
MACRIX PRINTER

VECTOR GRAPHIC, INC

MP DOT MATRIX PRINTER

Revision 1

USER'S MANUAL
Revision A
March 10, 1980

Copyright 1980 by Vector Graphic Inc. All rights reserved.

Disclaimer

Vector Graphic makes no representations or warranties with respect to the contents of this manual itself, whether or not the product it describes is covered by a warranty or repair agreement. Further, Vector Graphic reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation of Vector Graphic to notify any person of such revision or changes, except when an agreement to the contrary exists.

Revisions

The date and revision of each page herein appears at the bottom of each page. The revision letter such as A or B changes if the MANUAL has been improved but the PRODUCT itself has not been significantly modified. The date and revision on the Title Page corresponds to that of the page most recently revised. When the product itself is modified significantly, the product will get a new revision number, as shown on the manual's title page, and the manual will revert to revision A, as if it were treating a brand new product. EACH MANUAL SHOULD ONLY BE USED WITH THE PRODUCT IDENTIFIED ON THE TITLE PAGE.

REPAIR AGREEMENT

The MP Dot Matrix Printer sold hereunder is sold "as is", with all faults and without any warranty, either expressed or implied, including any implied warranty of fitness for intended use or merchantability. However, the above notwithstanding, VECTOR GRAPHIC, INC., will, for a period of ninety (90) days following delivery to customer, repair or replace any MP Dot Matrix Printer that is found to contain defects in materials or workmanship, provided:

- 1. Such defect in material or workmanship existed at the time the MP Dot Matrix Printer left the VECTOR GRAPHIC, INC., factory;
- 2. VECTOR GRAPHIC, INC., is given notice of the precise defect claimed within ten (10) days after its discovery;
- 3. The MP Dot Matrix Printer is promptly returned to VECTOR GRAPHIC, INC., at customer's expense, for examination by VECTOR GRAPHIC, INC., to confirm the alleged defect, and for subsequent repair or replacement if found to be in order.

Repair, replacement or correction of any defects in material or workmanship which are discovered after expiration of the period set forth above will be performed by VECTOR GRAPHIC, INC., at Buyer's expense, provided the MP Dot Matrix Printer is returned, also at Buyer's expense, to VECTOR GRAPHIC, INC., for such repair, replacement or correction. In performing any repair, replacement or correction after expiration of the period set forth above, Buyer will be charged in addition to the cost of parts the then-current VECTOR GRAPHIC, INC., repair rate. At the present time the applicable rate is \$35.00 for the first hour, and \$18.00 per hour for every hour of work required thereafter. Prior to commencing any repair, replacement or correction of defects in material or workmanship discovered after expiration of the period for no-cost-to-Buyer repairs, VECTOR GRAPHIC, INC., will submit to Buyer a written estimate of the expected charges, and VECTOR GRAPHIC, INC., will not commence repair until such time as the written estimate of charges has been returned by Buyer to VECTOR GRAPHIC, INC., signed by duly authorized representative authorizing VECTOR GRAPHIC, INC., to commence with the repair work involved. VECTOR GRAPHIC, INC., shall have no obligation to repair, replace or correct any MP Dot Matrix Printer until the written estimate has been returned with approval to proceed, and VECTOR GRAPHIC, INC., may at its option also require prepayment of the estimated repair charges prior to commencing work.

Repair Agreement void if the enclosed card is not returned to VECTOR GRAPHIC, INC. within ten (10) days of end consumer purchase.

FOREWORD

Audience

This manual is intended for computer distributors, or others with at least a moderate technical knowledge of small computers.

Scope

It will describe what the Vector Graphic MP Dot Matrix Printer does in the context of a computer system, how to use the printer both in Vector Graphic and in other S-100 systems, and how the printer works.

Organization

Each section is written at a uniform level of technical depth. "Perspective" describes WHAT the printer does and requires only a moderate knowledge of computer design. "User's Guide" describes HOW to install the MP and make it work and assumes the same level of knowledge plus the ability to use a few simple tools. "Theory of Operation" discusses WHY the board works and assumes a knowledge of digital electronics and software principles.

SPECIFICATIONS

Interface TTL level: 2 parallel output ports and 1 parallel input

port.

Compatibility: Designed for Vector Graphic systems though may be

used with most Z-80 S-100 bus systems which can supply

an additional 2-1/2 amps at +8VDC and -16 VDC.

I/O Ports Used 56K systems: Ports 8 and 9 (I/O II standard addressing)

48K systems: Ports 4 and 5 (I/O I standard addressing)

Software Driver On 2708 PROM at CC00H-CFFFH for 48K systems, at EC00H-

EFFFH for 56K systems.

RAM Used Approximately 128 bytes at FC00H-FC63H

Throughput speed 70 lines per minute. 150 characters per second. Has 1

line input buffer.

Printing Method Unidirectional 7-wire x 5 column dot matrix.

Line Spacing 6 lines per inch

Column Spacing 80 columns, 1/10 inch wide, software modifiable.

40/80 characters per line using software driver

supplied with MP.

Character Size 0.122 inch by 0.083 inch.

Resolution 1/60 inch, horizontally and vertically. 60 dot

positions per inch.

Copies Original and 1 copy. Maximum paper thickness, Ø.2 mm.

Form Width 4 to 10 inches.

Sprocket Pins 5/32" diameter, spaced 1/2" apart.

Paper Feed Pin wheel actuated by pulse motor drive.

Paper Feed Speed 10 lines per second.

Paper Loading Through rear of cabinet.

Print Head Life 100 million character expectancy at 14 dots per

character.

Drive Life 5 million lines expectancy.

 $\emptyset.5$ inch x 36 feet; standard unicolor matrix printer Ribbon

ribbon, black or purple. Underwood type spools.

+8VDC @ 2-1/2 A, -16VDC @ 2-1/2 A. Power Required

 $68^{\rm O}{\rm F}$ to $104^{\rm O}{\rm F}$ operating temperature range. 10% to 80% non-condensing humidity. Environmental

7 inches high by 18 inches wide by 13 inches deep. Dimensions

21 1bs. Weight

I. PERSPECTIVE

1.1 Compatibility

The Vector Graphic MP is a low cost, tractor feed, 80 column dot matrix printer. Though the MP was designed specifically for use with any Vector Graphic microcomputer system, it can be used with any S-100 Z-80 based system which has at least one parallel TTL input port, two parallel TTL output ports and can supply 2-1/2 amps at +8VDC and -16VDC to the printer.

1.2 Modifications to mainframe may be required.

If your printer was ordered separately and not part of a complete system, modifications may be necessary on your Vector Graphic mainframe, particularly if it was manufactured prior to 1/1/80.

Modifications which may be required include wiring a printer power outlet into the power supply, installing a cable between the interface board and the back panel and installing a PROM on the PROM/RAM board.

All parts necessary for the modifications are included with the printer.

1.3 Software Driver

The Vector Graphic MP dot matrix printer's features are controlled by a software driver resident in PROM. In addition, a small printer driver access routine is necessary. Vector Graphic CP/M 2.0 diskettes include this routine as part of the CONFIG module. Vector Graphic MDOS 8.6 diskettes will include this routine as an overlay file called SYSP. Besides printing 96 standard ASCII characters, an almost endless array of graphics characters are possible via direct assembly language software control. The PROM supplied with the system provides character generation and other necessary programming. A listing of the printer driver routine is included in the appendix of this manual. An optional MP Graphics Driver PROM provides software support for special graphics characters.

The printer driver supplied with the MP dot matrix printer will work, without modification, on Vector Graphic MZ, System B, 3030 and Memorite II microcomputers operating with the following software: MDOS, MZOS and CP/M. Simply follow the appropriate print instructions with the software to provide printed output.

While it is certainly possible to modify or rewrite the printer driver routine to operate with other systems, this is a job which should only be undertaken by someone familiar with Z-80 assembly language programming.

Note: You must have the 4.0 monitor to run the MP if using MDOS (version 8.6 or later. It will work with the 3.1 monitor if using CP/M.

1.4 Reliability and cost effectiveness of the printer.

The Vector Graphic MP Dot Matrix Printer is clearly a breakthrough in cost effectiveness. This was accomplished by driving the printer from the host computer and deriving power from the mainframe. This permits Vector Graphic to offer a compact printer which is eminently compatible with your Vector Graphic microcomputer at a truly advantageous price.

Considerable attention was given during design of the printer to the elimination of noise. It features an enclosure specially treated with sound absorbant material to reduce machine vibration and resultant noise.

In addition to the above features, the Vector Graphic MP Dot Matrix Printer has proven to be remarkably reliable. The life expectancy of the printer drive, for example, is estimated to be 5 million lines. Print head life expectancy is estimated to be 100 million characters.

The MP Dot Matrix Printer comes complete with all necessary cables, firmware, installation instructions and documentation including a program which prints high-resolution memory mapped images. The unit is completely factory assembled and tested.

II. USER'S GUIDE

In order to understand the User's Guide, you must be aware that the MP dot matrix printer was designed to work as part of a Z-80 based system, it is not intended to be a free standing unit. It cannot handle RS-232 or current loop signals directly, for example. By taking this approach and exploiting the inherent capabilities of the Z-80, however, Vector Graphic, Inc. is able to offer a dot matrix printer that can deliver exceptional performance to your system at low cost.

2.1 Modifications to the Vector Graphic Microcomputer

This section describes the modifications which must be made to the mainframe's power supply to accomodate the printer's power needs. If you are going to use the printer in an existing system that was not shipped with an MP printer, THIS SECTION IS VERY IMPORTANT.

However, if the printer was shipped as a part of a complete Vector Graphic computer system, aside from the section on plugging in the interconnecting cables, you may skip directly to the test section.

There are four cable assemblies, a small adapter printed circuit board and and a ROM supplied with the MP dot matrix printer. Two of the cables are used to connect from sources inside the computer to the rear panel of the computer. Two are used to connect from the back panel of the computer to the MP dot matrix printer. The small adaptor board is supplied for use with the Bitstreamer II I/O board. The ROM is installed on the PROM/RAM board.

- 1) The three wire cable with a Molex-type plug on one end and spade lugs on the other ends is used to make power available from the internal power supply in the mainframe to the rear panel of the computer.
- 2) A 25 conductor flat cable which terminates in a DB-25S female connector on one end and a 24 pin DIP connector on the other is used to connect the Bitstreamer I/O board to the back panel of the computer.
- 3) The cable with a female Molex-type connectors on one end and a male on the other is used to connect the power supply in the mainframe to the MP.
- 4) The flat cable which terminates in a male DB-25S connectors on one end and a female DB-25S connector on the other is used to provide signals from the mainframe to the MP.
- 5) The adaptor board with two 34 pin sockets on one side and a 24 pin DIP socket on the other is used to connect the Bitstreamer II I/O board with the second cable listed above.

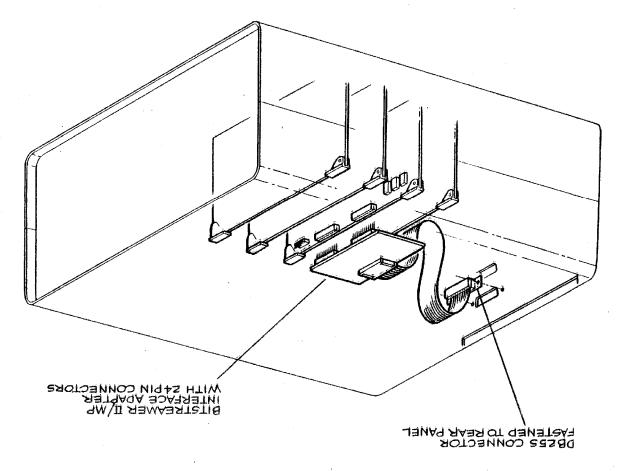
2-5

2.1.1 Power Supply Modifications

In order to run the MP dot matrix printer, a power supply cable must be wired into the mainframe power supply and then fastened to the rear of the computer. A separate cable then connects the mainframe to the printer.

- 1) Unplug the microcomputer from the outlet and disconnect the power supply cord from the back of the machine.
- 2) Wait at least one minute.
- 3) Unscrew the 4 screws which hold the cover to the frame using a Phillip's screwdriver. Remove the cover. The power supply components are on the right side of the computer and consist of a transformer, three electrolytic capacitors, two stud-type diodes and a bridge rectifier.
- 4) Make sure at least one minute has elapsed between the time you have disconnected the power and have taken the cover off.
- 5) Thread the three wires of the power cable, lug ends first, through a cut out in the back of the machine. If you are interfacing the MP to an S-100 computer not manufactured by Vector Graphic, Inc. see the note at the end of this section.
- 6) Identify capacitor C2. It is one of the two 28,000 mfd. capacitors and has white wires going to one terminal and yellow wires going to the other. Loosen the minus terminal on this capacitor (the one with the yellow wires attached to it) and fasten the yellow wire of the MP power cable to it using the spade lug attached. Tighten the terminal.
- 7) Identify capacitor C3. It is the 60,000 mfd. capacitor. The plus terminal of C3 has red wires attached to it, the minus terminal of C3 has white wires going to it. Loosen both these terminals and fasten the remaining two wires of the MP power cable to them: red to red, white to white. Tighten the terminal. This completes the modifications to the power supply.
- 8) You may test the voltages at the connector. Pin 2 is ground. Pin 1 should be approximately +8VDC. Pin 3 should be approximately -16VDC.
- 9) If you have an appropriate cut out in the rear of your mainframe, you may permanently fasten the connector to the rear panel. If you do not already have such a hole in the back panel of your computer, you have two options: you may leave the connector hanging loose out of the back or you may cut a hole in the back panel yourself. The dimensions of the hole required are .600 inch by .725 inch. Label this connector "PRINTER POWER CONNECTOR."

Note:


If you are interfacing the Vector Graphic MP dot matrix printer to an S-100 computer which was not manufactured by Vector Graphic, Inc., connect the yellow wire of the power cable assembly to your -16V source, the red wire to your +8V source and the white wire to ground.

2.1.2 Bitstreamer I Board Modifications

In order to interface a Vector Graphic MP dot matrix printer to an S-100 system via the Vector Graphic Bitstreamer I board, two printed circuit traces must be cut and two jumpers must be added as per the following. The Bitstreamer I board may be identified by the single DIP switch on the upper left hand side of the board. The Bitstreamer II board has three DIP switches in the same position. If you are interfacing the MP dot matrix printer to a Vector Graphic microcomputer which is equipped with a Bitstreamer II I/O board, go to the next section.

- 1) On the component side of the board, there is a trace which begins at pin 10 of Ul7, runs underneath and exits from beneath the chip between pins 6 and 7. Cut this trace.
- 2) On the circuit side of the board, there is a trace which runs to pad 8 of J3. Cut this trace at the pad.
- 3) On the circuit side of the board, solder a jumper from pad 8 of J3 to pad 20 of J2.
- 4) On the circuit side of the board, solder a jumper from pad 17 of J3 to pad 19 of J2.
- 5) Plug in the cable with the 24 pin DIP connector to J3 of the Bitstreamer I board. Fasten the other end of the cable assembly (terminating in an DB-25S connector) to the back panel through one of the cut outs provided for this purpose. Label this connector "PRINTER SIGNAL CONNECTOR."

Note: Make sure that the original port addresses have not been changed. On a 48K system using an I/O I board, the parallel port addresses should be set at 4 and 5 (factory standard.)

ev. 1-A 3/10/80

2.1.3 Bitstreamer II Board Modifications

If you are interfacing the Vector Graphic MP dot matrix printer with the Bitstreamer II board, use the following procedure.

- 1) An adapter board has been supplied with the MP. Connect the adapter board to the two 34 pin connectors on top of the Bitstreamer II board, orienting the board so that the 24 pin DIP socket is towards the rear panel.
- 2) Take the cable which has a 24 pin DIP plug on one end and an DB-25S female connector attached to the other end and plug the DIP plug into the DIP socket on the adapter board. Make sure the notches on the socket and the plug are on the same end.
- 3) Attach the connector on the other end of the cable to one of the blank cut outs at the back panel which has been provided for this purpose. Label this connector "PRINTER SIGNAL CONNECTOR."

SIGNAL CABLE PIN OUT DIAGRAM

BITSTREAMER II SOCKET	DB-25 CONNECTOR	24 PIN DIP SOCKET	PORT	DESCRIPTION
J4- 2* J4- 3 J4- 4 J4- 5 J4-11 J4-12	18 19 22 23 8 21	5 6 9 10 17 8	AOØ AO1 AO2 AO3 AIØ AI1	Step enable Step phase A Step phase B Motor on Timing Home
J5- 2 J5- 3 J5- 4 J5- 5 J5- 6 J5- 7 J5- 8 J5- 1	17 16 15 14 24 25 12	4 3 2 1 11 12 13	BOØ BO1 BO2 BO3 BO4 BO5 BO6 BO7	Wire 1 (top) Wire 2 Wire 3 Wire 4 Wire 5 Wire 6 Wire 7 (bottom) Strobe

^{*} J4 is the left hand socket on top of the I/O II board.

Note: Make sure the original port addresses have not been changed. On a 56K system using the I/O II board, the parallel port addresses should be set at 8 and 9 (factory standard.)

2.1.4 Installing the PROM on the PROM-RAM board

The following instructions tell you how to install the Printer Driver PROM on the 12K Vector Graphic PROM-RAM board.

- 1) You may identify the PROM-RAM board in your computer by the row of 8 24-pin DIP sockets at the top of the board. With the power off, remove this card from your machine. Block B must be addressed at E000H for 56K systems; C000H for 48K systems. Check your PROM/RAM board manual for details.
- 2) Install the printer driver PROM in socket 11. Make sure the notch on the PROM matches the indicated notch on the board.
- 3) Plug the PROM-RAM back into its socket on the motherboard.
- 4) The PROM installation is now complete.

2.2 Cable Hook-Up

To connect the cables between the computer and the printer, do the following:

- 1) With the power at the mainframe turned off, connect the printer power cable (Molex connectors at both ends) to the printer power connector on the back panel of the mainframe and the matching connector at the back of the MP.
- 2) With the power at the mainframe still turned off, connect the printer signal cable (the flat wide cable with a 25 pin connector at each end) from the printer signal connector on the back panel of the mainframe to the matching connector at the back of the MP. The cable hook-up procedure is now complete.

2.3 Loading Paper

To load paper into the Vector Graphic MP dot matrix printer:

- 1) Remove the clear plastic top from the printer.
- 2) Tilt tractor feed mechanism forward until it stops.
- 3) Place box of fan folded paper behind printer.
- 4) Feed paper carefully into paper guide inlet at bottom of printer until it feeds up between platen and print head. Open tractor guides. Pull paper up through tractor assemblies, aligning guide holes in paper with tractor feed pins. It would be convenient, at this time, to position the top of the next form just above the print line. Make sure that both left and right sides are aligned correctly, otherwise the paper will bind. One easy way to do this is to count the number of holes from the top of form to the first (top) pins on either tractor. They should be the same. Now close the tractor

guides.

5) Replace the plastic cover on the printer. The paper feeding process is now complete.

TABLE OF CONTENTS

Sect:	<u>ion</u>	Page	!
	Table	e of Contents	
	Spec	ifications	
I.	Pers	pective	
	1.1 1.2 1.3 1.4	Compatibility	-
II.	User	's Guide	
	2.1	Modifications to the mainframe2-1	L
		2.1.1 Power supply modifications	1 5
	2.2 2.3 2.4	Cable hook up	7
		2.4.1 Testing the MP and printer driver under MDOS2-9 2.4.2 Testing the MP and printer driver under CP/M2-9	
	2.5	Printer Control Commands2-1	LØ
		2.5.1 Printer Control Commands-MDOS	ΙØ
	2.6	Periodic Maintenance2-1	L 2
		2.6.1 Changing Ribbons2-1 2.6.2 Periodic Lubrication2-1	
	2.7	Special Graphics Characters2-1	4
III.	Theo	ory of Operation	
	3.1 3.2	Print wire firing3-1 Line feeding3-2	L

IV. Appendix

2.4 Initial Testing

After the cables have been hooked up and paper has been installed in the MP, some initial testing can be done to assure that everything is working properly. Two test procedures are provided, one for Vector Graphic systems under MDOS and one for Vector Graphic systems under CP/M.

NOTE:

When used with the printer driver furnished, the printer will not print a line until a Carriage Return has been received unless the automatic CRLF function has previously been selected. The characters received are stored in a buffer until a Carriage Return causes the program to send an entire line to the printer.

2.4.1 Testing the MP and Printer Driver under MDOS

To test the MP and printer driver software in a Vector Graphic system using MDOS:

- 1) Boot up MDOS using the normal procedure.
- 2) Load the printer driver call routine from the MDOS (8.6 version or later) system diskette by typing SYSP (return).
- 3) Assign the port used by the printer by typing ASSIGN 2,3 (return).
- 4) Type FILES (return). A list of the files present on the disk should now be printed on the MP dot matrix printer.

2.4.2 Testing the MP and Printer Driver under CP/M

To test the MP and printer driver software in a Vector Graphic system using CP/M.

- 1) Boot up CP/M using the normal procedure.
- 2) Type CONFIG (return). The program will prompt you on various system choices. In response to the question about printers, type D. By typing YES to the question about making the selection permanent, the system will configure itself to work with the MP printer every time it is booted up.
- 3) Type \hat{P} . This causes the MP to print all data input from the keyboard. Type a few words of your choice to confirm that the printer is operating properly. By typing \hat{P} will toggle the print function on and off.

2.5 Printer Control Commands

The following commands cause the MP to perform the listed functions provided the system has been initialized as explained in the following two sections. These commands will work from the keyboard or they can be sent under program control to perform various print functions.

- 1) Tab: type 'I or the (tab) key.
- 2) Line feed: type J or (1f) key.
- 3) Form feed: type ^L.
- 4) Carriage return: type 'M or (return) key.
- 5) Toggle auto. CRLF flag: type (ESC) and \underline{A} .
- 6) Toggle character/graphic flag: (ESC) and G. (Works only if MP Graphic PROM is present.)
- 7) Toggle 80/40 flag: (ESC) and N.
- 8) Set top of form: (ESC) and T.
- 9) Set form length: (ESC) and $\overline{\text{Fxx}}$. xx designates form length in 1/6 inch increments. For values above 99 lines use A, B and C to represent 10, 11 and 12. These values are valid only for the tens place, they are not valid for the units position. To set a form length of 11", xx=66; 14", xx=84.

2.5.1 Printer Control Commands-MDOS

To use the MP under MDOS, initialize the system as follows.

- 1) Insert the diskette (MDOS 8.6 or later) and boot up the system by typing \underline{B} .
- 2) Type SYSP (return).
- 3) To turn printer on type ASSIGN 2,3 (return).
- 4) To turn printer off type ASSIGN 2,2 (return)

NOTE:

Form length may also be set under MDOS (versions 8.6 and later) by typing SETFORM "N" (return) while in the operating system. N may be any number from .5 to 21.5 in .5 (inch) increments.

2.5.2 Printer Control Commands—CP/M

1) The first time the printer is used with a particular CP/M diskette, the

CONFIG routine must be run. After this has been done once, it does not have to be repeated provided that the same diskette is used each time.

- 2) To turn the printer on under CP/M type ^P.
- 3) To turn the printer off type <u>P</u>.

Note: To use any of the commands which use the (ESC) key, touch the key lightly, key in the next letter(s) and depress (return).

2.5.3 Printer Control Commands-Basic

The printer can be controlled from Micropolis Basic by doing the following:

In the immediate mode, the command LISTP can be used to output a program listing to the printer.

During program execution, output may be printed by writing to a print file. For example:

10 OPEN 1"*P" 20 PUT 1,X; 30 CLOSE 1

The printer can be controlled from Microsoft Basic by doing the following:

In the immediate mode, the command LLIST will output a program listing to the printer.

During program execution, output may be printed by simply using the LPRINT or the LPRINT USING commands.

2.6 Maintenance and Repair of the printer

In order to assure satisfactory printer performance, it is recommended that repairs and overhauls should be done by the Vector Graphic Dealer. Normal maintenance, however, such as changing ribbons and periodic lubrication, may be done by a person with average mechanical skill by following the instructions which follow.

2.6.1 Changing Ribbons

Note:

Replace ribbon only with a type intended for use with dot matrix printers. DO NOT use an ordinary typewriter ribbon, even for "emergency use". To do so will result in poor print quality and shortened print head life.

- 1) Remove both spools and the ribbon in place if there is one. Pay attention to how it is threaded.
- 2) Remove the new ribbon and spools from their package.
- 3) Unwind approximately 24 inches of ribbon from the feed spool.
- 4) Place the feed spool on the left spindle and the take-up spool on the right spindle.
- 5) Thread the ribbon from the feed spool around the rollers, reverse control levers, and frame sides.
- 6) Tighten the ribbon by manually turning one of the spools. The ribbon installation is now complete.

2.6.2 Periodic Lubrication

In order to insure proper operation, certain points of the MP must be lubricated at specific intervals. Three different lubricants are required:

Description	
ight Machine Oil ight Grease	
ight Moly Grease	

NOTE:

It is strongly suggested that in order to maximize printer life only lubricants purchased from Vector Graphic be used. Any substitution will result in shortened printer life.

First interval lubrication

The points illustrated in the appendix under "Lubrication Points-Printer" must be lubricated using the lubricants specified on the diagram at least once every 6 months or 1 million lines of use, whichever comes first.

Second interval lubrication

The points illustrated in the appendix under "Lubrication Points-Ribbon Mechanism" MP ribbon mechanism must be lubricated with G2 lubricant every 2-1/2 million lines or every six months, whichever comes first.

Third interval lubrication

It is suggested that your MP dot matrix printer be overhauled by your Vector Graphic Dealer every 5 million lines of use to assure dependable long life.

2.7 Special Graphics Characters

The optional MP Graphics Driver Prom is available from Vector Graphic for those who desire to create special graphics characters. In order to understand how to create special graphics characters, it is necessary to know how "normal" characters are generated and printed. The same principle is used whether the output is a printed letter on a page or a number on a video display. What happens is this: in response to a command to print an ASCII character, the operating system or high level language consults a look up table already in computer memory. It obtains from this table the column codes of the letter it is going to print. There are as many column codes as the character matrix is wide. For example, for the MP the number of column codes required for each character is 5. The column codes are eight bit binary numbers, generally expressed as two hexadecimal digits. For example, in response to a command to print the ASCII letter "R", the system would find in the look up table the following five column codes: 111111110, 00010010, 00110010, 01010010, 10001100. (In hex, FE, 12, 32, 52 and 8C.) You will notice that since the matrix is 5X7, the least significant bit is not used and is always 0. Thus, the numbers are always even. These binary numbers are plotted on a 5X7 grid, starting with the first (most significant) bit of the first number which is plotted as the first dot or non-dot at the bottom-most point of the first column. You then plot up the column, converting each one to a dot and each Ø to a space (non-dot). When you reach the eighth (least significant) bit, you ignore it and start on the leftmost bit of the next column code continuing in this manner until the fifth column code is completed.

Example

Column	Number	1	2	3	4	5	
	Code	Ø	Ø	Ø	Ø	Ø	Least significant bit
		1	1	1	1	Ø	
		1	Ø	Ø	Ø	1	
		1	Ø	Ø	Ø	1	
		1	1	1	1	Ø	
		1	Ø	1	Ø	Ø	
		1	Ø	Ø	1	Ø	
		1	Ø	Ø	Ø	1	Most significant bit

		ASCII "R"		
		Binary	Hex	
Column	1	1111111	FE	
Column	2	00010010	12	
Column	3	00110010	32	
Column	4	01010010	52	
Column	5	10001100	8C	

To create special graphics characters, first sketch the desired character on a 5x7 grid (graph paper would be useful for this.) Rotate the paper 90 degrees to the right. From left to right, change each dot to a 1, each non dot to a 0. Add an extra 0 at the end of each 7 bit number to change it into an eight bit number. Convert that eight bit number into two hexadecimal digits. Do this for each of the five columns needed for each character. Store the 5 pairs of hex digits created in this manner in a table at a convenient area in memory. The table thus created can consist of up to 95 characters, each composed of 5 column codes. Make sure that the space used for the table does not conflict with the operating system or other higher level software you may be using in conjunction with the printer. If you wish to save the graphic character data you have just created, it is suggested that you do so at this point. The printer driver must be told where to find the table of graphics characters, so store the address of the first hex pair at FC50/lH.

The printer hardware strobes the character code to the print wires when the most significant bit goes low. This is taken care of in the printer driver furnished by a 'RRC' instruction. If you are writing your own printer driver, be sure to include an 'RRC' instruction on the hex code before it is transmitted to the printer.

Rev. 1-A 3/10/80 2-15

•

III. THEORY OF OPERATION

3.1 Print wire firing

The firing of the 7 print wires are controlled by the 8 bit output of port B. The signal from output bits 1-7 (the character column bits) are each presented to an input on a 7426 NAND gate (U3 and U8) and held there for a predetermined time by the software. Simultaneously, the 8th (most significant) bit of Port B provides the strobe pulse needed to activate the pulse width timer.

The pulse width timer (V1) is used to regulate the timing of the print wire solenoid actuation. This is particularly important since print quality is dependent upon a precise amount of energy being applied to the solenoids. The strobe pulse from the 8th bit triggers the 555 timer to begin timing, holding the output high. Capacitor Cl begins charging. If the voltage present is slightly higher than normal, it will charge quickly and then turn off the timer. Conversely, if the voltage is lower than normal, Cl will take longer to charge and the output of the timer will be held up longer. Thus this timer is able to compensate for differences in supply voltage, ensuring that the energy supplied to the print wire solenoids remains constant no matter what the variation. Transistor Ql is used to convert the signal output of analog IC Vl to digital IC voltage levels while inverting it at the same time. This signal is again inverted through inverter on U5 and is presented to one of the inputs of the AND gate U2.

Due to mechanical considerations, two conditions have to be met before the print wires can fire. The print head has to be off the home position and dot (column) timing has to be received.

This is taken care of by IC U4. A signal indicating that the print head is off the home position is received from the printer mechanism via J2-l3. This clears the 7474 flip-flop. The dot timing from the printer mechanism clocks the Q output of the flip flop. The Q signal is ANDed at U2 with the pulse from the pulse width timing circuit discussed above. This resultant signal is logically NANDed with the character column bits. If both inputs are high, the NAND gate pulls the print wire solenoid transistor base low, permitting current to flow through the solenoid thereby firing print wire. Diode, resistor and capacitor wired in series/parallel to the solenoid are for arc suppression and current limitation.

3.2 Line feed control

The tractor feed mechanism is driven by a stepper motor which is under software control via the MP interface. A stepper motor functions when its coils are energized in a predetermined sequence. This pulls the armature around in a very exact and precise manner.

The stepper motor in the MP's tractor feed mechanism functions by the printer driver software sending 2 sequences of signals on two output lines of Port A. As the signal is received from the the output line it is split between a buffer and an inverter. If the first bit received is a Ø, this goes through the buffer portion of the circuit, causing the base of the transistor to go low, switching it on and causing current to flow through the stepper motor coil. The same signal, going through the inverter causes the base of the transistor to go high, blocking current flow through the emitter-collector circuit. The diodes in the circuit prevent current surge when the coil is turned off.

The sequence of bits sent to the first line of Port A is 0110. The sequence sent to the second line is 0011. The coils are energized in the following order: 1 & 4, 1 & 3, 2 & 3, 2 & 4, 1 & 4, etc. The printer driver program determines how many cycles are needed and sends the appropriate number of cycles. Twenty four cycles or steps are needed to complete one line feed.

3-2

IV. APPENDIX

4.1 Function of Optional Graphics Driver PROM

The MP Graphics Driver is a program which allows you to use the Vector MP Dot Matrix Printer to print images created on the high resolution graphics board. It can also be used to print patterns specified by 1 byte hex codes.

The MP Graphics Driver program is supplied on a 2708 EPROM which fits into slot 10 on the Vector Graphic PROM/RAM board and is addressed at C800 for 48K systems and at E800 for 56K systems. See section 2.1.4 in this manual for EPROM installation instructions.

4.2 Graphics Driver Commands

Though the Graphics Driver is independent of the MP printer driver, it shares several commands with it. In addition, there is a command (ESC) G which allows the user to toggle back and forth between the printer driver and the graphics driver. When going from the printer driver to the graphics driver, (ESC) G must be followed by the hex address of a 480 character buffer in user memory. The address must be expressed in Intel format, that is, the first and second pairs of hex address digits must be reversed. For example, A000H would be entered as 00A0H.

The control commands shared between the printer and graphics driver are:

```
^I or (TAB) = Tab
^J or (LF) = Linefeed
^L = Formfeed
^M or (RETURN )= Carriage Return
```

4.3 Printing from the Monitor

There are three commands which will cause the MP to print what is displayed on the high resolution graphics board monitor. In the following list, ADDR stands for the address of the High Resolution Graphics board expressed in the Intel format, as explained above.

(ESC) D ADDR - Will cause the MP to print the screen in digital mode, bit for bit.

(ESC) R ADDR - Causes the MP to print the screen in reversed digital mode, that is, all 0's are printed as 1's and vice versa.

(ESC) V ADDR - Prints the grey scale image of what is on the screen, if the High Resolution Graphics Board is in the grey scale mode. If the board is set for the digital mode, the program will attempt to combine the digital bits together as if they were hex bytes and produce unpredictable results.

4.4 Other Print Functions

You can set the graphics driver to generate an automatic carriage return-line feed (CRLF) every time it has received 480 hex bytes sent to it. To do this, type or have the program send an (ESC) A. To toggle the function off, type or have the program send an (ESC) A again.

The graphics driver will also permit the user to print images from hex bytes stored in a buffer area in user memory. The hex bytes must be between the values of 80 and FF. The driver can be set in the 4 or 7 wire print mode by keying or having the program send an (ESC) M.

The user then sends the data to the program which then prints it when it receives a carriage return. If more than 480 bytes have been sent to the program without a carriage return, all data after the 480th byte will be lost.

To transmit a particular line, from program memory, for instance, the user would have to encode the 480 desired bytes and store it in program memory. He would further have to write a simple assembly language program which would fetch each of the successive bytes from program memory, move it to the 'C' register, push the contents of all registers onto the stack and call C803H for 48K systems and E803H for 56K systems. The program stores each of the bytes in its internal buffer and will print what has been received whenever it receives the hex code for a carriage return unless it is in the automatic CRLF mode in which case it will automatically print the line whenever 480 characters have been received.

The amount of space between the lines can also be specified using the (ESC) N command. This must be followed immediately by a 1 byte (2 hex digits) from 00-FFH. This controls the number of pulses sent to the stepping motor which pulls the paper through the tractors. Hex values of 0A and 11 are suggested as starting points for the 4 and 7 wire mode, respectively. Once this value has been set, the CRLF code will step the same number of pulses until it has been reset or a 4/7 wire switch is performed.

Ø ØØ Ø	TITLE DOT MATRIX PRINTER DRIVER VS1.3
0000	* 2/6/80
0000	
0000	***********
0000	*
0000	* VECTOR GRAPHIC *
0000	* DOT MATRIX PRINTER DRIVER *
0000	*
0000	* VERSION 1.3 *
0000	*
0000	**************
0000	*
Ø ØØØ	*
0000	* USER NOTES
0000	*
Ø Ø ØØ	* THE VECTOR GRAPHIC DOT MATRIX DRIVER PROGRAM
0000	* SUPPORTS TWO MODES OF OPERATION.
ØØØØ	* 1.) 80 CHARACTERS/LINE (REGULAR PRINT)
0000	* 2.) 40 CHARACTERS/LINE (EXPANDED PRINT)
0000	. ★
0000	* THESE MODES ARE SELECTABLE VIA ESCAPE SEQUENCES
0000	* (SEE 'ESCAPE CONTROLS' BELOW). IN ORDER TO USE
ØØØØ	* THESE PROPERLY, AND TO UNDERSTAND THE VARIOUS
ØØØØ	* ALLOWABLE OPTIONS ALSO SUPPORTED, THE USER SHOULD
0000	* FAMILIARIZE HIMSELF WITH THE RAM CONTROL AREA
00 00	* (FC00 TO FC5E) USED BY THE DRIVER.
ØØ ØØ	*
0000	* CHARACTER BUFFER: THE AREA FROM FC00 TO FC4F IS
ØØØØ	* RESERVED FOR HOLDING AN INPUT LINE UNTIL READY TO
0000	* PRINT.
ØØØØ	-
0000	* USER SELECTABLE FONTS: BY PROVIDING AN ADDRESS AT
0000	* FC50/1, CUSTOM FONT TABLES MAY BE SELECTED. THE TABLE
0000	* SHOULD CONSIST OF 95 CHARACTERS, EACH COMPOSED OF 5
0000	* COLUMN CODES. AN EXAMPLE OF THE WAY COLUMN CODES MAY
0000	* BE CALCULATED IS SHOWN HERE. (EXM. = 'A')
0000	*
0000	* C1 C2 C3 C4 C5
0000	* ØØØØØ
0000	* Ø Ø 1 Ø Ø
0000	* Ø 1 Ø 1 Ø
0000	* 1 Ø Ø Ø 1 * 1 Ø Ø Ø 1
0000	
0000	also also also also also
ØØØØ 3333	* 1 Ø Ø Ø 1 * 1 Ø Ø Ø 1
ØØØØ	*
0000	
0000 aaaa	* CODE: F8 24 22 24 F8
0000 0000	* THIS DRIVER PROGRAM USES THE FOLLOWING REGISTERS:
0000 0000	THE EXTENDION TO BE THE POSITION THAT INC.
0000 0000	* A,B,C,D,E,H,L & IX. * IF ANY VALUES STORED IN THESE REGISTERS ARE NECESSARY
9999	* FOR CONTINUED OPERATION OF THE CALLING PROGRAM, THEN
000 0	* THEY MUST BE SAVED BY THE CALLING PROGRAM PRIOR TO
ØØØØ	* CALLING THE DRIVER. THIS PROGRAM EXPECTS THE OUTPUT
9000 9000	* CHARACTER TO BE IN REGISTER 'C'.
ØØØØ	*
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

```
AN EXAMPLE OF A TYPICAL CALLING SUBROUTINE IS:
0000
                                           ; save registers
                *
                                PUSH IX
                      PRINT
0000
                *
                                PUSH H
ØØØØ
                                PUSH D
0000
                                PUSH B
øøøø
                                CALL ØECØ6; check printer status
ØØØØ
                                ORA A
0000
                                     ØECØØ ; initialize if not ready
                                CZ
0000
                                POP
                                     В
0000
                                PUSH B
0000
                                           ; put char. in reg. c
                                MOV C.B
0000
                                CALL ØECØ3; send data to driver
0000
                *
                                POP
                                     В
                                           ; restore registers
0000
                *
                                POP
                                     D
0000
                                POP
                                     Н
0000
                *
                                POP
                                     IX
ØØØØ
                *
                                RET
ØØØØ
                *
0000
øøøø
0000
                *
øøøø
                *
                              PROGRAM EQUATES
0000
0000
                                         'BASE ADDRESS =
                BASE
                                REQ
       ECØØ =
0000
                                                         ; status port is #4
       0004 =
                STAT
                                 EOU
0000
                                EOU
                                         5
                                                         ; data port is #5
       ØØØ5 =
                DATA
ØØØØ
                                                         ; 80 character buffer
                                         ØFCØØH
       FCØØ =
                BUFFER
                                 EOU
0000
                                                         ; graph prom address
       E8ØØ =
                GRPHADD
                                 EOU
                                         ØE8ØØH
0000
ØØØØ
                          USER RAM AREA FOR DRIVER CONTROL
                *
0000
0000
                                                         ; device control block start
                                         BUFFER+80
0000
       FC50 =
                DCB
                                 EOU
                                                         : address of font table
       FC50 =
                FONTADD
                                 EOU
                                         BUFFER+80
0000
                                 EOU
                                         BUFFER+82
                                                         ; lines per page
       FC52 =
0000
                NLINE
                                                         ; step pulses per linefeed
       FC53 =
                LFPUL
                                 EOU
                                         BUFFER+83
0000
                                                         : character counter
                                 EQU
                                         BUFFER+84
ØØØØ
       FC54 =
                CHARCNT
                                                         : line counter
       FC55 =
                                         BUFFER+85
ØØØØ
                LNCNT
                                 EOU
0000
                     NON-USER RAM AREA FOR DRIVER CONTROL
0000
0000
                                 EOU
                                                         ; stepping motor control
       FC56 =
                PHASE
                                         BUFFER+86
ØØØØ
                                                         ; driver status word
       FC57 =
                                 EOU
                                         BUFFER+87
                STATWRD
ØØØØ
                                                         ; initialization flag
                                         BUFFER+88
ØØØØ
       FC58 =
                INITFLAG
                                 EOU
                                                         ; number of chars/line
0000
       FC59 =
                CHARNUM
                                 EQU
                                         BUFFER+89
                                                         ; graph status word
0000
       FC5A =
                GRSTAT
                                 EOU
                                         BUFFER+90
                                                         ; buffer pointer
0000
       FC5B =
                BUFPTR
                                 EQU
                                         BUFFER+91
                                         BUFFER+93.
                                                         ; tab counter
       FC5D =
ØØØØ
                TABONT
                                 EQU
       FCSE =
                                         BUFFER+94
                                                         ; temporary hold
0000
                 TEMP
                                 EOU
0000
                 *
0000
                 *
                                  CONTROL COMMANDS
0000
                 *
 0000
                 *
                       I OR TAB ..... TAB
 0000
ØØØØ
                        J OR LF ..... LINEFEED
                 *
                       ^L ..... FORMFEED
 0000
                 *
                       M OR CR ..... CARRIAGE RETURN
 0000
                       ESC A ..... TOGGLE AUTO FLAG
 ØØØØ
```

```
0000
                     ESC F (2 BYTES) ..... SET FORM LENGTH
ØØØØ
                     ESC G ..... GRAPHICS/PRINT TOGGLE
                     ESC N ..... TOGGLE 80/40 FLAG
0000
                     ESC T ..... SET TOP OF FORM
ØØØØ
ØØØØ
ØØØØ
                                 ESCAPE CONTROLS
ØØØØ
                      "A" FOR AUTO.
ØØØØ
                *
                     WHEN SET, AUTO. FLAG CAUSES AUTOMATIC CARRIAGE
ØØØØ
                     RETURNS WHEN BUFFER IS FULL, FOLLOWED BY AN
0000
                *
                     AUTOMATIC LINEFEED. IF WITHIN 6 LINES OF A NEW
0000
                     PAGE, AN AUTOMATIC FORMFEED IS ALSO PERFORMED.
0000
                     WHEN NOT SET, ALL CARRIAGE RETURNS, LINEFEEDS,
ØØØØ
                ★
                     AND FORMFEEDS MUST BE SENT BY THE PROGRAM THAT
0000
ØØØØ
                     CALLS THE PRINTER DRIVER.
0000
                *
øøøø
                      "F" FOR FORM LENGTH.
                     THIS PRINTER CONTROL ALLOWS THE USER TO SET THE
0000
                *
ØØØØ
                     LENGTH OF THE FORM TO BE USED. A PAGE MAY RANGE
                      IN SIZE FROM 1/6" (CODE Ø1) TO 21.5" (CODE C9).
0000
                      THE DEFAULT SIZE IS 11". THIS CONTROL IS USED
0000
                      BY SENDING AN ESC-F SEQUENCE FOLLOWED BY A TWO
0000
                     BYTE CODE. THIS VALUE IS THE NUMBER OF 1/6"
0000
0000
                      INCREMENTS PER PAGE AND MUST BE CODED IN A
0000
                      SPECIAL WAY. THE FIRST BYTE SENT MUST BE 0-9,
                *
                      OR A-C. THIS BYTE IS THEN DECODED AS A MULTIPLE
0000
                *
                      OF TEN. FOR EXAMPLE; A '9' WOULD SIGNIFY 90,
0000
                     WHILE A 'C' WOULD SIGNIFY 120. THE SECOND BYTE
ØØØØ
                     MUST BE A NUMBER FROM Ø TO 9, AND IS TAKEN AT
ØØØØ
                      FACE VALUE. SO, 'C9' = 129, AND 129/6 = 21.5,
0000
                     WHICH WOULD BE THE LENGTH OF THE FORM IN
0000
                      INCHES.
0000
0000
0000
                      "G" FOR GRAPHIC/PRINT SWITCH. TOGGLES THE G/P
0000
                      FLAG CAUSING THE DRIVER TO TURN CONTROL OVER
                1%
0000
                      TO THE VECTOR MATRIX GRAPH PROM IF IT IS
0000
                      CURRENTLY IN PLACE AT ØE8ØØH TO ØEBFFH.
0000
0000
                      "N" FOR NUMBER OF CHARACTERS PER LINE.
                *
0000
                      TOGGLING THE 80/40 FLAG SWITCHES THE PRINTER
ØØØØ
                      FROM 80 CHARACTERS PER LINE (REGULAR PRINT)
0000
                      TO 40 CHARACTERS PER LINE (EXPANDED PRINT),
0000
                      OR VICE VERSA. THE LINECOUNTER IS UNCHANGED.
ØØØØ
                *
                      "T" FOR TOP OF FORM.
0000
0000
                      THE ESCAPE-T SEQUENCE DEFINES THE CURRENT
                      LINE AS THE TOP OF THE FORM.
0000
0000
0000
0000
                              DRIVER STATUS WORD
0000
0000
                      BIT 7 .... NOT USED, ALWAYS ZERO
                      BIT 6 .... FORM LENGTH SEQUENCE FLAG
0000
                      BIT 5 ..... FORM LENGTH SEQUENCE, BYTE COUNT FLAG
0000
ØØØØ
                      BIT 4 .... AUTOMATIC FUNCTION FLAG
0000
                      BIT 3 .... ESCAPE SEQUENCE FLAG
ØØØØ
                      BIT 2 .... EMPTY BUFFER FLAG
```

```
BIT 1 ..... G/P FLAG, GRAPHIC/PRINT SELECT
0000
                       BIT Ø .... MODE SELECT, 80/40 CHARACTER FLAG
0000
ØØØØ
                       ALL BITS ARE ACTIVE HIGH
0000
                       BIT \emptyset ..... 8\emptyset CHARS. = \emptyset, 4\emptyset CHARS. = 1
ØØØØ
                 *
                       BIT 1 .... PRINTING = \emptyset, GRAPHICS = 1
ØØØØ
                       DRIVER STATUS WORD LOCATED AT FC57H
                 *
0000
                 *
                       STATWRD POINTED TO BY HL REGISTER PAIR
0000
ØØØØ
ØØØØ
                 *
                          JUMP TABLE ENTRY POINTS
0000
                 *
0000
                 *
                       ECØØH ..... COLD START
0000
                       ECØ3H ..... DATA ENTRY (DATA IN REG. C)
                 *
0000
                       EC06H ..... STATUS CHECK (RETURNS STATUS IN REG. A)
                 *
0000
                 *
                       RETURNS "FFH" IN REG. A WHEN READY FOR INPUT
0000
                       RETURNS "00H" IN REG. A WHEN PRINTER IS NOT INITIALIZED
ØØØØ
                 *
ØØØØ
0000
                 .
0000
0000
                                  ORG
                                          BASE
0000
                                                           ; coldstart initialization
ECØØ C3ØØEE
                 CSTART
                                  JMP
                                          INIT
ECØ3
                                                           ; warmstart data entry
ECØ3 C3ØEEC
                 WSTART
                                  JMP
                                          CTRLCK
ECØ6
ECØ6 3A58FC
                 STATUS
                                  LDA
                                          INITFLAG
                                                           ; test initflag
ECØ9 FEFF
                                  CPI
                                          ØFFH
                                  RZ
                                                           ; Reg. A=FFH, ready
ECØB C8
                                                           ; Reg. A=00H, not ready
ECØC AF
                                  XRA
                                          A
ECØD C9
                                  RET
ECØE
                  CHECK FOR CONTROL CHARACTERS
ECØE
ECØE
                                                           ; point to driver status word
ECØE 2157FC
                 CTRLCK
                                  LXI
                                          H,STATWRD
                                                           ; point to control block
EC11 DD2150FC
                                  LXI
                                          X,DCB
EC15 3AFFEB
                                  LDA
                                          GRPHADD+3FFH
                                                           ; check to see if graph prom
EC18 FE47
                                  CPI
                                           *G*
                                                           ; is in place.
EC1A 2005
                                          CTRLCKØ
                                                           ; jump if not there
                                  JRNZ
EC1C CB4E
                                                           : else test the G/P flag
                                  BIT
                                          1,M
EC1E C200E8
                                          GRPHADD
                                                           ; and do graphics if bit=1
                                  JNZ
EC21 79
                                  MOV
                 CTRLCKØ
                                          A,C
EC22 E67F
                                          7FH
                                                           ; clear high bit
                                  ANI
EC24 FE7F
                                  CPI
                                                           ; ignore delete chars.
                                          7FH
EC26 C8
                                  RZ
EC27 4F
                                  MOV
                                          C,A
EC28 CB76
                                  BIT
                                          6,M
                                                           ; page length sequence ?
EC2A C2ØAED
                                  JNZ
                                          PAGESETØ
                                                           ; get two bytes for page length
EC2D CB5E
                                                           ; test escseq flag
                                  BIT
                                           3,M
                                                           ; escape sequence in progress
EC2F C2F8EC
                                          ESCCTRL
                                  JNZ
                                                          ; start of escape sequence ?
EC32 FE1B
                                  CPI
                                          1BH
                                                           ; jump if not
EC34 2003
                                  JRNZ
                                          CTRLCK1
EC36 CBDE
                                  SET
                                           3,M
                                                           ; escape sequence started
EC38 C9
                                  RET
EC39 FEØ9
                 CTRLCK1
                                  CPI
                                           Ø9H
                                                           ; see if T or tab
EC3B CACBED
                                  JZ
                                           TAB
EC3E FEØA
                                  CPI
                                           ØAH
                                                           ; see if J or lf
```

```
JRZ
EC4Ø 2844
                                          JPT0
                                                           ; see if ^L
EC42 FEØC
                                  CPI
                                          ØCH
EC44 CA62ED
                                  JΖ
                                          FORMFD
                                                            ; see if M or cr
EC47 FEØD
                                  CPI
                                          ØDH
EC49 2832
                                  JRZ
                                          PRNDR
                                                            ; return if unrecognized
EC4B FE2Ø
                                  CPI
                                          2ØH
                                                            ; ctrl. char.
EC4D D8
                                  RC
EC4E
                 * STORE DATA IN BUFFER
EC4E
EC4E
                                  JRZ
                                                            ; jump if space
EC4E 28Ø2
                 STBUF1
                                          STBUF2
EC5Ø CBD6
                                  SET
                                          2,M
                                                            ; set mtbuf flag
EC52 CDC6ED
                 STBUF2
                                  CALL
                                          CHARCHK
                                                           ; buffer full ?
EC55 2005
                                          STBUF4
                                                           ; jump if not
                                  JRNZ
EC57 CB66
                                                           ; test auto. flag
                 STBUF3
                                  BIT
                                           4. M
EC59 C8
                                  RZ
                                                            ; no auto, ignore data overflow
                                                            ; automatic print, lf, ff
EC5A 1821
                                  JR
                                          PRNDR
EC5C E5
                 STBUF4
                                  PUSH
                                                            ; save staturd ptr.
                                          H
                                  DCR
EC5D DD3504
                                          4 (X)
                                                            ; step the char. cntr.
EC6Ø 2A5BFC
                                  LHLD
                                          BUFPTR
EC63 71
                                  MOV
                                          M,C
                                                            ; store the data
EC64 23
                                  INX
                                                            ; step bufptr
                                          H
EC65 225BFC
                                  SHLD
                                          BUFPTR
                                                            ; restore statwrd ptr.
EC68 E1
                                  POP
                                          H
                                                           ; buffer now full ?
EC69 CDC6ED
                                  CALL
                                          CHARCHK
                                  JRZ
                                                           ; if yes, check auto. flag
EC6C 28E9
                                          STBUF3
EC6E 3A5DFC
                                  LDA
                                          TABONT
                                                            ; get the tab counter
                 TABSTEP
                                  DCR
EC71 3D
                                                            ; and step it.
EC72 325DFC
                                  STA
                                           TABONT
EC75 CØ
                                  RNZ
                                  MVI
EC76 3EØ8
                 TABSET
                                          A,8
                                                            ; reset to 8
EC78 325DFC
                                  STA
                                          TABONT
                                                            ; return with zero set
EC7B AF
                 ZRET
                                  XRA
                                          Α
EC7C C9
                                  RET
EC7D
                 * PRINT BUFFER
EC7D
EC7D
EC7D 1100FC
                                  LXI
                                                            ; set buffer pointer
                 PRNDR
                                          D, BUFFER
EC8Ø ED535BFC
                                  SDED
                                           BUFPTR
                                                            ; to front of buffer
EC84 CB56
                                  BIT
                                           2.M
                                                            ; test mtbuf flag
EC86 286Ø
                 JPTØ
                                  JRZ
                                          LINECK
                                                            ; if empty, just do a lf
EC88 DD7EØ9
                                  MOV
                                           A,9(X)
                                                            ; reset the char. cntr.
EC8B DD7704
                                  MOV
                                           4(X),A
EC8E ØEØØ
                                  MVI
                                           C.Ø
                                                            ; clear char. column cntr.
EC9Ø
                 * PRE-PRINT TIMING ALIGNMENT
EC9Ø
EC9Ø
EC9Ø DBØ4
                 RESET
                                  IN
                                           STAT
                                                            ; ready printer
EC92 E602
                                  ANI
                                           Ø2H
EC94 20FA
                                  JRNZ
                                          RESET
                                                            ; wait till home
EC96 CD75ED
                                  CALL
                                          RUN
                                                            ; send carriage
EC99 DBØ4
                 LHFL
                                  IN
                                           STAT
EC9B E602
                                  ANI
                                           Ø2H
EC9D 28FA
                                  JRZ
                                           LHFL
                                                            ; wait while home
EC9F
EC9F
                 * LOOK UP CODE FOR CHARACTER IN FONT TABLE
EC9F
                 * ADDRESS = (CHAR.*5)+(COLUMN)+(FONT TBL. BASE)-(160)
```

ECF8

```
EC9F
                                                            ; save statwrd pointer
EC9F E5
                 LOCKUP
                                  PUSH
                                          H
                                                            : save character count
                                          D
                                  PUSH
ECAØ D5
                                          BUFPTR
                                  LHLD
ECAl 2A5BFC
                                                            : get char. from buffer
                                  MOV
                                          E,M
ECA4 5E
                                  MOV
                                          L,E
ECA5 6B
                                  MVI
                                          H,Ø
ECA6 2600
                                  MOV
                                          D,H
ECA8 54
                                                            ; char. * 2
                                  DAD
                                          H
ECA9 29
                                                            ; char. * 4
ECAA 29
                                  DAD
                                          Н
                                                            ; char. * 5
                                  DAD
                                          D
ECAB 19
ECAC 59
                                  VOM
                                          E,C
                                                            ; + column #
                                  DAD
                                          D
ECAD 19
                                  XCHG
ECAE EB
                                  LHLD
                                           FONTADD
ECAF 2A5ØFC
                                                            ; + font tbl. base
ECB2 19
                                  DAD
                                          D.ØFF6ØH
ECB3 1160FF
                                  LXI
                                                            ; - 160
ECB6 19
                                  DAD
                                          D
ECB7 7E
                                                            ; get code
                                  MOV
                                          A,M
                                                            : fix code
ECB8 ØF
                                  RRC
ECB9 D1
                                  POP
                                          D
ECBA E1
                                  POP
                                           H
ECBB
                                  VOM
ECBB 47
                                           B,A
                                                            ; print a column
ECBC CD4CED
                                  CALL
                                           TIMEPLS
                 PRNLPØ
                                                            ; test 80/40 flag
                                  BIT
ECBF CB46
                                           Ø.M
                                                            ; jump if 80
                                           PRNLP1
ECC1 28Ø3
                                  JRZ
                                           TIMEPLS
ECC3 CD4CED
                                  CALL
                                                            ; 40, so print again
ECC6 ØC
                 PRNLP1
                                  INR
                                           C
                                                            ; step char. col. cntr.
ECC7 79
                                  MOV
                                           A,C
                                  CPI
ECC8 FEØ5
                                           5
                                                            ; print letter's next column
                                           LOOKUP
                                   JRC
ECCA 38D3
ECCC Ø6ØØ
                                  MVI
                                           B,Ø
ECCE FEØ6
                                  CPI
                                           PRNLPØ
                                                            ; send a space
ECDØ 2ØEA
                                   JRNZ
                                           C,B
ECD2 48
                                  MOV
                                                            ; clear char. col. cntr.
                                                            ; save statwrd ptr.
ECD3 E5
                                  PUSH
                                           H
ECD4 2A5BFC
                                  LHLD
                                           BUFPTR
                                                            ; step the buffer pointer
ECD7 23
                                   INX
                                           H
                                           BUFPTR
ECD8 225BFC
                                   SHLD
ECDB DD3504
                                   DCR
                                           4(X)
                                                            ; step the char. cntr.
ECDE El
                                   POP
                                           H
ECDF CDC6ED
                                   CALL
                                           CHARCHK
                                                            ; check the char. cntr.
ECE2 20BB
                                   JRNZ
                                           LOOKUP
                                                            ; print next until done
ECE4
                                           4,M
                                                            ; test auto. flag
ECE4 CB66
                 AUTOLF
                                   BIT
                                           JPT1
                                                            ; clear buffer if no auto.
ECE6 285D
                                   JRZ
ECE8 CD9EED
                                   CALL
                                           LFCTRL
                                                            ; do one linefeed
                  LINECK
 ECEB CB66
                                   BIT
                                                            ; test auto. flag
                                           4,M
                                                            ; clear buffer if no auto.
                                           JPT1
ECED 2856
                                   JRZ
                                                            ; automatic formfeed needed ?
 ECEF CDD8ED
                                   CALL
                                           EOP
                                                            ; within 6 lines ?
 ECF2 FEØ7
                                   CPI
                                           7
 ECF4 304F
                                   JRNC
                                           JPT1
                                                            ; if no, go clear buffer
 ECF6 186A
                                           FORMFD
                                                            ; else do a formfeed.
                                   JR
 ECF8
 ECF8
                  * ESCAPE SEQUENCE CONTROL CHARACTER CHECK
```

•					
ECF8 CB9E	ESCCTRL	RES	3,M		; reset escseq flag
ECFA FE41		CPI	'A'		A ?
ECFC 2005		JRNZ	ESC1		
ECFE 7E		MOV	A,M		; test auto. flag
ECFF EE1Ø		XRI	1ØH		; toggle auto. flag
EDØ1 77		MOV	M,A	•	,
EDØ2 C9		RET	ri pri		
	DCG1	CPI	'F'		; F ?
EDØ3 FE46	ESC1				; E .
EDØ5 202C	•	JRNZ	ESC2		from longth and flog
EDØ7 CBF6		SET	6,M		; set form length seq.flag
EDØ9 C9		RET	0.00		
EDØA D63Ø	PAGESET0	SUI	3ØH		; adjust for numeral
EDØC CB6E		BIT	5,M		; first or second byte ?
EDØE 2011		JRNZ	PAGESET2		; jump if second byte
ED1Ø FEØA		CPI	10		; need alpha adjust too ?
ED12 3802		JRC	PAGESET1		; jump if not, else
ED14 D607		SUI	7		; do an alpha <i>a</i> djust.
ED16					; multiply high byte by 10
ED16 87	PAGESET1	ADD	A		$A = (\#)^*2$
ED17 4F		MOV	C,A		; C = (#) *2
ED18 87		ADD	A		A = (#) *4
ED19 87		ADD	A		A = (#) *8
EDIA 81		ADD	č		A = (#) * 10
ED1B DD77ØE		MOV	14 (X) ,A		; hold in temp
EDIE CBEE		SET			· • · · · · · · · · · · · · · · · · · ·
ED2Ø C9		RET	5,M		; low byte next
	DA COCOMO		0 14/3/		
ED21 DD4EØE	PAGESET2	VOM	$C_{\bullet}14(X)$; get temp value
ED24 81		ADD	C		; A = lines/page
ED25 CBB6		RES	6,M		; reset form length flags
ED27 CBAE		RES	5,M		
ED29 FEØ1	•	CPI	1		; see if page size is
ED2B D8		RC			; within allowable
ED2C FE82		CPI	13Ø		; limits.
ED2E DØ		RNC			; (Ø <ps<130)< td=""></ps<130)<>
ED2F DD7702		MOV	2(X),A		; store good value at
ED32 C9		RET			; NLINE and return.
ED33 FE47	ESC2	CPI	'G''		; G ?
ED35 2003		JRNZ	ESC3		•
ED37 CBCE		SET	1,M		; select the graph prom
ED39 C9		RET	,		, ,
ED3A FE4E	ESC3	CPI	'N'		; N ?
ED3C 2009		JRNZ	ESC4		F
ED3E 7E		MOV	A,M		; test 80/40 flag
ED3F EEØ1		XRI	ØlH		; toggle 80/40 flag
ED41 77					, toggie ob/40 rrag
ED42 CDF5ED	MINITE	MOV CALL	M,A MDSEL		and only manage CITA DATEM
ED45 183C	MDCHK				; select proper CHARNUM
	JPT1	JR	CLRBUF		
ED47 FE54	ESC4	CPI	'T'		; T ?
ED49 281F		JRZ	CLEAR		; set top of form
ED4B C9		RET			; unrecognized escape sequence
ED4C	*				
ED4C	* PRINT ONE COI	LUMIN			
ED4C	*				
ED4C DBØ4	TIMEPLS	IN	STAT		
ED4E E6Ø1		ANI	ØlH		; wait for dot timer
ED50 20FA		JRNZ	TIMEPLS		; to go low
ED52 DBØ4	TPLS	IN	STAT		; now wait for

```
; rising edge then
                                  ANI
                                          ØlH
ED54 E601
                                                            ; print a column by
ED56 28FA
                                          TPLS
                                  JRZ
                                                            ; sending the data
                                  MOV
                                          A,B
ED58 78
                                                            ; out while pulsing
ED59 F680
                                          8ØH
                                  ORI
                                                            ; strobe bit (B7).
                                  OUT
                                          DATA
ED5B D3Ø5
                                           7FH
ED5D E67F
                                  ANI
                                  OUT
                                          DATA
ED5F D3Ø5
                                  RET
ED61 C9
ED62
                   FORMFEED MODULE
ED62
ED62
                                                            ; calculate # of lf's
ED62 CDD8ED
                 FORMED
                                  CALL
                                           EOP
                                                            ; do one linefeed
                 TOF
                                  CALL
                                           LFCTRL
ED65 CD9EED
                                                            ; jump if not done, else ....
                                  JRNZ
                                           TOF
ED68 20FB
ED6A
                 * CLEAR BUFFER AND FLAGS
ED6A
ED6A
                                                            ; clear buffer
                                  CALL
                                           CLRBUF
ED6A CD83ED
                 CLEAR
                                                            ; clear linecntr.
                                  STA
                                           LICHT
ED6D 3255FC
ED7Ø
ED7Ø
                   CARRIAGE HOMED ?
ED7Ø
ED7Ø DBØ4
                 CARHOME
                                  IN
                                           STAT
                                           Ø.2H
ED72 E602
                                  ANI
                                                            ; return if homed, else ...
                                  RZ
ED74 C8
ED75
ED75
                   SEND CARRIAGE ACROSS PAPER
ED75
                                  LDA
                                                            ; get phase word and
ED75 3A56FC
                 RUN
                                           PHASE
                                           Ø6H
                                                            ; turn on motor by setting
ED78 E606
                                  ANI
                                  ORI
                                           Ø9H
                                                            ; motor flip-flop. save
ED7A F609
ED7C D3Ø4
                                  OUT
                                           STAT
                                                            ; phase information.
                                                            ; home signal resets f.f.
ED7E E607
                                  ANI
                                           Ø7H
ED8Ø D3Ø4
                                  OUT
                                           STAT
                                                            ; whichs shuts off motor
                                  RET
ED82 C9
ED83
                   CLEAR BUFFER&SPACES, RESET CHARONT. AND BUFFTR
ED83
ED83
ED83 E5
                 CLRBUF
                                  PUSH
                                                            ; save statwrd ptr.
                                           H
                                           A,9(X)
ED84 DD7EØ9
                                  MOV
ED87 DD7704
                                  MOV
                                           4(X),A
                                                            ; reset char.cntr.
ED8A 2100FC
                                  LXI
                                           H.BUFFER
ED8D 225BFC
                                  SHLD
                                           BUFPTR
                                                            ; reset buffer pointer
ED90 0650
                                  IVM
                                           B,80
                                                            ; clear 80 spaces
ED92 ØE2Ø
                                  MVI
                                           C, 20H
ED94 71
                 CLRBØ
                                  MOV
                                           M,C
                                                            ; put into buffer
ED95 23
                                   INX
                                           H
ED96 10FC
                                           CLRBØ
                                   DJNZ
ED98 E1
                                   POP
                                           H
                                                            ; restore statwrd ptr.
ED99 CB96
                                   RES
                                                            ; reset mtbuf flag (empty buffer
                                           2.M
ED9B C376EC
                                   JMP
                                           TABSET
                                                            ; reset tab counter
ED9E
ED9E
                   LINEFEED MODULE
ED9E
ED9E F5
                  LFCTRL
                                   PUSH
                                           PSW
                                                            ; save the linefeed cntr.
ED9F DD4E03
                                   MOV
                                           C,3(X)
                                                            ; get # of pulses
                 LINEFD
                                   \mathbb{C}X
EDA2 2B
                                           H
                                                            ; point to phase word
```

```
MOV
                                                        : get phase info.
EDA3 7E
                                         A,M
EDA4 ØF
                                 RRC
EDA5 47
                                 MOV
                                          B,A
EDA6 78
                STPLP
                                 MOV
                                         A,B
EDA7 Ø7
                                 RLC
EDA8 47
                                 MOV
                                          B,A
EDA9 E606
                                          Ø6H
                                 ANI
                                          STAT
EDAB D3Ø4
                                 OUT
EDAD
EDAD
                * DELAY REQUIRED BETWEEN PULSES
EDAD
                                          D,0180H
EDAD 118001
                DELAY
                                 LXI
EDBØ 1B
                DLAY
                                 DCX
                                          D
EDB1 7A
                                          A,D
                                 MOV
EDB2 B3
                                 ORA
                                          E
EDB3 20FB
                                 JRNZ
                                          DLAY
                                          C
                                 DCR
EDB5 ØD
                                                          ; all pulses sent ?
EDB6 2ØEE
                                 JRNZ
                                          STPLP
                                                           ; save current phase word
EDB8 7Ø
                                 MOV
                                          M.B
EDB9 3C
                                 INR
                                          Α
                                 OUT
                                          STAT
                                                          ; hold stepping motor
EDBA D304
EDBC 1D
                                                          ; between linefeed delay
                DLP
                                 DCR
                                          E
                                          DLP
                                                          ; to allow cap, to charge
EDBD 20FD
                                 JRNZ
EDBF
                * STEP LINE COUNTER
EDBF
EDBF
EDBF 2B
                                                           ; point to line cntr.
                                 DCX
                                          H
EDCØ 34
                                  INR
                                          M
                                                           ; now step it.
EDC1 23
                                                           ; restore ptr. to statwrd
                                  INX
                                          H
EDC2 23
                                  INX
                                          H
EDC3 F1
                                 POP
                                          PSW
                                                          ; restore the linefeed cntr.
EDC4 3D
                                 DCR
                                          Α
                                                           ; and step it.
EDC5 C9
                                 RET
EDC6
EDC6
                 * FULL BUFFER CHECK
EDC6
EDC6 DD7EØ4
                 CHARCHK
                                 MOV
                                          A, 4(X)
                                                          ; get the char. cntr.
EDC9 B7
                                  ORA
                                          A
                                                           ; zero flag set if buffer
EDCA C9
                                 RET
                                                           ; is full
EDCB
EDCB
                 * TAB MODULE
EDCB
                                          TABONT
EDCB 3A5DFC
                 TAB
                                  LDA
                                                           ; get tab counter
EDCE 47
                                 MOV
                                          B,A
                                          C, ' '
EDCF ØE2Ø
                                 IVM
                                                           ; spaces
EDD1 CD52EC
                                  CALL
                                          STBUF2
                                                           ; store in buffer
                 TAB1
                                                           ; return if end of line or page
EDD4 C8
                                 RZ
EDD5 10FA
                                 DJNZ
                                          TAB1
EDD7 C9
                                  RET
EDD8
                 * END OF PAGE MODULE
EDD8
EDD8
EDD8 DD7EØ2
                 EOP
                                 MOV
                                          A, 2(X)
                                                           ; get lines/page (NLINE)
EDDB 47
                                 MOV
                                          B.A
EDDC 3A55FC
                 EOP1
                                 LDA
                                          LICHT
                                                          ; get line counter
EDDF B8
                                                           ; is LNCNT < NLINE ?
                                  CMP
EDEØ 38Ø8
                                 JRC
                                          EOP2
                                                           ; jump if so.
```

```
; LNCNT - NLINE
                                 SUB
                                          В
EDE2 90
                                                           ; at page top ?
                                          EOP3
                                 JRZ
EDE3 28ØC
                                          LNCNT
                                 STA
EDE5 3255FC
                                                           ; check again.
                                          EOP1
                                 JR
EDE8 18F2
                                                           ; get corrected line cntr.
EDEA 3A55FC
                 EOP2
                                  LDA
                                          LINCHT
                                 MOV
                                          C_{r}A
EDED 4F
                                          A,B
                                 MOV
EDEE 78
                                          С
                                                           ; NLINE - LNCNT
                                  SUB
EDEF 91
                                  RNZ
EDFØ CØ
                                                           ; at top of page, destroy
                                  POP
EDF1 E1
                 EOP3
                                                           ; ret. add., clr. buffer
                                          CLEAR
EDF2 C36AED
                 JPT2
                                  JMP
EDF5
                      CHOOSE PROPER COLDEC (80 CHARS. OR 40 CHARS.)
EDF5
EDF5
                                                           ; set for 80
                                  IVM
                                          A,80
EDF5 3E5Ø
                 MDSEL
                                                           ; now test STATWRD
EDF7 CB46
                                  BIT
                                          Ø,M
                                                           ; jump if 80
EDF9 2801
                                  JRZ
                                          MDSEL10
                                                           ; set for 40
                                  RRC
EDFB ØF
                                          9(X),A
                 MDSEL10
                                  MOV
EDFC DD7709
                                  RET
EDFF C9
EEØØ
                 * INITIALIZE ... SET: POINTERS, FLAGS, COUNTERS
EE00
                 * SELECT: ON-CHIP FONT TABLE, 80 CHAR. MODE
EEØØ
                 * NO AUTO FUNCTION, CLEAR BUFFER
EE00
EE00
                                  XRA
                 INIT
EEØØ AF
                                                           ; clear data latches
                                  OUT
                                          DATA
EEØ1 D3Ø5
EEØ3 3C
                                  INR
                                          Α
                                                           ; holding current
EEØ4 D3Ø4
                                  OUT
                                          STAT
                                  LXI
                                          H, INITIBL
EEØ6 211AEE
EE09 1150FC
                                  LXI
                                          D,DCB
                                                           ; load init. data
                                          B,11
                                                           ; into ram (11 bytes)
                                  LXI
EEØC Ø1ØBØØ
EEØF EDBØ
                                  LDIR
                                  LXI
                                          X,DCB
EE11 DD2150FC
                                                           ; driver status word
                                  LXI
                                          H.STATWRD
EE15 2157FC
                                  JR
                                           JPT2
EE18 18D8
EELA
                 * DEFAULT VALUES FOR INITIALIZATION
EELA
EELA
                                                            ; on-chip font table
                 INITIBL
                                  DW
                                           FONTIBL
EELA 25EE
                                                            ; lines per page
EE1C 42
                                  DB
                                           66
EEID 19
                                  DB
                                           25
                                                            ; pulses per linefeed
                                           80
                                                           : 80 char. mode
EE1E 50
                                  DB
                                                           ; clear line cntr.
EELF ØØ
                                  DB
                                           ØØH
                                                           ; preset phase word
EE2Ø 99
                                           99H
                                  DB
                                                          ; driver status word
EE21 00
                                  DB
                                           ØØH
                                           ØFFH
EE22 FF
                                  DB
                                                          ; initialization flag
                                                           ; 80 char. mode
                                           8Ø
EE23 50
                                  DB
                                           ØØH
                                                           ; graph status word
EE24 ØØ
                                  DB
EE25
                  * DOT LOOK UP TABLE
EE25
EE25
EE25 ØØ
                  FONTIBL
                                  DB
                                           Ø
                                                            ; SPACE
EE26 ØØ
                                  DB
                                           Ø
EE27 ØØ
                                           Ø
                                  DB
EE28 00
                                  DB
                                           Ø
 EE29 ØØ
                                  DB
                                           a
```

		A				
EE2A	00	DB	Ø		;	į
EE2B		DB	Ø			
EE2C		DB	ØBEH			
EE2D		DB	Ø			
EE2E		DB	Ø			
				1		17
EE2F		DB	Ø		į	
EE3Ø	Ø6	DB	Ø6H			
EE31	ØØ	DB	Ø			
EE32	Ø6	DB	Ø6H			
EE33	ØØ	DB	Ø			1
EE34	28	DB	28H		ĵ	#
EE35	FE	DB	ØFEH			
	28	DB	28H			
EE37		DB	ØFEH			
	28	DB	28H			
EE39		DB	48H		ĵ	\$
EE3A		DB	54H		s	7
EE3B		DB	ØFEH			
EE3C		DB	54H			
EE3D		DB	24H			
EE3E		DB	46H ·		7	ફ
EE3F	26	DB	26H			
EE4Ø	10	DB	10H			
EE41	C8	DB	ØC8H			
EE42		DB	ØC4H			
EE43		DB	6CH		•	&
EE44		DB	92H		,	_
		DB	ØACH			
EE45						
EE46	40	DB	4ØH			
EE47		DB	ØAØH			
EE48	ØØ	DB	Ø		Î	•
EE49		DB .	Ø			
EE4A		DB	ØEH			
EE4B		DB	Ø			
EE4C	00	DB	Ø			
EE4D	ØØ	DB	Ø		ĵ	(
EE4E	38	DB	38H		-	
EE4F		DB	44H			
EE5Ø		DB	82H			
EE51	ØØ	DB	Ø			
EE52		DB	Ø)
EE53		DB	82H		,	,
EE54						
		DB	44H			
EE55		DB	38H			
EE56		DB	Ø			
EE57		DB	5 4 H		ĵ	*
EE58	38	DB	38H			
EE59		DB	7CH			
EE5A		DB	38H			
EE5B		DB	54H			
EE5C	10	DB	1 <i>0</i> H		;	+
EE5D		DB	1ØH			
EE5E	7C	DB	7CH			
EE5F		DB	1ØH			
EE6Ø		DB	1ØH			
EE61		DB	Ø		_	
EE62			80H		į	F
كاتات	OD	DB	מאט			

VS1.3

EE63	60	DB	6ØH		
EE64			Ø		
		DB DD			
EE65		DB	Ø		
EE66		DB	1ØH	î	-
EE67		DB	1ØH		
EE68	10	DB	1ØH		
EE69	10	DB	10H		
EE6A		DB	1ØH		
EE6B		DB	Ø		
				ĵ	•
EE6C		DB	Ø		
EE6D		DB	8ØH		
EE6E	ØØ	DB	Ø		
EE6F	ØØ	DB	Ø ⁻		
EE7Ø	CØ	DB	ØCØH	;	/
EE71	20	DB	2ØH	,	•
EE72	10	DB	1ØH		
EE73	Ø8				
		DB	Ø8H		
EE74		DB	Ø6H		
	7C	DB	7CH	ï	Ø
EE76	A2	DB	ØA2H		
EE77	92	DB	92H		
EE78	8A	DB	8AH		
EE79	7C	DB	7CH		
EE7A		DB	Ø		1
EE7B				ï	.1
		DB	84H		
EE7C		DB	ØFEH		
EE7D		DB	8ØH		
EE7E		DB	Ø		
EE7F	C4	DB	ØC4H	;	2
EE8Ø	A2	DB	ØA2H	•	
EE81	92	DB	92H		
	92	DB	92H		
	8C	DB .			
EE84	44		8CH		_
		DB	44H	÷	3
EE85		DB	82H		
EE86		DB	92H		
EE87		DB	9AH		
EE88	66	DB	66H		
EE89	3Ø	DB	3ØH	:	4
EE8A	28	DB	28Н	•	_
EE8B	24	DB	24H		
EE8C	FE	DB	ØFEH		
EE8D	20	DB	2ØH		
EE8E	4E				_
		DB	4EH	î	5
EE8F	8A	DB	8AH		
EE9Ø	8A	DB	8AH		
EE91	8A	DB	8ah		
EE92	72	DB	72H		
EE93	78	DB	78H	•	6
EE94	94	DB	94H	•	-
EE95		DB	92H		
EE96		DB	92H		
EE97		DB	62H		
EE98					_
EE99		DB DB	ØC2H	į	7
		DB	22H		
EE9A		DB	12H		
EE9B	ØА	DB	ØAH		

	•				
EE9C	Ø6	DB	Ø6H		
EE9D	6C	DB	6CH	; 8	
EE9E		DB	92H	•	
EE9F		DB	92H		
	92	DB DB	92H		
EEAl		DB ·	6CH		
				-0	
EEA2		DB	8CH	;9	
EEA3		DB	92H		
EEA4		DB	92H		
EEA5		DB	52H		
EEA6		DB	3CH		
EEA7		DB	Ø	; :	
EEA8	ØØ	DB	Ø		
EEA9		DB	28H		
EEAA	ØØ	DB	Ø		
EEAB	ØØ	DB	Ø		
EEAC	00	DB	Ø	; ;	
EEAD	80	DB	8ØH		
EEAE		DB	68H		
EEAF		DB	Ø		
EEBØ		DB	Ø		
EEB1	10			. ,	
		DB	1ØH	; <	
EEB2		DB	.28H		
EEB3		DB	44H		
EEB4		DB	82H		
EEB5		DB	Ø		
EEB6	28	DB	28H	; =	;
EEB7	28	DB	28H		
EEB8	.28	DB	28H		
EEB9	28	DB	28H		
EEBA		.DB	.28H		
EEBB		DB	. Ø	; >	
EEBC		DB	82H	•	
EEBD		DB	44H		
EEBE		DB	28H		
EEBF		DB	1ØH		
EECØ		DB	Ø4H	; ?	,
EEC1		DB DB	Ø2H	<i>;</i> •	
EEC2		DB	ØB2H		
EEC3		DB	ØAH		
EEC4		DB	Ø4H	_	
EEC5		DB	7CH	; @	į
EEC6		DB	82H		
EEC7		DB	ØBAH		
EEC8	92	DB	92H		
EEC9	8C	DB	8CH		
EECA	F8	DB	ØF8H	; A	i.
EECB	24	DB	24H	•	
EECC	.22	DB	22H		
EECD		DB	24H		
EECE		DB	ØF8H		
EECF		DB	ØFEH	; B	
EEDØ		DB	92H	, .	
EED1		DB	92H		
EED2		DB	92H		
EED3		DB DB	6CH		
EED3				. ~	,
にこしせ	,,	DB	7CH	; C	

EED5	82	DB	82H		
EED6		DB	82H		
EED7		DB	82H		
EED8	44	DB	44H		
EED9		DB	ØFEH	î	D
EEDA		DB	82H		_
EEDB		DB	82H		
EEDC		DB DB	82H		
	7C	DB DB	7CH		
					.
EEDE	FE	DB DD	ØFEH	ř	E
EEDF		DB DB	92H		
EEEØ	92	DB DD	92H		
	82	DB	82H		
	82	DB	82H		-
EEE3		DB	ØFEH	î	F
	12	DB	12H		
EEE5	12	DB	12H		
	Ø2	DB	Ø2H		
EEE7	Ø2	DB	Ø2H		
EEE8	7C	DB	7CH	î	G
EEE9	82	DB	82H		
EEEA	82	DB	82H		
EEEB	A2	DB	ØA.2H		
EEEC	64	DB	64H		
EEED	FE	DB	ØFEH	;	H
EEEE	10	DB	1 <i>0</i> H	•	
EEEF	10	DB	1ØH		
EEFØ	10	DB	1ØH		
EEF1		DB	ØFEH		
EEF2		DB	Ø		I
EEF3		DB	82H	,	
EEF4		DB	ØFEH		
EEF5		DB	82H		
EEF6		DB	Ø		
EEF7		DB DB	.4ØH		J
EEF8		DB DB	8ØH	ê	U
EEF9			8ØH		
EEFA		DB DB	80H		
EEFB					
EEFC		DB	7EH		**
EEFD	10	DB DB	ØFEH	î	K
EEFE	28		1ØH		
EEFF		DB DB	28H		
		DB	44H		
EFØØ	82	DB	82H		
EFØ1		DB	ØFEH	ĵ	L
		DB	8ØH		
EFØ3		DB	8ØH		
EFØ4		DB	8ØH		
EFØ5		DB	8ØH		
EFØ6		DB	ØFEH	;	M
EFØ7	Ø4	DB	Ø4H		
EFØ8	18	DB	18H		
EFØ9		DB	Ø4H		
EFØA	FE	DB	ØFEH		
EFØB	FE	DB	ØFEH	;	N
EFØC	Ø8	DB	Ø8H	-	
EFØD	10	DB	1ØH		

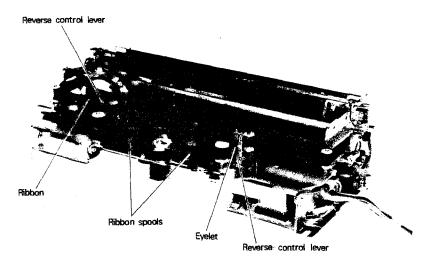
EFØE	20	DB	2ØH		
	FE	DB	ØFEH		
EF1Ø	7C	DB	7CH	;	0
	82	DB	82H		
EF12		DB	82H		
EF13		DB	82H		
	7C	DB	7CH		_
EF15		DB	ØFEH	;	ħ
	12	DB	12H		
EF17		DB	12H		
	12	DB	12H		
EF19		DB DB	ØCH 7CH		\sim
EF1A EF1B	7C 82	DB DB	82H	į	Q
EF1C		DB	ØA2H		
EFID		DB DB	42H		
EFLE		DB DB	ØBCH		
EFIF		DB	ØFEH	•	R
	12	DB DB	12H	,	••
	32	DB	32H		
	52	DB	5.2H		
EF23		DB	8CH		
	44	DB	44H	;	S
EF25		DB	8AH		
EF26		DB	92H		
EF27		DB	ØA2H		
EF28	44	DB	44H		
EF29	Ø2	DB	Ø2H	;	T
EF2A	Ø2	DB	Ø2H		
EF2B	FE	DB	ØFEH		
EF2C	Ø2	DB	Ø2H		
EF2D	Ø2	DB	Ø2H		
EF2E	7E	DB	7EH	;	U
EF2F	8Ø	DB	8ØH		
EF3Ø	80	DB	8ØH		
EF31	8Ø	DB	8ØH		
EF32	7E	DB	7EH		
EF33	•	DB	ØEH	i	V
EF34		DB	30H		
EF35		DB DB	ØCØH		
EF36		DB PC	3ØH		
EF37 EF38		DB DB	Øeh Øfeh	_	147
EF39		DB	иг сп 4 <i>0</i> H	7	W
EF3A		DB.	3ØH		
EF3B		DB	4ØH		
EF3C		DB DB	ØFEH		
EF3D		DB	ØC6H		X
	28	DB	28H	,	4 %
EF3F		DB	1ØH		
EF4Ø		DB	28H		
EF41		DB	ØC6H		
EF42		DB	Ø6H	;	Y
EF43		DB	Ø8H	•	
EF44		DB	ØFØH		
EF45		DB	Ø8H		
EF46	Ø6	DB	Ø6H		

m *	A.156m	3 /	•
PA	GE.	-16	

	·				
EF47		DB	ØC2H	;	Z
EF48		DB	ØA2H		
EF49		DB	92H		
EF4A		DB	8AH		
EF4B		DB	86H		
EF4C		DB	ØFEH	î	
EF4D	FE	DB	ØFEH		
EF4E	82	DB	82H		
EF4F	82	DB	82H		
EF5Ø	82	DB	82H		
EF51	Ø6	DB	Ø6H	;	BACKSLASH
EF52	Ø8	DB	Ø8H	•	
EF53	10	DB	1ØH		
EF54		DB	2ØH		`
EF55		DB	ØCØH		
EF56		DB	82H	;	1
EF57		DB	82H	,	4
EF58		DB	82H		
EF59		DB '	ØFEH		
EF5A		DB	ØFEH		•
EF5B		DB	2ØH		^
EF5C		DB DB	10H	į	
EF5D		DB	Ø8H		
	10				
EF5F		DB DD	1ØH		
EF60		DB DB	20H		IBIDDOL TAID
		DB DD	8ØH	;	UNDERLINE
EF61		DB ~~	8ØH		
EF62 EF63		DB	8ØH		
		DB DB	8ØH		
EF64		DB DD	8ØH		•
EF65		DB	Ø	;	•
EF66		DB	Ø.2H		
EF67		DB	Ø4H		
EF68		DB	Ø8H		
EF69		DB	Ø		
EF6A		DB	ØCØH	;	a
EF6B		DB	ØA8H		
EF6C		DB	ØA8H		
EF6D		DB	ØA8H		
EF6E		DB	ØFØH		
EF6F		DB	ØFEH	ĵ	b ·
EF7Ø		DB	88H		
EF71		DB	88H		
EF72		DB	88H		
EF73		DB	ØFØH		
EF74		DB	7ØH	ï	С
EF75		DB	88H	•	
EF76		DB	88H		
EF77		DB	88H		
EF78		DB	88H		
EF79		DB	7ØH	î	đ
EF7A		DB	88H	•	
EF7B		DB	88H		
EF7C		DB	88H		
EF7D		DB	ØFEH		
EF7E		DB	7ØH	;	e
EF7F	A8	DB	ØA8H	•	

	· ·				
EF8Ø	Δ8	DB ·	ØA8H		
EF81		DB	ØA8H		
			3ØH		
	30	DB DB			£
	00	DB	0	;	f
	10	DB	1ØH		
EF85	FC	DB	ØFCH		
EF86	12	DB	1.2H		
EF87	ØØ	DB	Ø		
EF88	10	DB .	10H	;	g
EF89	A8	DB	ØA8H		
EF8A		D/B	ØA8H		
EF8B		DB	ØA8H		
	78	DB	78H		
	FE	DB	ØFEH		h
EF8E		DB	Ø8H	,	7.7
			08H		
EF8F		DB DB			
	Ø8 	DB	Ø8H		
EF91		DB	ØFØH		
EF92	00	DB	Ø	î	î
EF93	88	DB	88H		
EF94	FA	DB	ØFAH		
EF95	8Ø	DB	8ØH		
EF96	ØØ	DB	Ø		
EF97		DB	40H	;	j
EF98		DB	8ØH		-0
EF99		DB	8ØH		
EF9A		DB DB	7AH		
EF9B		DB DD	Ø		1
EF9C		DB	Ø	î	k
EF9D		DB	ØFEH		
EF9E	20	DB	.2ØH		
EF9F		DB	5ØH		
EFAØ		DB	88H		
EFA1	ØØ	DB	Ø	7	1
EFA2	82	DB	82H		
EFA3	FE	DB	ØFEH		
EFA4	8Ø	DB	8ØH		
EFA5	ØØ	DB	Ø		
EFA6	F8	DB	ØF8H	:	m
EFA7		DB	Ø8H	•	
EFA8		DB	ØFØH		
EFA9		DB	Ø8H		
EFAA		DB	ØFØH		
EFAB				_	_
		DB	ØF8H	Ī	n
EFAC		DB	1ØH		
EFAD		DB	Ø8H		
EFAE		DB	Ø8H		
EFAF		DB	ØFØH		
	70	DB	7ØH	;	0
EFB1	88	DB	88H		
EFB2	88	DB	88H		
EFB3	88	DB	88H		
EFB4		DB	7ØH		
EFB5		DB	ØF8H	;	p
EFB6		DB	28H	,	1
EFB7		DB DB	28H		
EFB8		DB	28H		
ن ساسد	and a	فسافية	2011		

DOT	MATRIX	PRINTER	DRIVER	VS1.3
1	ruyy / / / / / /			A CO T P O


PAGE 1	.8
--------	----

				·
DOT MATRIX PRINTER DRIVER	VS1.3			PAGE
EFB9 10 EFBA 10 EFBB 28 EFBC 28 EFBD 28	DB DB DB DB DB	10H 10H 28H 28H 28H	; q	
EFBE F8 EFBF ØØ EFCØ F8 EFC1 1Ø EFC2 Ø8 EFC3 Ø8	DB DB DB DB DB	ØF8H Ø ØF8H 1ØH Ø8H Ø8H	; r	
EFC4 90 EFC5 A8 EFC6 A8 EFC7 A8 EFC8 48	DIB DIB DIB DIB DIB	90H 0A8H 0A8H 0A8H 48H	; s	
EFC9 ØØ EFCA Ø8 EFCB 7C EFCC 88 EFCD ØØ EFCE 78	DB DB DB DB	Ø Ø8H 7CH 88H Ø	; t	
EFCF 80 EFD0 80 EFD1 40 EFD2 F8 EFD3 38	DB DB DB DB DB	78H 8ØH 8ØH 4ØH ØF8H 38H	; u	
EFD4 4Ø EFD5 8Ø EFD6 4Ø EFD7 38 EFD8 78	DB DB DB DB DB	30H 4ØH 8ØH 4ØH 38H 78H	; v	
EFD9 8Ø EFDA 6Ø EFDC 78 EFDD 88	DB DB DB DB	8ØH 6ØH 8ØH 78H	; W	
EFDE 50 EFDF 20 EFE0 50 EFE1 88	DB DB DB DB DB	88H 5ØH 2ØH 5ØH 88H	; x	
EFE2 98 EFE3 AØ EFE4 AØ EFE5 AØ EFE6 78	DB DB DB DB DB	98H ØAØH ØAØH ØAØH 78H	; У	
EFE7 88 EFE8 C8 EFE9 A8 EFEA 98 EFEB 88	DB DB DB DB DB	88H ØC8H ØA8H 98H 88H	; Z	
EFEC 00 EFED 10 EFEE 6C EFEF 82 EFF0 00	DB DB DB DB DB	Ø 1 ØН 6СН 82Н Ø	; {	
EFF1 00	DB	Ø	; LINE	

EFF2	ØØ		DB	Ø	
EFF3	FE		DB	ØFEH	
EFF4	ØØ		DB	Ø	
EFF5	ØØ		DB	Ø	
EFF6	ØØ		DB	Ø	; }
EFF7	82		DB	82H	
EFF8	6C		DB	6CH	
EFF9	10		DB	10H	
EFFA	ØØ		DB	Ø	
EFFB	Ø4		DB	Ø4H	; TILDE
EFFC	Ø2		DB	Ø2H	
EFFD	Ø4		DB	Ø4H	
EFFE	Ø8		DB	Ø8H	
efff	Ø4	FIN	DB	Ø4H	
FØØØ	EFFF =	DIS	EQU	BASE+3FFH	
FØØØ	0000 =	OVER	EQU	DIS-FIN	
FØØØ			PRT	'BYTES AVAILABLE	E = ", OVER
FØØØ	ØØ FF		FILL	OVER,ØFFH	

Setting of the ribbon:

1) Set the ribbon along the ribbon setting course shown in Photo 3.16.

CAUTION: See to it that the eyelet of the ribbon be situated between the ribbon detector lever and the ribbon spool.

Photo 3.16 Ribbon Setting Course

Check if the ribbon spools have been properly placed on the spool shafts.

Fig. 3.15: Setting of Ribbon Spool

3) Check if the ribbon is correctly engaged with the ribbon detector lever and the ribbon guide.

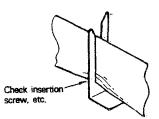
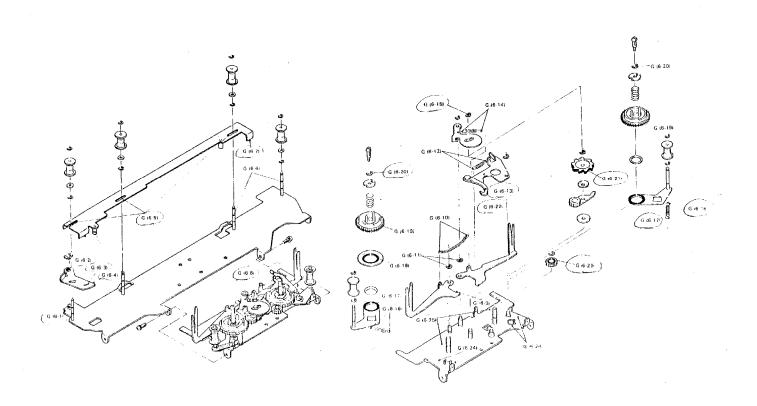


Fig. 3.16 Setting of Inked Ribbon

4) After setting the ribbon and conducting check 3) above, give two or three turns to the ribbon spools to see if the ribbon has been properly set or not.


CAUTION: In setting or removing the ribbon, be careful that printer parts be not stained with the ink contained in the ribbon.

(b) Type T:Continuous business form can be easily set in the printer by following the steps below.

	SETTING STEPS	ILLUSTRATION		
1.	Raise the tractor unit up (turn it toward the printer front side).			
2.	Insert the paper into the printer via the paper inlet located on the rear side of the printer.			
		Photo 3.11		
3.	After the leading end of the paper has come out of the printer, put the tractor unit back to its initial position (turn it toward the rear side of the printer). Then, raise the paper holders up, and	Paper holder		
	NOTE: The paper should be set on the tractor unit from the front side of the printer after its leading end has passed behind the tractor stay rod.	Tractor frame stay rod		
4.	After putting the paper holders back into position, loosen the lock lever and adjust the tension of paper in the direction of width. (Turning the lock lever toward the front of the printer causes it to	Photo 3.12		
5.	be loosened, and toward the rear, tightened.) Referring to the matching mark, position the paper by operating the paper feed knob.	Paper holder Lock lever		
		Photo 3.13		
		Matching mark Paper feed knob		
		Photo 3.14		

VENTOR MP INTERFACE

GRAPHIC, INC.
VELLAGE, CALIFORNIA

(Ribbon Unit)