
1. What is meant by the term, "memory mapped input/output"?

2. List several differences between accumulator I/0 and memory mapped 1/0?
For example, what control signals are used, what instructions are used,

and what registers are used in the two I/0 techniques?

3. What is meant by the "absolute" decoding of the address bus in memory mapped
1/0?

4. Why is absolute decoding of the address bus in memory mapped I/0 important?

5. In this and preceding units, we have used the terms "device select pulse"
and "address select pulse." What is the difference between these two terms?

6. We have heard it stated that the reason one uses memory mapped I/0 techniques
is to be able to transfer data between more devices than with accumulator I/0?
Do you agree? If so, why? If not, why not?

ANSWERS

1. Memory mapped input/output is a term associated with 6800, 8080A, and other
8-bit microcomputer systems. The I/0 instructions are memory reference
instructions and the data transfer occurs, in the case of the 8080A chip,
between the I/0 device and any of the general purpose registers within the
8080A chip.

2. In accumulator I/0, the control signals are IN and OUT, whereas in memory
mapped I/0, the control signals are MEMR and MEMW. Accumulator I/0 employs
only two 8080A instructions, IN and OUT. Memory mapped I/0 employs any
memory reference instruction, e.g., MOV r,M, MOV M,r, MVI M, STAX rp, LDAX rp,
ANA M, ORA M, ADD M, and others. In accumulator I/O, data transfer occurs
between the I/O device and the accumulator register. In memory mapped I/0,
data transfer occurs between the I/0 device and any of the general purpose
registers, such as B, C, D, E, H, L, or the accumulator.

3. All sixteen bits of the address bus are decoded using a suitable decoder
network so that each memory mapped 1/0 device is uniquely identified and cannot
be confused with a memory location in read/write memory or EPROM or accidently
addressed when program execution goes awry.

4. To prevent the accidental addressing of a memory mapped I/0 device when
program execution goes awry. To clearly distinguish between a memory location
and a memory mapped I/0 device.

5. A device select pulse is_generated when you apply the 8-bit device code from
the address bus and either IN or OUT, which are control signals, to a suitable
decoder circuit. An address select pulse is generated when you apply the 16-bit
address bus and either MEMR or MEMW, which are memory reference control signals,
to a suitable decoder circuit.

6. No, we do not agree. In most cases, 256 different input and 256 different
output devices or device select pulses are more than adequate for a microcomputer
system that includes an 8080A chip. A better reason for using memory mapped I/0
techniques is to permit direct data transfer between the I/0 device and all of
the general purpose registers within the 8080A chip. In addition, the contents
of a memory mapped imput port, can be added to, subtracted from, compared with,
or logically operated on the contents of the accumulator.

UNIT NUMBER 22

MICROCOMPUTER INPUT/OUTPUT: SOME EXAMPLES

INTRODUCTION

One of the most important uses for microcomputers in the laboratory is as a
data logger. This Unit explores the principles of data logging and provides
a number of experimental examples of data logging circuits.

OBJECTIVES

At the completion of this unit, you will be able to do the following:

o Define data logging and discuss the most important considerations in the
development of a data logging system.

o Describe various methods of generating time delays.
o Wire a simple data logging circuit.

o Interface an AD7522 digital-to-analog converter.

2-1

Ine]

[a=]

DATA LOGGING WITH AN 8080 MICROCOMPUTER

A data logger can be defined as,

data logger An instrument that automatically scans data produced by
another instrument or process and records readings of the
data for future use.

It should be clear that a microcomputer can be a data logger. Data from an instrument
can be input into the accumulator and then stored in memory. At a later time, this
stored information can be read out in a variety of ways. Data logging will become

a common application for microcomputers.

Perhaps the most important questions that you should ask when you plan to log data
from an instrument are the following: (1) How many data points do you wish to log? |
(2) How much time will it take to log all of these points? (3) How much digital
information is contained in a single data point? (4) What do you wish to do with

the logged data once it has been acquired? (5) Do you need short term or long

term data storage? We shall now discuss these questions.

HOW MANY DATA POINTS?

The number of data points that you wish to log and the time that you will need to :
store them will dicate the type of storage device required. If you need to data |
log one million four-BCD-digit data points, you will need a memory capacity of
sixteen million bits and will therefore require some form of magnetic tape or
magnetic disk. On the other hand, if you need to log one hundred data points,
each containing only four BCD digits, and store the data for up to several hours,
only 1600 bits of memory are required. A simple read/write memory board would do
quite nicely for such an application. If you need to store more than

thousand bits of data, we would recommend the use of magnetic tape of some type,
such as cassette tape, or a floppy disk.

SHORT TERM OR LONG TERM STORAGE?

Read/write memory is mot, in general, suitable for the long term storage of data.
For one reason, read/write memory is volatile; if a power failure occurs, all of
the data will be lost. Core memory is not volatile, but on the other hand it is
relatively expensive and generally not suited for long term storage of data unless
the amount of data stored is limited. The best data storage devices, as indicated
above, include cassette tape and floppy disks. A high-quality tape cassette can
store as much as 500,000 bits of information on a single cassette that costs no
more than $10. Hardware costs for floppy disks are decreasing every year. The
development of highly sophisticated LSI interface chips for floppy disks should
reduce costs still further. Such chips will soon be available from Intel, Texas
Instruments Incorporated, and Motorola.

An inexpensive and long-term storage technique is the use of perforated paper
tape. We should point out, however, that it takes considerable time to punch such
tape as well as to read it back into a computer. At a teletype speed of 10 ASCII
characters per second, almost seven minutes are required to read or punch 4096
bytes of program or data.

HOW MUCH INFORMATION IN A SINGLE DATA POINT?

A typical data point is usually a three- or four-BCD digit number that also contains
both a decimal point, or range, as well as a sign, Usually, the decimal point or
range is fixed and the sign is positive, but such is not always the case. New
digital devices are increasingly incorporating an autoranging capatiliby, which
means that the digital instrument decides where to place the decimal point.

Plan on a data point that contains at least sixteen bits of digital information.
To obtain the total memory capacity required, multiply sixteen by the number of
data points. Thus, for one hundred data points, 1600 bits of read/write memory
would be required. Frequency meters typically have many more bits per data point.
For example, a seven-digit frequency meter has at least 28 bits per data point.

WHAT WILL YOU DO WITH THE LOGGED DATA?

Some logged data is only "raw" data that must be manipulated and interpreted in
order to produce a useful final result. One example would be the conversion of
a digital voltage to force. In such cases, the logged data will require mathe-
matical computations that should be performed soon after the data is acquired.
With data that requires additional mathematical treatment, we recommend that

you keep the data in digital electronic form until it can be treated. Read/write
memory, magnetic tape, and magnetic disk are all suitable for such a purpose.

The printing of data is a form of long-term data storate. It certainly is the
least expensive type of long term storage around, but you pay a penalty in that
you must consume time to convert it back to digital electronic signals.

HOW MANY DATA POINTS PER SECOND?

This is a fundamental question for all data logging operations. The data can,

for example, (a) appear quite slowly and take considerable periods of time, such
as a day, for its acquisition, or (b) appear extremely rapidly, and take only
milliseconds for the acquisition of hundreds of data points. Both extremes in
data acquisition rates point to the need for automated data acquisition techniques,
such as the use of a microcomputer-based data logger. As the microcomputer
decreases in price, more laboratory instruments will automatically log data via
built-in microcomputers. Chart recorders will still be used, but they may not
need to be of the quality previously required. A major use for chart recorders in
the future will be to allow the eye to visually "integrate" a block of data to
detect for curvature, linearity, etc.

FIRST PROGRAM: LOGGING 64 EIGHT-BIT DATA POINTS

As a demonstration of the concept of data logging, we would like to provide a
program that enables you to log 64 eight-bit data points as fast as the micro-
computer can input and store them. As an example of an "instrument," assume
that you are logging the data from the pair of 7490 counters shown in Figure
22-1. The question that we wish to answer is, what is the minimum amount of
time required to log 64 eight-bit data points from the pair of counters?

The program, which is an example of the use of accumulator I/0 techniques, is
as follows:

IN]

LO memory Instruction Clock t
address byte Mnemonic cycles Description 1
i
000 o4l LXI H 10 Load register pair H with the !
following two bytes
ool 100 100 - L register byte, the LO address
byte of memory location M
4
002 003 003 - H register byte, the HI address
byte of memory location M
003 006 MVI B 7 Move the following byte to
register B
004 100 100 - Number of points that will be
logged by the microcomputer,
i.e., sixty-four points
005 333 LooP, 1IN 10 Input data from pair of 7490
decade counter chips
006 003 003 - Device code for input buffer
in Figure 22-1
007 167 MOV M,A 7 Move contents of accumulator to |
memory location M addressed by |
contents of register pair H
010 0’43 INX H 5 Increment register pair H
011 005 DCR B 5 Decrement register B
012 B/ JINZ 10 1f register B is not equal to
000, jump to LOOP; otherwise,
ignore this instruction and
continue to the next imstruction
013 005 LOOP - L0 address byte of LOOP
014 003 - - HI address byte of LOOP
015 166 HLT - Halt

The loop from LO = 005 to LO = 014 is executed sixty-four times before the micro-
computer comes to a halt. During each LOOP pass, 37 clock cycles are required.
Thus, the total time required to log sixty-four data points is 64 times 37 times
the time per cycle for the B080A microcomputer. For a microcomputer that operates
at 2 MHz, the total time is 1,184 milliseconds. At 18.5 us per eight-bit data
point, a 2 MHz microcomputer can log approximately 54,000 bytes per second, which
is an enormous amount of informationm.

If the clock in Figure 22-1 operated at a frequency of 1 Hz, you would Store one i
or two values in all sixty-four memory locations. The proper way to perform the
above experiment is to use a clock input that has a frequency of at least

20 kHz. We obtained useful results using a clock that had a frequency of 90 kHz.

+53V GND
5 10
o—
° 2
7490
i
D H .
cle 6 H o7
B |92 F 6 p———— 06
14 A E Fp—— D5
[] 8-BIT g} 04
INPUT
pp——— D3
BUFFER
D 1 D [+ D2
cle c B DI
8l 8 Ap——— Do
A A enasLE
cLock 7490
or 14 Tnp o
PULSER select pulse,
5 10 N 003
+5V GND

Figure 22-1. Simple data logging circuit that employs a2 pair of cascaded 7490
decade counters.

SECOND PROGRAM: LOGGING SLOW DATA POINTS

It is not often that you will need to log data at a rate of 54,000 data points

per second. A more common situation is a data logging rate of one byte per second.
The only change required in the First Program is the insertion of a time delay
loop that has a duration of approximately one second. Thus:

10 memory Instruction
address byte Mnemonic Description
000 ol LXI H Load register pair H with the following
two bytes
001 100 100 L register byte, the LO address byte
of memory location M
002 003 003 H register byte, the HI address byte
of memory location M
003 006 MVI B Load register B with the following

byte

004 100 100 Number of points that will be logged i
by the microcomputer, i.e., sixty-
four data points

005 333 LOOP2, 1IN Input data from pair of 7490 decade
counter chips shown in Figure 22-1

006 003 003 Device code for input buffer shown in
Figure 22-1

007 167 MOV M,A Move contents of accumulator to memory

location M addressed by contents of
register pair H

010 o3 INX H Increment register pair H

011 016 MVI C Load register C with the following {
timing byte, which determines the

number of 10 ms time delay loop passes
012 144 144 Timing byte for register C, which
corresponds to 100 loop passes
013 315 LOOPL, CALL Call 10 ms time delay routine DELAY i
014 277 DELAY LO address byte of DELAY .
015 000 - HI address byte of DELAY
016 O]S DCR C Decrement register C
017 302 JINZ If register C is not equal to 000,

jump to LOOPl; otherwise, continue
to next instruction

020 013 LOOP1 1.0 address byte of LOOP1 i
021 003 - HI address byte of LOOP1 }
022 [DS DCR B Decrement register B ;
023 302 JNZ If register B is not equal to 000,

jump to LOOP2; otherwise, continue

to next instruction
024 005 LOOP2 LO address byte of LOOP2
025 003 - HI address byte of LOOP2
026 166 HLT Halt

It will require 1.0000345 seconds to log each data point, or a total of 64.0022
seconds to log all sixty-four data points. Clearly, the additional time required
to perform the DCR, IN, CALL, INX, and JNZ instructions is negligible when compared
to the one-second time delay. A 10 ms time delay subroutine will permit you

to log data at rates between 23.4 data points/minute and 99.7 data points/second
simply through a change in the value of the timing byte at LO = 012.

THIRD PROGRAM: OUTPUT FROM A DATA LOGGER

Let us assume that you have stored sixty-four data points in read/write memory
starting at HI = 003 and LO = 100 and now wish to output each point at the

rate of one data point/second to an appropriate latch circuit such as that shown
in Figure 20-6, 20-10, 20-12, or 20-13. What type of program is required? The
answer to this question is that a program that is almost identical to the Second
Program is needed. Only three instruction bytes in the Second Program need to be
modified:

005 176 MOV M,A Move the contents of the memory location
M to the accumulator

006 3723 oUT Output the accumulator contents to an
output latch

007 [1)2 002 Device code of output latch

Otherwise, the Second Program can be used as written. For example, in the second
program, you have already provided instruction bytes to (a) identify the memory
location M, (b) establish the number of data points located in read/write memory,
(c) initiate a one-second time delay between each data point, and (d) halt after
all sixty-four data points have been output. As a dividend, you can repeatedly
execute the modified Second Program, which we shall now call the Third Program,
starting at HI = 003 and LO = 000. The Third Program is now an output program that
does not modify the contents of read/write memory.

FOURTH PROGRAM: DETECTING AN ASCII CHARACTER

While the concept of using input devices to input eight bits of data is straight
forward, once you have input the data you can perform interesting programming

tricks to take advantage of the power of the 8080A chip. For example, assume

that the input data byte is the 8-bit ASCII code from a standard ASCII keyboard

that has TTL output. Each time a new ASCII byte is input, it is tested to determine
whether or not it is the ASCII equivalent to the letter "E", which has an ASCIT

code of 305. If it 1s an "E", the ASCII byte is output and also stored in read/write
memory. If not, the program will immediately loop back to the IN instruction and
input a new ASCII byte. The simple flow chart for this program is shown in

Figure 22-2,

The program is as follows:

LO memory Instruction
address byte Mnemonic Description
000 333 START, IN Input ASCII character

0oL 004 004 Device code for ASCII keyboard

2-3

003 376 CPI Compare the accumulator contents with
the following data byte. If the two
bytes are identical, set the zero
flag. If not, clear (reset) the zero

flag.
004 305 305 ASCIT code for the letter "E"
005 m JINZ If the zero flag is reset, Z.e., at

logic 0, jump to START; otherwise,
continue to the following instruction

006 000 START L0 address byte of START

007 003 - HI address byte of START

010 323 ouT Output the ASCII code for the letter
E

011 002 002 Device code for output latch

012 [Bz STA Store the accumulator contents in
memory location STORE

013 200 STORE 10 address byte of STORE

014 003 - HI address byte of STORE

015 166 HLT Halt

The compare immediate, CPI, instruction at LO = 003 and LO = 004 permit you to
compare the ASCTT byte 305 with the contents of the accumulator without alterning
the accumulator contents. Only the flags are changed. If the ASCII byte for

the letter "E" and the accumulator contents are identical, the zero flag is set
to logic 1; otherwise, the zero flag is reset (cleared) to logic 0. The condition
of the zero flag is then tested by the JNZ instruction to determine whether or not
to continue looping.

We have observed that the compare instruction is subtle and, on occasion, difficult
to use properly. As indicated in Unit Number 18, the two flags that are tested
after a compare instruction, such as CPI, are the zero flag and the carry flag.
Four different conditional jump instructions can be inserted at LO = 005 in the
above program. The questions that are implied by such instruction bytes can be
summarized as follows:

Instruction byte

at L0 = 005 Implied question
302 Is the input ASCII character the letter If
not, continue looping until it is.
312 Is the input ASCII character any character other than

the letter "E"? Continue looping until an ASCII char-
acter other than "E" is input.

2-9

32 Is the input ASCII character "A", "B", "C", or "D"?
If not, continue looping until it is.

332 Is the input ASCII character "E" through "Z"? If not,
continue looping until it is.

We have tested the Fourth Program using each of the above four conditional branch
instructions. With the ASCII code equivalents to the letters "D", “E", and "F",
the program worked as expected.

INPUT DATA

YES

OUTPUT IT

!

STORE IT

HALT

Figure 22-2. Flow chart for the Fourth Program, which tests an input character
to determine whether or not it is the ASCII character "E". When an "E"
is input, the program outputs the character, stores it, and then comes
to a halt.

OTHER METHODS OF GENERATING TIME DELAYS

In the second program in this Unit, a one second time delay loop was used to slow
down the rate at which the microcomputer logged data from an input device. The
use of such a loop represents a very inefficient application of a microcomputer,
since the microcomputer could perform other useful functions during the one second
interval. Other methods of generating one second time delays include the
following:

o A real time clock based upon the 60 Hz line frequency.

A 60 Hz square wave is produced by suitable analog circuitry and used
to periodically interrupt program execution. As discussed in Unit
Number 25, program control is directed to a small subroutine that
acquires the data point and then returns control to the interrupted
program.

o A real time clock based upon a high frequency crystal oscillator circuit.
The interrupt approach is used here as well.
o A programmable interval timer.

A programmable interval timer such as the 8253 chip contains several
16-bit registers that can be counted down at the frequency of the micro~
computer. An initial register word is loaded into the interval timer.
Counting proceeds until the register contents is zero, at which time an
interrupt pulse is sent to the microcomputer. A programmable interval
timer represents a combined software-hardware approach to the problem of
generating known time delays. Some hardware, .., an integrated circuit
chip, is needed, but the time delay is set with the aild of software.

If the microcomputer has no other functions to perform between data points, the
use of a wait loop is quite acceptable.

INTRODUCTION TO THE EXPERIMENTS

The following experiments provide examples of microcomputer input/output
circuits, with an emphasis upon data logging.

Experiment No.

1

Comments

Logging fast data points. Demonstrates a data logging circuit
and program that can log 8-bit data points at a rate of
20,000 points/second.

Logging slow data points. The addition of a time delay
subroutine slows down the rate at which data points can
be logged by the program of Experiment No. 1.

Detecting an ASCII character. Demonstrates a program that
can detect the input of a specific ASCII character, such as
ASCII "E".

Wiring a bus monitor. [See Experiment No. 1 in Unit Number 17
for a bus monitor circuit that is based upon the Texas
Instruments Incorporated TIL31l numeric indicator.] Describes
and demonstrates the type of information that is latched when
the following control signals are applied to the latch

enable input (STB) of the numeric indicator: 1IN, OUT, MEMR,
MEMW, INTA, and input and output device select pulses.

Bidirectional memory mapped I/0 using an 8216 chip. Demonstrates
the use of the 8216 chip as a 4~bit bidirectional I/O port.

Accumulator I/0 using the 8255 chip. The 8255 programmable
peripheral interface chip is widely used in input/output
circuits. This experiments demonstrates the mode O operation
of this chip using accumulator I/0 techniques.

Memory mapped I/0 using the 8255 chip. By changing the
control signal inputs from IN and OUT to MEMR and MEMW, it
is possible to convert the circuit of Experiment No. 6 to
memory mapped I/O operation.

Interfacing a digital-to-analog converter. Demonstrates an
interface circuit between an 8080A-based microcomputer and
the Analog Devices, Inc. AD7522 10-bit buffered, multiplying
digital-to-analog (D/A) converter.

A staircase-ramp comparison analog-to-digital converter.
With the aid of a suitable program and the addition of a
comparator circuit based upon the IM311 comparator chip,
you can convert the DAC circuit in Experiment No. 8 into an
analog-to-digital converter.

Some of the above experiments employ more expensive integrated circuit chips. We
encourage you to be careful when using such chips.

21
EXPERIMENT NO, 1
LOGGING FAST DATA POINTS

PURPOSE
The purpose of this experiment is to operate a simple 8080A-based data logger that
can log data at high data rates.

PIN CONFIGURATIONS OF INTEGRATED CIRCUIT CHIPS !

Ve oS, m, oUW, oUW, ot

N PO P R O P i

crrrhrrl
7490 8095
SCHEMATIC DIAGRAM OF CIRCUIT i
+5V GND
5 10
o —=
] 2 {
7490
I
HE " H D7
2 F 6 D6
12 AH2 E F D5
¢_T 8-BIT ¢ D4
INPUT
D D3
BUFFER _ o2 f
7 1l
— D)
0= ok c B oI
B[B A 00
A] A enaBLE
I
cLoCK 7490 __Ii
or 14 Input device
PULSER select pulse
5 10 IN 004
+5V GND

PROGRAM
LO memory Instruction
address byte Mnemonic Description
000 ol IXI H Load register pair H with the
following two bytes
001 100 100 L register byte, the LO address byte
of memory location M
002 003 003 H register byte, the HI address byte
of memory location M
003 006 MVI B Move the following byte into register B
004 100 100 Number of points that will be logged
005 333 LOOP, 1IN Input data from buffer
006 004 004 Device code for input buffer
007 167 MOV M,A Move accumulator contents to memory
location M addressed by contents of
register pair H
010 o3 INX H Increment register pair H
011 005 DCR B Decrement register B
012 302 JNZ If register B is not equal to 000,
jump to LOOP and input another data
point; otherwise, continue to the
next instruction
013 005 LOOP L0 address byte of LOOP
014 003 - HI address byte of LOOP
015 166 HLT Halt
step 1

Study the schematic diagram of the circuit. Observe that a pair of cascaded 7490
decade counters are input into an input buffer. Two buffer circuits are given in
Unit Number 20, Figures 20-17 and 20-18. We would recommend the use of the pair
of 8095 chips since they are less expensive and, in our experience, less subject to
being damaged. Obtain the negative device select pulse from one of the decoder
circuits described in Unit Number 17.

Wire the circuit required for this experiment. The clock frequency should initially
be extremely slow, approximately 1 Hz.

STEP 2

Load the program into read/write memory starting at HI = 003 and LO = 000.

2-14

STEP 3

Execute the program at the full microcomputer speed.

Now go to memory location HI = 003 and LO = 100 and step through read/write memory
up to HI = 003 and LO = 200. What do you observe? Why?

We observed a reading of 120, in octal code, for all of the memory locations starting
at LO = 100 and ending at LO = 177. Such a reading corresponds to an 8-bit binary
word of 01010000, which is equivalent to the decimal number 50 in packed BCD. The
microcomputer executed the program so quickly that only a single output from the

pair of 7490 decade counters was input into all memory locationms.

STEP 4

What do we mean by the term, "packed BCD"?

Binary coded decimal (BCD) is a four-bit binary code for the decimal digits 0 through
9. Two BCD digits comprise a total of eight bits, which can be input as such into
an 8-bit microcomputer such as the 8080A. By 'packed BCD," we mean that an eight-bit
data point contains two four-bit BCD digits.

STEP 5

Execute the program at the full microcomputer speed several times. Observe what
data you input starting at memory location HI = 003 and LO = 100. What do you
conclude?

In each case, we input only a single pair of BCD digits into read/write memory.

STEP 6

We concluded previously in this Unit that it required 37 cycles to log a single
8-bit data point. If a microcomputer is operated at a clock rate of 750 kHz,
how much time is required to log a single point? What is the data logging rate,
in bytes/second?

2-15

At 750 kHz, a cycle lasts for 1.333 microseconds. Thus, 37 cycles corresponds to
49,3 microseconds and a data rate of 20.27 kHz.

STEP 7

If the clock input to the pair of 7490 counters has a frequency of 20 kHz, what
can you conclude about the data stored in read/write memory starting at HI = 003
and LO = 1007

We would expect to see a series of increasing counts starting at HI = 003 and
L0 = 100, with an increment of one count between successive memory locations.
The reason is that the input clock frequency to the 7490 chips is identical to
the data logging rate of the 750 kHz microcomputer. For example, when we
performed such an experiment on our microcomputer, we observed the following
results:

L0 address byte of Stored data

read/write memory Octal code Packed BCD
100 106 46
101 107 47
102 110 48
103 111 49
104 120 50
105 121 51
106 122 52
107 123 53
110 124 54
111 125 55

112 126 56

STEP 8

Set the clock frequency of the clock input to the 7490 counters to 20 kHz or
slightly less. Frequencies ranging between 5 kHz and 20 kHz would be quite
acceptable. Execute the program once. Observe the data stored starting at
HI = 003 and LO = 100. What do you conclude?

The 7490 counter was stored sequentially in sixty-four read/write memory locations
starting at HI = 003 and LO = 100. Our first data point was octal 070 and our
last data point was octal 166.

2-16

STEP 9

If 49.33 microseconds are required to log a single data byte, and if the first
data byte is 070 and the final data byte is 166 from a two-decade counter circuit,
what is the frequency of the counter?

The total time required to log 64 data bytes is 49.33 us + 64 points = 3157.12 ys.

The number of counts between the first and last data byte is,
First count data = 0708 = 01111000, = 384

Final count data = 166 = 01110110 = 76
8 2 10

In other words, a total of 76 - 38 = 38 data bytes were logged during 3.15712 ms.
The input clock frequency is therefore,

Clock frequency = 38/0.00315712 seconds

= 12.0 kHz

sTep 10

Calculate the input clock frequencies to your 7490 decade counter circuit using
the calculation procedure described in the above step.

Initial count Final count Calculated frequency,
[LO = 100] {LO = 177] kHz

We obtained the following results, where the counts are given in decimal:

Initial count Final count Calculated frequency,
(decimal) (decimal) kHz
09 305 93.8
20 147 40.2
11 105 30.0

36 74 12.0

EXPERIMENT N0, 2
LOGGING SLOW DATA POINTS
PURPOSE
The purpose of this experiment is to operate a simple 8080A-based data logger that
can log data at low data rates.
SCHEMATIC DIAGRAM OF CIRCUIT
See preceding experiment for details of the 7490 decade counter circuit.
PROGRAM
LO memory Instruction
address byte Mnemonic Description
000 ol LXI H Load register pair H with the following
two bytes
001 100 100 L regisger byte, the LO address byte
of memory location M
002 003 003 H register byte, the HI address byte
of memory location M
003 006 MVI B Load register B with following byte
004 100 100 Number of points that will be logged
005 333 LOOP, 1IN Input data from pair of counter chips
006 137} 004 Device code for counter buffer
007 167 MOV M,A Move accumulator contents to memory
location M addressed by contents of
register pair H
010 o3 INX H Increment register pair H
011 016 MVI C Load register C with following timing
byte
012 144 144 Timing byte for register C
013 215 LOOP1l, CALL Call 10 ms time delay routine DELAY
014 277 DELAY LO address byte of DELAY
015 000 - HI address byte of DELAY
016 o5 DCR C Decrement register C
017 302 JNZ 1f register C is not equal to 000,
jump to LOOP1l; otherwise, continue to
next instruction

2-18

020 013 LOOPL LO address byte of LOOPL

021 003 - HI address byte of LOOPL

022 005 DCR B Decrement register B

023 302 JNZ If register B is not equal to 000,

jump to LOOP; otherwise, continue
to next imstruction

024 005 LOOP LO address byte of LOOP
025 003 - HI address byte of LOOP
026 166 HLT Halt

step 1

The circuit is identical to that used in the preceding experiment. Load the new
program into read/write memory starting at HI = 003 and LO = 000.

STEP 2

Execute the program. Remember that it will now require one second per data point,
or a total of 64 seconds before all data points are logged and the program comes
to a halt. Your clock input to the 7490 counters should be approximately 1 Hz.

Go to memory location HI = 003 and LO = 100 and step through read/write memory.
What do you observe?

We observed the data that we logged at one data point/second.

STEP 3

Now make the following changes to the above program and wire up an output port 002
if one is not already available on your microcomputer.

005]]6 MOV M,A Move the contents of the memory
location M to the accumulator

006 2723 ouT Output the accumulator contents to the
output latch

007 002 002 Device code of output latch

Execute the program and explain what you observe on the latch, which should be
connected either to eight lamp monitors or to a pair of seven-segment displays.

2-19

We observed the data input that we stored in read/write memory before we made the
modification to the program! In other words, by modifying three instruction bytes,
we were able to convert our data input program into a data output program.
Each data point was output at a rate of one data point/second, so it was very easy
to study the data that we initially stored in memory.

STEP 4

Repeat steps 2 and 3 as often as you desire. Each time you wish to input data
into the memory, you must make certain that the proper instruction bytes are
present at memory locations LO = 005 through LO = 007.

STEP 5

Rather than modifying the program each time, it probably would be more convenient

to load a separate output program starting at HI = 003 and LO = 030. Assuming
that you would do so, what would the addresses of LOOP and LOOPL he?

LOOP would be at HI = 003 and LO = 035 and LOOPL would start at HI = 003 and LO = 043.

2-29
EXPERIMENT NO. 3

DETECTING AN ASCII CHARACTER

PURPOSE

The purpose of this experiment is to wire an interface and execute a program that
demonstrates how to detect the ASCII character, "E".

PIN CONFIGURATION OF INTEGRATED CIRCUIT CHIP

Voo O, W OUL e 0T, N, ouT,

be fo o Jo o fo fu s

prrrrrrr
8095 ;
i
SCHEMATIC DIAGRAM OF CIRCUIT
+5V GND
||s la
H [(¢] H H 9 D7
LOGIC G j 6 6 ; D6
WITCHES F F F 05
8 E 2l e} D4
8095
0 —-
15
[
Device select i |
pulse 004s
15
0 —d
8095
) olp P2 D3
LOGIC ¢ i c ¢ ; D2
B [} [} DI
SWITCHES 8 1% G o0
I6 Ia
+8V GND

-1
PROGRAM
LO memory Instruction
address byte Mnemonic Description
START: 000 333 IN Input ASCII character from the switches
001 004 004 Device code for input port
002 376 CP1 Compare the accumulator contents with
the following data byte. If the two
bytes are identical, set the zero
flag. If not, reset the zero flag.
Set the carry flag if 305 is greater
than the accumulator contents.
003 305 305 ASCII code for the letter "E
004 30 JNZ If the zero flag is reset, jump back
to START; otherwise, continue to the
following instruction
005 000 - LO address byte of START
006 003 - HI address byte of START
007 3 ouT Output the ASCII code for the letter
“E", which is contained in the
accumulator
010 (1074 002 Device code for output port
o1l 166 HLT Halt
step 1
Wire the interface circuit shown in the schematic diagram. Load the program
in read/write memory starting at HI = 003 and LO = 000. We would recommend

the use of a single-step circuit for this experiment. An example of such a
circuit 1s given in Experiment No. 2 in Unit Number 17.

STEP 2
Set the logic switches to the 8095 three-state buffer chips to the ASCIT

equivalent of the letter "D", i.e., 304 in octal code or 11000100 in binary.
Execute the program at the full microcomputer speed. What happens?

In our case, nothing happenmed. Output port 002 did not exhibit 305.

22-22

STEP 3

Set the logic switches to 306 while the microcomputer is running. Make certain
that you do not set it to 305, even momentarily! Any change yet?

No. The reason is that so far a 305 input has not been detected. Such being
the case, the program continues to loop back to START.

STEP 4

Now change the logic switches to 305. What happens?

The ASCII code fo "E", 305, is output to port 002 and the microcomputer comes
to a halt. It does so in response to the query posed by the instruction byte
at LO = 004:

004 m JNZ Is the input ASCII character the letter
"E"? If not, continue looping back to
START until it is.

STEP 5

Change the instruction byte at LO = 004 to

004 312 Jz Is the input ASCII character any char-
acter other than the letter "E"?
Continue looping until a character
other than "E" is input.

Set the logic switches to 305 and execute the microcomputer at its full speed.
What do you observe?

The program continues to loop. During each loop, it detects the character "E".

STEP 6

Now set the logic switches to 304 and execute the program once more. What happens?

The microcomputer immediately comes to a halt.

STEP 7

22-23

You may also wish to substitute either of the following instruction bytes at

LO = 004:

004

004

2

332

JNC

Jc

Is the input ASCII character less than
305? If not, continue looping until
it is.

Is the input ASCII character greater
than 304? If not, continue looping
until it is.

See the text in this unit for a discussion of these two instruction bytes.

2-24 ‘
EXPERIMENT NO. 4 {

WIRING A BUS MONITOR

PURPOSE

The purpose of this experiment is to wire a pair of circuits that you may find
useful in subsequent experiments: (1) a three-octal-digit bus momitor, which
permits you to monitor all information that passes over the bidirectional data
bus, and (2) a latched 7490 counter, which permits you to detect and count
different types of synchronization pulses.

PIN CONFIGURATIONS OF INTEGRATED CIRCUIT CHIPS

FUNCTION
= ok o e we w
REAR VIEW PIN f:"’:?nggo 5082-7340 wl[n] [u]l 0] [w] [s)[s
Nomeric | Hexadecimal |
% w
Comnous 1 Input 2 Input 2 A |
o i carecon 3 | dnputs | Tnputs _
e @ 4 Decimal Blanking " T
| pare cooe point controt
PN KEY 5 Catch Latch ELIREIRIn NI
o e gy W wm e W
a3 1 6 Ground Ground {
7 [Ve Ve 7490
8 Input 1 Input 1

|
|
|

05 e 1 [

D4 B

D3 A

3] k4

D2 0= 3 [;5V

DI H ND

DO A

HP 5082- 7300

Latch Enable

2-25

+ 5V GND
I5 110
o— [15 I +5v
o—4 § 15 6ND
A 12 -]
7490 , HP 5082 - 7300

4
———————= CLOCK

Latch Enable

sTep 1

Wire the circuit shown above, preferably on a single SK-10 socket. You will find
them useful as monitors of device select pulses and control signals as well as
the data that appears on the bidirectional data bus.

STEP 2
The Hewlett-Packard 5082-7300 display contains a four-bit latch of the 7475 type
that is enabled by a logic 0 STROBE pulse. What does this mean?

The 7475 latch is a D-type latch that follows the input when the latch is enabled.
Thus, a logic 0 applied to the HP 5082-7300 means that the output will be the
same as the input as long as the STROBE input remains at the logic 0 state.
Latching of input data occurs on the positive edge of the STROBE input pulse.

STEP 3

A variety of control and other signals can be used as the STROBE input to the
HP 5082-7300 latch/displays that are conmnected to the bidirectional data bus,
DO through D7. List some of these signals and explain what information they
permit you to latch from the data bus.

2-2% i

Some useful signals include:
00T Latches all data output via an OUT instruction
N Latches all data input via an IN instruction ?
MEMR Latches all data input via a memory-read type instruction %
MEMW Latches all data output via a memory-write type instruction i
Output DS Latches all data output to a specific output device
pulse
Input DS Latches all data input from a specific input device i
pulse ;
INTA Latches data on the bus that appears during an interrupt |

acknowledge control signal

We shall call the three-digit circuit that latches the bidirectional data bus,

DO through D7, a bus monitor, since it permits you to monitor all information

that appears on the data bus. You will use this monitor in subsequent experiments,
so save it.

STEP 4

The second circuit in this experiment consists of a Hewlett-Packard latch/display
wired to the output of a 7490 counter. What is the function of this circuit?

The circuit permits you to detect individual control signal or device select
pulses, provided that only a few are generated. Such a circuit is generally
used when the program contains a halt instruction or when there are long times
between pulses.

EXPERIMENT NO, 5
BIDIRECTIONAL MEMORY MAPPED 1/0 USING AN &216 cHIP
PURPOSE
The purpose of this experiment is to operate an 8216 chip as a bidirectional

memory mapped I/0 port.

PIN CONFIGURATION AND LOGIC DIAGRAM OF INTEGRATED CIRCUIT CHIP

00, 0————

i,

PIN NAMES o
o8,
[DAYA BUS [V — B
| 9808, | Bl mecTionat > S [&
oy | o
v 4 °
o : .
OATA IN ENABLE L
BE | Bliection contaot I MG IMPEDANCS
& | omeseiecr 1 &

DiEn

SCHEMATIC DIAGRAM OF CIRCUIT

+5V GND
Lo
2 14
Loorc g '9 0 g 2 HP 5082-7300
¢ 71$ LATCH/
SWITCHES ; 4‘A' Z 2 A DISPLAY
A S
8216
7400 5 p3
MEMR s 3 L oien 0 D2
MEMW ——¢ _ -&— DI
A-l4 —J'>°2|—5 a3 3 DO

74L04

-2

PROGRAM
LO memory Instruction
address byte Mnemonic Description
000 o1 START, 1LIXI H Load register pair H with the
following two bytes
001 000 000 L register byte, the LO address byte
of memory location M
002 100 100 H register byte, the HI address byte
of memory location M
003 176 MOV A,M Move contents of memory location M
to accumulator
004 167 MOV M,A Move contents of accumulator to memory
location M
005 323 ouT Output contents of accumulator to
output port 002
006 002 002 Device code for port 002
007 305 JMP Unconditional jump to memory location
START
010 000 START LO address byte of START
011 003 - HI address byte of START
step 1

Wire the circuit shown. Load the program in read/write memory starting at HI = 003
and LO = 000.

STEP 2

Execute the program. What do you observe on output port 002 and also the latch/
display as you change the logic switches from 0000 to 1001?

The least significant four bits in output port 002 and the latch/display exhibit
the same reading as the logic switch input to the 8216 chip. The most significant
four bits in output port 002 all remain at logic 1. The program reads the logic
switch data using the MOV A,M instruction, and then outputs the accumulator contents
to the 8216 latch/display using the MOV M,A instruction. Finally, the OUT 002
instruction outputs the accumulator contents to the output port.

2-9

Fill in the following truth tables for the DIEN and s inputs to the 8216 chip.

DIEN cs I Operation of the 8216 chip

OO
OO

Explain the significance of these tables in the space below.

The first truth table indicates whether or not the chip is enabled:

A-14 { CS Operation of the 8216 chip
1 0 Chip enabled
0 1 Chip disabled (high impedance state)

The second truth table indicates the direction of data transfer through the chip:

MEMR MEMW DIEN
e ——————
Not allowed
Memory read
Memory write
Memory write

HFrROO
=OorOo
HHOO

The final truth table summarizes the operation of the 8216 chip:

DIEN cs Operation of 8216 chip
0 0 Data input to 8080A chip
0 1 Chip disabled
1 0 Data output from 8080A chip
1 1 Chip disabled

In other words, when MEMR and CS are both at logic 0, the 8216 serves as an
input port. When MEMW and CS are both at logic 0, the 8216 serves as an output
port. MEMR and MEMW cannot both be at logic 0 since the 8080A microprossor
cannot read and write at the same time. The MEMW = MEMR = 0 state is never
observed by external control logic.

STEP 4

Is this chip useful as an I/0 port?

Perhaps, but an additional latch is required if it is to be used as an output
port. The succeeding experiment provides a better scheme. 1In general, the
8216 is used as a bidirectional bus driver/buffer that has a fan-in of 0.1 and
a fan-out of 30.

27-31
EXPERIMENT NO. 6

ACCUMULATOR 1/0 USING THE 8255 CHIP
PURPOSE
The purpose of this experiment is to demonstrate the use of the 8255 programmable

peripheral interface chip as an accumulator 1/0 port.

SCHEMATIC DIAGRAM OF CIRCUIT

+5V GND !
26 7 ‘
07— o7 ra7 |2—
D6 =] os PAG 3o~
D5 D5 ;ﬁ [
30}
D4 —29 D4
03 —21 03 |
PA3 |
02 — b2] z
DI = o ral |=
Do DO PAO |t
10
pc7 fr—qH
8255 Fkce be—]¢ LosIC
PC5 [-=——F swiTCHES
pca |2 E
17
PC3 D
a-7 —o—td €5 g N
7404 :gz, T“E SWITCHES
A1 A
9 25
A-0 AO PB7 2o H
PB6 <] LAMP
W —d D pes %]F moniTors
— 36 —
T —of WR 2
rB3 215
—_ 35 pB2 2 ¢ LAMP
RESET RESET eel 25
MONITORS
7404 PBO 18 A

2-32

PROGRAM
L0 memory Instruction
address byte
000 076
001 231
002 323
003 203
004 233 LOOP,
005 202
006
007 201
010 303
011 o0y
012 003

PIN CONFIGURATION AND BLOCK DIAGRAM OF INTEGRATED CIRCUIT CHIP

The truth table for the three I/O ports and the control register is as follows:

Mnemonic

MVI A

231

ouT

203

IN

202

ouT

201

LOOP

Description

Move the following control word into
the accumulator

Control word that establishes the mode
0 operation of the 8255 chip, with
ports A and C being input ports and
port B being an output port

Output accumulator contents to following;
output latch |

Device code for control register
within 8255 chip !

Input logic switch data at port C

Device code for port C w
Output accumulator contents to port B |
Device code for port B |

Unconditional jump to memory location
LOOP

LO address byte of LOOP

HI address byte of LOOP

INPUT OPERATION (READ) i

8255 BASIC OPERATION
Ay | Ag . RD | WR | TS
ol o o 1 0 | PORT A= DATABUS
o 1) 1 0_| _PORT 8= DATA BUS
I I) 1 0 | PORT C= DATA BUS
OUTPUT OPERATION
. (WRITE)
ol o 1 0 0 | DATABUS=PORTA
o 1 1 0 0 | DATABUS=PORT B
1] o 1 [0_| DATABUS=PORTC
T 1 0 G | DATA BUS= CONTROL
DISABLE FUNCTION
X[x| x X 1_| DATABUS- 3-STATE
T 1] 1 0 | ILLEGAL CONDITION

The pin configuration and block

diagram for the 8255 chip are:

PIN CONFIGURATION 8256 BLOCK DIAGRAM
madr T wpea
raz{]z [eas
mfa 2 [Tens
waole e somen
e = svels
sds o neser
a7 o,
ns afo,
nifs =P,
= sfie,
s 8285 w0,
pes (12 2[7 o, e
pea(fra 28[] 0, moAtCTIONAL DATA BS
peo]ra ey 0,00 e
per]S 26[Ve e
= [em —
= [ves o
s 2f s
ED nfIre
220 nF1em
Yo
PIN NAMES
DATA BUS (BI-DIRECTIONAL} | -
RESET j} RESET INPUT
= CHIP SELECT
) ReapwPUT T o

1 wRive weut
PORT ADDRESS.

PATPAO_| PORT A (BIT}
PB7PBO_| PORT B (BIT)
PC7PC0 | PORTC@BIT) _

Vec | +5VOLTS
GND @VOoLTS]
sTeP 1

Study the truth table for the three I/0 ports and the control register within the
8255 chip. Address bus bits A-0, A-1, and A-7 are used to select the specific
port_or register desired. The control signals IN and OUT are connected to RD

and WR, respectively. Therefore, the eight-bit device code, A0 through A7,
identifies the particular 1/0 device associated with an IN or QUT instruction.
Since the address bus is mot absolutely decoded, address bits A2 through A6 can be
either 0 or 1. In defining the device codes, we have let these bits be logic O.

Device code I/0 port or register
2 Port A
Port B
Port C

Control register

In the program, the instruction bytes at L0 = 003, 005, and 007 are all device
codes.

STEP 2

Wire the circuit shown._ Use address bus bit A-7 for the Ts input, IN for the RD
input, and OUT for the WR input. This use of the chip is an example of accumulator
1/0.

STEP 3

Load the program in read/write memory starting at HI = 003 and LO = 000. What
do you think the significance of the instruction byte at L0 = 001 1s?

As stated in the program, it is a control word that establishes the mode 0 operation
of the 8255 chip and whether port A, port B, and port C are input or output ports.
In this case, the control word corresponds to ports A and C being input ports and
port B being an output port, |

CONTROL WORD #13
©, O, 0, D, Dy D, D, D,

[y S L AN

0,0y +———]

a
e ho, e,

c
2 |
D L |

Y AT R

STEP 4 !

Execute the program at the full microcomputer speed. While the microcomputer {
is running, change the logic switch settings and observe the output at port B. J
What happens?

Port B displays the logic switch input to port C. Any changes in the logic switch
settings occur essentially instantaneously at port B. This behavior demonstrates
that we have input data into the accumulator and output it from the accumulator
to port B.

STEP 5 I

Change the control word at LO = 001 to ZB Execute the program at the full
microcomputer speed and observe whether or not there is any output at port B

23

when you change the port C logic switch settings.

We observed no change in output at port B, which remained at 000. The reason
is that the control word now assumes that port B is an input port,

CONTROL WORD =7
L3

Y e Y

L —

et cec,
|
PRSY R

P} R L R

STEP 6

Finally, change the control word at LO = 001 to ZU]_, which corresponds to the
following situation,

CONTROL WORD =1
D, Dy 05 0 0y O 0 DO

AL—— At e ea Ay

) EE A
A ey
et beyec,

Bl B a, Py,

Note that now, only four of the bits in port C are input bits. Remove the logic
switches from bits PC4 through PC7. Change the control word at LO = 001 and
execute the program at the full microcomputer speed. What do you observe?

22-36

The output at port B mirrors the input at port C bits PCO through PC3. As far
as our circuit is concerned, port B is once again an output port.

STEP 7

The 8255 chip is an interesting but somewhat complicated interface chip that

is manufactured by the Intel Corporation. For further details, obtain a copy
of the recently published "8080 Microcomputer Peripherals User's Manual" and

a copy of application note AP-15, "8255 Programmable Peripheral Interface
Applications." The 8255 chip will be the subject of Bugbook IV, which is still
being written.

Save this circuit for the following ewperiment, in which you use the 8255 chip
as a memory I/0 device.

2-37
EXPERIMENT NO. 7
MEMORY MAPPED 1/0 USING THE 8255 CHIP

PURPOSE

The purpose of this experiment is to demonstrate the use of the 8255 programmable
peripheral interface chip as a memory I/O port.

PIN CONFIGURATION OF THE INTEGRATED CIRCUIT CHIP
SCHEMATIC DIAGRAM OF CIRCUIT

These have been given in the preceding experiment, in which you were asked to save
the circuit

PROGRAM
LO memory Instruction
address byte Mnemonic Description
000 o4l LXI H Load register pair H with the following
two bytes
001 003 003 L register byte, the LO address byte
of memory location M
002 Z(I] 200 H register byte, the HI address byte
of memory location M
003 006 MVI B Move the following control word to
reglster B
004 731 231 Control word that establishes the mode
0 operation of the 8255 chip, with
ports A and C being input ports and
port B being an output port
005 160 MOV M,B Move register B contents to memory
location M, which is the control
register within the 8255 chip
006 055 DCR L Decrement register L
007 176 LOOP, MOV A,M Input logic switch data through port C
010 55 DCR L Decrement register L
011 167 MOV M,A Output accumulator contents to port B
012 054 INR L Increment register L
013 303 JMP Unconditional jump to memory location
LooP
014 07 LooP LO address byte of LOOP
015 003 - HI addvess byte of LOOP

step 1

The input to TS should now be the inverted bit A-15. The inputs to RD and W |
should now be MEMR and MEMW, respectively. Make these wiring changes to the |
circuit shown in the preceding experiment.

STEP 2

Load the program into read/write memory starting at HI = 003 and LO = 000.

STEP 3

Execute the program at the full microcomputer speed. Vary the logic switch settings
and observe what happens at port B. What can you conclude?

The logic switch input at port C appears as a lamp monitor output at port B.

STEP 4

Change the control word at LO = 004 to 213 and then to 201. Execute the microcomputey
in each case at the full microcomputer speed. Explain your observatioms at port B
in the space below.

With the control word of 213, port B no longer functions as an output port. For
control word 201, port B is again an output port, but only port C bits PCO through
PC3 are input bits. Bits PC4 to PC7 are output bits with this second control word.

STEP 5

Change the LO address byte at LO = 014 to (013. Execute the program at the full
microcomputer speed with 23] as a control word at LO = 004. Can you conclude that
the output to port B is latched?

Yes, the output to port B is latched, since any logic 1 bits remain at logic 1
despite the fact that no additional input to the accumulator occurs from port C.
Only the initial logic switch settings are latched. All subsequent changes are
ignored by the program.

EXPERIMENT NO. 8 Z3

INTERFACING A DIGITAL-TO-ANALOG CONVERTER

PURPOSE

The purpose of this experiment is to test a simple parallel input program for the
AD7522 10-bit buffered, multiplying, digital-to-analog (D/A) converter.

PROGRAM
LO memory Octal
address instruction Mnemonic Comments
000 mz START, SHLD Strobe ten bits of digital data into
the AD7522 DAC shift registers.
001 004 004 HI = 000 and LO = 004 is the memory
1/0 device code for the LBS input to
002 000 000 the DAC. HI = 000 and LO = 005 is
the memory I1/0 device code for the HBS
input to the DAC. [NOTE: We can use
these device codes since memory block
HI = 000 is EPROM.]
003 %2 STA Send strobe pulse to the LDAC input
of the AD7522 DAC. Ten bits of digital
data are internally strobed within the
DAC into the DAC register.
004 003 003 HI = 000 and LO = 003 is the memory
1/0 device code for the LDAC input to
005 000 000 the DAC.
006 w3 INX H Increment register pair H
007 315 CALL Call 10 ms time delay routine located
in the KEX EPROM (memory block HI = 000).
010 277 TIMEOUT 1O address byte of TIMEOUT
011 000 - HI address byte of TIMEOUT
012 303 JMP Jump back to START and repeat the
execution of the program.
013 00 START LO address byte of START
014 003 - HI address byte of START
DISCUSSION
The above program causes the Digital-to-analog converter to generate a slow linear
ramp, which can be observed on a Volt-ohmmeter (VOM) or an oscilloscope, as
the voltage output from the DAC. The ramp output is subdivided into 1024
small steps, each step being approximately 5.0 to 5.5 mV in magnitude. The
total time required to change from 0.0 Volts to + 5.66 Volts output 1s 10.24 sec.

(punosd Bojouy) gNOV

AGI-0

22se.av

wnoy

VW v
snipo ESE

<
3 001
<

isnfpo jesyy0

2-9

AGI~

0 2gl-

YWy

10 ecupjog A

cobL

ASl+ JO 2|+

2Lnot Jds
41GQ1 828
anov aval
s81
saM
(8sW) eaa
8ad
(8s7) oga
18a
os 28Q p—2a
284y €80 [5—€a
1e4y +80 [—+a
S840 f5—sa
980 (90
480 520
1¥s 53— 0
1100l
43¥A [—ns-
anoa “h
wm— 12
aNov
100¥NI

LINJYID 4O WWdOVIA JILWWIHOS

2

The 10-bit digital-to-analog converter word consists of the data bits DBO through
DB7 strobed into the AD7522 8-bit shift register with the aid of strobe pulse LBS,
and also data bits DB8 and DBY strobed into the AD7522 with the aid of strobe
pulse HBS. Bits DB8 and DBY appear on the microcomputer bidirectional data bus
as bits DO and DI1.

The details of the Analog Devices AD7522 DAC is described in "Bugbook VII. Micro-
computer Conversion Devices," which first appeared during the summer of 1977.

In the Appendix to this experiment, we provide additional data on the AD7522

DAC, courtesy of Analog Devices, Inc.

PIN CONFIGURATION AND BLOCK DIAGRAM OF INTEGRATED CIRCUIT CHIP

v e we
A A A O 4
;
voo e 2 [73 oowp. JOBIT MULTIPLYING D/A CONVERTER :
Fod= R =+ ;
= =T
. "
prd= B = S 0 0 1 1 O
ot =4
mer xBn
= 2 [oAc DAC AEGISTER le—2—0 10ac
Fd= HI =5
=g 1Bz
==L
ose] 1 1w [081 bad
=g 1Bm °
oss. " . o83 2¢
= T =1 wB e Je o
b o o
o T 2
-+
PR P
& 3

sTEP 1

Study the schematic diagram of the circuit that you will wire. When we performed
this experiment, V. was connected to a small Volt—ohmmeter (VOM). The digital
ground, DGND, shou?d be connected to the analog ground, AGND. Since you are using
memory I/0 techniques, MEMW should be used instead of OUT.

®

To facilitate the wiring of this circuit, we have developed a small Outboard N
a block diagram of which is shown below. If you have this Cutboard, wire the
circuit as shown. Inputs 003, 004, and 005 are the decoded output channels
obtained from an appropriate LO address byte decoder circuit.

STEP 2

Wire the DAC circuit and load the program shown at the start of this experiment
into memory starting at HI = 003 and 1O = 000. If you are executing this program
on the MMD-1 microcomputer (also known as the Dyna-Micro), the 10 ms time delay rou-
tine TIMEOUT is already loaded in the Keyboard EXecutive EPROM. If you are

using some other 8080A-based microcomputer, we have provided a listing of DELAY

in the Appendix to this experiment.

2-2

+12v -l2v

+12v -lav
D7 — D7 4sv eND
D6 —1 D6
p5 — ps
04 —1 04 DA
03 —4 D3 AD7522 ou
02 —{ o2
0l — o
00 —
o —]
005 —]
004 —

¢ +
T 0-6v

oo DAC

SRI SRO |—

M8 OUTBOARD® '
003 —] LDAC |
MEMW —{ GUT, MENW f
0 —1 5C8
0 — SPC

Address
codes

Figure 22-3. Schematic diagram of the AD7522 DAC Outboard, which contains all
of the necessary analog and digital circuitry needed to perform this
experiment (see Schematic Diagram of Circuit).

STEP 3

Execute the program with the Volt-ohmmeter connected to the output of the DAC.
What do you .observe?

We observed a slow but steady increase in the VOM reading until +5.6 Volts was
reached, at which time the needle returned to 0 Volts and repeated the process.
The time required for the full range of readings was approximately 10 seconds.

213

STEP 4
Change the instruction byte at LO = 006 to the following:
006 053 DCX H Decrement register pair H

Execute the program once again. What change in behavior of the VOM do you
observe? Why?

Now the VOM exhibits a slow and steady decrease from + 5.6 Volts to 0 volts,
at which time the needle returns to + 5.6 Volts and repeats the process. We
decrement the value instead of incrementing it as before.

sTEP 5

Remove the time delay subroutine by making the following program changes:
007 000 NoP No operation
010 [141) NOP No operation
011 000 NOP No operation

The DCX H instruction should still be present. Execute this modified program
and explain what you observe on the VOM.

We observed that the VOM needle oscillated about the voltage reading +2.75 Volts.
The magnitude of the oscillations was approximately +0.02 Volts. On a digital
multimeter, the readings varied between +2.83 and +2.91 Volts. In other words,
the rather fast linear ramp could not be followed by either meter; only an average
voltage reading was observed.

The negative linear ramp was easy to observe on an oscilloscope set to a sweep
rate of 10 ms/division.

Save your interface circuit and continue to the following ewperiment. Additional
information for this experiment is given in the Appendiz on the following page.

2

r

APPENDIX TO EXPERIMENT NO. 8

A listing of the 10 ms time delay routine TIMEOUT is as follows:

LO memory Octal
address instruction Mnemonic Comments

277 365 TIMEOUT, PUSH PSW Push contents of accumulator and
flags on stack

300 35 PUSH D Push contents of register pair D on
stack

301 021 IXI D Load following two bytes into register
pair D

302 U6 046 E register byte

303 001 001 D register byte

304 OB MORE, DCX D Decrement contents of register pair
D by omne

305 172 MOV A,D Move contents of register D to
accumulator

306 263 ORA E OR contents of register E with contents
of accumulator

307 3w JNZ Jump to LOOP if result of OR operation
is not 000; otherwise, skip this
instruction after testing the zero flag

310 304 MORE LO address byte of MORE

311 000 - HI address byte of MORE

312 321 POP D Pop stack into register pair D

313 341 POP PSW Pop stack into accumulator and flags

314 211 RET Return from subroutine

On the following two pages we provide a listing of the individual pin functions on
the AD7522 digital-to-analog converter. We would like to acknowledge Analog
Devices, Inc. for the use of this information.

Pin Function Description

PIN | MNEMONIC DESCRIPTION PIN | MNEMONIC DESCRIPTION
1 | vbop +15V (nominal) Main Supply. 21 | sec Serial/Parallel Control. If SEC is a
2 LDTR R-2R Ladder Termination Resistor. logic “0,” the AD7522 will load

Normally grounded for unipolar parallel data appearing on DBO
operation or terminated at [OUT2 through DB into the input buffer
for bipolar operation. when the appropriate strobe inputs
are excrcised (sce HBS and LBS).
3 | vrer Reference Voltage Input. Since the e < 2 logie 417
AD7522 is a multiplyng DAC, 1 SPC is a logic “1,” the AD7522
VREF may vary over the range of will load serial data appearing on
1107, Pin 26 into the input buffers. Each
N serial data bit must be “strobed”
4 | RFB2 Rfeedback + 2; gives full scale equal into the buffer with the HBS and
to VREF/2. LBS.
s | REBI Rfeedback, used for normal anity
gain (at full scale) D/A conversion. 22 | 1pac Load DAC: When LDAC is a logic
6 10UT? DAC Current QUT-1 Bus. Normally “0,” the AD7522 is in the “hald™
terminated at virtual ground of out- mode, and digital activity in the
put amplifier. input buffer is locked out. When
7 | 1out2 DAC Current OUT-2 Bus, terminated ,LUACh‘s‘f‘l l“g‘f " the 357522
at ground for unipolar operation, or isin the "load'’ mode, and data in
: > the input buffer loads the DAC
virtual ground of op amp for bipolar }
. register.
operation.
8 | aGnD Analog Ground. Back gate of DAC .
N-channel SPDT current steering 2 Ne Ne Connection.
switches.
s . . 25 | HBs High Byte Strobe. When in “parallel
O R A e o
iy e Py appearing on the DBY (MSB) and
- DB8 data inputs will be “clocked”

10 | pee Data Bit 9. Most significant parallel into the input buffer on the positive

data input. going cdge of HBS.

11 | pes Data Bit 8. When in “scrial load” mode (SPC =

12 | oer Data Bit 7. 1), serial data bits appearing at the

- serial input terminal, Pin 26, will be
13| DB Data Bit 6. “clocked” into the input buffer on

1 fops 4| Daics. the positive going cdges of HBS and

15 pBe O b Bic 4 LBS. (HBS and LBS must be

clocked simultaneously when in

16 | pB3 Data Bit 3. “sorial load” mode.)

17 | DB2 Data Bit 2.

18 | pB1 Data Bit 1. 24 | LBS Low Byte Strobe. When in *parallel

19 | pBo Data Bit 0. Least significant parallel load” mode (SPC = 0), parallel data

data input. appearing on the DBO (LSB) through
— o DB inputs will be “clocked" into the
20 | Sc8 8-Bit Short Cycle Control. When in input buffer on the positive going cdg
serial mode, if SC8 is held to logic
- p of the LBS.
“0,” the two least significant input o .
latches in the input buffer are by- When in “serial load” mode (SPC =
passed to provide proper serial 1), serial data bits appearing at the
loading of 8-bit serial words. If SCB serial input terminal, Pin 26, will
is held o logic “1," the AD7522 be “clocked” into the input buffer
will accept a 10-bit serial word. on the positive going edge of HES
Data bits 0(LSB) and DB] arc in a and LBS, (HBS and LBS must be
parallel 15ad mode when SCB = 0, dlocked simultaneously when in
and should be tied o a logic low serial load” mode.)
state to prevent false data from
being loaded. 2 | sk Serial Input.
27 | vee Logic Supply. If +5V is applied, all 28 | DGND Digital Ground.
digital inputs/outputs are TTL com-
patible. If +10V to +15V is applied,
digital inputs/outputs are CMOS
compatible.

Note 1: Logic 1" applied to a data bit steers that bit's current to the
IOUT1 terminal.

2-15

2-46
EXPERIMENT NO. 9

A STAIRCASE-RAMP COMPARISON ANALOG-TO-DIGITAL CONVERTER f
|

PURPOSE
The purpose of this experiment is to use the staircase ramp comparison technique

to convert an AD7522 10-bit buffered multiplying digital~to-analog converter into
an analog-to-digital converter (ADC) with the aid of an LM31l comparator.

PIN CONFIGURATIONS OF INTEGRATED CIRCUIT CHIPS

Ve O, M 00N W ouT, W, OUR

S O P I P

Dualin-Line Package

Metal Can Packago Dustin Line Packspe e e

[Ty e——
Torvte Pt p— 1 F FFFTT
or FI1IH, LE211H Torunn
fn AN Drdee Number LM31IN Ordor Number LET11D, LF211D o5 My oUT W, ou, W, own ok
or LE3110

8095

SCHEMATIC DIAGRAM OF CIRCUIT

The DAC circuit has been shown in the preceding experiment. The output from the
DAC, Vo e should now be connected to input pin 2 of the LM31l comparator, as
u

shown below.

This is the reference voltage
from the DAC

+5V +5V +5V GND
L 8
1K j
|2— o7 |
1K
8095
GND
—i2v 006 —ia

This is the unknown voltage, E

-7
PROGRAM
This program is written to be stored in EPROM, starting at HI = 00l and LO = 107
and terminating at HI = 001 and LO = 210. An asterisk, * , is provided to indicate
those absolute memory locations which must be changed to relocate the program
elsewhere in memory. Since most EPROM programmers operate in hexadecimal code,
the program is also listed in hex.
LO memory Instruction
address Octal Hex Mnemonic Comments
107 305 C5 CONVRT, PUSH B Push contents of register pair B on
stack
110 325 D5 PUSH D Push register pair D on stack
111 35 E5 PUSH H Push register pair H on stack
112 365 F5 PUSH PSW Push accumulator and flags on stack
113 323 D3 oUT Generate synchronization pulse
114 w7 07 007 Device code of synchronization pulse
115 ol 21 LXI H Initialize register pair H
116 000 00 000 L register byte
117 000 00 000 H register byte
120 w2 22 AGAIN, SHLD Strobe ten bits of digital data into
the AD7522 DAC shift registers
121 004 04 004 HI = 000 and L0 = 004 is memory I/0
device code for LBS input; HI = 000
122 000 00 000 and L0 = 005 is memory 1/0 device code
for HBS input.
123 062 32 STA Send strobe pulse to LDAC input of
AD7522 DAC; load data into DAC register
124 003 03 003 HI = 000 and LO = 003 is memory I/0
device code for LDAC input
125 000 00 000
126 043 23 INX H Increment register pair H
127 333 DB IN Input into bit D7 the output from the
AD311 comparator
130 006 06 006 Device code for comparator bit
131 36 E6 ANI Mask all bits in accumulator except bit
D7

2218

132 200 80 200 Mask Byte

133 312 cA Jz If comparator bit D7 is logic 1, con—
tinue to steps below; otherwise, jump
to AGAIN and continue to increment
the DAC output

134 120* 50% AGAIN LO address byte of AGAIN

135 w:l* 01* - HI address byte of AGAIN

136 175 7 MOV A,L Move the low eight bits of the DAC
word to the accumulator

137 323 D3 ouT Output low eight bits of DAC word to
following output port

140 002 02 002 Device code for output port 002

141 174 7C MOV A,H Move the high two bits of the DAC
word to the accumulator

142 323 D3 ouT Output high two bits of DAC word to
following output port

143 o 02 000 Device code for output port 002

144 361 Fl POP PSW Pop accumulator and flags off stack

145 341 E1 POP H Pop register pair H off stack

146 321 D1 POP D Pop register pair D off stack

147 301 cl POP B Pop register pair B off stack

150 3]1 c9 RET Return from subroutine

DISCUSSION

Observe that it is not difficult to relocate the above program. Only two address
bytes need to be changed. The program generates a slow linear ramp output from
the DAC. This DAC output voltage, V_ _, 1s continuously tested by the IM311 com~
parator against an unknown voltage, g > in this case, one supplied by a 1 kilohm
potentiometer circuit. If V4 < E_, the output from the comparator is logic 0.
This single bit is input into the D’f position of the accumulator, where it is
masked and tested by the JZ instruction. The linear ramp continues to be generated
until Vo0 > Ey , at which time the comparator output becomes logic 1. The JZ
instruct‘fon 1s then skipped and a return occurs from the subroutine after the
10-bit DAC word is output to a pair of output ports.

ut
x

sTep 1

Assume that the above program is already present in EPROM. If it is not, load
it at an appropriate place in your read/write memory. The only two absolute
address bytes present in the program are at LO = 134 and LO = 135.

29

STEP 2

If the program is in EPROM, you may have to write a short program to call the
subroutine. At HI = 003 and LO = 000, load the following program into read/write
memory:

L0 memory Instruction
address byte Mnemonic Description
000 315 CALL Call the staircase ramp-comparison
subroutine CONVRT
001 107 CONVRT 10 address byte of CONVRT
002 001 - HI address byte of CONVRT
003 166 HLT Halt
STEP 3

You will observe the results of the program execution with the aid of a VOM or

a digital voltmeter. The program in read/write memory calls the program once,
permits a single conversion to be made, and then halts. The measured analog
voltage appears on the VOM. At the same time, the 10-bit DAC number also appears
on the two output ports, 000 and 002.

With the 1 kilohm potentiometer set at 0 ohms, execute the program once. What
do you observe?

We observed a 0.0 Volts reading on our Volt-ohmmeter, a reading of +0.027 Volts
on our digital voltmeter (indicating that we had some offset error in our
analog circuit), and a reading of HI = 000 and LO = 000 on output ports 000 and
002, respectively.

STEP 4

Now set the 1 K potentiometer at its maximum value, approximately 1 kilohm.
Execute the ADC conversion routine once, and observe both the output voltage on
the VOM and the DAC word on the output ports. What readings do you observe?

Is this what you would expect?

We observed a reading on the VOM of +2.30 Volts and a reading on our digital
multimeter of +2.529 Volts. The resistance divider circuit should provide a
reading of approximately +2.8 Volts, based upon the results from our previous
experiment. The tolerances of the resistor and potentiometer are such that our
measured values are reasonable. The 10-bit output DAC word that appeared on
output ports 000 and 002 was HI = 001 and LO = 371.

2-5

STEP 5

Vary the potentiometer setting and test the program for the measurement of voltages
between 0.0 Volts and +2.5 Volts. Do you observe any difficulties?

We did not. Our measurements worked as expected.

REVIEW

The following questions will help you review data logging.
1. What is a data logger?
2. What are the important considerations in the design of a data logger?

3. How would you detect a specific ASCII character that is input into the
microcomputer?

4. What methods are available to generate time delays?

2-51

ANSWERS

1. A data logger is an instrument that automatically scans data produced by
another instrument or process, and records readings of the data for future use.

2. Basically you must determine how many bits of memory are required to store
the data, whether such storage is short term or long term, and how many data
points per second are to be logged. It 1s not difficult to exceed the capa-
bilities of an 8080A-based microcomputer (without DMA, or direct memory access)
in high-speed data logging applications.

3. You would input the ASCII character into the accumulator and then compare (cMP)
the accumulator contents with the specific ASCII code of the desired character.
The ASCII code could be stored in registers B, C, D, E, H, or L, or in a

memory location. When the desired character is detected, the zero flag goes

to logic 1.

4. Time delays can be software or hardware generated. A software time delay
loop can generate delays as short as twenty to thirty microseconds and as long
as hours or even days. Hardware methods of generating time delays include the
use of a real time clock, probably operating at 60 Hz, that interrupts program
execution, a crystal based real time clock, or a programmable interval timer.

UNIT NUMBER 23

FLAGS AND INTERRUPTS

INTRODUCTION

Flags and interrupts are useful interfacing techniques that find broad application
in any type of computer interfacing. This Unit explores their use with 8080A-based

microcomputers and provides typical hardware and software examples. Interrupt
timing problems are also discussed.

OBJECTIVES

At the completion of this unit, you will be able to do the following:
o Define flag and give typical examples of its use.
o Design a simple flag circuit and explain its operation.

o Write flag servicing software for one or more flags and explain how
such software is used.

o Describe three types of interrupts.

o Explain the use of the 8080A restart instructions, including the
-operation of the stack.

o Describe the operation of the 8080A microprocessor chip's interrupt
capability and all of the signals involved.

o Design an interrupt instruction port and describe its use.
o Describe the software used in a typical interrupt service routine.

o Explain some of the timing problems associated with both flags and
interrupts.

23-2

WHAT IS A FLAG?

We have seen in previous units that it is fairly easy to transfer data in and
out of a microcomputer using the IN and OUT instructions and some hardware.

In many cases the computer will be ready for data to be input much faster than
the data source can generate it. We can also have the case of an output device
which may be much slower than the computer. For example, a teletypewriter can
print only 10 to 30 characters per second, whereas a typical 8080A system can
output a new character as fast as every 5 to 10 microseconds. Clearly, some
method of synchronization is needed so that the computer responds only when an
input device actually has data ready or when an output device needs more data.
We need some sort of signal to indicate the state or status of our devices.
This is called a flag.

flag Some sort of digital register or device used to indicate the
state or status of a device. It can be cleared or set in
response to an operation.

You have already used some flags that are internal to the 8080A microprocessor
chip. These are the zero flag and the carry flag which, along with the sign,
parity, and auxiliary carry flags make up the five internal 8080A flags that

are useful to us in software. These flags, excluding the auxiliary carry flag,
are the basis for the branching or transfer of control instructions. Note that
the flags are cleared (logic 0) or set (logic 1) in response to various software
instructions. This is consistent with our definition, since the software performs
an operation, e.g., ADD, ROTATE, OR, etc. It is important to note that flags are
used to detect conditions and to remember what condition has occurred.

External flags are used to indicate conditions of input/output devices and other
digital systems or devices which the microcomputer must control. Listed below
are some of the types of conditions which flags are used to indicate:

o Data is available and read to be input into the microcomputer.

o A device is ready for the next set of eight bits to be output to
it.

o An external device is busy, or it is still performing an operation.
o An external device 1s ready for the next operation.
o A limit has been exceeded.

o A value is too low.

FIRST EXAMPLE: INTERFACING A KEYBOARD

Let us consider a typical interfacing example and see how a flag can be used. We
shall interface an 8-bit ASCII keyboard to our microcomputer by constructing an
8-bit input port. You should be able to do this based upon your experience with
device decoding and three-state input ports. For additional details, see Unit
Numbers 17 and 20. Our interface circuit is shown in Figure 23-1. A typical

3

flow chart that illustrates how you would input characters and compare them to
the letter "E" is shown in Figure 23-2.

+5V GND
124 IIZ
223y HpEA——— 7
201g 62 D6
21F FRL—0n—D5
e e D4
ASCil : D 8212 D |a° D3
ENCODED s c ¢ S D2
B s ——n1
KEYBOARD 5] Al bo
1 —Jos2 |
> BST CLR |
o —24{mD
-
N 605

Figure 23~1. Typical keyboard input circuit based upon the use of an 8212 chip
as a three-state input port.

INPUT DATA

NO

YES

OUTPUT 377

HALT

Figure 23-2. Software flow chart for detecting the ASCII letter, "E".

By

When the ASCIT code for the letter "E", 3055, is finally input and detected by
the microcomputer, the software will output all logic ls, or 3775, to an output
port, in this case, device 00l. If there are LEDs at this output port, they
will all be 1it when an "E" has been detected. The software needed to accomplish
this is as follows:

LO memory Instruction
address byte Mnemonic Description

000 333 DETECT: 1IN Input keyboard data from input port
005

001 005 005 Device code 005

002 376 CPI Compare accumulator contents with
the ASCII byte for the letter "E"

003 305 305 ASCII code for the letter "E"

004 302 JNZ If the keyboard input byte is not the
same as the ASCII code for the letter
"E", jump to memory location DETECT;
otherwise, continue to the following
instruction

005 o0 000 10 address byte of DETECT

006 003 003 HI address byte of DETECT

007 076 MVI A The keyboard input bite is the ASCII
letter "E". Input the following byte
into the accumulator.

010 377 377 Accumulator byte

011 323 ouT Output the contents of the accumulator
to output port 001

012 001 001 Device code 001

013 166 HLT Halt

This software will continuously input data from the keyboard even when a key is
not activated (and thus no real code is present). We would prefer to sense the
key closure and have the computer only input the information when the code is
valid. Most keyboards provide a pulse or level that indicates when data is ready
or valid. This status signal is a flag. For example, in the case of our key-
board, it is a one microsecond pulse, called VALID, which indicates that a valid
code is present. We could input this pulse directly into the microcomputer and
test to see 1f it were present, but in all likelihood the microcomputer would
miss it since the pulse is so short. We need some means of stretching or holding
the pulse until it can be sensed by the microcomputer. The solution is a flip-flop,
which provides the means of holding the flag information. A typical flip-flop
flag is shown in Figure 23-3 for both the 7474 and 7476 type flip-flops.

The VALID pulse from the keyboard is used to set the flag, which may then be sensed

iy
IN 005 23-5

8212
KEYBOARD A input > To data bus

Port

VALID

L | psec pulse
JL

l—'_ IN 017

1—{p @ D3
8212
7474 :::_I\V
To data bus
Clock Status
CLR Register
L uT 065

Figure 23-4. Simplified circuit that demonstrates how the VALID flag from the
keyboard is tested by the 8080A microcomputer.

8212 SENSE REGISTER

Do

FULL TO DATA
3] BUS

N |
NN VI o

TO PROCESS

ouT Ol6
ouT 018

Figure 23-5. Fluid-level detecting circuitry with an overflow indicator.

23-6

7476 7474

+8V —W—v @ + 8V —Wr——D o}—

—J L —~—CK

SIGNAL INPUT
K I ———CK
I SIGNAL INPUT

GND T T
CLEAR CLEAR

Figure 23-3. Typical flip-flops used as flags. The 7476 flip-flop is a pulse-
triggered device while the 7474 flip-flop is a positive-edge-triggered
device.

by the microcomputer under software control. A three-state input port is used to
input the flag information to the 8080A. This is exactly the same type of input
port used to input data, except that it is now called a sense register since it
is used with individual flags. Once a specific flag has been sensed, it must be
cleared so that the next key closure will again set the flag. The hardware is
shown in Figure 23-4, in which the two 8212 input ports have been simplified for
clarity. The device decoders are not shown (see Unit Number 17 for information
on the generation of device select pulses).

SECOND EXAMPLE: SOLVENT LEVEL CONTROL

As a second example of the use of flags, we wish to control the level of solvent
in a storage tank. An empty/full switch and a digitally controlled valve are
available. The system is schematically represented in Figure 23-5. Two OUT
device select pulses are used to control the valve through the use of a flip-flop,
a buffer, and a solid-state relay, a technique that has been previously shown in
Figure 17-8 in Unit Number 17. As a precaution, an overflow indicator has been
added that outputs a logic 1 when the solvent is about ready to overflow, and a
logic 0 when there is no danger of overflow. The level switch is at a logic 1
when the solvent reaches the full point, and at a logic 0 when it reaches the
empty point. Since the overflow and level indicators do not change rapidly, they
can be used directly as flags without flip-flops. Flip~flop flag indicators might
still be used in a real environment; you should be able to show how they could be
added to this system. A three-state gense register is still used to input these
signals into the microcomputer.

Your object is to write a software program to keep the liquid between the FULL
and EMPTY limits and to sense an overflow condition, which might be caused by a
poor switch or valve. Consider the flow chart shown in Figure 23-6. The flags
are sensed in software using two conditional jump instructions. Notice that in
this flow chart example, symbolic addresses have been used. These address names
or address symbols are used to simplify the programming task since actual address
values do not have to be assigned until the program is finished or assembled.

Figure 23-6.

INPUT

237

OVERFLOW

YES

NO

INPUT LEVEL

FLAG=I?

NO

"ALARM"

SHUT VALVE

OPEN VALVE

Software flow chart for controlling the level of solvent in a
storage tank.

The software for controlling the level of solvent in the tank can be written as

follows:

LO memory
address

000
001

002

003
004

Instruction
byte

333 START:
7
346

040
30

100

Mnemonic

IN

027

ANT

040

CNZ

ALARM

Description
Input flag data from device 027
Device code 027

Mask out bit D5, i.e., AND contents of
accumulator with following mask byte

Mask byte
If bit D5 is logic 1, call subroutine
ALARM; otherwise, continue to next

instruction

LO address byte of subroutine ALARM

006

007

010
011
012

013
014
015

016

017

020

021

022

023

024

025
026

016

303

003

015

000
003

IN

027

Jc

FULL

ouT

016

START

ouT

015

START

HI address byte of subroutine ALARM

Input flag data from device 027 once
again

Device code 027

Rotate bit DO into the carry flag

If carry bit is logic 1, the tank is
full; jump to the memory location of
the FULL routine. Otherwise, continue
to the next instruction.

10 address byte of FULL routine

HI address byte of FULL routine

The tank is not full. Open the valve
and let-more solvent flow in.

Device code 016, which generates a
device select pulse that opens the
valve

Do it again, i.e., jump back to memory
location START and execute the program
once more

LO address byte of START

HI address byte of START

The tank is full. Close the valve
that lets solvent flow in.

Device code 015, which generates a
device select pulse that closes the
valve

Do it again, i.e., jump back to memory
location START and execute the program
once more

LO address byte of START

HI address byte of START

We have assumed that the address of the ALARM subroutine is HI = 003 and LO = 100.
The ALARM software might first contain a command to shut the valve, OUT 015, and
then a routine to actually sound the alarm signal.

The above software is useful in understanding other aspects of flag bit manipula-

tion.

All of the bits except D5 have been masked out, or cleared, in the first

AND operation, in which the overflow status is checked. This means that the flag

23-9

information must be input again when the FULL and EMPTY limits are to be checked.
Such a step could be eliminated if the status data were saved in a memory loca-
tion, for example, in a register or on the stack. This might be important if the
six other input bits are comnected to other devices and must be checked as well.

In real projects such as this, there is the possibility of errors. For example,
the FULL/EMPTY switch wires may be reversed, so that in the full position the
valve opened and in the empty position it shut. This could be disastrous, so
the fluid level control system must be checked or simulated before it goes into
actual operation. You will do this in one of the experiments. In the software
example, the microcomputer is dedicated to a small loop that continuously checks
the solvent tank. In a real situation, other tanks and levels would also be
checked. The time to fill the tank is extremely long compared to the time in
which the microcomputer can check fifty or more tanks. If, however, the micro-
computer is also performing other tasks, it may not be in a position to check
each tank except once every several seconds. Depending upon the other tasks
assigned to it, the microcomputer may actually miss a FULL level or even an
OVERFLOW condition if it takes too long to do some of these other operations.

A final point to consider is the time required to turn the valve on or off.
Depending upon the size of the valve, this time may range from one second to
five to ten seconds. In properly written software, the valve will be given
sufficient time to turn on or off before amother decision on its state is made
by the microcomputer. When the solvent tank is operating near its FULL position,
software should be available to prevent the valve from opening or closing
unnecessarily.

POLLED OPERATION

The type of microcomputer operation, which we discussed above, that was used in
both hardware and software for the keyboard and the solvent tank is called
polled operation. Polling is defined in the following manner.

polling A periodic checking of input-output or control devices to
determine their condition or status, e.g., full/empty,
on/off, busy/ready, done/not done, etc.

When devices are polled, they may require servicing or they may not. In polled
operation, devices are checked one after the other in sequence. When a device
needs to be serviced for input or output of data or for a control application,

a software driver is used. The software driver is a series of steps in memory
that are designed to serve that particular device. For example, the software for
the keyboard input and solvent tank control could be called software drivers
since they cause an action to be taken at the particular device. Each input/output
device generally has a software driver routine, or perhaps even a set of software
drivers for various types of operations. Polled operations are genmerally slow
and are used with slow devices such as teletypes, paper tape readers, paper tape
punches, games, coin operated machines, etc. For faster response times, such

as in a multi-task problem, a faster way of servicing external devices is needed.
This ig discussed in the sections below.

2-10 !
WHAT 1S AN INTERRUPT?

If you were interrupted while reading this page, you would probably finish the
sentence, mark your place (perhaps mentally), and then take care of the interrupt,
i.e., a phone call, meal, child, etc. After finishing with the imterrupt, you
would continue reading where you left off. Computers service interrupts in much
the same way! The term, interrupt, can be defined as follows:

interrupt In a computer, a break in the normal flow of a system or
routine such that the flow can be resumed from that point
at a later time. |

In a computer, interrupt operation is much more sophisticated than polled opera-
tion and has both advantages and some disadvantages in comparison to polled
operation. For example, in polled operation:

o The computer wastes time checking all possible 1/0 devices.

o Devices must wait their turn. All are treated as equal, in
sequence. This establishes a sequential priority, but each device
must still wait its turn before being serviced.

o Response times may be long.

o Software and programming are generally straightforward.

In interrupt type systems:

o The computer may be doing other things not related to the I/O i
devices while waiting for them to require servicing.

o Priority can be established in software or hardware so that
important devices are serviced first.

o Response times can be fast.

o Hardware and software can become very complex.

TYPES OF INTERRUPTS

There are three basic interrupt modes, single-line, multilevel, and vectored.

single-line An interrupt signal that is input to the computer on a single
line and causes a well defined action to take place. Multiple
devices must be ORed onto this line and a polling routine must
determine which device caused the interrupt. The PDP-8 family
of minicomputers uses this method.

miltilevel Several independent interrupt lines are provided, each of which
causes a specific action. Polling is not needed unless
multiple devices are ORed to one of the inputs. The Motorola
6800 microprocessor chip uses this system with two interrupt
input lines.

Device No. |
Device No. 2
Device No. 3

Figure 23-7.
techniques.

23-11

interrupt MICRO -
COMPUTER
. interrupt no. |
Device No. | 4
. interrupt no. 2 MICRO -
Device No.2 COMPUTER
. interrupt no. 3
Device No. 3 P
) vec'or'
instruction —
bits —
MICRO-
COMPUTER
. interrupt no. |
Device No. | P

Schematic diagrams illustrating three different types of interrupt

23-12

vectored Each device points, or vectors, the computer's control to
specific software drivers for the interrupting devices. The
Intel 8080A and Digital Equipment Corporation PDP~11 family
of minicomputers use this technique.

Each technique is shown in Figure 23-7. In the single-line system, many devices
may be added, but they must all be polled through a sense register using flag
flip-flops. Servicing can be slow since a long time may be consumed in polling
all of the devices in a large system. The multilevel interrupt is a mix between
vector and single~line schemes. It has limitations and takes careful software
management to use it effectively. The vectored interrupt will be discussed in
detail below.

RESTART: RST x

In this Unit, we will be mainly concerned with the vectored interrupt techniques
that are used on the 8080A microprocessor chip. This type of interrupt permits
us to provide not only an interrupt pulse, but also an instruction to the
microprocessor to tell it what to do. In simple 8080A systems, a single-byte
instruction can be forced into the computer when it is interrupted. While rotate,

increment, and other single-byte instructions might be useful in some applications,

restart instructions, Z.e., single-byte subroutine call instructions, are much
more useful and flexible.

The usual 8080A call instructions, both conditional and unconditional, each
specify a sixteen bit address in the second (LO) and third (HI) instruction
bytes. How can there be a single byte subroutine call? The answer is that
restart instructions call subroutines at predefined addresses. These instructions
are listed below,

307 RST O Call subroutine at HI = 000g and LO = 000g
317 RST 1 Call subroutine at HI = 000g and LO = 010g
327 RST 2 Call subroutine at HI = 0005 and LO = 020g4
337 RST 3 Call subroutine at HI = 0005 and LO = 0304
347 RST 4 Call subroutine at HI = 0005 and LO = 040g
357 RST 5 Call subroutine at HI = 000g and LO = 0504
367 RST 6 Call subroutine at HI = 000g and LO = 0604
377 RST 7 Call subroutine at HI = 000g and 1O = 0704
and can be summarized as follows:
3x7 RST X Call subroutine at HI = 000g and 1O = 0XOg

The subroutine locations, HI = 000y and LO = 0XOy, are preset in the 8080A chips
and cannot be changed. There are other ways around this limitation if you wish
to use other locations for interrupt software.

The restart instruction 3X7 is "jammed" into the 8080A chip only during an inter-
Tupt. As with other inputs such as memory read and accumulator I/O input, the
data for the RST X instruction byte must be gated onto the 8080A bus at the
proper time. An additional signal, interrupt acknowledge (INTA or IACK), is
provided to synchronize the input of the single-byte instruction. The interrupt
acknowledge signal is used to strobe the instruction byte onto the data bus and
into the 8080A chip. The instruction byte goes directly to the instruction
register and not to any of the general purpose registers. The interrupt signal
flow is shown schematically in Figure 23-8. A standard three-state imput port

MEMORY

8 bit
instruction p<d
o
°
2
£
®
instruction
|
Interrupt ————= 8080 CPU
INTA

Figure 23-8. Interrupt signal flow for a typical 8080A-based microcomputer. The
eight-bit instruction is gated onto the data bus by INTA.

constructed from chips such as the 8212 buffer/latch or the DM8095 (74365) is
used to input the interrupt instruction, using INTA rather than IN 006 or some
other input device select pulse as the strobe or enable pulse.

ENABLE AND DISABLE INTERRUPT: EI anp DI

The 8080A and other microprocessor chips have a very useful feature: the CPU

has the ability to make itself immune to external interrupt requests. We may

turn the interrupt on to allow them to be accepted, or we may turn it off and
ignore them. There are times when we do not want the interrupt to be used at all.
When the 8080A is started or reset, it turns the interrupt off. It is the
responsibility of the programmer to enable the interrupt if the 8080A chip is

to accept and service interrupts. This is done with a software instruction,
enable interrupt, or EI. We can also perform the complementary operatiom, disable
interrupt, or DI.

373 EI Enable the interrupt system and accept interrupts after
execution of the next inmstruction.

363 DI Disable the interrupt system and reject further interrupts.
This takes place immediately.

The interrupt capability can be enabled only under software control. Actually,
we can think of the enable/disable process as an internal 8080A flag process. If

23-14

the flag is enabled, interrupts are gated through to the 8080A chip's control
section. When the flag is disabled, interrupts are blocked.

The interrupt input goes to another internal 8080A flag that can remember one
interrupt event, or that can be triggered even if the interrupt is disabled. A
third control output, the tnterrupt enable (INTE), which is pin 16 on the 8080A
chip, may be used to indicate to external devices and interfaces that the inter-
rupt is enabled (logic 1) or disabled (logic 0). The interrupt is always
disabled after accepting an interrupt from an external device.

THIRD EXAMPLE: INTERRUPT-DRIVEN KEYBOARD INTERFACE

Let us take another look at the keyboard interface to see how an interrupt can

be used in place of a flag. In some applications, for example, where the keyboard
and a large number of other I/0 devices are connected to a computer, it may take
a long time for the computer to get back and poll the keyboard. Characters may be
missed or ignored if the software is not carefully written. The solution to this
problem is the interrupt, which provides almost immediate servicing for external
devices. To successfully use the interrupt, we need to connect the keyboard's
VALID output pulse to the 8080A chip's interrupt input at pin 1l4. The VALID
output is a positive pulse, as required by the 8080A chip, so no inversion or
buffering is required. We also need to provide the restart instruction byte,

in this case, RST 5, which has an instruction code of 357. This instruction byte
1s sent directly to the 8080A chip's instruction register when the interrupt is
acknowledged. With the aid of an 8212 buffer/latch chip, we can hardwire this
instruction byte at an interrupt instruction register or interrupt instruction
port, as shown in Figure 23-9.

Let us now quickly review the operation of an interrupt. First, the interrupt
flag must be enabled within the 8080A chip using the software instruction, EI.
Next, an external signal causes an interrupt and the 8080A acknowledges it by
generating the interrupt acknowledge signal, INTA, which is used to gate a
single~byte restart instruction into the 8080A's inmstruction register. We use
a restart instruction, specifically RST 5, to call the service subroutine at

HI = 000 and LO = 050, the memory location where software for the keyboard input
starts.,

The keyboard interrupt acts to imsert the keyboard input driver routine into the
normal software flow. A typical example of how this occurs is shown below.

LO memory Instruction
address byte Mnemonic Description
000 061 LXI SP Load stack pointer with following two
bytes
001 000 000 LO stack pointer byte
002 004 004 HI stack pointer byte
003 373 EI Enable interrupt
004 _—
MAIN These steps comprise the MAIN TASK
005 - of the program

TASK

2315

050 333 IN Input keyboard data from input port
051 005 005 Device code 005
052 JE—
OTHER
053 —
INTERRUPT

{ SERVICE !

| SOFTWARE I

— 311 RET Return from subroutine

ll-m

8212
KEYBOARD A input > To data bus

Port
VALID
To 8080
=T INTERRUPT
I psec input
+5 V e AAA, 3
Pt
GND 5
b—
- > To data bus
| Interrupt
m— 1131 Instruction
Port
8212
T INTA from 8080

Figure 23-9. Simplified vector interrupt circuit for the ASCII character keyboard.
If there are other interrupting devices in the system, a NAND gate must be
used prior to the INT input on the 8080A chip.

Why have the LXI SP and RET instructions been included? Remember that the restart
instructions are single-byte call instructions that call subroutines at specific
addresses. Thus, when such instructilons are used, return addresses or linking
addresses will still be stored on the stack upon their execution.

While the restart instructions are very useful for interrupts, they are still |
valid 8080A instructions for normal program use. If you wish to employ a sub- i
routine at one of the vector addresses, HI = 000 and LO = 0X0, use a restart
instruction to call it. The above program will work if you try it, but it will

not respond to more than the first key closure or interrupt. Why only a single

key closure? The reason is that whenever the 8080A's interrupt flag is enabled

and it accepts an interrupt, the interrupt flag becomes immediately disabled

from accepting further interrupts. This protects the interrupting device's software |
task from being re~interrupted immediately. The 8080A chip will not accept i
further interrupts until the interrupt flag is re-enabled with an interrupt enable,
or EI, instruction. In the keyboard example, there is no enable interrupt instruc-
tion in MAIN TASK or in the keyboard subroutine, so the flag cannot be re-enabled.

To re~enable the interrupt flag, an enable interrupt instruction should be placed
immediately before the RET instruction byte. Further interrupts are not
accepted until the next software instruction after the EI instruction, Z.e., the
RET instruction, is executed. Thus, program control can at least return to MAIN
TASK before the 8080A accepts another interrupt. Why is this important? If an
interrupting device could interrupt immediately after the EI instruction, the
808B0A chip would accept the interrupt and the return instruction would not be
executed. If the 8080A chip allowed this to happen many times, it is possible
that the stack would fill with return addresses (since they would not be popped
off the stack and used by the return instructions). This is why it is important
that interrupts be accepted only after execution of the next following software
instruction after EI. The execution of the return allows us to "clean out" the
stack after an interrupt subroutine is finished.

We treat our vector subroutines as if they were normal subroutines, i.e., PUSH
and POP instructions may be used to store and retrieve register data. A typical i
interrupt subroutine would appear as shown in Figure 23-10. Since there are only

PUSH
Instructions

In'en:rup' Figure 23-10. A typical interrupt service
Service subroutine. The first instructions, the PUSH
Software instructions, save the microcomputer status.

Near the end of the subroutine, the microcom-
puter status is popped back into the internal
registers.

POP
Instructions

[]

RET

517

eight locations between the keyboard vector address, 050, and the next vector
address, 060, how can all this software be used? If 060 is used as a vector
address for another device, we certainly have a problem! We can circumvent the
problem simply by placing a three-byte JMP instruction in locations 050, 051, and
052 that transfers program control to an area in memory where there is more room
for the software. The penalty that we pay for doing this is a time delay of 10
clock states, Z.e2., 5 microseconds for a 2MHz microcomputer and 13.33 mlcroseconds
for a 750 kHz microcomputer. The RET instruction at the end of the service
routine still returns program control to the point where the MAIN TASK was
interrupted and the RST 5 instruction executed, as indicated schematically in
Figure 23-11.

We could have made things considerably more complicated by including deferred

interrupts and priority interrupts, but these become complex subjects that are
beyond the scope of our simple keyboard example.

Interrupt causes vector subroutine call

MAIN | —2 = 000 050 ump
TASK o e)

Return to

MAIN TASK Keyboard
where Servi
interrupted ervice
Software
20+ steps
‘\\ El
RET

Figure 23-11. Relationship between MAIN TASK, the vector subroutine jump, and
the keyboard service software, which is located elsewhere in memory.

PRIORITY INTERRUPTS

Priority interrupts are interrupts that are ordered in importance so that some
interrupting devices take precedence over others. When a number of interrupts
occur at the same time, or when this possibility exists, we need some method to
determine which device should be serviced first. A priority must be established.
The easiest way to do so is to poll the interrupting devices and, with the aid
of software, determine which devices should be serviced and in what order. In
the circuit shown in Figure 23-12, three interrupts are shown for clarity, but
others could easily be added. An interrupt occurs whenever one of the flag
flip-flops is set by a pulse applied at its clock input. When the interrupt
occurs, the 8080A chip generates an INTA pulse and inputs the restart instruction
code, 357, that is pre-wired at the 8212 interrupt instruction port. The 357
instruction causes a vector to the memory address HI = 000 and LO = 050, where
the software for polling the interrupting devices starts. The vectoring and
restart instructions should be well understood at this point. We will now
discuss the polling routine, which is listed below.

LO memory Instruction
address byte Mnemonic Description

050 333 POLL: 1IN Input status bits

051 057 057 Device code 057, for the sense register

052 057 CMA Complement the status bits in the
accumulator (1 > 0 and 0 + 1)

053 36 ANT Mask out all bits except bits DO,
D1, and D2

054 007 007 Mask byte

055 037 RAR Rotate bit DO into the carry flag

056 332 JC If carry flag is at logic 1, jump to
the cassette service routine CASSVC

057 lm CASSVC L0 address byte of CASSVC

060 003 - HI address byte of CASSVC

061 037 RAR Rotate original input bit D1 into the
carry flag

062 232 JC If carry flag is at logic 1, jump to
the keyboard service routine KBRD

063 200 KBRD LO address byte of KBRD

064 003 - HI address byte of KBRD

065 037 RAR Rotate original input bit D2 into the
carry flag

066 332 Jc If carry flag is at logic 1, jump to

the one-hour clock service routine
CLOCK

23-19
1 — 0D Q
7474
HR CLOCK Clock @ ¥ INTERRUPT
input
CLR
7410
out 013 J
’______I'L IN 057
1—0D Q
7474 D2
KEYBOARD Clock @ DI
— DO To
CLE > data
8212
L Input bus
ouT 012 P!
Port
11— Q
7474
casseTTE —=={ciock T
CLR
50T o —
+5V A 3
GND 5
—
E 7 > To data bus
interrupt
e DSI Instruction
Port
8212
INTA from 8080
Figure 23-12. Polled interrupt circuit that consists of three interrupt devices
and a vector RST input.

320

067 300 CLOCK L0 address byte of CLOCK
070 003 - HI address byte of CLOCK
071 166 HLT Halt. If you got to this point, the

program was interrupted, but it was
not by one of the above three devices.

Each flag bit is input as a logic 1 if service is not needed and as a logic 0

1f service is needed. The three-input NAND gate provides a logic 1 to the

8080A microcomputer when any device generates an interrupt; this logic state

is input to pin 14 on the 8080A chip. Our priority is set up so that the cassette
is highest (high speed device), the keyboard next (low speed device), and the
one-hour clock last (extremely slow device). As input data to the accumulator,

we would rather have a logic 1 if service is needed and a logic 0 if service

is not needed. Our first program step would therefore be to invert, or complement,
the input flag data with the use of a CMA imstruction at LO = 052. This simple
program step illustrates how easy it 1s to invert accumulator data and how easy
it is to eliminate three 7404 inverters or else eliminate the need to re-wire

the hardware so that the Q output, rather tham the Q output, is input to the

7410 gate.

After the CMA instruction, we mask out all other device bits except bits DO,
D1, and D2. We then proceed to rotate these bits into the carry flag and to
test them for a logic 1 state, which indicates that a specific device has
generated an interrupt. Each service routine-—CASSVC, KBRD, and CLOCK-~is
very similar to the interrupt service routine shown in Figure 23-10, and ends
with enable interrupt, EI, and return, RET, instructions.

Some additional comments about the polling routine are in order. Although the
polling routine rums through vector addresses 060 and 070, in this case it is
not an error since we have no other interrupts that use them. We would
probably start our polling routine with a PUSH PSW instruction, since we do not
know for what purpose MAIN TASK used the accumilator and flags when it was
interrupted. If we used PUSH PSW, each service routine would require a POP PSW
immediately before the enable interrupt instruction. The first thing that we
would do in each service routine is to clear the flag associated with the
interrupting device. OUT instructions work well to generate pulses that clear
the flip-flops, as shown in Figure 23-12. Thus, an OUT 011 instruction clears
the cassette flag, an OUT 012 clears the keyboard flag, and an OUT 013 clears
the one-hour clock flag. Other polling software schemes and other bit testing
methods work equally well; the one given above is simple and effective.

The one-hour clock raises an important question, Why would you build an external
one-hour hardware clock when software can do it under 50 bytes? The answer
depends on how you use your microcomputer. If the microcomputer can just sit

and perform the one-hour software loop, or if you are using interrupts and can
tolerate error, you employ software. If you need an exact time and are using
interrupts, you employ hardware. How do you reach this decision? When you

use interrupts, you interject additional software into the MAIN TASK program flow.
This all takes time since not only must the software check the interrupting device,
but it must also service it. If you interrupt the one-hour software routine

five times with a device service routine that takes two minutes to execute, you
have really taken a total of one hour and ten minutes to reach your goal, Z.e.,
the one-hour software operations are suspended when you interrupt and perform
another task. Real time marches on while the software time is suspended. The
one-hour external clock could be called a real-time elock, since it keeps real
time, not computer software time!

232

HARDWARE PRIORITY INTERRUPTS

Besides polled interrupts, interrupts may be also assigned a priority using
hardware. This type of priority interrupt is important whenever a number of
interrupting devices, all requiring fast service, are connected to a micro-
computer. Each device generates its own restart instruction, RST X, which when
input causes an immediate vector to memory location HI = 000 and LO = 0X0.
Priority is assigned through the use of a 74148 priority emcoder chip, which
accepts up to eight flag inputs, each at logic 0 if an interrupt condition exists
for each device, and outputs the three-bit binary code for the highest numbered
input that is at logic 0. A truth table and chip diagram are shown in Figure
23-13. The 74148 chip is used in conjunction with a regular interrupt instruction
port in priority interrupt hardware, as is shown in Figure 23-14.

ouTpuTS InPyTS SNS4148, SN74148

oo B T A FUNCTION TABLE
6 s wljujz]jullwife INPUTS OUTRUTS]
€0 t 2 3 4 5 6 7]Az At A0jcs €0

T 111
ERC o L W H H oW OH MM OH[H K OH[H L
L{x x x x x x x tfL L L|L w

“ Ao Lix X x X x x L Hlo v wice #
Lix x x x x L A H|[L w L[L #

s ——— L{X X X X L H H H|L H H|L H

T T T 17T

1 2 1 4 5 6 1 1 L{X X L H H H H H|H L H|L H
T e T E oz A o Llx U v Hom o W oR[ww L[w
T outets. L{t H W H W oW HH W [H

Figure 23-13. Pin configuration and truth table for the 74148 8-line-to-3-line
priority encoder chip.

If simultaneous interrupt requests are generated by device 5 and device 7, device
7 has the highest priority and the 74148 chip and inverters in Figure 23-14
supply a "7" for the 3X7 instruction. This vectors the microcomputer to memory
location HI = 000 and LO = 070. While we have a RST 0 vector available, we do
not often use it since its only effect is to reset the program counter and start
the MAIN TASK program again.

The necessary flags and flag setting or clearing lines are not shown in Figure
23-14 for clarity. Keep in mind, however, that a flag should be used for each
interrupting device. Additional hardware refinements could be added to the

circuit to make it more efficient and effective. These would include an additional
decoder to generate the flag clearing pulse without the need for an OUT inmstruction,
and a mask register so that various devices could be masked on or off in external
hardware. Such additions are shown in Figure 23-15, which is a very sophisticated
priority interrupt scheme that allows great flexibility in the use of vectored
interrupts with an 8080A-based microcomputer.

In writing software, you must decide which devices are to be allowed interrupts
and which are not. A mask bit pattern is developed in which devices that are
allowed to interrupt are assigned a logic 1 and devices that are not allowed to
interrupt are assigned a logic 0. The 8-bit mask pattern is placed in the
accumulator and output to the two 7475 latches in Figure 23-15. Bit position D7
corresponds to interrupt device 7, which has the highest priority and causes a

52

8080A
ﬂ To
INT chip
+5V GND + 5V GND
Ls Ia
_Lr Highest . 4 7 5 24 12
priority 3 EO p-224 -2 o7
-=4qs 20 [-2— pe
. 245] 18 I D5
Status signals 1ol s :".(—D: 16 15 Dg To 8080a
from interrupting dig 3 A 8 DE 9 'I D3 data bus
devices L2402)——17 \——--2 D2
Ut 5 - - 1]
r Lowest 10} — 0 L3 8212 Do
priority 74148 | 13 ps2
— 1] —
INTA ———=d DsI
0—3-4” MD
| = sT8B
| Lo CIR

gated driver

Figure 23-14. Hardware priority interrupt circuit that generates eight different
vector restart instructions, RST X, that have the priority 7 > 6 > 5 > 4 >
3>2>1>0.

vector to memory address HI = 000 and LO = 070. Active devices that are masked
off use a sense register input to request service; the mask can be changed under
software control to achieve great flexibility in the use of interrupts.

In Figure 23-15, interrupt requests are gated with OR gates (one is shown) and
non-masked interrupt requests are passed through to the 74100 latch. Whenever

the interrupt enabled output, INTE, from the 8080A chip indicates that interrupts
will be accepted, the 74100 is "open" and passes interrupt requests through to

the 74148 priority encoder. The priority encoder and interrupt instruction port
have been discussed previously. When the interrupt is received, the 8080A chip
disables its internal interrupt enable flip-flop and the INTE output goes to

logic 0, thus "closing" the 74100 latch and latching any interrupt requests present
at the inputs. The INTA control signal not only inputs the RST X instruction, it
also pulses the 7442 decoder in Figure 23-15 to generate an interrupt flag clear
pulse, which is routed back to the individual interrupt request flip-flop
associated with the interrupting device. Many other interrupt schemes may be used,
including the Intel 8214 interrupt controller chip and the 8259 programmable
interrupt controller chip. Finally, keep in mind that interrupts, while permitting
fast response to external events or demands for service, also can present problems.

2523

‘91BMpIEY TRUIDIXS BTA JJO IO UO DINSEW 9 UBD SIIFADP IBY3 OS 19157801 jsBW 2 sey pug sesynd

IeoT> Se[3 TENPIATPUT S93BIdual8 IBYI JTNOITD Jdnazsjur £3110tad paledorisyydos e jo ofdmexe uy *GT-g7 9InITg

OGNS AS +
o] s
o 12°7)
=11
il Y snq
B €
sesind B0l +1¢€ ©i0p Y0808 WO44
0810 prptapur _J Vs
s ” w 0 @ t0 20
“71° £ _ _ —_ _ _ _ _
VAN e ¢ T
og0 1o —4§ | site _ SLvL
) i v¥834 | 349M
ais R
an
1sa
2sa
2128 Svivl oo [or Jez NI
0Q —— 0 g7V Vv
t 0 — ol [2
10 —5 s 1 P —e al—
Ma [] 2 P w12 °F
snq piop a of Allm v ¢ or—— a apF—
vosos o ¥@ T A OAJ a8 ¢ o313 35—
S¢ —7; el %Alw. LI -} S] S
80 —5] 2 o b Sl oL
R 5 03 . € 8l (]
2l 2 b4 pil H H 9l
m_ ol | v
N9 AS + N9 AS+ N9 AS+
dwo 1N

voge08 oL

2324

INTERRUPT SOFTWARE

Let us now consider the software necessary to serve some of our interrupt needs.
Assume that we have only two devices, device 7, which has the highest priority,
and a low priority device, device 2. Each has its own restart instruction that
causes a vector to 000 070 or 000 020, respectively. We will further assume
that the high priority device interrupts on a regular basis and that it is
quickly serviced with its software service routine. Device 2, the low priority
device, interrupts on an irregular schedule and takes some time to service.
Perhaps device 2 is another microcomputer that is dumping blocks of data. When
not interrupted by these devices, the microcomputer will always be running the
MAIN TASK software. Finally, we will assume that MAIN TASK initially assigns

a stack pointer through the LXI SP <B2> <B3> instruction and also enables the
interrupt flag.

Since our interrupts can occur at any time, we need both PUSH and POP instructions
in the interrupt service routines, an example of which has been previously given
in Figure 23-10. These instructions will save and restore any registers that are
altered in the service routines.

The execution of the software can be graphically represented by a time line,

as shown in Figure 23-16. Notice that the HIGH priority device has interrupted
MAIN TASK four times and that the LOW priority device has interrupted only once.
The HIGH priority device interrupts on a regular basis, as shown by the spacing
on the MAIN TASK time line. The heavy line indicates when the interrupt is
enabled. The actual time line is deceptive since only the time spent in MAIN
TASK is shown. It is more correct to show the real time spent in both MAIN TASK
and in the subroutines, as we have done in Figure 23-17.

Tn Figure 23-17, the MAIN TASK starts operating and is then interrupted by the
HIGH priority device. After executing the HIGH priority device service surboutine,
control is returned to MAIN TASK, which 1s interrupted by the LOW priority device
later on the time line. Control is eventually returned to MAIN TASK, which is
then interrupted at repeated intervals by the HIGH priority device. Note that

it takes considerably longer to reach the point # in MAIN TASK when we keep
interrupting it. During a critical timing period, this could be disastrous

if we are relying upon software timing loops.

Since the HIGH priority device interrupts on a regular basis, it probably tried
to interrupt during the time that the microcomputer was working on the interrupt
service software for the LOW priority device. If HIGH has higher priority, why
couldn't it interrupt the LOW device software? The answer is obvious: the
interrupt flag was not enabled during the ewecution of the LOW priority device
service subroutine. Our first attempt at writing the interrupt service software
did not take this possibility into account. Data or signals from the HIGH device
were lost during this time. To solve this problem, we can correct our software
by placing the enable interrupt instruction at the start of the LOW priority
interrupt service subroutine rather than at the end. We can also design hardware
to store data or signals associated with a missed interrupt.

By moving the enable interrupt inmstructiom, EI, to the beginning of the LOW
priority device service subroutine, we may encounter a new problem: a chopped-up
LOW priority device software flow, as illustrated in Figure 23-18. To emphasize
the point, we have assumed that the HIGH priority device interrupts the LOW
priority device service software twice, thus chopping the LOW software into three
pleces. With the LOW priority device software so split up, we must inquire whether

X1 sp
El
M
Ay —|om
HIGH
T | PRIORITY
| DEVICE
M N SERVICE
£ ROUTINE |-
T
T | 020
Low
Ak PRIORITY
DEVICE
S SERVICE
ROUTINE
K
*
AN
*x % HIGH PRIORITY DEVICE
A LOW PRIORITY DEVICE
] #

Figure 23~16. Program execution time line for MAIN TASK. Interrupts by the HIGH
and LOW priority devices are denoted by the symbols, * and A, respectively.

23-26

LXI SP
El M
A ‘r
| |
N [
|
1
T Bk
g ¢ ;
H H 1
M i
A M t
! 0 |
N N |
a }
H *
o G
LN P H |
I
{
. |
M #
A
I |
N |
This interrupt is missed
rll E 3
G
H
M
A
|
N
Figure 23-17. Program execution time line for MAIN TASK and both the LOW and HIGH
priority device service subroutines.

LXI SP
El M
A
|
N
|.I| %k <—— MAIN interrupted by HIGH
G
H Return to MAIN
M
A
| |
N i
T 1A ~—— MAIN interrupted by LOW
]
w
r,q b 3 LOW interrupted by HIGH
G
H
A Return to LOW
L
0
w
bli * LOW again interrupted by HIGH
G
| H_
Tow] A =——— Return to and finish LOW
Return to MAIN
M
A
|
N

L

Figure 23-18. Program execution time line that demonstrates the interrupting of
an interrupt service routine. The LOW interrupt software is interrupted
twice by the HIGH priority device.

we are able to complete the LOW software before the LOW priority device generates
a new interrupt. It is entirely possible for the LOW priority device to
interrupt the microcomputer while it is still trying to service the last interrupt
request from the LOW device. While the interrupt response is fast, the actual
execution time may be much slower than the time required for a single pass through
the interrupt service software. This is because we can interrupt our interrupts.
Such considerations should give you a good idea of the care needed when using
priority interrupts. It is very easy for a microcomputer to become interrupt
bound, i.e., it spends all of its time checking and servicing interrupts and has
no time left for its MAIN TASK software.

In our software, we may wish to prevent interrupts from taking place because

of sensitive timing software or complex time-dependent tasks or calculations.

The disable interrupt instruction allows the microcomputer to operate under

such conditions, insensitive to external interrupts. In our previous example,

we could have included such a section in MAIN TASK when we needed to be immune
from interrupts., We can always disable the interrupt flag and later re-enable

it when we have completed a sensitive task. However, during the time that the
interrupt flag is disabled, we may lose signals or data that an interrupting device
may need to input into the microcomputer. Such a situation is represented in
Figure 23-19. Unless we provide some type of complex hardware back-up, such data
is lost! We do not know exactly when an external device may interrupt MAIN TASK.
Therefore, we cannot be sure that such an interrupt will not be during the period
when the interrupt flag is disabled. How do we circumvent this problem? It is
not easy to do so, which is another reason why we must use a great deal of caution
when we use interrupts.

Another type of interrupt which may be of interest, although not generally used
with an 8080A microcomputer, is a time-oriented interrupt. Only one interrupt

is used, a clock. The clock interrupts every 10 milli ds, or other r ble
period of time. When interrupted, the microcomputer uses a look~up table to
determine which devices to check to see if they need service. Some devices are
always checked, while other slower devices might be checked once very one
thousand times the clock interrupt occurs. This 1s a good alternative interrupt
technique, but it requires considerable amounts of software to work well.

The newer 8080A-type microprocessor chips allow multi-byte instructions to be
input during an interrupt, so that a complete three~instruction-byte call or
jump could be inserted, thus doing away with the vector locations and providing
much greater flexibility in both hardware and software. The key to multi-byte
"jammed" instructions is the 8228 controller chip, which has the capability to
generate three INTA control signals in succession in response to an interrupt
request. These three signals are used by hardware to successively jam the three
instruction bytes of a call or jump instruction. The Intel 8259 programmable
interrupt controller chip operates in conjunction with the 8228 chip to allow
you to perform direct calls to interrupt service subroutines. If your 8080A-based
microcomputer does not contain an 8228 chip, you will not be able to use the
8259, which is a complex device that is not for the beginner.

Some final notes of caution. Interrupts are difficult to debug. They can occur
at almost any time, Z.e., they occur asynchronously. Typical software debugging
programs are not of much help. Special diagnostic software may need to be written
to test interrupts in a specific application. When considering interrupts, try all
other methods before settling on them. The time trying other methods will usually
be well spent.

329

M
A
|
N
B *
G
H
o M «——— |nterrupt DISABLED
A
l
Critical N
Task sk = This interrupt is missed
T
A
S
El K «——— interrupt ENABLED
T E
|

L#

Figure 23-19. Program execution time line that demonstrates the use of DI and EI
instructions to permit a critical task to be performed in MAIN TASK. In
this case, however, an interrupt 1s missed or delayed while the critical
task is being executed. It is quite possible for data to be lost for the
missed interrupt unless external hardware 1s provided for such a situation.

Mo

N

INTRODUCTION TO THE EXPERIMENTS

The following experiments illustrate the use of flags and interrupts.

Experiment No.

1

10

11

12

Comments

A simple flag. Demonstrates the operation of a simple
external flag circuit constructed from a 7474 flip-flop
and an 8095 (74365) three-state input buffer.

Flag response time. Illustrates the response of software to
flags when the microcomputer has other tasks to perform.

Non-ideal Flags: Interfacing a Mechanical Switch. Illustrates
the operation of an external flag circuit that is connected
to a single-pole single~throw (SPST) switch, a non-ideal
mechanical device.

Keyboard characteristics of the MMD-1 microcomputer.
Demonstrates how to use the keyboard flag, bit D7, to signal
that a key is pressed and data is ready to be input into the
microcomputer.

Simulation of tank liquid level sensing. Implements the
hardware and software necessary to simulate the liquid level
sensing example discussed in the text.

Restart instructions. Illustrates the software characteristics
of the 8080A restart instructions, RST X.

A simple interrupt instruction register. Tllustrates the
behavior of an instruction register constructed from an 8212
buffer/latch chip.

Jamming a restart instruction. Demonstrates the consequences
of jamming a restart instruction into the 8212 instruction
register wired in Experiment No. 7.

Interrupt response time. Illustrates the response of an
8080 system to interrupts when the microcomputer has other
tasks to perform.

Simple priority interrupts. Illustrates the implementation
of a simple priority interrupt scheme that includes both a
low priority device and a high priority device.

Priority interrupt timing. Illustrates the timing relation~
ships between HIGH and LOW priority devices and how the
priority is assigned.

Simultaneous interrupts. Illustrates the operation of simul-
taneous interrupts.

2331
EXPERIMENT NO. 1
A SIMPLE FLAG
PURPOSE
The purpose of this experiment is to demonstrate the operation of a simple external

flag.

PIN CONFIGURATIONS OF INTEGRATED CIRCUIT CHIPS

Vi ay 48 aa 3y kL] 3A
“ 0 L3 n 0 9 1
N T
| o P g
2 af—
’_‘ [1 2 3 ‘. 5 J 7
1 2 3 4 5
Y 1A iC) Y 2A

Vo OIS e Ul W, oul, W, our,

| PR P PO P O O P

T e s e i
UIpEIREIpEIpUISEIRE) a0 O N i
7474
7402 8095 or 74365
SCHEMATIC DIAGRAM OF CIRCUIT
+ 5V GND + 5V GND
lm l‘r 16 |8
2 5 2 ™~ 3
+5V D @ po
3 =186
PULSER 1| chLRQ — ‘ 32?5
9 7474 l .
74365
ouT 15 |
004 ™

2
7402 7402

o
[~
L

23-32

PROGRAM |
|

Memory Instruction

address byte Mnemonic Comments

003 000 227 SUB A /Clear A register (accumulator)

003 001 107 MOV B,A /Move A to B

003 002 323 ouT /Output contents of A to

003 003 002 002 /output port 002

003 004 333 INPUT, IN /Input data to A from

003 005 005 005 /input port 005

003 006 037 RAR /Rotate bit DO to carry flag |

003 007 322 JNC /Is CARRY = 0? If yes, jump to

003 010 004 INPUT /HI = 003 and LO = 004. If no,

003 011 003 [/continue to next instruction.

003 012 323 ouT /No, so output a device select pulse to

003 013 004 004 foutput port 004

003 014 170 MOV A,B /Move B to A

003 015 074 INR A /Increment A

003 016 107 MOV B,A /Mov A to B

003 017 323 ouT /Output contents of A to

003 020 002 002 /output port 002

003 021 303 JMP /Jump back to INPUT at

003 022 004 FLAG /LO = 004 and

003 023 003 [} JHI = 003

STEP 1

Wire the digital circuit shown above. Make certain that +5 Volts and ground |

connections are made to all chips and to the power busses on the SK-10 breadboarding

socket.

STEP 2

Enter the program into read/write memory starting at HI = 003 and LO = 000.

Observe that the program format is different from that used in the text in this

Unit as well as in earlier units. This is the type of output that you would

obtain from a commercial 8080A resident assembler such as the one available from

Tychon, Inc. The HI octal address bytes, 003, have been deleted to simplify the

listing. We will continue to use this output format in the following experiments

so that you will get used to it. Note the use of the delimiter, / , which is a

character that indicates the beginning of a comment.

The program will input the flag bit that we have wired, test the flag bit DO to

determine if it is a logic 1, and then increment the A register and output the

data to output port 002.

STEP 3

Execute the program. What do you observe at output port 0027

The output port reading is 000, i.e., all eight LEDs are unlit.

STEP 4

Now depress and release the pulser. What changes do you observe at output port
002? Repeatedly press and release the pulser. What happens?

The first pulser clock pulse increments output port 002 by 1 so that the reading
becomes 001. Additional clock pulses from the pulser continue to increment the
output port.

STEP 5

If you make a mistake in wiring the circuit and wire the Q output (pin 6) of the 7474
flip-flop to the 74365 chip, will the program operate correctly?

hange the 7474 output connection to Q at pin 6 and execute the program once

more. What do you observe? Why?

wWith Q input into the microcomputer, we observed that all the lights om output
port 002 appeared to be on. The reason is that the program detected that bit DO
was continuously at logic 1. Owing to the nature of the program, the contents
of register A were continuously incremented and output to port 002.

STEP 6

Could you change the software to account for the error in wiring? If so, what
changes would you make? Make these changes and execute the program once again.
What do you observe?

To eliminate the effect of the error in wiring, the JNC instruction at 003 007
can be changed to a JC instruction, 332, When this change is made, the circuit
and program no behave as described in Step 4.

Retwrn the hardware and software to their original forms and continue to the next
experiment.

23-34
EXPERIMENT NO, 2
FLAG RESPONSE TIME

PURPOSE

The purpose of this experiment is to investigate the response of software to
flags when the microcomputer has other tasks to perform.

SCHEMATIC DIAGRAM OF CIRCUIT

The circuit is indentical to that given in Experiment .No. 1.

PROGRAM
Memory Instruction
address byte Mnemonic Comments
003 000
. These program steps are the same as those given in Experiment No. 1.
003 021 016 MVI C /Load register C with the
003 022 001 001 /data byte 001
003 023 315 REPEAT, CALL /Call the KEX time delay subroutine,
003 024 277 TIMEOUT /TIMEOUT at LO = 277 and
003 025 000 [/HI = 000
003 026 015 DCR C /Decrement register C
003 027 302 JINZ /1s register C = 000? If not, jump
003 030 023 REPEAT /to REPEAT at LO = 023 and
003 031 003) /HL = 003. Otherwise, continue.
003 032 303 JMP /Yes, register C = 000. Jump back to
003 033 004 INPUT /INPUT at LO = 004 and
003 034 003] /HI = 003
step 1
The hardware and software from the previous experiment will be used in this one.
Some additional software steps have been added above to keep the microcomputer ¢
busy for varying periods of time. The 10 millisecond KEX time delay subroutine
at 000 277 is used. A listing of TIMEOUT is provided at the end of this experiment.
In this experiment, we use the KEX stack area to save the return address for the

CALL instruction. If you are not using KEX on an MMD-1 microcomputer, you will
have to first establish a stack area. Use the LXI SP inmstruction to do so.

Load the above program steps in read/write memory starting at 003 021.

i
1
H
f

23-35
STEP 2

Start execution of the program at 003 000. Press and release the pulser several
times. Do you observe any difference between this experiment and the previous
experiment, where the count incremented for each pulser clock pulse?

We observed no difference.

STEP 3

The added software slowsdown the microcomputer by providing a 10 millisecond time
delay routine to execute. By setting register C to another value, you will cause
the microcomputer to execute the time delay routine many more times, thus slowing
down the overall software loop even more.

Enter the following timing bytes one at a time into the program at memory location
003 022 and execute the program in each case. Test the influence of each timing
byte by (a) applying several clock pulses from the pulser slowly, and (b) applying
ten clock pulses from the pulser as fast as you can. Enter the number of counts
that you observe in the table below.

Octal timing

byte Time delay Normal Ten fast pulses
012 100 ms
024 200 ws
062 500 ms
144 ls
310 2s

When we applied clock pulses slowly to the flag, we observed normal behavior,
i.e., the output port incremented once for each clock pulse. However, when we
applied ten fast actuations of the pulser, we observed only five counted pulses
with the 500 ms delay, three counted pulses with the 1 second delay, and only
two counted pulses with the 2 second delay.

STEP 4

What do the results in Step 3 indicate about the use of flags when the microcomputer
has other time-consuming tasks to perform?

Events or data may be lost since they are not sensed by the microcomputer when it
is performing some other task.

Save your hardware and software for the following experiment.

LISTING OF SUBROUTINE TIMEOUT

Memory Instruction

address byte

000 277 365 TIMEOUT,
000 300 325

000 301 021

000 302 046

000 303 001

000 304 033 MORE,
000 305 172

000 306 263

000 307 302

000 310 304

000 311 000

000 312 321

000 313 361

000 314 311

Mnemonic

Comments

PUSH PSW /Save accumulator and flags

PUSH D
LXI D
046

000

DCX D
MOV A,D
ORA E
JINZ
MORE

[]

POP D
POP PSW

RET

/Save register pair D

/Load D and E with value to be
/decremented

/Decrement register pair D

/Move D to A

/OR E with A

/Is register A = 000? If mot, jump
/to MORE at LO = 304 and

/HI = 000, Otherwise, continue to
/next instruction.

/Restore register pair D

/Restore accumulator and flags

/Return from subroutine TIMEOUT

With an 8080A-based microcomputer operating at 750 kHz, this time delay routine
will generate a delay of 10.0 milliseconds.

EXPERIMENT NO. 3
NON-IDEAL FLAGS: INTERFACING A MECHANICAL SWITCH

PURPOSE

The purpose of this experiment is to investigate the operation of an external
flag circuit that is connected to a single-pole single-throw (SPST) switch, a
non-ideal mechanical device.

SCHEMATIC DIAGRAM OF CIRCUIT
The circuit is identical to that given in Experiment No. 1 except for the pulser

input to the 7474 flip-flop. In place of the pulser, use a single~pole single-
throw (SPST) mechanical switch wired as follows:

+5V

To pin 3
SPST of 7474

PROGRAM

The program is identical to that given in Experiment No. 1. Make certain that
the final jump instruction reads as follows:

003 021 303 JMP /Jump back to INPUT at
003 022 004 INPUT /LO = 004 and

003 023 003 [] /HI = 003

STEP 1

The hardware and software from previous experiments will be used in this experiment
as well. If they are not already set up, wire the circuit shown in Experiment No.
1. 1In place of the pulser, wire the SPST switch circuit shown above or else use

a logic switch on the LR-2 or LR-25 Outboards.

STEP 2

The software used in this experiment is identical to that given in Experiment
No. 1. Make certain that it is correctly loaded into read/write memory.

STEP 3

the mier mp program and actuate the single-pole single-throw (SPST)
non-ideal mechanical switch (or equivalent wire circuit). Imspect the
output at output port 000. Do you observe a single count, as in Experiment No. 1,
or many counts? Why?

We observed many counts. This indicates that our SPDT switch is not an "ideal"
gwitch, as is a "debounced" pulser. The difference between the two switches can
be depicted as follows:

IDEAL SWITCH L_..___

REAL SWITCH LT T M
\" bouncu"/

We observed many counts because the 7474 flag sensed each "bounce”, or almost
every one, as an individual switch closure.

STEP 4

Actuate the SPDT switch ten times and observe the total number of counts. Repeat
this process several times, being sure to restart the microcomputer before each
trial. Summarize your results in the table below beside our results. Note

that the number of counts is expressed in octal rather than decimal.

Trial Our results Your results

[NRE
o
~

It is likely that the microcomputer loop was not fast enough to detect all the
bounces of your imperfect mechanical switch, and the bounces are non-reproducible.
While the bounces can be eliminated with hardware, as was done in the first exper-
iment, they can also be eliminated using software. The following experiment
investigates the keyboard interface and demonstrates how you use the KEX software
to "filter out” the bounces.

33

EXPERIMENT NO. 4
KEYBOARD CHARACTERISTICS OF THE MMD-1 MICROCOMPUTER

PURPOSE

The purpose of this experiment is to demonstrate how to use the keyboard flag,
bit D7, to signal that a key is pressed and data 1is ready to be input into the
8080A microcomputer.

PROGRAM NO. 1

Memory Instruction

address byte Mnemonic Comments

003 100 333 INPUT, IN /Input keyboard data from

003 101 000 000 /input port 000

003 102 027 RAL /Rotate bit D7 into carry flag

003 103 322 JNC /1f CARRY is logic 0, jump to

003 104 100 INPUT /INPUT at LO = 100 and

003 105 003] /HI = 003. Otherwise, continue to
/next instruction.

003 106 037 RAR /If CARRY is logic 1, rotate data
/back and

003 107 323 ouT /Output data to

003 110 002 002 /output port 002

003 111 303 JMP /Jump back to INPUT at

003 112 100 INPUT /LO = 100 and

003 113 003 '] /HI = 003 and do it again.

PROGRAM NO. 2

Memory Instruction

address byte Mnemonic Comments

003 200 315 START, CALL /Call keyboard subroutine KBRD at

003 201 315 KBRD /L0 = 315 and

003 202 000 [JHI = 000

003 203 323 oUT /Output the keyboard data to

003 204 002 002 /output port 002

003 205 303 JMP /Jump back to START at

003 206 200 START /10 = 200 and

003 207 003 [} /HI = 003 and do it again

sTEP 1

This experiment does not require an external interface circuit. You use the
MMD-1 keyboard to generate the flag bit and keyboard data. Load program No. 1

into read/write memory starting at HI = 003 and LO = 100. Which bit in the |
accumulator will you use to signal the 8080A chip that a key is pressed?

You will use the keyboard flag, bit D7, to signal the 8080A that a key is
pressed and data is ready to be input.

STEP 2

Execute the program and note the four least significant bits at output port 002.
Press each keyboard key in turn and 1list the 4-bit code that you observe under
the "Step 2" heading. Do you observe a match between your code and the expected
code?

Your code
Key Expected code Step 2 Step 3

0000
0001
0010
0011
0100
0101
0110
0111
1100
1101
1011
1000
1110
1111
1010

AWPNOADIENOUVEWNRO

We observed a match between our code for Step 2 and the expected code.

STEP 3

1f your codes did not match our expected code, you may wish to use the KEX

debounce and keyswitch filter subroutine, which is documented in the MMD-1 manual t
and also in the June, 1976 issue of Radio-Electronics magazine. Program No. 2

calls the keyboard input subroutine KBRD in KEX. Load Program No. 2 into |
read/write memory starting at HI = 003 and LO = 200 and execute it. Press each i
keyboard key in turn and note the least significant bits at output port 002.
List these four bits under the Step 3 column in the above table. Are the codes
for Step 2 and Step 3 the same? If not, why not?

344

The codes for keys L, H, G, S, A, B, and C have been changed in a look-up table
employed by the KEX software. Thus, they are not the same.

STEP 4

Can you suggest why this code translation of keys L through C might be useful?

It provides flexibility and allows us to redefine keys in software, KEX sets up
a decimal keyboard if we want to use it that way. Note that the keys now go
from 0 to 11 in sequence, skip 12, and finish up with 13, 14, and 15.

With the KEX EPROM in the system, the keyboard input routine at 000 315 may be
called to input and encode the keyboard data. They keyboard routine uses a

10 millisecond delay subroutine at 000 277 that may also be called at any time.
The delay routine is completely "transparent' and will not affect any flags or
reglsters. It is listed at the end of Experiment No. 2 in this unit.

2312
EXPERIMENT NO, 5
SIMULATION OF TANK LIQUID LEVEL SENSING

PURPOSE
The purpose of this experiment i1s to implement the hardware and software necessary
to simulate the liquid level sensing example discussed in the text.

PIN CONFIGURATION OF INTEGRATED CIRCUIT CHIP

Ve O W OO, w our, W Our,

PR O Y O M PO

N Y L B

oS, M oun W, ouT, W, Ut GND

8095 or 74365

SCHEMATIC DIAGRAM OF CIRCUIT

Logic D 2 | .

SWITCH ————L—“'D_— oo
4 I 3 5

A= OVERFLOT—I_[D_— D5

D= FULL/ EMPTY

B

233
PROGRAM
Memory Instruction
address byte Mnemonic Comments
003 000 333 START, IN /Input flag data from
003 001 005 005 /input device 005
003 002 346 ANL /Mask out all bits except bit D5
003 003 040 040 /Mask byte = 00100000
003 004 302 JNZ /1f result is 040, jump to ALARM at
003 005 100 ALARM /LO = 100 and
003 006 003 '] /HL = 003. Otherwise, continue to
/next instruction.
003 007 333 IN Joverflow is OK. Input flag data from
003 010 005 005 /input device 005 once again
003 011 017 RRC /Rotate bit DO into carry flag
003 012 332 Jc /1f CARRY = 1, jump to FULL at
003 013 024 FULL /LO = 024 and
003 014 003 [] /HI = 003. Otherwise, continue to
/next instruction.
003 015 076 MVI A /1f CARRY = 0, the tank is not full.
003 016 001 001 /Load register A with byte 001.
003 017 323 ouT /Output byte to
003 020 000 000 /output device 000
003 021 303 JMP /Check overflow and full/empty flags
003 022 000 START /again by jumping to LO = 000 and
003 023 003 [/HI = 003.
003 024 227 FULL, SUB A /The tank is full. Clear register A.
003 025 323 OUT /Output register A byte to
003 026 000 000 Joutput device 000
003 027 303 JMP /Check overflow and full/empty flags
003 030 000 START /again by jumping to START at LO = 000
003 031 003 '] /and HI = 003.
003 100 166 ALARM, HLT /Stop operation
step 1
Wire the circuit shown in the schematic diagram. Logic switch A is the overflow
flag and logic switch D is the full/empty flag.
STEP 2
Load the program into read/write memory starting at HI = 003 and LO = 000.

STEP 3
With both logic switches set to logic 0, execute the program. You will simulate
the valve with bit DO on output port 000. If bit DO is logic 1, the valve is

open; if bit DO is loglc O, the valve is closed. What do you observe when the
software is started? Why?

We found that bit DO was at logic 1, indicating that the valve was open. This
is because the empty/full flag is at logic 0, indicating that the tank is not
full (or perhaps empty).

STEP 4

Change logic switch D to logic 1 indicating that the tank is FULL. What happens
to the valve bit D0O? Wny?

Valve bit DO becomes logic 0, or off, indicating that the valve is now closed.
The fluid level in the tank has tripped the full switch.

STEP 5

Switch logic switch A to a logic 1, indicating an overflow condition. What
happens? Why?

Nothing happens. The microcomputer executes a halt instruction at memory location
003 100, the location of the ALARM routine.

STEP 6

Can you suggest a useful ALARM routine for your microcomputer? You may wish to
test several different short software ALARM routines. Use the space below.

255

In developing an ALARM routine, we decided that the first thing we should do is
to turn off the valve and then output an alarm condition at port 001. The
program is as follows:

Memory Instruction

address byte Mnemonic Comments

003 100 227 ALARM, SUB A /Clear register A

003 101 323 ouT /Output register A byte to
003 102 000 000 /output device 000

003 103 057 CMA /Complement register A

003 104 323 oUT /Output register A contents to
003 105 001 001 /output port 001 and

003 106 166 HLT /Stop operation

You should note in this experiment that you have not used flip-flops as flags.
This is a valid procedure in this case since the overflow switch and the FULL/
EMPTY switch will maintain their respective states uatil we take action. A

flip-flop flag is generally used in those cases when the device requesting the
attention of the microcomputer is generating a short pulse rather than a level.

236

EXPERIMENT NO. 6
RESTART INSTRUCTIONS

PURPOSE

The purpose of this experiment 1is to investigate the software characteristics
of the 8080A restart instructions, RST X.

PROGRAM

Memory Instruction

address byte Mnemonic Comments

003 000 061 LXI SP /Load stack pointer with
003 001 200 200 /LO address byte and

003 002 003 003 /HI address byte

003 003 357 RST 5 /Call subroutine at 000 050
003 004 166 HLT /Halt

003 050 311 RET /Return from subroutine
sTEP 1

Enter the above program into read/write memory starting at 003 000. If you

are executing this program on the MMD~1 microcomputer, please keep the following
in mind: A RST X instruction calls the subroutine at 000 0X0, but the KEX
monitor causes program control to jump to 003 0X0 for vestart instructions

RST 1 through RST 6. Restart instructions RST 0 and RST 7 are used by the KEX
monitor. You can confirm this fact by exawining the contents of the EPROM
memory locations at 000 010, 000 020, 000 030, 000 040, 000 050, and 000 060.

What instruction bytes do you find in KEX memory locatiens 000 050 through
000 0527

You will find the following instruction bytes:

000 050 303 JMP /Jump to

000 051 050 050 /LO = 050 and
000 052 003 003 /HL = 003
STEP 2

Execute the above program. Observe that the stack pointer is set at address

By
.
003 200, so that the stack itself will start at one less than this memory location,
or 003 177. After you execute the program, examine the contents of the two stack
locations 003 176 and 003 177 and list the contents in the space below.
Stack location Contents

003 176
003 177

Are these two bytes consistent with what you would expect for the execution of a
CALL instruction?

We observed the following on the stack:

Stack location Contents
003 176 004
003 177 003

The two stack bytes correspond to the memory address, 003 004, which is the address
of the HALT instruction. This is exactly what we would expect for a call.

You should note that the stack pointer will again point to memory address

003 177 after the program is executed. Why?

Not only did the program execute a RST 5 imstruction, it also executed

a RET instruction that popped the two bytes off the stack. Though they were
popped off the stack, the original values remained in read/write memory. Remember
that the stack pointer is an internal 8080A register and cannot be directly
examined.

STEP 3

The software routine at 003 050 can perform other tasks as well. Change the
program steps to the following:

Memory Instruction

address byte Mnemonic Comments
003 050 170 MOV A,B /Move B to A

003 051 074 INR /Increment A

003 052 107 MOV B,A /Move A back to B

003 053 323 OUT /Output contents of A to
003 054 000 000 /output port 000

003 055 311 RET /Return from subroutine

On your MMD-1 microcomputer, alternately press keys RESET and G. What do you
observe? Why?

We observed that output port 000 incremented its count for each RESET/G cycle.
The increment software was called by the RST 5 subroutine.

STEP 4

After several increments, examine the stack locations 003 176 and 003 177 once
again. Are the stack byte values any different from those that you observed
in Step 2? How do you explain this result in view of the fact that you have
executed the restart subroutine several times?

You should observe no change in the stack bytes, which still contain the address
of the HALT instruction, 003 004. Each time that you pushed an address on the
stack as a result of the RST 5 instruction, you also popped the same two bytes
when you executed the RET instruction. Clearly, for each RESET/G cycle,

and thus each calling of the subroutine, the return address was the same.
Remember that the return address stored on the stack is for the instruction
following the one-or three-byte CALL instruction. In this case, 1t happens to be
a HLT instruction.

EXPERIMENT NO. 7

A SIMPLE INTERRUPT INSTRUCTION REGISTER

PURPOSE

7348

The purpose of this experiment is to wire and test a simple interrupt instruction

register.

SCHEMATIC DIAGRAM OF CIRCUIT

+5V GND
24 12
1) 22 H H 21
Loelc c 201¢g Y SN
s A
SWITCHES B 1F FIs
A E £
o] 8212 |
o 8
LosiC ¢ I I
3 8
SWITCHES : 3 =
1
PULSER |
0
[
LAMP A
moniToRs §

D7
D&
1]
D4

D3
D2
ol

Do

NTA

INT

INTE

PIN CONFIGURATION OF INTEGRATED CIRCUIT CHIP

8212 |
PROGRAM L
Memory Instruction 1
address byte Mnemonic Comments k
003 000 061 LXI SP /Load the stack pointer with i
003 001 200 200 /LO address byte and 4
003 002 003 003 /HI address byte i
003 003 373 EI /Enable interrupt
003 004 000 REPEAT, NOP /No operation |
003 005 000 NoP /No operation i
003 006 000 NOP /No operation i
i
003 007 170 MOV A,B /Move B to A)
003 010 323 ouT /Output register A to E
003 011 001 001 Joutput port 001 ;
i
003 012 303 JuP /Jump back to REPEAT at $
003 013 004 REPEAT /LO = 004 and {
003 014 003 [/HI = 003 and do it again. |
step 1

In the circuit shown for this experiment, the 8212 buffer/latch is the interrupt
instruction register, the pulser causes the actual interrupt, and the lamp monitor
indicates the status of the 8080A chip's interrupt enable flip-flop, which is
located within the chip.

Turn the power to the microcomputer on and off several times. Note the condition
of the interrupt enable (INTE) lamp monitor each time the microcomputer is on.
Is the interrupt enabled when the computer is turned on?

Generally it is off, but this is not a rule with all 8080 microcomputer systems.
With the MMD-1 microcomputer, there is no EI instruction in KEX, so it is not
possible to enable the interrupt even if KEX was executed accidently when the
power was turned on.

STEP 2

Execute the program provided for this experiment. What is the state of the
8080A chip's interrupt emable flip-flop when you do?

The interrupt enable flip-flop should be at logic 1, i.e., it is enabled by
the program.

STEP 3

After the software has been started (note that it loops continuously), observe
the value of the byte present at output port 001. Write it in the space below.

Now set an 004 on the logic switches, HGFEDCBA = 00000100 = 004,, and depress
the interrupt pulser. What byte now appears at output port 0019 What is the
condition of the INTE lamp monitor?

During an interrupt, the interrupt instruction register jams a single-byte in-
struction into the instruction register of the 8080A. In this case, the instruction
was 004, What does this instruction accomplish? You may wish to refer to a
listing of the 8080A instruction set.

After setting the logic switches to the instruction byte, 004, and depressing the
interrupt pulser, the value of the byte at port 00l is incremented by onme. The
004 instruction increments the contents of register B, INR B. The interrupt
enable lamp monitor is logic O after the interrupt is serviced.

STEP 4

Reset the microcomputer and again execute the program. Note the values of the
bytes at port 001 before and after you actuate the interrupt pulser. Does the
incrementing continue?

2552

Yes it does. Keep in mind the fact that when the MMD-1 is first reset, KEX
outputs a HI address byte of 003 to output port 001. It is this byte that is
incremented each time you execute the program and press the interrupt pulser.

STEP 5

At memory address 003 007, replace the MOV A,B instruction byte with a NOP
instruction byte (000). Set the instruction, 074, on the logic switches to
the interrupt instruction port and execute the program. What happens when you
cause an interrupt by activating the interrupt pulser?

The byte at output port 001 is incremented by one. In this case, we have
executed an INR A instruction prior to outputting the accumulator contents to
port 001. This INR A instruction was jammed into the instruction register
during the interrupt.

STEP 6

Substitute a 017 instruction on the logic switches, reset the microcomputer,
execute the program, and press and release the interrupt pulser. What happens
at output port 001?

The data byte is rotated one position to the right.

STEP 7

An interrupt causes the 8080A chip to accept a single-byte instruction from the
interrupt instruction port. Does the nature of the jammed instruction affect
the contents of the stack? If you do not know the answer to this question,
perform the following experiment: Set the contents of memory locations 003 176
and 003 177 to 000. Repeat either Step 6 or Step 7, or both, then reset the
microcomputer and examine locations 003 176 and 003 177. What do you find in
these two locations? Can you explain why?

We observed that the contents of both locations remained at 000. The execution

of either the INR A or the RRC instruction does not cause the microcomputer to

place an address on the stack. Thus, the stack contents were not changed. The

only instructions that affect the stack are subroutine calls, including the

restart instructions, subroutine returns, PUSHes, POPs, and the SPHL instruction.
'

STEP 8

So far, you have been able to interrupt the program only once each time the
program was executed. Why?

The JMP instruction at 003 012 caused a jump back to memory location 003 004
rather than memory location 003 003.

STEP §

Change the jump address at location 003 013 to LO = 003. This permits the
program to jump back and enable the interrupt instruction once each loop.

Now set 017 on the logic switches and depress the interrupt pulser. What happens?
Keep the pulser depressed and observe what takes place.

The data is rotated at random. When continuously depressed, the interrupt pulser
applies a logic 1 at the INT input of the 8080A chip, which continuously
interrupts the execution of the current program. The interrupt enable lamp
monitor dims and all of the LED's at output port 001 become 1lit.

sTeP 10

Based upon your observations in Step 10, is the interrupt input to the 8080A
chip edge-triggered or level sensitive? How can you circumvent the problem that
you observed in Step 10?

The 8080A chip's interrupt input, INT, is level sensitive. Whenever this input
pin is at logic 1, interrupts will take place as long as the interrupt flag is
enabled. To circumvent this problem, you can insert a positive-edge triggered
flag between the pulser and the INT input.

Save the hardware and software given in thie experiment and continue to
the next experiment.

EXPERIMENT NO, 8
JAMMING A RESTART INSTRUCTION
PURPOSE
The purpose of this experiment is to demonstrate the use of an interrupt flag

in conjunction with a restart instruction.

PIN CONFIGURATION OF INTEGRATED CIRCUIT CHIP

8212
SCHEMATIC DIAGRAM OF CIRCUIT
8212
1
PULSER é sTe TNT 23 |1 2 NT

7404

PROGRAM

The program is identical to that given in Experiment No. 7.

sTEP 1

You will need to make the following modifications to the circuit given in

Experiment No. 7:
o Disconnect the pulser and the INT input on the breadboard.
o Connect the pulser to the STB input (pin 11) on the 8212 chip.

o Conmnect the INT output (pin 23) on the 8212 chip to an inverter, and
then connect the inverter to INT on the bradboarding socket.

The 8212 buffer/latch chip incorporates the following interrupt-type flag,

ps 2=

iy__i I

Etii = 23 —
—° e NT

sTB — oK

which can be used to provide an interrupt signal to the 8080A chip. Keep in
mind that this circuit is already built into the 8212 chip; you do not have to
wire it on the breadboard.

STEP 2

Once you have made the necessary hardware changes, make certain that your program
is the same as that given in Experiment No. 7. With the interrupt imstruction
register logic switches set to the instruction byte, 017, execute the program.
Assuming that the instruction byte at memory address 003 013 is 003, then you
should observe that the data at output port 001 rotates one position to the right
each time that you press the pulser. Is this true?

Yes.

STEP 3

Now you will execute a simple program through the logic switches of the interrupt
instruction register. Perform the following operations in sequence:

o Set the logic swtiches to 227, Press the pulser and interrupt the
microcomputer.

o Next, set the logic switches to 074 and interrupt the microcomputer a
second time.

o Now set the logic switches to 017 and interrupt the microcomputer a
third time.

&

o Finally, continue to interrupt the microcomputer several times.

When you do all of the above, what do you observe at output port 001?

A single lamp monitor in the DO position becomes lit, and then rotates to the
right for each interrupt.

STEP 4

So far, you have demonstrated that you can jam a variety of single-byte instructions

into the instruction register during an interrupt. Once in the instruction
register, they will be executed as regular instruction bytes. Now we will
demonstrate the jamming of restart instructions, RST X.

Enter the following software into read/write memory at the locations indicated:

Memory Instruction

address byte Mnemonic Comments

003 020 074 INR A /Increment A

003 021 311 RET /Return from subroutine

003'050 027 RAL /Rotate A left through carry flag
003 051 311 RET /Return from subroutine

Execute the program once again by pressing the RESET key and then the G key.

STEP 5

Set the loglc switches at the interrupt instruction register to 327. Observe
what happens each time that you generate an interrupt to the microcomputer.

The byte at output port 00l increments by one for each interrupt pulse.

STEP 6

Now change the logic switch setting to 357. Actuate the interrupt pulser several
times. What happens?

The data rotates to the left ome position for each interrupt actuation.

STEP 7

Load 000 into memory locations 003 176 and 003 177, which are the first two bytes
in the stack. With the logic switches set at 357, RESET the microcomputer and
then execute the program. Generate a single interrupt, then RESET the micro-
computer and examine these two memory locations, which were previously at 000.
Has the stack been used? Write the contents of these two memory locations in
the table below. Repeat Step 7 several more times, again noting the results

in the space below.

Memory contents
Trial 003 177 003 176

ENV RN

We observed the following stack bytes:

Memory contents
Trial 003 177 003 176

1 003 006
2 003 012
3 003 007
& 003 003
5 003 003
6 003 010

What can you conclude from this information?

The stack bytes indicated the memory address of the next instruction to be
executed after a return from the interrupt service routine. In all cases, this
memory address was within the limits of our original program. This was to be
expected, since a return from the interrupt subroutines should always point
back to the program loop. Your stack contents may vary from ours, but all
addresses should be contained within the loop.

Save your hardware and software for the following experiment.

EXPERIMENT NO. 9
INTERRUPT RESPONSE TIME
PURPOSE
The purpose of this experiment is to examine the response of an 8080 system to

interrupts when the microcomputer has other tasks to perform.

SCHEMATIC DIAGRAM OF CIRCUIT

The circuit is identical to that given in Experiment No. 8. See the next page.

PROGRAM; MAIN TASK

Memory Instruction

address byte Mnemonic Comments
003 000 061 LXI SP /Load the stack pointer with
003 001 200 200 /L0 address byte and

003 002 003 003 /HI address byte

003 003 373 LOOP, EL /Enable interrupt

0037004 315 CALL /Call DELAY subroutine at
003 005 100 DELAY /LO = 100 and

003 006 003 [} /HI = 003

003 007 000 NOP /No operation

003 010 000 NOP /No operation

003 011 000 NOP /No operation

003 012 303 JMP /Jump back to LOOP at
003 013 003 LOOP /LO = 003 and

003 014 003 (] /HI = 003

DELAY SUBROUTINE

003 100 016 DELAY, MVI C /Load C with

003 101 001 001 /data byte 001

003 102 315 TIME, CALL /Call the KEX subroutine TIMEOUT at
003 103 277 TIMEOUT /LO = 277 and

003 104 000 [/HL = 000

003 105 015 DCR C /Decrement C by one

003 106 302 JNZ /18 register C = 000? If not, jump
003 107 102 TIME /to TIME at LO = 102 and

003 110 003 [} /HI = 003. Otherwise, continue to

/next instruction.

003 111 311 RET /Done. Return from subroutine.

SCHEMATIC DIAGRAM OF CIRCUIT

The circuit diagram is basically that of Experiment No. 7,

+3V GND
24 2
22 21
b 20" "I o7
Logic ¢ e P I~
18 17
SWITCHES B o1f Flg—— s
A E £ }—————— D4
8212
9 10 1
D =0 0 fpo—— 03
LOSGIC c ¢ ¢l p2
SWITCHES B 18 ol t— 0!
A A AP——— o0
14
1 —=q{cLr o8I - TNTA
0 —— MD sT@ L 1o debounced pulser

in which the STB imput (pin 11) is now connected to a debounced pulser and
the INT output (23) is connected to a 7404 inverter that is tied to the INT
input of the MMD-1 microcomputer,

8212

PULSER 1 23 | 2

| STB 1

k4
pur)

INT

7404

As before, a lamp monitor is used to monitor the INTE output from the 8080A chip,

INTE

D
WYL
MONITORS &

23-60

INTERRUPT TASK

003 020 365 PUSH PSW /Save accumulator and flags
003 021 004 INR B /Increment register B

003 022 170 MOV A,B /Move B to A

003 023 323 ouT /Output accumulator contents to
003 024 001 001 /Device 001

003 025 361 POP PSW /Restore accumulator and flags
003 026 311 RET /Done. Return from subroutine.
sTeP 1

load the software into read/write memory. Observe that the interrupt task software
now contains a PUSH and a POP imstruction. Why are these necessary?

The other routines use the accumulator register, so we must save it. When the
microcomputer is interrupted, we do not know what the content of the accumulator is.

STEP 2

Execute the software. Now activate the interrupt pulser. Do you observe any
significant delay between the incrementing of output port 001l and the push of
the pulser?

No. We did not observe any delay, and there should not be any. The DELAY subroutine
only causes a 10 millisecond delay.

STEP 3

Change the time constant at memory location 003 101 to the values given in the
table below. As you did in Step 3 of Experiment No. 2, apply ten clock pulses
from the interrupt pulser as fast as you can (Trial 1). Enter the number of
counts that you observe in the table below. If you desire to clear B, load the
following software:

003 050 006 MVI B /Move into register B the
003 051 000 000 /data byte 000

003 052 311 RET /Return from subroutine

23-61
Set the logic switches to the restart instruction, 357, actuate the interrupt

pulser, and observe that the output port 001 becomes cleared. Return the
logic switches to 327 and continue with the experiment.

Octal timing Trial 1 Trial 2
byte Time delay (Step 3) (Step 4)
012 100 ms
024 200 ms
062 500 ms
144 ls
310 2s

We observed results that were comparable to those in the Flag Response experiment,
Experiment No. 2. Why are the interrupts so slow in this case?

No matter when the interrupt occurs, we can only re-enable the flag after program
control returns to the EI instruction at memory address LOOP. If the DELAY loop
is of long duration, it will take considerable time to return to the EI instruction.

STEP 4

Make the following changes to the interrupt task software:

003 026 373 EI /Enable interrupt

003 027 311 RET /Return from subroutine

The interrupt flag is now re-enabled immediately after the RETURN instruction is
executed at memory address 003 027. Remember that the enable interrupt instruction

always takes effect after the instruction that follows it.

Repeat Step 3 and note your results in the column labled Trial 2. What do you
observe?

You should observe that the response time of the microcomputer is now essentially

independent of the long delay asince the enable interrupt instruc-
tion in the interrupt task software turns the interrupt back on following
the execution of the next instruction. We no longer have to

wait for the long delay to return to the EI instruction at memory address LOOP.

252

STEP 5

Is the enable interrupt (EI) instruction at memory address 003 003 needed?
Remove it by substituting a NOP instruction (000) and try the interrupt
pulser. What happens?

Nothing. The interrupt is never turned on, so we are not able to call our
interrupt task subroutine.

Remember: if you want to use the interrupt, enable it! This experiment should
show you that interrupts, if used properly, can be serviced immediately. There
is no time delay between the request for service and the microcomputer's
response. This was not the case with the flags in Experiment No. 1.

Save your hardware and software for the following experiment. Though not shoum
in Experiment No. 10, continue to use a lamp monitor to monitor the logic state
of the INTE output from the 8080A chip.

EXPERIMENT No. 10
SIMPLE PRIORITY INTERRUPTS

PURPOSE

The purpose of this experiment is to investigate the implementation of a simple
priority interrupt scheme.

PIN CONFIGURATIONS OF INTEGRATED CIRCUIT CHIPS

oo | L) L] [Le
‘
[|
H 3 .

1 7

s[e T2 e[{s{s[1? T S5 ek i fa 1@ GRo
" ® A 2 2 GND 1y 1A 1B 2y 2A 2B GND R
7400
7402 7474
SCHEMATIC DIAGRAMS OF CIRCUITS
+3V GND
24% 2%

2) 21 *
+8YV 2= {n W o7
¢ ¢ f————— D6

18 17 %
FROM 7474 (5) e F F I ']}
FROM T400 (8) E E e Ds
° o szie o 10 % 03

L e
S *ic ckEt—— 02
5is s Pt !
3 A A | 4 % ____ DO
| e L WA
0

>l

N

g + 5V GND ‘
1
47 7474 !
+5V 2 D Q 5 TO 821%
PIN 18]
i
3 oK a 6 :
{
wadl | |
PULSER , |
#*1 4 ;
12 TO BZIZ;
+5v PIN 16

1] 8 |

cK Q {7\ 3 —_
13

* Indicates connections from previous experiment

PROGRAM! MAIN TASK

Memory Instruction

address byte rnemonic Comments

003 000 061 IXI SP /Load the stack pointer with
003 001 350 350 /LO = 350 and

003 002 003 003 /HI = 003

003 003 373 LOOP, EI /Enable interrupt

003 004 303 IMP /Jump back to LOOP at

003 005 003 Loop /LO = 003 and

003 006 003 [/HI = 003

LOW PRIORINY DEVICE SERVICE SUBROUTINE

003 020 323 ouT /Clear external interrupt flag
003 021 004 004 /Device code 004

003 022 074 INR A /Increment accumulator

23-65

003 023 323 ouT /Output accumulator contents to
003 024 001 001 /output port 001
003 025 311 RET /Return from subroutine

HIGH PRIORITY DEVICE SERVICE SUBROUTINE

003 040 323 ouT /Clear external interrupt flag
003 041 003 003 /Device code 003

003 042 017 RRC /Rotate accumulator contents left
003 043 323 ouT /Output accumulator contents to
003 044 001 001 /output port 001

003 045 311 RET /Return from subroutine

sTep 1

Rewire the hardware. Observe that some of the connections, those marked with an
asterisk *, are the same as those used in previous experiments.

Load the software into read/write memory and check it carefully.

STEP 2

Execute MAIN TASK starting at memory location 003 000. The enable interrupt
(INTE) lamp monitor may be used to check the interrupt enmable state. It should
be at logic 1 as soon as the software is started.

Press and release pulser #1 several times. Do you observe any change at output
port 0017

We observed that the value at output port 001 is incremented by ome for each
actuation of the interrupt pulser #1.

STEP 3

Press and release pulser #2 several times. Now what happens at output port 1?7

We observed that the data was rotated to the right one position for each actuation
of pulser #2. If you do not observe these results in Steps 2 and 3, please go
back and check both your hardware and software. The software entered for the LOW
and HIGH priority devices was used only to test your interface. New software will
now be used in the experiment.

STEP 4
You will now change the software for the high priority device, i.e., the high

priority device service subroutine at 003 040, so that it takes longer to
perform its task. Enter the following software into read/write memory:

HIGH PRIORITY DEVICE SERVICE SUBROUTINE (Replaces previous service subroutine)

Memory Instruction l

address byte Mnemonic Comments '
003 040 323 our /Clear external interrupt flag !
003 041 003 003 /Pevice code 003]
003 042 365 PUSH PSW /Store accumulator and flags on stack |
y
003 043 305 PUSH B /Store registers B and C on stack 1
i
003 044 000 NoP /No operation i
003 045 006 MVI B /Load register B with ‘
003 046 010 010 /data byte 010
003 047 174 AGAIN, MOV A,H /Move H to A
003 050 074 INR A /Increment accumulator i
003 051 147 MOV H,A /Move A to H
003 052 323 ouT /Output accumulator contents to i
003 053 000 000 /output port 000 !
003 054 315 CALL /Call DELAY subroutine at
003 055 100 DELAY /LO = 100 and |
003 056 003 [} /HI = 003 i
003 057 005 DCR B /Decrement register B i
I
003 060 302 JINZ /Is register B = 000? If not, jump t
003 061 047 AGAIN /to AGAIN at LO = 047 and i
003 062 003] /HI = 003. Otherwise, continue to }
/next instruction |
003 063 301 POP B /Yes, B = 000. Restore registers B |
/and C E
003 064 361 POP PSW /Restore accumulator and flags i
003 065 000 NoP /No operation :
003 066 311 RET /Return from subroutine

DELAY SUBROUTINE ;

003 100 016 DELAY, MVI C /Load C with
003 101 144 144 /data byte 144

257
003 102 315 TIME, CALL /Call the KEX subroutine TIMEOUT at
003 103 277 TIMEOUT /LO = 277 and
003 104 000] /HI = 000
003 105 015 DCR C /Decrement C by one
003 106 302 JINZ /Is register C = Q00? If not, jump
003 107 102 TIME /to TIME at LO = 102 and
003 110 003 '] /HI = 003. Otherwise, continue to

/the next instruction.
003 111 311 RET /Done. Return from subroutine.

The DELAY subroutine generates a time delay of about one second. It calls the
10 millisecond TIMEOUT subroutine in the KEX EPROM.

STEP 5

Execute the MAIN TASK software. Generate a LOW priority device interrupt using
pulser #1. This causes a RST 2 instruction to be sent to the 8080 microprocessor
chip. What effect does this have?

It should still increment the count present at output port 00l. We have not changed
the software for this interrupt service routine.

STEP 6

Actuate pulser #2 to generate a HIGH priority device interrupt. Observe output
port 000. What happens?

The count increments eight times over a time period of approximately eight seconds.

STEP 7

Attempt to use the LOW priority device (interrupt pulser #1)during the time that
the HIGH priority device subroutine is being executed, i.e., during the time that
the lamp monitors are still being incremented. You can accomplish this by first
activating pulser #2 and then, quickly, by activating pulser #1 several times.
What happens?

2366

The LOW priority device interrupt pulser #1 has no effect if you are fast emough
to be able to interrupt during execution of the HIGH priority software.

1f you wish to slow down the HIGH priority device service subroutine still
further, change the timing byte at memory location 003 107 to 310, which
corresponds to a two second time delay.

STEP 8

Why can't the LOW priority device interrupt the HIGH priority device? Is it
because of the priority hardware?

The LOW priority device cannot interrupt because the HIGH priority task does not
re-enable the interrupt until control is returned to the MAIN TASK program. This
is completely independent of the hardware; it illustrates a potential problem:
interpupts cannot be used unless the interrupt is first enabled. Priority can
be established either in software or hardware.

Save your hardwarve and software for the following two ewperiments.

EXPERIMENT No, 11
PRIORITY INTERRUPT TIMING

PURPOSE

The purpose of this experiment is to explore the timing relationships between
HIGH and LOW priority devices and how the priority is assigned.

SCHEMATIC DIAGRAM OF CIRCUIT

The circuit is identical to that given in Experiment No. 10.

PROGRAM: LOW PRIORITY DEVICE SERVICE SUBROUTINE

Memory Instruction

address byte Mnemonic Comments
003 020 303 JMp /1f interrupted, jump to
003 021 150 150 /LO = 150 and

003 022 003 003 /HI = 003

003 150 323 our /Clear interrupt flag
003 151 004 004

003 152 365 PUSH PSW /Push accumulator and flags
003 153 305 PUSH B /Push register pair B
003 154 000 NOP

003 155 006 MVI B /Load B with

003 156 010 010 /Data = 010 = decimal 8
003 157 056 MVI L /Load L with

003 160 200 200 /Data = 10000000,

003 161 175 LOOPIT, MOV A,L /Move L to A

003 162 007 RLC /Rotate left

003 163 157 MOV L,A /Move A to L

003 164 323 ouT /Output it to port 001
003 165 001 001

003 166 315 CALL /Call DELAY subroutine
003 167 100 DELAY

003 170 003 [

003 171 005 DCR B /Decrement B

003 172 302 JINZ /Is B = 07 If not, loop back again.

003 173 161 LOOPIT /1f so, continue to next imstruction.
003 174 003 ¢

23-70

003 175 301 POP B /Restore register pair B

003 176 361 POP PSW /Restore accumulator and flags
003 177 000 NOP

003 200 311 RET /Return

step 1

In the previous experiment, you observed that the HIGH priority device (slow)
could monopolize the microcomputer's time and not allow the LOW priority device
to interrupt.

Load the new software to make the LOW priority device service subroutine fairly
slow.

STEP 2
Execute the software starting at MAIN TASK, memory location 003 000. Test it

by generating first an interrupt from the HIGH priority device and, later,
by the LOW priority device. What happens?

The HIGH priority device continues to increment a count slowly; the LOW priority
device rotates one bit to the left, slowly.

STEP 3

Cause a HIGH priority interrupt with the pulser; while the HIGH priority software
is operating, pulse the LOW priority software. What happens?

The HIGH priority device continues to operate; the LOW priority software starts
when the HIGH priority software is finished.

STEP 4

Cause a LOW priority interrupt and then cause a HIGH priority interrupt using
the appropriate pulsers. What do you observe?

The LOW priority software continues to operate. When it is finished, the HIGH
priority software operates.

STEP 5
Make the following software changes to MAIN TASK:

003 003 373 EIL /Enable interrupt

003 004 000 LOOP, NOP /Do nothing

003 005 303 JMP /Jump to LOOP {
003 006 004 LOOP {
003 007 003 [

STEP 6

Can you perform more than interrupt with this software? Why or why not?

We could not. The interrupt enable instruction has been removed from the loop.
Once it is used, we never get back to it unless we reset the microcomputer.

STEP 7

Add the two enable interrupt (EI) instructions to the HIGH and LOW interrupt
service routines as follows:

003 065 373 EI /Enable interrupt

003 177 373 E1 /Enable interrupt

Note that the previous instruction bytes at these two locations were NOPs.

STEP 8

Repeat Steps 3 and 4 in this experiment. Are the results the same? Why?

23-72

Yes. We now re-enable the interrupt at the end of each service subroutine.

STEP 9

Move the interrupt enable instruction in the LOW priority service software from
003 177 to 003 154. To do this, make the following changes:

003 154 373 EI /Enable interrupt i
. i

i

. |
003 177 000 NOP /No operation !
step 10 ‘

Repeat Step 3. Is the result the same? i

Yes. No change was observed.

step 11 I

Generate a LOW priority interrupt using the pulser. When the logic 1 bit has
rotated toward the center, generate a HIGH priority interrupt. What happens?
Why?

The HIGH priority interrupt interrupts the LOW priority interrupt software, I
performs the increment operation, and then returns control to the LOW priority i
software. The interrupt 1s now enabled at the start of the LOW priority interrupt
software routine, thus allowing other devices of higher priority to interrupt it.

sTep 12

Perform Step 11 again, but generate several HI priority interrupts during the LO
priority service time. What happens?

The HIGH priority device is always serviced. i

B-73
EXPERIMENT No, 12
SIMULTANEOUS INTERRUPTS

PURPOSE

The purpose of this experiment is to explore the operation of simultaneous
interrupts.

SCHEMATIC DIAGRAM OF CIRCUIT

The circuit is identical to that used in Experiment Nos. 10 and 1l.

PROGRAM

The software is the same as that used in Experiment No. 1l1.

sTEP 1

The circuitry used in Experiment No. 10 to generate interrupts is reproduced below.

+ 5V GND
417 7474
+5V 2 o Q 5 TO 8212
PIN I8
A
wa gl | !
PULSER _ |
o—
13
12 9 2 TO 8212
+5ve——=-D Q . PIN 1§
1 8 }
cK @ -i—l_/'_\ 3 -
i3
2
| s 0%
2 9 ouT
13 10
2 %04

374

Notice that one flip-flop has its Q output applied directly to the 8212 chip
(pin 18), while the Q output of the other flip-flop goes through some NAND
gates and then to the 8212 (pin 16). In this way, the restart instructions i
RST 2, 327, or RST 4, 347, are generated. Using the schematic diagram, fill i
in the truth table below:

HIGH LOW
PRIORITY PRIORITY !
DEVICE DEVICE 8212 chip |
Q Q Q Q pin 18 pin 16 Condition !

L}
0 1 0 1 |
01 10 ;
10 01 |
10 10 |

]

Our results, in the vertical order given, were as follows:

8212 chip |

|

pin 18 pin 16 Condition)
i

0 0 No interrupts i

0 1 LOW priority device interrupts |

1 0 HIGH priority device interrupts I

1 0 Simultaneous interrupt |

b

{

STEP 2

Does the above truth table indicate what would happen if both the LOW and HIGH
priority devices attempted to interrupt at the same time? What would actually
happen?

Yes. It shows that the HIGH priority device wolld override the LOW priority
device and cause the HIGH priority service subroutine to be executed.

STEP 3

Reset the microcomputer. Do not start the software. Remove the wire from the
logic O output of puler #1 and place it in the logic 0 output of pulser #2.
Both interrupts will now be generated by the same pulser. i

Now start the software. Interrupt software action may initially take place;
allow it to finish before you proceed with the experiment.

STEP 4
Observe the lamps at ports 000 and 001 carefully. Press and release the interrupt

2575

pulser, pulser #2. What happens?

We observed that the HIGH priority software (increment the LEDs) started; when
it had vinished, the LOW priority software (rotate a bit) started and completed
its task,

STEP 5

Repeat Step 4 five more times. Does the HIGH priority device software always
start the sequence?

Yes.

STEP 6

Reset the microcomputer. Do not start the software. Replace the wire, which
you moved in Step 3, to the logic O output of pulser #l. Cause a LOW priority
interrupt and, in the middle of the service routine operation, again generate a
LOW priority interrupt. What happens?

The second service routine goes to completion. The first routine proceded halfway
through and then appeared to start rotating again at the beginning.

STEP 7

Can you explain what you observed in Step 6? HINT: Register L is not saved on
the stack in this program.

The second LOW priority interrupt actually interrupted the first LOW priority
interrupt's service software. Since register L is not stored on the stack, it is
left at the time of the second interrupt in some unknown state. When the

first interrupt routine tries to use register L, it is not in the same state

as it was before the second interrupt occurred.

What solutions could you suggest for the problem identified in Step 77

We suggest:

1. Clear the low priority device's interrrupt service request flag at the

end of the service routine.
2. Push all of the registers to be used in the routine onto the stack.

You should never permit an interrupting device to interrupt its own software
service routine. If it does, the external device is operating too fast for
the microcomputer; the software must be simplified to speed it up. Why?
Because by the time we get into the second interrupt's service software, a
third interrupt will interrupt the second, etc. We will never be able to
complete any of the service routines.

What conclusion can be drawn? EXERCISE CARE IN USING INTERRUPTS!

REVIEW

The following questions will help you review the use of flags and interrupts.

types of devices can be used as flags and why are flags important?

instructions in the 8080A instruction set can be used to detect
flag conditions?

advantage does an interrupt have over a polled flag?

are the three types of interrupts, and which type is used in 8080A

based microcomputer systems?

types of instructions are most useful with 8080A interrupts? How

does a typical interrupt service subroutine look like?

is a priority interrupt?

1. What
2. Vhat
internal
3. What
4. What
5. What
do they work?
6. What
7. What
8, What

are some of the potential problems with the use of interrupts?

23~

a
(o}

ANSWERS

1. Flags may be switches, flip-flops, counters, shift registers, or memories.
Generally, any bistable device can qualify as a flag. Flags are generally
used to indicate that some condition has changed and to synchronize flow and
control operations in computer systems.

2. All the conditional instructions, i.e., jumps, calls, and returns, are
useful, although jumps are the most frequently used. Other instructions such
as rotate, AND, OR, etc. are useful, but they do not detect flag conditioms.

3. Speed. Interrupts are generally semsed within microseconds, while polled
flags can take much, much longer, depending upon software.

4. Interrupts can be single-line, multilevel, and vectored. See Figure 23-7
and the associated text.

5. The restart instructions, RST X, are generally the most useful. They are
single-byte calls that, when executed, cause a return address to be pushed
onto the stack. The computer then vectors to the address of the subroutine
specified by the restart instruction. RST X calls a subroutine at 000 0XO.

A return instruction must be used to end the subroutine.

6. It includes PUSH, POP, EI, and RET instructions in addition to the
interrupt service software routine. See Figure 23-10.

7. A priority interrupt is one in which there exists a preset priority for the
order in which interrupts are serviced by the computer. Priority may be set
up in hardware or software.

8. Determination of timing and priority are the big problems. These subjects
have been convered in detail near the end of the Unit.

APPENDIX]1: REFERENCES

1. The Compact Edition of the Oxford English Dictionary, Oxford Univ. Press, 1971.

2. Rudolf F. Graf, Modern Dictionary of Electronice, Howard W. Sams & Company,
Inc., Indianapolis, 1972.

3, James Martin, Telecommunications and the Computer, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1969.

4. Abraham Marcus and John D. Lenk, Computers for Technicians, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1973.

5. Microdata Corporation, Microprogramming Handbook, Santa Ana, California,
1971,

6. J. Blukis and M. Baker, Practical Digital Electronics, Hewlett-Packard
Company, Santa Clara, California, 1974.

7. Donald E. Lancaster, TTL Cookbook, Howard W, Sams & Co., Inc., Indianapolis,
1974.

8. H. V. Malmstadt, C. G. Enke, and S. R. Crouch, Instrumentation for Secientists
Series, Module 3. Digital and Analog Data Conversions, W. A. Benjamin, Inc.,
Menlo Park, California, 1973-4.

9, H. V. Malmstadt and C. G. Enke, Digital Electronics for Scientists, W. A.
Benjamin, Inc., New York, 1969.

10. J. D. Lenk, Handbook of Logic Circuits, Reston Publishing Company, Inc.,
Reston, Virginia, 1972.

11. A, James Diefenderfer, Principles of Electronie Instrumentation, W. B.
Saunders Company, Philadelphia, 1972.

12, P. R. Rony and D. G. Larsen, Bugbook II. Logic & Memory Experiments Using
TTL Integrated Circuits, ESL Instruments, Inc., Derby, Connecticut, 1974.

13. Robert L. Morris and John R, Miller, Editors, Designing with TTL Integrated
Cireuite, McGraw-Hill Book Company, New York, 1971.

14, Charles J. Sippl, Microcomputer Dictionary and Guide, Matrix Publishers, Inc.,
Champagne, Illinois 61820, 1976.

15. Donald Eadie, Introduction to the Basie Computer, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1973.

16. Texas Instruments Incorporated, Microprocessor Handbook, Dallas, Texas,
1975.

17. Charles L. Garfinkel of Keithley Instruments, Inc. is the originator of
this definition.

APPENDIX 2: DEFINITIONS

BUGBOOK V

In this appendix, we provide a summary of the definitions for important concepts
of digital electronics and microcomputers. The page number in this book at
which the concept is discussed is given at the end of each definition. We
acknowledge the following sources for the definitions used:

o Rudolf F. Graf, Modern Dictionary of Electronics, Howard W. Sams & Co.,
Inc., Indianapolis, 1972.

o Microdata Corporation, Microprogramming Handbook, Santa Ana, California, !
1972. i

o Donald Eadle, Introduction to the Basic Computer, Prentice-Hall, Tnc.,
Englewood Cliffs, New Jersey, 1973.

o Abraham Marcus and John D. Lenk, Computers for Technicians, Prentice-
- Hall, Inc., Englewood Cliffs, New Jersey, 1973.

o Peter R. Rony, David G. Larsen, and Jonathan A. Titus, Bugbook III.
Microcomputer Interfacing Experiments Using the Mark 80 Mierocomputer,
an 8080 System, E&L Instruments, Inc., Derby, Connecticut, 1975.

accumulator The register and associated digital electronic circuitry in
the arithmetic/logic unit (ALU) of a computer in which
arithmetic and logical operations are performed. Page 3-7.

AND gate A binary circuit with two or more inputs and a single output, :
in which the output is logic 1 only when all inputs are i
logic 1, and the output is logic 0 if any one of the inputs
is logic 0. Page 7-6.

ASCII code The American Standard Code for Information Interchange. A
seven-bit character code without the parity bit or an
eight-bit character code with the parity bit. Page 12-6.

astable element A two-state element that has no stable states. Page 15-2.

asynchronous Those input pins in a flip-flop that can affect the output
inputs state of the flip-flop independent of the clock. Called

preset, and reset or clear. Page 11-5.
auxiliary Any separate electronic device that is required to make |
function operational a digital electronic circuit consisting of |

integrated circuit chips, resistors, capacitors, etc. that
is wired on a breadboard. Page 9-4.

base Also called the radix. The total number of distinct symbols
used in a numbering system. For example, since the decimal
numbering system uses ten symbols, the radix is 10. 1In the
octal numbering system, the radix is 8. In the binary
numbering system, the radix is 2 because there are only two
symbols (0 and 1). Page 1-4.

binary

binary code

binary coded
decimal

binary counter

binary signal

bistable
element

Boolean algebra

Boolean symbol

breadboard

breadboarding

buffer

buffer gate

A-3

A numbering system using a base number, or radix, of 2.
There are two digits (0 and 1) in the binary system. Page
7-2.

A code in which each code element is one of two distinct
states. These states are usually given the symbols 0 and 1.
Page 1-4.

Abbreviated BCD. A system of number representation in which
each decimal digit of a number is expressed by binary numbers.
Also known as the 8 4 2 1 code. Page 12-4.

An interconnection of flip-flops having a single input and
so arranged to permit binary counting. Each time a pulse
appears at the input, the counter changes state and tabulates
the number of input pulses for readout in binary form. It
has 2" possible counts, wheren is the number of flip-flops
or stages. Page 13~2.

Typically a voltage or current that carries information in
the form of changes between two different states that are

a discrete interval apart. One of these states is called the
logic O state, and the other, the logic 1 state. Page 14-2.

Another name for a flip-flop. A circuit in which the output
has two stable states and can be caused to go to either of
these states by input signals, but remains in that state
permanently after the input signals are removed. Pages 11-2
and 15-2.

Abbreviation for binary digit. A unit of information equal
to one binary decision, or the designation of one of two
possible and equally likely values or states (such as 0 or 1)
of anything used to store or convey information. Page 1-3.

A gystem of mathematical logic dealing with classes, propo-
sitions, on-off circuit elements, etc. associated by operators
such as AND, OR, NOT, XOR, . . . etc., thereby permitting
computations and demonstration, as in any mathematical system.
Named after George Boole, famous English mathematician and
logician, who introduced it in 1847. Page 8-2.

A symbol used to represent a specific Boolean operation. Page
8-2,

Any aid used to temporarily wire together to prove the
feasibility of a circuit, device, system, etc. Page 9-2.

The action of using a breadboard to temporarily wire together
an electrical circuit. Page 9-2.

A digital circuit element that may be used to handle a large
fan-out or to invert input and output levels. Page 14-20.

A digital circuit that increases the power- or current-handling
capability of a binary circuit. Also known as a driver. Page
7-13.

byte

capacitor

capacitance

elock

clock

clock input

elock pulse

code conversion

commnication

complement

computer

computer program

A group of eight contiguous bits that are operated on as a
unit or occupy a single memory location. Page 2-6.

A device consisting essentially of two conducting surfaces
separated by an insulating material or dielectric such as
air, paper, mica, glass, plastic film, 0il, or an inorganic
dielectric. A capacitor stores electrical emergy, blocks
the flow of direct current, and permits the flow of alter—
nating current to a degree dependent essentially upon the
capacltance and the frequency. Page 9~11.

In a capacitor or a system of conductors and dielectrics,
that property which permits the storage of electrically
separated charges when potential differences exist between
the conductors. The capacitance of a capacitor is defined
as the ratio between the electric charge that has been
transferred from one electrode to the other and the resultant
difference in potential between the electrodes. The value of
this ratio is dependent on the magnitude of the transferred
charge. The unit of capacitance is a Farad. Page 9-11.

C [Farads] = Q [Coulombs] / V [Volts]

Any device that generates one or more clock pulses. Page
9-12.

A pulse generator that controls the timing of clocked logic
devices and regulates the speed at which such devices

operate. It serves to synchronize all operations in a digital
gystem. Page 11-5.

That terminal on a flip-flop whose condition or change of
condition controls the admission of data into a flip-flop
through the synchronous inputs, and thereby controls the
output state of the flip-flop. The clock signal performs
two functions: (1) it permits data signals to enter the
flip-flop, and (2) after emtry, it directs the flip-flop to
change state accordingly. Page 11-5.

A complete logic cycle from logic 0 to logic 1 and back to
loglc O (positive clock pulse), or from logic 1 to logic 0
and back to logic 1 (negative clock pulse). Page A-27.

The changing of the bit grouping for a character in one
code into the corresponding bit grouping in another code.
Page 12-8.

The imparting, conveying, or exchange of ideas, knowledge,
information, etc. whether by speech, writing, signs, or
signals. Page 1-2.

To form the complement of a binary number. The complement
of 1 is 0, and the complement of 0 is 1. The complement of
011010 is 100101, Page 8-7.

See digital computer. Page 2-2.

A sequence of {nstructions which, taken as a group, allow

counter

data byte

decade counter

to decode

deviee code

digital code

digital
computer
digital device
digital
signals

digital
waveform

diode

to disable

the computer to accomplish a desired task. Pages 2-2
and 5-2.

A device capable of changing states in a specified sequence
upon receiving appropriate input signals. The output of
the counter indicates the number of pulses which have been
applied. (See also divider). A counter is made from flip-
flops and some gates. The output of all flip-flops is
accessible to indicate the exact count at all times. Page
13-2.

For an 8080-based microcomputer, the eight-bit binary
number that is transferred over the bidirectional data bus.
Pages 3-3 and 3-5.

A logic device that has ten stable states and may be cycled
through these states by the application of ten clock or
pulse inputs. A decade counter usually counts in a binary
sequence from state 0 through state 9 and then cycles back
to state 0. Also called a divide-by-10 counter. Page A-31.

To use a code to reverse a previous encoding. To determine
the meaning of a set of pulses or logic signals that describe
an instruction, a command, or an operation to be carried

out. Page 12-6.

In an 8080-based microcomputer, the 8-bit code for a specific
input or output device. Pages 3-3 and 3-5.

A system of symbols that represent data values and make up a
special language that a computer or a digital circuit can
understand and use. Page 1-3.

An electronic device that is capable of accepting, storing,
and arithmetically manipulating informatin, which includes
both data and the controlling program. The information is
handled in the form of coded binary digits (0 and 1) that are
represented by dual voltage levels. Page 2-2.

Any device that operates on or manipulates binary, or
two-state, information. Page 7-2.

Discrete or discontinuous signals whose various states are
discrete intervals apart. Page 14-2.

A graphical representation of a digital signal, showing the
variations in logic state as a function of time. This type
of representation is also known as a timing diagram. Page
11-9.

A two-electrode semiconductor device that makes use of the
rectifying properties of a pn junction (junction diode) or
a sharp metallic point in contact with a semiconductor diode
(point contact diode). Also called crystal diode, rectifier
diode, and semiconductor diode. Page 9-12.

To prevent the passage of digital signals by the application
of the proper signal to the disable terminal of a digital
device. Pages 11-2 and 14-20.

A-b

DeMorgan's
theorem

display

D-type flip-flop

driver

edge-triggered
flip-flop

to enable

to encode

fall time

fan-in

fan-out

A theorem which states that the inversion of a series of AND
implications is equal to the same series of inverted OR
implications, or the inversion of a series of OR implications
is equal to the same series of inverted AND implicatioms.
In symbols, -

A+B-C=A+B+¢C

al

K¥B+C=A-+3B-
Page 8-6.

A device that provides a visual presentation of an electronic
signal. Page A~24.

D stands for delay. A flip-flop whose output is a function
of the input that appeared one clock pulse earlier; for
example, if a logic 1 appeared at the input, the output
after the next clock pulse will be a logic 1. Page 11-5.

A digital circuit element coupled to the output stage of a
circuit to increase the power- or current-handling capability,
or fan-out, of the stage. For example, a clock driver is
used to supply the current necessary for a clock line. See
buffer gate. Page 14-21.

A type of flip-flop in which some minimum clock signal rate
of change, in Volts/second, is one necessary condition for
an output change to occur. Page 13-6.

To permit the passage of a digital signal into or through
a digital device or circuit. Page 11-12.

To use a code, frequently one composed of binary numbers,

to represent individual characters or groups of characters
in a message. To change from one digital code to another.
If the codes are greatly different, the process is called

code conversion. Pages 1-5 and 12-6.

The time required for the negative trailing edge of a pulse
to decrease from 90% to 10% of its initial value. In digital
electronics, the measured length of time required for an
output voltage of a digital circuit to change from a high
voltage level (logic 1) to a low voltage level (logic 0).
Page 11-10.

The input load requirements of a digital imput to an inte-
grated circuit chip. For the TTL logic family, the inmput
load requirement is normalized to a value of 1 for regular
TTL. A fan-in of 1 corresponds to 1.6 mA. Page 10-16.

The number of parallel loads within a given logic family,
such as TTL, that can be driven from one output of a logic
circuit. A standard TTL chip has a fan-out of 10, which
means that it can drive ten standard TTL loads each with a
fan-in of 1. A fan-out of 10 in TTL corresponds to 16 mA.
Pages 10-16 and 14-21.

flip-fiop

Exelusive-OR gate

gate (logic
device)

gate (gating

device)

to gate

gate cireuit

gate pulse

gate signal

gated buffer

gated driver

gating cireuit

gating pulse

gating signal

general purpose
regigters

A circuit having two stable states and the capability of
changing form one state to another with the application of
a control signal, and remaining in that state after the
removal of signals. Page 11-2.

A binary circuit with two inputs and a single output, in which
the output is logic 1 when the inputs are at different logic
states, and the output is logic 0 if both inputs are at the
same logic states. Page 7-11.

A circuit having two or more inputs and one output, the
output of which depends upon the combination of the logic
signals at the inputs. There are four basic gates, called
AND, OR, NAND, and NOR. Pages 7-2, 14-6, and 14-15,

A circuit having two or more inputs and one output. Ome
of the inputs can be clearly identified as a data input,
with the remaining inputs being gating inputs. The logic
state of the gating inputs determine whether or not the
input data can appear at the output. Page 14-6.

To control the passage of a digital signal through a digital
circuit. Page 14-15.

A circuit that passes a signal only when a gating pulse is
present. An electronic circuit with one or more inputs and
one output with the property that a pulse goes out on the
output line if and only if some specified combination of
pulses occurs on the input lines. Page 14-20.

A pulse that enables a gate circuit to pass a signal. The
gate pulse generally has a longer duration than the signal
to ensure time coicidence. Page 14-20.

See gate pulse. A signal that permits a gate circuit to
pass a signal. Page 14-20.

A low-impedance driver circuit that may be used as a line
driver for pulse differentiation or in multivibrators. In
general, a buffer that is gated. Page 14-20.

In general, a driver that is gated. Page 14-21.

A circuit that operates as a selective switch and allows
conduction only during selected time intervals or when the
signal magnitude is within specified limits. Page 14-21.

A pulse that modifies or controls the operation of a gate
circuit. Page 14-21.

A digital signal that modifies or controls the operation of
a gate circuit., Page 14-21.

For an 8080-based microcomputer, six eight-bit registers that
temporarily store signal bytes of information. The registers
are called B, C, D, E, H, and L. Page 6-2.

gliteh

hardware

hexadecimal
code

HI address byte

hierarchy
immediate byte

Inelusive OR
increment

instruction

instruction
eyele

integrated
etreutt

inverter

language

latch

LED lamp

monitor

LO address byte

An unwanted pulse or logic state, usually caused by poor
design and/or propagation delays. Page 13-13.

The mechanical, magnetic, electronic, and electrical devices
from which a computer is fabricated; the assembly of material
forming a computer. Page 16~7.

A digital code based upon the radix 16, in which the decimal
numbers O through 9 and the letters A through F represent
the sixteen distinct states in the code. Page 12-2.

The eight most significant bits in the 16-bit memory address
word for the 8080 microprocessor chip. Abbreviated H or HI.
Pages 2-8 and 3-5.

A series of items classified according to rank or order.
Page 16-10.

A data byte that is contained within a multi-byte computer
instruction. Page 3-8.

See OR gate. Page 7-9.
To increase the value of a binary word by one. Page 3-8.

A set of characters that define an operation, alone or
together with other information, and which, as a unit, causes
a computer to perform the operation. Pages 2-3 and 3-2.

For an 8080-based microcomputer, a successive group of
machine cycles, as few as one or as many as five, which
together perform a single microprocessor instruction. Page
2-5.

Abbreviated IC. (1) A combination of interconnmected circuit
elements inseparably associated on or within a continuous
substrate. (2) Any electronic device in which both active
and passive elements are contained in a single package. In
digital electronics, the term chiefly applies to circuits
containing semiconductor elements. Page 10-2.

A digital device that complements an input digital signal.
Page 7-9.

The whole body of words and of methods of combination of words
used by a nation, people, or race. Page 1-2.

A simple logic storage element. A feedback loop used in a
gymmetrical digital circuit, such as a flip-flop, to retain
a logic state. Page 11-5.

A light-emitting diode (LED) that is lit in the logic 1 state
and unlit in the logic O state. Page A-23,

The eight least significant bits in the 16~bit memory address
word for an 8080 microprocessor chip. Abbreviated L or LO.
Pages 2-8 and 3-5.

logical
instruetion

logic switch

machine code

masking

memory

memory address

mnemonic code

memonic
language

mnemonic
ingtruction
mnemonic operation

mnemonic symbol
microcomputer
modulo
monostable

multivibrator

multiplewer

NAND gate

A9

A logic operation that is performed on a pair of multi-bit
data words, in which teh corresponding bits of each word
participate in two-bit logic operations such as AND, OR, and
Exclusive-OR. Page 8-2.

A mechanical device that applies either a logic 0 or a logic
1 state at its output terminal. Page 9-12.

A binary representation of a computer instruction. Page 2-4.

A logical technique in which certain bits of a multi-bit
word are blanked out or inhibited. Page 8-13.

Any device that can store logic 0 and logic 1 bits in such
a manner that a single bit or group of bits can be accessed
and retrieved. Page 2-6.

The storage location of a memory word. Page 2-7.

Computer instructions written in a form the programmer can
easily remember, but which must be converted into machine
code later by a computer or by the user. Page 2-4.

A programming language that is based upon easily remembered
symbols and that can be assembled into machine code by a
computer. Page 2-4.

Computer instructions that are written in a meaningful
notation, e.g., ADD, SUB, MOV, MPY, DIV, and STO. Page 2-4.

See mnemonic instruction. Page 2-4.

A symbol chosen so that it assists the human memory; e.g.,
the abbreviation MPY used for "multiply". Page 2-4.

A fully operational digital computer that is based upon a
microprocessor chip or microprocessor chip family. Page 2-2.

The number of distinct states a counter goes through before
repeating. Page 13-2.

A digital circuit that has only one stable state, from which
it can be triggered to change the state, but only for a
predetermined time interval, after which it returns to the
original state. Also called one-shot multivibrator, single-
shot multivibrator, or start-stop multivibrator. Page 15-2.

A digital device that can select one of a number of inputs
and pass the logic state of that input on to the output.
Page A-31.

A combination of a NOT function and an AND function in a
binary circuit that has two or more inputs and one output.
The output is logic O only if all inputs are logicl; it is
logic 1 if any input is logic 0. Page 7-8.

negative edge The transition from logic 1 to logic O in a clock pulse.
Page 13-6.

NOR gate An OR gate followed by an inverter to form a binary circuit
in which the output is logic O if any of the inputs is logic
1 and is logic 1 only if all the inputs are logic 0. Page
7-10.

NOT gate A binary circuit with a single output that is always the
opposite of the single input. Also called an inverter
circuit. Page 7-9.

octal code Pertaining to a binary coded numbering system with the radix
8, in which the natural binary values of 0 through 7 are
used to represent octal digits with values from 0 to 7.
Page 1-5.

operation A specific action which a computer will perform whenever an
instruction calls for it, e.g., addition, subtraciton, OR,
AND, etc. Page 3-2.

operation code For an 8080-based microcomputer, the eight-bit code for the
specific action that the 8080 microprocessor chip will
perform. Page 3-5.

positive edge The transition from logic O to logic 1 in a clock pulse.
Page 13-6.

propagation A measure of the time required for a logic signal to travel

delay through a logic device or series of logic devices forming a

loglc string. It occurs as the result of four types of
circuit delays--storage, rise, fall, and turn-on delay--and
is the time between when the input signal crosses the
threshold-voltage point and when the responding output voltage
crosses the same voltage point. Page 11-10.

pulser A logic switch that gemerates a single clock pulse. Page
9-12. :
!
|
race The condition that occurs when changing the state of a !

system requires a change in two or more state variables. If
the final state is affected by which variable changes first,
the condition is a eritical race. Also, the condition that
exists when a signal is propagated through two or more
memory elements during the same clock period. Page 11~11.

radiz See base. Page l-4.

read To transmit data from a specific memory location to some other
digital device. A synonym for retrieve. Page 16-15.

read/write A semiconductor memory into which logic 0 and logic 1 states
memory can be written (stored) and read out (retrieved) again. Page 2-6.
read-only A semiconductor memory from which digital data can be repeatedly
memory read out, but cannot be written into as in the case for

read/write memory. Page 2-7.

register

resistance

resistor

rise time

schematic
diagram

single-byte
instruction

to strobe

switch

symbol

synchronous

synchronous
inputs

three-byte
instruetion

to trigger

A-l1

A short-term digital electronic storage circuit the capacity
of which is usually one computer word or byte. Page 3~7.

A property of conductors which, depending on their dimensions,
material, and temperature, determine the current produced

by a given difference of potential. That property of a
substance which impedes current and results in the dissipation
of power in the form of heat. The practical unit of resis-
tance is the ohm. It 1s defined as the resistance through
which a difference of potential of one volt will produce a
current of one ampere. Page 9-11.

A device connected into an electrical circuit to introduce a
specified resistance. Page 9-11.

The time required for the positive leading edge of a pulse to
rise from 10% to 90% of its final value. It is proportional
to the time constant and is a measure of the steepness of the
wavefront. In digital electronics, the measured length of
time required for an output voltage of a digital circuit to
change from a low voltage level (logic 0) to a high voltage
level (logic 1). Page 11-10.

A printed representation of electronic devices that are wired
to form a useful electronic circuit. Page 9~10.

An instruction consisting of eight contiguous bits that occupy
a single memory location. Page 3-2.

To activate a digital circuit. See to enable. Pages 11-12
and 14-16.

A mechanical or electrical device that completes or breaks
the path of the current or sends it over a different path.
Page 14-21.

A written character or mark used to represent something; a
letter, figure, or sign conventionally standing for some
object, process, etc. Page 9-10.

Operation of a clocked logic system with the aid of a clock
pulse generator. All actions take place synchronously with
the clock. Page 16-17,

Those terminals on a flip-flop through which data can be
entered but only upon command of the clock. These inputs
do not have direct control of the output such as those of a
gate, but only when the clock permits and commands. Called
JK inputs and D input. Page 11-5,

An instruction consisting of information that occupies three
successive memory locations. Page 3-2.

A pulse that starts an action. It may also be the edge of a
pulse. See to enable. (Proper noun): A famous horse.
Pages 11-12, 13-6, and 14-21.

truth table

two-byte
instruction
word

write

XOR

preset

reset

clear

A tabulation that shows the relationship of all output

logic levels of a digital circuit to all possible combi-
nations of input logic levels in such a way as to character-
1ze the circult functions completely. Page 7-3.

An instruction consisting of information that occupies two
successive memory locations. Page 3-2.

The number of bits that a computer can manipulate simultaneously.
Page 2-6.

To transmit data from some other digital device into a
specific memory location. A synonym for store. Page 16-15.

See Exclusive-OR gate. Page 7-11.

An asynchronous input that is used to control the logic state
of the Q output of a flip-flop. Signals entered through this
input cause the Q output to go to logic 1. The preset input
cannot cause the Q output to go to logic 0, Page 11-17.

An asynchronous input that is used to control the logic state
of the Q output of a flip-flop. Signals entered through this
input cause the Q output to go to loglc 0. The reset input
cannot cause the Q output to go to logic 1. Page 11-17.

See reset. Page 11-17.

See preset. Page 11-17.

G

APPENDIX 3: DEFINITIONS A-
BUGBOOK VI

In this appendix, we continue the summary of the definitions for important
concepts of digital electronics and microcomputers that we started in Bugbook
V. The page number in this Bugbook at which this concept is discussed is
glven at the end of each definition. We acknowledge the following sources for
the definitions used:

o Rudolf F. Graf, Modern Diectionary of Electronics, Howard W. Sams & Co.,
Inc., Indianapolis, 1972.

o Microdata Corporation, Microprogramming Handbook, Santa Ana, California,
1972.

o Donald Eadie, Introduction to the Basic Computer, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1973.

o Abraham Marcus and John D. Lenk, Computers for Technicians, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1973.

o Peter R. Rony, David G. Larsen, and Jonathan A. Titus, Bugbook III.
Microcomputer Interfacing Experiments Using the Mark 80 Microcomputer,
an 8080 System, E&L Instruments, Inc., Derby, Connecticut, 1975.

Hkk

absolute The decoding of a bimary number to produce a unique pulse,

decoding select a unique memory address, etc. Pages 17-9 and 17-39.
aceunulator The register and associated digital electronic circuitry in

the arithmetic/logic unit (ALU) of a computer in which
arithmetic and logical operations are performed. Page 18-8.

aceumulator I/0 A term associated with 8080-based microcomputer systems.
The I/0 instructions are IN and OUT and the data tramsfer
occurs between the I/0 device and the accumulator within
the 8080 chip. Pages 20-2, 20-40, and 21-2.

addend A quantity which, when added to another quantity (called
the augend), produces a result called the sum. Pages 18-74
and 20-35.

address A group of bits that identify a specific memory location or

1/0 device. An 8080 microcomputer uses sixteen bits to
identify a specific memory location and eight bits to identify
an I/0 device. Page 16-12.

address select A software generated clock pulse from a microcomputer that is

pulse used to strobe the operation of a memory mapped I/0 device.
Page 21~3.

address bus A unidirectional bus over which digital information appears

to identify either a particular memory location or a particular
1/0 device. The 8080 address bus is a group of sixteen lines.
Page 16-12.

A-14

analog-to-digital A circuit that changes a continuously varying voltage or

converter

augend

bidirectional
data bus

bus

bus monitor

byte

central proces-
sing unit
(mainframe
computer)

central proces-
ging unit
(microprocessor)

control

control bus

controller

CPU

data logger

current into a digital output. Page 22-46.

In an arithmetic addition, the number increased by having !
another number, called the addend, added to it. Pages |
18-35 and 20-35.

A data bus in which digital information can be transferred in
either direction. With reference to an 8080-based micro-
computer, the bidirectional data path by which data is
transferred between the CPU, memory, and input/output
devices., Page 16-12.

A path over which digital information 1s transferred, from any
of several sources to any of several destinations. Only one
transfer of information can take place at any one time. While !
such transfer of information is taking place, all other sources
that are tied to the bus must be disabled. Page 16-12.

A binary, octal, or hexadecimal display that monitors and |
displays the data that appears on the bidirectional data
bus. Page 17-20.

A group of eight contiguous bits that are operated on as a
unit or occupy a single memory location. Page 18-12. i

Also called central processor. That part of a computer system >
which contains the main storage, arithmetic unit, and special
register groups. Performs arithmetic operations, controls
instruction processing, and provides timing signals and other
housekeeping operations. Page 16-13.

A single integrated circuit chip that performs data transfer,
control, input/output, arithmetic, and logical instructions
by executing instructions obtained from memory. Page 16-13.

Those parts of a computer which carry out instructions in
proper sequence, interpret instructions, and apply proper
signals. Page 16-12.

A set of signals that regulate the operation of the micro-
computer system, including I/0 devices and memory. They
function much like "traffic" signals or commands. They may
also originate in the I/0 devices, gemerally to transfer to
or receive signals from the CPU. A unidirectional set of
signals that indicate the type of activity~-memory read,
memory write, 1/0 read, I/0 write, or interrupt acknowledge—
in current process. Page 16-12.

!
|
i
i
I
|
|

An instrument that holds a process or condition at a desired
level or status as determined by comparison of the actual
value with the desired value. Page 16~7.

Abbreviation for central processing unit. Page 16-13.
An instrument that automatically scans data produced by

another instrument or process, and records readings of the
data for future use.

deviee code

device select
pulse

digital-to-
analog converter

double-precision
arithmetic

exclusive
masking

fetch

flag

general purpose
register

hardware

inelusive
magking

input/output

I/0 device

instruction
code

instruction
decodex

A-15

In an 8080-based microcomputer, the 8-bit code for a specific
input or output device. Page 17-6.

A software generated clock pulse from a microcomputer that is
used to strobe the operation of an accumulator I/0 device.
Pages 17-2 and 21-2.

A circuit that changes a digital input into a continuously
varying voltage or current. Page 22-39.

1. Using two computer words to represent a number, usually
to obtain greater accuracy than a single word of computer
storage is capable of providing. 2. Arithmetic used when
more accuracy is necessary than a single word of computer
storage will provide. Page 18-36.

A masking technique in which one either clears or sets (seldom
used) all bits not operated upon. Page 18-45.

One of the two functional parts of an instruction cycle. The
collective actions of acquiring a memory address and then
an instruction or data byte from memory. Page 18-12.

Some sort of digital register or device used to indicate the
state or status of a device. It can be cleared or set in
response to an operation. Page 23-2.

In the 8080 microprocessor chip, 8-bit registers that can
participate in arithmetic and logical operations with the
contents of the accumulator. Page 18-8.

The mechanical, magnetic, electronic, and electrical devices
from which a computer is fabricated; the assembly of material
forming a computer,l5 Page 16-7.

A masking technique in which one leaves unaltered all bits
not operated upon. Page 18-45.

General term for the equipment used to communicate with a
computer and the data involved in the communication. Page
16-19.

Input/output device. A card reader, magnetic tape umit,
printer, or similar device that transmits to or receives
data from a computer or secondary storage device. In a more
general sense, any digital device, including a single inte-
grated circuit chip, that transmits data to or receives data
or strobe pulses from a computer. Page 16-13.

A unique 8-bit binary number that encodes an operation that
the 8080 microprocessor chip can perform. Page 18-11.

A decoder within the 8080 microprocessor chip that decodes the
instruction code into a series of actions that the micro-
processor performs. Page 18-11.

|

instruction The 8~bit register in the 8080 microprocessor chip that :

register stores the imstruction code of the instruction being !
executed. Page 18-11.

interrupt In a digital computer, a break in the normal execution of
a computer program such that the program can be resumed
from that point at a later time. Pages 16-15 and 23-10.

interrupt An external 8-bit register that permits an imstruction to |
instruction be jammed into the instruction register within an 8080 chip i
register during an interrupt. Page 23~49.

machine cycle A subdivision of an instruction cycle during which time a

related group of actions occur within the microprocessor
chip. All instructions are combinations of one or more
machine cycles. Page 17-16.

masking A logical technique in which certain bits of a word are
blanked out or inhibited. Page 18-45.

memory Any device that can store logic 0 and logic 1 bits in such a
manner that a single bit or group of bits can be accessed
and retrieved. Page 16-13.

memory I/0 See memory mapped I/0. Page 20-2.
memory mapped A term associated with 6800, 8080, and other microcomputer
1/0 systems. The I/0 instructions are memory reference imstructions

and the data transfer occurs, in the case of the 8080 chip,
between the I/0 device and any of the general purpose registers
within the chip. Pages 20-2, 21-2, and 21-38.

memory address See address. Page 16-12.
multilevel Several independent interrupt lines are provided, each of
interrupt which causes a specific action. Polling is not needed unless
multiple devices are ORed to one of the inputs. Page 23-10.
nibble A group of four contiguous bits that are operated on as a unit
or occupy a single memory location. Page 18-37.
open collector An output from an integrated circuit device in which the final \
output pull-up resistor in the output transistor for the device is |

missing and must be provided by the user before the circuit
is complete. Page 17-12.

polling A periodic checking of input/output or control devices to
determine their condition or status, e.g., full/empty,
on/off, busy/ready, done/not done, etc. Page 23-9.

priority Interrupts that are ordered in importance so that some
interrupts interrupting devices take precedence over others. Page 23-18.
program The 16~bit register in the 8080 chip that contains the wemory
counter address of the next instruction byte that must be executed

in a computer program. Pages 18-8 and 18-49.

PSW

real-time clock

register
service
routine

single-line
interrupt

software

stack pointer

syne

synchronization
pulses

to synchronize

synchronous

synehronous
computer

synchronous
inputs

synchronous
logic

synchronous
operation

A-17

Abbreviation for processor status word. The contents of the
accumulator and the five status flags in the 8080 microprocessor
chip. Page 18-61.

Refers to a device that provides interrupts at regular time
intervals, frequently twice the AC line frequency. It allows
maintenance of an accurate time of day clock and the measure-
ment of elapsed time. Pages 22-10 and 23-20.

A short-term digital electronic storage circuit the capacity
of which usually is one computer word. Page 18-8.

A computer subroutine that services an interrupting device.
Page 23-20.

An interrupt signal that is input to the computer on a single
line and causes a well defined action to take place. Multiple
devices must be ORed onto this line and a polling routine

must determine which device caused the interrupt. Page 23-10.

The totality of programs and routines used to extend the
capabilities of computers, including compilers, assemblers,
linker-loaders, narrators, translators, and subroutines.
Contrasted with hardware. Page 16-7.

The 16-bit register in the 8080 microprocessor chip that
stores the memory address of the top of the stack, which is
a region of read/write memory that stores temporary
information. Page 18-11.

Short for synchronous, synchronization, synchronizing, etc.
Page 16-17.

Pulses originated by the transmitting equipment and introduced
into the receiving equipment to keep the equipment at both
locations operating in step. Page 16-17.

To lock one element of a system into step with another. Page
16-17.

In step or in phase, as applied to two devices or machines.
A term applied to a computer, in which the performance of a
sequence of operations is controlled by clock signals or
pulses. At the same time. Page 16-17.

A digital computer in which all ordinary operations are
controlled by a master clock. Page 16-17.

Those inputs of a flip-flop that do not control the output
directly, as do those of a gate, but only when the clock
permits and commands. Page 16-17.

The type of digital logic used in a system in which logical
operations take place in synchronism with clock pulses.
Page 16-17.

Operation of a system under the control of clock pulses. Page
16-17.

A-18

three-state
device

timing loop
TRI-STATE ® device
vectored
interrupt

word

write

read

A semiconductor logic device in which there are three
possible output states: (1) a logic O state, (2) a logic 1
state, and (3) a state in which the output is, in effect,
disconnected from the rest of the circuit and has mno
influence upon it. Page 19-3 and Unit Number 19.

A software loop that requires a precise period of time for
its execution. Page 17-3.

See three-state device. Page 19-3 and Unit Number 19.
Each device points, or vectors, the computer's control to
specific software service routines for the interrupting

devices. Page 23-12.

A group of contiguous bits occupying one or more storage
locations in a computer. Page 18-11.

To transmit data from some other digital device into a
specific memory location. A synonym for store. Page 16-15.

To transmit data from a specific memory location to some
other digital device. A synonym for retrieve. Page 16-15.

A-19

appenpIx 4: outoaros ®

An Outbaa.rd®is a registered trademark of E&L Instruments, Inc. for an auxiliary
function mounted on a small printed circuit board that attaches directly to a
SK-10 socket and obtains +5 volts and GROUND power conmnections from the outer

two rows of solderless terminals. Input-output pins are electrically tied to the
sets of five solderless terminals in the interior of the breadboarding socket. i
The characteristics of an Outboard can best be seen with the aid of Figure A-1,
which is a bottom view of the LR~7 dual pulser Outboard. The Outboard makes
connections with the SK-10 socket in six locations: +5 volts at the outer row of
power bus terminals, 0 volts at the inmer row of power bus terminals, and four
input terminals. To make these connectioms, you just gently press the Outboard into
the socket at the appropriate places anywhere along the edges of the socket.

The advantages of the Outboard concept are that the Outboards are compact, easily
repaired if damaged, inexpensive, portable, and can be located almost anywhere on
the SK-10 breadboarding socket.

The Outboards can be grouped into several different categories:

Display Outboards: LR-6 lamp monitor Outboard
LR-4 seven-segment display Outboard
LR-29 latch/display Outboard
LR-27 octal latch/display Outboard
LR-28 three digit latch/display Outboard

Digital input Outboards: LR-2 logic switch Outboard
LR-7 dual pulser Outboard
LR-5 clock Outboard
LR-20 monostable Outboard
LR-10 programmable timer Outboard

Communications Outboards: LR-21 UART Outboard
LR-14 TTL/20 mA current loop interface Outboard
LR-13 TTL/RS-232C interface Outboard

Digital function Outboards: LR-19 latch Outboard
LR-22 decoder Outboard
LR-17 decade counter Outboard
LR-18 binary counter Outboard
LR-23 multiplexer Outboard
LR-12 driver/inverter/NOR Outboard

There also exist the LR-1 power Outboard and the LR-25 breadboarding station Outboard.

POWER OUTBOARDS

Power is applied to a separate SK-10 breadboarding socket with the aid of the LR-1
Power Outboard (Figure A-2) or a similar circuit on the LR-25 Breadboarding Station

A-20

Figure A-1. Bottom view of
the LR-7 Outboard that shows
the two power pins and four
input-output pins.

Figure A-2. The LR-1 Power
Outboard.

+5 volts pin

GROUND pin

input - output
pins

A-21

Figure A~3. The LR-25
Breadboarding Station

Outboard. Eav

LANTE i “

CBANTRS -

Outboard, shown above in Figure A-3. The power circuitry on these two Outboards
provide a remarkable amount of control over and information about the DC power
applied to the SK-10 solderless breadboard. The light-emitting diode (LED)
indicates when there is DC power that is properly applied to the breadboard, when
there 1s no DC power, when the alligator clips have been improperly connected to
the lantern battery or power supply terminals (the LED will be unlit), and
finally, when the lantern battery voltage is low (the LED will be dimly lit).

The rectifier diode prevents adverse consequences that could result from the
improper comnection of the alligator clips to the battery terminals. If such
clips are connected improperly, no voltage will be applied to the breadboard

the LED will not light. An example of the use of a lantern battery to apply
power to the SK-10 breadboarding socket is shown in Figure A-4.

Figure A-4. An example
of the use of a lantern
battery for the applica-
tion of power to the
SK-10 breadboard. The
LR-1 Power Outboard is
all that is required to
apply power to 50 of the
power bus terminals. The
remaining 50 power bus
terminals are tied to the
first 50 via jumper wires,
which should always
remain in place.

LOGIC SWITCH OUTBOARDS

A logic switch is a mechanical device that applies either a logic 0 or a logic 1
state at its output terminal, The LR-2 Logic Switch Outboard, which is shown in
Figure A-5 and is also present on the LR~25 Outboard in Figure A-3 , provides
four logic switch that switch between 0 volts (logic 0) and +5 volts (logic 1).
The LR-2 Outboard can be located on either side of the breadboard.

Figure A-5. The LR-2

Logic Switch Outboard

Figure A-6. The LR-6 LED
Lamp Monitor Outboard.

A-Z3
LED LAMP MONITOR OUTBOARDS

A LED lamp monitor is a light-emitting diode (LED) that is lit in the logic 1 state
and unlit in the logic O state. It is used as display for binary digital signals.

The LR-6 LED Lamp Monitor Outboards contains four LED lamp monitors, and the LR-25

Outboard contains eight LED lamp monitors. The former is shown in Figure

The use of transistor LED lamp drivers reduces the current to each lamp monitor

to a level of only 1.5 mA.

PULSER OUTBOARDS

A pulser is a logic switch that generates a single clock pulse, which is a complete
logic cycle from logic 0 to logic 1 and back to logic 0, or from logic 1 to logic O
and back to logic 1. In order to create a pulser, you must eliminate contact
bounce from the mechanical switch that is being used as the pulser. Contact bounce,
the uncontrolled making and breaking of contect when the switch contacts are opened
or closed, is a common occurrence in most mechanical switches. In some digital
applications, such bouncing is not a problem. However, in most digital circuits, it
is imperative that the output from a pulser be bounce free, thus permitting its use
in elocked digital circuits, Z.e., circuits that require properly timed clock pulses
for their operation. The LR-7 Dual Pulser Outboard, a top view of which is shown |
in Figure A-7 and a bottom view in Figure A-1, uses four 2-input NAND gates in a
single 7400 integrated circuit chip to produce a pair of debounced pulsers, i.e.,
pulsers whose outputs do not exhibit contact bounce. Complementary logic 0 and
logic 1 outputs, labeled as "0" and "1", respectively, are provided for each pulser
on the LR-7 Outboard and also on the LR-25 Outboard (Figure A-3). To activiate
each pulser, push the plastic button in, not down, using a fingernail, small
screwdriver, ballpoint pen, or other small blunt tool.

Figure A-7. The LR-7
Dual Pulser Outboard.

A-24

DISPLAY AND LATCH/DISPLAY OUTBOARDS

A display is a device that provides a visual presentation of an electronic signal.
A lamp monitor is a display for a single bit of binary information. Four lamp
monitors can display four bits of binary information.

In digital electronics, you will be required to display the following types of
information:

o Single bits

The loglc states of individual flags, the outputs from gates, and the
outputs from flip-flops.

o Four bits

Binary-coded decimal (BCD) code, hexadecimal code, and other four-bit
binary codes, such as those used in four-bit microprocessor chips.

o Eight-bit octal code

Eight-bit codes--instruction codes, device codes, memory address bytes,
and data bytes-—employed in an eight-bit microcomputer such as the
Dyna-Micro; eight-bit binary codes such as ASCII code or EBGDIC.

o Multiples of four bits

The display of decimal numbers in BCD code in counters, frequency meters,
digital multimeters, panel meters, and other digital instrumentation.

Outboards are available for each of these types of informationm.

For the display of single bits, the LR-2 Outboard #s employed. For the display

of four bits, the LR-2 Outboard, LR-4 Seven-segment LED Display Outboard (Figure
A-8), or LR-29 Latch/Display Outboard (Figure A-9) are used. The seven-segment
Outboard contains a display in which seven segments are spatially arranged in

such a mannmer that the digits O through 9 can be represented through the selective
lighting of certain segments. On the LR-4 Outboard there is a 7447 decoder/driver
integrated circuit chip, a Hewlett-Packard 5082-7730 or Opcoa SLA-1 numeric
display, and seven current-limiting resistors to prevent the display from burning
out. The four inputs, ABCD, to the Outboard generate 0 through 9, five unusual
symbols, and a blank display, i.e., the four inputs generate sixteen unique display
states. Also present on the Outboard are three additional inputs to the 7447 chip,
the BLANKING INPUT (I), BLANKING OUTPUT (0), and LAMP TEST (T).

The LR-29 Single Latch/Display Outboard contains a single numeric or hexadecimal
indicator manufactured by Hewlett-Packard. Five input pins to the Outboard serve
as the four ABCD binary-coded decimal or hexadecimal inputs plus a gtrobe (STB)
input that permits you to latch, or store, a four-bit input indefinitely. All
of the latch/display Outboards, including the LR-27, LR-28, and LR-29, are based
upon the remarkable 5082-7300 series of numeric and hexadecimal indicators manu-
factured by the Hewlett-Packard Company. The indicators are eight-pin displays,
either decimal or hexadecimal, that contain a built-in decoder/driver and latch.
In contrast to the LR-4 Outboard, the indicator display is a 4 X 7 dot matrix that
ig very easy to read. This dot matrix permits the 5082-7340 indicator to exhibit
hexadecimal characters, Z.e., A, B, C, D, E, and F, which represent the decimal
numbers 10 through 15. The numeric display exhibits blanks for such characters.

Figure A-8. The LR-4
Seven-Segment LED Display
Outboard. On this Outboard,
the 1248 input notation is
used instead of ABCD. The
correspondence between the
two types of notation is as
follows: A =1, B =2,
C=14, and D = 8,

Figure A-9. The LR-29
Single Latch-Display
Outboard.

Figure A-10. The LR-27
Octal Latch/Display
Outboard.

Figure A-11, The LR-28
Three Digit Latch/Display
Outboard.

A7

For the display of eight-bit octal code, which is discussed in Unit Number 1,

the LR-27 Octal Latch/Display Outboard is used. This Outboard contains three

sets of numeric indicators, as shown in Figure A-10, each of which has its

D input grounded. Two sets of indicators have A, B, and C inputs, whereas the
third set has the C input grounded and only A and B inputs. The strobe (STB)
inputs to the three indicators are tied together so that you can store an

entire eight-bit three-octal-digit word. This Outboard is specifically for use

as a bus monitor on the Dyna-Micro microcomputer. It permits you to monitor many
of the data transfers over the 8080A microprocessor data bus, which is an eight-bit
data bus.

For the display of several decimal digits each of which is encoded in four-~bit
BCD code, the LR-28 Three Digit Latch/Display Outboard is used, This Outboard
contains three numeric or hexadecimal indicators and three sets of ABCD inputs
to each indicator. The strobe inputs to all three indicators are tied together
so that you can store a three-decimal number. A pair of indicators on this
Outboard can also be used to monitor an eight-bit microcomputer byte in two-
hexadecimal-digit code. This Outboard is shown in Figure A-11 on the following
page.

CLOCK QUTBOARDS

A clock is any device that generates at least ome clock pulse, which is a complete
logic cycle, Z.e., a transition from logic 0 to logic 1 and back to logic 0, or

a transition from logic 1 to logic O and back to logic 1. We have repeated this
very important definition for a clock pulse in our description of the pulser
Outboards. The LR-5 Clock Outboard (Figure A-12), which is also present on the
LR-25 Outboard (Figure A-3), generates a sequence of clock pulses, called a
train of clock pulses, the frequency of which depends upon the value of the timing
capacitor that is inserted into the socket pins associated with the clock Outboard.
Such socket pins are easily identifiable on both the LR-5 and LR-25 Outboards.

In the absence of an inserted capacitor, the frequency of the clock Outboard is
approximately 90 kHz. Suitable capacitors range from 10 pF to 100 VF. If you
use electrolytic capacitors, you will have to locate the negative socket pin; for
the LR-5 Outboard, it is the pin directly below the letters LR5. The heart of
these clock Outboards is the 555 timer integrated circuit chip, which provides
that has a frequency stability of better than 0.1%Z. On the LR-5 Outboard, a LED
indicator gives you a visual indication that the clock is operating properly.

A 0.33 UF capacitor provides a clock frequency of approximately 0.7 Hz; your
clock frequency for an identical timing capacitor may vary within % 20% of this
value. The correct output pin from this Outboard is labeled CLK. External
resistors may be added at the remaining input pins to increase the upper frequency
limit of the LR-5 Outboard. The correct output pin from the LR-25 Outboard is
labeled CK, as shown in Figure A-3.

BREADBOARDING STATION OUTBOARD

The LR-25 Breadboarding Station Outboard, shown in both Figure A-3 and A-13,
consolidates the LR-1, LR~2, LR-5, LR-6 (two), LR-7, and LR-26 individual Outboards
into a single Outboard that serves as esgentially a complete digital electronics
breadboarding station. With it, you can perform any experiment that requires

no more than four logic switches, two debounced pulsers, one clock, eight lamp
monitors, and a latch-display that is tied in parallel to four of the lamp monitors.

A28

Figure A-12. The LR-5
Clock Outboard. The
timing capacitor is
inserted into the two
socket pins between
which is the letter C.

Figure A-13. The LR-25
Breadboarding Station
Outboard.

A-29
DECODER OUTBOARD

In a subsequent module, you will learn how to decode the microcomputer device
codes to produce individual device select pulses that you can use to enable
or disable digital electronic devices., The LR-22 Decoder Outboard, which is
shown in Figure A-14, contains a single 74154 4-line-to-16-line integrated
circuit chip and a 16-pin DIP socket. This Outboard can be used to supplement
the five device select outputs that are already present on the Dyna-Micro
microcomputer (in the I/0 decoder block). Each LR-22 Outboard can generate
sixteen different device select pulses.

MONOSTABLE OUTBOARD

A monostable multivibrator is a digital circuit that has only one stable state,
from which 1t can be triggered to change the state, but only for a predetermined
time interval, after which it returns to the original state. Such a circuit

can be used to generate individual clock pulses of precise time duration. The
LR-20 Monostable Outboard (Figure A-~15) contains a 74122 retriggerable monostable
multivibrator chip that generates single clock pulses with the aid of a small

25 k9 potentiometer and external capacitors. Pulse widths ranging from 70 ns

to 5 ms can be readily generated.

LATCH OUTBOARD

A latch is a simple binary information storage element. A single latch stores
one bit of information. The LR-19 Latch Outboard (Figure A-16) contains a single
74175 positive~edge-triggered latch chip. This chip is a 4-bit memory that has
a STROBE and a CLEAR input and complementary outputs, Q and Q. This Outboard
is useful for latching four bits of information from the Dyna-Micro microcomputer.
A device select pulse is applied at the STROBE input to acquire and store data.

Figure A-14., The LR-22
Decoder Outboard.

Figure A-15, The LR-20
Monostable Outboard.

Figure A-16, The LR-19
Latch Outboard.

A-31
MULTIPLEXER OUTBOARD

A multiplexer is a digital device that can select ome of a number of inputs and
pass the logic state of that imput on to the output. This device acts as a uni-
directional single-pole multiposition switch that passes information only from
input to output. The LR-23 Multiplexer Outboard contains a 16~1ine-to-1-1line 74150
multiplexer/data selector integrated circuit chip. The Outboard is shown in

Figure A-17.

COUNTER OUTBOARDS

The LR-17 Decade Counter and LR-18 Binary Counter Outboards are based, respectively,
on the popular 7490 and 7493 integrated circuit chips. A decade counter is a
logic device that has ten stable states and may be cycled through these states

by the application of ten clock or pulse imputs. A decade counter usually counts
in a binary sequence from state 0 through state 9 and then cycles back to state 0.
It is sometimes referred to as a divide-by-10 counter. A 4-bit binary counter
is a logic device that has sixteen stable states and may be cycled through these
states by the application of sixteen clock or pulse inputs. Shown in Figure
A-18, each counter Outboard contains a DPDT switch which permits either a free
running counter or else a counter that can be reset to 0 from a remote imput. The
LR-17 Decade Counter Outboard can also be remotely reset to 9.

DRIVER/INVERTER/NOR OUTBOARD

On the LR-12 Driver/Inverter/NOR Outboard (Figure A-19), a 7405 open collector
inverter chip is used to generate a 2-input NOR gate, two drivers, and two inverters.
Since the outputs are open collector, they can be wired together in a wired-OR
configuration to produce a 2-input AND gate and an additional 2-input NOR gate.
The concepts of open collector and wired-OR will be discussed in a subsequent module.

Figure A-17, The LR-23
Multiplexer Outboard.

A-32

Figure A-18. The LR-17/18
BCD/Binary Counter Outboard.
The type of Outboard depends
upon whether the 7490 or
7493 integrated circuit chip
is used.

Figure A-19. The LR-12
Driver/Inverter/NOR
Outboard,

A-33
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER OUTBOARD

1f you wish to tramsmit data from the Dyna-Micro microcomputer to a teletype or
a cathode-ray tube display, you will need to convert the eight-bit output data
byte into serial asynchronous ASCIL code. How to do this is discussed in detail
in Bugbook IIA, which is available from ESL Instruments, Inc, The Outboard that
1s employed is the LR-21 UART Outboard, which contains a universal asynchronous
receiver/transmitter (UART) chip, a microswitch programming plug, and two 16-pin
DPI sockets. It is shown in Figure A-20. The UART chip can transmit data at
rates up to or exceeding 30,000 bits/second.

TTL/20 MA CURRENT LOOP INTERFACE OUTBOARD

A teletype can transmit or receive ASCIT code only via 20 mA current loops, which

are also discussed in Bugbook IIA, The LR-14 TTL/20 mA Current Loop Interface

Outboard contains a pair of GE 4N35 opto-isolators and an on-board 20 mA current
regulator. This Outboard interfaces a UART chip to any asynchronous device operating at
data transmission rates as high as 30,000 bits/second. See Figure A-21.

TTL/RS-2%2C INTERFACE OUTBOARD

If you desire to transmit or receive ASCII code via a modem tied to a telephone
line, you will need to convert TTL signals to RS-232C digital signals. The

very simple LR-13 Line Driver/Receiver and TTL/RS~-232C Interface Outboard

(Figure A-22) permits you to do so. The Outboard contains a Signetics 8T15 dual
line driver and a 8T16 dual line receiver, plus two Zener diodes that ensure that
only +12 volts is applied to the line driver chip. The Outboard is described
in greater detail in Bugbook ITA.

Figure A-20, The LR-21
UART Outboard.

Figure A-21. The LR-14
TTL/20 mA Current Loop
Interface Outboard.

Figure A-22., The LR-13
Line Driver/Receiver and
TTL/RS-232C Interface
Outboard.

PROGRAMMABLE TIMER OUTBOARD

The LR-10 Programmable Timer Outboard is based upon the XR-2240/2340 integrated
circuit chip, which is a programmsble timer/counter in a 16-pin dual in-line
package (DIP). A programmable socket, shown in Figure A-23 programs the chip
as a timer, delay circuit, monostable multivibrator, staircase generator, etc.
The circuit in the figure is for a simple programmable clock, in which the
following clock frequencies can be produced as multiples of the fundamental,

or lowest, clock frequency at output pin 0:

Multiple of
fundamental
Output pin frequency

NoaubLNRO
=
o

Note that 27 = 128, 25 = 64, 2° = 32, 2* = 16, 2°® = 8, 2* = 4, 2! =2, and 2° = 1

Figure A-23, The LR-10
Programmable Timer
Outboard.

OCTAL HEX
000 00
001 01
002 02
003 03
004 04
005 05
006 06
007 07
010 08
011 09
012 0A
013 08
014 oc
015 oD
016 OE
017 oF
020 10
021 1
022 12
023 13
024 14
025 15
026 16
027 17
030 18
031 19
032 1A
033 1B
034 1c
035 1
036 1E
037 1F
040 20
041 21
042 22
043 23
044 24
045 25
046 26
047 27
050 28
051 29
052 24
053 28
054 2¢
055)
056 2E
057 2F
060 30
061 31
062 32

APPENDIX 5: OCTAL/HEX CONVERSION TABLE

OCTAL

063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145

OCTAL HEX
146 66
147 67
150 68
151 69
152 6A
153 6B
154 6C
155 6D
156 6E
157 6F
160 70
161 71
162 72
163 73
164 74
165 75
166 76
167 77
170 78
171 79
172 7A
173 7B
174 7c
175 7D
176 7E
177 7F
200 80
201 81
202 82
203 83
204 84
205 85
206 86
207 87
210 88
211 89
212 8A
213 8B
214 8C
215 8D
216 8E
217 8F
220 90
221 921
222 92
223 93
224 94
225 95
226 96
227 97
230 98

OCTAL

231
232
233
234
235
236
237
240
241
242
243
244
245
246
247
250
251
252
253
254
255
256
257
260
261
262
263
264
265
266
267
270
271
272
273
274
275
276
277
300
301
302
303
304
305
306
307
310
311
312
313

HEX

OCTAL

314
315
316
317
320
321
322
323
324
325
326
327
330
331
332
333
334
335
336
337
340
341
342
343
344
345
346
347
350
351
352
353
354
355
356
357
360
361
362
363
364
365
366
367
370
371
372
373
374
375
376
377

APPENDIX 6: DESCRIPTION OF THE MYD-1 MICROCOMPUTER

INTRODUCTION

In this appendix, you will learn how an 8080 (or 8080A) microprocessor chip
can be used to configure a small 8080-based microcemputer. You will examine
the signals entering and leaving the 8080 chip, how auxiliary chips such as
the 8224 are used to control the operation of the microcomputer, and the
development of the address, data, and control buses, which are vital in
interfacing applications. The microcomputer has been previously described
in the May, June, and July, 1976 issues of Radio-Electronics magazine. The
reader is referred to these articles or to the E&L Instruments, Inc. MMD-1
Mini Miero-Designer Operating Manual for additional details on the assembly
and operation of the microcomputer.

OBJECTIVES
At the end of this appendix, you will be able to do the following:

o Identify the memory address bus, data bus, control inputs, control
outputs, and power inputs on the 40-pin 8080A microprocessor chip.

o Describe the function of each pin on the 8080A microprocessor chip.

o Describe in some detail the various component sections of the MMD-1
8080A-based microcomputer.

A-37

THE 8080 MICROPROCESSOR CHIP

The 8080 microprocessor is a 40-pin LSI integrated circuit chip that contains
sixteen address lines, eight data lines, ten control lines, four power connections, |
and a pair of clock inputs. The pin configuration and the block diagram of the L
chip are shown below in Figures A6-1 and A6-2. If you are not familiar with the
reading of pin numbers on integrated circuit chips, please refer to Unit Number 10.
S
Ay 011 20 f—0 a1y
aNp o—— 2 39 |—=0 A
0, o=—{3 38 |—=0 Ay |
D, Oe—e]a 37 |0 41,
o, 0+—=|5 36 |—>0 415 |
o, o=—+{6 35 |0 49
0, O=—r]7 3 |0 Ay
27 :‘:_’; INTEL ;g —° :: Figure A6-1. The pin configuration of
o, o]0 8080 s f—on the 40~pin 8080 microprocessor chip.
—sv o—] 11 30 =0 A,
RESET O—n] 12 20 [—o0 A
HOLD O—=] 13 28 p——0 +12Vv
INT o——] 12 21 p—>0 A,
2 o] 15 26 —=0 A
INTE 0-—r, 18 25 p—=0 Ag
0BIN ey 17 2 |—=0 WAIT
Wi o= 18 23 fo—o READY
SYNC O=—1 19 22 f—0 5
+6v 0—— 20 21 f—=0 Hioa
+3V GND
+i2v -3V
28120 |2 Il ‘
3] A0 \
14 :;?,;‘D to Memory and I/0 ‘
address bus.
—2)pEsET MBS i
—23 1 peaoy
WR 18
inte HE&—
HLDA [eL__
24
Two-phase —24g, WAIT
clock., ~224g pain I Figure A6-2. Block diagram of the
: ! I8 8080 chip that clearly shows the
SYNC f—
16-bit address bus and 8-bit bi-
D0 to D7 directional data bus. This is a

8080 more useful representation of the
8080 microprocessor chip.

8-bit bidirectional
data bus.

intel silicon Gate MOS 8080A
SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSOR

The 8080A is Z and electrically ible with the Intel® 8080.
TTL Drive Capability Sixteen Bit Stack Pointer and Stack
2481 tion Cycl Manipulation Instructions for Rapid
us Instruction Cycle Switching of the Program Environment

= Powerful Problem Solving = Decimal,Binary and Double
Instruction Set Precision Arithmetic

= Six General Purpose Registers = Ability to Provide Priority Vectored
and an Accumulator Interrupts

= Sixteen Bit Program Counter for = 512 Directly Addressed 1/0 Ports

Directly Addressing up to 64K Bytes
of Memory

The Intel® BOBOA is a complete 8-bit parallel central processing unit (CPU). I is fabricated on a single LS| chip using Intel’s
n-channel silicon gate MOS process. This offers the user a high performance solution to control and processing applications.
The 80B0A contains six 8-bit general purpose working registers and an accumulator. The six general purpose registers may be
ressed individually or in pairs providing both single and double precision operators. Arithmetic and iogical instructions set
or reset four testable flags. A fifth flag provides decimal arithmetic operation.
The 8080A has an external stack feature wherein any portion of memory may be used as a last in/first out stack to store/
retrieve the contents of the accumulator, flags, program counter and all of the six general purpose registers. The sixteen bit
stack pointer controls the addressing of this external stack. This stack gives the 8080A the ability to easily handle multiple
level priority interrupts by rapidly storing and restoring processor status. |t also provides almost unlimited subroutine nesting.
This microprocessor has been designed to simplify systems design. Separate 16-line address and 8-line bi-directional data
busses are used to facilitate easy interface to memory and 1/0. Signals to control the interface to memory and 1/0 are pro-
vided directly by the 8080A. Ultimate control of the address and data busses resides with the HOLD signal. [t provides the
ability to suspend processor operation and force the address and data busses into a high impedance state. This permits OR-
tying these busses with other controfling devices for (DMA) direct memory access or multi-processor operation.

—

8080A CPU FUNCTIONAL a-omeetoNAL
BLOCK DIAGRAM DATABUS

BATA BUS.
BUFFER/LATCH|

wam warm
wrEawaCDRra sus remaCaATA B
= =
18] @ REGISTER i8)] MULTIPLEXER
s cemnes.” | _rewnce
REToR N i e
LoGIc DECODER 4 REG REG
e MACHINE ¥ W T W REGISTER
ol e nks Y
aisso ¢
He
[] [
DECIMAL INCREMENTER/DECREMENTER
ADJUST ADDRESS LATCH 16

TIMING
Anp

CONTROL

POWER [12V ADDRESSBUFFER |
SUPPLIES | —n 46V DATABUS INTERRUPT HOLD WAIT
' lumie covtnou cowtnot conRoL coviRor svne_cLocks|
— N

WR OBIN INTE INT HOLDHOLDWAIT | SYNC o) 02 RESET
Ak READY

A Ay
ADORESS 8US.

This and subsequent specification sheets arve courtesy of the Intel Corporation,
Santa Clara, California. ALl rights reserved.

Forty pins are quite a few with which to contend, so it would be useful to sub-
divide the pin functions into the following categories: power, memory address
bus, bidirectional data bus, control signals, and clock inputs.

POWER
pin 28 + 12 Volts
pin 20 + 5 Volts
pin 2 GROUND
pin 11 ~ 5 Volts

The voltage tolerances are % 5% with respect to ground potential. Any popular
power supply that provides voltages of + 15 and + 5 Volts and sufficient current
can be adapted to the 8080 chip with the aid of suitable voltage regulators.

CLOCK INPUTS

The 8080 chip requires a two-phase clock. Recall that a clock is any device

that generates at least one clock pulse, or a timing device in a system that
provides a continuous series of timing pulses. A two-phase clock is a two-output
timing device that provides two continuous series of timing pulses that are
synchronized together, with a single clock pulse from the second series always
following a single clock pulse from the first series. The use of timing diagrams,
shown in Figure A6-3, is helpful in explaining how a two-phase clock operates:

‘4——500 ns ——I
¢ ____ N n B
‘-—— State State _i_ State ——-|
¢ L LI I

Time —

Figure A6-3. Schematic diagram of the two-phase clock inputs to the 8080 chip.

Note that the leading edge of the ¢, series of clock pulses almost overlaps the
trailing edge of the ¢; series of pulses. In the 8080 specifications, it is
stated that the minimum pulse width for the ¢; clock phase is 60 nsec, whereas
for the ¢, clock phase it is 220 nsec. The pin locations on the 8080 chip for
the two input clock signals are: .

pin 22 Clock phase ¢;

pin 15 Clock phase ¢,

A-H1

We call this type of clock device a two-phase non-overlapping clock. This is not
a TTL-level clock. Rather, it swings from 0 Volts to +12 Volts. Such a clock
can be easily generated with an 8224 clock generator chip, which is available
from the Intel Corporation and other manufacturers.

MEMORY ADDRESS BUS

The 8080 microprocessor can directly address up to 65,536 eight-bit words of
memory through the use of sixteen three-state output address lines called the
address bus. The pin locations for the bus can be summarized as follows:

pin 25 Address bit A0, the least significant bit

pin 26 Address bit Al

pin 27 Address bit A2

pin 29 Address bit A3

pin 30 Address bit A4

pin 31 Address bit A5

pin 32 Address bit A6

pin 33 Address bit A7, the MSB for the 8-bit device code
pin 34 Address bit A8, the LSB for the 8-bit device code
pin 35 Address bit A9

pin 1 Address bit AlO

pin 40 Address bit All

pin 37 Address bit Al2

pin 38 Address bit Al3

pin 39 Address bit Al4

pin 36 Address bit Al5, the most significant bit

Either address bits A0 through A7 or address bits A8 through Al5 can be used to
provide the I/0 device code for up to 256 different input or 256 different output
devices. The address lines are output to decoder circuits that employ the
74142, 741154, or other decoder chips.

BIDIRECTIONAL DATA BUS

The 8080 microprocessor is an eight-bit microprocessor, which means that there
exist an eight-bit accumulator, several additional eight-bit registers, and an
eight-bit bidirectional data bus. Since the bus is bidirectional, data can be
either input or output over the same eight lines. The data bus is the main

communication bus between the central processing unit in the microprocessor and

Al

either memory or I/O devices. It is a three-state bidirectional bus in which
the pin locations are as follows:

pin 10 Data bus bit DO, the least significant bit

pin 9 Data bus bit D1
pin 8 Data bus bit D2

pin 7 Data bus bit D3

pin 3 Data bus bit D4

pin 4 Data bus bit D5

pin 5 Data bus bit D6 :
pin 6 Data bus bit D7, the most significant bit

CONTROL SIGNALS

The control signal pins determine how the microprocessor functions in a micro-
computer system. In discussing the functions of these pins, we have not been
able to sidestep a variety of jargon, such as T1, T2, T3, T, feteh cyele, My
and related terms. We provide pin identifications and descriptions in the
1listing below for future reference, when you have a better understanding of the
operation of the 8080 microcomputer.

Note that you will not see either the IN or OUT control signals in the listing
below. The reason is that these two functions are generated as status bits,
which are externally latched using latch chips such as the 74174 or 8212 and
used to generate the IN and OUT synchronization pulses mentioned previously. |
The same comments apply to the generation of the control signals, MEMR, MEMW, ‘\
and INTA.

The four control input pins on the 8080 microprocessor chip are:

pin 12 (input) RESET. A logic 1 at this input will clear the program
counter register and allow the program to start at
memory location HI = 000 and LO = 000. The INTE and
HLDA flags are also reset, but the condition flags,
accumulator register, stack pointer register, and general
purpose registers are not cleared.

pin 14 (input) INT, or INTERRUPT REQUEST. A loglc 1 at this input will
generate an interrupt request that the CPU recognizes at
the end of the current imstructionm, or while halted. If
the CPU is in the HOLD state, or if the interrupt enable
flip-flop is reset (i.e., at logic 0), the interrupt
request will not be honored.

pin 23 (input) READY. A logic 1 indicates to the 8080 that valid memory
or input data is available on the data bus lines, DO through
D7. This signal is used to synchronize the CPU with slower
memory or with I/0 devices. If, after sending an address
out on the address bus, the 8080 does not receive a logic 1

A3

READY input, the microprocessor chip will enter a WAIT
state for as long as the READY line is at loglic 0. This
input can also be used to single step the CPU.

pin 13 (input) HOLD. This input pin requests the CPU to enter the HOLD
state, which allows an external device to gain control
of the 8080 address and data buses as soon as the 8080
has completed its use of these buses for the current
machine cycle. Once the CPU enters the HOLD state, the
address bus and the bidirectional data bus are in their
high impedance states. HOLD is active in the logic 1 state.

The CPU acknowledges the HOLD state with the HLDA, or
HOLD ACKNOWLEDGE, output pin. HOLD is recognized under
two conditions: (1) the CPU is in the HALT state, or
(2) the CPU is in the T2 or T, state and the READY
signal is at logic 1.

So much for the control inputs. Now let us gummarize the control outputs, many of
which are flags, which can be defined as:

flag In a computer, an indication that a particular operation
has been completed. A flag is typically a flip-flop
that can be either set or cleared in response to
operations occurring in the computer system.

The six control output pins on the 8080 microprocessor chip are:

pin 24 (output) WAIT. The walt output signal acknowledges that the
central processing unit is in a WAIT state. When in a
WAIT state, this pin is at logic 1.

pin 18 (output) WR, or WRITE. This output pin is used for memory WRITE
or 1/0 output control. When this pin is at logic 0,
the data on the data bus is stable and can be written
into memory or an I/0 device.

pin 21 (output) HLDA, or HOLD ACKNOWLEDGE. This pin goes to a logic 1
state in response to a HOLD input signal. It indicates
that the data and address buses will go to a high impedance
state. The HLDA signal begins at either of two times:
(1) At T3 for READ memory or input, or (2) The clock
period that follows T3 for WRITE memory or OUTPUT operations.

pin 16 (output) INTE, or INTERRUPT ENABLE. This pin indicates the content
of the internal interrupt enable flip-flop. This flip-flop
may be set or cleared by the enable and disable interrupt
instructions (EI and DI, respectively) and inhibits
interrupts from being accepted by the CPU when the flip-
flop is cleared. The flip-flop is automatically cleared
(thus disabling further interrupts) at time T1 of the
instruction fetch cycle (Ml) when an interrupt is accepted.
The flip-flop is also cleared by the RESET control input.

pin 19 (output) SYNC, or SYNCHRONIZING SIGNAL. The SYNC pin provides a

A-ly

logic 1 signal to indicate the beginning of each machine
cycle.

pin 17 (output) DBIN, or DATA BUS IN. When this pin goes to a logic 1,
1t indicates to external circuits that the data bus is
in the input mode. This pin should be used to enable
the gating of data onto the 8080 data bus from memory
or I/0 devices.

THE 8224 CLOCK GENERATOR/DRIVER CHIP

In early 8080 microcomputer systems, the clock inputs were provided by transistor
driver circuits, MOS clock driver chips, or even open collector TTL buffer

chips. All worked reasonably well, but they complicated the design. A recent
8080 interface chip, the 8224 clock generator and driver, contains an internal
oscillator and a clock generator/driver. All you need to provide is the
appropriate crystal as well as power supply voltages of +5 and +12 Volts. Since
the 8224 will divide the crystal frequency by nine, you will require a 6.750

MHz crystal to produce a 750 kHz clock output from the clock generator.

The Intel spedification sheets for the 8224 clock generator/driver are shown on
the following pages. The functional description of the chip is excellent, so we
need not repeat it. Observe how the divide-by-nine counter circuit within the
8224 chip is used to generate the individual clock phases ¢ and ¢, which
“swing" between +12 Volts and ground.

The inputs to and outputs from the 8224 chip can be summarized as follows:

pins 14 and 15 XTALLl and XTAL2. The crystal is connected at these
two pins.
pin 13 TANK. Used for overtone mode crystals, which have

much lower gain than crystals that operate on the
fundamental frequency.

pin 2 (input) RESIN. With the aic of a Schmitt trigger circuit that
is internal to the chip and an external RC network,
this input converts a slow transition in the power supply
to a clean, fast edge that resets the 8080 microprocessor
chip. A RESET output pulse can also be obtained by
applying a logic 0 at RESIN.

pin 1 (output) RESET. A logic 1 from this output pin applied at the
RESET input of the 8080 chip will reset the 8080.

pin 3 (input) RDYIN. Accepts an asynchronous wait request and
synchronizes it to produce a READY output pulse that
is input into the 8080 chip.

-

n 4 (output) READY. A logic 1 at this output pin indicates to the
8080 that valid memory or input data is available on
the data bus.

P

pin 5 (input) SYNC. The SYNC pin on the 8080 chip provides a synchro~

intel Schottky Bipolar 8224
CLOCK GENERATOR AND DRIVER
FOR 8080A CPU

®m Single Chip Clock Generator/Driver ® Oscillator Output for External
for 8080A CPU System Timing

m Power-Up Reset for CPU m Crystal Controlled for Stable System
= Ready Synchronizing Flip-Flop Operation
® Advanced Status Strobe ® Reduces System Package Count

The 8224 is a single chip clock generator/driver for the 8080A CPU. It is controlled by a crystal, selected by
the designer, to meet a variety of system speed requirements.

Also included are circuits to provide power-up reset, advance status strobe and synchronization of ready.

The 8224 provides the designer with a significant reduction of packages used to generate clocks and timing
for 8080A.

PIN CONFIGURATION BLOCK DIAGRAM

B> xaur

> xrace ose 2>
reser I B>

(=i 15[gxrau 0 B>
oY (s] mEtAE o
neoy (e Ak
— o TTL[E>
swe[T]s e[Jos
o o
Pt w3 B s o sTSTE >
sTSTB 0 42 -
- B> e
onof o[%0
neser [
B Reany [2>
PIN NAMES

[WEsn] RESET NPOT |
RESET | RESET oUTRUT
ROYIN | READY WNPUT
READY | READY OUTPUT
SYNC__| SYNC INPUT

CONEETIONS |
FonviTas

STATUS STR
(ACTIVE LowW)
080

) cLocks

A6 HOTTKY BIPOLAR 8224

FUNCTIONAL DESCRIPTION

General

The 8224 is a single chip Clock Generator/Driver for the
8080A CPU. It contains a crystal-controlled osciltator, a
“divide by nine”’ counter, two high-level drivers and several
auxiliary logic functions.

Oscillator

The oscillator circuit derives its basic operating frequency
from an external, series resonant, fundamental mode crystal.
Two inputs are provided for the crystal connections {XTAL1,
XTAL2).

The selection of the external crystal frequency depends
mainly on the speed at which the 8080A is to be run at.
Basically, the oscillator operates at 9 times the desired pro-
cessor speed.

A simple formula to guide the crystal selection is:

L
Crystal Frequency = —— times 9
tcy

Example 1: (500ns tcy)
2mHz times 9 = 18mHz"
Example 2: (800ns tcy)

1.25mHz times 9 = 11.26mHz

Another input to the oscillator is TANK. This input allows
the use overtone mode crystals. This type of crystal gen-
erally has much lower "“gain” than the fundamental type so
an external LC network is necessary to provide the additional
*gain" for proper oscillator operation. The external LC net-
work is connected to the TANK input and is AC coupled to
ground. See Figure 4.

The formula for the LC network is:

F- 1

2n\/LC

The output of the oscillator is buffered and brought out
on OSC (pin 12) so that other system timing signals can be
derived from this stable, crystal-controlled source.

*When using crystals above 10mHz a small amount of frequency
“trimming"’ may be necessary. The addition of a small capacitance
(3pF - 10pF) in series with the crystal will accomplish this function.

Clock Generator

The Clock consists of a synchronous ““divide by
nine’ counter and the associated decode gating to create the
waveforms of the two B080A clocks and auxiliary timing
signals.

The waveforms generated by the decode gating follow a
simple 2-5-2 digital pattern. See Figure 2. The clocks gen-
erated; phase 1 and phase 2, can best be thought of as con-
sisting of “units” based on the oscillator frequency. Assume
that one “unit” equals the period of the oscillator frequency.
By multiplying the number of ““units” that are contained in
a pulse width or delay, times the period of the oscillator fre-
quency, the approximate time in nanoseconds can be derived.

The outputs of the clock generator are connected to two
high level drivers for direct interface to the 8080A CPU. A
TTL level phase 2 is also brought out ¢ (TTL) for external
timing purposes. It is especially useful in DMA dependant
activities. This signal is used to gate the requesting device on-
to the bus once the BOBOA CPU issues the Hold Ack-
nowledgement (HLDA).

Several other signals are also generated internally so that
optimum timing of the auxiliary flip-flops and status strobe
(STSTB) is achieved.

L
TUNIT <

FREG.

EXAMPLE: (8080 ty = 500ns)
0SC = 18mH2/55ns

1100 {2 x 55ns)

SCHOTTKY BIPOLAR 8224

Ay

STSTB (Status Strobe)

At the beginning of each machine cycle the 8080A CPU is-
sues status information on its data bus. This information
tells what type of action will take place during that machine
cycle. By bringing in the SYNC signal from the CPU, and
gating it with an internal timing signal {$1A}, an active low
strobe can be derived that occurs at the start of each ma-
chine cycle at the earliest possible moment that status data
is stable on the bus. The STSTB signal connects directly to
the 8228 System Controller.

The power-on Reset also generates STSTB, but of course,
for a longer period of time. This feature allows the 8228 to
be ically reset without pins devoted for
this function.

Power-On Reset and Ready Flip-Flops

A common function in 8080A Microcomputer systems is the
generation of an automatic system reset and start-up upon
initial power-on. The 8224 has a built in feature to accomp-
lish this feature.

An external RC network is connected to the RESIN input.
The slow transition of the power supply rise is sensed by an
internal Schmitt Trigger. Thiscircuit converts the slow trans-
ition into a clean, fast edge when its input level reaches a
predetermined value. The output of the Schmitt Trigger is
connected to a “D" type flip-flop that is clocked with $2D
{an internal timing signal). The flip-flop is synchronously
reset and an active high level that complies with the 8080A
input spec is generated. For manual switch type system Re-
set circuits, an active low switch closing can be connected
to the RESIN input in addition to the power-on RC net-
network.

53

The READY input to the 8080A CPU has certain timing
specifications such as “set-up and hold” thus, an external
synchronizing flip-flop is required. The 8224 has this feature
built-in. The RDYIN input presents the asynchronous *‘wait
request” to the “D" type flip-flop. By clocking the flip-fiop
with ¢2D, a synchronized READY signal at the correct in-
put level, can be connected directly to the 80B0A.

The reason for requiring an external flip-flop to synchro-
nize the “wait request” rather than internally in the 8080
CPU is that due to the relatively long delays of MOS logic
such an implementation would “rob” the designer of about
200ns during the time his logic is determining if a “wait”
is necessary. An external bipolar circuit built into the clock
generator eliminates most of this delay and has no effect on
component count.

=310
| loNLY NEEDED
4 ABOVE 10 MHe)

cPu

aND

T—— TSTA (T0 8228 01N 1)

nizing input to the 8224 chip to indicate the beginning
of each machine cycle.

pin 11 (output), ¢, and ¢5. The two-phase clock that is input into the
pin 10 (output) 8080 chip. These two outputs "swing' between +12 Volts
and ground; they are not normal TTL outputs.

pin 6 (output) $2(ITLY. This 1s a TTL output clock that has the same
frequency and timing characteristics as does ¢2. It is
used for external timing purposes.

pin 7 (output) STSTB. Status strobe output. This output pin is used
to latch status bits that appear on the bidirectional
data bus.

pin 12 (output) 0SC. Buffered crystal oscillator output signal that can
be used to generate other system timing signals.

It should be clear that the 8224 clock generator/driver chip is well designed for
its particular function. Connections between it and the 8080 microprocessor
chip are direct, and require no intermediate inverters, gates, or flip-flops.
There is little incentive to use transisistor driver circuits, MOS clock driver
chips, or open collector TTL buffer chips. The power to the 8224 chip 1is
already available, since both +5 Volts and +12 Volts are required by the 8080.

THE MD-1 MICROCOMPUTER

Shown in Figure A6-4 is the central processor section of the MMD-1 microcomputer.
The figure is provided courtesy of Radio-Electronics magazine, which described
the microcomputer in the May, June, and July, 1976 issues. We would now like to
examine the component chips in the circuit as well as the signal flow between
them. Our objective here is to d rate that a micr puter is a very
straightforward and reasonable device, and that you should not feel intimidated
by a circuit diagram such as given in Figure A6-4,

POWER

It is assumed that power supplies for the required +5 Volts, -12 Volts, and
+12 Volts are available. They are relatively inexpensive, but be wary of the
very cheap supplies. The intermediate voltages of -5 Volts and -9 Volts
required by our microcomputer are easily derived from voltage regulator inte-
grated circuit chips such as the 1M320 series, or from zener diode shunts, as
shown in the upper left-hand corner of Figure A6-4. The zener diodes IN746
(chip D26) and IN751A (chip D25) provide the -9 Volts for the EPROMS and the
-5 Volts for pin 11 on the 8080A chip.

8080A MICROPROCESSOR CHIP

Individual output pins on the 8080 microprocessor chip have a fan-out of one
low-power TTL input, or approximately 0.16 mA. The output pin specifications
for the 8080A chip are 1.9 mA for each output pinm, or a fan-out of a little
greater than 1. Neither of these fan-out capabilities are good, but clearly
the 8080A is a superior chip that is easier to interface. For this reason, we

=
o

<T

P i=g

*uor3edTTqnd yoegsuien e ‘surzeSeuw
« 19Indwodo10Tm T-QWH 242 3O

SUOTID9S [0IIUOD pue

¢ L3ow=m

SOTUOXIOITI-OTPERY Woxy uofssTuaed YITM 219y pajuradex st 3in3y3
¢37un Suyssedoiad TeIJULD JY]

win
)

widg W)

T som)

sz —<3
wilr—<3

EX]

2w o1

LWOu 01

Sy

st Azt

LM00saINsAVIM D— 1
E=T)

use it in the MMD-1 microcomputer. Even a fan-out of 1 1s insufficlent to drive
the required memory chips and output latches. Consequently, 8216 bus drivers
are also required. These will be described below under the bus driver

sub-section. The specification sheet for the 8080A chip has been shown previously.

CONTROL. LINES

The control section of the MMD-1 microcomputer is shown at the lower left-hand
corner of Figure A6-4 and consists of the 8224 clock generator/driver chip
connected directly to the 8080A, a pair of 1 k@ resistors, a reset switch, and
a 6.750 MHz crystal. The remaining control lines on the 8080A chip, those not
connected to the 8224 chip, are HOLD, HLDA, INTE, INTERRUPT, WAIT, WR, and

DBIN. Five of these lines are not used in the MMD-1 microcomputer, but are made
available if you wish to experiment with them. The HOLD input permits you to
drive the 8080A chip into the hold state and disable the address and data buses.
The HLDA control output acknowledges the existence of a hold state. The
INTERRUPT input permits you to interrupt the 8080A program execution, provided
that the interrupt flip-flop within the 8080A chip is enabled. If it is emabled,
the INTE output is at logic 1. Finally, the WAIT output permits the 8080A chip
to signal that it is not ready or that it is waiting for some external event.

If the HOLD input to the 8080A pin 13 is not used, it must be grounded. This

1s easily accomplished with the aid of a jumpber, as shown in Figure A6-4.

The final two control lines are both outputs. The WRITE (WR) signal is active
when at logic 0, and indicates that the 8080A chip is sending data out to some
device. The remaining signal, DATA BUS IN (DBIN), indicates that the data bus
is being used for the input of data. It is active in the logic 1 state. In

the 8080A chip and other related microprocessor chips, the data bus is bidirectional,

i.e., data transfers into and out of the chip occur over the same wire connections.
Careful management of the data bus is necessary for the data to flow properly.
This data bus management capability is built into the microprocessor chip itself,
but we must make certain that our external devices do not attempt to place their
data on the bus at the same time, or when some other device or perhaps the 8080A
chip is trying to use it. Only one device should be transmitting data over the
data bus at any given instant of time.

BUS DRIVERS

In order to drive the memory chips and output latches on the MMD-1 microcomputer,
a fan-out of at least ten is required for each output line on the data bus.

In addition, the bidirectional character of the data bus must be maintained.

The device used to accomplish such objectives is the Intel Corporation 8216

4-bit parallel bidirectional bus driver chip, the specifications of which are
shown, courtesy of the Intel Corporation, on the following several pages.
Consider output DBy in the 8216 logic diagram. The following truth table applies:

b o5 |

0 0 DI, + DB;, i.e., data is output from the 8080A chip
1 0 DBU > DID’ i.e., data is input into the 8080A chip
0 1 high impedance state, i.e., chip is disabled

1 1 high impedance state, i.e., chip is disabled

i“ter Schottky Bipolar 8216 /8226 =

4 BIT PARALLEL BIDIRECTIONAL BUS DRIVER

= Data Bus Buffer Driver for 8080 CPU = 3.65V Output High Voltage for Direct
= Low Input Load Current — .25 mA Interface to 8080 CPU

Maximum = Three State Outputs
= High Output Drive Capability for » Reduces System Package Count

Driving System Data Bus

The 8216/8226 is a 4-bit bi-directional bus driver/receiver.

All inputs are low power TTL compatible. For driving MOS, the DO outputs provide a high 3.65V Vg, and for high capaci-
tance terminated bus structures, the DB outputs provide a high 50mA Ig capability.

A non-inverting (8216) and an inverting (8226) are available to meet a wide variety of applications for buffering in micro-
computer systems.

PIN CONFIGURATION LOGIC DIAGRAM LOGIC DIAGRAM
8216
s 16 Jvee
00, (]2 I 0———-|C bl o———;
o, (s 143 oo, 08, o8,
— g | == oy [
o, (T} 13 o8,
P N SO I o | 5]
o8, 11[J oo, }‘—‘—0 D83 —0 0By
00, 0| L 00, 0|
o, []7 1] o8,
00, 00,
<l 2
PIN NAMES o o___; S ‘g
. >—-j }—4} o8, 08,
DATA BUS DS oo. 3—4)
eIoRECTIONAL A :
ATA NPT
ATA QUTFUT

DATA IN ENABLE
DIRECTION CONTROL

CHIP SELECT

a
2
2

DIEN BIEN o

5147

52 SCHOTTKY BIPOLAR 8216/8226

FUNCTIONAL DESCRIPTION

Microprocessors like the 8080 are MOS devices and are
generally capable of driving a single TTL load. The same is
true for MOS memory devices. While this type of drive is
sufficient in small systems with few components, quite often
it is necessary to buffer the microprocessor and memories
when adding components or expanding to a multi-board
system.

The 8216/8226 is a four bit bi-directional bus driver specif-
ically designed to buffer microcomputer system components.

Bi-Directional Driver

Each buffered line of the four bit driver consists of two
separate buffers that are tri-state in nature to achieve direct
bus interface and bi-directional capability. On one side of
the driver the output of one butfer and the input of another
are tied together (DB), this side is used to interface to the
system side components such as memories, 1/0, etc., be-
cause its interface is direct TTL compatible and it has high
drive {50mA). On the other side of the driver the inputs
and outputs are separated to provide maximum flexibility.
Of course, they can be tied together so that the driver can
be used to buffer a true bi-directional bus such as the 8080
Data Bus. The DO outputs on this side of the driver have a
special high voltage output drive capability (3.65V) so that
direct interface to the 8080 and 8008 CPUs is achieved with
an adeguate amount of noise immunity (350mV worst case}.

Control Gating DIEN, CS

The CS input is actually a device select. When it is “high”’
the output drivers are all forced to their high-impedance
state. When it is at “‘zero” the device is selected (enabled)
and the direction of the data flow is determined by the
DIEN input.

The DIEN input controls the direction of data flow (see
Figure 1) for complete truth table. This direction control
isaccomplished by forcing one of the pair of buffers into its
high impedance state and allowing the other to transmit its
data. A simple two gate circuit is used for this function.

The 8216/8226 is a device that will reduce component count
in microcomputer systems and at the same time enhance
noise immunity to assure reliable, high performance op-
eration.

_—&4«3 &
DIEN -

{a) 8216

{b) 8226

Figure 1. 8216/8226 Lagic Diagrams

5-148

SCHOTTKY BIPOLAR 8216/8226

APPLICATIONS OF 8216/8226

8080 Data Bus Buffer

The 8080 CPU Data Bus is capable of driving a single TTL
load and is more than adequate for small, single board sys-
tems. When expanding such a system to more than one board
to increase |/O or Memory size, it is necessary to provide a
buffer. The 8216/8226 is a device that is exactly fitted to
this application.

Shown in Figure 2 are a pair of 8216/8226 connected di-
rectly to the 8080 Data Bus and associated control signals.
The buffer is bi-directional in nature and serves to isolate the
CPU data bus.

On the system side, the DB lines interface with standard
semiconductor |/0 and Memory components and are com-
pletely TTL compatible. The DB lines also provide a high
drive capability (50mA) so that an extremely large system
can be dirven along with possible bus termination networks.

On the 8080 side the DI and DO lines are tied together and
are directly connected to the 8080 Data Bus for bi-directional
operation. The DO outputs of the 8216/8226 have a high
voltage output capability of 3.65 volts which allows direct
connection to the 8080 whose minimum input voltage is
3.3 volts. It also gives a very adequate noise margin of
350mV (worst case).

The control inputs to 8216/8226 (CS, DIEN) are connected
directly to the 8080. DIEN is tied to DBIN so that proper
bus flow is maintained, and CS is tied to HLDA so that
the system side Data Bus will be 3-stated when a Hold re-
quest has been acknowledged during a DMA activity.

Memory and 1/0 Interface to a Bi-directional Bus
In large microcomputer systems it is often necessary to pro-
vide Memory and I/0 with their own buffers and at the same
time maintain a direct, common interface to a bi-directional
Data Bus. The 8216/8226 has separated data in and data
out lines on one side and a common bi-directional set on the
other to accomodate such a function.

Shown in Figure 3 is an example of how the 8216/8226 is
used in this type of application.

The interface to Memory is simple and direct. The memories
used are typically Intel® 8102, 8102A, 8101 or 8107A and
have separate data inputs and outputs. The DI and DO lines
of the 8216/8226 tie to them directly and under control of
the MEMR signal, which is connected to the DIEN input,
an interface to the bi-directil Data Bus is maintai

The interface to 1/0 is similar to Memory. The /O devices
used are typically Intel® 82665, and can be used for both
input and output ports. The 1/O R signal is connected di-
rectly to the DIEN input so that proper data flow from the
1/0 device to the Data Bus is maintained.

The 8216/8226 can be used in a wide variety of other buf-
fering functions in microcomputer systems such as Address
Bus Drivers, Drivers to peripheral devices such as printers,
and as Drivers for long length cables to other peripherals or
systems.

1
DBIN

SYSTEM
I DaTaA

L]

HLDA

Figure 2. 8080 Data Bus Buffer.

MEMORY "o

of 50 or 00
WEWR o|OTEN 12} Cs| TER-O|BER)
8216 8216
5226 _(2) 8226 _(2)

HLDA

C S oA R e

Figure 3. Memory and 1/O Interface to a Bi-Diractional Bus.

5149

A-54

In other words, when DIEN is at_logic O and the chip is enabled, the 8216 chip
acts as an input buffer. When DIEN is at logic 1 and the chip 1s enabled, the
8216 acts as an output buffer, but not as an output buffer/latch.

The bus driver section of the MMD-1 microcomputer is shown in the lower left-hand
corner of Figure A6-4, to the right of the 8080A chip. Observe that DBIN is
connected to DIEN (pin 15 on the 8216 chip) and that each 8216 chip is permanently
enabled. The truth table relating DBIN and DIEN is,

DBIN DIEN
0 0 Data is output from the 8080A chip; DBIN = 0, and thus
the data bus 1s not in the input mode
1 1 Data 1s input into the 8080A chip; DBIN = 1, and thus

the data bus is in the input mode

According to the Intel Corporation specification sheets for the 8216, the absolute
maximum output current at a logic O state is 125 mA, which is a substantial drive
capability.

STATUS INFORMATION

If you carefully study the Intel specification sheets for the 8080A microprocessor
chip, you will observe that certain important control signals are not present on
the chip itself. Included among these signals are memory read (MEMR) , memory
write (MEMW), input (IN), output (OUT), and interrupt ackmowledge (INTA). To
generate such control signals, the 8080A chip uses a "look ahead" technique:

since the data bus is not in use at all times for data transfer, the 8080A can
use the bus to transfer additional control information. Such information is
generated very early in the machine cycle to permit the microcomputer to use such
control signals to facilitate the transfer of data to or from memory and I/0
devices.

The status information appears on the data bus for a very short period of time,
approximately 1.33 us for an 8080 system operating at a 750 kHz clock rate.

Since the information is to be used at a later time, it must be latched. The
SYSTEM STROBE (STSTB) is generated at pin 7 on the 8224 chip at the correct time
to latch, or capture, the status information. Note that the STSTB signal is
generated from the system clock signal ¢; and the SYNC signal from the 8080A.

Any type of 8-bit latch chip may be used. At the lower middle portion of Figure
A6-4, a 74174 6-bit positive-edge triggered latch chip 1s employed; it is clocked
at pin 9.

All eight bits on the data bus provide some sort of status information, but not
all eight are needed. The information provided by Intel Corporation on the
status bits and types of machine cycles is given on the following page. In
the MMD~1 microcomputer, the WO and STACK status signals are ignored since they
are not very useful. HLTA and Ml are latched but are not used either. The
important status signals are INTA (interrupt acknowledge), INP_(input), OUT
(output), and MEMR (memory read). Together with the DBIN and WR outputs from
the 8080A chip, these four signals provide five very important control signals
that basically comprise most of the control bus on the MMD-1 microcomputer:

Instructions for the 80BO require from one to five machine
cycles for complete execution. The 8080 sends out 8 bit of
status information on the data bus at the beginning of each
machine cycle (during SYNC time). The following table defines
the status information.

STATUS INFORMATION DEFINITION

8080 STATUS LATCH

Data Bus
Symbols Bit Definition
INTA* Do Acknowledge signal for INTERRUPT re-

quest. Signal should be used to gate a re-
start instruction onto the data bus when
DBIN is active.

Wo Dy Indicates that the operation in the current - Taren
machine cycle will be a WRITE memory 3 Cwa
or OUTPUT function (WO = 0}, Otherwise,
2 READ memory or INPUT operation will
be executed.

STACK D, Indicates that the address bus holds the
pushdown stack address from the Stack Lok aen
Pointer. & DAwER

HLTA D3 ge signal for HALT i

out Dy Indicates that the address bus contains the
address of an output device and the data
bus will contain the output data when Ve
WR is active.

My Dy Provides a signal to indicate that the CPU
is in the fetch cycle for the first byte of
an instruction. .

INP* Dg Indicatesthat the addressbus contains the
address of an input device and the input
data should be placed on the data bus sve
when DBIN is active.

MEMR® D7 Designates that the data bus will be used oata
for memory read data

DBy

srarus
*These three status bits can be used to control us

the flow of data onto the 8080 data bus. |

STATUS WORD CHART

/&

s
/§/ S8/
N 4 N
/ S /8
N &L §
& & /&
S &
N

[@® STATUS WORD

I A A g =

S

0, | Wo
Dy | STACK
D3 | HLTA

Ds M1
Dg INP
D7 MEMR

) O G g
ol~lolololo|-|o @)
olole|-|o]ele]s iG]
1 O O g P

ojo|-loj-lo|=|-

[0)
[oo | NTA 0
)
o
o
[
[
0
[

JOY A A P e pag v
ololejelolo|s|o @)
olo[~lo|o|o(~|~|@

Table 2-1. 8080 Status Bit De

MEMR. Memory read. Used to strobe data from a memory chip into the
8080A microprocessor chip.

MEMW. Memory write. Used to strobe data output from the 8080A chip
into read/write memory.

IN. Input. Used to strobe data from an input device into the accum—
ulator within the 8080A chip.

OUT. Output. Used to strobe data from the accumulator into an output
device external to the 8080A chip.

INTA. Interrupt acknowledge. Used to strobe a single-byte instruction
into the instruction register within the 8080A chip during an interrupt.

The other signals associated with the control bus are RESET, INT (interrupt
request), and INTE (interrupt enable). These eight control signals permit
you to read and write into and from memory and input-output devices. They
also allow you to process interrupts.

There is now a system controller and bus driver chip, the Intel 8228, that
performs both the bidirectional data bus buffering as well as the latching

and gating of the status signals. A typical interface circuit, courtesy of the
Intel Corporation, is shown on the following page. A special feature of the 8228
chip is that it can generate three INTA pulses in sequence during an interrupt
request; this feature is required when you attempt to strobe a two- or three-byte
instruction into the instruction register. One problem with the 8228 chip is
that it is expensive. The data bus buffering is limited to a standard fan-out of
10 TTL loads, or 16 mA current sink capability.

MEMORY

The necessary control section for the 8080A chip, including the status latch

and associated status bits, has been discussed. We are now ready to add external
devices to the MMD-1 microcomputer. The first such devices that will be needed
are semiconductor memory chips. Semiconductor memory comes in various forms and
types, but we shall only consider two types, read/write memory and electrically
programmable read-only memory (EPROM), both of which are random access memories.
Random access means that any single memory location may be accessed after any
other location.

We have chosen the 2111 {or 8111) read/write memory chip, the specification sheet
for which is given on a following page, since it is easy to interface to the
8080A. It is organized as 256 memory locations each with four bits per location,
i.e., it is a 1024-bit memory chip. The 8111-2 has common input and output lines
(I/0) over which data is transferred to and from the 8080A microprocessor chip.
Clearly, these I/0 lines are bidirectional. Each 8111-2 memory chip has eight
address inputs (A0 through A7) to uniquely define a single memory location among
the 256 possible locations. The control inputs to the 8111-2 include the read/
write input (R/W), two chip emable inmputs (CE; and CE,), and an output disable
input (OD).

Since the word length in each 8111 chip is only four bits, pairs of such chips
must be enabled and disabled simultaneously in order to provide the 8-bit word
required by the 8080A microprocessor chip. Figure A6-4 demonstrates that MEMW
(memory write, or MW) is connected to pin 16 and that MEMR (memory read, or MR)
is connected to pin 9 on the 8111 read/write memory chip. Assuming that the

SCHOTTKY BIPOLAR 8228 A57

2 %
oo, ———=| Sl el
5y ————o] A
a1 27
v ——— A - A
2 2
2y ——— A
apP———— 4,
3
[
wmon " e
U Ay T T T A7 - ADDRESSBUS
1
SYSTEM DMA REQ. — o
1
SVSTEM INT. REQ. ———=| INT
1.
INT. ENABLE +— iwTe
xTAL
15
13 " =
TANK —>| "
10
osc 22 o2
~ & 3
o (TTL — 2 war o, |- w228 o8,
b I 17 . leiomecrionat |2 o8,
roviN—+| ciock [T [REARY Oafy o] Bus oIve " | parasus
, | seneraToR 2 N — o8,
sesii—r] ORVER |1 " [o
2y —f L] {2 e D8,
16
r— o 7 .
V7 < 1 svne P 08,
anp —, &]
2
7 o-——————— MEW R
1 2%
STATUS STROBE sysTEm e
o owree WEWW |- CONTROL BUS
2 bR
USEN ————O) 12 oW

8080A CPU Standard Interface

Silicon Gate MOS 8111-2

1024 BIT (256 x 4) STATIC MOS RAM
WITH COMMON 1/0 AND OUTPUT DISABLE

® Organization 256 Words by 4 Bits = Fully Decoded — On Chip Address
= Access Time — 850 nsec Max. Decode
= Common Data Input and Output = Inputs Protected — All Inputs Have

Protection Against Static Charge

Single +5V Supply Voltage) : i
Directly TTL Compatible — All Inputs ~ * Low Cost Packaging — 18 Pin Plastic

L]
and Output Dual-In-Line Configuration

= Static MOS —_ N9 Clocks or = Low Power — Typically 150 mW
Refreshing Required = Three-State Output — OR-Tie

Simple Memory Expansion — Chip Capability
Enable Input

The Intel("8111-2 is a 256 word by 4 bit static random access memory element using normally off N-channel
MOS devices integrated on a monolithic array. It uses fully DC stable (static} circuitry and therefore requires
no clocks or refreshing to operate. The data is read out nondestructively and has the same polarity as the
input data. Common input/output pins are provided
The 8111-2 is designed for memory applications in small systems where high performance, low cost, large bit
storage, and simple interfacing are important design objectives. :
It is directly TTL compatible in all respects inputs, outputs, and a single +5V supply. Separate chip enable
(CE) leads allow easy selection of an individual package when outputs are OR-tied.

@
The Intel 8111-2 is fabricated with N-channel silicon gate technology. This technology allows the design and
production of high performance, easy-to-use MOS circuits and provides a higher functional density on a mon
olithic chip than either conventional MOS technology or P-channel sificon gate technology.
Intel's silicon gate technology also provides excellent protection against contamination. This permits the use
of low cost silicone packaging.

PIN CONFIGURATION LOGIC SYMBOL BLOCK DIAGRAM

MUMORY ARRAY
12 Bows

32coLumNs

PIN NAMES
AgA; ADDRESS INPUTS
“on OUTPUT DISABLE ‘
W READMWRITE INPUT
i e CHIP ENABLE 1 1
cey CHIP ENABLE 2 "

1/04- 1/0g DATA INPUT/OUTPUT

chip is enabled, the applicable truth table 1s as follows:

HEMW* MEMR* R/W 0D
[Q - - Input condition not possible
0 1 0 1 Memory write; disable memory output
1 0 1 0 Memory read
1 1 1 1 Disable memory output

* NOTE: MEMW is identical to YW and MEMR is identical to MR in Figure A6~4.

The decoding of the address bus is depicted in Figure A6~4 on the right-hand side
of the 8080A chip. The desired truth table for address bus bits AO through Al5 is:

A15 Al4 Al3 Al12 A1l A10 A% A8 A7 . . . AO Comments

o 0 0 0 0 0 0 0 X ... X |Block 0 (reserved for KEX EPROM)

6 0 0 0 0 0 0 1 X ... X|Block1l (reserved for EPROM)

0o 0 0 0 0 06 1 0 X ... X|Block 2 (reserved for 8111 R/W memory)
o 0 0 0o 0 0 1 1 X ... X |Block 3 (reserved for 8111 R/W memory)

Here an X indicates that either a logic 0 or a logic 1 is permitted. AQ through
A7 can be any combination of logic 0 and logic 1 states, a total of 256 different
combinations. Observe that only address bits A8 and A9 change, giving all four
possible combinations for the two bits. Address bits AlO through Al5 remain at
logic 0 for all of our selected addresses in our MMD-1 microcomputer.

It is customary practice to absolutely decode memory locations, that is, to ensure
that all sixteen bits participate in the decoding of a memory location. For the
8111 chip, this can be done by using bits A8 through Al5 to provide the desired
chip enable (CE) input. Figure A6-4 demonstrates how this is done. Since the
address bits Al0 through Al5 remain at logic 0, we use 74LS05 open collector
inverters in a "wired-OR" configuration to provide a uniquely decoded logic
condition. Observe the presence of a 1 kR pull-up resistor, R4. The truth table
for the wired-OR circuit is as follows:

Al5 Al4 Al13 Al2 All ALQ I Q

NOTE: X = either logic 0 or logic 1

M MO
MMM KO
HRM NN NKO
BB D MO
MMM MKEMO
MMM MNMEO
cocoocoor

Observe that this truth table, though implemented with open collector inverters,
ig identical to that fora 6-input NOR gate. The unique logic state isQ=1,
and this output condition occurs only when all inputs are at logic 0.

A-60

Whenever the output from the wired-OR circuit is at logic 1, we know that AlO
through Al5 are at logic 0 and that our memory address must be within one of
the four selected 256~byte blocks of memory. We must further narrow our memory
selection process to a specific memory block. This is done with the aid of a
7418155 decoder chip, the block diagram and pin configuration of which are given
below,

+5V GND

LECT ourputs
PUT

sl
vATA STRR NG s/ Nl
g

vec z¢” 38 a /IVEII Wi 3G
s lufjue]jrfin{{wi[s
0 W

Block 0
Block I
Block 2
From
wired-OR Block 3
1fl2 BililiED circuit
b W3 I W W
e G Py e
° outhuts
74155 74LS155

Figure A6-5. Pin configuration of the 74155 chip and diagram of the MMD~1 circuit.

The 74LS155 chip is enabled and disabled using the output from the wired-OR
circuit, where disabled corresponds to logic 0 (no blocks selected) and enabled
corresponds to logic 1 (one and only omne memory block selected). The truth
table for the 74LS155 chip is as follows:

ENABLE MR B A | 2v2 2v3 1v2 1v3
0 0 X X 1 1 1 1 None selected
1 0o 0 0 0 1 1 1 Block 0 (read EPROM memory)
1 0 0 1 1 0 1 1 Block 1 (read EPROM memory)
1 0 1 0 11 0 1 Block 2 (read R/W memory)
1 0 1 1 1 1 1 o0 Block 3 (read R/W memory)
1 1 0 o0 11 1 1 None selected
1 1 0 1 11 1 1 None selected
1 1 1 0 o 1 1 1 Block 2 (write into R/W memory)
1 1 1 1 1 0 1 1 Block 3 (write into R/W memory)

The outputs to blocks 2 and 3 go to the C—El inputs (pin 15) of the respective
pairs of 8111 read/write memory chips, as can be seen for Block 3 in Figure
A6-4. When pin 15 of the 8111 chip is at logic 0, the chip is enabled since
CE, is wired to logic 0.

In addition to read/write memory, the MMD-1 microcomputer also contains some
electrically programmable read-only memory (EPROM). The contents of EPROM chips
are not destroyed when we shut the power off, as is the case with read/write
memory, which 1s said to be volatile memory. You can purchase a special electronic
device (or a circuit for your microcomputer) called an EPROM programmer and
program the EPROM chips for your special applications.

We employ the Intel Corporation 1702A (or 8702A) EPROM chips, which can be
erased through the use of ultraviolet light and re-programmed as many as forty
or fifty times. The pin configuration of the 1702A/8702A chip is shown in

A 2} Voo
a2 [Jvec
w]s [Jvee
<pata our s[fa e 2%
“oara our 2[s uf A
~aracur s e
~oaraour <[o] 38
~oara our s [s v
~pata outs[fe 9 vae
~oata our 1[0 15[Ve
oAt our 8[| 1 wesm [Jes
o 13[" erosnam
THIS PIN IS THE DATA INPUT LEAD DURING PROGRAMMING.
1702A
87024

Figure A6-6. Pin configuration of the 1702A/8702A chip. Some of the power inpu
pins are used only during programming. We shall assume here that the
chip has been properly programmed prior to its inclusion in the MMD-1
microcomputer.

Figure A6-6. Observe that there are eight address inputs, A0 through A7, and
eight data output pins, DATA OUT 1 through DATA OUT 8, a chip select imput

(pin 14), and several power input pins. In Figure A6-4, you can see how this
chip is incorporated into the MMD-1 microcomputer. Pins 12, 13, 15, 22, and

23 are all tied to +5 Volts. Pins 16 and 24 are connected to -9 Volts. The
Block 0 output from the 74LS155 d der chip is ed to the CS input of the
1702A (pin 14). Observe that you can only read the 17024 chip; it is a
read-only memory chip, not a read/write memory chip.

MD-1 MICROCOMPUTER BUSES

The MMD-1 microcomputer buses consist of the address, data, and control buses.
The address bus consists of sixteen buffered address lines. In Figure A6-4,
the buffering of address bits A0 throu; A7 is shown. A pair of inverters, first
the 74L04 and then the 7404, are used for each address line. The 74104 chip
has a fan-in of 0.1, or 0.16 mA, and is well suited for use with the 8080A
microprocessor chip. The 8216 chips provide sufficient buffering for the

eight data bus lines, DO through D7. The 7400 NAND gates each have a fan-out
of 10, more than enough for each control bus signal line, such as MEMR, MEMW,
IN, OUT, and INTA. RESET and INT are inputs to the 8080A chip. The INTE
output might require a buffer.

INPUT/OUTPUT

The input/output section of the MMD-1 microcomputer is shown in Figure A6-7.
Tn Unit Number 20 in this book, you have already become familiar with 1/0
decoding and the use of 7475 latch chips and 8095 three-state buffer chips.
Consequently, we shall discuss the I/0 section of the MMD-1 only briefly here.

In order to transfer eight bits of data between the accumulator within the 8080A
chip and an I/0 device, an eight-bit device code is provided on the address bus
bits AO through A7. To select a unique device among the 256 possible devices,

A-61

t

262

‘poaassea $3ybra 17y .coﬂumuaﬂom_ﬂ.xﬂmnmﬁumu e
UITM 918y polutadex ST aanSF3 sTyr

* 233ndmodoxdTm T

‘aurzeSen SOTUOIIVIBTH.
~MA ®Y3 Jo u0TIY8s 3ndinc/induf sy

= o
/ SIHOLINS A3

SONIOVIH ATX

QYYOBAIX ONY SAV14SI0 37 - S1¥0d 1N4LNO/1NINT

o—

+'S0Vd H3Q105 ND 318V IIVAY
SLN4LNO HOLY 1§ LH0d Ld30X3
~ 01404 L1410 ¥34 SV 034IM.

o
) e
M«
Qg
e
T
H—;
)
° v
]
W
—
oy
I
11404 S
i sim
e saol
T
s 08 T v of

S3LON

~OTP®Y JO UoTssTmiad oyl
"L-9v 2an31g

z o=

2% 2 2

no

A-63

a decoder circuit such as those described in Unit Number 17 is required. In
Figure A6-7, the decoder consists of the 74L42 chip and the six 74LSO05 open
collector inverters present at address lines A3 through A7. TFive of the
inverters serve as a wired-OR, or five-input NOR gate, circuit to decode
address bits A3 through A7 into a unique logic state when the five address lines
are all at logic 0. The principle used here is identical to that used for
decoding the address bits Al0 through Al5 in the memory section of the MMD-1
microcomputer. The truth table is as follows:

A7 A6 A5 A4 A3IQ

NOTE: X = either logic 0 or logic 1

HXMXMMO
MM MO
MMM MO
MHMENO
R MM O
cCooOo oM

The remaining 74LSO5 open collector inverter is used to invert Q to a logic 0
state when the five address bits are all at logic 0. This logic 0 condition is
applied at the D input of the 74L42 chip.

Chip 74L42 is wired as a 3-line-to-8-line decoder in Figure A6-7 and has the
following truth table:

D A2 Al A0 01 2 3 456 7

1 X X X 11 11 11 1 1 Nochannel selected

0o 0 0 O 01 1 1 1 1 1 1 Channel 0 (keyboard and Port 0)
o 0o 0 1 1 01 1 1 1 1 1 Channel 1 (Portl)

0o 0 1 o0 110 1 1 1 1 1 Channel 2 (Port 2)

o 0 11 111 0 11 1 1 Channel3

o 1 0 © 11110 1 1 1 Channel 4

o 1 0 1 111110 1 1 Channel5

o 1 1 o0 1111 1 1 0 1 Channel6

0 1 1 1 11111 1 1 0 Channel?

Channels 0, 1, and 2 are gated with the OUT control signal and used to strobe
information from the bidirectional data bus into the latch chips for Ports 0,

1, and 2, respectively. Channel O is gated with the IN control signal and used
to strobe input data present at the 8095 three-state buffer chip into the 8080A
microprocessor chip. The inputsto the 8095 chip consist of the outputs from a
pair of 74148 8~line-to~3-line priority encoder chips, which are used to encode
the 15-key keyboard. Included in the keyboard are keys 0 through 7, the See/Store
key (S), the Go key (G), the HI address byte key (H), the LO address byte key
(L), and three additional keys (A, B, and C) that have no specified use. The
pin configuration of the 74148 chip and a truth table is provided in Figure A6-8.
The keys are nmon-ideal mechamical switches that are debounced using software
routines.

MD-1 MICROCOMPUTER: THE OVERALL SYSTEM

The overall MMD-1 microcomputer system is shown as a photograph in Figure A6-10,
as a schematic diagram in Figure A6-9, and as a block diagram in Figure A6-11.
The control signals MR and MW in Figure A6-10 correspond to MEMR and MEMW,

SN54148, SN74148

egts

v B A O FUNCTION TABLE
PUTS SUTRUTS

G pupuiie i L] $ ENJO0 1 2 3 4 5 6 7!A2 A1 AD|GS EO

I J LT 1T WX X X X X X X X[W R A [nw

€0 e 3 2 1 0 C[H H H W B H H H[H H HlH L

Ulx ox xox x x ox L|uoL oo ow

Ll AL LX X X X X X L HiL L H[L H

CIx X x x x Lomo M| om L[l om

L] 5 5 L L L|X X X X L H H H|L H H{L H

T 177 Clx x x Comomonomlwoe fow

tffafTaiefisyrefizdLe LIX X L H H H HHIH L H[L H

T T T B, A AT G0 t X L HHHHHHIHNH L|L u

INPUTS oUTPUTS LIL H H M H H H H|H H H|L H

74148

Figure A6-8, Pin configuration and truth table for the 74148 priority encoder
chip.

CONTROL 10GI]

KEYBOARD
ENCODER

[KevBOARD

$K=10
BREADBOARDING
SOCKET

CONTROLS, SOCKETS, CONNECTORS, AND CIRCUIT FUNCTIONS

Figure A6-9. Schematic diagram of the MMD-1 microcomputer.

A-65

Figure A6-10. Photograph of the MMD-1 microcomputer. Attached to the bus
socket is the LR-27 bus monitor Outboard.

MEMORY

10 svstem W2KRW
w2k pROM™

: R
|
! TE-Hi ADDRESS sun
'
1
READY > CLocK ano 8080A
| TMING
Restt >————+— conmRol cru
J— [
|
MEMREAD BIDIRECTION

contROL

outa s e T—

wenvare wirtss ;
"

! e secoomo !

o '

!]

: ;

INTERRUPT! ACKNOWLEDGE LATCH !

|

| 1

! Leos TA;

) s |

i i i

! s !

‘ o |

! [

Lo e e e — —— ————ead

T 7 ROTE NOT ALUSIGNALS SHOWN™
IC_MINI— MICRO DESIGNER _ (MMD-}

¥ MAXIUM Ve K SUPPLIED.

Figure A6-11. Block diagram of the MMD-1 microcomputer.

*3AOQE UMOYS S®
19IndWOV0IDTA T-@WK 243 UC SITJ YOTY# ‘pieoq 908JI9IUT Llomem TN Y3 Jo weiBefp OFIewdyds °ZT-9y 2In3fd

TSNOILONAS 1IND8I0 GNY GINGS

HOLOINNGD

(31695 NORE

[@araans 1on)y

| WOHd

T———{s1504 SNIGNI®

@3nddns w
AUOWIW
LM 7avId

FOVAWIING A1L]

FovauaIm
311355V

A-67

respectively. Although we shall not discuss it here, it is possible to extend
the capabilities of the MMD-1 through the addition of the MI memory interface
board, which is positioned on the MMD-1 microcomputer as shown in Figure A6-12.
The MI memory interface board permits you to add 1 K of 1702A EPROM, 2 K of
8111-2 read/write memory, a cassette interface, and a teletype interface to

your MMD~1. A block diagram of the board is shown in Figure A6-13. For
additional details, contact E&L Instruments, Inc.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ! =
—our
[-
MEMORY & 1'0 0 UART'S I
DECODING 1
o At - |
200
T ;’J 1
: WemorY wenony |
' 1K PROM 2K R/W i
H CAPACITY CAPACITY ;
' I
|
1
|
I
.
S
Figure A6-13. Block diagram of the MI memory interface board. Communication

between the microcomputer and either the cassette or the teletype is
in asynchronous serial ASCII code. The parallel-to-serial conversion
is accomplished using a pair of UART chips.

HOW KEX OPERATES

The keyboard Executive software
the location allocated for IC15

is contained in a single 1702A type EPROM in

on the MMD-1 microcomputer.

A listing 1s

provided on the next two pages.
from the article of Jonathan A.

In describing how KEX operates, we shall quote
Titus in the June, 1976 issue of Radio-Electronics

magazine.

"The keyboard Executive software is contained in a single 1702A type PROM in the
location allocated for ICL5. This contains all the necessary software to operate
they keyboard and the LED displays. This is our software controlled 'front
panel’, since the keys and LEDs perform functions determined by the KEX software."

"Whenever the R key is depressed, the 8080A CPU will start to execute the program
that starts at location 0. Looking at the software listing for the KEX program,

you will see that immediately after starting at location 0, the software instruc-
tions cause the computer to jump to location HI = 000, LO = 070 (HI = 000 through-

out the KEX program) where we start the program by pointing to the first R/W
memory address (003 000). The address and the data in that location are
displayed on the three output ports. This is done between POINTA and POINTC

in the program. The software between POINTC and POINTD will do the necessary
tasks to input new data from the keyboard and shift the data onto the LEDs. The
shifting is done inside the 8080A with software instructions. Doing this by
hardware would require many more ICs, but it takes relatively few software steps."

"The software routines at POINTD, POINTE, POINTF, and POINTG make up what is
called a command decoder. The software decodes the keyswitches into real
actions. Depressing H or L causes the data temporarily stored in the 8080A

as numeric key inputs to be output to either the HI or LO set of LEDs. The

S key causes the current or new data to be put back into the current memory
location. Depressing G causes the computer to use the HI and LO address as the
starting point for a new program."

"The TIMOUT and KBRD software subroutines have specific tasks. The TIMOUT will
count its way through various loops for about 10 milliseconds, while the KBRD
subroutine will input a code from the keyboard. The KBRD subroutine has some
unique features that illustrate an interesting hardware-software tradeoff. The
keyswitches used in the Dyna-Micro [MMD-1] are not bounce free, so that when the
switches are opened or closed, they can often re-make or re-break the contacts.
This can be confusing to the computer since it can't distinguish between a real
switch closure and a bounce. We don't want the computer to sense each bounce

as a key closure so we would like some way to filter them out. Additional
circuitry including latches, clocks and monostables could do this for us, but it
complicates the system, We can also do the debouncing via software."

"The KBRD subroutine will recognize any key closure, but it will only input the
key codes after being sure that the key 1s closed and not bouncing. It does
this by waiting after sensing a closure and then rechecking the switch to be
sure it is still closed. It also checks when we release a key to be sure that
it has stopped bouncing before it tries to sense another key being depressed by
the user. We have traded some additional software steps for a great deal of
hardware. Since there was plenty of PROM left, it was easy to include.”

"The TIMOUT and KBRD software segments have been set up as subroutines and can
be used in your software and in the experiments. Each of these subroutines may
be started with a CALL instruction, 315. The TIMOUT subroutine does not affect
any of the registers or flags and it only serves to delay the software flow by
10 ms."

"An important distinction between the 8008 and the 8080 processors is in the use
of subroutines. In the 8008, return-pointer addresses were stored in the 8008
IC itself. In the 8080, these return-pointer addresses are stored in a portion
of the R/W memory. This is called a "stack” area. Whenever a subroutine is
used, we want to execute the subroutine and then return back to the normal program
flow. These return addresses are very important to the computer since they
provide the only link between the subroutine and the main program. If we are

to store them in a portion of R/W memory, the computer must know where this
storage area is if it is to be able to use the addresses properly. In the KEX
software, this is preset to be the top of the R/W memory with instructions at
locations 070, 071 and 072. The LXISP instruction loads an internal 8080
stack-pointer register to HI = 004, LO = 000. Since the stack-pointer register
is decremented to point to a new location before anything 1s stored, the first

[
\
|
i

TABLE II—KEYBOARD EXECUTIVE (KEX) PROGRAM

000
000
000

000
000
000
000
000
000
000
000
000
000
000
000

000
000

000

000
001
002

010
011
012
020
021
022
030
032
040
041
042
050
052
060

062

070
071
073
074
075
Q76
o077
100
101
102
103

105

106
110
11
113
114
115
116
117
120

121
122

303
070
000

303
003
303
003

START,

POINT A

POINT B,

POINT C,

*000 000

JMP

START

o

/JUMP UP TO R/W MEMORY TO

BE USED BY RESTARTS &
VECTORED INTERRUPTS

*000 010
JMP

003
*000 060
JMP
060
003

/BEGINNING OF MAIN PROGRAM

*000 070

LXISP /SET STACK POINTER
TO TOP OF R/WMEM.

000

004

LXIH /INITIAL VALUE FOR
HE&L

000

003

MOVCM /LOAD MEM DATA INTO
TEMP DATA BUFFER

MOVAH /OUTPUTHITOLED'S

ouT

001

MOVAL /OUTPUT LOW TO
LED'S

ouT

000

MOVAC /OUTPUT TEMP. DATA
BUFFER DATA TO
LED'S

ouT

002

CALL /WAIT & INPUT NEXT

KEY CLOSURE

KBRD

[}

CPI

010

JNC /JUMP IF KEY WAS <

POINT D /(0-7, OCTAL
DIGIT)

o

MOVBA /SAVE KEY CODE

MOVAC /GET OLD VALUE

RAL /ROTATE 3 TIMES

oco

A-69

RAL

RAL

ANI /MASK OUT LEAST
SIG. OCTAL DIGIT

370

ORAB /OR IN NEW OCTAL
DIGIT

MOVCA /PUT NEW DATA
BACK INTO BUFFER

JI

POINT B

0

POINT D, CPI
011 /"L" KEY

POINT E,

POINT F,

POINT G,

TIMOUT,

MORE,

JNZ /JUMP IF NOT AN "L"
E

MOVLC /PUT BUFFER DATA
INL

aup

POINT A

0

CPI

010 /7H" KEY

JNZ /JUMP IF NOT AN "H"

POINT F

MOVHC /PUT BUFFER DATA
INH

JMP

POINT A

0

CP1

013 /"S" KEY

JNZ 7JUMP IF NOT "S"

POINT G

MOVMC /PUT TkMP. DATA
INTO MEMORY

INHK /INCREMENT H & L

JMP

POINT A

0

cPI

012 /"G" KEY

JNZ /JUMP IF NOT "“G"

POINT C

PCHL /GO EXECUTE PGM
POINTED TO BY

/THIS 10 MSEC DELAY
DISTURBS NO REGISTERS OR
FLAG

*000 277
PUSHPSW /SAVE REGISTERS
PUSHD

LXID /LOAD D & E WITH
VALUE TO BE
DECREMENTED

046

001

DCXD /JUMP IN THIS
LOOP_UNTIL

MOVAD /D & E ARE BOTH
ZERO

ORAE

JNZ

MORE

0

POPD

POPPSW /RESTORE
REGISTERS

RET

/THE KBRD ROUTINE

DEBOUNCES KEY CLOSURES
/AND TRANSLATES KEY CODES

000
000

000
000

000

343

344
345

346
350
351
352
353

354
355

356
357

333

000

157
176

341
311

000

KBRD,

FLAGCK,

TABLE,

/FLAGS Al
CHANGED

ND REG A ARE

/A0-A3 = CODE; A4-A7 =
0000

IN

000
M
KBRD

0

CALL
TIMOUT
o

IN

000
ORAA
JP
FLAGCK
CALL
TIMOUT
0

N

000
ORAA
JP
FLAGCK

MOVLA
MOVAM

POPH
RET

/INPUT FROM
KEYBOARD
ENCODERS

/SET FLAGS
/JUMP BACK IF LAST
KEY NOT RELEASED

WAIT 10 MSEC

/JUMP BACK TO WAIT
FOl
/KEY TO BE PRESSED

/WAIT 10 MSEC FOR
BOUNCING

/JUMP BACK IF NEW

KEY NOT STILL

/PRESSED (FALSE
M)

/MASK OUT ALL BUT
KEY CODE

/SAVE H & L
/ZERO H REG

/ADD THE ADDRESS

OF THE BEGINNING
/OF THE TABLE TO
THE KEY CODE

/
/FETCH NEW VALUE
FROM TABLE
/RESTORE H & L

/THIS TRANSLATION TABLE
CONVERTS THE CODE
/GENERATED BY KEY CLOSURES

TO THE CODI

JUSED BY
PROGRAM

000
00

E
THE MAIN KEX

/5
/THIS CODE CAN'T
NERATED

This listing of the Keyboard Executive
(KEX) is courtesy of Radio-Electronics
magazine, a Gernsback publication.

A-71

stack location will be HI = 003, LO = 377. Check your 16-bit binary numbers if
this looks a little confusing."

"You can use the stack as set up by the KEX (generally a good idea) or you can
put your own stack anywhere you want, just by using the LXISP instruction.
Remember to avoid the stack area when writing your programs. Remember, too,
that you can't put the stack in an area of non-existent memory or in PROM."

HOW THE MICROCOMPUTER OPERATES

We refer you to Unit Number 4 for a description of how the MMD-1 microcomputer
operates. Briefly, you can enter programs via the keyboard, inspect read/write
or EPROM memory contents, execute 8080 programs that are within the memory capa-—
bility of the microcomputer, and output information to the three output ports.
To do all this requires a program stored in one of the 1702A EPROM chips, in
Block 0 to be specific. This pre-programmed chip, as noted above, is called
the Keyboard EXecutive, or KEX. When you start the 8080 microcomputer, you
first press the RESET (R) button and the microcomputer goes to memory location
0000000000000000,, otherwise known as location 0 or HI = 000 and LO = 000.

At this memory lGcation, the 8080 chip finds the first instruction that it

must execute. From this point forward, there exists a series of instructions
that function as a bootstrap program to permit you to operate the microcomputer.
The bootstrap program listed several pages back is only one possible program.
Depending upon the use of your microcomputer, you can write bootstrap programs
to input data from an ASCII keyboard, a teletypesriter, a CRT terminal, or

a tape cassette. The bootstrap program could contain subroutines to exchange
data between the microcomputer and paper tape punches and readers or floppy
disks. It is beyond the scope of this Appendix to describe such software
modifications here. Suffice to say that you should be able to develop such
software when you complete this Bugbook.

