VECTOR CRAPHLC ilC.

To start up a system using MDOS, go directly to first page of Chapter 2.

USER'S GUIDE TO
VECTOR GRAPHIC SYSTEMS

USING MDOS

MDOS System Diskette version 8.4

USER'S GUIDE
Revision A

July 26, 1979

Copyright 1979 Vector Graphic Inc.

Copyright 1979 by Vector Graphic Inc.
All rights reserved.

Disclaimer

Vector Graphic makes no representations or warrantles with respect to the
contents of this manual itself, whether or not the product 1t describes 1is
covered by a warranty or repalr agreement. Further, Vector Graphic reserves
the right to revise this publication and to make changes from time fo time
in the content hereof without obligation of Vector Graphic to notifly any
person of such revision or changes, except when an agreement to the contrary
exists.

Revisions

The date of release and revision letter of each page herein appears at the
bottom of each page. Changes {rom the previous revision are marked with a
bar in the margin. The revision letter such as A or B changes if the MANUAL
has been improved but the PRODUCT itself has not been significantly
modified. The date of release and revision letter on the Title Page
corresponds to that of the page most recently revised. When the product
itselfl is modified significantly, the product will get a new revision
number, as shown on the manual's title page, and the manual will revert to
revision A, as if it were treating a brand new product. EACH MANUAL SHOULD
ONLY BE USED WITH THE PRODUCT IDENTIFIED ON THE TITLE PAGE.

Rev. 8.4-4 7/26/79

REPAIR AGREEMENT

The Vector Graphic computer sold hereunder is sold "as is", with all
faults and without any warranty, either expressed or implied,
including any implied warranty of fitness for intended use or
merchantability. However, the above notwithstanding, VECTOR
GRAPHIC, INC., will, for a period of ninety (94) days following
delivery to customer, repair or replace any Vector Graphic computer
that is found to contain defects in materials or workmanship,
provided:

1. Such defect in material or workmanship existed at the
time the Vector Graphic computer left the VECTOR GRAPHIC, INC.,
factory; .
2. VECTOR GRAPHIC, INC., is given notice of the precise
defect claimed within ten (18) days after its discovery;

3. The Vector Graphic computer is promptly returned to
VECTOR GRAPHIC, INC., at customer's expense, for examination by
VECTOR GRAPHIC, INC., to confirm the alleged defect, and for
subsequent repair or replacement if found to be in order.

Repair, replacement or correction of any defects in material or
workmanship which are discovered after expiration of the period set
forth above will be performed by VECTOR GRAPHIC, INC., at Buyer's
expense, provided the Vector Graphic computer is returned, also at
Buyer's expense, to VECTOR GRAPHIC, INC., for such repair,
replacement or correction. In performing any repair, replacement or
correction after expiration of the period set forth above, Buyer
will be charged in addition to the cost of parts the then—-current
VECTOR GRAPHIC, INC., repair rate. At the present time the
applicable rate is $35.00 for the first hour, and $18.408 per hour
for every hour of work required thereafter. Prior to commencing any
repair, replacement or correction of defects in material or
workmanship discovered after expiration of the period for
no-cost~to—-Buyer repairs, VECTOR GRAPHIC, INC., will submit to Buvyer
a written estimate of the expected charges, and VECTOR GRAPHIC,
INC., will not commence repair until such time as the written
estimate of charges has been returned by Buyer to VECTOR GRAPHIC,
INC., signed by duly authorized representative authorizing VECTOR
GRAPHIC, INC., to commence with the repalr work involved. VECTOR
GRAPHIC, INC., shall have no obligation to repair, replace or
correct any Vector Graphic computer until the written estimate has
been returned with approval to proceed, and VECTOR GRAPHIC, INC.;
may at its option also require prepayment of the estimated repair
charges prior to commencing work,

Repair Agreement void if the enclosed card is not returned to VECTOR
GRAPHIC, INC., within ten (14) days of end consumer purchase.

Revision 8.1 5/2/79%

FOREWORD

The User's Guide to Vector Graphic Systems Using MDOS covers a great deal of
material, but it is broken into sections in order to encourage you to read and
use it.

The following suggestions are provided to help users select those parts which
are relevent to them:

1) Non-technical end-user operating solely a specific data processsing
application package, a totally "turn-key" system:

Use Section 2.1 on starting up a new system, Section 2.4 on the care
and handling of diskettes, and all of Chapter 3 on normal daily
procedures.

2) OEM or programmer doing programming, but whose hardware, including
peripherals, is set up and ruoning smoothly:

Add to the above material all of Chapter 1, which gives an overview
of the system's logical structure, and Section 2.3 which deals further
with the MDOS System Diskette. Then, use some or all of Chapters 4, 5,
and 6, depending on the level of programming to be done.

3) Dealer, ORM, or technically-oriented end-user interested in manipulating
the hardware capabilities of the system, interfacing various perlpherals
to a "naked" system, and also interested in programming:

The entire manual is relevent. Most important in addition to the
above is Section 2.2, which describes how to interface peripherals,
including what components to buy, and what to do when it all arriwves.
You may also find the separate technical manuals on system components
useful, as well as the notes in Section 2.3 on hardware modifications.

There is of course much grey area between these categories. All users may find
some of the more technical material useful.

This mamuel covers a version of the MDOS System Diskette that includes release
4.0 of MDOS and M.BASIC. Your dealer can provide you with a bulletin
distributed by Vector Graphic describing all the differences and
incompatibilities with release 3.0 of MDOS and M.BASIC, contained in the wversion
7 series of the MDOS System Diskette.

This manual does not deal directly with maintenance. However, Appendix Q
explains the varicus memory diagnostic programs which come with your system.

Mo doubt improvements can be made to our products. We welcome your suggestions,
both on the memual and the system. Direct them to:

Vector Graphic Inc.

31364 Via Colinas
Westlake Village, CA 91361

Rev, 8.3-A 7/1/79

Software Catalog

The following software is currently available from Vector Graphic Inc.

MDOS/MBASIC MZ0OS CP/M CCA Data Management System
CIS COBOL EVIOS Univid Extended Monitor
Unassembler M Word Management System

Following is a brief description of each one.

MDOS/MBASIC

MDOS is the powerful Micropolis Disk Operating System, standard with the Vector
MZ. This package provides the user with a complete program development system.
Included are an extended line editor, a full 7-84 linking assembler, a powerful
debugger, and a symbol-saving preogram. Utilities provided include disk and file
copying programs and many others. Interfacing routines for several types of
printer are also provided. MBASIC, the Micropolis Extended Basic, is one of the
most powerful BASICs in existence. Full record—oriented disk I/0, precision up
to 62 digits, true CHAINing, and many other features make MBASIC a most
desirable language to program and operate. Taken together, MDOS and MBASIC form
an unmatched program development system. (0S)

MZ0s

MZ0OS is our Micropolis/Z-84 Operating System. Althcugh not nearly as powerful
as MDOS, MZOS is fully North Star DOS compatable, as of release 3. Although it
has many additional features, the general format of MZ0S is similar enough to
North Star DOS that there will be no difficulty in adapting to it. The real
point, though, is that if you have already invested in North Star software, you
will be able to protect your investment, since your software will run correctly
on MZ0S. In addition, you will have expanded capability, since a Micropolis
disk has 3.5 times the capacity of a Shugart disk. We even provide a program to
make an exact copy from a North Star diskette to a Micropolis diskette,
providing that you have a North Star centroller and drive. Please note,
however, that Vector Graphic is not encouraging infringment of copyright on
North Star software. (NB)

/M

CP/M is generally accepted as the industry standard operating system, With a
powerful executive structure, and unmatched disk handling features, it is a
logical choice. Additionally, CP/M has more software availakble for it from other
sources than any other microcomputer operating system, including CBASIC,
Fortran, and many others, Included in CP/M are a powerful text editor,
assembler, debugger, peripheral interchange program, formatter, and many other
utility programs. For business applications, CP/M, along with the collection of
software available for it, is undoubtedly the logical choice. (0S)

Rev. 8.1 2/5/7%

CCA Data Management System

The CCA system is a breakthrough in data management systems. Useful for
anything from mailing lists to inventory to accounting, this system has many
features not found on any other. For each file in the system, the user defines
all relevant information, including what each field is to be called, the length,
and other information. This provides amazing flexability. Maintenence features
include the ability to add, delete, update, inspect, or search records. Sorting
can be done on any field, and can be nested up to ten levels deep.
Additionally, the sort package uses a special algorithm for the fastest possible
sorting, and can sort files that are over a thousand records long. When
printing reports, the user specifies exactly what fields are to be printed, and
where; both report and label formats are possible. Subtotals and totals can be
generated at certain points, and numeric fields may be printed in any format
(justified, decimal aligned, for example). A portion of the full file may be
printed by specifying a range, which can apply to any field. One particular
unique feature is the ability to have computed fields; where one or more fields
are computed on the basis of information in other fields. This opens even more
additional possiblities for the system. Since file structuring is
straightforward, other programs can easily be written to further enhance the
system. It should be obvious that this is a package that everyone can use in at
least one way. The CCA Data Management System runs under MDOS and MBASIC.
(0S)

CIS COBOL

with CIS COBOL, the powerful business language of large computers is brought
into the realm of the microcomputer. This is a Compact, Interactive, and
Standard COBOL. Compact, because it will compile a sizable program easily in
32K; almost anything can be done on the MZ, with 48K. Interactive, because the
traditionally batch COBOL language has been extended to allow screen-oriented
interaction between the program and the user. This is a major enhancement to
the normal language. Standard, because it generally follows the ANSI 74
standard. As a language, COBOL has many good points, including the fact that it
is self-documenting and easy to read. CIS COBOL comes with both a language
reference manual and operating instructions, and runs under CP/M. For business
programmers, this language is a must. (OS)

EVICS

EVIOS is Vector Graphic's Extended Video Input/Output System, designed for our
Flashwriter I board. Since it is memory mapped, the Flashwriter has nearly
infinite capability as a terminal; EVIOS is meant to make available many of
these features. With this package, many so—called "intelligent" terminals are
rivaled. Features like full cursor positioning, either relative or absolute,
full control over reverse video, reduced intensity, and graphics, protected
fields, creation of bar grids, screen transmission as input, extensive selective
screen erasure, and several modes only begin to list the capabilities of this
package. In general, there is just no competition for this system. (NB)

Rev. 8.1 2/5/79

Univid

Univid is Vector Graphic's Universal Video Driver. Wwhile EVIOS is designed to
take full advantage of the Flashwriter I board, Univid is designed for the 24x80
Flashwriter II board. This system is called universal because it is actually
three drivers in one. First, it is a simple driver that additionally allows
plotting. Second, it is an emulator for the Lear Siegler ADM-3A terminal.
Finally, it is an emulator for the Hazeltine 1508 terminal. Each of the
emulation medes is to allow software that uses the special functions of one of
the terminals to also work on the Mindless Terminal. Even if you don't need to
maintain compatibility with another terminal, though, Univid is still a wise
investment. (LL)

Extended Monitor

Standard with Vector Graphic systems, the Extended Monitor is a multi-faceted
piece of secftware. First, it is a system monitor, providing 23 commands for
such functions as memory dumping, entering data into memory, testing memorvy,
polling I/0 ports, booting the disk, moving blocks of memory, and many, many
others. In this way, it is invaluable as a debugging tool. Additionally, it
provides all of the conscle input and output for the system. The Monitor is set
up for the particular configuration of the system, and in that way all other
software will automatically run on it, without system—dependent modifications.
Although standard on Vector Graphic systems, the Extended Monitor is a valuable
addition for any system. (RH)

The UnAssembler

For assembly language programmers, the UnAssembler is a necessity. Superceding
the Sourcerer in our preduct line, the UnAssembler features full Z-84
disassembly, and enhanced error-catching features. Such features as both
mnemonic and data word fermats, production of a complete cross reference table,
and an output that is ZSM-compatible make the UnAssembler an invaluable tool.
The UnAssembler runs under MDOS. (NB)

ZSM

ZSM 1s Vector Graphic's powerful assembler. Structured similarly to
Micropeolis's assembler, ZSM also assembles all Z-8@ code, using the 8080
superset (TDL) mnemonics for easy upgrading of 8080 programs. Some features of
Z3M are the ability to request information from the user during assembly, the
ability to print informaticn during assembly, conditional assembly, and a very
useful feature, the ability to link several files together for assembly. This
allows otherwise huge or unmanageable files to be broken into as many source
modules as desired. ZSM runs under MDOS, and is provided free of charge as part
of MDOS with MZ systems or MDOS updates. (NB)

Rev. 8.1 2/5/79

Word Management System

The Word Management System is a complete word processor, matching the most
advanced stand-alone systems. Some major features include: a) continuous
typing without regard for lines; b) freely changeable tabs; c¢) no typing of
names of documents, especially good for assembly of large documents from several
small ones; d) l-step updating of the disk; e) typing directly to printer; £)
character-oriented editing - typing anywhere on the screen; g) delete or move
by character, word, line, or any other portion of text, causing automatic
realignment of text on the screen; h) full document in working memory; i)
scrolling by lines or full screens; J) global search and replace; k) original
document on disk is not changed unless told to; 1) complete formatting
flexibility, including right-justification; m) mid-text (dynamic) format
changes; n) variable page length; o¢) automatic heading, footing, and page
numbering, with optional reversal of layout for two-sided printing; p)
print-stop for changing type-face or ribbon color; ¢) continuous or
page-by-page printing; r) stop printing in mid-document, even in mid~line; and
t) many safety features to avoid erasing memory or disk.

The list processing feature of the system is in fact a small data management
system, designed solely for mailing lists or similar lists of up to 1508
members. Each member of the list is assigned "qualifiers", which can be used to
identify characteristics of that member. Using this, a subset of the entire
list can be sorted, stored on disk for later use, and printed in 1 or 2 columns
on mailing labels or continuous form paper. Moreover, by using the merge
feature, mailing lists can be combined with text such as form letters, providing
a sophisticated mass mailing capability.

The Word Management System contains its own disk operating system, and does not

need any other. With the addition of this software, the Vector MZ computer
system becomes an office—of-the-future staple. (ED)

Rev. 8.1 2/5/79

TABLE OF CONTENTS

PAGE
SECTION I GENERAL INFORMATION

1.0 GENERAL DESCRIPTION OF SYSTEM AND SUBSYSTEMS

—
3
—

1.0.1 STANDARD HARDWARE AND SOFTWARE
1.0.2 OPTIONAL COMPONENTS AND SOFTWARE

—
H

1.1 MICROPOLIS DISKETTE SUBSYSTEM SPECIFICATIONS

—
1

1.17.17 PERFORMANCE
1.1.2 DRIVE RELIABILITY

— i
i

1.2 HEXADECIMAL NOTATION
1.3 OPERATING SYSTEM SOFIWARE

—_

1 VECTOR GRAPHIC EXTENDED SYSTEMS MONITOR
2 PROGRAM DEVELOPMENT SOFTWARE
.3 ELEMENTS OF MDOS
«4 ELEMENTS OF M.BASIC
.5
6

LI ¥

-
a
o
o

OTHER OPERATING SYSTEMS
RESIDENT PROGRAMS

1.3
1.3
1.3
1.3
1.3
1.3

POV NN N U EURE (VI N |
3

FIGURE 1.1 MZ SOFTWARE STRUCTURE USING MDOS

FIGURE 1.2 MEMORY MAP FOR VECTOR GRAPHIC SYSTEMS
FIGURE 1.3 MEMORY MAP FOR MDOS AND M.BASIC

i
—\0 00 ~NOoOvun o w [N W] N P

— ek and
O

[|

1.4 MDOS SYSTEM DISKETTE 1-11 to

-
}

—

W

SECTION II INSTALLATION, CONFIGURING PERIPHERALS,
- AND USE OF DISKETTES

2.1 INSTALLATION 2
2.2 CONFIGURING THE MZ (for non-turnkey systems) 2~
2.,2.0 MODIFYING THE RES MODULE 2
2.2.1 STANDARD CONFIGURATIONS 2

2.2.1.1 PRINTER: PARALLEL, CENTRONICS 700 SERIES
PROTOCOL
CONSOLE: SERIAL VIDEO TERMINAL 2-4

2.2.1.2 PRINTER: SERIAL, DIABLC 1610 PROTOCOL OR
TELETYPE PROTOCOL
CONSOLE: SERIAL VIDEO TERMINAL 2-4

2.2.1.3 PRINTER: PARALLEL, CENTRONICS 700 SERIES
PROTOCOL
CONSOLE: PARALLEL ASCII KEYBOARD, SEPARATE
VIDEO MONITOR 2-6

Rev. 8.3~-A 7/1/79

PAGE

2.2.1.4 PRINTER: PARALLEL, CENTRONICS 700 SERIES
PROTOCOL
CONSOLE: VECTOR GRAPHIC MINDLESS TERMINAL 2=

~J

2.2.1.5 PRINTER: SERIAL, DIABLO 1610 PROTOCOL OR
TELETYPE PROTOCOL
CONSOLE: PARALLEL ASCITI KEYBOARD, SEPARATE
VIDEO MONITOR 2-8

2.2.1.6 PRINTER: SERIAL, DIABLO 1610 PROTOCOL OR
TELETYPE PROTOCOL
CONSOLE: VECTOR GRAPHIC MINDLESS TERMINAL 2-9

2.2.1.7 SERIAL PRINTING TERMINAL (HAS A KEYBOARD),
DIABLO 1610 OR TELETYPE PROTOCOL
AND A VIDEO MONITOR 2-10

2.2.1.8 SERIAL PRINTING TERMINAL (HAS A KEYBOARD),
DIABLO 1610 OR TELETYPE PROTOCOL
AND NO VIDEO 2-12

2.2.2 ADDING A STANDARD PRINTER TO AN EXISTING MZ
SYSTEM 2-13

2.2.3 NON-STANDARD CONFIGURATIONS

N
i

p—

wu

2.3 OTHER MODIFICATIONS TO SYSTEM SOFTWARE & HARDWARE

N
i

—

(W]

CHANGING TO 2 MHZ CLOCK RATE

CONNECTING ADDITIONAL DISK DRIVES

USING I/0 PORTS

CHANGING MEMORY ADDRESS AND I/C PORT
ASSIGNMENTS OF BOARDS

SHORTENING BASIC

BASIC-ONLY DISKETTE

STOPPING ESC FROM RETURNING CONTROL TO THE
SYSTEMS MONITOR

FINALIZING THE PERSONALIZED SYSTEM DISKETTE

Lo —
i
) awed wend

O ~~J OOy rion un

s s s . s
Lo wo Ww o W
® s s o s s
(& o] ~ Oy n

] I T | [}
— — ke

[3]

DISKETTE MEDIA

1
-—

DESCRIPTION

IF YOU HAVE PROBLEMS WITH DISK ERRORS
HANDLING

LOADING AND UNLOADING

RECOVERY TECHNIQUES

REPLACEMENT AND BACK-UP OF DISKETTES
INITIALIZING DISKETTES ‘ 2-22
WRITE PROTECT FCR DISKETTES 2-22

B NN S SN
O~V N oo —
| I T I |

PPN [N PO NN NN
H
!\)NM_—J—-\.—A

rry
= ,
[PED] PO 4~ ro [RR NI AN PP DO
i

&

5 1/4 INCH DISKETTE 2-23
HOW TO MOUNT WRITE PROTECT TAB

i
3

CEN
!\)-—h

REVc 893"A. 7/’1/79

SECTION III DAY TO DAY OPERATIONS

» 2 2 L) s > o E)
\0 O~ WN = O

w w Wl ww

(@]

Ww Wil W
L] L] o 2 a2 @ ?
R e S e T

s 2

3.11

SECTION IV MICROPOLIS DISKETTE OPERATING SYSTEM

SUMMA

RY OF NORMAL START UP PROCEDURE

SUMMARY OF PROMPTS

POWER
LOAD

~ON
MDOS

LOAD M.BASIC FROM MDOS

OTHER

RETUR
RETUR

RETURNING TO MDOS (OR M.BASIC) FROM MONITOR IF

MDOS

RETURNING TO MDOS OR M.BASIC EXECUTIVE FROM

OPERATING SYSTEMS AND LANGUAGES
NING TO MDOS FROM M.BASIC
NING TO MONITOR FROM ANYPLACE

(OR M.BASIC) IS ALREADY IN MEMORY

A ROUTINE RUNNING UNDER THAT EXECUTIVE

VIDEO

QO ODOOO0OOO O
> 3 » 3 > B3 9 B
WO~V P Lpo —

POWER

COMMANDS .

CLEAR SCREEN

SCROLL SCREEN UP ONE LINE

BACKSPACE CURSOR

CONVERT TO REVERSE VIDEO

TAB CURSOR 8 SPACES TO THE RIGHT
ELIMINATE CURSOR FROM THE SCREEN
MOVE CURSOR TO TOP OF SCREEN

MOVE CURSOR DOWN, UP, LEFT, OR RIGHT
RETURN- CURSOR TO LEFT EDGE OF SCREEN

~-DOWN

4.0
4.1

FNENFNNS

Rev.,

INTRO

DUCTION TO MDCS

THE MDOS EXECUTIVE

.1 E
n2 E
.3 C
4 D
8.3-A

NTERING EXECUTIVE COMMANDS
XECUTIVE STATEMENT FORMAT
ANCELING AN OPERATION
ISPLAY CONTROL

7/1/79

PAGE

| I N T R R R |

LIRS R I A

i
u (R R, R R, RV, R S o B £~ OO NN R =

w wwwwwWwwbwww Ww Lo w oS} [VCRUCRUTRE SR CL R UL U R W
]

H

s
o—

4.2

2o B

IS N S S S SO S SO SO S S NI Y
Lo 0 L) Lo L) W W — W Lo W W W

.5 EXPLICIT EXECUTIVE COMMANDS

THE COMP COMMAND
THE DUMP COMMAND
THE ENTR COMMAND
THE FILL COMMAND
THE MOVE COMMAND
THE SEAR COMMAND
THE SEARN COMMAND
THE CREATE COMMAND
THE DISP COMMAND
.19 THE FILES COMMAND
.5.11 THE FREE COMMAND
THE SCRATCH COMMAND
.13 THE LOAD COMMAND
.5.14 THE SAVE COMMAND
.15 THE RENAME COMMAND
.16 TYPE COMMAND
.17 THE APP COMMAND
.18 THE ASSIGN COMMAND
.19 THE EXEC COMMAND
.29 THE MATH COMMAND
.21 THE PROMPT COMMAND
.22 THE INIT COMMAND

WO~ U B —

pp PP RLALAERRPRPRBAERPRRRERPRPAEPPEADE
e e b el b b el) ad b)]) ek mnd md ed b —d ek —d b
MMy oToyorTorgoToyUToTOToToOroTortunohononognon
o
[aN]

MDOS DISK FILE I/0

2.1 TRACK INDEXED FILE STORAGE

2.2 FILE NAMES

.2.3 FILE PROTECTION AND TYPE DEFINITION

.2.4 FILE AND RECORD STRUCTURE

2.5 FILE ACCESS METHODS

.2.6 COMPATIBILITY BETWEEN MDOS AND BASIC FILES
MDOS SHARED SUBROUTINES

.3.1 CONSOLE AND PRINTER INPUT/OQUTPUT SUBROUTINES

@CIN - CONSOLE INPUT

@COUT - CONSOLE OUTPUT

@CBRK - CONSOLE BREAK CHECK

@CDIN -~ CONSOLE DEVICE INPUT

@CDOUT - CONSOLE DEVICE OQUTPUT

@CDBRK - CONSOLE DEVICE BREAK CHECK
@CDINIT - CONSOLE DEVICE INITIALIZATION
@LOUT - LIST OUTPUT

BLATN - LIST ATTENTIOM

.19 GLDOUT - LIST DEVICE CUTPUT

.1.11 @LDATN - LIST DEVICE ATTENTION

.12 @LDINIT - LIST DEVICE INITIALIZATION
.13 @CCRLF - CONSOLE LINE FEED CARRIAGE RETURN
.1.14 BLCRLF - LIST LINE FEED CARRIAGE RETURN
.15 Q@ASSIGN - ASSIGN

WSSO Wi —

. . N 3 a . 2 » N s a2 s a2
d i rend end mmd coad) merd onnd omnd and b b —d 3

PAGE

N
3
&

T TR TR R S R BN B |

[}

IR N W N T T I

3

]

S N S SN S S S SO SV O N S O S SO N SN S N
1

Rev.

(@8]

w
w

[#8)
=

I SO N N N
L W W L W W W

ES R S = © g S
W W o Wt

N S S N N N N N N N S

FA
www
W ww

B R
oL LW

[aS]

LWDWWwwWwwwwwwwiow

W w

— e e ad e
>
—d

W0 ~No O WM -

1P
L1
.12
.13

WWwwWwwWwvoowwwww

L w

.14
.15
.16

17
.18

.3.19
.3.29

FILE

R S S e
BN

3/78

@CILINE - CONSOLE INPUT LINE

@HEXOUT - HEXADECIMAL OUTPUT

@HEXADDOUT - HEXADECIMAL ADDRESS OUTPUT
@HEXQUTSPC - HEXADECIMAL OUTPUT WITH SPACE
@SPACEQUT - SPACE OUT

@NLINEOUT - NEW LINE OUTPUT

@GLINEQUT - LINE OUTPUT

LINE PARSING SUBROUTINES

@PARAM -~ PARAMETER

@SKIPSPACE - SKIP SPACES

@SCAN - SCAN

@SEAR - SEARCH _
@AHEXTBIN - ASCII HEX TO BINARY

FILE ACCESS ROUTINES

@CREATE - CREATE
@GFILESTAT ~ GET FILE STATUS
@DIRSEARCH - DIRECTORY SEARCH
@OPENFILE - OPEN A FILE
@CLOSEFILE - CLOSE A FILE
GRFILEINF - READ FILE INFORMATION
@SINXTRS - SET INDEX POSITION TO RECORD START
@RRECORDLEN - READ RECORD LENGTH
@RINXPQS - READ INDEX POSITION
@SINXPOS - SET INDEX POSITION
@INCINX ~ INCREMENT INDEX POSITION
@RFINXPOS - READ FROM INDEX POSITION
GRFINXPOSI ~ READ FROM INDEX POSITION AND
INCREMENT INDEX
GWTINXPOS - WRITE TO INDEX POSITION
GWTINXPOSI - WRITE TO INDEX POSITION AND
INCREMENT INDEX
@GLOADDATA ~ LOAD DATA
@SAVEDATA - SAVE DATA

@DFINXPOSTEOR - DELETE FROM INDEX POSITION TO

END OF RECORD

@DFINXPOS ~ DELETE FROM INDEX POSITION TO END OF

FILE
@INCRECPOS - INCREMENT RECORD POSITION

MANAGEMENT SUBROUTINES

@FREE - FREE

@RENAME - RENAME

@TYPE - FILE TYPE
@SCRATCH - SCRATCH A FILE

PAGE

4-21
4-21
4-21
4-21
4-21
4-22
4-22

4-22
4-22

=N
}

no

~

LI D LN D T D |
OO0 WWWOWWNSNSNSIOYO

i

)

£ BT e~ Il I I = R R Y A S N
i H
[CS OV NN PRI MM MNMN NN

B =Y
[I
L W
-

4-31

4-32
4-32

4-32

4-32
4-32
4-33
4-33

4.3,

>

T O N N N N

TSSO S SO SN
SOY U P o N —

(o8]
o

L

w
<o

Fe g s

. 3.

P N
W LW LW w v Ww

B g R e S =
W Wwwwww

o e P s
[SS TSSOV RV

S S S S
Lo Lo wWww

5 PHYSICAL DISK ACCESS ROUTINES

LMo

PR

AN OO
~NOYOY B o)

O O O

~J

EX

7.
7.

7.
7.
7.

ME

L L W W
00 0O 0 o

(Vo)

SY

.1 @GETASEC - GET A SECTOR

.2 @PUTASEC - PUT A SECTOR

.3 GWRITESECTOR - WRITE A SECTOR

.4 @VERIFYSECTOR - VERIFY A SECTOR

.5 @SEEKTRACK - SEEK TO A TRACK

.6 BRESTOREDISK - RESTORE THE READ/WRITE HEAD

OCESSOR ORIENTED UTILITY ROUTINES

@HLADDA - ADD A TO HL

@INXM - INCREMENT MEMORY

@LHLINDEXED - LOAD HL INDIRECT IMDEXED

@LHLI -~ LOAD HL INDIRECT

@TRANSDHC - TRANSFER FROM DE TO HL FOR A COUNT OF C
RATRANSDHBC - TRANSFER FROM DE TO HL FOR A COUNT OF BC
@TRANSDHBCR - TRANSFER FROM DE TO HL FOR A- COUNT OF
BC REVERSE

.8 @TRANSFILENAME - TRANSFER A FILENAME
.9 @FILLZER - FILL ZEROES

.19 BFILLSPC - FILL SPACES

.11 QFILLA - FILL FROM THE A REGISTER
.12 @COMPARE - COMPARE HL TO DE

TENDED 8@89 INTEGER ARITHMETIC (16 BITS)

1 GDEADDHL
2 @DESUBHL
3 @DEMULHL
4 @DEDIVHL
5 RDEMODHL

BC=DE+HL
BC=DE-~HL
BC=DE*HL
BC=DE/HL
8C=DE%HL

SSAGE OUTPUT SUBROUTINES

@DISKERROR - DISK ERROR MESSAGES
@ACLOSEFILES - CLOSE ALL FILES
@ERRORMES - ERROR MESSAGES
@MESSAGEQUT - MESSAGE QUTPUT

PR N

STEM BUFFERS AND ENTRY POINTS

LINEEDIT - THE MDOS LINE EDITOR

KE

TH
TH
TH
TH

3/78

ENTERING LINES TO LINEEDIT

YING IN A NEW TEXT FILE

ENTERING LINEEDIT COMMANDS

E CLEAR COMMAND
E NAME COMMAND
E FILE COMMAND
E AUTO COMMAND

PAGE
4-33

4-34
4-34
4-35
4-35
4-35
4-35

4-36

4-36
4-36
4-36
4-37
4-37
4-37

4-37
4-38
4-38

.8
.9
19
N

e T s Sl = SV S R = S SR o L S S S S -
B R I R T i I SN SR e S = S e e S oYy
o,

P S NG S S N N
S S SO S S S S S N

4.4.25
4.4.26

4.5 2

Rev.

THE PROMPT COMMAND

THE LOAD COMMAND

THE APPEND COMMAND
THE SAYE COMMAND

THE RESAVE COMMAND
THE LIST COMMAND

THE LISTP COMMAND

THE PRINT COMMAND

THE PRINTP COMMAND
THE TAB COMMAND

THE DELT COMMAND

THE RENUM COMMAND

THE SEARCH COMMAND
THE SEARCHALL COMMAND
THE CHANGE COMMAND
THE CHANGEALL COMMAND

1 THE EDIT COMMAND

24.1 ADVANCING THE EDIT POINTER

24.2 CHANGING THE NEXT CHARACTER - C

24,3 DELETING THE NEXT CHARACTER - D

.24.4 INSERTING CHARACTERS - I

24.5 LISTING THE LIME IN THE EDIT BUFFER - L
.24.6 SEARCHING TO A SPECIFIED CHARACTER - S
.24.7 DELETING 70 A SPECIFIED CHARACTER - K
24.8 QUITTING THE EDIT COMMAND MODE - Q

24.9 COMPLETING THE EDIT COMMAND

THE DOS COMMAND - EXITING FROM LINEEDIT
LINEEDIT FILE STRUCTURE

SM - Z-80 ASSEMBLER

HOW TO RUN Z3SM
LANGUAGE ELEMENTS

CONSTANTS
OPERATORS
REGISTERS
FSEUDO~0OPS

N O NN
> > > £
E=g VSRS

ASSEMBLY ERRORS
INSTRUCTION SET
TEST FILE FOR Z3M

8.4-4 T7/26/79

[|

Ty uru

i

) [} ! 3

T N S N NN O S N
)

1

=
)

INRERRERENE SN SYNPN

g1
B

b b e et jed

a
4.
4.
4.
4
4.
4.

SECTION V MICROPOLIS DISK EXTEMDED BASIC

0
1

.6
7
8
9
.
1
12

SYMSAVE UTILITY

FILECOPY UTILITY

DISKCOPY UTILITY

MDOS ERROR MESSAGES

COPYFILE UTILITY FOR SINGLE DISK
MICROPOLIS DEBUG

DEBUG-GEN UTILITY

oy U

g oot ororoy o

Wny— O

[SaNOr)

Rev.

INTRODUCTION

ENTERING LINES TO THE BASIC INTERPRETER

ENTERING A PROGRAM
IMMEDIATELY EXECUTED LINES

.3.1 THE EDIT COMMAND
.3.2 THE RENUM COMMAND
.3.3 THE MERGE COMMAND

DELETE COMMAND
LIST COMMAND
SAVE COMMAND
LOAD COMMAND
DISPLAY COMMAND
SCRATCH COMMAND
RUM COMMAND
INTERRUPTING A RUNNING PROGRAM
CONTINUING AN INTERRUPTED PROGRAM
PROGRAM TRACING COMMANDS
BASIC SYSTEM ERROR HANDLING
BASIC CHARACTER SET
DATA

1 CONSTANTS

.16.
.16.2 VARIABLES
.16.3 OUTPUT FORMATS

8 9/78

PAGE

YU YT OOV OOy 00O O Oy g
[L D N . L I e
WO~~~y B W

[S2 62 NG}
i
—emd D
O

—

5.17 OPERATORS

5.18 FUNCTIONS

Rev.

.17.1 NUMERIC OPERATORS
.17.2 STRING OPERATORS
.17.3 RELATIONAL OPERATORS
.17.4 LOGICAL OPERATORS

5.18.1 INTRINSIC FUNCTIONS

5.78.1.1 NUMERIC FUNCTIONS

ABS
ATN
cos
EXP
FIX
FRAC
INT
LN
LOG
MAX
MIN
MOD
RND
SGN
SIN
SGR
TAN

5.18.1.2 STRING FUMNCTIONS

ASC
CHARS
FMT
INDEX
LEFTS
LEN
MID$
MAX
MIN
REPEATS
RIGHTS
STRS
VAL
VERIFY

5.18.1.3 SPECIAL FUNCTIONS

§.18.2 USER DEFINED FUNCTIONS

8 9/78

IN

PEEK
PGMSIZE
SPACELEFT

LI A R |

NN S R |

Loy O Oy o on
3

P Ry R = [[URI RpU - Sy " —" }

W WO WO D WO 00 0O o 00 O

LI DL I

LIS S R |

3

CrOYorTr OGOty O oOTOYOY O O O an
]

PPN MMM MNDMN

— et) e) mad rd e ed e O DO

i

5-22
5-22
5-22
5-22

5-22

5.19 Expressions

Evaluation of Expressions
Numeric Expressions

String Expressions

Logical Expressions

5.20 BASIC Statements

NN R NN NN

.

[RGBV RV R RV, RV R]
[eNoNeNoNolNolNoNol
00~ Oy L PN

" »

5.20,

5.20.10
5.20,11
5.20,12
5.20.13
5.20.14
5.20.15
5.20.16
5.20.17
5.20.18
5.20,19
5.20.20
5.20.21
5.20.22
5.20,23
5.20.24
5.20.25
5.20.26
5.20.27
5.20.28

DATA

DEF FN
DEF FA
DIM

END

EXEC
FLOW

FOR
GOSUB
GJTO
IF, ., THEN
INPUT
LET
MEMEND
NEXT
NOFLOW
ON. .GOTO
ON..GOSUB
ouT

POKE
PRINT
READ
REM
RESTORE
RETURN
SIZES
STOP
STRING

5,21 BASIC DISK FILE I/0

5.21.1 Disk Files

5.21.2 Disk File Commands
5,21.2.,1 DISPLAY

©5,21.2,2 1OAD

5.21.2.3 PLOADG
5.21.2.4 SAVE
5.21.2,5 SCRATCH
5.21.2.6 CHAIN
5.21.2.7 LINK

Rev. 7 3/78

5-33

5-33
5-33
5-34
5-35

5-36

5~36
5-37
5-37
3-38
5-38
5-39
5-39
5-40
5-42
5-43
5-43
5-44
5=44
5-45
5-45
5-45
5-45
5-46
5-46
5-46
5-47
5-49
5-49
5-49
5~49
5-50
5-50
5~50

5-53
5-53
5-53
5-54
5-54.1
5-54.1

5-54.1

Rev.

7 3/78

5.21.3 Disk 1/0 Statements

5.21

NN OoOYoOTOYy oLy o'
R
s nd
WWwwwwwwwiw

i
2
3
4
5
.6
7
8
9
1

ATTR
ERR
ERR$
NAME
RECGET
RECPUT
SIZE
TRACKS
FREETR

OPEN

PUT

GET

CLOSE
ATTRS

EOF
FREESPACE
GETSEEK
PUTSEEK

.10 RENAME

.4 Disk I/0 Functions

5.22 BASIC PRINT FILE OQUTPUT

5.22.

5.22

1 Printer Related Language Features

ot oo orOn
s s N B
ro
™~
b ek b ek ek k=
2 s s > s s s
~S OO o N —

.2 Notes

OPEN

PUT
CLOSE
ENDPAGE
ASSIGN
LISTP
PAGESTZE

on Printer Related

Programming

5.22.2.1

.22.2.2
.22.2.3

5.22.2.4
5.22.2.5

Separating Print Files
and Interactive Messages
Paginating Print Files
Spooling Print Files to
Disk for Later Output
Draining File Qutput to A
Null Device

Echoing of Terminal

Output to Printer

o
1

TLPPLPEe P
i1
(o e e e We We We We WSS,

(93]
WRNOMNON - = OO NG)
. —

w
i

o

(8]

5-64
5-64
5-64
5-64
5-64
5-64
5-64
5-64
5-64

5-65
5-65

5-65
5-66
5-66
5-67
5-67
5-69
5-69

5-70

SECTION VI DISK SUBSYSTEM THEORY AND DIRECT

PROGRAMMING

FIGURE 6.1 5 1/4 INCH DISKETTE

6.0

[eXWerNo RerNer R o))
» o © o & o
P~ b

INTRODUCTION

FUNDAMENTALS OF THE FLEXIBLE DISK: MEDIA
HARDWARE FUNDAMENTALS

CONTROLLER REGISTERS

DISK OPERATIONS

ERROR HANDLING

DISK DRIVER

APPENDICES

ONoZR-RUHIOMEHOO WP
1

Rev.

BASIC ERROR MESSAGES

BASIC UTILITY PROGRAM
ACCESSING DISKCOPY FROM BASIC
SUMMARY OF MDOS ERROR MESSAGES
RES.I/0 SOURCE LISTING
MICROPOLIS DISK BOOTSTRAP

"FEATURES" PROGRAM TO OPTIONALLY SHORTEN BASIC

INTERFACING TO A CENTRONICS PRINTER
TROUBLE SHOOTING IF MDOS DOES NOT LOAD

GAMES AND DISPLAYS ON THE MDOS SYSTEM DISKETTE

PAGE

L H
—— —

[I N T R B

PN = WO~ W

NN O o O
— O

CHANGING MICROPOLIS BOOTSTRAP ROM AND DISK I/0 ADDRESS

CHANGING CLOCK RATE TO 2 MHZ

WRITING A CONSOLE PHYSICAL I/0 ROUTINE
WRITING A PRINTER PHYSICAL I/0 ROUTINE
REASSEMBLING AND SAVING THE RES MODULE
MAP OF I/0 PORTS

MEMORY DIAGNOSTICS

8.3-A 7/1/79

I GENERAL INFORMATION

1.0 GENERAL DESCRIPTION OF SYSTEM AND SUBSYSTEMS

Your system is a general purpose microprocessor based computer. It
is delivered by Vector Graphic completely assembled and fully
tested, including both hardware and operating system software, and
including two quad density mini-floppy disk drives.

1.0.1 STANDARD HARDWARE AND SOFTWARE

1) Chassis with power supply and 18 slot fully shielded S-100
motherboard;

2) 4 MHz Z-80 CPU board;

3) Two quad density Micropolis mini floppy disk drives, allowing
1232 256-byte sectors per diskette.

4) Disk controller board;

5) Bitstreamer I/0 board;

6) 48K Dynamic RAM board;

7) PROM/RAM III board, with space for 12K of EPROM and the
ablility to program EPROM's (see the PROM/RAM III board
manual) .

8) The Vector Graphic Extended Systems Monitor, on PROM;

8) Two copies of the MDOS System Diskette, each containing: .

a) The Vector Graphic-enhanced Micropolis Disk Operating
System - MDOS - a complete floppy diskette operating
system, including a 7Z-80 Assembler, an editor, a debugger,
and several other utilities (see Ch.4);

b) Micropolis BASIC (see Ch. 5);

¢c) A number of games and video displays (see Appendix J.)

1.0.2 OPTIONAL CCOMPONENTS AND SOFTWARE

Your MZ can be configured with various optional peripherals.
Section 2.2 of this manual lists the configurations of printers and
consoles considered "standard" for the MZ, and gives the compenents
such as interface boards and cables needed for each configuration.
In addition to the configurations discussed in Section 2.2, the
following components can optionally be added to an MZ:

1) Additional Bitstreamer I/0 board(s), such as the Bitstreamer
IT having three serial ports, two parallel ports, real-time

Rev. 8.4-4 7/26/79 1-1

clock, and Z-80 interrupts.

2) Additional memory board(s);

3) Other S-100 compatible boards from Vector Graphic or other

sources.
L) 2 additional Micropolis mini-floppy disk drives;

5) Other operating system and language software.

Contact your dealer for more information on adding components

to the system.

1.1 MICROPOLIS FLOPPY DISKETTE SUBSYSTEM SPECIFICATIONS

1.1.1 PERFORMANCE

Capacity per drive: 315K bytes, formatted
Transfer rate: 250K bits/second

Average rotational latency time: 100 milliseconds
Access time ~ track-to-track : 30 milliseconds
settling time: 10 milliseconds

Head load time: 75 milliseconds

Head positioner: stepper motor with lead-screw drive
Drive motor start time: 1 second

Rotational speed: 300 RPM

Recording density 5248 bits per inch (BPI)
Recording mode: MFM

Track density: 100 tracks per inch (TPI)

Surfaces used per diskette: 1

1.1.2 DRIVE RELIABILITY

MTBF 8000 hrs.
MTTR 0.5 hrs.
Media life 3 X 10 EXP 6 passes on single track
Head 1life 10 EXP 4 hrs.
Soft error rate 1 in 10 EXP 9
Hard error rate 1l in 10 EXP 12
Seek error rate 1 in 10 EXP 6
1-2 Rev., 8,4-A

7/26/79

1.2 HEXADECIMAL NOTATION

In this manual as in most microcomputer literature, the base 16
number system is used for all references to memory locations,
instruction codes, character codes, and so on. If you are not
familiar with it, you will soon find that the hexadecimal system is
the most natural way to express these numbers when dealing with a
computer that stores data as groups of 8 binary digits (bits) and
memory addresses as groups of 16 bits. Hex numbers will be
indicated by an upper case H following the digits. Remembering a
few key values will make things a great deal easier:

HEX NUMBER DECIMAL VALUE JARGON BINARY BITS

A 10 4

B 11 4

C 12 4

D 13 4

E 14 4

F 15 4

10 16 5
FF 255 8
160 256 9
3FF 1,023 10
400 1,024 1K 11
FFF 4,095 12
1000 4,096 4K 13
4000 16,384 16K 15
8000 32,768 32K le
FFFF 65,535 64K~1 16

The familiar rules of arithmetic work just the same in hex as in
decimal:

10 HEX (TRIVIAL)
40) 400
or)
16 DECIMAL (MORE DIFFICULT)
64) 1024
64
384
384
)

1.3 OPERATING SYSTEM SOFTWARE

1.3.1 VECTOR GRAPHIC EXTENDED SYSTEMS MONITOR

The first program the user comes into contact with after turning on
the system 1is the Vector Graphic Extended Systems Monitor.
(Exception: this is not true for MEMORITE systems.) It is entirely
stored on non-volatile PROM. Note that this use of the term
"Monitor" has a meaning entirely different than the term "monitor",
which refers to a piece of hardware, namely a stand-alone wvideo
display. (NOTE: in the MEMORITE system, the Extended Systems

Rev., 8.1 2/5/79 1-3

Monitor is not encountered unless you press the RESET key; or touch
the ESC key while the system is under control of MDOS or another

NON-word processing operating system.)

The Monitor consists of two parts: first, the Extended Systems
Monitor Executive, which allows the operator, through special
commands, to manipulate and display memory data and to jump to some
other program; second, a program used to control consecle I/0.

You know the Extended Systems Monitor Executive is in control of the
system when the Monitor prompt (*) appears on the left edge of the
screen. The operator is then expected to enter one of the commands
available for manipulating or displaying memory or jumping to
another program. Most often, the operator will use the command
which calls up a full operating system and then transfers control to
it, and out of the Monitor.

Regardless of whether executive is in control of the system at any
given time, the Monitor console I/0 routines, though invisible to
the operator, are continually being called on to control the

console. (Exception: when MEMORITE or the Word Management System
are doing word processing, the Monitor is not used to control the
console. Instead, the word processing software in these two systems

handles this task.)
Some of the Monitor's features and commands are explained where

relevent in this manual. A complete description is included as a
separate manual with your system.

1.3.2 PROGRAM DEVELOPMENT SOFTWARE - "PDS"

The operating system found on the MDOS Systems Diskette included
with the system is the Micropolis Diskette Operating System (MDOS).
MDOS includes an assembly language program development package.
Also found on the MDOS Systems Diskette is Micropolis Disk Extended
BASIC (often called just M.BASIC). MDOS and M.BASIC together give
all the functions a programmer may need for the development of
either assembly language or BASIC programs.

1.3.3 ELEMENTS OF MDOS

MDOS consists of an executive program, a group of "shared"
subroutines available to user programs as well as being used by
MDOS, and various utilities which include assembly language program
development tools.

The MDOS executive program allows the user to control computer
system operations from the system console. It provides commands for

memory management, file management, I/O control and program
control.

The shared subroutines include those that provide for console and

printer character I/C, buffered line I/0, text line parameter
parsing, sequential and random file access, file management,

1-4 Rev. 8.1 2/5/7%

physical diskette access, and 16 bit interger arithmetic. There are
also a number of processor oriented utility subroutines.

The MDCS utilities are:
ZSM - a two pass, 8080/8085/280 disk to disk assembler program.

LINEEDIT - a line number oriented assembly language text editor with
character-within-line editing and global search and change
capabilities.

FILECOPY -~ a utility that copies disk files.

DISKCOPY - a utility that makes an exact copy of an entire
diskette.

SYMSAVE - a utility that creates a source file of symbol equate
statements from the symbol table left in memory immediately after an
assembly by the ZSM assembler.

DEBUG - a utility that facilitates checkout and debugging of

8080/8085 machine language programs. It cannot be used if 280 code
which is not part of the 8080 set is used.

1.3.4 ELEMENTS OF M.BASIC

M.BASIC is a complete, self-contained software package that provides
total support for BASIC programming. When M.BASIC is locaded you
have at hand a powerful set of tools for developing, testing,
executing and maintaining BASIC programs.

Program lines may be as long as 250 characters in length and may
include multiple statements. The maximum line number is 65529,

M.BASIC has 12 immediate mode commands, including: SAVE a file,
LOAD a file, DISPLAY the file directory, SCRATCH a file, LIST a
program, DELETE lines from a program, RUN a program, CNTL/C to
interrupt a running program, CONT to continue an interrupted
program, CNTL/U to cancel an input line, and FLOW and NOFLOW to
enable and disable the flow trace debugging aid.

M.BASIC supports 6 distinct data types, including integers, integer
arrays, floating point numbers in the range 1lE-61 to 1E62-1, string
arrays, floating point arrays, and character strings up to 250
characters long. Integer and floating point arrays may have up to 4
dimensions. String arrays may have up to 3 dimensions plus a length
parameter.

A unique SIZES statement enables you to select the precision of
numeric variables up to 60 digits fcr simple arithmetic and 20
digits for transcendental functions. The system defaults to §
digits for real numbers and 6 for integers.

M.BASIC supports numeric operators for addition, subtraction,
multiplication, division, integer division, and exponentiation.

Rev. 8.1 2/5/7%9 1-5

There are relational operators to compare numbers or strings and the
logical operators AND, OR, and NOT. String concatenation is also
available.

Numeric functions include ABS, ATN, CCS, EXP, FIX, FRAC, INT, LN,
LOG, MAX, MIN, MOD, RND, SGN, SQR, and TAN.

String functions include ASC, CHARS, FMT, INDEX, LEFTS, LEN, MIDS,
MAX, MIN, REPEATS, RIGHTS, STRS, VAL, VERIFY.

The unique FMT (X,Y¥$) function is the key to a powerful formatted
output capability. It returns a string which is the value of X
formatted per the image defined by format string YS.

The DEF FN statement is provided to allow construction of user

defined functions. An assembly language function may be accessed by
using the DEF FA construction.

Standard statements in BASIC include CHAIN, DATA, DEF, DIM, EDIT,
END, EXEC, FOR-NEXT-STEP, GOSUB, GOTO, IF-THEN, INPUT, LET, MEMEND,
MERGE, NOFLOW, FLCOW, ON-GOTO, ON~-GOSUB, OUT, PLOADG, PCKE, PRINT,
READ, REM, RENUM, RESTORE, RETURN, SIZES, STCP, and STRING.

The CHAIN is a true chain that passes variables from the current
program segment to next one loaded from disk.

EXEC is a unigue statement that allows a string variable or constant
to be executed as i1f it were a predefined program line.

Data file programming in M.BASIC is simple. Files can be opened
simultaneously for both seguential and direct (random) access in
both read and write modes. Up to 10 files can be open at one time.
A CLEAR option allows a file to be opened for rewrite instead of
append. An END option provides an on-endfile-goto capability. An
ERROR option provides an on~error-goto capability. ‘

Data is written to and read from files using GET and PUT statements
with variable lists that allow a mixture of numeric and string
variables.

The file I/0 structure alsc extends to printer and console ocutput
files to afford a high degree of device independence. Additional
options on the OPEN statement facilitate the pagination of output
reports.

Also provided is a BASIC Utility program that provides for
initializing diskettes, saving M.BASIC on a BASIC-only diskette, and
examining and changing RAM memory. In addition, there is a utility
called FEATURES which allows you to shorten M.BASIC by eliminating
some of the features needed only for program development, but not
for running procduction programs.

1.3.5 OTHER OPERATING SYSTEMS

Other operating systems and higher level languages are available

from Vector Graphic. These will not be discussed here. (See the
literature accompanying this manual.) MDOS and M. BASIC meet the
needs of the large majority of users.

1.3.6 RESIDENT PROGRAMS

MDOS and M.BASIC share the Extended Systems Monitor. They alsoc
share a common program module called RES. This module contains
among other routines, the printer and diskette I/0 routines, and
some of the console I/0 routines.

Also shared is the ROM resident Disk Bootstrap program, (which is
what the Monitor uses in order to call up MDOS), and the Disk
Contrcller, (which is simply memory space needed to handle the
diskette drives.)

These routines are always resident in the computer memory when
either MDOS or M.BASIC is running. For interested users, listings
will be found in Appendix E for the I/0 portion of RES, Appendix F
for the Disk Bootstrap program, and the Extended Systems Monitor
manual for the Monitor.

In contrast, MDOS and M.BASIC overlay each other; that is, they are
assigned the same area of memory; only one can be in memory at any
given time. Commands are provided for leaving one and calling up
the other. ’

Fig. 1.1 illustrates the relationships between the various system
programs. Programs which are always in memory when MDOS or M.BASIC
is used are in the center.

Fig. 1.2 gives the addresses of the various programs and important
memory locations in your system. No particular operating system is
shown.

Fig. 1.3 gives addresses for MDOS and M. BASIC. ©Note that this
operating system software fits into the unassigned memory area in
Fig. 1.2. '

T*8 ca2¥

6L/8/T

FIGURE 1.1

MZ SOFTWARE STRUCTURE USING MDOS

MDOS
EXECUTIVE

EXTENDED SYSTEMS MONITOR, with
mnsole physical I/0 routines
DISK- BOOTSTRAP ROM, and

DISK CONTROLLER ADDRESSES

ASSEMBLY
LANGUAGE
APPLICATION
PROGRAMS

ASSEMBLER

EDITOR

SYMSAVE

FILECOPY

RES MODULE

COMMON COMSOLE

AND PRINTER 1/0
{Console
physical 1/0

branches to
Monitor.)

COMMON DISK
FILE STRUCTURES

PISK
EXTENDED
BASIC
INTERPRETER

BASIC
PROGRAMS

Rev.

FIG 1.2 MEMORY MAP FOR VECTOR GRAPHIC SYSTEMS

Hex address

FFFF

EQDQ
DF40

DCoQ

Dago

D300

D00a

CCoo

C800

C400

€000

80090

0000

8.1

Contents

8K RAM for user's programs, optional;
& . - . T
T High Resolution Video board, optional;

OR

Memorite PROM's, opticnal.

PR-2 stack area, not available to user.

RAM available to user.

Disk controller - first 3 bytes are addresses

used for mem. mapped disk I/D. Remaining are

unusable.

Disk Bootstrap ROM.

Flashwriter board video buffer, optional.

Memorite configuration PROM, optional.

EVIOS PROM, optional.

MZOS PROM, optional.

Extended Systems Monitor, including conscle

I/0 routines.

48K RAM, available to user.
o~ ~

it

2/5/79

FIG 1.3 MEMORY MAP FOR MDOS AND M. BASIC

Hex address Contents
BFFF
- —
RAM memoryv for user's program
2B00 if MDOS Starting point depends on whether MDOS or M. BASIC
5700 to is being used, and whether BASIC has been shortened.
5D86 if RASIC
MDOS, including all user callable routines not in RES Module;
i:j OR ~
r

1599

01a0

006A

0000

M. BASIC Interpreter.

1598
0627
0613
0611
060F
0604
0600
05F8
04E7
0281

01a0

RES MODULE
End of RES Module.
ILDOUT - Physical List Output Routine.
LDINIT - Physical List Initialization.
LDATN - Physical List Attention Check Routine.
CDINIT - Physical Console Initialization.
CDBRK - Physical Break Check Routine.
CDOUT - Physical Console Output Routine.
CDIN - Physical Console Input Routine.
MDOS or M. BASIC warmstart (entry) location.
Beginning of RES Module code. ’

Beginning of RES Module input buffer.

MDOS system stack, and used by Boot loader.

RAM available to user.

1-10 Rev. 8.1 2/5/79

1.4 MDCS SYSTEM DISKETTE

This revision of the User's Gulde to Vector Graphics Systems Using
MDOS corresponds to MDOS System Diskette 8.4, (and minor revisions

of it labeled 8.4.1, 8.4.2, etc.) Following is a list of the files
on this diskette:

(Under TYPE, "EC" means the file 1is stored in executable machine
language code and it will be executed immediately if you type its

name after the MDOS prompt. "AL" means the file 1is stored in
assembly language source code. You must first assemble it using ZSM
before 1t can be executed by the computer. "B" means the file is

stored in the M.BASIC language. It will be executed by using the
M.BASIC interpreter explained in chapter 5.)

NAME DESCRIPTION TYPE
DIR The disk directory.
RES Machine language routines used by both MDCS .

and M.BASIC Do not delete it unless you
are modifying it.
MDOS MDOS executive and disk I/0 routines.
Do not delete this. See Appendix B
tc create a BASIC~-only diskette.

BASIC M.BASIC interpreter and disk I/0. EC
See Chapter 5.

LINEEDIT Line editor for writing assembly language. EC
programs. See Section 4.4.

ZSM Assembler of Z-80 code prepared in extended EC
8080 mnemonics. See Section 4.5.

SYMSAVE Utility which creates a source file EC

of equate statements using the symbol
table resulting from an assembly.

See Section 4.6. Used occasionally by
assembly language programmers.

FILECOPY Utility for copylng a file from one drive EC
to another. See Secton 4.7. Used often.
DISKCOPY Utility for copying a disk from one drive to EC
. another. See Section 4.8. Used often.
COPYFILE Utility for copying a file from one disk to EC

another, using the SAME drive, for systems
having only one drive. See Section 4.10.
DEBUG-GEN Utility used to generate the DEBUG utility EC
residing in a particular portion of
memory. See Section 4.11.
FEATURES Utility used to shorten BASIC. EC
See Appendix G.

Rev. 8.4-A 7/26/79 1-11

NAME DESCRIPTION TYPE

SYSQl, and Assembly language source code containing the AL
SYSQ2 names of all MDOS shared subroutines,
equated to their addresses. Used
in assembly language programs calling those
routines. See Section 4.3. Used from time
to time by assembly language programmers.

UTILITY A utility used to initialize diskettes, create B
BASIC-only diskettes, and examine memory.

See Appendix B.

RES.I/0 The source code file of the I/0 routines in AL
RES. Used to rewrlte the I/0 routines if
using non-standard peripherals.

See Appendices M, N, and O.

DIAB Routine for interfacing to Diablo-protocol EC
printers if the Bitstreamer board is
addressed for ports 0 - 3. Overlays
directly over RES 1n memory.

See Section 2.2.2. Not
needed after RES 1s saved on diskette.

DIABA Same as DIAB, but Bltstreamer is at 4 - 7. EC

CENT Same as DIAB, but for Centronics printers. EC

CENTY Same as CENT, but Bitstreamer 1s at 4 - 7. EC

DECW Same as DIAB, but for teletype-protocol EC
printers.

DECW4 Same as DECW, but Bitstreamer is at 4 - 7. EC

SAVERES Utility used to save on disk the machine EC

language version of the I/0 portion of the

RES Module. See 3Section 2.2.0. Not

needed after the RES Module is finalized.
NOESCAPE Utility which stops the ESC key from causing EC

control to be passed to the Systems Monitor.

See Section 2.3.7. DNot needed after used

once.

MDIAG Utility used to check the computer's memory. EC
See Appendix Q. Do not delete this.

MAP Utility which tells what kind of memory EC

(RAM, ROM or nothing) is 1in the system
at each address. See Appendilix Q.
Useful when servicing a system.

FLASHT Demonstration of the graphlecs capabllity of EC
the Flashwriter II board. See Appendix J.
Dealers use often.

PROM Utility used with the PROM/RAM III board to EC
program EPRCM's. See PROM/RAM III manual.
STARTREKG The Star Trek game. See Appendix J. B
Dealers use often. Others 1f they 1ike it.
CIVILWAR Ancther game. See Appendilx J. B
LUNAR Another game. See Appendix J. B
FINANCE Day=-to-day financial calculations.
See Appendix J. Used often il you need it. B

1-12 Rev. 8.4-4 7/26/79

To obtain a list of the files on your diskette, to see what 1is
actually there, turn the machine on, mount the system diskette in
drive 0 (right-hand drive), type B after the Monitor prompt (%),

type FILES after the MDOS prompt (>), and then press the RETURN kevy.
The interaction looks like this on the screen:

*B

Vector MZ MDOS X.XX
>FILES

DIR 03 0000
RES 03 0014

The left-hand number refers to the file type, explained in Section
4.2.3. The right~hand number gives the length of the file in
sectors. Both numbers are in hexadecimal (base 16).

The list is long and will roll past the edge of the screen. To stop
it at any point, depress control-S (CTRL key and S at the same
time.) To start it up again, depress the spacebar.

If you have a printer which is up and running with your system, vyou
can print the directory by typing ASSIGN 2,3 (return), before you
type FILES. After the directory is printed, type ASSIGN 2,2
(return) to turn the printer off again. ''(return)' means press the
RETURN key.

Rev. 8.3-A 7/1/79 1-13

II INSTALLATION, CONFIGURING PERIPHERALS, AND USE OF DISKETTES

2.1 INSTALLATION

For turn-key systems (that is, all internal wiring and software
modifications have been done prior to delivery), just plug in
external cables to the sockets on the rear panel of the mainframe.
End users: if sockets are not labeled and choice is not obvicus, ask
vour dealer.

For non-turn~key systems, refer to Section 2.2 for directions on
setting up peripherals, interface boards, cables, and interface
software. For systems with which a printer will be used, it may be
desirable to first set the system up as if there were no printer,
test it as explained below, then complete the setting up procedures
for the printer. Section 2.2 separates the 2 stages.

When ready to test the system, do as follows:

1. Turn the power key on the front panel and then turn on
peripherals. The Monitor prompt * should appear on the
screen., (Exception: in MEMORITE systems, depress RESET on

the front panel after turning tne power on. The Monitor
prompt should then appear.)

2. Enter N on the keyboard. This is a memory test which also
functions as a test of the console. After a few seconds a
hexadecimal number should appear. It indicates the first
memory address where no memory hardware is located. In
normal systems with 48K of RAM, the number should be C00O0.

3. Insert and mount the MDOS Personalized System Diskette in
drive 0. Drive 0 is the right-hand drive. The left~hand
drive is drive 1. Refer to Section 2.4 for how to insert,
mount, and in general handle diskettes.

4. Enter B. This causes MDOS to be loaded and take control.
This will be indicated by the MDOS sign on message and the
MDOS prompt: >.

5. To test a separate printer, if any, first make sure there is
paper in the printer. Then, enter ASSIGN 2,3 (return),
followed by FILES (return). (The expression (return) always
means "press the RETURN key."). A list of the files on the
System Diskette will be printed.

When the system 1s working properly, refer to Chapter 3 for a
complete description of normal operating procedures, and to Section
2.4 for instructions on the handling and maintenance of diskettes.
Do not neglect either Section 2.4 or Chapter 3 as they contain
information which is not effectively acquired by trial and error
alone. Section 2.3 describes various modifications which can be
made to the hardware.

Rev. 8.1 2/5/79 2-1

alone. Section 2.3 describes various modifications which can be
made to the hardware and systems software.

2.2 CONFIGURING THE MZ - THIS SECTION FOR NON-TURN-KEY SYSTEMS ONLY

2.2.0 MODIFYING THE RES MODULE

At various points in this chapter (or in related appendices) you
will be instructed to carry out procedures which modify the RES
Module. The most common of such procedures are the Software
Implementation Procedures found in section 2.2.1 under each of the
standard configurations. (These Software Implementation Procedures
are used only if a printer 1is implemented.)

To carry out any procedure which modifies the RES Module, turn the
system and all. peripherals on. In MEMORITE systems, depress the
RESET button next. Then insert and mount the Perscnalized MDOS
System Diskette in drive 0. Do not use the Master MDOS System
Diskette. This diskette should never be altered and only used for
emergency back-up. After the Monitor prompts with ¥, enter B. This
"boots up" MDOS, as indicated by the MDOS sign-on message and MDOS
prompt: >. Now proceed with the given procedure.

Note that in all software procedures, "(return)" means "press the
RETURN key."

(return). Whenever such a command 1s entered, the system will

respond by displaying the MDOS sign-on message again, or at least
the MDOCS prompt >.

A step will be found which commands "Save the RES Module on
Personalized System Diskette." This is accomplished as follows:
Make sure the Personalized MDOS System Diskette is inserted and
mounted in drive 0. Then under MDOS type SAVERES (return). The
drive should write on the diskette. The RES Module is now saved on
the Persconalized MDOS System Diskette.

Important: You may want to do several different procedures, each of
which terminates with saving the RES Module. You are definitely
free to do any group of them at one sitting, and then save the RES
Module as described above ONCE at the end of the session, in corder
to save trouble. Alternately, you may of course save the RES Mcdule
after each such procedure, if desired..

Note: SAVERES is a utility which saves on diskette the I/0 portion
of the RES Module, in machine language form. The block of code
which 1s saved corresponds to the ceode found 1in the source listing
called RES.I/0, plus a few bytes before and after. In the rare case
you have modified the RES Module cutside of the I/0 portion, fthen
you must use the following alternate steps to save the RES Module:
Under MDOS, enter TYPE "RES" @ (return) SCRATCH "RES" (return) SAVE
"RES" 2B1 1598 3 (return).

Rev. 8.4-A4 7/26/79 2-2

2.2.1 STANDARD CONFIGURATIONS

At this time, Vector Graphic supplies the interface hardware and
software to support several different configurations of main
peripheral devices, that is, printers, keyboards, video displays,
and terminals. This section is concerned with identifying these
standard configurations, and explaining how they are implemented.

If the peripheral device desired is not found among the standard
configurations, refer to Section 2.2.3.

The information is collected in the following pages. Each section
is concerned with one configuration. Each configuration is a
selected group of peripherals. Peripherals are listed as generic
types, (upper case lettering). Specific makes are given as examples,
(lower case lettering). The user is not limited to these examples,
but can use any model that falls within the given generic
description.

To use these charts, find the configuration desired. When ordering
an MZ or other Vector Graphic computer, order it with the components
listed as well as the peripherals desired if supplied by Vector
Graphic. (Since all systems are always delivered with one
Bitstreamer board and an I/0 cable, do not explicity order these
items.)

If no printer is being used, find the desired configuration ignoring
the type of printer listed. For this purpose, refer only to those
configurations whose headings are NOT preceded by asterisks(*).
Then, only order the parts and carry out the steps shown WITHOUT
asterisks.

If a printer is being added to an existing system, find the desired
configuration, then only order the parts and carry out the steps
shown WITH an asterisk (*¥). To obtain a useful summary of the
issues involved with printers, see seciton 2.2.2

Some systems may already be partially configured at the factory or
by intermediaries, so that you need order and set up only the
components not already included. For example, "System B"™ is an MZ
with the Vector Graphic Mindless Terminal and Flashwriter II board.
All you have to add is a printer. Your choices would be the
configurations in Sections 2.2.1.4 and 2.2.1.6 for Centronics or
Diablo-type printers respectively. MEMORITE is even simpler than a
System B. Just do the Software Implementation procedure in Section
2.2.1.6, using the DIAB4 command.

Flashwriter Board: The charts refer to a "Flashwriter Board."
Order a Flashwriter I for 16 x 64 display and Flashwriter II for 80
X 24 display. When ordering an Extended Systems Monitor for use
with one of these boards, always state which it is for.

When your system and/or components are delivered, refer again to the

chart. Perform the implementation procedures listed in order to
implement the desired configuration.

Rev. 8.3~-A 7/1/79 2-3

* 2.2.1.1

Printer: PARALLEL, CENTRONICS 700 SERIES PROTOCOL.

Example:

Interface

Hardware

* 1.

* 3.

Sof tware

Console: SERIAL VIDEO TERMINAL.

Parallel Centronics matrix printer (700 Series), and
Hazeltine terminal.

Components Required

Option C Extended Systems Monitor, on PROM.
Centronics interfacing kit

Bitstreamer board and I/0O cable (no need to order;
included in system automatically.)

Implementation Procedures

Install the Centronics interfacing kit as instructed in
Appendix H. Make sure there is an I/0 cable connected at
one end to J3 on the Bitstreamer board and at the other
end installed in one of the cutouts at the rear of the
mainframe.

Plug the external terminal cable into the socket on the
rear of the mainframe which is wired to the 6 pin molex
connector on the Bitstreamer board.

Plug the printer cable into the socket which is wired to
J3 on the Bitstreamer board.

Implementation Procedures

Under MDOS, enter CENT (return).

Save RES Module on Personalized System Diskette.

2.2.1.2 Printer: SERIAL, DIABLO 1610 OR TELETYPE PROTOCOL.

Console: SERIAL VIDEO TERMINAL.

Example:

Printer: if Diablo protocol ~ Diablo 1610 or 1620,

Qume Sprint 5, or NEC Spinwriter; if Teletype protocol -

Decwriter,
Console: Hazeltine terminal.

Interface

ll
2.

* 3,
* 4.

Hardware

* l.

Teletype, or TI 810 or 820.

Components Required

Option C Extended Systems Monitor, on PROM
Bitstreamer board and I/0 cable {(no need to order;
included in system automaticelly.)

A second Bitstreamer board

A second I/0 cable

Implementation Procedures

Jumper one of the Bitstreamer boards so that it 1is
readdressed for ports 4 - 7 rather than the original 0 -
1. Instructions will be found in the Bitstreamer User's

2-4 Rev. 8.1 2/5/79

Manual. This board will be used to control the printer.

Make sure that the printer is set for its highest speed,
(1200 baud for Diablo 1610 protocol), and that its parity
setting is MARK parity. Check the printer manual if
necessary. Some printers such as the Diablo require a
jumper on internal circuitry to increase from 300 baud to
1200 baud.

Make sure that the Bitstreamer board is set for the same
speed as the printer. This is set on a dipswitch on the
upper left-hand corner of the board. Press the
appropriate switch in and upward and make sure all other

switches are pressed downward.

Connect one of the I/0 cables to J3 on one of the
Bitstreamer boards. Install the 25 pin socket on the
other end of the cable in a cutout at the rear of the
mainframe. ‘

Do step 4 for the second Bitstreamer and I/0 cable.

Plug the printer cable into the socket connected to the
readdressed Bitstreamer.

Plug the terminal cable into the socket connected to the
normal Bitstreamer. IMPORTANT: Some terminals will not
operate 1f they are connected to all 25 pins, because some
of the pins of J3 on the Bitstreamer have functions other
than serial communications. If your terminal does not
operate after connecting it to all pins, then connect only
the essential ones. Example: the Hazeltine 1400 will
function only if a 3-line cable is used, connecting pins
2,3, and-7. A 25 pin ribbon connector will not work.
Other terminals may require additional pins, but again not
all 25. Refer to the Bitstreamer bcard manual 1if
necessary for definitions of each of the pins on the
backpanel connector.

Software Implementation Procedures

Under MDOS, if printer uses Diablo protocol, enter DIAB4
(return); if printer uses Teletype protocol, enter DECW4
(return).

Save RES Module on Personalized System Diskette.

2/5/79 2-5

* 2.2.1.3 Printer: PARALLEL, CENTRONICS 700 SERIES PROTOCOL

Console: PARALLEL ASCII KEYBOARD, SEPARATE VIDEO MONITOR.

Example: Printer: Parallel Centronics matrix printer (Series 700)

Console: Vector Graphic stand-alone parallel keyboard and

Hitachi video monitor.

Interface Components Required

Option EV Extended Systems Monitor on PROM

Flashwriter board

I/0 cable

Video cable, for Flashwriter to rear panel

Video monitor to mainframe cable

Centronics interface kit

Bitstreamer board with I/0O cable (no need to order;
included in system automatically.)

Hardware Implementation Procedures

* 1.

Jumper the Bitstreamer board so that it is readdressed for
ports 4 - 7 rather than the original 0 - 1. Instructions
will be found in the Bitstreamer User's Manual.

Install the Centronics interfacing kit as instructed in
appendix H. However, do not install the 6 pin molex
connector or the serial I/0 cable which come in the
Centronics interface kit. They are not needed and can be
set aside. Make sure that there is a regular I/0 cable
connected to J3 on the Bitstreamer board and installed at
the other end in a cutout at the rear of the mainframe.
This socket will be used for the printer cable.

Connect the 2 pin socket at one end of the video cable to
the 2 left-most pins which will be found rising vertically
from the left-hand corner of the Flashwriter board. The
socket should be positioned so that the inside wire is
connected to pin 1, and the- -outside "shield" wire is
connected to pin 2 (ground). Install the circular socket
at the other end of the cable into one of the circular

cutouts at the rear of the mainframe.

Connect the 24 pin dip plug at one end of the second I/0
cable to J1 on the Flashwriter board. Install the 25 pin
socket at the other end in one of the cutouts at the rear
of the mainframe. This socket will be for the keyboard
cable. :

Plug the printer cable into the appropriate sockets on the
rear of the mainframe.

Plug the external keyboard and monitor cables into the
appropriate sockets on the rear of the mainframe.

2~6 Rev. 8.1 2/5/79

Software Installation Procedures

* 1. Under MDOS, enter CENT4 (return).

* 2. Save RES module on Personalized System Diskette.

* 2.2.1.4 Printer: PARALLEL, CENTRONICS SERIES 700 PROTOCOL.
Console: VECTOR GRAPHIC MINDLESS TERMINAL.

Example: Parallel Centronics matrix printer (Series 700) and
Graphic Mindless Terminal.

Interface Components Reguired

l. Option EV Extended Systems Monitor on PROM

2, Flashwriter board

3. Mindless Terminal 3-part I/0 cable

4, External Mindless Terminal cable (or equivalent)
* 5. Centronics interface kit

* 6, Bitstreamer board with I/0 cable (no need to order;

included in system automatically.)

Hardware Implementation Procedures

Vector

* 1. Jumper the Bitstreamer board so that it is readdressed for
ports 4 - 7 rather than the original 0 - 1. Instructions

will be found in the Bitstréamer User's Manual.

* 2. Install the Centronics interfacing kit as instructed in
Appendix H. However, do not install the 6 pin molex
connector or the serial (3 wire) I/0 cable which come in
the Centronics interface kit. They are not needed and can
be set aside. Make sure that there is a regular I/0 cable
connected to J3 on the Bitstreamer board and installed at
the other end in a cutout at the rear of the mainframe.

This socket will be used for the printer cable.

3. If not already done at the factory, install the Mindless
Terminal 3~part I/0 cable as instructed in the terminal's
documentation. The 3 parts are connected to the power
supply, the Flashwriter board video output pins, and the

Flashwriter board keybcard input socket (J1).

At the

cther end, the DB25> socket is installed in one of the

cutouts at the rear of the mainframe.

* 4. Plug the printer external cable into the respective
socket at the rear of the mainframe.

5. Plug the terminal external cable into the respective

socket at the rear of the mainframe.
Software Installation Procedures

* 1. Under MDOS, enter CENT4 (return).

Rev. 8.1 2/5/79 2=-7

* 2,

Diskette.

Save RES module on Personalized System

2.2.1.5 Printer: SERIAL, DIABLO 1610 or TELETYPE PROTOCOL

Console: PARALLEL ASCII KEYBOARD, SEPARATE VIDEO MONITOR.

Example:

Printer: if Diablo proteocol - Diablo 1610 or 1620,

Qume Sprint 5, or NEC Spinwriter; if Teletype protocol -
Decwriter, Teletype, or TI 810 or 820.

Conscle: a Vector Graphic stand-alone parallel

keyboard and Hitachi video monitor.

Interface Components Reguired

1.
2.
3.
4.
5.
* 6.

Hardware

l.

Option EV Extended Systems Monitor on PROM
Flashwriter board

I/0 cable .)

Video cable, Flashwriter to rear panel

Video monitor to mainframe cable

Bitstreamer board with I/0 cable (no need to order;
included in system automatically.)

Imnplementation Procedures

If no printer is being used, remove the Bitstreamer

from the mainframe, and do not put it back in. It cannot
be in the system (unless readdressed as explained below.)

Jumper the Bitstreamer board so that it is readdressed for
ports 4 - 7 rather than the original 0 - 1. Instructions
will be found in the Bitstreamer User's Manual.

Make sure that the printer is set for its highest speed,
(1200 baud for Diablo 1610 protocol), and that its parity
setting is MARK parity. Check the printer manual if
necessary. Some printers such as the Diablo require a
jumper on internal circuitry to increase from 300 baud to
1200 baud.

Make sure that the Bitstreamer board is set for the same
speed as the printer. This is set on a dipswitch on the
upper left~hand corner of the board. Press the
appropriate switch in and upward and make sure all other
switches are pressed downward.

Make sure that there is a regular I/0 cable connected to
J3 on the Bitstreamer board and installed at the other end
in a cutout at the rear of the mainframe. This socket
will be used for the printer cable.

Connect the 2 pin socket at one end of the video cable to
the 2 left-most pins which will be found rising vertically
from the left-hand corner of the Flashwriter board.
Install the circular socket at the other end of the cable

2-8 Rev. 8.1 2/5/79

9.

Sof tware

* 1.

* 2.

into one of the circular cutouts at the rear of the
mainframe.

Connect the 24 pin dip plug at one end of the second I/O
cable to J1 on the Flashwriter board. Install the 25 pin
socket at the other end in one of the cutouts at the rear
of the mainframe. This socket will be for the keyboard
cable.

Plug the printer external cable into the appropriate
socket on the rear of the mainframe.

Plug the keyboard and monitor external cables in the
appropriate sockets on the rear of the mainframe.

Installation Procedures

Under MDOS, if printer uses Diablo protocol, enter DIAB4
(return); if printer uses Teletype protocol, enter DECWA4

{(return).

Save RES module on Personalized System Diskette

2.2.1.6 Printer: SERJAL, DIABLO 1610 or TELETYPE PROTOCOL.

Console: VECTOR GRAPHIC MINDLESS TERMINAL.

Example:

Sprint 5,

Teletype,

Interface

1.

e
-

°

s W RN

Hardware

1.

Rev. 8.1

Printer: if Diablo protocol - Diablo 1610 or 1620, Qume
or NEC Sprinwriter; 1f Teletype protocol - Decwriter,
or TI 810 or 820.

Console: Vector Graphic Mindless Terminal.

Components Required

Cption EV Extended Systems Monitor on PROM
Flashwriter board

Mindless Terminal 3-part I/0 cable

External Mindless Terminal cable (or equivalent)
Bitstreamer board with I/0 cable (nc need to order;
included in system automatically.)

Implementation Procedures

If no printer is being used, remove the Bitstreamer from

the mainframe. Do not put it back in. It cannot be in
the system.

Jumper the Bitstreamer board so that it is readdressed for
ports 4 -~ 7 rather than the original 0 - 1. 1Instructions
will be found in the Bitstreamer User's Manual.

Make sure that the printer is set for its highest speed,

(1200 baud for Diablo 1610 protocol), and that its parity
setting is MARK parity. Check the printer manual if

2/5/79 2-9

8.

Scftware

necessary. Some printers such as the Diablo regquire a
jumper on internal circuitry to increase from 300 baud to
1200 baud.

Make sure that the Bitstreamer board is set for the same
speed as the printer. This is set on a dipswitch on the
upper left-hand corner of the board. Press the
appropriate switch in and upward and make sure all other
switches are pressed downward.

Make sure that there is a regular I/0 cable connected to

. J3 on the Bitstreamer board and installed at the other end

in a cutout at the rear of the mainframe. This socket
will be used for the printer cable.

If not already done at the factory, install the Mindless
Terminal 3-part I/0 cable as instructed in the terminal's
documentation. The 3 parts are connected to the power
supply, the Flashwriter board video output pins, and the
Flashwriter board keyboard input socket (J1). At the
other end, the DB25 socket is installed in one of the
cutouts at the rear of the mainframe.

Plug the printer external cable into the respective socket
at the rear of the mainframe.

Plug the terminal external cable into its socket at the
rear of the mainframe.

Installation Procedures

Under MDOS, if printer uses Diablo protocol, enter DIAB4
(return); if printer uses Teletype protocol, enter DECW4
(return). -

Save RES module on Personalized System Diskette.

* 2,2.1.7 SERIAL PRINTING TERMINAL (HAS A KEYBOARD), DIABLC 1610

OR TELETYPE PROTOCOL

Example: Printing terminal: if Diablo protocol - Diablo 1620, Qume
Sprint 5 with keyboard, or NEC Sprinwriter with keyboard; if
Teletype protocol ~ Decwriter, Teletype, or TI 810 or 820, with
keyboards;

Video monitor: Hitachi.

Interface Components Required

Option CV Extended Systems Monitor on PROM
Flashwriter board

Video cable, Flashwriter to rear panel

Videc Monitor to Mainframe cable

Ritstreamer board with I/0 cable (nc need to corder;
included in system automatically.)

2-10 Rev. 8.1 2/5/79

Hardware Implementation Procedures

* 1.

Make sure that the printer is set for its highest speed,
(1200 baud for Diablo 1610 protocol), and that its parity
setting 1is MARK parity. Check the printer manual if
necessary. Some printers such as the Diablo require a
jumper on internal circuitry to increase from 300 baud to
1200 baud.

Make sure that the Bitstreamer board is set for the same
speed as the printer. This is set on a dipswitch on the
upper left-hand corner of the board. Press the
appropriate switch in and upward and make sure all other
switches are pressed downward.

Make sure that there is a regular I/0 cable connected to
J3 on the Bitstreamer board and installed at the other end
in a cutout at the rear of the mainframe. This socket
will be used for the printer cable.

Disable the parallel port on the Flashwriter board. To do
this, simply remove chip U52 from the board, using a small
screw driver to pry it out of its socket. If U52 cannot
be easily located, refer to the Flashwriter User's
Manual. :

- Connect the 2 pin socket at one end of the video cable to

the 2 left-most pins which will be found rising vertically
from the left-hand corner of the Flashwriter board. The
socket should be positioned so that the inside wire is
connected to pin 1, and the outside "shield" wire is
connected to pin 2 (ground). Install the circular socket
at the other end of the cable into one of the circular
cutouts at the rear of the mainframe. :

Plug the printer external cable into the socket on the
rear of the mainframe.

Plug the monitor external cable into the approecpriate
socket on the rear of the mainframe.

Software Installation Procedures

Rev.

* 1.

* 2.

8.1

(return); 1if printer used Teletype protocol, enter D
(return).

Under MDOS, if printer uses Diablc protocol, enter D

H
3o
o

gl
0
=

Save RES module on Personalized Diskette.

2/5/79 2=-11

SERIAL PRINTING TERMINAL (HAS KEYBOARD), DIABLO 1610

* 2,2.1.8
Example:
Sprint 5
Teletype
keyboards
Interface
1.
* 2.
Hardware
* 1.
* 2l
* 3.
* 4'
Software
* 1.
* 2.
* 30

OR TELETYPE PROTOCOL
NGO VIDEOQO.

Printing terminal: if Diablo protocol - Diablo 1620, Qume
with keyboard, or NEC Sprinwriter with keyboard; if
protocol - Decwriter, Teletype, or TI 810 or 820, with

7
Components Required

Option C Extended Systems Monitor on PROM

Bitstreamer board with I/0 cable (no need to order;
included in system automatically.)

Implementation Procedures

Make sure that the printer is set for its highest speed,
(1200 baud for Diablo 1610 protocol), and that its parity
setting is MARK parity. Check the printer manual 1if
necessary. Some printers such as the Diablo require a
jumper on internal circuitry to increase from 300 baud to
1200 baud.

Make sure that the Bitstreamer board is set for the same
speed as the printer. This is set on a dipswitch on the
upper left~hand corner of the board. Press the
appropriate switch in and upward and make sure all other
switches are pressed downward.

Make sure that there is a regular I/0 cable connected to
J3 on the Bitstreamer board and installed at the other end
in a cutout at the rear of the mainframe. This -socket
will be used for the printer cable.

Plug the printer cable into the socket at the rear of the
mainframe. ‘

Implementation Procedures

Under MDOS, if printer uses Diablo protocol, enter DIAB
(return); if printer uses Teletype protocol, enter DECW
(return).

Save RES Module on Personalized System Diskette.

If printer uses Diablo protocol, then before each session
at the computer, as the first step after loading MDOS,
enter:

ASSIGN 2,3 (return)
ASSIGN 1,0 (return)

(Do not be concerned that while entering the second line,
the printer prints every character twice.)

2-12 Rev. 8.1 2/5/79

NOTE: Using the serial Diablo protocol printing terminals at 1200
baud with no video display is limited by the fact that no Extended
Systems Monitor commands which cause outputing more than about 40
characters can be used. (This is because serial output from the
Extended Systems Monitor does not use the Diablo protocol technique
of checking whether the printer can accept the next character. More
than 40 characters at 1200 baud will usually cause the printer's
buffer to overflow.) MDOS and M.BASIC commands do not cause the
same problem, so long as the above mentioned ASSIGN commands are
used prior to each session.

One way to solve this problem is to run the printer at 300 baud
(Bitstreamer at 300 baud too) and to use the DECW command rather
than the DIAB command before saving the RES module on the
Personalized System Diskette. In this case, the ASSIGN commands are
not needed. The drawback is slower printing.

2.2.2 ADDING A STANDARD PRINTER TO AN EXISTING SYSTEM

The information in this section concerns adding a printer to an
existing system, one which already has some kind of video display
and keyboard functioning. The logic behind this information is the
same as that used in section 2.2.1, except that here it is presented
in summary form.

The printers presently considered standard for Vector Graphic
systems are:

Centronics Series 700 parallel matrix printers,

Diablo 1610 protocol serial printers, such as Diablo 1610, Qume
Sprint 5, or NEC Sprinwriter, and

Teletype protocol printers, such as Decwriter, Teletype, or TI
810 and B20.

There are many makes and mocdels with protocols similar or identical
to the above. Some differences between makes of printers will not
make them incompatible with the Vector Graphic computers
necessarily, but it is recommended that the user try out with his
system any printer not listed above, before purchasing.

Adding a printer involves 3 steps:

1) obtain the interface components, as well as the printer,
2) do hardware implementation procedures required, and
3) do software implementation procedures regquired.

INTERFACE COMPONENTS REQUIRED

1) Bitstreamer board and I/0 cable. Generally, use the one which
came with your system. If it is being used to control a serial
terminal now, it can be used in addition to control a parallel
printer such as a Centronics printer. However, 1f the present

Rev. 8.1 2/5/79 2-13

terminal is serial, and a SERIAL printer such as Diablo, Qume, Or
Teletype is desired, a second Bitstreamer and I/0 cable must be
ordered.

2) If a parallel Centronics protocol printer is to be implemented,
order a CENTRONICS INTERFACE KIT from Vector Graphic or an
authorized dealer.

HARDWARE IMPLEMENTATION

1) If the keyboard and video are controlled by a Flashwriter board,
or if both the printer and the video console are serial, then there
will be 2 interface boards in the system. When this is the case,
the Bitstreamer controlling the printer must be jumpered to respond
to port addresses 4 - 7 rather than 0 - 1. Instructions will be
found in the Bitstreamer User's Manual.

2) 1If the printer is a parallel printer using Centronics protocol,
make the modifications to the Bitstreamer board and install the
Centronics Interface Kit, both as described in Appendix H. Do all
the procedures in Appendix H if the keyboard and video are a serial
terminal such as Hazeltine. However, if the keyboard and video are
controlled by a Flashwriter board, then do not bother to install the
6-pin plug or the serial I/0 cable.

3) If printer is serial, make sure it is set at 1ts highest speed
(1200 baud if it is Diablo 1610 protocol.) Then make sure the
dipswitch on the upper left-hand corner of the Bitstreamer is set at

the same rate (chosen switch up, all others down.) Printer must be
set for MARK parity.

4) Make sure the the 24 pin dip plug on the I/O cable is inserted in
J3 on the Bitstreamer board and that the socket on the other end is
installed in one of the cutouts on the mainframe back panel. Then
plug the printer cable into that same socket on the back panel.

SOFTWARE IMPLEMENTATION

The RES Module on the MDOS System Diskettes is not configured for
any particular printer. However, a large number of versions Of the
I/0 portion of the RES Module are present on the diskettes. The
user need only overlay the desired version onto the RES Module
stored in memory, and then save the new RES Module onto the
Personalized System Diskette. The versions available as of this
release are:

CENT and CENT4 for parallel Centronics protocol printers

DIAR and DIAB4 for serial Diablo protocol printers
DECW and DECW4 for serial Teletype protoccl printers
In each case, the version with a "4" attached must be used if the

Bitstreamer has been readdressed for ports 4 - 7. Otherwise use the
version without a "4",.

2-14 Rev. 8.1 2/5/79

To accomplish the overlay, simply enter the name of the file in
upper case letters following the MDOS prompt >. After the overlay is
done, indicated by another MDOS sign-on message appearing on the
screen, save the RES Module by entering the following commands under
MDOS =

TYPE "RES" 0 (return)
SCRATCH "RES" (return)
SAVE "RES" 2B8 146B 3 (return)

If the printer is not one of the above types,; then a custom
interface routine must be written. See Appendix N.

2.2.3 NON-STANDARD CONFIGURATIONS

Any configuration of peripherals which includes a printer, video
unit, keyboard, or terminal different than those used in the
standard configqurations, is a non-standard configuration.

Hardware: In order to order and implement the interface hardware,
use the standard configuration procedures as models as far as is
possible.

Software: In many non-standard configurations, it will be necessary
to custom write a printer and/or console physical I/0 routine. refer
to Appendix M for rewriting console I/0 and to Appendix N for
rewriting printer I/0.

2.3 MODIFYING THE SYSTEM HARDWARE

2.3.1 CHANGING TO 2 MHZ CLOCK RATE

Some non-Vector Graphic S-100 boards operate only at 2 MHz, the rate
of the original 8080 clock. Since the Z-30 can operate at both
rates, you may desire to run the system at 2 MHz in order to include
such beoards. Instructions will be found in Appendix L.

2.3.2 CONNECTING ADDTIONAL DISK DRIVES

2 Micropolis disk drives are standard equipment. Additional drives
may be added because the Micropolis software can addresss up to 4
drives. Contact your dealer or Vector Graphic in order to order.

Rev. 8.1 2/5/79 2

15

2.4 DISKETTE MEDIA

2.4.1 DESCRIPTION

The recording medium used with the MZ Micropolis diskette subsystem
is an industry standard 5 l1/4-inch diskette (Fig 2.1) in its
hard-sectored version with 16 sectors, each defined by a sector
hole. Thus, it has one index hole and 16 sector holes. Diskettes
of this type are available from computer stores or from other
computer supply sources. DO NOT USE DISKETTES WITH OTHER THAN 16
HARD SECTORS, OR THOSE WHICH ARE SOFT-SECTORED (NO SECTOR HOLES) .
THEY WILL NOT WORK.

2.4.2 HANDLING

1) The Micropolis flexible disk drive subsystem was designed to
take every reasonable precaution to protect your diskettes and the
data recorded on them. Examples of this care are the door interlock
which prevents mounting of the diskette until it is properly
inserted, and the automatic 5 second deselect feature which relieves
the head load pressure from the recording surface when the drive is
not in use.

Once the diskette is removed from the drive, it 1is your
responsibility to exercise the same care in handling and storing the
diskette to ensure its long service life. The following precautions
are guidelines for proper handling:

a) The exposed recording surface is easily contaminated -~ do
not touch or attempt to clean the surface. Do not smoke, eat or
drink while handling the diskette. Whenever the diskette is removed
from the drive, return it to its protective envelope.

b) The diskette is a thin oxide-coated plastic sheet which may
be damaged if handled carelessly. Do not place heavy objects on the
diskette; do not expose the diskette to excessive heat or sunlight;
do not use rubber bands or paper clips on the diskette; do not bend
or fold the diskette.

c) Do not write on the diskette labels with an erasable
pencil: graphite particles may contaminate the diskette or it may
be damaged by the force exerted in writing. A fiber-tip type of pen
is recommended. Return the diskette to its envelope before writing
on labels. ‘

d) Information is recorded on the diskette as magnetized
"spots". Exposure of the diskette to magnetic fields or
ferromagnetic objects which may become magnetized may result in the
loss of information.

If a diskette is damaged or contaminated it should be replaced. If
a contaminated diskette is placed in the drive, the receiver and
read/write head may become contaminated and ruin other diskettes.

2) The auto—deselect will ensure reasonable diskette life. But, as

2=~16 Rev. 8.1 2/5/79

a rule you should unmount the diskette whenever it 1s not going to
be accessed for long periods of time. This will give added diskette
life and prolong the life of the drive motor.

2.4.3 LOADING AND UNLOADING

There are two stages of loading a diskette. First, insert the
diskette with label side upward for horizontal drives, or leftward
for vertical drives, and with the edge nearest to the read/write
head access hole going in first. Insert the diskette all the way,
until it clicks into place. At this point the diskette is said to
be "inserted" but not yet "mounted". The diskette may be left like
this for any length of time without decreasing its life. Power may
be turned on or off with the diskette in this condition. It is
recommended however that if a diskette will not be used for any
length of time it be returned to its envelope or other storage
file.

Second, the diskette is "mounted" by depressing the manual load
actuater on the disk drive slowly but firmly until it stays in the
mounted position. The drive will begin to turn and rotate the
diskette inside its Jjacket. 1If the load actuator cannot be fully
depressed, this indicates that the diskette was not inserted
completely or properly.

Power should NOT be turned on or off when a diskette is 1in the
mounted position. The consequence is from time to time the loss of
data on the diskette.

Once the diskette is mounted, it is accessible by software for
writing or reading. When a read or write operation is initiated,
you will hear an audible click £from the drive unit and the red light
on the unit will glow, indicating that unit has been selected.
After the operation is complete, the unit will remain selected for 5
seconds. At the end of 5 seconds; the unit will be automatically
deselected: the red light will go out, and there will be another
click as the head load pad is raised off the surface of the
diskette. This automatic deselect feature is important in
lengthening the life-span of diskettes.

To dismount the diskette, press the load actuator down as far as it
will go, then release pressure. It will then open tc the unmounted
pesition. This discontinues rotation of the diskette within its
jacket. 1In order to do your part as user in prolonging the life of
the diskette, observe the following rule: UNLOAD THE DISKETTE DURING
PERIODS IN WHICH IT IS NOT IN USE. This reduces wear of the
diskette against its jacket. ©Note that the diskette may be left
inserted, so long as it is unmounted, without shortening its life.

To remove the diskette, press the load activator upward (or leftward

in vertical drives). The diskette will be popped out (de-inserted)
and can now be removed.

Rev. 8.1 2/5/79 2=-17

2.4.4 REPLACEMENT AND BACK~-UP OF DISKETTES

The nature of floppy diskette drives is that the read-write head is
in contact with the diskette surface whenever the unit is selected,
resulting in gradual deterioration of the surface. Continual
loading of the head on a single track will naturally result in its
deterioration before the rest of the diskette. The rotation of the
diskette within its jacket is an additional source of wear.

Backup: The BEST defense against loss of diskette-based data is
maintaining a back-up diskette for each diskette you use. 1In the
business world, this is considered dogma. Data is most often lost
due to damage to diskettes from accidental mis-handling; normal wear
is much less often a problem. The standard rule of thumb is as
follows: copy a front-line diskette on to its back-up whenever you
cannot afford to lose the information stored since you last backed
it up. This goes for programs as well as data. If you are
operating business programs such as inventory or accounts
receivable, maintain a regular back-up schedule, once a week or once
bi-weekly. In addition, your programs if possible should be written
so that an internal file of entries is maintained, and a printout of
entries made each day is produced. Then, if data is lost before it
can be copied on to the back-up, it is fairly easy to re-enter it,
using the back~up diskette as the starting point. In business
particularly, back-up diskettes and printouts of daily entries
should be stored in a safe place.

Replacement: In addition to being backed up, freguently used
diskettes must be replaced from time to time. The intervals are
entirely dependent on the kind of usage. There are no accurate
predictions for diskette life-span, but 2000 to 3000 hours of
rotation is a reasonable estimate. A good suggestion therefore is
to replace such diskettes every 6 months. Data diskettes used
infrequently may never require replacement.

Failure of a diskette will be indicated by the inability of the
system to read a file which it normally has been able to read. MDOS
will report "PERM I/O ERROR". With proper care, this should not
occur.

Replacing a diskette simply means copying it onto a new previously
unused diskette. The o0ld diskette can be used for temporary
storage, or disposed of.

To copy diskettes use the Diskcopy Utility, see Section 4.3.

2—-18 Rev. 8.1 2/5/7%

2.4 DISKETTE MEDIA

2.4.1 DESCRIPTION

Use an industry standard 5 1/4-inch diskette (Fig 2.1) with 16
"hard" sectors. There will be 16 sector holes and 1 additional
index hole around the edge of the center hole. Get them from
computer stores or from other computer supply sources. DO NOT USE
DISKETTES WITH OTHER THAN 16 HARD SECTORS, OR THOSE WHICH ARE
SOFT~-SECTORED (NO SECTOR HOLES). THEY WILL NOT WORK.

Without relation to price, some brands of diskettes do not work well
in the Micropolis high-density drives. Use one of the following

brands: Scotch, Dysan, or Maxell. Other brands will not be
reliable.

Individual diskettes may sometimes not work. Besides manufacturing
defects, we have occasionally found batches of diskettes with the
wrong number or sectors, and sometimes diskettes are manufactured
with 2 diskettes inside the jacket. Diskettes which do not work or
do not work reliably should be replaced immediately.

2.4.2 IF YOU HAVE PROBLEMS WITH DISK ERRORS

By a disk error, we are referring to errors reported on the screen
as "PERM I/0 ERROR", indicating something wrong with the diskette or
drive. (The message is different in different operating systems.
Another uses "CRC ERROR".) If your system generates such errors
often with different diskettes, take the following measures in the
order given:

a) Make sure the ocver to the mainfram is on. It is a
shield.

b) Switch to another of the suggested brands of diskettes.

c) If the errors persist, contact your dealer or service
representative. '

2.4.3 HANDLING

Diskettes are easily damaged and contaminated. Please obey the
following rules without exception:

a) Do not touch or attempt to clean the inner surface.
b) Do not smoke, -eat, or drink while handling the diskette.
c¢) Do not place heavy objects on the diskette.

d) Do not expose the diskette to excessive heat or sunlight.

Rev. 8.3-A 7/1/79 2-19

e) Do not use rubber bands or paper clips on the diskette.
f) Do not bend or fold the diskette.

g) Do not write on a diskette with a pencil. A fiber~tipped
pen is recommended. Return the diskette to its envelope before
writing on it.

h) Do not expose the diskette to magnetic fields.

i) After use, always return a diskette to its protective
envelope or other protective system such as plastic notebook pages
designed for diskettes.

j) Store diskettes in a vertical position, thus reducing
rubbing. *

k) 1If a diskette is damaged or contaminated, replace it. If a
contaminated diskette is placed ‘in the drive, the receiver and
read/write head may become contaminated and ruin other diskettes.

1) Unmount the diskette if it will not be accessed for a half

hour or more. If the interval is very long, remove it from the
drive and return it to its storage envelope.

2.4.4 LOADING AND UNLOADING

There are two stages of loading a diskette. First, insert the
diskette with label side leftward, with the edge nearest the exposed
area pointing inward. Insert the diskette until it clicks into
place. You should not have to push so hard that the diskette bends.
The diskette is now '"inserted" but not yet "mounted'. Although not
good practice for long periods, you may leave the diskette like this
any length of time, and even turn power on or off.

Second, to "mount" the diskette, push the door of the drive until
you feel increased resistence about half-way closed, then SLOW DOWN,
and push SLOWLY but surely until it stays in the mounted position.
The drive will begin to turn and rotate the diskette inside its
jacket. If you cannot fully close the door, the diskette is not
inserted properly.

Do NOT turn power on or off while a diskette is in the mounted
position. This will sometimes damage the diskette. However, L1f you
accidently do this, go ahead and use the diskette because it is
probably undamaged.

Once the diskette is mounted, it is accessible by software for
writing or reading. When the computer accesses the diskette, you
will hear a click from the drive and its red light will glow. After
the operation is complete, the drive will remain on for 5 seconds.
You can be entering new material at the keyboard during this time.
At the end of 5 seconds, the red light will go out, and there will
be another click as the head lcad pad is raised off the surface of

2-20 Rev. 8.3-A 7/1/79

the diskette. This automatic deselect feature is imporant in
lengthening the life-span of diskettes.

To dismount the diskette, press the door further open as far as it
will go, then let it close. It will then release to the unmounted
position. This stops the rotation of the diskette. UNMOUNT THE
DISKETTE DURING PERIODS IN WHICH IT IS NOT IN USE. This reduces
wear of the diskette against its jacket. You may leave it inserted
withough shortening lifespan.

To remove a diskette, press the door lefward. The diskette will pop
Out.

2.4.5 RECOVERY TECHNIQUES

If you repatedly get PERM I/0 erros using one particular diskette,
then it is probably defective. This will sometimes happen with a
new diskette when you are initializing it or copying another
diskette to it. After several attempts, discard it or return it if
possible. Whenever you repeat a disk operation after an error,
always unload and reload the diskette, because it may be seated
incorrectly.

+ If an old diskette repeatedly gives errors, first repeat the
operation several times, unloading and reloading the diskette each
time. If there is still a problem, check the center hole. If it is
wrinkled, straighten it out with your fingers and then try again.
If you still get errors, try copying the diskette to another
diskette using the DISKCOPY utility in MDOS. If the error still
occurs, try switching source and destination drives. Some
combination of drives and repositioning of diskettes within drives
will almost always result in a successful copy. If you cannot copy
a diskette at all, then copy it file by file to another initialized
diskette using the MDOS COPYFILE utility. There will probably be
one file which does not copy, but if you are lucky, they will all be
good.

2.4.6 REPLACEMENT AND BACK-UP OF DISKETTES

As with any magnetic storage medium, the recording gradually
deterioreates over time. Even if a diskette is not damaged, it will
begin producing errors after sufficient use.

Backup: The BEST defense against loss of diskette-based data is
maintaining a back-up diskette for each diskette you use. 1In the
business world, this is considered dogma. Copy a diskette on to its
back-up whenever you cannot afford to lose the information stored
since you last backed it up. This goes for programs as well as
data. If you are operating business programs such as inventory or
accounts receivable, maintain a regular back-up schedule, once a
week or once bi-weekly. In addition, a transaction journal - that
is a printed copy of entries made each day into the system - is an

excellent idea to build into business software as a last resort
back-~up.

Rev. 8.3-A 7/1/79 2-21

Replacement: In addition to being backed up, replace frequently used
diskettes by copying to a fresh diskette every 6 months. A good
suggestion is to use the back-up diskette, which is fairly fresh, as
the new front-line diskette, and to create a fresh back-up. Do not
wait until a frequently used diskette fails, before you replace it
with the back-up.

To copy diskettes, use the DISKCOPY utility. See Section 4.3

2.4.7 INITIALIZING DISKETTES

Previously unused diskettes must be initialized (also called
"formatted') before use. There are two routines in the Micropolis
software that can do this. Use either the INIT command in MDOS (see
4.1.5.22) or the F command in the BASIC UTILITY program operating
under M.BASIC. (see Appendix B). Their results are identical. DO
NOT INITIALIZE THE MDOS SYSTEM DISKETTES PROVIDED WITH THE SYSTEM,
OR ANY OTHER DISKETTE CONTAINING DESIRED INFORMATION. THIS DESTROYS
THEIR CONTENTS.

2.4.8 WRITE PROTECT FOR DISKETTES

Write protect tabs come in boxes of new diskettes. If you attach a
tab over the write protect cutout on a diskette as shown in Fig. 2.2
the disk drive will not allow you to erase or change any informatiom
on the diskette. The tab may be removed later.

2-22 Rev. 8.3-A 7/1/79

WRITE PRQOTECT TAB _
ABLE NOTCH FOLD OVER SIDE OF DISK WRITE PROTECT TAB IN PLACE

e

- o}
0

#RI

[RA]

E

=<z

N INDEX AND
SECTOR HOLE

C D

Figure 2.2 How 70 Mount Write Protect Tab

Rev. 8.3-A 7/1/79 2-273

IIT DAY TO DAY OPERATIONS FOR MDOS AND M.BASIC

3.0 SUMMARY OF NORMAL START UP PROCEDURE

Ul =0 DO -
PN N N

Power-on the mainframe, then the peripherals.

If yours is a MEMORITE system, depress RESET key.
Insert and mount MDOS System diskette in drive 0.
Enter B on keyboard. MDOS comes on.

Enter BASIC (return) on keyboard. M.BASIC comes on.

(return) means press the RETURN key.

Please read the rest of this chapter thoroughly. The above does not
give all the information you need.

3.1 SUMMARY OF PROMPTS

When one of these prompts appears, it indicates the corresponding
system i1is loaded and its executive routine 1s waiting for operator
input.

* Monitor
> MDOS
READY M.BASIC

3.2 POWER-GON

Rev.

1)

2)

3)
4

5)

6)

8« 4'—A

No diskette may be in mounted position, (i.e. rotating)
but it may be inserted in drive.

Turn the power key on the mainframe. The RESET button
will light up. '

If yours is a MEMORITE system, depress the RESET button.

Switch on all desired peripherals.

Depress RESET on printer, if printer will be used and if
printer has one.

An asterilisk and cursor will appear on the consocle
indicating the Extended Systems Monitor executive is
available for commands. A few Monilitor commands are
covered in this chapter. The remaining will be found in
the Extended Systems Monitor manual. Lecok it over. Some
may be useful. Monitor commands can be entered at this
time or at any other time that the Monitcor executive 1is
called back into control, indicated by the Monitor prompt .

(%¥).

7/26/79 3-1

3.3 LOAD MDOS

1) 1Insert, if not done already, and mount an MDQOS System
diskette in drive 0. In place of the MDOS System
diskette, you may substitute an M.BASIC-only diskette.

2) Enter B. MDOS will be loaded into memory and control will

be transferred to the MDOS executive. The screen will
look like this:

*B
Vector MZ MDOS X.XX
>

You may now enter MDOS commands (Chapter 4y .

If MDOS should come up but does not, refer to Appendix I for
troubleshooting.

f a M.BASIC-only diskette was in drive 0, the screen will look like
this:

*B
MICROPOLIS BASIC VS. X.X.-COPYRIGHT 19XX
READY

In this case, you may begin entering M.BASIC commands immediately
(chapter 5) and skip Section 3.4. Section 2.3.6 discusses
BASIC-only diskettes.

3.4 LOAD M.BASIC FROM MDOS

You may work in MDOS for some time and then transfer control to
M.BASIC, or you may desire to go immediately to M.BASIC as your
first MDOS command. In either case, enter BASIC (returmn). The
screen will appear like this:

>BASIC
MICROPOLIS BASIC VS. X.X.-COPYRIGHT 19XX
READY

You may now enter M.BASIC commands. (Chapter 5).

3.5 OTHER OPERATING SYSTEMS AND LANGUAGES

This manual deals primarily with the MDOS operating system, as it is
normally delivered. For commands in other operating systems,
including how to load their associated BASIC's or other languages,

refer to the manuals for those systems, included if and when they
are ordered.

3-2 Rev. 8.3-A 7/1/79

3.6 RETURNING TO MDOS FROM M.BASIC

1) Make sure there is a System diskette with MDOS mounted in
drive 0.

2) Enter LINK "MDOS" (return). (See Section 5.21.2.7 for how
LINK works and for other uses of LINK command).

3) Screen will look like this:

READY

LINK '""MDOS"

Vector MZ MDOS X.XX
>

You may now enter MDOS commands.

To return to M.BASIC, enter BASIC (return) as usual (see Section
3.4.)

3.7 RETURNING TO MONITOR FROM ANYPLACE

1) Depress control-Q (hold CTRL key down while depressing Q);
or press the RESET key on the mainframe front panel.

Control-Q is preferred.

2) You may now enter Extended System Monitor commands.

NOTE: For systems without the version 3.1 Systems Monitor,
control-Q will not work when you try it. If you find this
to be the case, then either the ESC key or control-X WILL
work instead. To find out which will work in your system,
get MDOS running and try them. Control-X and the ESC key
each have a special function in the MDOS and M.BASIC
editors. If one of these causes a return to the Monitor,
then obviously, you cannot use that function in the MDOS
and M.BASIC editors. Make a mental note of this when
reading the MDOS and M.BASIC editor instructions. If ESC
or control-X causes a return to the Monitor instead of

control-0 then substitute it wherever control-Q appears in
this chapter.

Returning to the Monitor is useful when Monitor commands are needed
for trouble-shooting MDOS or M.BASIC programs. It is also used if
there is no other way to break out of an undesired loop or output
sequence in any program. Always use control-Q rather than RESET if
possible, because on extremely rare occasions, RESET may change some
of the contents of memory.

Control-Q will not work when certain special purpose programs are

operating. The most important of these are disk access routines,
and the Word Management System and MEMORITE word processing
software. RESET is necessary in these cases if you want to return

to the Monitor.

Rev. 8.3-A 7/1/79 3-3

Avoid using RESET to abort a disk write operation, if possible,
because if at that moment the directory is being written, then all
the data on the disk can be effectively lost. (The same holds true
if you dismount the disk at that time.)

In addition, aborting a disk read or write operation may leave the
file in an "open" state, which can cause an error message next time
the drive is accessed. This can be cleared by executing the FILES
command in MDOS. Enter FILES (return), then return to your program
and access the disk.

The best advice is, in general, allow disk read and write operations
to go to their natural conclusiomns. Only abort if the operation is
looping indefinitely.

3.8 RETURNING TO MDOS (OR M.BASIC) FROM MONITOR IF MDOS (OR M.BASIC)
IS ALREADY IN MEMORY

This is the MDOS (or M.BASIC) warm-start command.

Depress J after the Monitor prompts with *,

3.9 RETURNING TO MDOS OR M.BASIC EXECUTIVE FROM WITHIN A ROUTINE
RUNNING UNDER THAT EXECUTIVE

Depress control-C. (Hold the CTRL key down while depressing C.

Response is MDOS prompt (>) if MDOS is the executive, or BASIC
prompt (READY) if BASIC is the executive.

Control-C is used to leave a routine at other than the normal end
point. Use it when the routine is waiting for any type of keyboard
input. It is sometimes also effective for interrupting an overly
long or unending stream of output.

If it does not work, then control-Q is the alternative. Since this

returns control to the Monitor, depress J then to return to MDOS or
M.BASIC.

3.10 VIDEC COMMANDS

This section is ONLY relevent to systems using memory mapped video,
such as the Vector Graphic Mindless Terminal. If a serial terminal
such as Hazeltine is used, then refer to the manual for that
terminal to find how you can control the screen image from the
keyboard.

These commands may also not work if another operating system, such
as CP/M is in control of the system. They will definitely not work

when word processing, using the Word Management System or MEMORITE,
is in control.

Most of the time, when the system is waiting for keyboard input,

3-4 Rev. 8.3-A 7/1/79

operator may perform the following operations on the screen image-
These commands are made possible by the Extended Systems Monitor.
For more information of a technical nature, refer to the Extended
Systems Monitor manual.

3.10.1 CLEAR SCREEN

Depress control-D.

3.10.2 SCROLL SCREEN UP ONE LINE

Depress control-J or LF key.

3.10.3 BACKSPACE CURSOR

Depress BACKSPACE key, underscore key, or control-H. Also, the DEL
key will have this effect LF MDOS or M.BASIC is running.

These commands will always work when MDOS or M.BASIC executives are
waiting for input, and when any M.BASIC program is waiting for
input.

In other situations, for example, when an assembly language program

is waiting for input, these commands may or may not work depending
on how the program in control was written.

3.10.4 CONVERT THE SYSTEM TO REVERSE VIDEO

For variation, you can cause the screen to display characters
black-on-white rather than white-on-black. Just depress control-T
(hold down CTIRL key while depressing T) If you depress this again,
the video will return to white-on-black. Characters already entered
will remain on the screen the way they were entered.

3.10.5 TAB CURSOR TO NEXT TAB LOCATION (EVERY 8 SPACES)

Depress TAB key or contxol-Il

3.10.6 ELIMINATE CURSOR FROM THE SCREEN

Depress control-N

3.10.7 MOVE CURSOR TO TOP OF SCREEN

Depress control-B

Rev. 8.3-A 7/1/79 3-3

3.10.8 MOVE CURSOR DOWN, UP, LEFT, OR RIGHT

Depress one of the keys with an arrow on it. If your keyboard has
no arrow keys, then depress control-R, control-U, control-W, or
control-Z to move cursor down, up, lLeft, or right respectively.
However, Control-U and the up-arrow key will not work under while in
MDOS or M.BASIC, though it will work under certain machine language

programs and when in the Extended Systems Monitor echo mode (Y
command) .

3.10.9 RETURN CURSOR TQO LEFT EDGE OF SCREEN

Depress RETURN key or control-M,

3.11 POWER-DOWN

1. Make sure you have stored on diskette all the programs and

data you wish to save.

2. Dismount all diskettes. They may be left inserted and
clicked in, so long as they are not mounted (rotating).

3. Turn off all peripherals.

4, Turn the power key on the mainframe front panel.

Rev. 8.U=A 7/26/79 3-6

IV MICROPOLIS DISKETTE OPERATING SYSTEM

4.0 INTRODUCTION TO MDGS

Micropolis Program Development Software consists of two systems,
Micropolis BASIC which is discussed in Chapter V and the Micropolis
Diskette Operating System (MDOS). MDOS consists of an executive
program, a group of shared subroutines available to user programs,
and an assembly language program development package.

The MDOS executive program implements an interactive command language
that allows the user to control computer system operations from the
system console. It provides commands for memory management, file
management, I/0 control and program control.

MDOS contains a very large group of subroutines which can be called
from a user's application program. These subroutines provide for
console and printer character 1/0, buffered line I/0, text line
parameter parsing, sequential and random file access, file management,
physical diskette access, and 16 bit integer arithmetic. There are
also a number of processor oriented utility subroutines.

Six application programs make up the package that supports assembly
lanquage program development. LINEEDIT facilitates the creation of
source files. ASSM is a two pass 8@88/3885 disk to disk assembler.
SYMSAVE creates a source file of equate statements from a latent

symbol table. FILECOPY is a utility for copying named files. DISKCOPY
is a utility for making literal copies of an entire diskette. DEBUG
provides facilities to locate and correct program bug's in machine
Tanquage programs. .

4-1

Rev, 8 9/78

Rewv.

4.1 THE MDOS EXECUTIVE

The MDOS executive program implements an interactive command language
that allows the operation of the microcomputer system to be controlled
from the system console. When MDOS is loaded it signs on with the
message

MICROPOLIS MDOS VS. X.X - COPYRIGHT 1978

>
It is then waiting for an executive statement to be entered.

4.1.1 ENTERING EXECUTIVE COMMANDS

Executive statements are entered by typing characters in. sequence on
the console keyboard. An executive statement is terminated by pressing
the RETURN key. During the entry of a statement each character that is
typed is echoed by the executive on the console display. Two control
features may be used when entering a line.

1) when DEL or RUBOUT key is pressed the next previously typed
character will be deleted from the line. A backarrow is echoed
to the terminal display for each character deleted.

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current Tine to be cancelled. A carriage return line
feed combination is echoed to the terminal display. The
execytive is positioned to accept entry of a new line.

4.1.2 EXECUTIVE STATEMENT FORMAT

An executive statement has the following form:
[unit:INAME ["<ASCII>" "<ASCII>" ... "<ASCII>" <hex> <hex> ... <hex>]

The NAME in an executive statement may be the name of an explicit command
or the name of a disk file. MDOS has 23 explicit commands which are
discussed in this section. Explicit command names are uppercase only

and must not be preceded by any spaces. In addition, executable assembly
language programs can be loaded into memory and run by entering their
file NAME. This provides an implicit command capability that can be used
to extend the executives vocabulary. Implicit command filenames can be
up to ten ASCII characters in the code range 21 hex to 7E hex. Imbeded
spaces, double quetes, backarrows, and rubouts are not allowed in
implicit command filenames.

When an executive statement is entered the exescutive program searches
its table of explicit command names for a match with the NAME that was
input. If the NAME is found in the table of command names the statement
is executed immediately. 1If the NAME is not an explicit command name,
then the NAME is treated as an implicit command filename which must be

8.1 2/5/79 4-2

found on disk. Implicit command filenames may be prefixed by an optional
unit number. This specifies the disk drive on which the NAMEd file is to
be found. If no unit number is specified, unit @ is assumed. If a unit
number is specified it must be separated from the first character of the
NAME by a colon (:). The executive processes the implicit command filename
by searching the directory of the specified disk drive for the file. If
the file is found on the disk (and the file type is correct) the executive
loads the program file into memory and transfers control, along with any
parameters in the executive statement, to the program. If the executive
does not find the file on the specified drive an error message is output

to the console stream: COMMAND NOT FOUND. 1If the file is found on the
disk but it is not an executable file an error message is output to the
cansole stream: WRONG FILE TYPE. See the section on file type definitions
for a detailed discussion of file types.

Executive statements consist of a NAME followed by parameters, as necsssary.
Parameters can be ASCII or numeric. There can be up to four ASCII parameters
and up to four numeric parameters. There must be at least one space between
the NAME and any parameters. A1l parameters must be separated from each
other by at least one space. :Intry of an executive statement with too many
parameters of either type, or without the required spaces between fields

will result in a SYNTAX ERROR.

ASCII parameters consist of from @ to 19 ASCII characters in the code range
2PH to 7EH except for 22H which is the double quote and 5FH and 7FH which
are interpreted as backspace requests by the logical console input routines.
ASCII parameters must be enclosed in double quotation marks. Entry of an
executive statement with unbalanced gquotation marks or illegal characters

in an ASCII parameter will result in a SYNTAX ERRCR.

ASCII parameters in executive statements are generally used to specify

disk filenames. In this usage a unit number may be prefixed to the ASCII
filename within the quotation marks by typing the unit number followed by

a colon (:) followed by the filename. This indicates the disk drive unit

on which the file is to be found. If no unit is specified, unit @ is .
assumed. The digit of the unit specification and the colon are not included
in the 1@ character length restriction for ASCII parameters. For example,
"DATAFILEOT" and "1:DATAFILEO1" are both valid ASCII parameters in an
executive statement.

Numeric parameters in executive statements are unsigned hexadecimal values
from § to FFFF. They represent such elements as memory addresses, filetypes,
and databytes. Entry of a numeric parameter with a value greater than FFFF
or with i1legal characters will result in a SYNTAX ERROR.

4.1.3 CANCELLING AN OPERATION

ATT MDOS explicit commands and all application programs supplied by Micropolis
can be cancelled in progress by holding down the control key and typing a

C (CNTL/C) on the console keyboard. The operation will be terminated as soon
as the CNTL/C is recognized and the message CANCELLED will be output to the
console. Control is returned to the MDOS executive.

Rev. 7 3/78 4-3

4.1.4 DISPLAY CONTROL

A11 MDOS explicit commands and all application programs supplied by Micropolis
can be temporarily stopped in progress by holding down the control key and
typing an S (CNTL/S). The pracess will pause upon recognition of the CNTL/S.
Typing any key other than CNTL/S or CNTL/C will cause the process to resume.
This function is very useful in controlling commands and programs that output
displays at high speed. For example, the output of a DISP command may be
viewed at reading speed by stopping and resuming the output as necessary.

4.1.5 EXPLICIT EXECUTIVE COMMANDS

Command syntax for each of the MDOS explicit commands is illustrated in
this section with the aid of the following notation:

[] Option brackets. Any parameters enclosed between brackets are
optianal.

< > Symbol brackets. This space should be replaced by the item
described.

4.1.5.1 THE COMP COMMAND

COMP <start addr. blockl> <end addr. blockl> <start addr. block2>

The COMP command compares two blocks of memory and displays address locations
that do not compare and the data at those locations. Example:

>COMP 5000 SPQF 5819
5004 @1 99 5p14

The block of memory from 502@ to 5@@F is compared with the block of memory
from 5018 to 5@1F. One location fails to compare. Location 5094 contains
@1 while the corresponding location, 5814, in the second block contains 29.

4.1.5.2 THE DUMP COMMAND

DUMP <start addr.>[<end addr.>]

The DUMP command outputs to the system console a formatted hex display of
the contents of a block of memory. Sequential memory locations are shown

16 to a line with the memory address_at the left margin. If the optional end
address parameter is not entered, only one byte is displayed. Example:

>DUMP 5000 5011
5P09 5P CP 27 77 4F 33 4F CD 7D 9E S8 p@ 6A FD 82 99
5019 77 2B

4.1.5.3 THE ENTR COMMAND

ENTR <start addr.>

Rev. 8 9/78

The ENTR command allows data to be entered into memory directly from the
console device. Example:

>ENTR 7000
>78 29
6F/

Three bytes were entered starting at lTocation 70@@ hex. These were 78
at 7009, 89 at 79@1, and 6F at location 70@2.

Typing in an ENTR command places the executive in a special enter mode.
While in the enter mode each line of values that is typed is entered into
memory when the RETURN key is pressed. Until the RETURN key is pressed

the standard backspacing and CNTL/X tools are available for 1ine correction.
The last value on the last line must be followed by a slash (/) to properly
terminate the enter mode. Entry of a illegal hex value in any line will
also cause termination of the enter mode with the message SYNTAX ERROR.

4.1.5.4 THE FILL COMMAND

FILL <start addr.> <end addr.> <byte>

The FILL command fills a block of memory with a specified byte.
Example:

>FILL 7000 8200 9

Fach byte of memory in the block from 7000 to 8p@@ is changed to a #9
by this command. : ‘

4.1.5.5 THE MOVE COMMAND

MOVE <source addr. start> <source addr. end> <dest. addr. start>

The MOVE command copies the source block of memory to the destination
block. The source block is not changed. The destination block 1is
changed to be an exact copy of the source block. Example:

>MOVE 3000 4999 7000

Fach byte in the memory block from 3000 to 4900 is copied into the
corresponding position in the memory block from 7008 to 80¢@3.

4.1.5.6 THE SEAR COMMAND

SEAR <«start addr.> <end addr.> <byte>

The SEAR command searches a block of memory for all occurrences of the
specified byte and displays all locations with a match. Example:

>SEAR 30p9 3028 9F

3294 SF
3918 9F

The block of memory from 3000 to 3020 is searched for all occurrences of
a 9F. Location 3004 and location 2818 both contain 9F. No other
Tocations in the block contain SF.

4-5

Rev. 7 3/78

4.1.5.7 THE SEARN COMMAND

SEARN <start addr.> <end addr.> <byte>

The SEARN command searches a block of memory for all non-occurrences of a
specified byte and displays all locations that do not match. Example:

>SEARN 3000 3012 67
3092 29 67
3096 76 67

The block of memory from 399 to 391@ is searched for all non-matches with
the mask 67. Location 3082 contained a ¢ rather than a 67, and 3096
contained a 76 rather than a 67.

4.1.5.8 THE CREATE COMMAND

CREATE "[unit:]<filename>" [<file type>]

The CREATE command creates a new file in the directory of the diskette

in the specified unit and allocates the initial track for the file. If
no unit is specified, unit @ is assumed. The second parameter optionally
qgives the file a TYPE designation. If no type is specified the type is
defaulted to 9.

4.1.5.9 THE DISP COMMAND

DISP "[unit:]<filename>" [<record number>]

The DISP command outputs a formatted hex display of the data contents of

a file to the system console. The unit number indicates the disk drive

on which the file is to be found. If no unit is specified, unit § is
assumed. The optional record number indicates on which record in the file
the display is to begin. If no record number is specified, record 1 is
assumed.

Each record is displayed with a header line that contains the record
number, the address in memory where the record is to be loaded, and the
number of data bytes in the record. Data 1ines follow the record header.
Fach data line has up to sixteen data bytes preceded by the index position
in the record of the first data byte on that line.

>DISP "1:TEST" 29

@329 23Ce2 p@22

@0 12 2A BD 76 8&F ED 54 41 39 99 ¢p 82 BC CC 76 89
19 78 838 3B BB 83 54 58 56 9P 88 32 31 39 00 2¢ 82

290 89 55
pR2A 3C30 9903
g@ FF FF FF

pP28 3FPQ 9999
p@ 45 43 4B 4C 31 37 38 9D 20

g@2C 23¢9 2000
END-FILE

Rev. 8 9/78 4-6

The first line of the display shows the record number 29, the load

address 3C@@, and the length of the record 22 bytes (all in hex). The
header 1ine is followed by three lines which display the data in record

29. Each data Tline starts with the index position of the first byte in the
1ine. It is followed by two spaces and then the data.

The next header is for record 2A which has a load address of 3C83 and
contains @3 bytes of data.

Record 2B has a load address 3F®Q and contains @9 bytes of data.

The Tast header is for record 2C which has a load address of 2B@@ and a
record length of @. If the file is an executable object file (1ike ASSM
for exampie), the address in the zero length sector is the execution
address of the file. LOADing stops when the zero length sector is read.
If the file is a run type which is being implicitly loaded and run,
program control is transferred to the execution address.

4-6.1
Rev. 8 9/78

4.1.5.19 THE FILES COMMAND

FILES [<unit>]

The FILES command outputs a formatted display of the file information
in a diskette directory to the system console. The unit number
indicates which disk drive directory is to be displayed. If no unit is
specified, unit @ is assumed. Example:

>FILES 1

DIR p3 (000
RES 3 913
MDOS pFE 2@1C
LINEEDIT 15 ppac
ASSM 15 pp1p
SYMSAVE 15 983
FILECOPY 15 p@@3
DISKCOPY: - PF 2009
BASIC oF Pp4B

The files on drive one are displayed on the console. The left column
contains the filename, the second column is the file type, and the
third column contains the number of sectors the file uses. A1l numbers
are in hex.

4.1.5.11 THE FREE COMMAND

FREE [<unit>]

The FREE command outputs to the system console the number of tracks
left unallocated (free) on a diskette. The unit number indicates which
disk drive. 1If no unit is specified, unit § is assumed. Example:

" SFREE 1
@938

The diskette on drive one'has 3B tracks available to be allocated.

4.1.5.12 THE SCRATCH COMMAND

SCRATCH "[unit:]<filename>"

The SCRATCH command removes a named file from the directory of a diskette
and returns its allocated tracks to available status. Disk drive @ is
assumed if no unit is specified.

Note: Some files cannot be SCRATCHed w1thout first changing the file
TYPE (see 4.1.5.9 and 4.2.3).

4-7

Rev. 7 3/78

4.1.5.13 THE LOAD COMMAND

The LOAD command loads (reads) a named file from a diskette into the computers
memory and then returns control to the MDOS executive. If no unit number
is specified, the file is expected to be found on unit 8.

The LOAD command can be used in conjunction with two categories of files,
OBJECT files and DATA files. The specific nature of the load that is
performed depends on the category of the specified file to be Toaded. The
process of LOADing an 08JECT file is described in 4.1.5.13.1. The process
of LOADing a DATA file is described in 4.1.5.13.2.

The LOAD command can NOT be used to load a file in the OVERLAY category.

An OVERLAY file is defined as any file with a file type value in the range

gC - OF hex (see Section 4.2.3). An attempt to LOAD an OVERLAY file results
in the message WROMG FILE TYPE. OVERLAY files are not LOADable because

they generally imply the replacement of the MDOS module and require immediate
execution. Control cannct be returned to the MDOS executive and must be
transferred immediately to the newly overlayed program module. If there is

a necessity to LOAD an QVERLAY file into a memory area which does not
conflict with MDOS, this can be done by changing the file type to an OBJECT
type and then using an offset load per Section 4.1.5.13.1.

4.1.5,13.1 THE LOAD COMMAND FOR OBJECT FILES

An OBJECT file is defined as any file with a file type value in the range
@3 - @B hex or 14 - 1B hex. These ranges include ASSM object files, BASIC
‘save memory' files, executable system files, and executable user files
(see Section 4.2.3).

The format of the LOAD command for OBJECT files is:
LOAD "[unit:] <filename>" [<start addr.>]

OBJECT files are LOADed by using the address and length information in the
header of each record of the file (see Section 4.2.4). This is called a
'scatter load' because it permits records in the file to be loaded into
non-contiguous portions of memory depending on the associated addresses.
The LOAD is terminated when the first @ length record in the file is
encountered.

If the optional start address is not specified in the LOAD command, then
the Toad of an OBJECT file proceeds according to the following examnle.

The OBJECT file to be loaded is "TEST".

DISP "TEST"

p009 2BP0 2p@S

29 31 32 33 34 35
2001 2000 2024

@p 54 45 53 54
pep2 2300 2000
END-FILE

Rev. 8 9/78 4-8

Typing LOAD "TEST" loads two text strings into memory. The string "12345"
in record § is loaded starting at 2800 hex for five bytes. The test string
"TEST" in record 1 is loaded starting at 2CP@ hex for four bytes. The last
record contains a zero length sector which terminates the load of an OBJECT
type file. For an executable file the zero length sector contains the run
address which in this case is 2BP@ hex. This file, however, could not be

a run file as it stands as there is no executable code.

If the load address of the first record is less than 2B@@ hex, the message
LOAD ADDRESS ERROR is displaved because file may not be loaded beneath the
MDOS application area.

If the optional start-address is specified in the LOAD command, then the
first record of the file is loaded starting at the specified address. The
load address in the record header of the first record is subtracted from
the start-address to produce an offset. When the records following the
first record of the file are loaded, the calculated offset is added to the
load address in the record header and the record is loaded starting at the
calculated address. This is called an 'offset scatter load'.

Using the file TEST in the example above, typing LOAD "TEST" 5802 loads the
string "12345" starting at memory location 5088 hex for five bytes. The

offset is calculated by subtracting the Joad address in the header of the first
record from the start-address. 50@0-2BP@=250@ hex. The string “TEST" is
loaded starting at 5198 hex for four bytes. The load address in the header

of the second record, 2C3@ has the offset 25(@ hex added to it and the result
is the offset-load address.

If the optional start-address is less than 2B@@ the message LOAD ADDRESS
ERROR is displayed.

4.1.5.13.2 THE LOAD COMMAMD FOR DATA FILES

Any file which is not an OBJECT file and not an OVERLAY file is treated as

a DATA file by the LOAD command. DATA files thereby include file type values
in the ranges $-7, 18-13 hex, and 1C-FF hex. These ranges cover MDOS and
BASIC DATA files, ASSM and LINEEDIT source files, BASIC program files and all
of the unassigned file types (see Section 4.2.3).

The format of the LOAD command for DATA files is:

LOAD "[unit:] <filename>" <start addr.>

The start address parameter is mandatory. If a start address is not specified
a SYNTAX ERROR message will be displayed. If the start address is less than

2B@3 HEX a LOAD ADDRESS ERROR will result. This prevents accidental destruc-
tion of the operating system.

4-3.1

Rev. 8 9/78

Data is loaded starting at the snecified address and continuing until the
number of records in the file as shown in the directory have been loaded.
The data is loaded into memory sequentially and contiguously. Only the
number of data bytes in each record are loaded. The LOAD command does not
nad records of less than 256 bytes. If a file were loaded at location
330@ and the first record had only 4 data bytes in it, then the first data
byte from the next record would be loaded at location 38%4. Records with
zero length are skipped over. The load address in the sector header (see
Section 4.2.4) has no meaning when doing a data LOAD.

4.1.4.14 THE SAVE COMMAND

SAVE "[unit:]<filename>" <start addr.> <end addr.> [<file type>]
[<exec. addr.>] "

The SAVE command saves {writes) a new file to a diskette from a block

of memory. The file is written sequentially from the memory start

address through the memory end address into full sequential records. If
no unit number is specified, the file is written to unit 3. If a file

type is not specified the file type will be zero., If an execution address
is not specified, the execution address of the file will be set to the
start address of the memory block. MNote that the type and execution
address parameters are position dependent such that if an execution address
is specified then a file type must also be present. Example:

>SAVE "1:NEWFILE" 2300 3700 0 3009

A file is created on the diskette in drive one with the name NEWFILE

and the memory block from 2B@@ to 37@0 is written to that file. The file
is given a type of @ and the execution address saved with the file is
30@. If no execution address had been specified then 28¢@ would be
saved as the execution address.

4.1.5.75 THE RENAME COMMAND

RENAME "[unit:]<filename>" "<new name>"

The RENAME command changes the name of a diskette file to a specified
new name. If no unit number is specified, the file to be renamed is
expected to be found on unit §. Example:

>RENAME "1:0LDFILE" "NEWFILE"

The file named OLDFILE on the diskette in drive one is changed to MNEWFILE

on the diskette in drive one. The file type is unchanged by the renaming
process.

Rev. 3 9/73 4-

(O]
[N}

4.71.5.16 THE TYPE COMMAND

TYPE "[unit:]<filename>" <type>

The TYPE command changes the type designation c¢f a specified file. The
type designation is a single hex byte. A definition of file types is
given in Section 4.2. Example:

>TYPE "71:PROGRAMX" 15

The type of the file PROGRAMX one disk drive one is changed to a value
of 15.

4.1.5.17 THE APP COMMAND

APP ["<ASCII>" "<ASCII>"..."<ASCII>"] [<hex> <hex>...<hex>]

The APP command transfers program control from the MDOS executive to

the start of the MDOS applications area at 2B@@ hex. It expects a valid
executable program to be in the applications area with its entry point

at the beginning. Up to four ASCII parameters and four hex parameters

can be passed to the praogram. For example, if you are doing several
assembiies, the assembler need only be read into memory once from diskette
as it does not change itself in the process of assembling a program.

After it is once in memory the APP command can be used to communicate with
the assembler. Example:

>APP "7:SOURCE"™ "OBJECT" "P"

If the assembler were already in memory, the above example would transfer
control and the necessary parameters to the program and the assembler
would assemble the source file called SOURCE from drive ane; produce an
object file on drive zero called O0BJECT; and output a paginated Tisting .
on the print device.

The APP command functions 1ike the EXEC command in that it PUSHes the
address of the operating systems warm start entry point onto the system
stack. Therefore if the program in the applications area does not provide
its own stack, a RET would return control to the operating system.

4.1.5.18 THE ASSIGN COMMAND
ASSIGN <device #> <logical stream mask> [<width> <null count>]

The ASSIGN command is a dual purpose command which provides the ability
to specify the connections of physical output print devices to logical
output streams and the values for carriage width and nullcount of the
referenced physical device. The physical device number must be 1 or 2.
The logical stream mask must be a 8,1,2, or 3. The device width and
nullcount must be numeric values in the range 1 to FF hex. The width
and nullcount parameters are optional. If width or nullcount are not
included, the values corresponding to the referenced physical device

4-9

Rev. 8 9/78

are not changed. I[f only the device width is included, then the
nullcount is left unchanged. However, if a nullcount is specified then
the width must be present as a place holder even if it is the same. If
the ASSIGN command contains only three parameters the third is always
the width.

Logical output stream number ane consists of all output generated by
system messages, keyboard echoing and the output from any explicit
executive command. Logical output stream number two consists of alf
cutput generated by LISTP and PRINTP commands in the line editor, and

by all listings in the assembler. The logical stream mask can be set to
a three to represent both logical output streams one and two, or to a
zero indicating that the device is to receive no output.

Physical device number one represents the display element of the
keyboard display device that is configured as the system console (see
Section 2.2.4.1 on terminal confiquration). Physical device number two
represents the hard copy print device which is confiqured as the system
printer (see Section 2.2.4.3).

The output of a Togical stream is directed to all physical devices
which are assigned to it. A physical device may be assigned to one,
both, or no logical streams. The ASSIGN command cancels any previous
assignment of the specified device.

In its initialized state the terminal is assigned to stream one only,
and the printer is assigned to stream two only. This state can be
restored by executing:

>ASSIGN 1 1
>ASSIGN 2 2

When the console and printer devices are configured, each device has a
carriage width and nullcount parameter associated with it. These values
may be changed by specifying optional third and fourth parameters in an
appropriate ASSIGN command. The width parameter determines the maximum
number of characters on each Tine for the given device. When a line is
output that is longer than this value an autowrap feature is activated
and a carriage return and line feed is inserted at the appropriate point
so that the logical line is continued on the next device line. The

width can be changed on a given device by repeating the current assignment
with the new width parameter. For example, if the console were currentiy
assigned to stream one with a width of 8@ characters (decimal), it could
be changed to a width of 72 characters (decimal) as follows:

>ASSIGN 1 1 48

72 decimal is 48 hex. This width assignment will stay in effect until
the width is specifically reassigned, or until the system is rebooted.

The nullcount may have to be changed to accommodate unbuffered character

serial devices which may lose characters while the carriage is being
returned. The nullcount value is one greater than the actual number of

Rev. 7 3/78 4-10

output nulls (ie. 1 will output no nulls). For example, if the printer
were currently assigned to stream two at 132 characters per line and

no nulls (nullcount=1), the number of output nulls could be changed to
five with the following command:

>ASSIGN 2 2 84 6

132 decimal is 84, and 6 will result in five nulls being output after a
carriage return.

Because the MDOS executive language has been designed to be interactive
it depends on the availability of a display device for system messages,
keyboard echoing, and display of command results. Therefore an interlock
is built into the system to ensure that stream one always has at least
one device assigned to it. If an ASSIGN command violates this condition,
then physical device one is automatically assigned to stream one as part
of the assignment being processed. Additionally if the print device
supports a printer attention condition (out of paper, motor off, etc.)
the system will force the assignment to an initial state (ASSIGN 1 1,
ASSIGN 2 2) if the printer signals that it needs attention. This ensures
that the attention message will be output to the console.

4.1.5.19 THE EXEC COMMAND

EXEC <address>

The EXEC command transfers processor control directly to the specified
memory address. It expects a valid program to begin at that address.
The address of the operating systems warm start entry point is PUSHed
onto the 8989's hardware stack by the EXEC command. Therefore, if the
executed program does not set its cwn stack, a final RET in the program
will return to the operating system. This feature allows subroutines to
be exercised separate of the rest of a system under development.

4.1.5.20 THE MATH COMMAND

MATH <hex number> <hex number>

The MATH command performs 16 bit integer math functions on the two specified
hex numbers. It displays the sum, difference, product, quotient, and modulus.
Example:

>MATH 4 5
@p@S FEFF P14 00PQ 2PPA

The results are displayed from left to right: 4+5=9 ; 4-5=FFFF ; 4*5=14
; 4/5=0 (intiger division) and a remainder (modulus) of 4.

4.1.5.21 PROMPT "<ASCII>"

The PROMPT command sets the executive prompt string to the value of the
ASCII string. The string can be up te ten characters long. Spaces are

1-11

Rev. 8 9/78

not allowed. The prompt is initially > when the system is configured.
Example:

>PROMPT "**"

*

The prompt is changed from > to a **

4.1.5.22 THE INIT COMMAND

INIT <unit>

The INIT command initializes a diskette in the specified drive. The
drive unit number must be specified. The INIT command formats the
diskette by writing an empty block with the correct track and sector
identification on every sector of the diskette and reading each sector

to verify the media. It creates a blank directory and places a system
loader on the diskette. The INIT command essentially cleans the diskette
of any data previously on the diskette and prepares it for new use.
Accidental use of the INIT command could destroy the entire content of

a diskette. Therefore, the system provides an interlock on this command.
After the command is entered, the system prompts ARE YOU SURE?. It waits
for a 'Y' or 'N' respanse to indicate yes or no. An 'N' cancels the
command without doing any damage. Example:

INIT 1
ARE YOU SURE?

The diskette on drive one will be initialized if a 'Y' is typed. A1l

other replys will result in the command being canceled. Control returns
to the executive.

Rev. 7 3/78 4-12

4.2 MDOS DISK FILE 1I/0

MDOS implements a powerful and efficient method for storage and retrieval
of files on diskettes compatible with Micropolis disk subsystems. Track

@ of each diskette contains a directory of the files on that diskette.

Each directory entry holds the name, protection attributes, type, length
and starting location for one file. Track ® also contains a track map
index that lists all unassigned tracks and all tracks assigned to each file
in the order of assignment. Files are stored on the remaining tracks of
the diskette using a track indexed architecture that allows files to grow
or shrink dynamically. Files may be accessed sequentially by byte or
record and directly (randomly) by record or byte within record.

4.2.1 TRACK INDEXED FILE STORAGE

The track indexed file storage scheme defines one track as the minimum
disk space consumed by a file. The maximum storage assignable to one
file 1s all tracks on the diskette (35 on MOD 1 subsystems and 77 on

MOD 11 subsystems), except the directory track @. When MDOS creates a
new file it assigns one track to that file. Additional file space is
assigned to the file one track at a time as needed. Files are contiguous
within a track but not necessarily from track to track. If a file is
shortened, unused tracks are returned to available status. When a file
is deleted (scratched), all of its assigned tracks are freed for
reassignment.

Maintenance of the track map in the track indexed scheme operates as
follows. Whenever a file is opened for access MDOS reads the track map
from that files diskette into main memory. Any record in the file may
then be accessed with only one disk seek by appropriate reference through
the track map. File access operations that cause the file to be extended
or shortened by one track also cause the track map to be immediately
updated in memory and on disk. When the file is closed its directory
entry is rewritten to reflect any changes in the files sizes or status.

4.2.2 FILE NAMES

File names consist of from @ to 18 ASCII characters in the code range
20H to 7EH except for 22H which is the double quote and 5FH and 7FH
which are interpreted as backspace requests by the logical consecle
input routines.

A unit number may be prefixed to the filename by typing the unit number
followed by a colon (:) followed by the filename. This indicates the

disk drive unit on which the file is to be found. If no unit is specified,
unit @ is assumed. The digit of the unit specification and the colon

are not included in the 18 character length restriction for ASCII para-
meters. For example, DATAFILEAT and 1:DATAFILE®1 are both valid file
names.

If the file name is to be an implicit command in an executive statement
there are additional restrictions that apply. The file name may not

start with a blank. It may have no imbeded blanks and it may not exist
in the MDOS explicit command table.

4-13
Rev. 7 3/78

Files that are to be shared with BASIC must have valid BASIC file names.
BASIC file names can be up to 19 characters long and use the ASCII
characters from 2D hex through 5A hex except the colon (3A hex). This
should be kept in mind when creating file names for MDOS. The BASIC
file names are a subset of the MDOS file names and some incompatibility
can occur if care is not used.

4.2.3 FILE PROTECTION AND TYPE DEFINITION

MDOS provides two forms of file protection. A file can be write protected
or a file can be delete protected. MDOS also allows files to be classified
as to unique information content by assigning a type designation. A files'
access codes and type designation are combined in one byte of the files'
directory entry. The first two least significant bits of the file type
byte are bit encoded and specify file access restrictions. The access
codes are as follows:

BIT

10

29 A normal read/write file
g1 A normal read only file

19 A permanent read/write file
11 A permanent read only file

A normal file can be read, written, and deleted from the diskette by
using the SCRATCH command (Section 4.1.2.5). A read only file can be
read or SCRATCHed but it cannot be written into. A permanent file can
be read or written but it cannot be SCRATCHed. A permanent read only
file can be read but it cannot be written into or SCRATCHed. Attempts
to SCRATCH a permanent file will result in the message PERM FILE.
Attempts to write into a read only file will result in the message READ
ONLY FILE. The TYPE command may be used to change the access codes of a
file if necessary.

Note that these access code safeguards are software features that will
only protect a file as long as the operating system has not been damaged.
Diskettes may be physically write protected by placing a write protect
tab over the slot in the upper right hand edge of the diskette. This
causes the write electronics in Micropolis disk subsystems to be disabled
when that diskette is loaded in a disk drive.

The most significant six bits of the file type byte specify the type of file.
This allows 64 different classifications of files each having four access
codes.

The codes @ through 7F hex are reserved for present and future system usage
and should not be assigned other meanings by the user. The codes from 89
to FF hex are available to the user and are not used by the system.

Rev. 8 9/78 4-14

The executive, the assembler, and the editor check file types when called
upon to load, save, or resave a file. If the file type is not correct
the function will not take place. A table of file types follows:

TYPE CODE DESCRIPTION

INREX

po-23 MDOS & BASIC DATA FILES

pa-a7 EDITOR/ASSEMBLER SOURCE FILES
p8-@8 ASSEMBLER OBJECT & BASIC 'SAVE MEMORY' FILES
pC-pF EXECUTABLE OVERLAY FILES
19-13 BASIC PROGRAM FILES

14-17 EXECUTABLE SYSTEM FILES

18-18B EXECUTABLE USER FILES

1C-7F RESERVED FOR FUTURE EXPANSION
8p-FF AVAILABLE FOR USER DEFINITION

The 1ine editor produces type 4 files. It can load type 4,5,6, and 7 files.
The assembler will only assemble type 4.5,6, and 7 files. It produces
type 8 files.

Executable system files and user files may be Toaded with the load command.
Any attempt to Toad a file below the application program area will result
in a LOAD ADDRESS FRROR. Executable overlay files may be Toaded below the
application program area by typing the file name as an implicit executive
command. Any attempt to implicitly load a file that is not an overlay file
will result in the message WRONG FILE TYPE.

It is not possible to load an overiay file without beginning its execution.
However, the entry point of the overlay could contain a jump to the MDOS
warmstart address. This would return control to MDOS immediately after
the overlay file was loaded, provided that the file d1d not overlay any
functional MDOS code.

4,2.4 FILE AND RECORD STRUCTURE

An MDOS file consists of a group of related records stored on a diskette.
The group is given a filename and type designation as described above.
These are stored in the file directory on track @ of the diskette.

Fach record of an MDOS file begins with a two byte memory address followed
by a two byte length indicator. The remainder of the racord consists of

@ to 256 data bytes. The memory address tells MDOS where in memory to load
the data from that record. The length indicator tells MDOS how many valid
data bytes are in the record. A record needs a minimum block of 4 bytes
and a maximum block of 26@¢ bytes to be properly stored.

The records of a MDOS file are stored on the sectors of a diskette, one

for one. Micropolis disk subsystems write a physical sector that is 268
bytes long. The first 8 bytes of the sector are used for control purposes
strictly by the operating system. The remaining 260 bytes are available

for a record. Short records, including P length (empty) records are
possible. If a particular record has less than 256 data bytes the remainder
of the sector is not used. However, the record may be expanded at any

time by rewriting the sector to make use of the unused bytes,

4-15
Rev. 8 9/78

The object program file that corresponds to the following assembly
language program serves to illustrate the MDOS file and record structure.

ADDR B1 B2 B3 £ LINE# LABEL 0PCODE OPERAND
P200 1080 START ORG 4090H
4900 21 90 79 2000 LXI H,7002H
4003 3pp@ DATA s 1¢H
4913 PP 4093 BYTE DB 2

4p14 5800 DATA1 DS 19H
ap24 M 6002 BYTE] 0B 1

4925 C3 25 49 7908 BEGIN JMP $

40928 8p2p END BEGIN

The first record of the object file has 4f@@ hex in the memory address
bytes in Intel low/high format. The record length bytes contain @83,
indicating that the record has only three bytes of data. The three data
bytes are 21 28 79. This record is written on the disk as one sector.
The second record of the object file has a memory address of 4813 and a
length of 2@@1, one byte of data 0. This record is also stored on the
disk as one sector. The third record has a memory address of 4824 and a
length of P@@4, four bytes of data @1 C3 25 4@. This record is stored
on the disk as one sector. A fourth record is written that has a memory
address 4025 and a length of #@0@. This empty record marks the end of
the object file and its memory address holds the execution address
specified in the END statement.

The structure of this object file is standard for all MDOS executable

or memory io0ad files. The file is allocated one entire track on the disk.
It contains eight data bytes spread across 3 sectors. The 4th and last
sector contains no data. Its memory address field holds the file

execution address. Given an executable file type, the records of this file
could be Toaded into memory at 4980, 4813 and 4824 by typing its name to
the executive. Direct processor control would transfer to 4925 to begin
program execution. This type of file is called a scatter loadable file
because it can be loaded non-contiguously into main memory.

Note: The number of records in each MDOS file is included in the directory
entry for that file. This determines the end of file for data files.

Data files do not require a zero length record to mark their end because
there is no execution address for a data file. The special zero length
record is used with files that load into a range of memory and may require
an associated execution address. For these files the zero length record

is included in the record count in the files' directory entry.

4.2.5 FILE ACCESS METHODS

MDOS contains shared subroutines that allow user application programs to
access diskette files sequentially by byte or record and d1rect1y {randomly)
by record and byte within record.

A file may be written sequentially by writing a byte at a time and
incrementing the index position. The system buffers the bytes written

Rey. 8 9/78 4-16

until a full 256 byte record is constructed and then writes it to the

next sector in the file. The file space is automatically extended as
necessary. A file may also be written sequentially by repeatedly writing
blocks of data up to 256 bytes in length as one record and then incrementing
the record position to the next record. A file written in this manner

may have records of varying length up to 256 bytes.

A file may be read sequentially by reading a byte at a time and incrementing
the index position until the end of file is reached. If the file contains
any short records the unused bytes at the end of the sectors of those records
will be automatically skiped by this byte sequential access. A file may

also be read sequentially a record at a time by starting at the first record,
reading the record Tength and then reading that number of bytes as a block,
incrementing the record position to the next record, and repeating the
process until the end of file is reached.

A specific record in a file may be accessed by setting the index position
directly to the start of that record. The record may then be read or written
either a byte at a time or as a block of bytes. A specific byte in a
directly accessed record may be read or written by first setting the index
position directly to that byte in the record. These techniques facilitate
the spot updating of a file.

4.2.6 COMPATIBILITY BETWEEN MDOS AND BASIC FILES

BASIC file names are a subset of MDOS file names. Therefore all BASIC files
can be handled by the MDOS file name parsing logic, but not all MDOS file
name can be handled by BASIC. Refer to the Section 4.2.2 on FILE NAMES for
a complete discussion.

BASIC data files contain records of from zero to 258 bytes of data. The
file and record structure is the same as that used by MDOS as discussed

in Section 4.2.4. The two bytes at the start of the record which hold the
length of the record can never be greater than 250 if the file is to be
used by a BASIC program as a data file. BASIC will output an error message
to the console stream and stop the program if the record length is greater
than 25@. MDOS can create BASIC readable files as follows:

1900 * GET DATA TO BE WRITTEN INTO A BASIC COMPATABLE FILE

2000 MVI B,250

3900 GET CALL GETDATE

3509 JdC EXIT . ;CLOSE FILE & EXIT
4000 CALL @WTINXPOSI

5000 DCR B

6000 JNZ GET

7000 CALL @INCRECPOS

8000 JMp GET

This partial program illustrates a method for writing 250 byte records.

For these records to be meaningfull %to BASIC, the data must be seven bit

ASCII with the proper BASIC string delimiters (refer to the STRING statement
in the chapter on BASIC). The subroutine GETDATE is the users data acauisi-
tion routine which returns the carry flag set when the process is done.
@WTINXPQSI and Q@INCRECPOS are MDOS subroutines which are documented in Section
4.3.3. The method shown corresponds to the process for writing a file
sequentially by record as described in Section 4.2.5.

4-17
Rev. 8 9/78

4.3 MDOS SHARED SUBROUTINES

MDOS provides the applications development programmer with many useful
subroutines that can be accessed directly from an applications program.
These subroutines provide for console and printer character I/0, buffered
Tine 1/0, text line parameter parsing, sequential and random file access,
file management, physical diskette access, and 16 bit integer arithmetic
There are also a number of processor oriented utility subroutines.

When you write an assembly language program, these subroutines can be
referenced by name; e.g. CALL @HLADDA. The PDS MASTER diskette contains
two files named SYSQ1 and $YSQ2. These are editor compatible source
files that contain the names of ail of the MDOS shared subroutines
equated to their entry addresses. Application programs that reference
these routines by name should include the SYSQT1 and SYSQ2 files in their
assembly by using the assembler LINK pseudo-op, described in detail in
Section 4.5,

The following sections specify what arguments each subroutines expects,
what arguments each subroutine returns, and how it functions.

4.3.1 CONSOLE AND PRINTER INPUT/QUTPUT SUBROUTINES

Micropolis Program Development Software packages perform input and output
through the following subroutines. These routines 1link the system with
the device handlers described in Chapter Il under configuring for
supported devices.

The device handler routines start with a vector table whose address is

@CIOTABLE for the console, and @LIOTABLE for the printer. The routines
in this section enter the drivers by indirectly accessing these tables

using @CONSOLEADDR, and GLISTADDR which are buffers that hold pointers

to the actual location of Q@CIOTABLE and GLIOTABLE. By changing the two
bytes at locations GCONSOLEADDR or @GLISTADDR the user can have special

purpose drivers in memory at the same time as the standard drivers.

4.3.1.1 GCIN - CONSOLE INPUT

The 2CIN routine waits for input from the system console. It strips
parity and changes ASCII codes 5F (backarrow) and 7F {rubout) into @8
(backspace). It returns the input character (7 bit ASCII) in the B
register, with the carry flag clear (NC). It preserves the HL, DE,
and C registers.

4.3.1.2 BCOUT - CONSOLE QUTPUT

The BCOUT routines waits until the console stream is ready and then outputs
a character. It changes carriage returns into a carriage return followed
by the number of nulls associated with the device attached to the console
stream. It changes ASCII code @8 hex (backspace) into a 5F (backarrow).

If the wrap logic for the device assigned to the console stream is enabled
a line feed and a carriage return nulls sequence wiil be output when the

Rev. 8 9/78 4-18

number of characters on the Tine equals the width. Refer to the ASSIGN
command in the MDOS executive. It expects the character (7 bit ASCII)
in the B register. It returns the carry flag set (C) if a printer
attention condition occurs, and sets the assignment to ASSIGN 1 1, and
ASSIGN 2 2. Refer to the ASSIGN command in the MDOS executive. It
preserves the HL, DE, and BC registers.

4.3.1.3 BGCBRK - CONSOLE CHECK BREAK

The @CBRK routine checks the console device for the input of a cancel
(control C), or a pause (control S). It returns the zero flag set (Z)
and the CANCELED message code in the A register if a CONTROL C (83) is
input. It preserves the HL, DE, and C registers. On pause (control S)
the routine loops, waiting for another character to be input. Entry of
any character other than control S will terminate the pause and return
to the caller.

4.3.1.4 BCDIN - CONSOLE DEVICE INPUT

The @CDIN routine waits for input from the console device. 1t returns the
character (8 bits including parity) in the B register, with the carry flag
clear (NC). It preserves the DE, HL, and C registers.

4.3.1.5 @CDOUT - CONSOLE DEVICE OUTPUT

The @CDOUT routine waits until the console device is ready to receive a
byte and then outputs it. It expects the byte for output in the B register.
It preserves the DE, HL, and BC registers. It returns the carry flag clear
(NC).

4.3.1.6 @CDBRK - CONSOLE DEVICE BREAK CHECK

The @CDBRK routine checks the console input ready status. If an input

is ready 1t gets the input. Otherwise it returns immediatel It retyrns
the zero flag set (Z) and the input character (8 bits inclu ing Daraty%

in the B register if there was an input. It preserves the DE, HL, and C
registers. If there was no input the @CDBRK routine returns the zero flag
clear (NZ), and the B register is unchanged.

4.3.1.7 BCDINIT - CONSOLE DEVICE INITIALIZATION

The @CDINIT routine initializes the conscle interface device. It preserves
the HL, DE, and BC registers. It returns the carry flag clear (NC).

4.3.1.8 GLOUT - LIST QUTPUT

The @LOUT routine waits until the list stream is ready to receive and

then outputs a character. It changes carriage returns into a carriage
return followed by the number of nulls associated with the device attached
to the list stream. It changes ASCII code @8 hex (backspace) into a 5F
(backarrow). If the wrap logic for the device assigned to the 1ist stream
is enabled a line feed and a carriage return nulls sequence will be output

4-19

Rev. 8 9/78

when the number of characters on the line equals the width. Refer to
the ASSIGN command in the MDOS executive. It expects the character

(7 bit ASCII) in the B register. It returns the carry flag set (C) if
a printer attention condition occurs, and sets the assignment to ASSIGN
1 1, and ASSIGN 2 2. Refer to the ASSIGN command in the MDOS executive.
It preserves the HL, BE, and BC registers.

4.3.1.9 BLATN - LIST ATTENTION

The ®LATN routine checks the 1ist stream for a printer attention condition.
It returns the carry flag set (C) if a printer attention condition occurs,
and sets the assignment to ASSIGN 1 1, and ASSIGN 2 2. Refer to the ASSIGN
command in the MDOS executive. It preserves the HL, BE, and BC registers.

4.3.1.10 @LDOUT - LIST DEVICE QUTPUT

The BLDOUT routine waits until the 1ist device is ready to receive a byte
and then outputs it. It expects the byte for output in the B register.
It preserves the DE, HL, and BC registers. It returns the carry flag

set (C) if a printer attention occurs. :

4.3.1.11 @LDATN - LIST DEVICE ATTENTION

The GBLDATN routine checks the 1ist device for a printer attention condition.

It returns the carry flag set (C) if a printer attention condition occurs.
It preserves the HL, DE, and BC registers.

4.3.7.12 @LDINIT - LIST DEVICE INITIALIZATION

The GLDINIT routine initializes the 1ist device. It preserves the HL, DE,
and BC registers. It returns the carry flag clear (NC).

4.3.1.13 BCCRLF - CONSOLE LINE FEED CARRIAGE RETURN

The QACCRLF routine outputs a line feed carriage return and nulls to the
console stream. It returns the carry flag set (C) if a printer attention
condition occurs, and changes the assignment to ASSIGN 1 1, and ASSIGN 2 2.
Refer to the ASSIGN command in the MDOS executive. It preserves the HL,
DE, and BC registers.

4,3.1.14 GLCRLF - LIST LINE FEED CARRIAGE RETURN

The BLCRLF routine outputs a line feed carriage return and nulls to the

1ist output stream. It returns the carry flag set (C) if a printer attention
candition occurs, and changes the assignment to ASSIGN 1 1, and ASSIGN 2 2.
Refer to the ASSIGN command in the MDOS executive. It preserves the HL,

DE, and BC registers,

4,3.7.15 BASSIGN - ASSIGN

The BASSIGN routine assigns the physical device to specified logical stream(s)
and sets the width and nullcount associated with the device. It expects the
phvsical device number in the £ register, the logical stream mask in the D

Rev. 7 3/78 4-20

register, the width in the C register, the nullcount (nulls+1) in the B
register, and the number of parameters passed in the H register. No
registers are preserved. (Refer to the ASSIGN command in the executive for
a detailed discussiaon of physical device assignment to logical output
streams).

4.3.1.16 GCILINE - CONSOLE INPUT LINE

The GCILINE routine outputs a specified prompt message to the console

and then buffers up to 132 characters of input text from the console
device. It provides the standard backspace (rubout) and line cancel
(CNTL/X) controls during the Tine entry process. The text line input is
terminated by a carriage return. (Note: The carriage return is not echoed
to the console). It expects the address of a string of text to be output
as a prompt in the HL registers. The message pointed to must be properly
terminated with a byte code of @ through 1F hex or the high order eight

bit of the last byte set. It returns the input 1ine in GINBUFF, and the
number of input characters including the terminating carriage return in the
B register. It preserves the HL, DE, and C registers. Any control char-
acters input during the line entry process are echoed to the console stream
but not entered into @INBUFF.

4.3.1.17 GHEXOUT - HEXADECIMAL OUTPUT

The @HEXOUT routine converts an unsigned 8 bit binary value in the A
register to a hex number and outputs the number to the console. It returns
the carry flag set (C} if a printer attention condition occurs, and changes
the assignment to ASSIGN 1 1, and ASSIGN 2 2. Refer to the ASSIGN command
in the MDOS executive. It preserves the HL, DE, and C registers.

4.3.1.18 RHEXADDOUT - HEXADECIMAL ADDRESS OUTPUT

The @HEXADDOUT routine converts an unsigned 16 bit binary value in the

HL registers toc a hex number and outputs the number to the console followed
by one space character. It returns the carry flag set (C) if a printer
attention condition occurs, and changes the assignment to ASSIGN 1 1, and
ASSIGN 2 2. Refer to the ASSIGM command in the MDOS executive. It preserves
the HL, DE, and C registers.

4.3.1.19 RHEXOUTSPC - HEXADECIMAL OUTPUT WITH SPACE

The @HEXOUTSPC routine converts an unsigned 8 bit binary value in the
HL registers to a hex number and outputs the number to the conscle
followed by one space character. It returns the carry flag set (C) if
a printer attention condition occurs, and changes the assignment to
ASSIGN 1 1, and ASSIGN 2 2. Refer to the ASSIGN command in the MDOS
executive. It preserves the HL, DE, and C registers.

4.3.1.20 RSPACEOUT - SPACE QUTPUT

The @SPACEQUT routine outputs a space (29 hex) to the console stream.

It returns the carry flag set (C) if a printer attention condition occurs,
and changes the assignment to ASSIGN 1 1, and ASSIGN 2 2. Refer to the
ASSIGN command in the MDOS executive. It preserves the HL, DE, and

C registers.

4-21

Rey, 8 9/78

4.3.1.27 @NLINEOUT - NEW LINE QUTPUT

The @NLINEQUT routine outputs a carriage return line feed and a line of
text to the console stream. It expects the address of the beginning of the
text line in the HL registers. The message pointed to must be properly
terminated with a byte code in the range @ through 1F hex or the high

order eighth bit of the last byte set. It returns the carry flag

clear (NC) in all cases. It preserves the HL, DE, and C registers.

4.3.1.22 GLINEOUT - LINE OUTPUT

The @LINEOUT routine outputs a line of text to the console stream. It
expects the address of the beginning of the text line in the HL registers.
The message pointed to must be properly terminated with a byte code in
the range @ through 1F hex or the high order eighth bit of the last byte
set. It returns the carry flag clear (NC) in all cases. It preserves

the HL, DE, and C registers.

4,3.2 TEXT LINE PARSING SUBROUTINES

The following routines are used by the system to parse input command Tines

for the MDOS executive. After the command has been entered into the input
buffer using QCILINE, the @SCAN routine is used to locate the first space
after the command, and @SKIPSPACE skips to the first non-space character.

Then the @PARAM routine separates the command parameters into buffers according
to their type. @PARAM makes use of BSCAN, OSKIPSPACE, and GAHEXTBIN to do

its job. After the parameter types have been separated, the address of the
beginning of the input buffer is placed into @MASKADDR and the @SEAR routine
searches the MDOS command table for a match. If the command is valid, the
@SEAR routine returns with the zero flag clear and GLHLI will get the function
from the table, which in this case is an address. Control is passed to the
command routine with a PCHL instruction. The command routine can retrieve

the parameters from the appropriate buffers with LHLD instructions.

The user can use these routines to parse applications program input lines
using similar logic.

4.3.2.1 @PARAM - PARAMETER

The BPARAM rcoutine parses a text line. It separates parameters into ASCIT,
numeric and unit numbers. It counts the number of occurrences of each
parameter type and places the count and each parameter in a separate buffer.
It expects the start address of the text to be parsed in the HL registers.
It returns ASCII narameters in GASCBUFF@ through (ASCBUFF3.

It returns unit numbers in @DRIVEN@ through RDRIVEN3.

Rev. 8 8/78 4-22

It returns binary (numeric) parameters in OBBUFFP through @BBUFF3.
It returns the number of ASCII parameters in @NASCPAR.

It returns the number of unit number parameters in SNDRVPAR.

It returns the number of binary parameters in GNBINPAR.

It returns the carry flag clear (NC) and the end of Tine address in the
HL registers if there were no errors.

It preserves the DE and BC registers.

If a parameter is in error the carry.flag is set (C), the SYNTAX ERROR
code is in the A register, and the location where the error occurred is
returned in the HL registers.

4.3.2.2 @SKIPSPACE - SKIP SPACES

The BSKIPSPACE routine skips spaces in a text line.

It expects the text line's start address in the HL register.

It returns the address in the HL registers of the first non-space character.
If the character is a control character the carry flag is set (C).

It preserves the DE and BC registers.

4.3.2.3 R@SCAN - SCAN

The @SCAN routine scans a text line for the first occurrence of a specified
character. '

It expects the text line's starting address in the HL registers and the
mask character in the C register.

It returns the address in the HL register where the match occurred and
the number of characters passed over in the B register.

The carry flag is set (C) if the mask character was not found prior to
a control character.

It preserves the DE and C registers.

4.3.2.4 @SEAR - SEARCH

The RSEAR routine searches a table of argument-function pairs and returns

the address of the function associatad with the argument. The last character
of the argument has the most significant bit set high. For example, an

ASCII A is 41 hex. If the most significant bit is set high it is a C1 hex.

Rev. 7 3/78

Ravy.

The argument is immediately followed by its function. The arguments can be
variabie length but the functions must all be the same length. The end of
the table is marked by a @ following the last function.

It expects the table's start address in the HL register and the argument
masks' starting address in @MASKADDR. The argument mask string must be
terminated by a space or control character. It expects the A register to
contain the size (number of bytes) of the functions in the table.

It returns the zero flag clear (NZ) and the address of the start of the
argument's function in the HL register.

The zero flag is set (Z) if the argument was not in the table. In this
case the HL registers contain the end of table address, je. the address of
the @ after the last functiecn.

It preserves the DE and BC registers.

4.3.2.5 GAHEXTBIN - ASCII HEX TO BINARY

The @AHEXTBIN routine converts a text string of unsigned hexadecimal digits
represented in ASCII code into a binary number. The string can be one to
four digits in length. It must end with a space or control character.

It expects the string's start address in the DE registers.

It returns a 16 bit binary number in the HL registers.

[t returns the number of digits in the number in the B register.

It returns the DE registers pointing to the space or control character
that ends the text string.

It preserves the C register.

If the number is greater than four digits long or not a hex value, the
routine returns the carry flag clear (NC) and the illegal character's
address in the DE registers. '

4.3.3 THE FILE ACCESS ROUTINES

The file access subroutines implement the MDOS file access methods described
in Section 4.2.5. They allow an open disk file to be accessed sequentially
by byte or record and directly (randomly) by record and byte within record.

Before a file can be accessed it must be opened. To open a named file on
a specified disk unit the file must be assigned a logical file number

and a filebuffer. MDOS supports simultaneously open files numbered from
@ through 7. 1t makes available two resident filebuffers. Additional
filebuffers must be allocated in the memory space of the application
program. Each filebuffer requires 288 bytes of memory.

7 3/78 4-24

When a file is opened the first record of the file is read into its
filebuffer. The record in the file buffer of a file at any given time
is called the current record of that file. Associated with the current
record of each open file is an update flag. Any access that modifies
the content of the current record will cause the update flag to be set.
If the update flag is set, any access that leads to the current record
being replaced by a new record wili first cause the current record with
the modified content to be rewritten in place (updated) to the disk
file. If the update flag is not set, no update takes place before a new
record is read. Invoking a new record resets the update flag.

The current record of each open file has a record length which is written
with the record as described in Section 4.2.4. 1Its value may vary from

¢ to 256. A @ length record indicates an empty record that still occupies
one physical sector on the diskette. A 256 byte record is a full record
that cannot be extended.

The index position of the current racord is a logical pointer that marks

the next byte in the record to be accessed. The value of the index position
ranges from 2 to 255. However, the index position may never be greater than
the length in a particular record. An index position of 2 indicates that
the next byte to be accessed is the first byvte in a record. An index
position of 255 indicates that the next byte to be accessed is the Tast

byta in a full record.

if the index position in the current record is less than the current record
length, then it points to a valid byte position within the record. That

byte may be read or rewritten. If the index position is equal to the current
record length, then it points to the end of record (EOR) position which is
the first non valid byte position in a non full record. The EOR position

may be written but it may not be read.

Reading from the end of record position updates the current record to disk
as necessary and the next record in the file becomes the current record.
The index position is set to @ and the data is read from this position.
This allows files containing a mixture of non full records to be read
sequentially by byte.

If the end of record position is written to, the length of the current

record is increased by one and the position just writter becomes a valid

byte position. This allows data to be added to the end of a record extending
it up to its maximum length of 256 bytes. Note, however, that incrementing
the index position when it already has a value of 255 updates the current
record to disk as necessary and the next record of the file becomes the
current record. The index position will be set to 8.

A new file may be written sequentially by byte by repeatedly writing toc

the index position and incrementing the index position. This will produce
a file of full records with the possible exception of the last record. The
system automatically extends the amount of disk space allocatad to a file
when enough new records are written to require another track.

4-25

Rev. 7 3/78

The current record of each open file also has a record position number
associated with it. The record position number specifies which record
the current record is in the file. The record position number may be
set or incremented. Setting the record position updates the current
record to disk as necessary and the specified record from the file is
read and becomes the current record. This provides a mechanism for
direct (random) access to any record in a file. Incrementing the record
position number updates the current record to disk as necessary and the
next record in the file is read and becomes the current record. This
function can be used to sequentially write a file of short/mixed length
records.

When processing of a file is complete, the file must be closed. Closing
a file updates the current record to disk as necessary and frees the
logical file number and the filebuffer for subsequent reallocation.

4.3.3.1 BCREATE - CREATE

The GCREATE routine creates a file of a specified type on a specified
disk unit. The created file has one track allocated to it and one empty
(@ length) record written to it. It is left open and ready for access
with the index position set to @ and the empty record as the current
record.

It expects the file number in the B register and the disk unit number in the
£ register and the filename in GASCIIBUFF.

It expects the file type in the D register and the start address of the
file buffer in the HL registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

It preserves the HL, DE, and BC registers.

4.3.3.2 BGFILESTAT - GET FILE STATUS

The @GFILESTAT routine checks the open/closed status of a file.
It expects the file number in the B register.

If the file is closed it returns with the zero flag set (7) and the
"FILE NOT OPEN" message code in the A register.

It preserves the HL, DE, and BC reqisters.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

Rev. 8 4/78 4-26

4.3.3.3 BDIRSEARCH - DIRECTORY SEARCH

The @DIRSEARCH routine reads the directory of a specified disk unit to
determine if a specified file exists.

It expects the unit number in the C register and the file name in
@ASCTIBUFF.

It returns the zero flag clear (NZ) and the "FILE NOT FOUND" message
code in the A register if the file is not in the directory.

It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.4 QOPENFILE - OPEN A FILE

The GOPENFILE routine opens a file for processing. It assigns a specified
logical file number and filebuffer to the file.

It expects the file name in @ASCIIBUFF, the file number in the B register,
and the drive number in the C register.

It expects the address of the file buffer in the HL registers.
It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.5 QRCLOSEFILE - CLOSE A FILE

The R@CLOSEFILE routine updates the current record to disk as necessary
and frees the lagical file number and the filebuffer for subsequent
reallocation.

It expects the file number in the B register.

it preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4,3.3.6 @RFILEINF - READ FILE INFORMATICN

The @RFILEINF routine gets the disk unit number, the number of records
in the file, the file type, and the record position number of the
current record.

It expects the file number in the B register.

4-27

Rev. 7 3/78

It returns the file type in the B register and the disk unit number in
the C register.

It returns the number of records in the file in the DE registers.

It returns the record position number of the current record in the HL
registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.7 @SINXTRS - SET INDEX POSITION TO RECORD START

The @SINXTRS routine updates the current record to disk as necessary
and reads a specified record which becomes the current record. The
index position is set toc @.

It expects the file number in the B register and the record number in
the HL registers.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4,3.3.8 QGRRECORDLEN - READ RECORD LENGTH

The @RRECORDLEN routine gets the length of the current record in a file.
It expects the file number in the B register.

It returns the length of the record in the HL registers.

It preserves the DE and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.9 QRINXPOS - READ INDEX POSITION

The @RINXPOS routine gets the index position of the current record of a
file.

It expects the file number in the B register.
It returns the index position in the C register.
It preserves the HL, DE, B registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

Rev. 7 3/78 4-28

4.3.3.1p @SINXPQS - SET INDEX POSITION

The @SINXPOS routine sets the index position within the current record
in a file,

It expects the file number in the B register and the index position in
the C register.

1t preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set {C) and
the error message code in the A register.

4.3.3.11 @INCINX - INCREMENT INDEX PQSITION

The @INCINX routine increments the index position in the current record
of a file. 1If the increment would result in a value greater than the
current record length, then the current record is updated to disk as
necessary and the next record of the file becomes the current record
and the index position is set to @.

It expects the file number in the B register.

It returns the zero flag set (Z) if the index position is in the same
record.

It returns the zero flag clear (NZ) if the index position is in a new
record.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.12 GRFINXPOS - READ FROM INDEX POSITION

The @RFINXPOS routine reads the data byte pointed to by the index position
in -the current record of a file. If the index position is at the EOR
position the current record is updated to disk as necessary and the next
record of the file becomes the current record. The index position is

set to @ and the data is read from this position.

It expects the file number in the B register.

It returns the data in the C register.

It returns the zero f]ég set (Z)} if the data is from the same record.

It returns the zero flag clear (NZ} if the data is from a new record.

It preserves the HL, DE, B registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4-29

Rev. 7 3/78

3.13 GRFINXPOSI - READ FROM INDEX POSITION AND INCREMENT INDEX

The GRFINXPOSI reads the data byte pointed to by the index position in
the current record of a file and then increments the index pesition. If
the original index position is at the EOR position, the current record
is updated to disk as necessary and the next record of the file becomes
the current record. The index position is set to D and the data is read
from that position. Then the increment takes place. I the increment
would result in a value greater than the currant record length, the
current record is updated to disk as necessary and the next record from
the file becomes the current record. The index position is set to D in
that case.

1t expects the file number in B.

It returns the data in the C ragister.

It returns the zero flag set (Z) if the data is from the same record.
It returns the zero flag clear {NZ) if the data is from a new record.
It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4,3.3.14 BWTINXPOS - WRITE TO INDEX PGSITION

The @WTINXPOS routine writes fo the index position in the current record
of a file. 1If the index position is the EOR position the record length is
extended by one.

It expects the data in the C register, and the filenumber in the B .
ragister.

It preserves the HL, DE, BC registers

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register,

[t returns the zero flag set (Z) if the data is from the
same record.

It returns the zero flag clear (NZ) if the data is from a
new racord.

4.3.3.15 GWTINXPOST - WRITE TO INDEX POSITION AND INCREMENT INDEX

The @WTINXPOSI routine writes to the index position in the current record
and then increments the index pasition. If the index position is the

EOR position the current record length is extended by one. If the incre-
ment would result in an index greater than 255, then the current record

Rev., 8.1 2/5/79 4-30

is updated to disk as necasssary and the next record in the file becomes
the current record. The index position is set to ﬁ in this case.

[t expects the data in the C register, and the filenumber in the B ragister,
1t preserves the HL, DE, B3C registers.

1f the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

It returns the zero flag set (Z) if the data is from the same record.

1+ returns the zero flag clear (NZ) if the data is from a new record.

4,3.3.16 QLOADDATA - LOAD DATA

The GLOADDATA routine loads a block of data into memory starting from

the index position in the current record and continuing from a specified

number of bytes. It advances the index position 1ike a repeated sequence of
reads and increments.

It expects the file number in the B ragister.
[t expects the start address of the memory block in the HL registers.
It expects the block size in the DE registers.

It returns the zero flag set (Z) if the last byte read is from the
same record as the first byte.

t returns the zero flag clear (NZ) {if the last byte read is Trom a new
record.

It preserves the HL, DE, 3C registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

After a call to RLOADDATA the buffer GMEMORYPNTR contains the address

of the memory byte immediately after the last memory byte loaded.

For example, if 5 bytes are loaded into 4@@@H thrcugh 4904H, then

BMEMORYPNTR contains the address 4@@5H in standard low-high format. This

is useful in cases where the number of bytes loaded is less than the number
of bytes reguested because an end of file is encountered during the ELOADDATA.

4.3.3.17 BSAVEDATA - SAYVE DATA

The @SAVEDATA routine writes a block of memory to a file starting at
the index position of the current racord and continuing for a specified
number of bytes. It advances the index position Tike a repeated
saguence of writes and increments.

it expects the file number in the 3 register.

Rev. 8.1 2/5/79%9 4-31

[t expects the start address of the memory block in the HL ragisters.
[t expects the number of bytes in the memory block in the DE registers.
It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

[t returns the zera flag set (Z) if the last byte read {s from the same
record as the first byte.

It returns the zero flag clear (NZ) if the last byte read is from a new
record.

After a call to @SAVEDATA the buffer GMEMORYPNTR contains the address of the
memory byte immediately after the last memory byte saved. For example, if 5
bytes are saved from 490@H to 48P4H then @MEMORYPNTR contains 4pOSH in
standard Tow-high format. This is useful in cases where a DISK FULL
condition causes less bhytes to saved than are requested in the call to
@SAVEDATA.

4.3.3.18 @DFINXPOSTEQR - DELETE FROM INDEX POSITION TO END OF RECORD

The @DFINXPOSTEQR routine deletes from the index position to the end of
the current record by making the racord length equal to the value of
the index position.

It expects the file number in the B register.
It preserves the HL, DE, BC registers.

TL 4

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A ragister.

Rev. 8.1 2/5/79% 4-31A

4.3.3.19 @DFINXPOS - DELETE FROM INDEX POSITION TO END OF FILE

The @DFINXPOS routine deletes from the index position to the end of the
file by making the number of records in the file equal to the record
position number of the current record and the current record length
equal to the value of the index position. Any tracks no longer required
by the file due to the deletion are freed for subsequent reallocation

to other files.

It expects the file number in the B register.
It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register,

4.3.3.28 @INCRECPOS - INCREMENT RECORD PQSITION

The GINCRECPOS routine updates the current record to disk as necessary,
reads in the next record which becomes the current record and sets the
index position to @. If the current record is the last record in the
file, the file is automatically extended by one record.

It expects the file number in the B register.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.4 FILE MANAGEMENT SUBROUTINES

In addition to accessing named files on the disk it becomes necessary

on occasion to perform housekeeping functions such as removing old files,
changing file types and names, and determining the amount of space left

on a disk for additional files. These functions are available as executive
commands, and are also provided as subroutines that may be used directly

by applications programs.

4.3.4.1 @FREE - FREE

The @FREE routine returns the number of tracks left on a diskette that
are free and available for allocation to a file.

It expects the unit number in the C register.
It returns the number of free tracks in the HL registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4,.3.4.2 GRENAME - RENAME

The GRENAME routine renames a file on a diskette.

4-32
Rev. 7 3/78

It expects the file number in the B register.
It expects the new name in @ASCIIBUFF.
It preserves the HL, DE, and BC registers.

1f the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.4.3 QTYPE - FILE TYPE

The @TYPE routine changes the type (attributes) of a file. See Section
4.2.3 for type definitions.

It expects the file number in the B register.
It expects the new file type in the C register.
It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.4.4 @SCRATCH - SCRATCH A FILE

The @SCRATCH routine deletes a specified file from a specified disk unit.
It expects the unit number in the C register.

It expects the file name in GASCIIBUFF.

It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5 PHYSICAL DISK ACCESS ROUTINES

The physical disk access subroutines are the most primitive level of
access provided within the MDOS context. They allow a diskette to be
treated as a collection of logical blocks independent of the MDOS file
system and provide access to a specified logical block on a specified
track of a diskette.

Micropolis MOD I disk subsystems write 35 tracks on one side of a diskette.
The MOD II subsystems write 77 tracks on one side of a diskette. A track
in either subsystem is divided into 16 sectors each of which contains 268
bytes. Tracks numbered @ through 34 or 76 are written concentrically
inward toward the center of the diskette. The physical sectors on a track
are numbered from # through 15.

Rev. 7 3/78

Diskettes initialized by and formatted for use with MDOS have the track
number written in the first byte and the physical sector number written
in the second byte of each sector of a track. These bytes are maintained
exclusively by the operating system.

The remaining 266 bytes of a sector are accessible as a logical block
by the MDOS physical disk access routines. In order to enhance access
time to multiple blocks, MDOS maps logically sequential blocks ontc the
physical sectors of a track in a staggered pattern as shown.

LOGICAL BLOCKS 1234

2 5 6 7 8 1
PHYSICAL SECTORS ¢ 2 46 8 19 12 14

9 10 11 12 13 14 15 16

1 3 5 7 9111315

The physical disk access routines automatically access the correct
physical sector that corresponds to the logical block that is specified.
If it is necessary to access the sectors of a track in true physically
sequential order, the application program must use the table above to
unmap the sectors. For example, to access sector @ followed by sector 1
the program would have to specify logical block 1T followed by logical

block 9.

Note that the record structure of MDOS files as detailed in Section
4.2.4 must be preserved if the physical disk access routines are used
to operate on such records.

4.3.5.1 BGETASEC - GET A SECTOR

The @GETASEC routine gets (reads) a sector from a specified disk unit
into a specified memory buffer given the track and logical block numbers.

It expects the unit number in the C register.

It expects the track number in the D register and the logical block number
in the £ register.

It expects the address in the HL register of the start of a 266 byte buffar.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.2 @PUTASEC - PUT A SECTOR

The @PUTASEC routine puts (writes) from a specified memory buffer to a
sector on a specified disk unit given the track and logical block numbers.
Before it writes the sector it reads the header information of the target
sector-2 to verify that it will be writing on the correct sector. This

is called a preread. It requires that the preread sector be readable.

It expects the unit number in the C register.

It expects the track number in the D register and the logical block number
in the E register.

Rev. 7 3/78 1-34

It expects the address in the HL register of the beginning of a 266
byte buffer.

1f the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4,3.5.3 @WRITESECTOR - WRITE A SECTOR

The @WRITESECTOR routine writes from a specified memory buffer to a
sector on a specified disk unit given the track number and logical block
number. It does not do a preread before writing. This allows a sector
to be written on an uninitialized track or a track on which the preread
sector is unreadable.

It expects the unit number in the C register.

It expects the track number in the D register and the logical block
number in the E register.

Tt expects the address in the HL registers of the beginning of a 266
byte buffer.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4,3.5.4 @VERIFYSECTOR - VERIFY A SECTOR

The @VERIFYSECTOR routine verifies the validity of the header information
and checksum of a sector on a specified disk unit.

It expects the unit number in the C register.

. It expects the track number in the D register and the logical bhlock
number in the £ register.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.5 BSEEKTRACK - SEEK TO A TRACK

The @SEEKTRACK routine moves the read/write head to a specified track on
a specified disk unit.

It expects the unit number in the { register.
It expects the track number in the D register.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.6 @RESTOREDISK - RESTORE THE READ/WRITE HEAD

The @RESTOREDISK routine positions the read/write head to track zero of
a specified disk unit.

4-35
Rev. 7 3/78

It expects the unit number in the C register.

1f the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.6 PROCESSOR QRIENTED UTILITY ROUTINES

These subroutines effectively extend the instruction set of the 8089 to
provide for some commonly required operations.

When parentheses enclose an item in the following subse~tions, this
indicates the contents of the memory location specified by the value
within the parentheses. For example, HL=(HL) means that the HL register
pair is replaced with the bytes at the address in HL and HL+1. If the
HL registers contain the address 4@@@ hex, and at location 4899 there is
a @1, and at Tocation 4281 there is a 82, then the HL register would be
replaced by @281 hex. The low byte goes into L and the high byte into H.

4.3.6.1 @GHLADDA - ADD A TO HL

The GHLADDA routine adds the unsigned 8 bit value in the A register to
the unsigned 16 bit value in the HL registers.

t expects a value in the HL, and the A registers.
It returns HL=HL+A.
It preserves the DE and BC registers.

4.3.6.2 @INXM - TNCREMENT MEMORY

The @INXM routine increments a memory pair pointed to by the HL registers.
It is similar to an INR M instruction but it operates on a byte pair

(16 bits) in memory.

It expects the address of the memory pair in the HL registers.

It preserves the DE and BC registers and the PSW.

4.3.6.3 GLHLINDEXED - LOAD HL INDIRECT INDEXED

The @LHLINDEXED routine loads the HL registers indirect from the location
pointed to by the HL registers indexed by the A register.

It expects the address in the HL registers, and the index in the A register.
It returns HL=(HL+2*A).

It preserves the DE and BC registers.

Rev. 8 9/78 4-36

4.3.6.4 GLHLI - LOAD HL INDIRECT

The @LHLI routine loads the HL registers with the content of the byte
pair pointed to by the HL registers.

It expects an address in the HL registers.
It returns HL = (HL).
It preserves the BC and DE registers.

4.3.6.5 @TRANSDHC - TRANSFER FROM DE TO HL FOR A COUNT OF C

The @TRANSDHC routine copies a memory block pointed to by the OE
registers to a memory block pointed to by the HL registers for a length
in the C register. It begins at the start of each block and working to
the end.

It expects the start address of the source block in the DE registers
and the start address of the destination block in the HL regwsters and
the number of bytes to copy in the C register.

It returns (HL+@...+C) = (DE+{P...+C).

It preserves tﬁe B register.

4.3.6.6 @TRANSDHBC - TRANSFER FROM DE TO HL FOR A COUNT OF BC

The @TRANSDHBC routine copies a memory block pointed to by the DE
registers to a memory block pointed to by the HL registers for a length
in the BC registers. It begins at the start of each block and works to
the end.

It expects the stért address of the source block in the DE registers
and the start address of the destination block in the HL registers and
the number of bytes to copy in the BC registers.

It returns (HL+@...+BC) = (DE+@...+BC).

4.3.6.7 GTRANSDHBCR - TRANSFER FROM DE TO HL FOR A COUNT OF BC REVERSE

The Q@TRANSDHBCR routine copies a memory block pointed to by the DE
registers to a memory block pointed to by the HL registers for a length
in the BC registers. It begins at the end of each block and working to
the beginning.

It expects the start address of the source block in the DE registers
and the start address of the destination block in the HL registers and
the number of bytes to copy in the BC registers.

It returns (HL+BC....+@) = (DE+BC....+9).

4-37

Rev. 7 3/78

Revy.

4.3.6.8 GTRANSFILENAME - TRANSFER A FILENAME

The @TRANSFILENAME routine copies a filename from one of the ASCII
buffers (@ASCBUFFQ@ through GASCBUFF3) to the RBASCIIBUFF.

[t expects the RASCBUFF number (ie. § to 3) in the C register.
It preserves the HL, DE, and BC registers.

4.3.6.9 @FILLZER - FILL ZERQES

The @FILLZER routine fills a block of memory up to 256 bytes in length
with zeros.

It expects the start address of the memory block in the HL registers
and the number of bytes to fill in the B register.

It preserves the DE and C registers.

4.3.6.10@FJLLSPC ~ FILL SPACES

The @FILLSPC routine fills a block of memory up to 256 bytes in Tength
with spaces (hex 28).

It expects the start address of the memory block in the HL registers
and the number of bytes to fill in the B register.

It preserves the DE and C registers.

4.3.6.11 GFILLA - FILL FROM THE A REGJSTER

The G@FILLA routine fills a block of memory up to 256 bytes in length
with the value specified in the A register.

It expects the start address of the memory block in the HL registers,
the number of bytes to fill in the B register, and a fill value in the
A register.

It preserves the DE and C registers.

1.3.6.12 RCOMPARE - COMPARE HL TO DE

The GCOMPARE routine compares the value in the HL registers to the
value in the DE registers.

It expects a value in the DE register and the value to compare it te in

the HL register. The forms are Tike an 3880 CMP B instruction where DE
is analogous to the A register and HL is analogous to the B register.

7 3/78 4-38

1t returns the

DE = HL zero flag set (Z), carry flag clear (NC)
DE > HL zero flag clear (NZ), carry flag clear (NC)
DE < HL zero flag clear (NZ), carry flag set (C)
DE >=HL zero flag any state, carry flag clear (NC)

following sense:

It preserves the HL, DE, and BC registers.

4.3.7 EXTENDED 8@8p INTEGER ARITHMETIC (16 BITS)

These routines extend the capability of the 8080 to allow 16 bit unsigned
integer addition, subtraction, multiplication, and division (gquotient,
and modulus). .

The result of all of these routines is returned in the BC registers. The
HL and DE registers are preserved. With the exception of @DEDIVHL and
@DEMODHL (divide and modulus routines), the carry flag is returned set (c)
if a carry or borrow occurred. The divide and modulus routines return the
carry unchanged.

4.3.7.1 QGDEADDHL - BC=DE+HL

The @DEADDHL routine performs 16 bit unsigned integer addition.
It expects the addend in the DE register and the augend in the HL registers.

It returns the
a carry out of

sum in the BC registers and the carry clear (NC) unless
the high order bit occurs.

It preserves the HL and DE registers.

4.3.7.2 @DESUBHL - BC=DE-HL

The @DESUBHL routine performs 16 bit unsigned integer subtraction using
twos compliment addition.

It expects the minuend in the DE registers the subtrahend in the HL registers.

It returns the difference in the BC registers as a twos compliment number
and the carry clear (NC) unless a borrow into the high order bit cccurs.

It preserves the HL and DE registers.

4.3.7.3 GDEMULHL - BC=DE*HL

The @DEMULHL routine performs 16 bit unsigned integer multiplication.

It expects the multiplicand in the DE registers and the multiplier in the

HL registers.

4-39

Rev. 7 3/78

It returns the product in the BC registers and the carry clear (NC) unless
a carry out of the high order bit occurs.

It preserves the HL and DE registers.

4.3.7.4 GDEDIVHL - BC=DE/HL

The @DEDIVHL routine performs 16 bit unsigned integer division.

It expects the dividend in the DE registers and the divisor in the HL registers.
It returns the integer quotient in the BC registers.

It preserves the HL and DE registers.

4.3.7.5 GDEMODHL - BC=DE%HL

The @DEMODHL routine performs 16 bit unsigned integer division and returns
the modulus (remainder) of the operation.

It expects the dividend in the DL registers and the divisor in the HL registers.
It returns the remainder of the division in the BC registers.
It preserves the HL and DE registers.

Example: 5/2=2 and a remainder of 1. The quotient is the result of QDEDIVHL
and the modulus (or remainder) is the result of @DEMODHL.

4.3.8 MESSAGE QUTPUT SUBROUTINES

These routines provide a simple means for outputing standard messages.

Some of the routines access the system messages while others allow the user

to set up a table of applications messages. The system messages are described
in Section 4.8,

4.3.8.1 RDISKERROR -~ DISK ERROR MESSAGES

The BDISKERROR routine outputs system error messages related to disk operation.
The routine closes all open disk files, cutputs the appropriate error message
to the console stream, and returns control to the MDOS executive which resets
the 8p88 stack to the MDOS system stack.

It will output the appropriate error messages as detected by FILE MANAGEMENT
and PHYSICAL DISK ACCESS routines (Sections 4.3.3 and 4.3.4) when they return
a carry set (C) conditicn and an error message code in the A register.

It expects the error message code in the A register.

It DOES NOT RETURN.

Rev. 7 3/78 4-40

4.3.8.2 @CLOSEFILES - CLOSE ALL FILES

The @CLOSEFILES routine closes all open files using the standard system
file close routines. Any errors that are encountered will be reported on
the console device.

It always returns the carry flag clear (NC).

It preserves the HL, DE and BC registers.
4.3.8.3 QERRORMES - ERROR MESSAGES

The @ERRORMES routine performs similarly to @DISKERROR except that it does
not close all open files and it does return to the calling routine on exit.

It expects the error message code in the A register.
It preserves the C register.

4.3.8.4 @MESSAGEQUT - MESSAGE QUTPUT

The GMESSAGEQUT routine is a generalized message-tabie output routine.

The user can provide his own applications message table and use this routine
to output the messages to the console stream. The table may have variable
length messages with imbedded blanks. Each message can be terminated with

a control character or a character with the most significant bit set high.
The control character will not be output. The character with the eighth

bit high will be output after the bit is stripped. For example, an ASCII A
is hex 41. C1 hex is an ASCII A with the most significant bit high.

It expects the message table's address in the HL registers.

It expects the message's code in the A register. The code corresponds
to the message's location in_the table. ie., @ is the first message, 5
is the sixth etc.

It preserves the C register.

4.3.9 SYSTEM BUFFERS AND ENTRY POINTS

These are miscellaneous entry points and buffers already described in detail
in conjunction with other subroutines.

@CONSOLEADDR - Contains the location of BCIOTABLE

@LISTADD - Contains the location of @LIOTABLE

@CIOTABLE - Start address of the console input/output vector table
@LIOTABLE - Start address of the 1ist input/output vector table
@PCON - Start address of physical console driver routines

@PLIST ~ Start address of physical list driver routines

4-41
Rev. 8 9/78

AWARMSTART - Warm start entry point; initializes console and 1ist devices,
and prints the MDOS signon message.

@MDOSEXECUTIVE - Entry point for MDOS executive. Outputs the current MDOS
executive prompt and initializes the MDOS stack. This entry does not output
the signon message.

@FILEBUFFERP and GFILEBUFFERY - Q@FILEBUFFER@ and @FILEBUFFERT are 288 byte
buffers used by the system for file access. They may be used as applications
program file buffers. See the saction on FILE ACCESS ROUTINES.

@®APROGRAM - Address of the start of the applications area. The APP command
transfers program control to this address. A1l file types except overlay
(@C-9F hex) must have load addresses greater than or equal to @APROGRAM or
a LOAD ADDRESS ERROR will occur when an attempt is made to load the file.

@MASKADDR - A two byte pointer used by the @SEAR routine. @MASKADDR points
to the address of the mask string.

@PARAMLEN - A one byte parameter used by the @SEAR routine. It contains
the length of the functions in the table to be searched.

@MDOSRETURN - Applications programs that have not changed the 1/0 initializa-
tion return to this entry point instead of @WARMSTART. @MDOSRETURN outputs

the MDOS signon message and initializes the MDOS stack but does not reinitialize
the 1/0 handlers.

The following buffers are used by the @PARAM routine and are discussed in
detail there.

1) One byte buffers which holds the number of specified parameters.
@NDRVPAR @NASCPAR @NBINPAR
2) Ten byte buffers which holds ASCII pafameters.

@ASCBUFFQ @ASCBUFF1
@ASCBUFF2 . @ASCBUFF3

3) One byte buffers which holds disk unit number parameters.

@DRIVEND @DRIVENI
@DRIVEN2 @DRIVEN3

4) Two byte buffers which holds binary parameters,

@BBUFFP @BBUFF1
@BBUFF2 @BBUFF3

@ASCIIBUFF - RASCIIBUFF is a ten byta buffer which holds filenames for
the RCREATE, @RENAME, @SCRATCH, and @TRANSFILENAME routines.

@QINBUFF - @INBUFF is the system input buffer. It is 132 bytes long.

Rev. 7 3/78 4-42

4.4 LINEEDIT - THE MDOS LINE EDITOR

LINEEDIT is an MDQOS application program which provides assistance in
creating and maintaining assembly language source program files that
are compatible with the MDOS 8@89/8p85 assembler. It may also be used
as a limited general text editor.

LINEEDIT is invoked by typing LINEEDIT in response to an MDOS executive
prompt or by typing the command LOAD "LINEEDIT" followed by the command
APP. It signs on with the message MDOS LINE EDITOR VS. X.X.

The user interacts with LINEEDIT through the system console. Lines
entered at the keyboard may be text lines which are stored in the edit
buffer or commands for LINEEDIT to execute. The general editing process
consists of three parts.

1) Placing a text file into the edit buffer by entering it a line

at a time from the keyboard or by loading an existing file from
disk.

2) Modifying the text file in the edit buffer by adding, changing,
and deleting lines.

3) Storing the file in the edit buffer onto a disk.

How to use LINEEDIT to carry out this process is described in the
following sections.

4.4.1 ENTERING LINES TO LINEEDIT

After signing on LINEEDIT waits for a line to be input. A line consists

of not more than 132 characters typed in sequence. The entry of a line

is terminated by pressing the RETURN key. During the entry of a line

each character that is typed is echoed by LINEEDIT on the console displiay.
If more than 132 characters are typed prior to the RETURN, LINEEDIT will
stop echoing characters and only honor a valid control function such as the
RETURN. Characters which may be entered into a text 1ine are ASCII
characters in the code range 2@H to 7tEH with the exception of the backarrow
(5FH). LINEEDIT also uses the MDOS console output system to keep track

of the character count as a line is typed and automatically output a
carriage return/line feed combination when the count exceeds the width of
the display device. This combination is not included in the line count.

Two control features may be used when entering a line.
1) When DEL or RUBQUT key is pressed the next previously typed
character will be deleted from the line. A backarrow is echoed

to the terminal display for each character deleted. Neither the
deleted characters nor the backarrow are included in the line count.

Rev. 81. 2/5/79 4-43

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current 1ine to be cancelled. A carriage return/line
feed combination is echoed to the terminal display. LINEEDIT is
positioned to accept entry of a new line.

4.4.2 KEYING IN A NEW TEXT FILE

LINEEDIT recognizes a line as a text file line by the presence of a
leading line number. £ach line number must be in the range § to 9998. A
text file is entered one line at a time using the normal line entry
procedure. As each line is entered LINEEDIT stores it in the edit buffer
which it maintains in the computer system's main memory. Text lines are
stored in the edit buffer in numeric order by line number. The lines 1in
the buffer at any given time constitute the current text file.

To insert a new line in the current text file, type in the new line
including the line number. LINEEDIT will automatically place the new
line in the program buffer in proper sequence according to its line number.

To replace an existing line in the current text file enter the line number
and the new text. The new line will automatically replace the old line
that has the same Tine number in the current text file.

To delete one existing program line in the current text file type the
line number and press the return key. The carresponding line will be
eliminated from the current text file. Note that multiple lines may also
be eliminated by using the DELT command as described in Section 4.4.18.

Consecutive text lines may be entered conveniently by using LINEEDIT's
automatic line numbering feature. Prior to typing the first character

of a new line, you can cause the 'next' line number to be generated for
you by pressing the space bar one time. The 'next' line number will echo
to the terminal display and LINEEDIT will then be waiting for the first,
text character of that line. See Section 4.4.7 on the AUTO command to
specify the increment that determines the 'next' Tline number.

4.4.3 ENTERING LINEEDIT COMMANDS

Whenever a 1ine is typed which dces not begin with a Tine number,
LINEEDIT attempts to interpret this line as a command. If the line is
not recognizeable as a LINEEDIT command, the message COMMAND NOT FOUND
will be displayed. LINEEDIT ccmmands are single words or abbreviations
followed by parameters if required. A1l LINEEDIT commands are uppercase
only. If the command resquires one or more parameters, there must be at
least one space between the command word and the first parameter and
between each parameter. Parameters may be ASCII or numeric. ASCII
parameters must be enclosed in double quotation marks except for within
the SEARCH and CHANGE command dialogues. Numeric parameters are entered
in decimal. LINEEDIT offers commands to facilitate the management of
the editing process.

Rev. 7 3/78 4-44

4.4.4 THE CLEAR COMMAND

The edit buffer may be initialized to an empty state by using the CLEAR
command. This command has no parameters. It is entered by typing CLEAR
and pressing the return key.

Entering a CLEAR command may result in the message FILE ON DISK NOT UPDATED,
PROCEED?. This is a warning that the contents of the current text file has
not been stored on disk since it was last altered. When the message appears
the current text file is not yet lost. To override this warning type Y

and press the return key. The CLEAR command will be processed. Otherwise
type N and press the return key. The message CANCELLED will be displayed
and LINEEDIT will be waiting for an alternate command.

When the CLEAR command is processed, LINEEDIT will display the message
FILE NOT NAMED followed by two hex numbers which indicate that the edit
buffer is empty and unnamed.

4.4.5 THE NAME COMMAND

The current text file in the edit buffer may be named or renamed by using
the NAME command. NAME "filename" is the general form of this command.
The filename may be any valid MDOS filename. No disk drive unit number
should be specified since this name is to be associated with the current
text file in the edit buffer which is in the main system memory. When the
NAME command is executed, LINEEDIT will display the new filename followed
by two hex numbers which represent the beginning and ending addresses of
the current text file in memory. A text file may be keyed into the edit
buffer before it is named. However, it cannot be stored on disk without
being named.

4.4.6 THE FILE COMMAND

The name of the current text file and its address limits in memory can

be determined by using the FILE command. This command has no parameters.
It is entered by typing FILE and pressing the return key. The name of the
current text file will be displayed, followed by two hex numbers which are
the starting and ending memory addresses of the current text file. If the
current text file has not been named, the message FILE NOT NAMED will be
displayed in place of the filename.

4.4.7 THE AUTO COMMAND

LINEEDIT's automatic line numbering facility adds a fixed increment to
the last entered line number in order to compute the ‘next' automatic
Tine number. When LINEEDIT is started this increment value is set at a
default of 1. This value may be changed by using the AUTO command. The
general form of the command is AUTO number. The increment will be set
to the decimal value of number.

4-45

Rev. 7 3/78

4.4.8 THE PROMPT COMMAND

When LINEEDIT is started its prompt message is null. After processing

an input line, it simply echoes a carriage return/line feed combination,
and waits for a new input with the cursor at the left margin of the
terminal display. A prompt character or message can be specified for
LINEEDIT by using the PROMPT command. PROMPT "message" is the general
form of this command. The message may be from 1 to 12 characters in
length and include any characters valid in a text line. It must be
enclosed in double quotes as shown. When the PROMPT command is executed,
LINEEDIT will immediately display the new prompt at the left of the
terminal display and be positioned waiting for a new input line. The
LINEEDIT prompt may be restored to its initialized state by typing PROMPT
and pressing the return key.

4.4.9 THE LOAD COMMAND

A text file may be loaded into the edit buffer from disk by using the
LOAD command. LOAD "unit number:filename" is the general form of the
command. The double quotes must be used as shown. The filename must be
a valid MDOS filename. The unit number is optional. 1If it is supplied,
it must consist of a single digit from @ to 3 followed by a colon (:).
It designates the disk unit on which the specified file is to be found.
If no unit number is specified, unit § is assumed.

When a text file is successfully Toaded, it replaces the contents of the
edit buffer and all text from the previous text file in the buffer is
lost. The name of the current text file becomes the name of the disk
file that was loaded, not including the unit number.

Entering a LOAD command may result in the message FILE ON DISK NOT UPDATED,
PROCEED?. This is a warning that the current text file has not been stored
on disk since it was last altered. When the message appears, the current
text file is not yet lost. To override this warning type Y and press the
return key. The LOAD command will be processed. Otherwise, type N and
press the return key. The message CANCELLED will be displayed and LINEEDIT
will be waiting for an alternate command.

Entering a LOAD command may result in the message FILE BUFFER OVERFLOW.
See Appendix D for an explanation of this condition.

4.4.10 THE APPEND COMMAND

A text file may be loaded from disk and appended to the end of the current
text file in the edit buffer by using the APPEND command. APPEND "unit
number: filename” is the general form of this command. The double quotes
must be used as shown. The filename must be a valid MDOS filename. The
unit number is optional. If it is supplied, it must consist of a single
digit from 2 to 3 followed by a colon (:). [t designates the disk unit

on which the specified file is to be found. If no unit number is specified,
unit @ is assumed.

Rev., 7 3/78 4-46

when an APPEND is executed, the text file from disk is concatenated onto
the end of the text file which was already in the edit buffer. The text
lines of the appended file are not merged into the existing file in order
by 1ine number. The appended file may contain line numbers which conflict
with the existing file. For these reasons it is important to use the RENUM
command immediately after a successful APPEND.

The name of the current text file in the edit buffer is not affected by
an APPEND.

Entering an APPEND command may result in the message WRONG FILE TYPE.
This is an indication that the requested file has an attribute type
different than 4 through 7. These are the only valid source file types
acceptable to LINEEDIT and the assembler.

Entering an APPEND command may result in the message FILE BUFFER OVERFLOW.
This is an indication that the amount of system memory available for the
edit buffer is not enough to hold the additional file which was requested.
When this condition occurs, the requested file is not appended but the
existing is retained without change.

4.4,11 THE SAVE COMMAND

The current text file in the edit buffer may be stored on disk as a new
disk file by using the SAVE command. The general form of this command

is SAVE unit number. The unit number is aptional. If it is supplied, it
must consist of a single digit from @ to 3. It designates the disk unit
on which the current text file is to be stored. If no unit number is
specified, unit @ is assumed.

The name of the current text file in the edit buffer is used to create

an entry in the directory of the specified disk and the text file is
stored on the disk under that name. If the name already exists on the
specified disk a DUPLICATE NAME message will result, and nothing will be
written to disk. The edit buffer is unchanged. The file may be SAVEd by
first changing its NAME to one that doesn't conflict or by using the
RESAVE command if appropriate.

A file created by the SAVE command is given the attribute type 4 which
marks it as an editor/assembler source file.

4.4.12 THE RESAVE COMMAND

The current text file in the edit buffer may replace an existing file

or disk by using the RESAVE command. The general form of this command
is RESAVE unit number. The unit number is optional. If it is supplied,
it must consist of a single digit from § to 3. It designates the disk
unit on which the existing file to be replaced is found. If no unit
number is specified, unit @ is assumed.

The directory of the specified disk unit is searched for a filename
which matches the name of the current text file in the edit buffer. The
current text file is written over that file on the disk. If no match is

4-47

Rev. 7 3/78

found, the message FILE NOT FOUND will be displayed. The current text
file can be saved as a new file by using the SAVE command. If the file
matched on disk has a type other than 4 through 7, the message WRONG
FILE TYPE will be displayed. Text source files must have a source file
type.

4.4.13 THE LIST COMMAND

A formatted display of lines in the current text file can be output to

the system consale by using the LIST command. The forms of this command
are LIST, LIST linenumberl, and LIST linenumberl 1inenumber?. The display
will begin with linenumberl or the next highest and continue through
TinenumberZ or the next lowest. If linenumberl and linenumber2 are the
same, only one line will be displayed. If linenumber2 is Jess than
linenumberl, nothing will be displayed. If linenumberZ is not supplied,
the display will begin with Tinenumberi or the next highest, and continue
through the tast line currently in the current text file. 1If no line
numbers are supplied, the entire edit buffer will be displayed.

The LIST command produces a formatted display of the text Tines that is
oriented to 8@8Q assembly language source text. The format is defined

as four fields each beginning at a specific tab location. The first field
begins at the left margin and displays the line number as a 4 digit number.
The second field is the label field. It consists of all characters in the
text 1ine through the first space or colon (:) that occurs. The third

field is the opcode and operands field. The opcode consists of all
characters following the label field through the next occurrence of a space.
The aperand consists of all characters following the opcode through the

next occurrence of a space. The fourth field is the comment field. It
begins with a semicolon (;) following the space that terminates the operands
and continues to the end of the text iine.

Refer to the TAB command to change the tab settings which determine the
placement of the fields for the LIST format. When using the LIST command
with general text editing, it is advisable to set the tabs to 1 1 1. This
effectively removes the tabulation effects which are designed for assembly
language source text.

4.4.14 THE LISTP COMMAND

A formatted display of lines in the current text file can be gutput to
the system printer by using the LISTP command. The forms of this command
are LISTP, LISTP linenumberl, and LISTP linenumberl Tlinenumber?.

The LISTP command functions the same as the LIST command except that output
is directed to the system printer instead of the system console.

Rev. 7 3/78 4-43

4.4.15 THE PRINT COMMAND

A literal (unformatted) display of lines in the current text file can be
output to the system console by using the PRINT command. The forms of this
command are PRINT, PRINT linenumberl, and PRINT Tinenumberl 1inenumber?Z.
The linenumber specifications in the PRINT command function the same as

in the LIST command.

The PRINT command displays text lines as they are stored in the edit buffer
but without the line numbers so that general text may be displayed just as
it was entered. If an unformatted dispiay of assembly lanquage Source

text is desired, it can be obtained by setting the tabs to 1 1 1 and using
the LIST command.

4.4.16 THE PRINTP COMMAND

A literal (unformatted) display of lines in the current text file can be
output to the system printer by using the PRINTP command. The forms of
this command are PRINTP, PRINTP Tinenumberi, and PRINTP 1linenumberl
1inenumber?.

The PRINTP command functions the same as the PRINT command except that
output is directed to the system printer instead of the system console.

4.4.17 THE TAB COMMAND

The tab settings that determine the placement of the fields for the LIST
and LISTP format may be changed by using the TAB command. TAB numberl
number?2 number3 is the form of this command. The first number is the
column at which the opcode field begins. The second number is the column
at which the operand field begins. The third number is the column at which
the comment field begins.

The initial and default values of the TAB parameters are 15, 22, 36 decimal.
The settings may be reset to these values by typing TAB without any para-
meters. Missing parameters are set to the default if possible or the value
of the preceding parameter if that parameter is greater than the default
value far that tab column. If TAB 17 were typed the tab setting would be
17, 22, 36. TAB 25 would set the tabs tec 25, 25, 36.

4.4.18 THE DELT COMMAND

A group of consecutive lines may be deleted from the current text file

by using the DELT command. The forms of this command are DELT 1inenumberi,
and DELT linenumberl linenumber2. Lines will be deleted from linenumber]

or the next highest that exists, through linenumber? or the next lowest that
exists. If linenumber2 is Tess than linenumberl nothing will be deleted.

If they are equal only that line will be deleted. If only linenumberl is
specified then only that line will be deleted. The edit buffer is
automatically compressed whenever lines are deleted.

4.4.19 THE RENUM COMMAND

A1l or part of the lines in the current text file can be renumbered by
using the RENUM command. The forms of this command are RENUM, RENUM
startingnumber, RENUM startingnumber increment, and RENUM startingnumber
increment first-line-to-change. RENUM takes the 1ine number of the first
line to change and sets it equal to the starting number. The line number
of each line after the first line to change is then set to the value of
the preceding new line number plus the increment value. If no first line
to change is specified, the first 1ine in the edit buffer is assumed. 1If
no increment value is specified, the valuz 18 is used. If no starting
number is specified, the value @ is used. Typing RENUM alone will produce
a text file numbered from @ by 18's.

Entering a RENUM command may result in the message LINE NUMBER OVERFLOW.
This is an indication that the renumbering attempt lead to a line number
greater than 9999. When this occurs the edit buffer is left in a partially
renumbered state. Lines up to the overflow point have been renumbered but
the ones after that point retain their old value. A RENUM with a smaller
increment value should be executed immediately to correct this condition.

4.4.20 THE SEARCH COMMAND

Lines in the current text file that contain a specified string of text
can be located and displayed by using the SEARCH command. The forms of
this command are SEARCH, SEARCH Tlinenumberl, or SEARCH linenumber]
linenumber2. SEARCH without a linenumber specified will search the whole
buffer. SEARCH 1inenumberl will search from the 1ine number specified

to the end of the buffer. SEARCH linenumberl Tinenumber2 will search the
buffer starting at the first line specified through the second 1ine
specified.

When the SEARCH command is entered, LINEEDIT will respond with the prompt
SEARCH MASK ?. A string of up to 132 legal text 1ine characters can be
entered. The entry is terminated by pressing the return key. LINEEDIT
searches through the lines in the current text file looking for the first
occurrence within each 1ine of a substring that matches the specified search
mask. It examines every line except those lines that begin with an asterisk
(*). Every examined line that contains a match is displayed on the system
console. This display is a literal (unformatted) display including the line
number. Lines with a leading asterisk (*) are considered comment lines in
assembly language source text. Refer to the SEARCHALL command to operate

on comment lines.

The SEARCH command also provides a universal match character capability.
Each question mark (?) that is entered in the search mask string is treated
as a match for any character in that position. For example, the search
mask A?T will match all three character substrings that begin with A and
end with I. Note that this capability means that question marks (?)
included in the text cannot be explicitly searched for.

If no 1ines in the current text file contain a match to the specified
search mask, the message STRING NOT FOUND will be displayed.

Rev. 8 9/78 4-50

4.4.21 THE SEARCHALL COMMAND

A11 Tines in the current text file that contain a specified string of
text, including those lines that begin with an asterisk (*) can be located
and displayed by using the SEARCHALL command.

The forms of this command are SEARCHALL, SEARCHALL linenumberl, or SEARCHALL
1inenumberl linenumber2. SEARCHALL without a linenumber specified will
search the whole buffer. SEARCHALL Tinenumberl will search from the line
number specified to the end of the buffer. SEARCHALL linenumberil Tinenumber?
will search the buffer starting at the first Tine specified through the
second 1ine specified. The SEARCHALL command functions the same as the
SEARCH command except that all text lines including those that begin with

an asterisk (*) are included in the search.

4.4.22 THE CHANGE COMMAND

The first occurrences of a specified string in lines of the current text

file can be replaced with a different string of same or different length

by using the CHANGE command. The forms of this command are CHANGE, CHANGE
Tinenumberl, or CHANGE 1inenumberl Tinenumber?2. CHANGE without a 1inenumber
specified will change all 1ines in the buffer. CHANGE 1inenumberl will
change 1lines from the Tine number specified to the end of the buffer. CHANGE
Tinenumberl Tinenumber2 will change lines in the buffer starting at the

first 1ine specified through the second line specified.

CHANGE operates on all lines within the specified range excapt lines starting
with an asterisk (*) or semicolon (;). These lines are considered comment

lines in assembly language source text. Refer to the CHANGEALL command to
operate on comment lines.

When the CHANGE command is entered, LINEEDIT will respond with the prompt
SEARCH MASK 7. A string of up to 132 legal text line characters may be
entered. The entry is terminated by pressing the return key. If no lines
in the current text file contain a match to the specified search mask, the
message STRING NOT FOUND will be displayed. Otherwise, LINEEDIT will then
respond with the prompt CHANGE TO ?. Another string of up to 132 Tegal
text string characters can be entered. The entry is terminated by pressing
the return key. LINEEDIT searches through lines in the current text file
looking for the first occurrence within each line of a substring that matches
the specified search mask. It replaces such occurrences with the specified
change~to string, adjusting 1ine and buffer length accordingly. Each line
as changed is displayed on the console without tabs expanded.

The CHAN@E command also respects the universal match character capability
as descr1bgd under the SEARCH command. If the search mask contains one or
more question marks (?) these characters positions will match any character

in the search process, and the matched substring will then be replaced by
the change-to string. Example:

Rev. 8 9/78 4-51

LIST

19 STELABEL1A

2 S2QLABEL2A

3@ QLABEL3

CHANGE

SEARCH MASK ? S?7@
CHANGE TO 7 @
19 BLABEL1A

29 GLABELZ2A

The change-to string may also contain question marks (?). This provides the
ability to retain specified character positions in the search string while
making changes on either or both sides of the retained character. Example:

LIST

10 TAGR1A

29 TAGOFF

30 TAG22A

CHANGE

SEARCH MASK ? TAG??A
CHANGE TO ? LABEL?7?8B
19 LABELD1B

3@ LABEL228

Lines 19 and 3@ have been changed while line 2@ is unchanged because it
did not match the search string. The TAG at the beginning and the A at
the end of lines 18 and 3@ have been changed. The P1 in line 12 and the
22" 14n line 3@ have been retained.

4.4,23 THE CHANGEALL COMMAND

The first occurrences of a specified string in all 1ines of the current
text file, including those lines that begin with an asterisk (*), or
semicolon () can be replaced with a different string of same or different
length by using the CHANGEALL command. The forms of this command are
CHANGEALL, CHANGEALL linenumberl, or CHANGEALL linenumberi linenumber?2.
When the CHANGEALL command is entered it functions the same as the CHANGE
command, except that all text lines including those that begin with an
asterisk (*) are included in the search.

4.4.24 THE EDIT COMMAND

The text within a specified Tine in the current text file can be changed
without retyping the entire 1ine by using the EDIT command. EDIT linenumber
is the form of this command. If the specified Tinenumber is not found in
the current text file, the message LINE NOT FOUND is displayed. LINEEDIT
processes an EDIT command by copying the specified line into a special
editing buffer and displaying the line number at the left margin of the
console. An invisible edit pointer is set to point to the first character
in the text 1ine after the space that terminates the line number. LINEEDIT
is now in the EDIT command mode. A separate set of single key commands is
available for editing a line in the special edit buffer.

Rev. 8 8/78 452

4.4.24.1 ADVANCING THE EDIT POINTER - THE SPACE BAR

The invisible edit pointer in the special editing buffer may be advanced
one position by pressing the space bar one time. The character to which
the edit pointer is pointing will be displayed on the console. This
indicates that the edit pointer has passed over the character. The edit
pointer is then advanced so that it is now pointing at the next character
in the text 1ine immediately after the one that is displayed. The entire
Tine can be displayed in this manner.

4.4.24.2 CHANGING THE NEXT CHARACTER - C

The character to which the edit pointer is pointing in the edit buffer
can be changed by typing a ¢ or C, followed by the new character.

The new character is printed on the console and replaces the character
in the edit buffer at that position. The edit pointer is advanced to
point to the character immediately after the new displayed character.

4.4.24.3 DELETING THE NEXT CHARACTER - D

The character to which the edit pointer is pointing in the edit buffer
can be deleted by typing a d or D. The deleted character is printed
on the console enclosed in backslashes (/). The edit pointer is left
pointing at the character immediately after the deleted character.

4.4.24.4 INSERTING CHARACTERS - 1

Characters may be inserted into the line or at the end of the line by
typing an i or I followed by the characters to be inserted. The
insertion begins immediately before the character pointed to by

the edit pointer. Characters are inserted in sequence as typed until
the insert mode is terminated by depressing the ESC key. The edit
pointer remains pointing to the same character that it pointed to when
the insertion began. The insert mode may also be terminated by pressing
the return key. This also terminates the EDIT command and replaces the
line in the current text file with the newly edited version from the
special editing buffer.

4.4.24.5 LISTING THE LINE IN THE SPECIAL EDITING BUFFER - L

The remainder of the Tine in the special edit buffer from the pasition

of the -edit pointer to the end of the line may be displayed by typing

an 1 or L. The characters are displayed on the console followed by

a carriage return-line feed. The Tine number is reprinted at the left
margin of the console display and the edit pointer is reset to the beginning
position. This command is useful to see what the line looks 1ike before
editing is completed. It may also be useful to use this command immediately
after entering the original EDIT command. This would display the line

about to be edited without exiting the editing mode.

4-52.1

Rev. 8.3-A 7/1/7%

4.4,24.6 SEARCHING TO A SPECIFIED CHARACTER - S

The edit pointer may be advanced in the special editing buffer to the
first occurrence of a specified character by typing an s or S

followed by the character to search for. The characters from the position
of the edit pointer up to but not including the searched for character

are printed on the console. The edit pointer is left pointing at the
first occurrence of cne searched for character. If the search argument
does not exist in the line then the entire 1ine is printed and the edit
pointer is positioned at the end of the line.

4.4.24.7 DELETING 7O A SPECIFIED CHARACTER - K

Characters in the special editing buffer from the edit pointer position
up to but not including a specified search character can be deleted by
typing @ k or K followed by the search character, The deleted
characters are displayed on the console, enclosed in backslashes (/).
If the search argument does not exist in the edit line, then all the
characters from the edit pointer to the end of the line are deleted.

The edit pointer is left pointing at the search character or at the end
of the line.

4,4.24.8 QUITTING THE EDIT COMMAND MODE - Q

The EDIT command may be aborted without changing the line in the current
text file by typing a g or 0. The partially edited 1ine in the

special editing buffer is abandoned. No changes are made to the line in
the current text file. LINEEDIT is ready to accept a new command.

4.4.24.9 COMPLETING THE EDIT COMMAND - THE RETURN KEY

The Tine in the special editing buffer can replace the line in the current
text file at any point by pressing the return key. This terminates the
EDIT command in a normal manner.

4.4.25 THE DOS COMMAND - EXITING FROM LINEEDIT

Control of the computer system can be returned from LINEEDIT to the MDOS
executive by using the DOS command. This command has no parameters. It
is entered by typing DOS and pressing the return key. Control is

returned to the MDOS executive which signs on with the message MICROPOLIS
MDOS VS. X.X. LINEEDIT remains in the system application program area and
the contents of the current text file are not disturbed unless some action
taken from the executive destroys these areas. Entering an APP command to
the executive would return control to LINEEDIT.

Entering the DOS command may result in the message FILE ON DISK NOT UPDATED,
PROCEED?. This is a warning that the current text file has not been stored
on disk since it was last altered. When the message appears the current
text file is not yet lost. To override this warning type Y and press the
return key. The DOS command will be processed. Qtherwise type N and press
the return key. The message CANCELLED will be displayed and LINEEDIT will
be waiting for an alternate command.

Rev. 8 3/78 4-53

4.4.26 LINEEDIT FILE STRUCTURE

The current text file in the LINEEDIT edit buffer has the following
format. Each line begins with a byte that contains a count of the number
of bytes in the line. The count includes the count byte and the carriage
return at the end of the line. The count byte is followed by four bytes
that hold the digits of the line number in ASCII. The line number can
range from P@@@ to 9999. At least one space (20 hex) follows the line
number. The remainder of the line can contain from @ to 125 characters
followed by a carriage return. The shortest line contains 6 bytes. The
longest 1ine contains 132 bytes. The characters of the source program
appear in the line exactly as they were typed during input. ASSM and
LINEEDIT require only one space between elements of an assembly statement.
Additional spaces are ignored. Therefore, there is no reason to type in
more than the minimum number of spaces when entering a source program.
After the carriage return that terminates the last line of the current text
file there is a byte that contains a @1 to mark the end of the file.

The current text file is written to a disk file just as it appears in

the edit buffer. A1l records in the disk file with the possible exception
of the last one are full records. A text 1ine may span two records. ‘The
following logic could be used in an MDOS appiication program designed to
praocess an editor source file.

19@@ START CALL ‘@RFINXPOST
2000 DCR C

3009 JZ ENDOFFILE
4000 MVI 0,g
5009 MoV E,C

6000 LXI H,BUFFER
7009 CALL @LOADDATA
8999 *PROCESS THE LINE IN THE BUFFER

9029 JMP START

The QRFINXPOS routine gets the line count byte into the C register. If

the count is @1 the end of the file has been reached. Otherwise, all
program lines have a line length of no less than 6. The line length is
moved into the DE registers (D=8} and the buffer address is placed into

the HL registers. The @LOADDATA routine starts at the index position

and loads the next DE bytes into the buffer which leaves the index position
pointing to the line count byte of the next text line. The program can
then process the text line and loop back to get the next line.

Rev., 7 3/78 4-54

4,5 ZSM - Z-8@ ASSEMBLER

7ZSM is an MDOS program to convert Z-8¢ assembly language source code
into object code, which consists of a sequence of binary codes that
can be loaded into the computer's memory and executed. ZSM takes
the place of ASSM, the earlier 808@/8085 assembler for MDOS. Any
references in this manual to ASSM should be understood as references
to ZSM.

As input ZSM expects a type 4, 5, 6, or 7 text file, such as that
produced by LINEEDIT. The output file produced will be a type 8
file. This type of file may be scatter loaded into memory, meaning
that it need not be contiguous code; rather, it can be several
groups of individual code. ’

Note that this is a disk assembler, so memory size is not a
constraint on the size of f£ile that may be assembled.

ZSM is a copyrighted piece of software. Any reproduction or
redistribution of it or this manual is expressly forbidden.

4.5.1 HOW TO RUN ZSM

ZSM is invoked from the MDOS executive by typing its name, followed
by the assembly parameters. The format is as follows:

>ZSM "<source filename>" "<object filename>" "<options>" [<offset>]

The <source filename> must be the assembly language source program
as explained above. The <object filename> is the name of the cutput
file. It must be included, but may be blank if the S or M option,
below, is used.

The <options> are instructions to ZSM pertaining to how to assemble
the program. The number of options specified varies with what is
desired and may be blank, but the field must nevertheless be
included. The options are as follows.

Only lines containing éssembly errors will be listed,

e]

P The assembly listing will be paginated.

S The assembly listing will be produced, but no object code.

M The object code will be written into memory, not to a disk
file.

L The line numbers from the source file will not appear on the
listing.

T The symbol table created by ZSM will be printed following

the listing.
"S8M" is the only combination not allowable, since they are mutually

exclusive, If they are both present, though, the S option will
prevail.

Rev., 8.1 2/5/79 4-55

The <offset> parameter indicates an offset to be added before the
object code is placed into memory (via the M option). For example,
it would be impossible to assemble a program into memory at 2B@¢,
since that is where ZSM resides. Therefore, to put a program into
memory that was designed to run at 2B@@, you would have to specify
an offset, for example 3¢@@#. This would result in code destined for
2B@3 to be actually put into memory at 5AQ@ (2Bgd + 30409).

Here are some examples of valid commands:

. ZSM "SFILE" "OFILE"™ "7

. ZSM IISFILE" nn "PTS“

. ZSM "SFILE"™ ""™ "ML" 3000
. ZSM "SFILE" "OFILE"™ "E"

=W e

Line 1 would assemble SFILE into the file OFILE, and produce a
normal listing. Line 2 would assemble SFILE, producing a paginated
listing including a symbeol table, but not produce an object file.
Line 3 would assemble SFILE, putting the object code into memory
with an offset of 3084; it would produce no object file; and it
would produce a normal listing, but without line numbers., Line 4
would assemble SFILE into the file OFILE, and only list those lines
(if any) containing errors.

Assembling a file with the M option in such a way that the operating
system or assembler would be overwritten will cause a 'Load address
error'. Including the wrong number of parameters in the command
line, or forgetting a quote symbol, will cause a 'Syntax error'.
Specifying an object file which already exists will cause a
'Duplicate name' error, meaning there already exists a file with
that name. Either SCRATCH that file, or select a new name for the
object file.

4.5.2 LANGUAGE ELEMENTS

The source file has a general format as follows:
##44 LABEL: OPCODE OPERANDS ;comments
The #### represents the four digit line number assigned each line by

the line editor. Although the line number itself is ignored, it

"must” be present, and must be four characters long, followed by a
space.

The LABEL 1s optional. If present, it will be entered into the
symbol table. Whether or not it is present, its position must be
followed by a space or colon. That is,

#4#+% LABEL OPC or ###4 LABEL: OPC or #### oOPC

are valid, while

443 OPC

is not.

4-56 Rev. 8.1 2/5/79

Labels may include any of the following characters:

ABCDEFGHIJERKLMNOPQRSTUVWXY?Z
abcdefghijklmnopgrstuvwixy?Z
g 123456789 @e.1 0 Iy \N1]*>"7

To avoid ambiguity, however, the first character may not be . or
§-9. 1In addition, a label may be of any length up to 47 characters.
All characters are significant. In normal use, though, up to 12
characters should suffice; and over 14 characters will look a little
strange on the listing.

The OPCODE must either be a Z-88 opcode or a pseudo-op. Both are
explained later.

The OPERANDS vary. There can be any number of them, depending on
whether they are operands for an opcode or a pseudo-op. There are
also instances where there are no operands, and therefore this field
can, in some cases, be omitted. If more operands are supplied that
are needed, the extras are ignored.

The COMMENT field is totally ignored by the assembler, except for
printing it on the listing. Comments are used only for
documentation or clarity, and can be omitted altogether. If
present, comments should be preceeded by a semicolon (;). The
semicolon will cause a TAB to the third TAB setting, whereas its
absence will result in the comment appearing immediately to the
right of the operand field.

There is one exception to the above format, and that is the case of
an all-comment line. If the first character of the line (after the
line number and space) is either an asterisk (*) or semicolon, the
entire line will be treated as a comment.

4.5.2.1 CONSTANTS

7SM provides for constants of two varletles, numeric and ASCII.

ASCIT constants are indicated by enclosing the appropriate character
in single quotes ('). Any ASCII character can appear between the
quotes, except for (1) control characters, having an ASCII code of
under 20 hex; (2) the single quote character, ASCII code 27 hex; (3)
the underscore character , ASCII code 5F hex; and (4) the DEL
character, 7F hex. -

Numeric constants may be in any of four bases - 2, 8, 18, and 1l6. A
specific base is indicated as follows:

#2417 indicates hexadecimal (base 16) - for example 1C7H
##4Q indicates octal (base 8) -~ for example 62Q
#44B indicates binaryv (base 2) -~ for example 1901781EB

#4%D or just ### indicates decimal (base 19) - for example 193D or
193

Rev. 8.1 2/5/79 4~-57

Regardless of base, all numeric constants “must”™ begin with a2 digit,
g-9. (This is to prevent ambiguity with labels.) Thus A@7 hex
would have to be written as GAZ7H.

There is one special numeric constant, denoted by the symbol S.
This constant is always equal to the address of the current line;
that is, the memory location that the current line will be written
into when it is loaded. Note that this reflects the address of the
beginning of the current line, "not~ the next line (as in some
assemblers). As an example, consider that

pa10 JMP $

would cause an infinite loop, since it would jump to itself.

4.5.2.2 OPERATORS

ZSM recognizes 18 operators. They are as follows:

addition

subtraction, or negative (as in -1)
multiplication

division

modulo (remainder of division)

logical AND .

logical OR

logical EXCLUSIVE-OR

rotate right (114141B>3 vyields 1g111¢@B)
rotate left (111411¢B<1l yields 1141141B)

ANV =N * |+

All arithmetic cperators treat their operands as unsigned 1l6~-bit
guantities, and answers are truncated to 16 bits. All logical
operators perform their function on a bit-by~bit basis, and . they
also treat their operands as 16~bit values. '

Operators combine with constants to form expressions, In an
-expression, all operatcrs are evaluated in a strict left-to-right
order, with no precedence of operators.

Thus consider the following situation:

TEST has been assigned the value 1000H.
INC has been assigned the wvalue 6.

The expression encountered is TEST*6+INC!7<8.

The procedure would be TEST*6 (6Q00H) +INC (64@6H) !7 (6897H) <8
(8760H) . Thus the resulting value is 76dH.

4.5.2.3 REGISTERS

The Z-88 has a number of registers, all of which have a specific
symbolic reference. ZSM supports these references, as follows.

4-58 Rev. 8.1 2/5/79

register designation

register B -~ B Also called BC for register-pair instructions
register C - C

register D - D Also called DE for register-pair instructions
register E - E

register H - H Also called HL for register-pair instructions
register L - L

accumulator- A

memory - M Also called (HL), but 2ZSM does not allew this.
A & flags ~ PSW Program Status Word, may also be called AF
Stack Ptr - &P

Index reg X- IX Also may be called X for brevity

Index reg Y- IY Also may be called Y for brevity

Of course, the Z-8¢ also has registers A', B', C', D', E', H', L',
F', PC, I, and R, but these are never explicitly referred to in an
instruction, so no special designation is needed.

4.5.2.4 PSEUDO-QOPS

ZSM supports a large number of pseudc-ops. They will be explained
NOW .«

ORG Set origin

The ORG pseudo-op specifies where the object code is to be put,
Assembled code and data is assembled starting at the address
specified as the operand to the ORG psuedo-op, and proceeds upward,
until the end of the program or ancother ORG. A program can contain
as many ORGs as desired. Since ORG is handled in pass 1, any symbol
appearing in the operand must already be defined.

LINK Link to a file

The LINK pseudo-op allows separate program files on the disk to be
'linked together' and assembled as one file. The LINK operand 1is a
source file name, enclosed in single guotes. No drive specification
is needed for the LINK file, as all units . will be searched (starting
with the unit the original source file is on) to locate the file.
If the file is not found, a 'File not found' error will be issued,
and the assembly aborted.

Linking to a file is like a subroutine; that is, when the linked-to
file is exhausted, assembly of the original program will continue
from where it was left off at. For example,

8010 LXI H,4A000H
3029 LINK 'TEST'
00306 MOV A,M

will cause the entirety of the file TEST to be assembled between the
LXI and the MOV.

Files that are linked to must not contain an END pseudo-op.

Rev. 8.1 2/5/79 4-59

END End of assembly

The END pseudo-op indicates to ZSM that the end of the program has
been reached. As such, it may be omitted, since the physical end of
a program has the same effect.

In addition, though, an operand may be included. This operand, if
present, indicates the starting address of the program. This
address 1s not where the program is loaded, but instead where
execution will begin. This allows the program to begin execution at
any point in memory, rather than the beginning of the program. If
this is omitted, then the beginning of the program is used as the
starting address. '

In order for the starting address to be effective, the object file
would be changed to an implicit command file under MDOS (type
gC-grF) .

EQU Equate

The EQU pseudo-op simply equates the label associated with it to the
value of the operands.

gg1ld TEN EQU ip
d828 TWENTY EQU 2*10

The above code would cause the label TEN to have the value 18, and
TWENTY to have the value 24.

REQ Request value

The REQ pseudo~op is similar to the EQU pseudo-op, only instead of
an explicit value being specified, the system console is prompted
for the wvalue. The prompt is specified as the operand. For

example,

@213 TEST éEQ "Input:’

Would cause the message

Input:

to be displayed on the conscle during pass 1 of the assembly. The
cperator must then type the value to be associated with the label.

For example, 1f the operator had typed '56H' in response to the
prompt, then TEST would have a value of 56 hex.

PRT Print

The PRT pseudo—op allows information to be displayed on the console
during pass 2. If operands are present, they are displaved,

otherwise, just a carriage return/linefeed is printed. For
example,

4-60 Rev. 8.1 2/5/79

gg1g9 TEST EQU 73008
go20 PRT 'This is a test ',TEST

would cause

This is a test 70040

to be printed on the consocle during pass 2.

TAB Tab settings

The TABR pseudo-op changes the tab settings for the assembly listing.
Normally, they are at positions 15, 22, and 36. If it is desired to
change them, then the TAB pseudo-op is used. It expects three
operands, one for each tab setting. If a particular operand is
zero, then that position is set to the default. The three settings

represent the location of the opcode, operand, and comment fields
respectively.

NLIST No list
The NLIST pseudo-op will cause code following it not to be listed.
Note that this overrides any options which may have been specified

in the command string; If the E option was used, nothing will be
listed (errors or not) after a NLIST.

LIST List

The LIST pseudo-op cancels the effect of the NLIST pseudo-op. If
there has been no NLIST, then this has no effect.

FORM Form feed

The FORM pseudo-op produces a formfeed in the listing when
encountered.

IFF If false ~ conditional assembly

The block of code following the IFF pseudo-op will be assembled only
if the operand evaluates to .

IFT If true - conditional assembly
The block of code following the IFT pseudo-op will be assembled only

if the operand evaluates to anything other than 8.

ENDIF End of IF block

Rev. 8.1 2/5/79 4-61

The ENDIF pseudo-op 1s used to mark the end of an IFT or IFF block.

DB Define byte

The DB pseudo-op assigns its operands to successive memory
locations. Either numeric or ASCII operands may be present, but
either one must evaluate to only 8 bits. This means that only one
ASCII character may be included per coperand. For example,

$91¢ LOCATION DB 1,2¢4,11B,'D' ,TEST, 14

would put each operand into a successive memory location.

'z' is a special case of the DB pseudo-op, and it is equivalent to
DB 8. For example, '

G@1l8 XXX Z and
3a18 XXX DB @

are equivalent.

DW Define word

The DW pseudo-op is basically similar to DB, only it defines two
bytes at a time, rather than 1. Also, the two bytes are in Intel
standard low/high format.

DD Define data

The DD pseudo-op is exactly like DW, only the two bytes are put in
high/low format.

DT Define text

The DT pseudo-op allows ASCII text to be put into memory. The
desired text must be enclosed by single quotes. For example,

galg TEST DT "ABCDEF!

would produce the following object code: 41 42 43 44 45 46 (hex).

DTH Define text terminated high

The DTH pseudo-op 1is 1like DT, only the last character is ORed with
80H before it is written out. In the above example, the last byte
would be C6 hex.

DTZ Define text terminated with zero

The DTZ pseudo-op is like DT also, only it causes a byte of @0 to be

4-62 Rev. 8.1 2/5/79

appended to the text string. Thus the example would be 41 42 43 44
45 46 @4.

DS Define storage

The DS pseudo-op causes the assembler to skip over the number of
bytes specified by the operand. Since the object file is scatter
loaded, the area skipped over will remain undisturbed.

FILL fill storage

The FILL pseudo-op is similar to DS, only it fills the area with a
constant, rather that skipping over it. The constant to £ill with
is specified with the second operand. For example,

gale FILL 5,3

would produce the output

@3 @3 93 83 43.

4.5.3 ASSEMBLY ERRORS

There are ten assembly errors. Note that an error doesn't
necessarily cause the program to assemble wrong, particularly if the
error is a syntax error in something like a TAB statement.
Nevertheless, all errors should be avoided.

The errors are as follows.

A Argument error - This is caused by an invalid character in an
operand field, or an ASCII constant which is out of range.

D Duplicate label error - This indicates that a symbeolic name
was used more than once as a label. The first value will be used.

J Jump errcor ~ This indicates a relative jump (JR, JRZ, JRNZ,
JRC, JRNC, DJINZ) to a label which is out of range. The relative
jump should be replaced with an absolute one.

L Label error - This is caused by a label which contains invalid
characters.

M Missing label error =~ This indicates that an EQU or REQ
pseudo-op was encountered, but there was no label on the line.
Obviously, a label is necessary for either of these.

0 Opcode error = This is caused by an illegal or missing
opcode.
R Register error - This indicates that an illegal wvalue was

found where a register was expected.

Rev. 8.1 2/5/79 4-63

S Syntax error - This is caused by missing operands or improper
use of operators.

u Undefined symbol error - This indicates that a symbol was
used, but that the symbol has not been defined.

v Value error - This indicates that the value computed is out of

range for the operation being used, specifically a two-byte
instruction, or a DB.

4,5.4 INSTRUCTION SET

7SM supports the complete Z-80 instruction set, using the TDL-style
mnemonics. These mnemonics represent the Z-84 instruction set as a
logical superset of the 80848 mnemonics. The reason that these
'superset' mnemonics were chosen over the Zilog mnemonics 1s for
ease of use. All 8080 programs will run unmodified on ZSM, but they
wouldn't on a Zilog-mnemonic assembler. In addition, someone
familiar with 8088 mnemonics will find the superset easy to learn,
since they are a logical extension of 8080 mnemonics.

One thing that is important to grasp is how indexing is handled.
Under Zilog mnemonics, an operand might appear as (IX+d) where 4 is
the offset and IX is the index register. Under 2SM, it would be
d(X). Thus instead of

go1o LD HL, (IX+12)
the following notation is used:
8010 LXTI H,12(X)

The same is true of IY, only it would appear as (Y¥) instead of (X).
In addition, an offset of zero may be omitted entirely. That is,
(IX+0) needn't be written as @8(X), it can simply be (X).

The next sections outline the instruction set. It is not meant as a
tutorial on the Z-8¢, but rather a guide to the specific mnemonics
used. Following that is a test program. If you have a Mostek or
Zilog Z-88 Programming Manual, notice that in the back is an
alphabetic list of all possible instructions. That list is in Zilog
mnemonics. The test program herein is an exact duplicate of that
list, only in the superset mnemonics. You are not expected to enter
and assemble this program, but to use it as reference for the
mnemomics.,

In the following section, certain general conventions are used.
They are as follows:

n - an 8 bit wvalue

nn a 16 bit value

d an 8 bit value, specifically a displacement

T register, such as A, B, C, D, E, H, L, M, d(X), d(¥)

I one of the index registers, IX or IY (abbreviated X or ¥)
rp register pair, such as B, D, H, SP, PSW, IX, IY

4-64 Rev. 8.1 2/5/79

Rev.

8.

1

a bit,

2/5/79

value @

8 bit load group

Instruction
MOV r,r
MOV r,M
MOV r,d(I)
MOV M,r
MoV 4(1I),r
MVI r,n
MV M,n
MVI a(1),n
LDA nn
STA nn
LDAX rp
STAX rp
LDAL
LDAR
LDIA

LDRA

16 bit load group

Instruction

rp,nn

nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn

Zilog eguivalent

LD
LD
LD
LD
LD

LD
LD
LD

LD
LD

LD
LD

LD
LD
LD
LD

r,r
r,(HL)
r,{I+d)
(HL),r
(I+d),r

r,n
{HL) ,n
(I+d),n

A, (nn)
{(nn}),A

A, (rp)
(rp).A

Zilog eguivalent

LD

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

LD
LD
LD

PUSH
POP

rp,nn

BC, (nn)
(nn),BC
DE, (nn)
(nn) ,DE
HL, (nn)
(nn) ,HL

" 8P, (nn)

{nn),SP
IX,(nn)
(nn),IX
1Y, (nn)
{nn),IY

SP,HL
SP,IX
SP,IY

rp
rp

KN
)

66

Rev.

8.1

2/5/79

Exchange, block transfer, and search group

Instruction Zilog eguivalent
XCHG EX DE,HL
EXAF EX AF ,AF'
EXX EXX
XTHL EX (Sp),HL
XTIX EX (SP),IX
XTIY EX (3P),1Y
LbI LDI
LDIR LDIR
L.DD LDD
LDDR LDDR
CCI Crl
CCIR CPIR
CCD CPD
CCDR CPDR

Input / Qutput group

Instruction Zilog equivalent
IN n IN A,n
ouT n ouT n,A
INP r IN r,(C)
QUTP r QUT (C),r
INI INT
INIR INIR
IND IND
INDR INDR
QUTI OUTx
OUTIR OTIR
QUTD QUTD
OUTDR OTDR

Rev, 8.1 2/5/79 4-67

8 bit airthmetic/logical group

Instruction Zilog equivalent
ADD r ADD A,r
ADD M ADD A, (HL)
ADD 4a(1) ADD A,(I+d)
ADI n ADD A,n
ADC r ADC A,r
ACI n ADC A,n
(references to M and d(I) are like ADD)
SUB r SUB A,r
34Ul n SUB . A,n
SBRB r SBC A,r
S8l n SBC A,n
AN r AND A,r
ANI n AND A,n
ORA r OR A,r
QR1 n QR A,n
XRA r "XOR A,r
XR1 ol X0R A.n
CMP r cp A,r
CP1 n CP A,n
INR r INC r
DCR r DEC r
16 bit arithmetic group
instruction Zilog equivalent
DAD rp ADD HL,rp
DADC rp ADC HL ,rp
DSBC rp SBC HL,rp
DADX rp ADD IX,rp
DADY rp . ADD I¥,rp
INX rp INC rp
DCX rp DFC rp

4-67A Rev. 8.1 2/5/79

General purpose arithmetic and control group

Instruction Zilog equivalent
DAA DAA

CMA CPL
NEG NEG

CMC CCF

STC SCF
NOP NOP
HLT YALT

DI DI

EX ET

IMO M 0
IM1 o IM 1
IM2 M 2

Rev., 8.1 2/5/79 4-678

Rotate and shift group

Instruction Zilog equivalent
RLC RLCA
RAL RLA
RRC RRCA
RAR RRA
RLCR r RLC r
RLCR M RLC (HL)
RLCR d(I) RL.C {(I+d)
(references to M and d{(I) are like RLCR)
RALR r RL r
RECR r RRC r
RARR r RR r
SLAR r SLA r
SRAR r SRA r
SRLR r SRL r
RLD RLD
RRD) RRD

Bit manipulation group

Instruction Zilog equivalent
BIT b,r BIT b,r

BIT b,M BIT b, (BL)
BIT b,d(1) BIT b, (I+d)
RES b,r RES b,r

(references to M and d{(1) are like BIT)
SET b,r SET b,r

4~67C Rev., 8.1 2/5/79

Zilog equivalent

JP
JP
JP
JP
JP
JP
JP
JP
JP

JR
JR
JR
JR
JR

DJNZ

JP
JP
JP

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

RET
RET
RET
RET
RET
RET
RET
RET
RET

RETI
RETN

RST

Jump, call, and return group
Instruction

JMP nn

JZ nn

JNZ nn

JC nn

JNC nn

JPO nn {or JNO)
JPE nn (or JO)
JM non

JP nn

JR m (or JMPR)
JRZ nn

JRNZ nn

JRC nn

JRNC nn

DJINZ nn

PCHL

PCIX

PCIY

CALL nn

CZ nn

CNZ non.

cC nn

CNC nn

CPO nn (or CNO)
CPE nn (or CO)
CM nn

cp nn

RET

RZ

RNZ

RC

RNC

RPO (or RNO)
RPE {or RO)
RM

RP

RETI

RETN

RST n

Rev. 8.1 2/5/79

nn
Z,nn
NZ,nn
C,nn
NC,nn
PO,nn
PE,nn
M,nn
P,nn

d
Z,d
NZ,d
c,d
NC,d

(BL)
(IX)
(I1)

nn
Z,nn
NZ,nn
C,nn
NC ,nn
PO,nn
PE,nn
M,nn
P,nn

NZ
NC

PO
PE

m (m=28?%*np)

1
i
&)
~1
o

LO9-F

1'8 a8y

6L/5/%

Addr

0000
0000
0000
0000
Ho0o
0000
n000
0001
6004
uoo?
0008
0009
0004
000H
000C
0GoD
000K
0010
0012
0014
0016
0018
0018
0014
0oic
001F
0020
0021
ao2z
6023
o022y
0025
0026
0028
0029
0024
0028
D02C
002E
@030
0032
0031
0036
0038
003a
003¢
003¢
003D
ool
oou3
ophl
0045
0044
ool
ooh8
aony

ob
FD
8F
88
89
8a
on
3c
8D
CE
ED

ED
ED

46
oD
FD
87
80
81
82
83
84
85
c6
09
19
29
39
o
DD

Db
FD
Fb
FD
FD

a6
P
FD
A7
AD
an
a2
a3
Al
25

B2 B3 BY E Line

8E 0%
8k 05

20
ha
5A
ba
Ta

86 05
B6 05

20

09
19
29
39
09
19
29
3%

A6 05
Ab 05

0001

H
0002 ;
0003 ;
0004 ;
; This uses all inslructions
i
A

0005

0006 ;

Uo7
0008
0009
0010
0011
0012
0013
001l
0015
0016
o0ty
o018
0019
0020
o0zl
0022
0023
nozy
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0043
0042
DO43
00ty
0045
0046
oon7
0048
onig
0050
0051
0052
0053
005
0055
bo56

Label

N

A.0018

A.003C

Oped

Test file for Z5M
by Heale Brassell

ADC
ADL
ADC
ABC
ADC
ADC
AbC
ADC
ADC
ADC
ACT
DaDC
Dabc
Danc
bapc

ADD
ADD
ADD
ARD
ADD
ADD
ADD
ADD
ADD
ADD
ADT
DAD
baD
bab
DAD
DADX
DADX
DADX
DADX
DADY
DADY
bADY
DADY

ANA
ANA
ANA
ANA
Ana
ANA
ANA
ANA
ANA
ANA

Operand

M
TaR(x)
IND{Y)

UEOUERZCOIRT OR >

b

1NP(X)
IND{Y)

LN PN R TENEUE X T B0 OO
T T

=

IND(X)
IND(Y)

[TR-ES

[N~

Addr

ooha
004C
oA
004K
0052
D056
0058
onsa
005C
0058
0060
0062
0064
0064
0066
0pba
006E
0070
0072
o074
0076
0078
0074
007C
0o7C
007E
0082
0086
00088
008A
o08c
008E
0090
0092
0094
0094
5096
0094
009E
0040
00A2
00AH
00Ab
0088
00AA
0BAC
00AC
DOAE
0082
0OR6
pond
00BA
00BC
00BE
00C0
once

B

Eb

bp
FD
[8:]
ce
CB
[8:]
cB
cB
CB

CB
DD

CB
cB
ch
(03]
cB
B

[H:]
(21
FD
cB
CB
CB

CB
cB

CB
oD
D
CB
CB
B
cB
CcB
-]
CB

CB
0D
FD
B
cs
o]
B
B
&)
cB

B2 B3 B4 E Line Label

52

CB

5a

5p

&6
Ch

67
60
61
b2

6
65

05 b
G5 46

05 4E
05 UE

05 56
05 56

05 58
05 5B

05 66
05 &6

0657
0058
0059
0060
0061
o6z
0063
0064
0065
0066
0067
0068
D069
an7o
0071
no72
0073
0074
0a7s
0076
0077
0078
0079
nodo
0081
0082
0083
0081
0085
0086
0087
aobs
0089
0090
0091
0092
o053
oD9%
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
G109
0110
0
0112

H
A.0040

Oped
ANT

BIT
BIY
BET
BIT
BIT
BIT
arT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

It
BIT
BIT
BIT
BIT
BIT
BLT
BIT
BLY
BIT

BIT
BIT
BIT
BIT
BLY
8IT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

Page 2

Operand

ND(X)
ND(Y}

[G

I EC 0 DE

D(X)
ND(Y)

W W W W W o W
CImDaTeREEX

U, IND(Y)
4,
u.B
,c
D
B
[
WL

T ADY

°8

6L/5/T

Adir

00Ch
DOCk
DoCé
00CA
UOCE
00b0
oon2
0004
0006
ongl
DDA
00BC
00DC
O0DE
00E2
COED
00ES
DOEA
0OEC
00QEE
oorQ
0oF2
00k}
DOFY
GOF6
OOFA
ODFE
0100
pio2
o104
0106
4108
0104
010¢
010¢C
aior
0112
0115
0118
0118
011E
0121
0rzh
6127
0127
0128
0128
0129
G1zC
012F
0130
09
0132
D333
0134
135

CB
bDp

cB
cB
CB
B
933
[%:]

Wi

DD
Fb
[H:]
4]
(o}
ca
o
ca
B

DB
FD
cB

]
[#:)
B

€B 7

CB

ot
FC
D
[¥H)
ch
Fl
EC
£l
ce

3F

bi
ED
BF
Bb
B9
BA
ER

a

BD

a2 B3 Bi - L

6E
CB
cB
bF
68
69
ba
6B
6C
6D

[4:]
CH

78
9
TA
78

™

88
88
a8
88
88
88
89
84
88

8
BE

05 6E
05 bBE

0% 76
05 76

05 7€
05 7B

5
05

33

Ditu
0115
0116
0337
aviy
0139
0129
6121
03122
0123

oi2h ;

0125
D126
0127
uiz28
0129
0130
0131
0132
0133
0134
8135
0136
0137
D138
0139
oiuo
o4
0142
0143
o4y
oHIs
0146
0147
0148
0143
0150
0151
0152
0153
015k
0155
0156
0157
0158
0155
0160
0161
0162
01c3
[$h1E]
0105
vioe
(LAt
0ied

Latel

3
4.030C

H
4.0127

4.0128

Opuu

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

B1T
BIT
BIT
BIT
BIT
BIY
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BLT
BIT

cc
[,
CNC
CALL
CNZ
cP
CPE
cro
cz

CMC

ChP
CMP
CMp
CHp
CMP
LMP
oty
cMp
LMP
oMp

o erand

ND{X)
ND{Y)}

VU1 W A o
CFZImC G e - =X

n{x)
n(t)

z=z

oo o oo
FrERT OE® ==X

CER OO D P X

p{x)
IRp(Y)
A

B

C

n

t

[

I

Addr

n136
0138
0138
03134
013C
013K
0140
0140
o1
DALY
0142
0142
0143
0146
c1u9
0144
o1
otnc
01D
O14E
o1
0150
0151
0152
0154
0156
0157
0158
0158
D159
0159
0158
D158
015C
015C
0150
015F
0161
a6z
0163
0164
0164
0tesS
0165
ot67
0169
0168
0168
4160
016F
8171
Q173
0175
0177
D17y
0178

EDh
£D
ED
kD

on
15

1
25
2B
Db
FD

E3
bb
FD
08
EB
by

76

ED
ED
ED

ED
DB
ED
ED
ED
kb
£
ED

2 B3 B4 E Line

20

AY
B9
Al
B1

35
35

2B
2B

E3
3

46
56
5&

78
20
40
43
50
58
60

05
05

0164
0370
0171
o172
0173
ofTh
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
@196
0197
0198
0199
0200
0201
n202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214

4215 ;

0216
0217
vz18
021y
n220
9221
we2d
N22

Label

A

NEEC I

PR,

2w

0138

D140

0141

L0142

L0164

L0165

.016B

Lped
crl

[Huh)
CCDR
CCY
CCIR

DAA

DCH
DCR
DCR
DCR
DCR
pex
DCR
DCR
DCX
OCR
DCR
DCR
BCX
DCX
DCR
DCX

D1
DJNZ
E1l

XTHL
XTIX
XTIy
EXAF
XCHG
EXX

HLT

™0
1M1
M2

Ing
IN

INP
NP
Inp
inNp
INP
iny

Gperand

i

3
IND(X)
IND(¥)
A

Mmoo aw D

$+DI3

"o Ow = =

q 3fmg

(AANT*D
(XMNT D
w'o

NN
NN

Mo@mommamnman

(Xyan
{(X)an

E A DA WDz

(K)ani
(X}aNI

E
A ez
- I = R]

N (R)ANT
T1°(X)AKRT
H'(X)ANT
3 (X)aNT
a‘(X)art
2 (R)aNT
4 (R)aNT
VO(R)ANT

N (X)aNT
I CRIANT
HEOONL

pueaadn

AOW
ADK
ACH

X7
anay

TaW
AOR
AGW
AOW
AOKR
AQW
el
filad
AOW
AGH
A0

82vat
IAH
ACH
a1
ADH
ACH
AOH
ACH
AOR
AQH
va1
AOH
AOH
ACH
XYai
Xvai

adss
axis
axTs
aHs
qaaas
aias

Vis

Iad
AOH
AOH
ACH
AOH
AR
AOH
AQW

I
AOH
ACH

padp

YheQty
¢

thzZ0°Y

RISY
GEEL
e
fEf0
cfeo
LEEQ

! oftu

EEZO‘Y

Yizo'y

0020V

PACIR i)
f

1geT

62t0
/780
LZEO
9zt0
G250
H2ZED
£zto
2Z80
1280
02E0
6LED
gLED
LBy
9tED
1830
wlEo
ELE0
P48 1)
Ligo
GLED
600
ROLO
LOED
90£0
[u]
wGED
£0EU
20£0

t 10£0

00£0
6620
0620
1620
9620
6620
%620
£620
2620
162¢
0620
6520
8820
Lezo
99<0
Ggza

¢ hgeo

£0au
g0
1870

S0

S0
S0
S0
G0
S0

al

(124

AUTT 3 ha

4o
“0

o

ag

S0
S0

S0

S0

98
98
18
S0
98

g8
40

S0
50
50

S0
50

G0
G

50
Gn

an
£l

Re
i

jid

9gh
9k

a5
aZ

LS

98
AL
kA

€4
ez
ee

88 ¢

€%
£
88

9t
Gl
Wik
£
2L
v
73
Li

9t
GL
il

29

(2]
qaaq
qe

L0
ad

1
[
th
Zh
ih
Ok
L
ad
aa
9%

a3
ki3
i
aa
al
L
vl
6L

ar
Ve
ad
aa
L
¥t
Vo

ag
a4
ag

as
as
€

ad
ad
a4
ad
a4
a4
ad
as

1aq
aq
ai

i

o
AhZ0
vhao
V120
Ly
Enco
£hzo
Lhao
0veo
Afen
aLco
aczo
ageo
aten
vEzo
LE20
#f20
££20
|2 %44]
1£20
4220
qzz0
3220
ik}
¥2<o
6220
a2z
Lzz0
9220
tzeo
0220
akeo
2L20
gizo
vizo
yieo
9iz0
2120
auzo
q020
Loza
£020
00z
Q4]
3410
[IN]
gdLe
€410
0dLo
[:344]
valg
PALE]
paciid]
£20
GULE
agio

appy

A (0an
g (X)aNT
2CXUNT
a‘ (X)ant
¥(KYaNT

(T)aNT
(xyant
b

preanede

ur
ZNHr
N
Ly
aur

r
ade
ddr

dar
Znr
Ll
elliy

We

a

Ridd
X104
MO

HINT
IRL
HAONT
QNT

W1
UHT
XNT
XNY
XN1
YNT
HNT
ANT
UNT
HKT
XNT
HNT
HNT
ANT
NI
UNT

padg

o280
6.0
Qi

Gad0
ful
€20
2420
120
0470
6320
8920
19720
£210'Y 9920
£ 6920
4920
£920
2920
1920
6410°¥ 0920
£ 6520
8520
L6520
9520
€520
1SS0
£620
2520
1620
0520
6heo
o
66107V LtZ0
H B
Gh20
L)
£nze
L6L'Y gn20
oinae
%20
6ezn
fteo
120
9£20
«€zo
h£20
3241}
2820
ez
0%£.20
6220
ezzn
4220
Radi}
Hetnty Gezn

G0

a2
Az
a2
a2
4

50 88
S0 8%
G0 89
40 89
S0 99
S0 g
S0 1Y
S0 9%
50 8%

63

63

L]
2V
va
vy

€2
24

50§
50 qf.

aa
aa
ada
an
Qi
g%
Si
i
tL
el
ik
77
Li
4

z0

e
0g
et
gl
et

va
23
va
z4
23
£0
2q
va
va
a4
ad
63

a3
aa
ai
az

29
22
ad
aa
fe
he
ot
|31
it
a0
fa
Tk
ot
ag
e
he

1aqu AuT1 3 o $9 79 (g

varo
L4l
Lo
taio
A10
a0t
L0
¥310
6010
8010
Loty
9010
soto
wotu
t£ote
£310
1oto
3410
aeio
10
6910
6410
9410
3:14)
OAL0
avio
¥¥LO
L¥10
wYLO
tvio
610
a6lo
valo
6610
6610
i6L0
5610
€610
1610
1610
6L0
dgto
anto
4g8L0
¥aLo
égtao
qgLu
Lgio
g0
sglo
KgLo
talo
zglo
Jito
aily
qlto

Jpy

2/3/79

3.1

Rev.

© ADY

18

6L/5/2

HL9~¥%

Adar

0251
0252
0253
0254
0255
0256
0257
0258
0254
D25A
0258
025E
0261
0262
0263
0264
0265
0266
0267
0268
0264
0264
026E
0271
08271
0272
0275
0278
0274
0274
G278
D270
027D
0278
027TF
0281
0281
o282
0285
0288
0289
0284
az28B
028c
028D
028k
G28F
0291
0291
0294
097
0297
09y
0299
129D

21

iy
hy
4y
LT
[
aC
an
ok

56
b
Fi
o7
50
51
52
53
54
55
16

ED
"

Sk
DD
FD
5F
58

54
5B
5C
5D

1E :

&6
Db
i
67
on
61
62
63
64
65
26

<A
21

56
56

20
5B
b8

5E
5E

66
66

20

88
88

w7

i

w

pe

o
=z

05
05

88 o5
05

0s
05

a5

88 o>
68 0>

o

Iine Labal

0337
D338
06339
0418
D343
0342
o343
0344
0344
0346
0347
4348
0343
0350
0351
0352
0353
0354
0355
0356

0357 3
A.D26A

0358
0359

0360 ;
8.

0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371

0372 3

0373
N3ty
0375
0376
D377
0378
037y
0380
0381
0382
0383
0384
0385
03806
u3s?
038
0389
0§99
BECA}

DR

£.0254

A,

i
A

AL

H

0271

0291

Lyt

Deruy

Oped

MOV
MoV
MOV

MOV
MOV
MOV
MY

MOy
MOV
Hov
MOV
MoV
MOV
MOV
MoV
MOV
MoV
MV

LDED
LX1

MOV

HOV
MoV
MOV
MOV
MoV
Hov
MOV
MOV
MYI

MOV
MOV
MOV
MOV
HOV
v
MOV
MOV
MOV
MOV
MYL

LD
X1

LA

LIXD
X1

Operana

e XNl
mFrrmT oW e

caona

=

D{%}
D(Y)

CCUTDURTCUOT
TR W OWD X
@ = x

=

NN
0, uN

D(X)
DY}

==

CE e e e

e A el

H,M
H,AND(X)
H,IND{Y)
KA
H,B
H,C
H,b
H,E
o,
0,L
B,N

NN
iLNN

NH
X,NN

fage 7

Addr

0281
0245
0249
G249
0284
024D
0280
0281
caB2
0283
azpy
0285
0286
0287
LERD)
0289
0288
0288
O2BF
02C0
0zc2
02ch
02¢7
02c7
029
G2CR
o2co
02CF
02CF
0203
02p1
02p2
‘oep2
0203
0296
0209
0204
028
020C
020D
02DE
02DF
0280
02E2
02E2
024
02E6
0286
nzE8
O2EA

D2EE
02F0
n2F2
OIFY
02Fb

ED
Fg
j)]
FD
31

ED
ED
ED

bD

B7
BO
81
B2
B3
BY
B4
Fb

B2 B3 b4 E Line Lavel

28 88 05
21 86 0y

6E 05
BE 05

20

4

T8 88 05
F9

88 05

A8

B8

40
B0

B6 05
B6 05

G343 A.N241%

6300
1395

H

0396 A.0249

0397
0396
0399
0o
0401
0402
0403
iURT]
0405
0406
0407
0496
0409
o410
o411
ou12
0413
onih

o415

ohlé
ou17
o418
o419
o420
on2y
0422
oL2y
ou2h
o5
o426
onz7
0428
o429
o430
o431
0432
0433
ou3h
0435
0l 36
Dh37
0438
0439
ouin
AR
Mih2
Duad
REEL]
Dy
REEEY
QU
(EER)

A

-

=

N

. 0289

-G2pB

.0z2¢7

02CF
ozpt

.02p2

Cped

LIYD
Lx1

MOV
MOV
MOY
MOY
MOV
MoV
MOV
MOV
MOV
MOY
M1

LDRA

LSPD
SPHL
SPIX
SPTY
LXI

LDD
LDDH
LDI
LbIR

NEG
NOP

OHA
OKA
ORA
6iV)
ORA
oA
0Ra
ORA
OfA
ORA
ORI

OUTDR
OUTIR

ouEP
ouTP
ouTP
OUTP
auty
oury
TP

age ¢
Operand

NN
¥ NN

Nb{X)
ND(Y)

[k sl alabalahalalatiatad

ZrERC QWD e T

NN

SP NN

]
IND{X)
IND{Y)
A

zramoow

T°g *as¥

6L/5/T

Page 10

Fage 9
Agde BY bz B3 BY ¢ oLine Laow) Upeil (perans Addr BY Be EXozd B ne Labzl Uped Operand
Q2Fb KD AP Doy A.D2F6 OUTY 0360 Ch 9B Lo05 RES 3,8
02F3 ED A2 D450 GUTL 0366 CB 9C 0506 HES 3.4
V2R ohs1 0368 CB 9D 0507 HES 3L
02FA FY 0152 A.02FA POP PSW (1368 0508 ;
oers ¢l vu53 POP B 0364 CB Ab 0509 RES 4,
1 o454 rop D 036C DD CB D5 A6 0510 RES 4, IND(X)
E1 DH5S FOP 1] 070 FD CB 05 A5 0511 RES u,IND(Y)
02FE DD E1 0456 13 b4 037h CB AT 0512 RES A
0300 FD E1 0457 vop i 0376 CH A0 0513 RES 4,8
0302 F5 058 PUSH PSW 0378 CB Al o514 RES h,C
0303 C5 0459 BUsSH B 0374 CB A2 4515 RES 4D
0304 D5 0460 PUSH D G37C CB A3 0516 RES 4,E
0305 £5 PULR] PUSH 1 037E CB Al 0517 RES 4,H
0306 DD E5 oh62 PUSIL X 0380 CB 45 0518 RES 4L
0308 FD k5 Qu63 posit Y 0382 D519 5
0304 oubl 0182 CB AE 0520 RES 5,4
0304 CB 3b 0465 A.03048 HES 0,H 0384 Db CB 05 AE 0521 RES 5,IND{X)
030C LD CB 05 B6 Qibd 0,IRD(X) 0388 ¥D CB 05 AE 0522 HES 5,IND(Y)
0310 FD CB 05 B6 04b7 RES 0,1ND(1) 038C CB AF 0523 RES 5,A
0314 CB 87 oh6d RES 0,4 03BE CB A8 0521 RES 5,8
0316 CB 80 0469 RES 0,8 0390 CB A% 0525 RES 5,C
0318 cp B3 0570 RES 0,C 0332 CB AA 0526 RES 5,0
031A B B2 oUTY RES 0,D 0394 CB AR 0527 RES 5,E
031c €8 83 072 RES 0,E 6396 CB AC 0528 HES 5,H
031E B B4 D473 RES 0,1 0398 CB AD 6529 . RES 5,L
0320 ¢ 85 oyl RES o, D39A 0530 3
0322 ONT5 0394 CB B6 0531 RES 6,M
0322 CB 8E 76 HES 1,M 639C DD CB 05 Bb6 D532 RES 6,IND(X)
0324 Dp CE 05 8 OW77 RES 1,180(X) 03A0 FD CB 05 B6 0533 RES b,IND(Y)
0328 FD CB 05 BE 0478 1ES 1,IND(Y) 03a4 Ca 87 0534 RES 6,4
032C Cp UF ouTg RES 1.4 0346 CB BO 0535 RES 6,8
032E CB 88 ouB0 RES 1,8 03A8 €8 B1 0536 RES 6,C
0330 ¢B 89 QuB1 RES 1,C 03AA CB B2 0537 RES 6,0
0332 CB ba oLz RES 1, 03AC CB B3 0538 RES 6,E
0334 CB 88 o483 RES 1,E 03IAE CB Bb 0539 RES 6,H
0336 ¢B BC o484 RES 1,4 03IBO CB 15 0540 RES 6,1
0338 cB 8D 0485 RES 1,L - 0382 0541 ;
0334 046 ; 0382 CB AE 0542 RES 7,1
0334 CB 96 Due7) RES 2,4 0384 DD CB 05 BE 0543 RES 7,IHD(X)
033C Db CB 05 Y6 0488 RES 2,IND(X) 0388 FD CB D5 BE 0544 RES 7,IND(Y)
0340 FD CB 05 96 0489 RES 2,IND(Y) 038C €B 8F 0545 RES LA
0344 CcB 97 0490 RES 2,A 03BE GB B8 0546 RES 7,8
0346 °B 90 0491 HES 2,B 03C0 CB BY 0547 RES 7,¢
0348 €8 91 04y BES 2,C 03C2 CB BA 0548 RES 7,b
034a CB 92 0453 HES 2,D 03C4 CB BB 0549 RES T.E
034¢ cB 93 0194 HES 2,8 09CH € BC [EoY] HES TMH
03hE CI 94 0495 RES 2, D3CH CB 8D D551 RES 7,L
0350 Ch 95 ouge HES 2,1 03CA 0352
0352 GyT g 03ICA €Y U553 A.03CA nET
0352 Ch YE 0498 3,M 038 08 (LS HC
035k DB CB 05 9E 0439 3, INLERY 03CC FB 3 i3]
0358 ¥D CB 05 YE 0509 3, MMyt n3eD vo RNC
035C Cb YF i 3,4 V3LE €O RNZ
035E Chb 9l U2 3,6 03CF ¥0 g
0360 CB Y5 U3 RES ERY 0300 £3 054y REL

2362 CB 94 Uhad 1] 3,b 0301 k0 da) itde]

fg cady

-
L

6L/S

%
7

LLs-

Adir

a3ne
0303
0383
0305
u3n7
0307
n3ny
03nhp
03g1
0363
03E%
O3E7
C03EY
O3ER
O3ED
0O3EF
03EF
03¢0
03F0
03F2
03F6
03FA
D3FC
O3FE
0400
0402
a4ol
0406
0408
nlpd
[ITY)
Gy
0108
oo
040D
oun
DH15
on7
0419
O41H
o41p
OulF
o421
0u2y
nnz23
nhzh
0424
0426
DhZA
D42E
0430
k32
0434
036
94 38
U4 ja

Y

c
KDy
ED
CB
FD
B
5]

cn !

2]
co
cH
ch

9]
Db
¥
c
B
B
B8
B
[M:)
B

B
bp
Fb
[8:)
Ch
[w:)
Ch
cn
3]
cB

W

cH
b
Kb
o)
CB
b
[W:)
B
cR

il

Be B3 B E [ine

np
a5

10
Ch
3
17
10

12
13
H
5

cB
cB
07
00
ol
a2
03
o
05

6F

18
B
cB
1F
18
1%
1A
1B

tb

o8
CR
[o2]
o
08
ug
DA
0B
oc
on

05 16
05 16

05 Db
05 06

05 1E
05 1E

05 0K
05 OE

0561
0562
0563
0564

0565 5

0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
1586
0587
0588

0589 ;

0590
0591
0592

0593 ;

0594
0595
0596
0547
0598
0599
0600
G601
0602
0403

neoh ;

D805

Label

j

A.0303

H
A.03DY

LD3IEF

.03rD

i
A.0408
H
A.DL4OY
H
A

.00

A.0U23

D606

0607
Gbls
0L0Y
DU 10
onil
Joil
Jull
Do jd
D015
shic

A.0n24

uped
RZ

RETT
RETH

HALR
HAL#
RALA
RALR
HALH
RALR
RALR
RALR
R&LR
RALR

RAL

RLCR
RLCR
RLCR
Ri.CR
BLCR
HLCR
NLCR
RLCH
RLCR
RLCH

RLC
RLD

RARR
RARR
RARR
RARR
KARR
RARR
RARR
RARR
RARR
RARR

RAR

RRCR
RRCR
RRUR
RRCR
RHCR
RACR
RRCR
HRCR
HHECR
RRCR

rage 13

Uperani

M
18D€K)
IND(Y)
A

SRR

n
IND(X)
IND(Y)

mUaws

-

M
IND{X)
IND(Y)

rFEmToOm®

M
IND{X)
LHb{(¥}

"D O W

Addr

ou3c

DU3C

043D

o130

043F

nu3¢

DLET]

Dyt

0442
43
WL
ohlis
0446
ouk7
o847
ouhy
os4p
RLLT
O44F
6450
0451

ohs2
0453
[{EEY)
0455
0457
ous1
0459
0458
o450
OU5F
OU5F
0460
0460
ou62
ou66
0364
046C
GHBE
Q470
ayr2
oY
0476
oy78
0478
ou7a
o4’E
[
BLEL]
0486
ousy
0u48a
oude
DudE
ohyn
LD

81 B2 h3 Eu £ Line

ED

c7
CF
o7
[y
E7
EF
F?
FF

9E
b
£D
9F
96
99
ga
98
9c
9p
DE

ED
ED
ED

37

CRp
o
£D
cB
Ch
cB
cB
cp
[¥:]
CB

[wi]
bD
Fb
cp
-]
cp

c8.c

ch
B
CB

67

9E
9E

20
y2
52
62
72

c8

[0}

bl
05

05 Cé
a5 cb

0617
0618
0619
0620
0621
ub22
N623
0621
0625
0626
0627
0628
0629

0630 ;

0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
D657
0658
0659

0660 ;

0661
D662
0663
0664
0665
Ubob
Dbd”
BELE)
PIE]
Jo70
67
72

Label

A

[

H

LT
. 0u30

LOU3F

LTy

LY

NIELYY

.0U60

Oped

RRC
RHD

RST
RST
RST
RST
HST
RST
RST
RST

38D
SBB
SBB
3BB
SBB
S8R
SpB
SBB
ShB
SBB
SBI

DSBC
DSBC
pSBC
DSBC

STC

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

Page 12

Gperand

S oU =D

M
IND(X)
18D{1)

1,IND(X)
1,I8D(Y)
1,4

AL9-F

*ADY

1°8

6L/S/T

fage 14

rage 13
Addr B1 B2 B3 Bl E Lins label Oped Dperand kdde BV B2 E3 EN E fLine Label Oped Operand
08Y2 DD CB 0S5 Db D673 SET 2,INb{L) GSOE FL CB 0% FE 0729
0N96 FD CO DS Db 067N se7 2,10{Y) 0912 CB F¥ 0740 A
0H9A CB D7 0675 SET : 0514 CB F8 0731 7,B
049C CB ho G676 0516 ¢B 19 3732 7,0
DU9E CB D1 0677 0518 CR KA 0733 7,0
0U80 Cp b2 oy 051A CH FB 9734 7,E
o4a2 ¢ b3 0679 051C Cb FC 0735 7.8
nual CB DY 0680 O51E €8 FD 07136 SET 7,L
046 LB D5 0581 0520 0737 ;
04A8 0682 ; 0520 Cu 26 0738 4.0520 SLAR M
048 €8 DE 0683 SET 0522 Do CB 05 26 0739 SLAR IND(X)
OUAM DD CB 05 DE D684 SET ND(X) 0526 FD CB 05 26 0TUD SLAR IND(Y)
OLAE FD CD 05 DE 0685 SET HD{Y) 0528 Cp 27 o7l SLAR A
OUB2 CB DF 0686 SET 052C CB 20 0742 SLAR B
o4ph CB b8 0687 SET 052E €8 21 0743 SLAR ¢
04B6 CB D9 0688 SET 0530 €B 22 0744 SLAH D
0488 CB DA 0689 SET 0532 CB 23 0745 SLAR B
04BA CB DB 0640 SET 0534 CB 24 ar46 SLaR H
04B8C CB DC 0691 SET 0536 CB 25 o747 SLAR L
G4BE CB DD 0692 SET 0538 0748 ;
Q4Cco 0693 ; 0538 CB 2B 0749 A,0538 SRAR M
04CO €B Eb 0694 SET M 0534 DD CB 05 26 0750 SRAR IND(X)
04C2 DB £B 05 kK6 0695 SET 4, 1H0{%) 0S3E FD CB 05 2E 0751 SRAR IND(Y)
GUCH FD CB 05 E6 0696 SEY 4,100{¥) 0542 €8 2F 0752 SRAR A
G4CA CB EY 0697 SET 4,4 o544 cB 28 0753 : SRAR B
OUCC CB EO 0698 SET [N:] 0546 CB 29 0754 SRAR G
ONCE CB E} 0699 SET 4,C 0548 CB 24 0755 SRAR D
aupd CB E2 0700 SET 4,D 0544 CB 2B D756 SRAR €
04D2 LB K3 0701 SET 4,& asic CB 2C 0757 SRAR H
ouDpy CB EN 0702 SET 81} DSUE CB 2D 0758 SRAR L
OUD6 CB E5 0703 SET 4,L 0550 0759 ;
04ps arou ; 0550 CB 3E 0760 4.0550 SHLR M
04DB CB EE 0705 SET 5, D552 DD CB 05 3& 0761 SRLR IND(X)
04DA DB CB 05 EE D706 SET 5, THD(X) 0556 FD CB 05 3£ 0762 SRLE IND(Y)
OUDE FD CB 05 EE 0707 SET 5,IND(Y) 0554 CB 3F 0763 SRLR A
OUEZ CB EF 0708 SET 5,4 055¢C CcB 38 0764 SRLR B
OYEY CB E8 0709 SET 5,8 055E CB 39 Q765 SRLR €
OWED CB B9 - 0710 SET 5,C 0560 CB 3A 0706 SHLR D
DA4ES CB EA o711 SET 5,0 0562 CB 3B 0767 SHLR E
CMEA LB EB 0712 SET 5, 0564 CB 3C 0768 SALR H
OhES €8 EC 0713 SET 5,1 0566 CB 3D 0769 SHLR L
ONLE CB ED DAl SET 5,0 0568 0770
GUFD 07315 ; , 0568 96 0771 A.0568 suB M
OUFO CB ¥ 0716 [N 0569 DD 9b 05 0772 suB IND(X)
O4F2 DD CB 05 F& 0717 6,IND(X) 356C FD 96 05 0713 sUB nnlY)
ONFb FD CB 05 F6 0718 6,1nD(Y) 0%6F 97 0Ty sus A
OUFA CB F7 0719 6,4 0570 99 0775 suB 8
ONFL CB FO 0720 6,8 0571 91 0776 SUB c
ONPE CB F1 0721 o,C 0572 92 oy suB D
U560 Ch F2) 6,1 0573 93 0773 suB £
0502 ¢B 3) 6,k 057H g 277y suB H
050 CnFY i} b1t 0575 9% D700 SUB L
0506 CU ¥5 0 b,L 0576 D6 20 073} SUI N
1508 o ; 0578 0732
0508 CB FE i M 0578 AE D783 40578 XRA]

O50A DR CB 05 P Tl TLOIND(NY 0579 DD AE US 0784 XRA TNDY XD

Addr

057¢C
057F
0580
0581
0582
0583
0584
0585
0586
0588
0588
0588
0588
0588
0584
0584
0584
0584a

B1

AF
A8
A9
AA
AB
AC
AD
EE

00

Rev., 8.1

B2 B3 B4 E Line Label

AE 05

20

0020
00

0005
0030

2/5/79

0785
0786
0787
0788
Q789
0730
0791
0792
0793
0794

Oped

XRA
ZRA
XRA
XRA
XRA
LRA
ZRA
XRA
XRI

Operand

IND(Y)

2T mo O W

0795 ; Now for the definitions

Q796 ;

Q7387 N

0798 NN
0799 IND
0800 DIS
0801 ;

0802 A.058a

EQU
DW

EQU
EQU

END

4-67 L

208
0
5
308

4.6 SYMSAVE UTILITY

The SYMSAVE utility is an applications program that may be used to create
an equate batch from a symbol table left in memory immediately after an
assembly. This equate batch is stored as an editor source file and can
be edited by the 1ine editor and assembled by the assembler. The program
is invoked from the MDOS executive by typing SYMSAVE followed by an ASCII
filename parameter enclosed in double quotes and an optional ASCII mask
string enclosed in double quotes.

funit:]SYMSAVE "<filename>" [“<mask string>"]

The mask string can be up to ten characters long. It is used to save only
those symbols in the symbol table that start with the specified mask string.

Example:

ADDR Bl B2 B3 E LINE LABEL OQPCODE OPERAND

2200 10032 ORG 4923H
4000 C3 PP 49 2000 START JMP $
4203 MM 3p@@ DATA1 DB 21
994 92 4000 DATAZ DR g2
4995 23 5009 DATA3 DB 23
4096 6099 FINISH END START

Immediately after the above program is assembled, the symbol table is still
resident in memory. To create a disk file of symbols from the above assembly
type: '

SYMSAVE "TEST"

The file TEST that SYMSAVE creates is an editor compatible source file
which looks as follows:

pe@1 START EQU 40034
p2@2 DATAT EQu 40334
peO3 DATAZ cQu 4p@4H
pea4 DATA3 EQU 40@5H

2005 FINISH EQU 4p36H

if only the data symbols were required, the mask string parameter can be
used as follows:

SYMSAVE "TEST1" "DATA"

The file TEST1 looks as follows:

22@1 DATAI EQU 49P3H
2092 DATAZ EQU 40P4H
2083 DATA3 EQU 4P@SH

This file contains only the symbols which start with the string DATA.

Rev. 7 3/78 4-68

THIS PAGE LEFT BLANK INTENTIONALLY.

Rev. 8.1 2/5/79 4-684

A symbol equate file can be used in other programs by using the assembler
LINK pseudo~op.

Example:

ADDR B1 B2 B3 E LINE LABEL OPCODE OPERAND
paoa 1909 LINK 'TEST!
poap 2000 ORG FINISH
4pp6 3E 81 3909 BEGIN MVI A,DATAI
app8 32 93 49 4000 STA DATAZ
AppB C3 P9 49 5000 JMP START
400E 6000 END BEGIN

By linking the equate batch file with the new program segment all of the
symbols defined in the first program segment can be referenced in the new
program segment.

4.7 FILECOPY UTILITY

The FILECOPY utility is an applications program that allows files to be
copied from one disk to another or onto the same disk under a different
filename. To improve speed in the process of copying a file, it uses

all available memory after the end of the program as a buffer. To invoke
the program from the MDOS executive type FILECOPY followed by a f1lename
enclosed in double quates and an optional newfilename enclosed in double
quotes or a unit number by itself if the copied file is to have the same
name as the original.

(unit:]FILECOPY "<[unit:]filename>" "<[unit:Inewfilename>"
or
[unit:JFILECOPY "<[unit:]filename>" <unit number>

FILECOPY exits to the MDOS executive when it is done or if it encounters

an error condition. The copied file has the same filetype as the original.
Any file can be copied regardless of type or origin. This includes BASIC
data and program files. Attempting to copy a file onto the same disk
without specifying a newfilename results in a DUPLICATE NAME error.

4.3 DISKCOPY UTILITY

DISKCOPY is a special overlay utility that writes an absolute binary copy
of one disk onto another. The utility overlays MDOS or BASIC. It uses
all available memory during the copying process. The more memory in a
system the fastar the copying process. On average it takes about two
minutes to copy and verify all 315k bytes of a MOD II disk. To invoke the
utility from the MDOS executive, type:

DISKCOPY
A sign-on message is output:

MICROPOLIS DISKCOPY VS X.X - COPYRIGHT 1978
SPECIFY UNIT # FOR ORIGINAL (SOURCE) DISKETTE
?

4-68
Rev. 7 3/78

DISKCOPY waits until the unit number is entered. When a number between
? and 3 is entered it prompts:

SPECIFY UNIT # FOR DESTINATION DISKETTE
?

and waits until .ie unit number (§ to 3) is entered. It then prompts:

PUT DISKETTES IN SPECIFIED UNITS
TYPE Y WHEN READY
?

and waits for a Y. A note of CAUTION, we strongly recommend placing a
write protect tab on the original (socurce) diskette. It is possible to

put the wrong diskette in the wrong drive or type the wrong unit numbers.
If your original does not have a write protect tab and you make an error,
the original can be overwritten. The write protect tab provides a physical
interlock which disables the write electronics.

When a Y is typed DISKCOPY will start the copying process. During copying,
the process can be temporarily halted between read source and write
destination cycles by typing a control S. The process is restarted by typing
any other key except a control C.

The control C will cancel the entry or copy process and prompt:

CANCELLED
MORE ?

If a ¥ is typed DISKCOPY starts from the top asking for the unit numbers
again. If an N is typed DISKCOPY prompts:

PUT SYSTEM DISKETTE IN UNIT 2

TYPE Y WHEN READY
?

When a Y is typed the disk in unit @ is rebooted. If it's an MDOS diskette
MBOS is booted. If the disk in unit § is a BASIC only disk or some other
bootable system, it will be booted in and sign on. DISKCOPY is overlayed
by the incoming system and is no longer in memaory.

When the disk has been copied and verified correctly DISKCOPY cutputs:

GOOD COPY
MORE ?

If the copy cannot be completed or does not verify correctly DISKCOPY outputs:
PERM I/0 ERROR ON DESTINATION DISKETTE

or

PERM 1/0 ERRCR ON SCURCE DISKETTE

indicating where the error occurred.

Rev. 7 3/78 4-70

It is possible for single drive systems to make use of the DISKCOPY utility
to copy from one disk to another. In this case it is imperative that the
original diskette be write protected with a write protect tab. The procedure
involves specifying the same unit number for both source and destinaticn
disks. Immediately after typing a Y in response to the TYPE Y WHEN READY
prompt, type a control S. The DISKCOPY program will read as many tracks
from the source disk as can be contained in main memory and then pause.
When the select indicator light goes out, remove the source diskette and
insert the destination diskette. Press the return key and as soon as the
select indicator light comes on type a control S again. When the select
indicator light goes out again, the data from the source disk has been
written to the destination disk and one complete cycle is finished. This
pracess is repeated, swaping the source and destination disks in and out
until the entire disk is copied. After the last data is written onto the
destination disk, the program goes directly into a verifying process and
will not pause until this is over. When the source is placed back into the
drive and the return key is pressed the system will prompt: GOOD COPY or
output an error message as discussed above. At this point the copy is
complete.

4.9 ERROR MESSAGES

This section is a summary of the error messages generated by the MDOS
shared subroutines. The shared subroutines return an error code in the
A register when an error exit occurs. These codes can be passed to the:
error message output routines to generate the proper error message.

Example:
A file is created by the following BASIC program:

19 DIM AS(248)

2@ Z3=CHARS(13):REM CARRIAGE RET

3@ OPEN 1 "N:TEXTFILE":REM NEW FILE

49 INPUT AS:REM GET A LINE OF TEXT FROM CONSOLE

5@ IF AS="EXIT" THEN 8@:REM END INPUT BY TYPING EXIT
6@ PUT 1 AS+ZS:REM CONCATENATE CARR RTN AT END

79 GOTO 4p:REM LOOP TILL EXIT

8@ CLOSE 1

99 END

This BASIC program writes one text line per record. Each line is
terminated with a carriage return.

The file can be read by the following assembly language routine. Assume
it has been assembled and given the name READ and an executable file type
of 15. Typing READ "TEXTFILE" Toads and executes the program.

4-71

Rev. 7 3/78

2200
p212
pR29

pRA3@ START

P40
259
PRED
pa79
ppsp
2999
2100
p11p
p120
P13
p14p
p15p
p169
p170
p139
9139
p2pp
p21p

P229 NEXTCHR

p23p
p249
9250
p260
p279
p28p
p239
p3p@
@319 EXIT
2329
2339
p34p
p35p

Note the handling of the errors in lines

319-349.

Rev. 8 9/78

LINK
LINK
ORG

CALL

CPI
CZ .
CALL
JMP
CPI
JZ
STC
JMP
END

'sysqQl!
‘sysqz2!
@APROGRAM
@CCRLF
@NASCPAR

A
@ERRORMES
c,p
@TRANSFILENAME
B,
@DRIVEND
C,A
H,BFILEBUFFERQ
@OPENFILE
@DISKERROR
@RFILEINF
@DISKERROR
A,B

@FCH

A

A, 17
@DISKERROR
8,2
@RFINXPOSI
EXIT

B,C

A,B

P0H

QCCRLF
eCoUT
NEXTCHR

2
@CLOSEFILE

ADISKERROR
START

4-72

;MDOS EQUATE BATCH

;MDOS EQUATE BATCH
;APPLICATIONS AREA
;CARRIAGE RETURM LINEFEED
;NUMBER OF ASCII PARAMETERS
; [F ZERO

; ERROR

;@ASCBUFFP

;MOVE INTO @ASCIIBUFFER
;FILE NUMBER

;UNIT NUMBER

; INTO C FOR OPEN

;USE SYSTEM BUFFER 9
;OPEN THE FILE

;[F ERROR CODE IN A
;CHECK THE FILE TYPE

»IF ERROR CODE IN A

;FILE TYPE

;TYPE NOT ATTRIBUTES
;BASIC DATA FILES=D
;WRONG FILE TYPE MESSAGE
;ERROR

; FILE NUMBER

;READ FILE BYTE AT A TIME
;END? OR ERROR?
;CHARACTER FOR OUTPUT

; INTO A FOR COMPARE
;CARRIAGE RET END OF LINE
;IF CR DO CR LF

;0THER CHR JUST OUTPUT
;LOOP TILL END-FILE
;END-FILE?

;CLOSE AMD RETURN TO MDOS
;ERROR

;ERROR MESSAGE IN A

63, 149, 160, 218, 249, and

The error codes are summarized below.

the error messages.

CODE# MESSAGE

2 SYNTAX ERROR

1 PERM I/0 ERR

2 END-FILE

3 DISK FULL

4 FILE NOT FOUND
5 DUPLICATE NAME
6 PARM ERR

7 DRIVE NOT UP

8 PERM FILE

9 WRITE PROTECT
19 FILE NOT OPEN
n COMMAND NOT FOUND
12 BAD FILE #

13 FILE OPEN

14 READ ONLY FILE
15 BAD RECORD #

16 CANCELLED

17 WRONG FILE TYPE
18 INDEX PAST EOR
19 LOAD ADDRESS ERROR

Rev. 8 G§/78

4-73

See appendix D for definitions of

4.19 COPYFILE UTILITY

The COPYFILE utility is an applications program that allows files to be
copied from one disk to another on a system with only one disk drive.
The utility uses all the available memory after the end of the COPYFILE
program as a buffer. To invoke the program from MDOS type COPYFILE
followed by a filename:

[unit:] COPYFILE "<[unit:] filename>"
The COPYFILE program signs on:

INSERT SOURCE DISKETTE INTO DRIVE @
ARE YOU READY?

The system waits for a capital Y to be typed. Any other input is ignored
except a control C which returns control to MDOS. When a Y is typed the
COPYFILE program loads as much of the source file into memory as it can
and then prompts:

INSERT DESTINATION DISKETTE INTO DRIVE 9
ARE YOU READY?

Take the source diskette out of your drive and put the destination diskette
into the drive. When ready type a capital Y. Any other input is ignored
except a control C which returns control to MDOS. The COPYFILE program
creates a file on the destination disk with the same name and filetype as
the source file. It then writes the file from memory onto the destination
diskette.

1f the files is longer than can be held in memory at one time the COPYFILE
program will prompt:

INSERT SOURCE DISKETTE INTO DRIVE @
ARE YOU READY?

The same procedure as above must be repeated until the wﬁole file has been
copied. When the copy is complete the COPYFILE program returns to MDOS
which prompts:

>

1f the COPYFILE program encounters any errors it displays the proper error
message and returns to MDOS.

COPYFILE can copy any type or length file. This includes BASIC data and
nprogram Tiles.

25
)

~1
£

Rev. 8 9/78

4.11 DEBUG - THE PDS 8p8p/8@85 PROGRAM DEBUGGER

Micropolis DEBUG is a utility program which facilitates checkout and
debugging of 8@80/8885 machine language programs. It provides an
environment in which the performance of a program can be monitored by
starting and stopping program execution at user-specified paints and by
examining and/or changing the contents of relevant machine registers and

memary Tocations. DEBUG cannot be used with non-898 480 code.

DEBUG and the program to be monitored must co-reside in the main system
memory. Before DEBUG can be used an executable version must be obtained that
uses a 4¥ block of memory which does not conflict with the program to be
debugged. The process of creating an executable version of DEBUG configured
for a specific memory space is described in Section 4.12.

DEBUG is invoked from the MDOS executive by typing the name of a configured
DEBUG-XX version as created by the DEBUG-GEN utility (see Section 4.12).
Example:

>DEBUG-70
MICROPOLIS DEBUG VS. X.X - COPYRIGHT 1978

DEBUG signs on and displays an asterisk (*) which is the DEBUG Executive
prompt. Program execution control and machine state examination and
modification are performed by entering appropriate commands to the DEBUG
Executive.

The program may be executed one instruction at a time (referred to as
"single-stepping") with the machine state displayed after each step.
Alternatively, the results of a program segment may be examined by placing
a breakpoint at the end of the segment. When execution of the program
is started, it will execute in real time until the breakpoint is reached.
Control of the computer js then returned to the DEBUG Executive and the
user may examine the contents of memory and the machine registers.

4.11.1 THE DEBUG EXECUTIVE

Operation of DEBUG facilities is controled by the DEBUG Executive. The
executive prompts the user for a command with the character '#¥',

Executive statements are entered by typing characters in sequence on the
console keyboard. An executive statement is terminatad by pressing the
RETURN key. During the entry of a statement each character that is typed
is echoed by the executive on the console display. Two control features
may be used when entering a line.

1) When DEL or BACKSPACE is pressed the next previously typed

character will be deleted from the line. A backarrow is echoed
to the terminal display for each character deleted.

Rev. 8.3-A 7/1/73 4-75

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current line to be cancelled. A carriage return line
feed combination is echoed to the terminal display. The executive
is positioned to accept entry of a new line.

An executive statement has the following form:
NAME [<hex> <hex>...<hex>]

The NAME in an executive statement is the name of one of the DEBUG commands.
Command names are uppercase only and must not be preceded by any spaces.

If the command name is not recognized by DEBUG a SYNTAX error message is
displayed.

Executive statements consist of a NAME followed by up to four numeric
parameters. There must be at least one space between the NAME and any
parameters. A1l parameters must be separated from each other by at least
one space. Entry of an executive statement with too many parameters or
without the required spaces between fields will result in a SYNTAX error.

Numeric parameters in executive statements are unsigned hexadecimal values
from @ to FFFF. They represent such elements as memory addresses and
register values. Entry of a numeric parameter with a value greater than
FFFF or with illegal characters will result in a SYNTAX error.

4.11.2 DEBUG MEMORY RELATED COMMANDS

The DEBUG memory related commands are similar to those available under the
MDOS executive (see Section 4.1) with the exeception of the LIST command
which is unique to the DEBUG context. The syntax of these commands is
illustrated with the aid of the following notation:

[] Option brackets. Any parameters enclosed between brackets are
optional.

< > Symbol brackets. This space should be replaced by the item described.

4.11.2.1 THE DUMP COMMAND

DUMP <start addr.> [<end addr.>]

The DUMP command outputs a formatted hex display of the contents of a block

of memory. Sequential memory locations are shown 16 to a line with the memory
address at the left margin. If the <end addr.> is not entered only one byte
is displayed. Example:

* DUMP 5009 5911
5009 50 C@ 27 77 4F 33 4F CD 7D SE 93 9@ 6A FD 82 90
5919 77 28

Notice that memory bytes are printed out in groups of four so that addresses
inside the Tine may be more easily computed. The grouping follows the address.

* DUMP 5@p2 5p1F
5092 27 77 AF 33 4F CD 7D SE 98 99 6A FD 32 99
5019 77 2B 54 56 F4 3E 23 2A 34 87 19 3D 21 2C 2A 28

Rev. 8 9/78 4-78

4.11.2.2 THE ENTR COMMAND

ENTR <start addr.>

The ENTR command allows data to be entered into memory directly from the
console device. Example:

*ENTR 7909
*78 89
6F/

Three bytes were entered starting at location 70@@ hex. These were 78
at 7p9@, 39 at 7P@1, and 6F at Tocation 7092.

Typing in an ENTR command places the executive in a special enter mode.
While in the enter mode each line of values that is typed is entered into
memory when the RETURN key is pressed. Until the RETURN key is pressed

the standard backspacing and CNTL/X tcols are available for line correction.
The last value on the last 1ine must be followed by a slash (/) to properly
terminate the enter mode. Entry of a illegal hex value in any line will
also cause termination of the enter mode with the message SYNTAX ERROR.

4.11.2.3 THE FILL COMMAND

FILL <start addr.> <end addr.> <byte>

The FILL command fills a block of memory with a specified byte.
Example:

*FILL 7000 80@¢ 9

Each byte of memory in the block from 7003 to 8@@@ is changed to a @9
by this command.

4.11.2.4 THE MOVE COMMAND

MOVE <source addr. start> <source addr. end> <dest. addr. start>

The MOVE command copies the source block of memory to the destination
block. The scurce block is not changed. The destination block is
changed to be an exact copy of the source block. Example:

* MOVE 3009 4900 7000

Each byte in the memory block from 3088 to 4008 is copied into the
corresponding position in the memory block from 7098 to 3¢¢@.

Rev. 8 9/78 4-77

4.11.2.5 THE SEAR COMMAND

SEAR <start addr.> <end addr.> <byte»>

The SEAR command searches a block of memory for all occurrences of the
specified byte and displays all locations with a match. Example:

* SEAR 3000 3029 9F
3pp4 OF
3918 SF

The block of memory from 3@@9 to 3@2@ is searched for all occurrences of
a 9F. Location 39@4 and location 3@18 both contain 9F. No other
locations in the block contain 9F.

4.11.2.6 THE SEARN COMMAND

SEARN <start addr.> <end addr.> <byte>

The SEARN command searches a block of memory for all non-occurrences of a
specified byte and displays all locations that do not match. Example:

* SEARN 3908 3919 67
3992 @9 67
3906 76 67

The block of memory from 3999 to 391@ is searched for all non-matches
with the mask 67. Location 3@@2 contained a 9 rather than a 67, and
3936 contained a 76 rather than a 67.

4.11.2.7 THE COMP COMMAND

COMP <start addr. blockl> <end addr. blockl>» <start addr. block2>

The COMP command compares two blocks of memory and displays address locations
that do not compare and the data at those locations. Example:

* COMP 5000 500F 5019
5¢@4 21 29 5414

The block of memory from 5@@P to 5@@F is compared with the block of memory
from 5019 to 5@1F. One location fails to compare. Location 5@P4 contains
Pl while the corresponding location, 5814, in the second block contains @9.

4.17.2.8 THE LIST COMMAND

LIST <start addr.> <end addr.>

The LIST command displays the 8@8@/8985 mnemonic form of the bytes contained
in the specified memeory block.

* DUMP 3992 3908
3@e@ CA 92 37 B7 C3 1A 37 (B

Rev. 8.1 9/78 4-78

*LIST 3009 3998
3g9p JZ 3792

3pp3 ORA A
3¢94 JMP 371A
3gp8 CB *

The memory block from 3999 to 3P@7 contains three 3@88/8085 instructions.
The byte following the third instruction is not a valid 3P8@/8@85 instruction.
This is indicated by the '*' following its value.

4.11.3 DEBUG MACHINE REGISTER AND FLAG COMMANDS

The DEBUG commands in this category are used in conjunction with DEBUG's
program execution control features during the process of monitoring a
programs performance. Whenever the program execution is paused and the
DEBUG Executive is waiting for a command, it is possible to display and/or
alter the state of the 8(P8@/8085 registers and flags as they are relative
to the last instruction executed in the program being monitored.

4.11.3.1 THE DISR COMMAND

DISR

The DISR command displays the contents of the processor registers and flags
along with the next instruction to be executed. In addition the contents
of memory at locations addressed by register pairs (e.g. at the address
contained in BC) along with the word on the top of the stack are displayed.
Example:

*DISR
A FLAGS BC OE HL SP @B @D @H @SP

P9 ZCMEH 0000 2000 2009 1234 0@ 29 20 9900
p@p@ LXI SP,1234

The second line of the display indicates the processor state. The columns
@R, @D, @H and @SP indicate the contents of memory at the addresses contained
in the respective register pairs. The flag values are indicated by the
presence or absence of a character in the FLAGS column. The Z character
indicates a zero condition, the C character a carry condition, the M
character a negative sign condition (in the SIGN flag), the E character an
even-parity condition and the H character a half-carry condition. Absence

of any character indicates the opposite condition on the same flag.

The third 1ine displays the address and mnemonic of the next instruction

to be executed. The address of the instruction corresponds to the current
value of the 8P83 program counter (PC) register in the context of the program
that DEBUG is monitoring. The instruction is the one that will be executed
next by a single step operation or when program execution is resumed by

using a command such as the CONT or RET commands. Note that the state of

the registers and flags as displayed by the DISR command reflects their
values BEFORE the next instruction shown on the third line is executed.

Rev. 8.1 9/78 4-79

4.11.3.2 REGISTER SETTING COMMANDS

REGISTERNAME <hex number>

The register setting commands allow the contents of the 8@83/8985 processor
registers to be set to a specified value prior to the execution of the next
instruction in the program being monitored. The general format of a register
setting command is a register name followed by a hex data value.

The following register names may be used:

AAB C D E H L
BC DE HL SP PC @SP

The first line shows 8 bit registers and the second line shows 16 bit
registers. PC is the program counter. @SP designates the 16 bit word on
top of the machine stack.

The following examples would change the program counter value to 6QF3, the
A register value to 7, and the value at the top of the stack to C172.

*PC 6pF3
*A 7
*@sp €172

4.11.3.3 FLAG SETTING COMMANDS

The flag setting commands allow the states of the 3@8p/8@35 processor flags
to be set or reset prior to the execution of next instruction in the program
being monitored. The commands set the flag state according to the mnemonic
form used in assembly language. The commands are:

FZ FNZ FC FNC FP FM FPE FPC FH FNH

The FZ and FNZ commands set the state of the ZERQ fla% to zero or non-zero.
The FC and FMNC commands set the state of the CARRY flag to carry or no carry.
The FP and FM command set the state of the SIGN flag to positive or minus.
The FPE and FPO commands set the state of the PARITY flag to even or odd.

The FH and FNH commands set the state of the HALF-CARRY flag to half-carry
or no .half-carry.

Examples:

*FNZ
*FC

The state of the ZERO flag is set to non zero and the state of the CARRY
flag is set to carry. '

Rev. 8 9/783 4-80

4.11.4 DEBUG MISCELLANEOUS UTILITY COMMANDS

The two commands in this category are the MATH command which is useful in
doing address computations while engaged in a debug session, and the RST
command which may be needed to avoid conflict with program usage of the
processor restarts.

4.11.4.1 THE MATH COMMAND

MATH <hex number> <hex number>

The MATH command performs a 16 bit integer addition and subtraction on the
two specified hex numbers. It displays.the sum and difference. The MATH
command is useful for length and address calculations. Example:

*MATH 4 5
gpee FFFF

4+5 equals 9 and 4-5 equals FFFF,
4.11.4.2 THE RST COMMAND

RST «vector number>

DEBUG normally uses the ‘RST 6' restart vector of the 8@8p or 8@85 processor
as its mechanism for implementing breakpoints (see Section 4.11.5.1). Some
computers and/or a particular program may already be using 'RST 6' for a
different purpose. In this case it is possible to change the RST vector
used by DEBUG to one of the other available RST's, 1-5 or 7. Example:

*RST 7

The RST vector used by DEBUG is changed to RST 7 from its default usage of
RST 6.

4.11.5 DEBUG PROGRAM EXECUTION CONTROL

DEBUG offers 3 modes of control to monitor progress through a program; the
breakpoint mode, the single step mode, and the trace mode. There is a
permanent breakpoint facility normally used in conjunction with the commands
SET, DISB, CLR, EXEC and REPT. There is a temporary breakpoint facility

‘used in conjunction with the commands CONT and RET. The single-step mode is
controtled with the space bar. The trace mode is a form of continuous single-
stepping. Use of these modes and their associated commands are detailed in
this section.

4.11.5.1 THE BREAKPOINT MODE

8reakpoints provide a means to stop program execution at a diven point. When
program execution reaches that point control of the processor is transferred

to DEBUG. Once in DEBUG, the results of the program section which was executed
may be examined or modified.

Rev., 8 9/78 4-81

In the breakpoint mode DEBUG replaces the instruction at a given address

with one of the 'RST' instructions of the 8p8p/8985 (see 4.11.4.2 the RST
command). Then DEBUG replaces the three bytes of code at the corresponding
'RST' vector location with a 'JMP' instruction to a routine inside itself.
DEBUG then loads the processor's registers with the stored 'user program
register' values and transfers control of the processor to the user's program.
When the breakpointed instruction address is executed, the 'RST' that DEBUG
had placed at that location causes the processor to 'CALL' the RST vector
location which then causes the processor to 'JMP' back to DEBUG. DEBUG then
stores the processor's registers in the 'user program registers' and replaces
the original contents of both the breakpointed instruction and the RST

vector location.

Because of the introduction of an 'RST' instruction into the program, when a
breakpoint is encountered, at least one level of stack space must be available
so that the return address back into the program can be stored. Therefore,
when using the breakpoint mode the user must insure that at least one stack
level will be available when the breakpoint is encountered,

Note that breakpoints cannot be used to DEBUG ROMed code because an 'RST!
instruction cannot be patched into the code.

When a breakpoint is encountered during program execution, DEBUG will display
the contents of the program registers in the following format:

A FLAGS BC DE HL SP @B @D @H @SP
13 goap 2000 2000 91A2 £P 9P PR 14FE

Refer to the DISR command section for a detailed description of this display.

4.711.5.2 PERMANENT BREAKPOINTS

Permanent breakpoints are set using the SET command. These breakpoints are
not cleared when control of the processor is returned to DEBUG. Permanent
breakpoints are only cleared by the CLR command. Permanent breakpoints can
be used as traps on such things as error routines or executive loops.

Note that permanent breakpoints do not leave a 'RST' instruction in the
program code. The existence of a permanent breakpoint tells DEBUG to place
a breakpoint in the code only when the program is executing. Thus the
original program is intact whenever the DEBUG has control of the processor

4.11.5.3 THE SET COMMAND

SET <breakpoint #> <address>

The SET command detines a permanent breakpoint. The breakpoint # and the

hex address at which the breakpoint will be set are entered with the command.
More than cne breakpoint # may be set with the same breakpoint address.
However, an attempt to SET a breakpoint # which is already set will cause the
message SYNTAX ERROR to be printed and the command to be ignored. A maximum
of 4 breakpoint #'s may be set at any time. Example:

*SET 1 2354

Permanent breakpoint number 1 was set at location 2354 (hex).

Rev. 8 9/78 4-82

4.11.5.4 THE DISB COMMAND

DISB

The DISB command displays all currently SET breakpoints.
Example:

DISB
g1 2354
B3 2365

The display indicates that breakpoint number 1 is set at address 2354 (hex)
and breakpoint number 3 is set at address 2365 (hex). Breakpoints number
2 and 4 are not SET. ’

4.11.5.5 THE CLR COMMAND

CLR [<breakpoint #>]

The CLR command clears a SET breakpoint. If the optional breakpoint number
is not entered, then all SET breakpoints will be c¢cleared. If a breakpoint
number is entered but is not currently SET, the message SYNTAX ERROR will be
displayed. ’

Example:

*CLR 1

Permanent breakpoint number 1 is cleared.

4.11.5.6 THE EXEC COMMAND

EXEC <starting address>

The EXEC command transfers control of the processor to the user's program.
The processor's PC register will be set to the entered starting address and
execution will start there. If a breakpoint is encountered, control of the
processor will be returned to DEBUG. If no permanent breakpoints are SET
at that time, the program will retain control of the processor.

Example:
*EXEC 3p14
A FLAGS BC DE HL SP @B @D @H @SP

po 7 C QP12 P341 3674 9195 9@ 23 0@ 3854
3507 JMP 3643

Program execution was started at location 3814 (hex). A breakpoint was
encountered at location 35@7 returning control back to DEBUG.

Rev. 8 9/78 4-33

4.11.5.7 THE REPT COMMAND

REPT <breakpoint #> <repeat count>

The REPT command transfers control to the user's program until a permanent
breakpoint has been hit a given number of times. The breakpoint number entered
specifies the breakpoint address and the entered repeat count snecifies the number
of times it must be hit before control is transferred back to DEBUG. If any
breakpoint other than the one being repeated is encountered, control will be
transferred back to DEBUG and the repeat operation is cancelled. If the
breakpoint # specified in the REPT command is not set, a SYNTAX error is displayed.
Example:

*SET 1 3900
*00 B 2000 0020 2009 2000 00 00 39 2P0
3002 DCR B

*00 1F02 0093 2000 0000 90 00 00 2990
3991 JMP 3P00
*REPT 1 8
A FLAGS BC DE HL SP @B @D @H @SP
*BG E 1800 0000 9000 D1AD 90 20 3D 000D

The breakpoint at location 3@@@ (hex) is allowed to be passed over 8 times
before control is transferred back to DEBUG and the processor state is
displayed.

4.11.5.8 TEMPORARY BREAKPOINTS

Temporary breakpoints are one-shot breakpoints which the user instructs
DEBUG to place in the program by using the CONT or RET commands. When
control of the processor returns to DEBUG, the breakpoints are cleared.
Temporary breakpoints are the type normally used to follow the execution of
the program from routine to routine.

4.11.5.9 THE CONT COMMAND

CONT [<break 1> [<break 2> [<break 3> [<break 4>7]13

The CONT command continues execution of the user's program at the current

PC location with up to four temporary specified breakpoints. If no temporary
breakpoints are specified, then control will never return to DEBUG unless an
already specified permanent breakpoint is encountered. Example:

*CONT 356F

A FLAGS BC DE HL SP BB @D @H @SP
20 M D120 2341 3674 9195 90 90 99 3054
3507 DCR A
*

Program execution is resumed at the next instruction indicated by the value
of the user program PC register and execution continues until the breakpoint
at location 356F (hex) is encountered, which returns control back to DEBUG.

Rev. 8 9/78 4-84

4.11.5.10 THE RET COMMAND

RET

The RET command transfers control of the processor to the user's program
with a temporary breakpoint set at the address which is on the top of the
stack (@SP). This allows the user to 'RETURN' from a subroutine which was
'CALL'ed by the program.

If a breakpoint other than the 'RET' breakpoint is hit, control will return
to the DEBUG and the 'RET' breakpoint will be cleared.

Note. The RET command should only be used after a 'CALL' type instruction
has been executed or when the top of the stack contains a known return
address. Otherwise a breakpoint might be placed at an address which is not

a part of the program. (e.g. the Tast instruction was a 'PUSH'- and therefore
the top of the stack contains a data word instead of a return address)
Example:

*DISR
A FLAGS BC DE HL SP @B @D @H @SP
o8 Z poe0 0000 0000 P00 0D 99 00 PPGD
2500 LXI SP,3000

*09 Z 2000 2000 00P0 3000 PO AP PP 3243
2Ap3 CALL 2B@Q v

*B0 Z pogp A90@ POAP 2FFE 9P PO PP 2AP6 -
2Bp@ STC

*RET
A FLAGS BC DE HL SP @B @D @H @SP
pg ZC poOPe 2000 0PP@ 3000 30 PP 3P 3243

After the second instruction single-step, the RET command causes a temporary
breakpoint to be set at location 2AP6 (which is the return address on the top
of stack) and program execution is resumed. !'hen the program reaches 2A06
control of the processor is returned to DEBUG and the processor state is
displayed.

Excepfﬁon Note: The follawing program fragment illustrates a special
programming construct with which the RET command can not be used.

Call MESSAGE
TEXT DTH 'SIGNON'
RET

MESSAGE XTHL
CALL BLINEOUT
INX H
RET

If an RET command is given after the call to MESSAGE has just been executed,
the return address on the top of the stack is pointing to location TEXT.
DEBUG puts a breakpoint at that location. MESSAGE then outputs the Signon
text and returns without encountering the breakpoint because the return
address has been modified by the called routine.

Rev. 8 9/78 4-35

4.11.5.11 THE SINGLE STEP MODE

The single-stepping mode of program execution allows a cdetailed inspection
of what the program is doing on an instruction by instruction basi: Exch
time the space bar is pressed in response to the DEBUG '*' prompt, DEBUG
causes the next instruction in the program to be executed and displays

the contents of the processor registers.

Example:

*DISR

13

A FLAGS BC DE HL 'SP @B @D @H @SP

0020 0300 0000 P1A2 00 @D PP 14FE

2AP@ STC

*13 C 0220 0000 0P00 P1A2 9D 9P 93 14FE
2APT XRA A

B9 7 E P00 P00 PP2P 21A2 PP PO 0@ T4AFE
2AQ2 STA 345F

At
an
In
to

the '*' prompt the user typed a space which caused DEBUG to single-step
instruction and print the resulting register contents on the same line.

the single-step mode of operation, DEBUG makes a local copy of the instruction
be executed in its own buffers. DEBUG then executes the instruction in its

buffers and stores the results. The single-step mode does not need to modify
the program in any way which allows programs in ROM may be stepped through
without problem.

4.11.5.12 THE TRACE MODE COMMAND

TRACE

The TRACE command operates as a continuous single-stepping command. It is
used to provide a trace printout of the user's program. During a TRACE the
Control S / Control functions provide pause and break control.

Example:

*TRACE

20

E 1300 0007 0002 D1AD 29 20 09 2OGR

3931 JMP 3020

@0 £ 1800 2000 0000 PIAD 0P 20 09 29AD
3000 DCR B
0 B 1720 pPOG 2009 21AQ P9 20 00 2000

3901 JIMP 3090

20 £ 1700 2000 2000 D1AD 20 089 29 0G0
3909 DCR B
i 1600 2020 2000 21AQ 89 09 20 P29

3001 JMP 3p99

*

The program was put in TRACE mode. The Control C key was pressed and stopped
the TRACE after 5 instructions had been executed.

Rev.

8 9/78 4-86

Exception Note: The nature of Micropolis disk subsystems is such that a
disk access must not be interrupted during the data transfer process which
is accompiished by a program loop. For this reason it is not possible to
TRACE successfully through portions of a program that call MDOS disk access
routines, because the TRACE command effectively interrupts the program once
every instruction.

4.11.6 INITIATING A DEBUG SESSION

Both DEBUG and the program to be monitored must be in memory at the same
time. The program is loaded into memory first by using the LOAD command
from the MDOS executive. DEBUG is then invoked from the MDOS executive
by typing the name of a configured DEBUG version as created by DEBUG-GEN
(see Section 4.12). The version invoked should not use any memory space
that 1s reguired by the program to be monitored. Example:

>LOAD "TEST PROGRAM"

>DEBUG

MICROPOLIS DEBUG V.S. X.X - COPYRIGHT 1978
*

DEBUG signs on and displays its executive prompt. HMonitoring of program
execution is now controlled from the DEBUG executive.

If the program to be monitaored is one which runs in the MDQS Application
area, and which requires one or more ASCII or binary parameters that are
normally input as part of an MDOS Executive statement, then the way to
initiate program execution control is by SETting a permanent breakpoint
at the address of the entry point (first instruction) of the program and
then EXECuting the MDOS Executive at the warmstart address which is 4E7H.
Example:

*SET 1 2Bp2

*EXEC 4E7

MICROPOLIS MDOS V.S. X.X - COPYRIGHT 1978
>APP "ASCIIPARM" 12 ‘

A FLAGS BC DE HL SP @B @D @H @SP

2808 LXI SP, Q1AQ

Permanent breakpoint number 1 is set at the program entry point 2BB9 hex
and execution 1s begun at the system warmstart address. The MDCS executive
signs on and prompts for a command. The APP command is used to transfer
control to the start of the program in the apolication area and to pass

one ASCII and one numeric parameter. The breakpoint is then encountered.
DEBUG outputs a register display and waits for additional single-step,
breakpoint or other commands.

9/78 4-87

(o8]

Rev.

[f the program to be monitored is ane which can be executed directly without
requiring any parameters from the MDOS executive, then the simplest way

to initiate program execution control is to set the PC register to the program
entry point address. Set the stack pointer to an appropriate address and then
use the CONT command to set a temporary breakpoint at the first desired stop
point and transfer control to the program. Example:

*PC 3000
*SP 1A9
*CONT 3920

The program counter is set to 3P@P hex and the stack is set at 1AD hex. A
temporary breakpoint is set at 3920 hex -and orogram execution is begun at
the PC value, 3029 hex. When the temporary breakpoint is encountered DEBUG
will output a register display and wait for a new command.

4.11.7 EXITING DEBUG

The user may exit DEBUG in one of two ways. First, the user may simply
transfer control of the processor to the program permanently. This is done
by clearing all permanent breakpoints with the CLR command and then using
the CONT command without setting any temporary breakpoints. Second, the
user may simply return to the MDOS executive. This is done by CLRing all
permanent breakpoints and then typing:

*EXEC 4E7

This warmstarts the MDOS executive and leaves the orogram without any
breakpoints set.

4.11.8 RE-ENTERING DEBUG

If control of the processor has been permanently given to the program, DEBUG
may be restarted by executing the first address of the 1K houndary on which
DEBUG is running. This 'warmstart' procedure will cause any breaﬁpoints
which were set in the program to be replaced by the original instructions.

An example of a situation where a restart of DEBUG would be necessary is as
follows. A breakpoint was set in the program and control transferred by a
CONT command. However, the program entered a loop which had a bug such that
the loon was never exited. This caused the system to lock up. The only

way to get control back to DEBUG is by restarting DEBUG.

4.11.9 SAMPLE PROGRAM DEBUGGING SESSION

This section contains a sample debugging session as an example of the use of
various DEBUG features. The program being DEBUGged is Tisted in 4.11.9.1.
Assume that the program and DEBUG are on disk unit @ along with an MDOS
system. The actual debugging session is shown in Section 4.11.9.2.

Rev. 8 9/78 4-88

4.11.9.1 SAMPLE PROGRAM LISTING

3909 16 09 2000 MVI D,?
3002 21 80 92 9@10 LXI H,28pH
3Pp5 CO 3@ P@P2@ LOOP: CALL SUB
3PS 25 P30 DR H
309 C2 05 30 §PAP JNZ LOOP
3gpC 7D pO5P MOV ALL
300D F po6D RRC

30PE 6F 079 MOV LA
300F D2 §5 30 9P8P JNC LOOP
3912 C9 3999 RET

3913 F5 p199 SUS: PUSH PSW
3914 7C ARy MOV ALH
3915 B5 2129 ORA L
3316 F1 P130 POP PSH
3917 C9 149 RET

4.11.9.2 DEBUGGING SESSION

The following text is a description of the debugging session listing which
follows.

The first three Tines show the test program being loaded into memory along
with the load and execution of the DEBUG. Once DEBUG is loaded and running
it signs on and displays its executive nrompt '*', At that point the PC

and SP registers are initialized so that the program can be tested. A
permanent breakpoint is set at the final RET dinstruction so that the program
will not return illegally. Then the first three instructions of the program
are single-stenped leaving the proagram inside the subroutine. The subroutine
is RETurned from and execution is allowed to nroceed to location 3@8C using
the COMT command. Then the TRACE command is used to let execution proceed.
The TRACE is cancelled at location 3¢@5. A permanent breakpoint is SET and
the REPT command used to allow the inner loop (the CALL, DCR H and JNZ) to
execute twice. After two loops control returns to DEBUG. The second
breakpoint (the one used for the REPT) is cleared and the program is allowed
to execute to the final RET instruction. Having finished testing the program,
MDOS is warmstarted.

MICROPOLIS MDOS V.S. 4.9 - COPYRIGHT 1978

>LOAD "TEST" load program into memory
>DEBUG-70 run debug (780@ hex)

MICROPOLIS DEBUG V.S. 4.9 - COPYRIGHT 1978

*SP 1AQ set up a stack
*PC 3000 set up PC

Rev., 8 9/78 4-89

*DISR
A FLAGS BC DE HL SP @B @D @H @SP
80 IC £ D000 2900 200D B1AD C3 C3 C3 5845
30090 MVI D,9Q
*SET 1 3@12 set breakpoint on final RET
*DISB
g1 3212
*8p ZC E 0090 000P 9PA0 @1A@ C3 C3 C3 5845 single-step
3092 LXI H,0289
*80 ZC £ poop 43pp 280 P1AP C3 C3 11 5845 single-step
3935 CALL 313
*30 ZC £ 2000 9000 9289 A19E C3 C3 11 3308 single-step
33713 PUSH H :
*RET return from SUB call
A FLAGS BC DE HL SP @B @D @H A@SP
gz M pOR0 204Q 9283 @1AP C3 €3 11 5845
3008 DCR H
*CONT 300C set temporary break and go
A FLAGS BC DE HL SP @B @D @H @SP
P17 £ PpP3D 9209 9983 P1AD C3 C3 PA 5845
3PaC MOV A,L

*TRACE trace execution
80 Z £ 20p0 2900 0089 P1AD C3 C3 QA 5R45
3990 RRC

40 7 E D000 200D 2pSP D1AQ C3 C3 PA 5345
39Q0E MOV L,A
40 7 E D020 PRoP Pe4p 21AP C3 C3 QA 5845
30QF INC 3985
40 7 £ pogp PAP0 2049 PIAD C3 C3 DA 5845

3¢@5 CALL 3013 Control € hit here
*SET 2 3p0C set permanent break
*REPT 2 2 execute inner loop twice

A FLAGS B3C DE HL SP @B @D @H BSP

20 7 E Q000 2200 2920 P1AQ C3 C3 PA 5845
3paC MOV ALL

*CLR 2 clear breakpoint 2
*DISB display breakpoints
21 3012

*CONT complete program

A FLAGS BC DE HL SP @B @D @H ASP
890 ZC E 0000 2000 2083 P1ARQ C3 C3 DA 5845

3012 RET
*CLR clear all breakpoints
*EXEC 4E7 warmstart MDOS

MICROPOLIS MDOS V.S. 4.8 - COPYRIGHT 1973

20
{D
<
(o8]
O
\
~1
(83}
£
)
O
(o)

4.17.70 USING DEBUG WITH BASIC

DEBUG is designed so that it is independent of the MDOS executive. The
only part of PDS on which DEBUG relies is the console and printer I/0
logic contained in the RES module. This independence makes it passible to
use DEBUG in conjunction with Micropolis BASIC to debug user written
machine language routines that BASIC accesses via its DEF FAA construct.

To use DEBUG in this way, its filetype must be changed to an overlay type
C, so that it may be accessed with the BASIC LINK statement. This can be
done from the MDOS executive by using the TYPE command.

The BASIC program and the machine subroutine should be loaded prior to
accessing DEBUG. Also the end of BASIC's memory space must avoid conflict
with the machine routine and the particular version of DERUG being used.
When these conditions are met DEBUG can be accessed from the BASIC monitor
by using the statement LINK "DEBUG-XX". Example:

MICROPOLIS BASIC V.S. X.X - COPYRIGHT 1978

READY

LOAD "BASICPGM"
READY

LIST

19 DEF FAA=16R7@1P
20 A=FAA (1)

3¢ PRINT A

49 END

READY

MEMEND 16R7900
READY

LOAD "MROUTINE"
READY

LINK "DEBUG-74"

MICROPOLIS DEBUG V.S. X.X - COPYRIGHT 1978

*SET 1 7910
*EXEC 4E7

MICROPOLIS BASIC V.S. X.X - COPYRIGHT 1978

READY

RUN

A FLAGS

............ DEBUG Register display
7013 PUSH H ,

*

Rev. 8 9/78 4-91

From the BASIC monitor the file “BASICPGM" 1is Joaded and listed. It is a
program that accesseas a machine languade routine beginning at address 7919
hex. BASIC's end of memory is set to 7999 hex and the machine routine
"MROUTINE" is loaded in above the end of BASIC. A version of DEBUG which
starts at 7499 hex is then linked to. 1In DEBUG a permanent breakpoint

is set at 7010 hex, the beginning of the machine routine. Control is then
transferred to the system warmstart address 4E7 hex and BASIC signs on
again. A RUM command starts execution of the BASIC program, which accesses
the machine routine when 1ine 2@ is executed. The DEBUG breakpoint is
encountered and DEBUG outputs a register display and waits for a command.
The machine routine accessed from BASIC may now be stepped through or
otherwise debugged as required.

4.12 THE DEBUG-GEM UTILITY

The Micropelis DEBUG program is supplied in a non?configured form embedded
within the DEBUG-GEN utility program. Before DEBUG can he used an executabie
version must be obtained by running the DEBUG-GEN utility.

DEBUG requires 4K of contiguous memory address space which may start on any
1K boundary abave the beginning of the MDOS anplications area. DEBUG-GEN
accepts a memory space specification and creates a version of DEBUG that
uses the specified memory space. ‘

From the MDOS executive, DEBUG-GEN is invoked by entering the filename
DEBUG-GEN 1ike an executive statement (see Section 4.1.2) or by entering
the command LOAD "DEBUG-GEN" followed by the command APP.

The program signs on with the message
DEBUG GENERATIOMN PROGRAM VS. X.X.

and prompts for the memory address at which the DEBUG will run with the
message

ENTER PAGE ADDRESS (2C-FP) 2

Type a two digit hexadecimal number that corresponds to the high~order hyte
of the start address where the DEBUG will run. This address may only be on

a 1K boundary. The proagram will ignore the lowest 2 bits of the response.

DEBUG-GEN creates a type 14 file on disk unit @ and fills it with the
relocated DEBUG system. The file name is "DEBUG-XX" where XX {hex) is the
page address entered by the user.

Rev. 8 9/78 4.92

Example:

MICROPQLIS MDOS V.S. 4.8 - COPYRIGHT 1978
>DEBUG-GEN

DEBUG GENERATION PROGRAM V.S. X.X

ENTER PAGE ADDRESS (2C-F@) ? 7p

RUN FILE NAMED DEBUG-79

>

In this example a program file named "DEBUG-78" is created on disk unit @.
This file is a running DEBUG package which will use the memory space from
7000H to 7FFFH.

Rev. 8 9/78 4-93

Yy MICROPOLIS DISK EXTENDED BASIC

5.0 INTRODUCTION

Micropolis Program Development Software consists of two systems, the Micropolis
Diskette Operating System (MDOS) and Micropolis Disk Extended Basic. Both
systems are supplied on a MASTER diskette included with each Micropolis disk
subsystem. The auto-load bootstrap brings MDOS, which is the first system on
the diskette, into memory. Control is transferred from MDOS to BASIC by

typing the filename BASIC to the MDOS executive. It is also possible to create
a BASIC only diskette so that BASIC may be directly loaded by the bootstrap
system. See Chapter II, Section 2. This chapter describes the Micropolis
BASIC interpreter and its associated BASIC programming language.

The Micropolis BASIC Interpreter is a special 8080 machine language program
supplied on a master diskette included with the disk subsystem. It provides
a simple and powerful means for developing, maintaining and executing BASIC
programs on 8080 type microcomputer systems. The user interacts with the
Interpreter through a terminal which consists of an input keyboard and an
output display that may be video or printed hardcopy. Lines entered at the
keyboard may be program lines which are stored in the program buffer or
commands for immediate execution. A program in the program buffer may be
modified in place, stored as a disk file, retrieved from disk and executed
under control of the Interpreter. These functions and others are invoked
by entering the appropriate immediate commands. Elements of the BASIC
Interpreter and its use are described in Sections 5.1 and following.

The original BASIC programming language was developed by John Kemeny and
Thomas Kurtz at Dartmouth College, Hanover, New Hampshire; Micropolis
Extended Disk BASIC is an elaborated version of that language. BASIC
consists of data types, operators, function references and key words which
combine to form statements that can be grouped into executable BASIC
programs. The details of these language elements and the rules for crm-
bining them are described in sections following.

5.1 ENTERING LINES TO THE BASIC INTERPRETER

The BASIC Interpreter is loaded into the main computer memory from MDOS

or booted from a BASIC only diskette. At the end of this procedure the
message READY is displayed at the terminal. This means that the Interpreter
is in control and is waiting for a line to be input.

A Tine consists of not more than 250 characters typed in sequence. The
entry of a line is terminated by depressing the RETURN key. If more than
250 characters are typed prior to the RETURN the Interpreter will output
the message INPUT OVERFLOW and cancel the entire line.

During the entry of a line each character that is typed is echoed by the
Interpreter on the terminal display. If the character typed is not part
of the BASIC character set (see Section 5.15) it will not be echoed and
will not be included in the 1ine entered. The Interpreter also keeps
track of the character count as a line is typed and automatically outputs
a carriage return / line feed combination to the terminal display when

5-1
Rev. 7 3/78

the count exceeds the width of the display device. This combination is not
included in the line count.

Two control features may be used when entering a line.

1) when DEL or RUBOUT key is depressed the next previously
typed character will be deleted from the line. A back arrow
is echoed to the terminal display for each character deleted.
Neither the deleted characters nor the back arrows are included
in the 1ine count. .

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current line to be cancelled. A carriage return
line feed combination is echoed to the terminal display; the
Interpreter is positioned to accept entry of a new line.

5.2 ENTERING A PROGRAM

The BASIC Interpreter recognizes a line as a program line by the presence
of a leading line number. A BASIC program is entered one program line at
a time using the normal line entry procedures. The message READY is not
displayed after the entry of a program line. This permits consecutive
program lines to be entered conveniently. As each program line is entered
the Interpreter stores it in a program buffer which it maintains in the
computer system's main memory.

Fach line of a BASIC program is composed of a line number followed by one
or more statements (see Section 5.20) which are separated from each other
by a colan (:). The length of a program line may not exceed 250 characters
including the digits in the Tine number. Each line number must be within
the range 0 - 65529. Spaces preceding the first digit of a line number

are ignored. Spaces embedded in a line number are not Tegal. All other
spaces in a program line are preserved as entered. . .

Program lines are stored in the program buffer in numeric order by line
number. The lines in the buffer at any given time constitute the current
orogram. This program may be modified in three ways.

To insert a new program line, type in the new line including the line
number. The interpreter will automatically place the new Tine in the
orogram buffer in proover sequence.

To modify an existing program Tine enter the 1ine number and the new
statement or statements. The new line will automatically replace the
old Tine in the program buffer that has the same line number.

To delete an existing program line type the Tine number followed by carriage
return. The corresponding line will be eliminated from the program buffer.

MNote that multiple 1ines may also be eiiminated by using the DELETE command

as described in 5.4.

(@2]
1
™

Rev. 8.1 2/5/79

5.3 IMMEDIATELY EXECUTED LIMES

Whenever a line is typed in, the Interpreter scans it from left to right
until the first non blank character is encountered. If this character is
a digit it is assumed to be the first digit of a 1ine number and the line
is treated as a program line. (see Section 5.2). If the first non blank
character is not a digit then the line is interpreted for immediate
execution.

Most normal BASIC statements may be entered for immediate execution.
Exceptions are the DEF FN, DEF FA, and DATA statements which are only
functional within a program. Multiple statements may be included in an
immediate 1ine by separating them with colons (:). BASIC statements are
covered in Section 5.20.

Another form of immediate line is the command. Commands are operations
which generally make sense only in immediate mode. Most of the commands
in BASIC system relate to the program buffer and to the manipulation and
execution of BASIC programs. The available commands are described in the
following sections.

EDIT, RENUM and MERGE are three commands which function only in the immediate
mode. These commands cause a SYNTAX error if they appear in a program.

5.3.1 THE BASIC EDIT COMMAND

EDIT linenumber

A specified Tine in the BASIC program buffer can be changed without retyping
the entire line by using the EDIT command. EDIT linenumber is the form of
this command. If the specified linenumber is not found in the current program
buffer, the message STMT # NOT FOUND is displayed. BASIC processes an EDIT
command by copying the specified 1ine into a special editing buffer and
setting an invisible pointer to point to the first digit of the 1inenumber
that begins the taxt line. BASIC is then in the E£DIT command mode. A
separate set of single key commands is available for editing a line in the
special edit buffer. The whole line including the linenumber can be edited.

5.3.1.71 ADVANCING THE BASIC EDIT POINTER - THE SPACE 8AR

The invisible edit pointer in the special editing buffer may be advanced
one position by pressing the space bar one time. The character to which
the edit pointer is pointing will be displayed on the console. This
indicates that the edit pointer has passed aver the character. The edit
pointer is then advanced so that it is now pointing at the next character
in the text line immediately after the one that is displayed. The entire
Tine can be displayed in this manner.

5.3.1.2 CHANGING THE NEXT CHARACTER - C

The character to which the edit pointer is pointing in the edit buffer
can be changed by typing a ¢ or C, followed by the new character.

The new character is printed on the console and replaces the character
in the edit buffer at that position. The edit pointer is advanced to
point to the character immediately after the new displayed character.

Rev. 8 9/78 5-3

5.3.1.3 DELETING THE NEXT CHARACTER - D

The character to which the edit pointer is pointing in the edit buffer
can be deleted by typing a d or D. The deleted character is printed
on the console enclosed in backslashes (/). The edit pointer is left
pointing at the character immediately after the deleted character.

5.3.1.4 INSERTING CHARACTERS - 1

Characters may be inserted into the line or at the end of the line by

typing an i or I followed by the characters to be inserted. The

insertion begins immediately before the character pointed to by the

edit pointer. Characters are inserted in sequence as typed until the

insert mode is terminated by depressing the ESC key. The edit pointer
remains pointing to the same character that it pointed to when the insertion
began. The insert mode may also be terminated by pressing the return key.
This alsd terminates the EDIT command and replaces the line in the current
text file with the newly edited version from the special editing buffer.

5.3.1.5 LISTING THE LINE IN THE SPECIAL EDITING BUFFER - L

The remainder of the line in the special edit buffer from the position

of the edit pointer to the end of the line may be displayed by typing an

1 or L. The characters are displayed on the console followed by a carriage
return-line feed. The edit pointer is reset to the beginning position.
This command is useful to see what the line looks like before editing is
completed. It may also be helpful to use this command immediately after
entering the original EDIT command. This would display the line about to
be edited without exiting the editing mode.

5.3.1.6 SEARCHIMG TO A SPECIFIED CHARACTER - S

The edit pointer may be advanced in the special editing buffer to the first
accurrence of a specified character by typing an s or S followed by the
character to search for. The characters from the position of the edit
pointer up to but not including the searched for character are printed on
the console. The edit pointer is left pointing at the first occurrence of
the searched for character. If the search argument does not exist in the
line then the entire line is printed and the edit pointer is positioned at
the end of the line.

5.3.1.7 DELETING TO A SPECIFIED CHARACTER - K

Characters in the special editing buffer from the edit pointer position

up to but not including a specified search character can be deleted by
typing a k or K followed by the search character. The deleted characters
are displayed on the console, enclosed in backslashes (/). If the search
arqument does not exist in the edit line, then all the characters from the
edit pointer to the end of the line are deleted. The edit pointer is Teft
pointing at the search character or at the end of the line.

5-4

Rev. 8.3-A 7/1/79

5.3.1.8 QUITTING THE BASIC EDIT COMMAND MODE - 0

The EDIT command may be aborted without changing the Tline in the current
text file by typing a q or Q. The partially edited 1ine in the special
editing buffer is abandoned. No changes are made to the current program
buffer. BASIC is ready to accept a new command.

5.3.1.9 COMPLETING THE BASIC EDIT COMMAND - THE RETURN KEY

The line in the special editing buffer can be placed in the current program
buffer by pressing the return key at any point while in the BASIC EDIT
command mode. If the Tine number of the T1ine in the special edit buffer
matches a line number in the current program buffer, then the edited Tine
replaces the corresponding line in the program buffer and the EDIT mode is
completed. If there is no line in the current program buffer with the same
1ine number as the Tline in the special edit buffer, then the edited line is
inserted into the current program buffer in proper line number order. This
feature facilitates the copying or repetition of program lines by changing
only the line number during the edit.

5.3.2 THE RENUM COMMAND

RENUM

RENUM (starting-number)

RENUM (starting-number, increment)

RENUM (starting-number, increment, first-line-to-change)

Some or all of the lines in the current program buffer can be renumbered by
using the RENUM command. This command renumbers lines in the program, changing
line numbers, and line number references that follow branch statements.

These statements are GOTOQ, GOSUB, ON...GOTO, ON...GOSUB, THEN, RESTORE. The
£RROR, END, and ENDPAGE options of the OPEN statement are also affected.

The forms of this command are RENUM, RENUM (starting-number), RENUM (starting-
number, increment), and RENUM (starting-number, increment, first-line-to-change).
RENUM takes the 1ine number of the first-line-to-change and sets it equal to

the starting-number. The line number of each line after the first-line-to-change
is then set to the value of the preceding new 1ine number plus the increment
value. If no first-line-to-change is specified, the first line in the program
buffer is assumed. If no increment value is specified, the value 10 is used.

If no starting-number is specified, the value 10 is used. Typing RENUM alcne
will produce a program numbered from 10 by 1¢'s. Examples:

Assume that the current program buffer contains the following program:

9 REM RENUM EXAMPLE PROGRAM

25 INPUT "VALUE";A

39 PRINT "THE SQUARE ROOT OF";A;"IS";SQR(A)
45 GOTO 25

The command RENUM (50,30,3@) would produce the following:

9 REM RENUM EXAMPLE PROGRAM

25 INPUT "VALUE"A

50 PRINT "THE SQUARE ROOT OF";A;"IS";SQR(A)
8¢ GOTO 25

Rev. 8 §/78 5-4.1

The command RENUM would produce the following:

18 REM RENUM EXAMPLE PROGRAM

20 INPUT "VALUE";A

3@ PRINT "THE SQUARE ROOT OF";A;"IS";SQR(A)
49 GOTO 29

The command RENUM (18#4) would produce the following:

1@ REM RENUM EXAMPLE PROGRAM

119 INPUT "VALUE";A

12p PRINT "THE SQUARE ROOT OF";A;"IS";SOR(A)
139 GOTO 119

The command RENUM (1000,198) would produce the following:

1909 REM RENUM EXAMPLE PROGRAM

1199 INPUT "VALUE";A

12@@ PRINT "THE SQUARE ROOT OF";A;"IS";SQR(A)
1309 GOTO 1192

Several error conditions are checked before any renumbering is done. This

is to safequard the program against possible damage. As errors are detected
error messages are printed along with the lines where the error occurred. MNo
changes are made to the program if any errors are encountered and no
renumbering can be successfully carried out until the errors are corrected.

Entering a RENUM command may result in the message NUMBER OUT OF RANGE
followed by the 1ine where the error occurred. This is an indication that
the renumbering attempt lead to a 1ine number greater than 65529. This can
be corrected by entering a RENUM with a smaller increment value that does
not cause a line number greater than 65529.

Entering a RENUM command may result in the message MEMORY OVERFLOW. This
indicates that renumbering would create a program to long to be run in the
memory currently available to BASIC. The program is not renumbered.

Entering a RENUM command may resuit in the message STMT # NOT FOUND without
printing the offending line. This occurs when the specified
first-1ine~to-change does not exist in the program. No change is made.
Example; if the program is:

19 PRINT "TEST"
20 GOTO 19

The command RENUM (199,10,30) would cause a STMT # NOT FOUND error because
there is no line 3¢ at which to start renumbering.

Entering a RENUM command may resuit in the message STMT # NOT FOUND followed
by the line where the error occurred. This indicates that a branch statement
(GOTO,GOSUB, etc.) contained a reference to a 1ine number that does not exist
in the program. If this is intentional a stub Tline should be placed in the
nrogram to allow the REMUM to operate. This can be done by typing the Tine
number with a REM statement as a place holder.

Rev. 8 9/78 5-4.2

Entering a RENUM command may result in the message SYNTAX ERROR. This can
be caused by several types of syntactical errors. If the line contains
unbalanced quotes or parentheses the SYMTAX ERRCR message is displayed, or
if renumbering would cause a sequence error in the line numbering (e.g. the
Tines were numbered 10,20,39,49 and you typad RENUM (14,10,3@). This would
result in numbers 19,28,10,28 which is not allowed.). '

The RENUM command does not change 1ine numbers following LIST, or DELETE.
If these statements are used within a program they must be changed manually.

RENUM will not renumber line number references in scientific notation (1E3),
or expressions (GOTO 90*8+3). Such references must be changed manually.

If computed GOTO's, GOSUB's or RESTORE's are used in the program they will
more than likely be incorrect after renumbering unless extreme care is
taken in selecting the renumbering parameters.

Fxample; if the program is:

19 DATA THIS,IS,A,TEST

2p DATA MORE,TEST,HERE,END

3@ INPUT "WHICH DATA,1 or 2",A
4@ RESTORE (19*A)

5@ READ A$,BS$,C$,DS

The command RENUM (190.,10,39) would renumber the executable part of the
program while leaving the DATA statements unchanged.

19 DATA THIS,IS,A,TEST

29 DATA MORE,TEST,HERE,END

1@ INPUT "WHICH DATA,1 OR 2",A
119 RESTORE (19*A)

129 READ A$,35,C$,D8

The computed RESTORE on line 119 would still function after the program is
renumbered. However, if Tines 10 and 2@ had been renumbered, then the
program would not perform as intended.

The RENUM command can cause a line to expand to a length greater than 250
characters. Such a long 1ine can only be created by RENUM and could not be
entered from the keyboard because the input buffer is only 25@ characters
long. The Basic EDIT command uses the 250 character input buffer during
editing. If renumbering causes a 1ine longer than 25@ characters and that
line is later edited using the Basic EDIT command the line will be truncated
at 250 characters by the editor. '

5.3.3 THE MERGE COMMAND

MERGE "unit#:filename"

The MERGE command aljows existing program files on disk to be incorporated
with a program presently in the BASIC program buffer. The form of the
command is MERGE "unit#:filename". The unit# is a number from § to three
followed by a colon. If no unit number is specified, unit zero is assumed.

Rev. 8 9/78 5-4.3

Lines are merged one at a time from the merge file into the current program
buffer, starting with the first line in the merge file. If the line number
in the merge file is the same as a line number presently in the program
buffer, then the line from the file replaces the line in the buffer. If the
1ine number in the merge file does not match any 1ine number in the program
buffer, then the line from the file is inserted in the current program
buffer in proper line number order. When all Tines from the merge file have
been placed in the program buffer the MERGE is complete.

The entire merge file is loaded into memory following the program in the
program buffer. Therefore the length of program in the program buffer plus
the merge program must be less than the space currently available to BASIC,
otherwise a LOAD OVERRUN message is output and the merge does not take place.

The MERGE command also needs some additional buffer space to perform the
merge. If there is not enough room the message MEMORY OVERFLOW is output
and the merge does not take place.

Large programs are often developed as modules. Each module is written with
its test data and debugged separately. The following example shows a three
part survey program. Part 1 reads the survey data and talleys the vote.
This module is allocated line numbers from 100@ to 20@@. The data has been
allocated lines 1@ to 198 and the printer output module is allocated lines
500¢ to 6904@.

The program under test uses lines 18-3p as test data, and lines 5@¢A-5010
prints the test results. The program looks as follows in the program buffer:

10 REM LIVE DATA SUPPLIED BY OTHER PART OF PROGRAM

20 REM TEST DATA.

3¢ DATA 1,1,2,2,3.,3,4,4,2,1,4,1,99

139¢ REM PROCESS SURVEY MODULE.

1019 T=1 :REM INIT TOTAL COUNTER

1329 REM VALID DATA IS 9=NO OPINION,1=YES,2=N0,99=END CF DATA.
1925 READ C

1039 IF C=@ THEN T1=T1+1

184@ 1IF C=1 THEN T2=T2+1

185Q 1F C=3 THEN T3=T3+]

1960 IF C=99 THEN T=T-1:GOTO 5799

1073 IF C<P OR C>2 AND C<>99 THEN PRIMT "ITEM";T;"NOT VALID"
1383 T=T+1

19988 GOTO 1825

5@P@ REM TEST PRINT OUT ROUTINE

519 PRINT "NO OPINION=";T1;" YES=";T2;" NO=";T3:;" TOTAL=":T

This process module with the temporary test data and print logic can be
separately tested,debugged and then saved on disk with the command SAVE "PART1".

The real print module can then be developed as follows:

DELETE

5@p@ REM PRINT MODULE

5019 OPEM 1 "*P" ERROR 5200

5@2p AS="ZZ9":B$="VZ9"

5030 P1=T1/T:P2=T2/T:P3=T3/T

5040 IF P1+P2+P3<>1@Q THEN PRINT"PERCENT ERROR":STOP
5959 PUT 1 TAB(68);"NO"

Rev. 8 9/78 5-4.4

5p6@ PUT 1 TAB(1@);"RESPONSES";TAB(25);"YES %";TAB(46)"NO %",

579 PUT 1 TAB(6@)"OPINION %"

5980 PUT 1 REPEATS("=",72)

5099 PUT 1 TAB(12);FMT(T,A$);TAB(25);FMT(T1,A$);TAB(30);FM (P],BS);
5199 PUT 1 TAB(45);FMT(T2,A$);TAB(51);FMT(P2,85);TAB(6Q) ;FMT(T3,AS);
5119 PUT 1 TAB(69);FMT(P3,B%)

5129 PUT 1 REPEATS("-",72)
513p CLOSE 1: STOP
520@ PRINT ERRS:INPUT"CONTINUE",C$:GOTO 5020

When the real print module is debugged the command SAVE "PART2" saves it aon
the disk.

To test the system PART1 and PART2 are combined by typing the commands

LOAD "PART1" and a carriage return, and then the command MERGE "PART2" and

a carriage return. The combined programs are RUN using the test data. When
these parts are debugged they are saved on disk by typing the command SAVE
"PROGRAM" and a carriage return.

The data is entered into a separate file as fallows:

DELETE

19 REM LIVE DATA

20 DATA 1,1,1,2,2,1,8,1,2,1
39 DATA 9,2,2,2,1,2,2,1,1,1
49 DATA 1,1,1,2,2,1,2,1,08.0
50 DATA 99

And then saved by typing the command SAVE "DATA" and a carriage return.
Several different data files can be produced if needed.

The final program is loaded in two parts by typing the commands:
LOAD "PROGRAM" and a carriage return and then MERGE "DATA" and a carriage
return. The final program appears as follows:

19 REM LIVE DATA

29 DATA 1,1,1,2,2,1,0,1,2,1
39 DATA 92,2,2,2,1,2,2,1,1,1
4@ DATA 1,1,1,2,2,1,2,1,8,0
59 DATA 99

1909 REM PROCESS SERVEY MODULE.

1819 T=1 :REM INIT TOTAL COUNTER

1p2p REM VALID DATA IS p=NO OPINION,1=YES,2=N0,99=END OF DATA.
1925 READ C

1030 IF C=9 THEM T1=T1+1

1949 IF C=1 THEN T2=T2+]

1p50 IF C=3 THEN T3=T3+]

1969 IF C=99 THEN T=T-1:GOTO 5909

1979 IF C<p OR C>2 AND C<>99 THEN PRINT "ITEM";T;"NOT VALID"
1980 T=T+1

199@ GOTO 1925

Rev. 8 9/78 5-4.5

5P@@ REM PRINT MODULE

5p1@ OPEN 1 "*P" ERROR 5209

5@29 A$="779":B$="VZ9"

5@3p P1=T1/T:P2=T2/T:P3=T3/T

5@4p IF P1+P2+P3<>1@P THEN PRINT"PERCENT ERROR":STOP
5050 PUT 1 TAB(6@);"NO"

5p6@ PUT 1 TAB(1Q);"RESPONSES";TAB(25);"YES %":TAB(46)"N0 %"

5070 PUT 1 TAB(6@)"OPINION %"

5@8@ PUT 1 REPEATS("=",72)

5099 PUT 1 TAB(12);FMT (T A$);TAB(25) ;FMT(T1,AS);TAB(30) ;FMT(P?,BS);
5199 PUT 1 TAB(45);FMT(T2,A$);TAB(51); FMT(PZ BS);TAB(6Q);FMT(T3,AS);
511@ PUT 1 TAB(69);FMT(P3,BS)

512@ PUT 1 REPEATS("-",72)
513@ CLOSE1: STOP
5290 PRINT ERRS:IMPUT"CONTINUE",C$:GOTO -5p20

5.4 THE DELETE COMMAND

Groups of program lines may be eliminated from the current program Buffer
by using the DELETE command. There are four forms of this command.

Type DELETE X-Y to eliminate the lines numbered X through Y. Line number

Y must be greater than line number X. If either line X or Tine Y or both

are not in the current program buffer a LINE NOT FOUND message will be displayed
and nothing will be deleted.

Type DELETE X- to eliminate line X through the last line in the current
orogram buffer. If line X is not in the buffer a LINE NOT FOUND message
will be displayed and nothing will be deleted.

Type DELETE -Y to eliminate the first Tine through line Y in the current
program buffer. If line Y is not in the buffer a LINE NOT FOUND message will
be displayed and nothing will be deleted.

Type DELETE to eliminate the entire contents of the current program buffer.
The buffer will be set to empty and a new program may be entered.

5.5 THE LIST COMMAND

A1l or part of the program in the current program buffer can be Tisted
on the terminal display device by using the LIST Command. There are four
forms of this command.

Type LIST X-Y to display the 1ines numbered X through Y. Line number Y must
be greater than line number X. If either 1ine X or Y are not in the current
program buffer the first present Tine number greater than X or Y will be used
instead.

Type LIST X- to display the lines from line X through the last line in the

current program buffer. If line X is not in the current program buffer the
first present 1ine number greater than X will be used instead.

Rev. 8 9/78 5-4.6

Type LIST -Y to display the first 1ine through Tine number Y in the current
program buffer. If line Y is not in the current program buffer the first
present line number greater than Y will be used instead.

Type LIST to display the entire content of the current program buffer.

5.6 THE SAVE COMMAND

A program in the current program buffer can be stored on disk for later
retrieval by using the SAVE command.

SAVE "N: unit number: name of file" is the general form of the command.

The word SAVE and the quotation marks and the name of file must always be
present. The name of file may be from 1 to 18 characters long. The characters

which are legal in a file name are the letters A through Z, the digits d
through 9, and ten special characters including comma (,), dash),
period (.), slash (/), semi-colon (;), less than ({), equal (=), greater
than ()), question mark (?) and at sign (@).

The N: is optiomal. If it is not included in the command the existing
file with the specified name on the specified unit will be overwritten

and replaced by the program in the program buffer. If no such file exists
the message FILE NOT FOUND will be output. However, if the N: is included
in the SAVE command then a new file will be created with the designated
name on the designated unit. If N: is used and the file already exists

on the specified unit the message DUPLICATE NAME will be output.

The unit number: is also optional. When present it consists of a single
digit from @ to 3 followed by the colon (:). It represents the address
of the disk upit on which the specified file is to be replaced or created.
If no unit number is specified in the SAVE command, unit @ is assumed.

5.7 THE LOAD COMMAND

A previously stored program can be retrieved from disk and placed in the
current program buffer by using the LOAD command.

LOAD "unit number: name of file' is the general form of the command.

The word LOAD and the quotation marks and the name of file must always be
present. The name of file may be from 1 to 1@ characters and may use the
letters A-Z, the digits §-9 and the special characters (,), (-), (.), (/),
(;), ('()7 (=)’ (?)y(@)’(>)‘

The unit number: is optional. TIf it is used it must consist of a single
digit from @ to 3 followed by a colon (:). It designates the address of

the disk unit on which the specified file is to be found. If no unit number
is specified, unit ¢ is assumed.

If the filename specified in a LOAD command is not present on the specified
unit the message FILE NOT FOUND will be output. When a program file is
successfully loaded it replaces the contents of the current program buffer
and all data associated with the last program in the buffer is lost. If
the filename specified in the LOAD command is a data file (see section 5.21)
which cannot he properly placed in the program buffer, the message NOT A
LOAD FILE will be output.

5.8 THE DISPLAY COMMAND

The names of all files which are presently stored on a diskette are recorded
in a special file on that diskette. This special file is known as the
diskette directory and its name is always DIR. The names currently recorded
in a diskette directory can be output to the terminal display by using the
DISPLAY command.

DISPLAY '"unit number: DIR" is the general form of the command.

5-5
Rev, 2 5/77

The word DISPLAY and the quotation marks and the name DIR must be nrresent.

The unit number: is optiomal. 1If it is not present unit @ is assumed. If

it is used it must consist of a single digit from @ to 3 followed by a colon (:)
It designates the address of the disk unit whose directorv is to be displayed,

The DISPLAY command outputs the filenames five to a line. The first name
shown should always be DIR, On disks where it is present the second name
shown should always be BASIC.

If the diskette in the specified unit does not contain a valid directory file
a PERM L/0ERR message will result because the disk cannot be accessed by

the BASIC system.

5.9 THE SCRATCH COMMAND

4 file that 1is stored on disk may be eliminated by using the SCRATCH command.
SCRATCH "unit number: name of file' is the general form of the command.

The word SCRATCH and the quotation marks and the name of file must always
be present. The name of file may consist of 1 to 1@ characters, including
the letters A-Z, the digits (-9 and the special characters (,), (-), (.),

(s Gy, (O, =, (., (O, ©.

The unit number: is optional. If it is used it must consist of a single
digit from @ to 3 followed by a colon (:). It designates the address of
the disk unit from which the specified file is to be eliminated. If no

unit number is specified, unit @ will be assumed. If the specified file
on the specified unit does not exist the message FILE NOT FOUND will be

output.

When a file is SCRATCHed the storage space upused by that file is automatically
freed and made available for reallocation.

5.10 THE RUN COMMAND

A BASIC program must be in the current program buffer in order to be
executed by the interpreter. This may be asccomplished by tvping in the
program from the input terminal or by using the LOAD command. Once a
program is in the current program buff er it may be executed by using the
RUN command.

RUN is the form of the command.

When the RUN command is entered, the interpreter resets all disk files to
"closed'", and frees all memory Space previously allocsated to wvariables from
the last program run. It then begins execution of the program with the
first program line in the buffer and proceeds to execute program lines in

ascending order of line number. This sequence is altered only when
particular program statements deliberately change the sequence by trans-
ferring control. Each program line is only executed when execution
control reaches that line; it is executed each time that this occurs.
Execution is halted when an END or STOP statement is encountered or when
execution control processes the last line in the current program buffer
and it does not alter the control sequence, At this point the interpreter
displays the message READY and waits for a line to be entered.

S5.11 INTERRUPTING A RUNNING PROGRAM

The execution of a program may be ipterrupted prior to completion by
holding down the CONTROL key and typimg C at the input terminal. The
interpreter will respond by displaying the message INTERRUPT followed
by the message READY.

The interruption generally occurs after the end of whatever program line
was being executed when the CONTROL C was entered. 1In the case of the
input statement and whenever characters are being output, the interrupt
will occur immediately. Under these circumstances the remainder of the
input or output will be lost if a continue is attempted (see section 5.12).

When program exXecution is interrupted, the value of all program variables
remain as last assigned. Any open disk files remain open with file pointers
current. Variables may be examined by using immediate PRINT statements and
may be altered with immediate assignment statements. These are frequently
used aids in debugging programs. However, if the program in the current
program buffer is modified (lines deleted, inserted, or changed) then all
variable and file information from the interrupted program is lost and the
program can no longer be continued.

5.12 CONTINUING AN INTERRUPTED PROGRAM

If an executing program has been interrupted by the CONTROL C procedure
and no changes have been made to the current program buffer, then the
execution of the program may be continued by using the CONT command.

CONT is the form of the command.

When the CONT command is entered program execution 1s resuymed at the point
in the execution control sequence following the last program line executed.
If continuation is not possible because no program has been interrupted or
because the current program buffer has been altered, the message NOTHING
TC RETURN TO will be displayed. ’

5-7
Rev. 2 5/77

0

5.13 PROGRAM TRACING COMMANDS

Often, when developing a new rrogram, 1t is useful to be able to follow
the execution on a line by lime basis. This capability is provided in
the Micropolis BASIC system through the use of the FLOW and NOFLOW commands.

FLOW is the form of the command which enables this program line tracing
capability. When the FLOW trace capability is enabled and the RUN command
is entered the interpreter displays each rrogram line immediately before
it is executed. The FLOW trace remains enabled after the end of a program
execution. It must be specifically disabled.

NOFLOW is the form of the command which disables the program line tracing
capability.

5.14 BASIC SYSTEM ERROR HANDLING

Whenever the BASIC interpreter attempts to execute an immediate line
which has just been entered or the next program line during program
execution, it is possible that an error condition may arise. If this
occurs the interpreter tries to indicate the problem by displaying an
appropriate error message at the terminal.

If the line in error is an immediate line then the error message will
be directly followed by the message READY. All or part of the erroneous
line may not have been executed.

If the line in error is a program line, the line number and text of the
erroneous line are displayed after the error message and before the READY
message. All or part of the erroneous program line may not have been
executed. Program execution is not continuable after an error.

Appendix A specifies the error messages which may be printed by BASIC
and their probable causes.

5.15 THE BASIC CHARACTER SET

BASIC recognizes all printing ASCII characters except the SHIFT O (5F HEX)
backspace character and the RUB OUT (7F HEX) character. However, lower case
symbols may only be used in REM statements and in literal strings. The
character set, along with the decimal, hexadecimal and octal values of the

-

corresponding ASCIT codes are listed in table 5.1.

ey, 5-8

[en]
Ne)
~
~1
o

5.16 BASIC DATA

BASIC programs operate on two types of data: Numeric and String. Numeric data
includes integers and real (floating point) numbers. Character string data
items consist of a sequence of characters chosen from the BASIC character set.
This includes letters, numbers, special characters and blanks. A data item
may be a constant which has an unchangimg value, or a variable which may assume
different values during the execution of a program. A variable may be either
simple or grouped with other variables of like data type into a structure
called an array, and referenced as a member of the array.

5.16.1 CONSTANTS

A constant is an unvarying value. It is expressed as its actual value. A
constant may be a numeric value, or a character string value.

5,16.1.1 NUMERIC CONSTANTS

Numeric constants may be integers or real numbers.

An integer is a positive or negative whole number which may be defiped
as a decimal number or in any number base (radix) up to 36. The format
of an integer may be:

Integer format: -an....n Example: -93784
Radix format: ~xxRnn....n Example: -16R7B2

" Where (-) is an optionmal sign, xx is the number base, R indicates radix
format, and nm....n is the number expressed with the digits $#-9 and the
latters A-Z (for radix format). The range of an integer specified in
decimal format is 1-5E (2%ISIZE) to 5E (2*ISIZE). See SIZES statement
for definition of ISIZE, The maximum value of an integer specified in
radix format is 63535. A DIGIT BEYOND RADIX error occurs if a digit or
letter is used that is invalid for the radix specified.

A real number is a positive or negative number which includes a decimal
point and fractional part or a number expressed in scientific notatiom.
The formats of a real number may be:

Real format: O, .. 000, .. Example: -2.677

Scientific format: -un...nE-xx Example: 257E-4
-an...n.nn...B-xx Example: -12.231El4

Where nn...n.on... represents the number expnressed using the digits $-9
and a decimal point; an optional minus sign (-) denotes a negative number
or exponent, E specifies scientific notation and zx renresents the
exponent expressed with the digits #-9.

The range of a real number is 1E-61 to (1E62) -1,

5-9
Rev. 2 5/77

BASTC CHARACTER SET IN COLLATING SECURICE

CIAT DECIMAL HEX OCTAL

(space)
]

an ek

2

1o & & =~ =

D 1O IGUNNEON?

<O

WV A e 0s

Rev,

1

32
33
34
35
36
ird
33

5/77

20
21
22
23
24
25
26
27
23
29
24
238
2C
2D
23
27
30

31

32
33
34
35
36
37
33
32
34
3B
3C
3D
38
3¥

040
041
042
043
0as
045
046
047
080
081
052
0583
054
052
055
o057
030
051
062
083
064
088
068
0F7
070
07?1
072
073
074
0758
073
o077

CIAR DECIMAL ¥

oW e

PR e e AT R & = B Y

= o<W e rd O

I R S L

BBIZBR

M

44

OV OV Q1S) O3 U b P B R b O R R R
1 OO0 PP ORI Y G DWW -g3n O,

-
\

611NV NS ING)
o b H)

n 3
=] o O

<

(¢}
&

Table 5.1 Standard Cellating Sequence

5-9,

1

5.16.1.2 STRING CONSTANTS

4 character string is a sequence of valid BASIC characters. Entered

as a constant, a string must be enclosed in quotes ('). Quotes

within a string must be doubled (the constant " is entered as " " ' ").
The length of a string is the number of characters. The maximum

length of all character strings within a program is set by the STIZES
statement.

5.16.2 VARTABLES

Variables mavy be integer, real, or string. The amount of memorv used
for each of the 3 types can be defined in a SIZES statement before
execution of a BASIC program. IS5IZE defines the memory space for
integers; RSIZE for real variables; and SSIZE for character strings.

5.16.2,1 INTEGER VARIABLES

Integer variables are designated by any letter followed by a percent
sign (%),

The range of an integer is from 1-5E(2%ISIZE) to SE(2*ISIZE).

The internal format is 2 BCD digits per byte stored in tens complement.
I1f an attempt is made to store a number that exceeds the range a
CONVERSION error occurs.

5.16.2.2 REAL VARIABLES

Real variables are indicated bv any letter (not enclosed in quotes)
or a lecter followed bv a digit. The range of a real is 1E-6l to
(1E62)-1. The precision or level of accuracy is 2(RSIZE-1) decimal
digits.

The Internal Storage Format Is:

Bvte 1: 1 bit sign and 7 bit exponent (excess 64)

Bvte 2 thru RSIZE: 2 BCD digits per byte.

5.16.2,3 STRING VARIABLES

A string variable is designated by a letter followed by a dollar

sign (38). String variables may have a length of un to 250 characters.
The default value of maximum string length is defined bv the SSTIZE
parameter of the SIZES statement. The maximum SIZE of any particular
string mav be declared in a DIM statement, which surercedes the

ST7ES statement. If a string which is longer than the maximum length
is assigned to a variable, it will be truncated on the right.

The internal format of a string variable is:

5-10

i
w
T~
~1
~i
U

Byte 1: Maximum string length

Byte 2: Current string length

Byte 3 thru N: Any character, 1 character per byte
{(N= 2+ Maximum string length found in Byte 1)

5,16,2.4 CONVERSIONS

Automatic conversion between integer and real data types is pro-
vided which allows mixed-mode arithmetic., A real value is con-~

verted to an integer by truncating the fractiomal part while
preserving the sign of the number,

Conversion between string and numéric data types is provided by
the STRS, VAL, FMT, CHARS, and ASC functions. See section 5,18.1.2
for description of these functions.

5,16.2.5 ARRAYS

Numeric and character string data may be stored in memory as
arrays. An array is a set of variables of one data type (numeric
or character) identified by a single variable name. A numeric
array is denoted by a single letter or a single letter followed
by a percent sign (%) and may have 1 to 4 dimensions. A string
array is denoted by a single letter followed by a dollar sign ($)
and may have 1 to 3 dimensions. Both types of array are zero
indexed, An array must be declared in a DIM statement which
defines the number of dimensions and the index range in each
dimension., An array indexing error occurs if an attempt is made
to reference an element of an array which has not been defined in
a DIM statement,

A one dimensional array is a simple linear list in which the
elements of the array are stored sequentially in memory. For
example, an array A which has a dimension of 4 is stored:

A (B
A (D
A (2)
A (3)
A (8

An element of a one dimensional array is referenced by the array
name and by the index of the element within the array, enclosed in
parentheses. The &4th elewent of array A in the above example is

A (3)., The index may be specified by a constant, as in this
example, 2 numeric variable, or a numeric expression,

Rev., 2 5/77

A two dimensional array is conceptualized as a table organized
by rows and columns. An array B dimensioned as B (3,2) would
be represented as:

SQH o0
mEeHOO0
N OO

ROW ¢

ROW 1 Array B(3,2)
ROW 2 229

ROW 3

An element of a 2 dimensional array is referenced by the array
name and the row and column indices., The shaded element in the
above illustration is referred to as B(Z,2), where the first
index is the row index and the second is the column index.

The elements of a 2 dimensional array are stored sequentially in
memory in column major order, that is column by column. The
elements of the array B would be stored:

CH)
(1,8)
(2,9)
(3,9)
(@,1)
1,1
(2,1)
(3,1)
(8,2)
(1,2)
(2,2)
(3,2)

Wbl

As with one-dimensional arrays, the row and column indices may be
specified by a constant, a numeric variable or a numeric expression.

3 and 4 dimensional arrays are extensions of the two dimensional
concept, An element of one of those arrays is referenced by the

array name and the appropriate number of indices,

5.16.3 QUTPUT FORMATS

A numeric data item is converted to a string when it is ocutput to

Rev., 1 5/77 5-12

the terminal. Unless the output format is explicitly specified

by use
one of

1)
2)
3)
4)

5)

6)
7

of the FMT function, a numeric value will be output in
three default formats according to the following rules:

The negative sign (if present) precedes the number
A space is output in place of a positive sign
A space is output following the number.
A number is either a whole number or a decimal
number. A whole number is a number without a
fractional part. A decimal number is a number
with a whole and a fractional part.
The output formats are: Whole, Decimal and Scientific.
Whole: (=) xxxxxxx¥
Decimal : (-)xxx ... %.xxxB
Scientific: (“)n.xxxxx E(-) TTH
(-) = minus sign if negative, blank if positive
¥ = digit position
n = one non-zero digit
E = signifies exponent
TT = exponent
" ¥ = blank
The value of an integer variable is output in whole format.
A constant or the value of a real variable is output as

follows:
a) If the constant or value is a whole number
having less than or equal the number of digits
spec ified by RSIZE, then whole format is used.

b) If the comstant or value is a decimal number greater

than or equal to ,1 and having less than or equal the
number of digits specified by RSIZE, then decimal
format is used.

¢) Otherwise, scientific format is used.

String data is output without modification.

The maximum output line length is 250 characters. If an attempot
is made to output a line longer than the maximum length, i,e,,by
trying to output 2 strings of 258 characters with the same print
statement, The characters in excess of 250 are truncated and
the message '"WARNING--TRUNCATED OUTPUT" is output.

5.17 BASIC OPERATORS

Operators are symbols which specify operations to be performed upon data
items. BASIC recognizes 4 classes of operations:

Numeric (arithmetic); String; Relational; and Logical.

5.17.1 Numeric Operators

Numeric operators specify arithmetic operations te be performed
upon numeric data items and numeric function references. A numeric
data item may be a constant, a simple numeric variable or a numeric
array element. WNumeric operators are classified as binary operators
which perform operations with 2 data items, and unary operators which
perform operations upon single data items.

The binary operators are listed below:

Svymbol Operation
$ Exponentiation
/ Division
* Multiplication
N Integer Division (X\Y = Int(X/Y))
- Subtraction
+ Addition

The unary operators are listed below:

Symbol Operation
- Negation
-+ No effect
The "+" symbol is recognized as a unary¥ operator to allow constructs

such as A= +7 and A= +B to be svntactically correct although the '"+"
has no effect,

5.17.2 String Operators

One operator 1is recognized for string data items: concatenation.
A string data item may be a string constant, string variable or
string array element, or a string function reference.

Svmbol Operation
-+ Concatenation

|
W
~
~1
~J
(9]

-14

The "+'" operator yields a string composed of the characters in the
string data item to the left of the operator followed by the char~
acters in the string data item to the right of the operator,

EXAMPLE: 1If AS = "ABCD" and BS = "EFGH'" the operation AS$ + BS
yields the string "ABCDEFGH"

5.17.3 Relational Operators

Relational operators allow the comparison of the values of numeric
or string data items.

The relational operators are listed below:

Svmbol Meaning
< Less Than
) Greater Than
= Equal to

£ Less than or equal to
7 Greater than or equal to
<7 Not equal to

A relational operator is used in an expression of the form (Data Item 1
operator Data Item 2) which yields a single value as follows: The
values of the two data items are compared. Based upon this comrmarison
if the expression is true, the value 'true" (1) is returned. If the
expression is false, the value "false' (@) is returned.

EXAMPLE: TIf A=l and B=2 then

A{R Yields a value of 1
A=B Yields a value of @

The data items compared must both be the same data type (pumeric or
string) or a type error results,

String comparison is performed as follows; Starting from the leftmost
character, two strings are compared character-by-character until there
is a mis-match or the end of one of the strings is reached. If there
is a mis-match, the string containing the character which is higher in
the collating sequence is considered "greater'" than the other string.
If the end of one of the strings is reached without a mis-match and
the strings are not of the same length then the longer string is
"greater". If the end of one string is reached and the strings are

of the same length then the strings are ''equal".

Rewv,

o

5.17.4 Logical Operators

The relational operators as described in section 5.17.3 return a
value of ''true’ or "false', This type of value is referred to as
a boolean value and is represented in Micropolis BASIC as an integer.
Truth or falsity is determined by converting the integer to a 16 bit
binary number. If the least significant bit of the binary number is
® then the value is false, else the value is true. Logical operators
specify operations to be performed with boolean values as described
below:

Binary Logical Operators

Operator Expression Truth Table
AND VAL 1 AND VAL 2 VAL 1 VAL 2 RESULT
True True True
True False False
False True False
Fa'se False False

Operator Expression Truth Table
OR VAL 1 OR VAL 2 VAL 1 VAL 2 RESULT
True True True
True False True
False True Tue
False False False

Unary Logical Operators

Orerator Expression Truth Table
NOT NOT VAL VAL RESULT
True False

False True

The primary function of the logical operators is to allow the

formation of compnlex exmressions which evaluate to a single value of

"true' or "'false'.

EXAMPLE: A<=B AND C=0

5/77 3-16

A secondary function is nrovided by the 16 bit implementation of
Boolean values. The logical orerators perform the above defined
funct ons across the full 1€ bits. This allows you to perform the
AND, OR and Complement (NOT) functions in the same manner as the
elementary 8080 instructions. The utility of this feature is illus-
trated in the following examrle which is a serial I/0 handler for

an IMSAI 310 board.

80@% REM INPUT ROUTINE - RETURNS CHAR IN A

810@¢ A = IN (3) AND 2: IF A =0 GOTO 8140 :! WAIT INPUT READY
8200 A = IN (2) AND 16R7F: RETURN:! MASK PARITY AND RETURN
834¢ REM OUTPUT CHARACTER IN A

84P83 B-= IN (3) AND1: IF B=p GOTO 84@¢ :! WAIT OUTPUT READY
8584 OUT(2) = A: RETURN :}! OUTPUT AND RETURN

NOTE: This example will not work for I/0 to the terminal device.
The BASIC interpreter checks for input from the terminal
between execution of BASIC statements and will gobble any
character received unless it is a CTL/C.

5.18 BASIC FUNCTIONS

Functions are included in the BASIC language to provide commonly required
computations. A function reference consists of the name, followed by its
arguments. The arguments are enclosed in parenthesis and separated from
each other by commas.

A function returns a single value.

BASIC recognizes two tynes of functions: Intrinsic functions which are
built into BASIC; and user defined functions.

5,18.1 Intrinsic Functions

Intrinsic functions may be classified as numeric, string, special
and file, The functions relating to files are discussed in the file
1/0 section.

5.18.1.1 Numeric Functions

The numeric functions provide most of the commonly used trigomometric

and math functions. The math package computes these functions with up

to 29 digits of precision, which requires RSIZE to be set less than or
equal to 19. Attemrting to use the math functions with RSIZE greater

than 19 will cause a PRECISION ERROR. The numeric functions are detailed
in table 5.2,

Rev., 8 9/78 5-17

Table 5.2 NUMERIC FUNCTTIONS

Function
Reference

Value

ABS(x%)

The absolute value of x, where x is a
numeric expression.

ATN(x)

ISP

The arctangent of x, where x is a
numeric expression. Returns value in the
range - /2 to T/2.

COoS (%)

The cosine of x, where x is a numeric
ex~ression in radians.

EXP(x)

The value of e raised to the power x,
where x is a numeric exoression.

FIX(x)

The whole number part of x with any frac-
tional part trumcated and the sign preserved)
where x is & numeric expression,

FRAC (%)

The fractional part of x with the sign
preserved, where x is a numeric expression.

INT (%)

The greatest integer not greater than x,
where x 1S a numeric expression.

LN (%)

The logarithm of x to the base e, where
X 1S a numeric expression with a value
creater than §.

LOG (%)

The logarithm of x'to base 1§, where x
is8 a numeric expression with a value
greater than 0,

MAX(x,¥)

The greater value, X or y, where both x
and v are numeric expressions.

; m<x7y)

The lesser wvalue, x or y, where both x
and v are numeric expressions.)

MOD(x,v)

¥ modulo v which is equal to x-(y*INT(x/y)).
Both x and v must be numeric exrressions.

Rev,

Table 5.2

(cont)

Function
Reference Value

Generates a nseudo random number between
@ and 1. The argument x is a numeric
expression which controls the number generated
as follows:
If x is non zero, RND generates a number

RND(x) using x as the seed. If x=@, the last
random number generated is used as the seed.
Remeatedly calling RND with x=@ generates
a sequence of rseudo random numbers,

SGN (%) +1 if the sign of x is positive, -1 if the
sign of x is negative, @ if x is @.

SIN(x) The sine of x where x is a numeric exp-
ression in radians.

SQR (%) The positive square root of x, where x is
a positive npumeric expression.

TAN (%) The tangent of x, where x is a numeric
expression in radians.

2 5/77 5-19

5.18.1.2 String Functions

String functions are provided to compare strings, manirulate substrings
and to convert hbetween numeric and string data types. The string functions
are detailed in table 5. 3.

Table 5. 3, STRING FUNCTIONS
Function
Reference Value
ASC(s9%) The ASCII code of the first character
in string s$. Returns a numeric value
CHARS (%) Returns the character whose ASCIT code
is x
Returns a string consisting of the wvalue
x formatted by the picture contained in
string y$. The argument y$ can be any
expression evaluating to a string. Each
character in the string (excent a V)
represents one character in the result
string. The following characters are
MT (x%,v3) used to format the digits of a number:

9-~ A digit position of the number
leading zeroes are output as "@"

Z-- A digit position. Leading zeroes
are replaced by blanks.

V-- Decimal point alignment. TIf V is
not specified, the decimal point
is assumed to be at the far right
resulting in truncation of the
fractional nart of the number.

$-- A digit position. If more than I
$ appears in the string then the
digit rosition closest to theleading
non-zero digit of the numbercontains
a "$" and the leading zeroes are
blanked.

*-- A digit mosition. Leading zeroes
are replaced by asterisks.

,-- A comma avppearing before the leading
digit is renlaced with a blank,
asterisk or dollar sign according to
the context.

All other characters are output unchangsd
Tf the number is too large to fit in the
format srecified, the entire string is
filled with question marks (7).

Table 5.3

(continued)

Function
Reference

Value

INDEX (%3, ¥$%)

The position in string x$ of the first occurrence
of string y$. 1If string y$ is not a substring of
%8, then @ is returned,

LEFTS (x$, n)

Returns n leftmost characters of x8.

LEN (x$%)

Returns length of x$.

!

MIDS (x$,n,V)

Returns y characters from string x$ starting with

character n.

MAX (x$3,v$%) The greater, string x$ or string y$. See the
1 collating sequence in Table 5.1.
MIN (x%$,v9%) The lesser, string x$ or string y$. See the

collating sequence in Table 5.1.

4kEPEAT$ (x$, n)

The character string with string x$ repeated
n number of times.

. RIGHTS (x$, n)

{

The n rightmost characters of string x$.

STRS (n)

Converts the number n to a string.

VAL (x$)

Converts the string x$ to a number. The contents
of x$ may be numeric digits or a numeric expression
EXAMPLE: If A$ = '"242", then VAL (AS$)=4

' VERIFY (x$, v$)

Verifies that all characters in string x$ are also
in y$. Returns the position of the first character
in x$ which is not found in y$. If all characters
in x$ are in y$ returns .

5-21

5.18.1.3 Special Functions

Micropolis BASIC provides several other functions which nertain
neither to numbers nor strings. These special functions are
detailed in Table 5.4.

Table 5.4 SPECIAL FUNCTIONS
Function
Reference Value
IN(x) Inputs a value from I/0 port x. The
value of x must be greater than § and
less than 236,
PEEK (%) Returns the contents of memory
location x. The value of x must be
greater than @ and less than 65336,
- Returns the size of the program
PGMSIZE . -
currently occupying the program buffer
in bytes.
SPACELEFT Returns the amount of space left in
the program buffer in bytes.

5.18.2 User Defined Functions

Micropolis BASIC provides the ability to define two t&oes of functions:
BASIC functions and assembly language functions.

5.18.2.1 User Defined BASIC Functions

BASIC allows the user to define functions which consist of BASIC
expressions and which are referenced in the same manner as the
intrinsic functions. A BASIC function is defined in a DEF statement
which has the following form:

DEF FN(letter) (parameter) = expression
Function Optional Expression which provides
Name Parameter the value of the function

Rev, 2 5/77 5-22

The characteristics of a function definition are:

1) TFunction Name--consists of the characters "FN" and ome of
the letters A-Z yielding up to 26 user-defined BASIC functions.

2) Parameter--a function may optionally include a parameter which
passes a value to the function when it is referenced. The
parameter which appears in the function definition is a 'dummy
parameter!, For example, consider the function defined by:

16 DEF FNZ(X) = x}a+xfo+a+n

The parameter X is a ''dummy' in the sense that when the function
is referenced, the value nassed in the function reference is
used in the place of 'X'". The narameter is only used in the
definition to indicate the form of the expression. However, the
variables A and B are actual variable names.When the function is
referenced, the current values of A and B are used in evaluating
the expression.

3) Expression--a function may be defined as either a string function
or a numeric functiom by the form of the expression. The ex-
pression may be any BASIC expression which yields a single value
of the appropriate data type. ’

A function reference conmsists of the 3 character function name
and the parameter (enclosed in parentheses) if a parameter is
included in the function definition. A function reference yields
a single value and can be used as a data item in any expression
not restricted to constants. A small program using the above
defined function is given below as an example:

10 DEF FNA(X) =x}3-xt2+a+s
20 INPUT A,3B,C
30 PRINT FNA(C)
40 GOTO 20
READY
RUN
72,31

»
20,1,2
13
]

INTERRUPT
READY .

Rev. 6 9/77

Below is an example of a string function.

5 SIZES(5,4,80)

10 DEF FNB(S$)=REPEATS$ (S$,N)

20 INPUT AS,N

30 BS=FNB(A$)+"ISN'T THIS REPETITIVE?"
40 PRINT B$

READY

RUN

? "AGAIN AND ",4

AGATIN AND AGAIN AND AGAIN AND AGAIN AND ISN'T THIS REPETITIVE?
READY

See the 'DEF FN" statement for more detailed information.

5.18.2.2 Assembly Language Functions

Micropolis BASIC allows the user to define Assembly Language
"Functions" which provide linkage to assembly language subroutines.
The linkage allows a BASIC program to pass from 1 to 4 arguments

to apn assembly language subroutine and provides for a result to be
passed back to the basic rrogram when the assembly language sub-
routine returns control.

An Assembly Language Function is defined as follows:

DEF TFA (letter)= expression
The function name consists of the characters "FA'" and one of the
letters A-Z yielding up to 26 assembly language functioms. The
expression is a numeric exnression which specifies the memory address

of the subroutine entry point.

An assembly language function reference consists of the 3 character
name followed by a list of arguments enclosed in »parentheses.

Examples:

106 A = FAA
200 AS$ = FAB (BS, C3%)

Up to 4 arguments may be passed to an Assembly Language Function
and 1 result may be passed back as the vaiue of the function reference.

Rev, 7 3/78 5-24

The arguments and result are passed through the following Tocations
which define the subroutine linkage:

LOCATION LABEL DESCRIPTION
P4BCH ARG Pointer to the first argument
P4BEH ARG2 Pointer to the second argument
PACOH ARG3 Pointer to the third argument
P4C2H ARG4 Pointer to the fourth argument
P4aC4aH NARGS Number of arguments passed
P4C5H RSIZE Values of RSIZE, ISIZE
P4CEH ISIZE and SSIZE as described
P4CTH SSIZE in Section 5.20.26

P1APH RESULT 250 byte result buffer

When an assembly language subroutine is referenced, the basic interpreter
sets the pointers in the 1inkage table to point to the vaiues of the
arguments, indicates the number of arguments passed in NARGS, and calls the
subroutine. When the subroutine returns, the interpreter expects to find
the value returned by the subroutine, if any, in the result buffer.

The format of the arguments pointed to by ARG1-4 and of the result returned
is:

BYTE § - Type Indicator

1 - Real
2 - Integer
3 - String
BYTE 1-N- Refer to Section 5.16.2 "Variables" far the

internal storage format for each variable type.
The length of each variable type is specified
by RSIZE, ISIZE and SSIZE.
The general procedure for using assembly language subroutines is as follows:
1) Load BASIC from MDOS or directly from a BASIC only SYSTEM DISK.

2) Set the memory space used by BASIC using the MEMEMD statement
to reserve space above BASIC for your subroutine.

3) Load the subroutine using the LOAD command. Execution of an
object file load within a program is allowed.

4) Define the name and entry point of the subroutine with the
DEF FA Statement. The subroutine may now be used.

5-25

Rev. 7 3/78

The assembly language program example on the following pages demonstrates
most of the principles involved in passing arguments and returning results.
It was created by using the assembly language development tools of the

MDOS system. The source program was entered with LINEEDIT and then assembled
with ASSM to produce an object file named CONCAT which can be loaded by

BASIC.

The CONCAT subroutine expects two string arguments tc be passed and returns

a string which is composed of the second argument concatenated with the first
argument. If only one argument is passed, the result string is "argument
error". If both arguments are not strings, the string returned is "type
error",

Note: This example is not complete - a proper subroutine of this type

would have to handle the special cases.of null strings and checking to see
if the maximum string length has been exceeded, etc.

Rev. 7 3/78 5-26

N o &
0B O O P O

[N N T O N N T N N

DO MO N N
B o AT RN S

FO) oL U O N ELBL RYY n D y n

HODGBADD DD
RO P e X T2 N T N A LR RN NS N NS RSN E ST

N 32 pe U gL (s G RN B b b e e W e S IR B) (3

OO M GNP NI MOOo
[LSTE S o I ST AT S ISR SO AN TSR AR S SN IR SV wS S N BN

Rev., 7

CLAZ
24EC
d4 5k
24C2
243z
34C4
p4ace
2408
24C7

ZA T4 74
X gz

Cz 8L €2
24 230 24
7z

TR 22

Cz 87 €2
ZA 3L 24
T

TE

T2

M t
~} (N

11 42 41
2k 22

12

12

12

13

AF

&7

<L BC @<
CD 7¢ €2
24 BE 24
L 79 &g
78

Zz Al 21
32 A2 21
e

3/78

VTP

wf. als e ate als ofe ols otz ads al e wl
e e e 2l 3t 2 P Nz e e e Re e e A3

Beofe Ak

* ASSTIMELY LANGUAGE

* QURFAUTINE LINKAGE

* TEMC 1678

sjo e Ste s e ote o e e e sle ol ol e e Pl sl Ae sl e B sl Az

HEQUZT ECT 1A2n

ARG ¥oT 4RCH

AHGZ JRN] ARG1+2

ARGT 27 ARG1l+4

ARG 4 EQT ARG1+5
NARGS rvU ARG1~3
RSIZE JAR)) ARG 1+8
SIZk ECU ARG1+14

ESU ARG1+11

SS1ZE

CRG 87424
© T¥IS CEMC ACCEPTS T4O
WHICP AFE STRINGS AND
* ARG1 CONCATENATED WITH

NERCK ila NARGS
Cr1 2
JNZ N3RER
TYPCY LELD ARG1
I O '\‘I AL M
€21 3
JNZ TYPEPR
LELD APG?
MOV A,
CPI K
INZ TYPERR
o2

3CTE ARGUMEINTS ARE VAL

-~
LXI
Nt T
YRS

STsX
INTX
INK
INY
IhA
MCT
LHLD
CALL
LHLD
CALL
Yov
QTA
STA
RET

REISULT
3

2 -

(O3 O ide

tn Ut <) G <t G e
=N e

-4

Ch

R e (S K e BT O D U
[es]
[

+313
i+
D e

=3 ey -

5-27

wte ads ba whe abe als oty - 3 .
e o o e e e e s e e Aende o o

At
bR

72
o
)

ale
2

ded et e e ok ot

RGU NrNT‘
ELTTFN?
ARGZ .

T¥WO
NCT TWC - ZEFCE,
E. CEECK TYP: CF
1. IT MUST
N

42N

STRING.
£T - ERRQR,
ZECK ARG?

A STRING.
NCT - ERRCE.

w3 D3 @y W3 s ax WD WSS W3 Bs o

o st e e a0 v i (D
R I N R N B e Rl e 8

ID STRINGS

3 SETUP EETUEN

y PARAMITER AS A
iSTRING TYPE.
$SXIP OVEE

"LEJ"’I ¥CR

[ol et
(D
37

=3
Yo
(@]
t—’
?
q)

COUNTER
MCVE FIEST
ARGUNMENT TO
;s ¥0OVE SECONT
; AGRUMENT TC RESULT
yGET LENGTH CCUNT
7PUT COUNT INTO

s RESULT.
;DCNE, REITURN

s W5 w3 w3 w3 e

RESTLT

TO BASIC

Rav.

6279
€279
€279
8275
6279
€278
679
6374
€273
&27C
Be7D
€27
6277%
Eeee
gd&l
BCEZ
6E 23
628€
62E7
8287

8287 2
gaeA C

E3ED
€2l
Eece
£263
62¢5
6258
8257
62¢%
Spel®
64 G4
€2¢B
6291
8ZGL

E2EE

BECL
62A1
€4A4
B2A7
1759
EJAE
5€43
EZAL
€62B1
6234
6ZB7
EJ2BA
62BC
E€33C

21
11
3E
lz
13
13

=z
=

AF
47

T
—

e

-
-4

45
g2

29
41

&

joge;
4%
42
4w

7 3/718

7D

Sk
32

AR
Ag
23

€8

ea
5@

29
£2

2@

4D
S4
52
52

(1%]
61

€a
21

£0

24

[
o

45
4¥

2k
47
43
2@
52

LR A A

=
(@]
=
ag}

MOVE1L

TYPERER

NBRER
EMSG

~t»
prd

* ERRCR

b4

TYPMSG

A
NBRMSG

INZ
INX
MOV
INX
MoV
STaX
INX
INX
INE
DCE
JNZ
RET

LXI
JMP

LXI
LXI
MVI
STAX
INX
INX
INX
XRA
vMev
JMP

MESSA

D3
DT

B

oo

~
T

wn

=X

2 o bdn OB i O
. 4

(]
=]
[£5]
[ol

YPMSG

t‘j bn
Z-
tn 3
[y

NEBRMS3G
RESULT
3

®* s 2

Iweouoy=oim

the
3 b

21}

ES

2.0,12

MOVE ARGUMENTS TO RESULT.

BEL REGISTERS HAS ARGUMENT ADDRESS.
DE REGISTERS HAS POSITION IN RESULT.
R REGISTER IS COUNT

s SEIP TYPE
;SKIP MAX LENGTH
$GET LENGTH OF STRING

yGET CHARACTER
$PUT IT INTC RESULT
7 NEXT

3 COUNT +1

s LENGTE ~1

; LCCP TILL DONE
s DONE

; PUT MESSAGE IN RESULT
;STRING TYPE

s ZERC CCOUNT
jMOVE TC RESULT

“TYPE ERROR”

g.2,14

"ARGUMENT ERROR”

NBRCX

Listing of and output from a BASIC program that utilizes
the CONCAT assembly language routine.

READY

LIST

12 DIM A$/252),R%{25@),C8(252)
22 MEMEND 16RSFFF

30 LOAD "CONCAT

43 DEF FAA=-16R6040C

5¢ INPUT A$

&2 INPUT BS

72 CS=FAA(AS,RS)

&2 PRINT C&

92 GOTO 3¢

READY

HUN

? 12345

? 67853

1234567850

? NOW IS THE TIME

? FCR ALL GOCD MEN

NOW IS THE TIMEFOR ALL GCOD MEN
o

INTERRUPT
63 INPUT B¢
READY

PRINT FAA(AS)
ARGUMENT ZRRAOR
HEADY

PRINT FAACA,B)

TYPi ERROR

READY

PRINT FAA(12345 ,"673€C2)
1234567690

RIADY

Rev. 7 3/78 5-29

Pages 5-30 through 5-32 left blank intentionally.

Rev. 7 3/783 5-30

5.19 BASIC EXPRESSIONS

A BASIC expression is a combination of data items and function references

connected by operators. An expression specifies an operation or series of
operations that yields a single value, which is referred to as the value of
the expression.
elements,

Rev.

[3e]

5.19.1

Data items may be constants, simple variables, or array
Operators may be arithmetic, string, relational, and logical.

Evaluation of Expressions

BASIC contains a precise set of rules which define the manner in
which expressions are evaluated:

1)

2)

3)

4)

Operator Precedence ~-- Onerators encountered in an
expression are nerformed im the following order:

1) Function references

2) Unary orerators

3) Arithmetic & string onerators
4) Relational operators

5) Logical onerators

Orerators which have the same level of precedence are
performed in the order in which they are encountered

in scanning the expression from left to right.

The normal rules of precedence & order of evaluation

may- be overridlen by the use of parentheses to partition
an expression into subexvressions. WNesting of sub-
expressions is limited by the overall complexity of the
expression. If an expression 1s too complex it may cause
a STACK OVERFLOW error. In this case, the expression
should be broken into two expressions.

Expressions containing subexpressions are evaluated

from the innermost subexpression outward to the next
level of parenthesis until all parenthetical expressions
have been evaluated. Within a subexpression the rules
given for operator precedence and order of evaluation
apply.

5.19.2 Numeric Expressions

A numeric expression consists of numeric function references, numeric
operators,
Operations are performed in the following order:

and numeric data items and evaluates to a numeric result.

5-33

1) Function references

2) Unary + and -

3) Exponentiation

4) Division and Multiplication
5) 1Integer division

6) Addition and Subtraction

Parentheses may be used to force evaluation in the exact order desired,
EXAMPLES:
1, 2%3+7%4
This expression is evaluated as follows: (V(x) indicates the value
of %)
1) 2*3 vields 6
2) 7%4 yields 28
3) V(2%3) + V(7%4) yields 34
2. 2%(3+7) *4
This expression is evaluated as follows:
1) 347 yields 19
2) 2% V(3+47) yields 24
3) V(2*V(3+7)) *4-yields 84

5.19.3 String Expressions

A string expression consists of string function references, string
operators, and string data items and evaluates to a string result.
Operations are performed in the following order:

1) Function references
2) Concatenation

EXAMPLE: Let BS = "The number is"
BS+STRS(134)
This expression is évaluated as follows:
1) STR$(134) yields " 134 "

2) V (STRS(134)) is concatenated with the current
value of B$ which yields "The pumber is 134 "

5-34

Rev. 2 5/77

5.19.4 Logical Expressions

A logical expression consists of numeric and string expressions
combined with relational and logical operators. The value of a
logical expression is a Boolean value. Operations are performed
as follows:

1) Functien references are performed.
2) The NOT operation is performed.
3) Numeric and string exnrressions are evaluated.
4) Relational operations are performed
5) The AND orerations are performed
6) The OR cperations are performed
7) Parentheses may be used to force evaluation in the exact order
desired
EXAMPLE -
A+24=3 AND B+3{5 OR NOT (BS="A")

This expression is evaluated as follows:

1) The value of B$ is compared with "A" (Note: if narentheses
had not been used, BASIC would have tried to ~erform NOT
BS which would have given an error) Temporary result Tl is
set =1 if BS$="A" else is set =p

2) Tl is complemented

3) A+2 is evaluated

4) B+3 is evaluated

5) The value of A+2 is compared with 3 and a temporary result
T2 is set =0 if A+293 or 1 otherwise.

6) The value of B+3 is compared with 5 and T3 is set =§§
if B+3 is greater than or equal to 5 else is set =I.

7) T2 is ANDed with I3 yielding T4

8) The wvalue of the expression is obtained by OR'ing T4
with T1

Note: The NOT operator complements the 16 bit representation of

Boolean values so the final value of this expression is
65535 if true and 65534 if false.

-35

[]
(9]
~
~
~1
u

Rev.

5.20 BASIC STATEMENTS

BASIC statements specify operations to be performed in a BASIC program, and
describe the data and operating environment of the nrogram.

Every BASIC statement consists of a keyword followed by a list of zero or
more expressions which specifies the operation to be performed by the
statement.

Multiple statements may be included in the same program line separated by
the colon (:) (see section 5.2).

The statements included in the BASIC language are listed alphabetically
and described in detail in the following pages. Conventions of notation
used are: ’

1) fA
B Indicates a choice of one of the items enclosed.
C

2) {1 Indicates optional items.

3) Parentheses () used in definitions must be included as
illustrated.

5.20.1 DATA {numeric constant} {numeric constant}
string constant s string constant ,

158 DATA 25, PAPRIL 1, 1977", 26E-3

The DATA statement is used to define a list of data internal
to a BASIC rrogram which may be accessed with the READ state-
ment. When a BASIC nrogram is started, the DATA nointer is
initialized to point to the firstdata item in the first DATA
statement in the oprogram. When a READ statement is executed,
one value is read from the list for each variable specified
and the rointer is advanced to point to the next data item.
When the data items in a DATA statement are depleted, the
pointer is set to noint to the first data item in the next
DATA statement encountered in the program such that all the
data values contained in DATA statements constitute a con-
tiguous list. The RESTORE statement can be used to re-nosition
the DATA pointer to point to the firstdata item of any DATA
statement within the program.

The DATA statement is non-executable and may therefore appear
anywhere within a program.

5-36
Rev, 2 5/77

5.20,2 DEF FN letter I(function parameter name)] = egnression

19 DEF FNA = X+Y+Z
190 DEF FNL(A)= (4%3.1415%A)/3
150 DEF FNR(MS$)= REPEATS (M$,5)

The DEF FN statement is used to defipne a function.
The name of the function defined is "FN'" followed

by one of the letters A-Z. Each function name may be
defined only once in a given program.

For example, if the statement 110 DEF FNN= 3.1415%R2
were used in a program. 260 DEF FNN (M$)=REPEAT(MS,5)
could not be used because the function names are
identical. The statement 260 DEF FNM (M$)=REPEAT(MS,5)
would be legal.

A function narameter is optiomal. TIf rresent, it is a
dummy ~arameter and its name may be any simnle variable
name. A function will return a numeric or string value
depending upon the form of the expression.

A DEF FN statement is non-executable and may appear
anywhere in a program.

5.20.3 DEF FA letter = npumeric expression
9¢ DEF FAA = 16R700d

The DEF FA statement is used to define a function which
provides linkage to an assembly language subroutine.

The function name consists of the letters "FA'" and one

of the letters A-Z, The expression contains the starting
address of the assembly language subroutine. See section
5.18.2.2 '"Assembly Language Functions' for details of
linkage and passing arguments.

Rev, 2 5/77 5-37

5.20.4

5.20.5

Rev.

2

DIM letter (%] (11, I2, ... 14)
DIM letter $(length)
DIM letter $(I1, ... I3,length)

10 DIM A (2,4)
2¢ DIM B%(2,3,4,5)
39 DIM AS(48)
49 DIM AS$(2,3,49)

The DIM statement is used to define the maximum length of
string variables and to define the number of dimensiomns and
index ranges for arrays.

The first form of the DIM statement is used to define a
numeric array. The array name consists of one of the letters
A-Z, An optional percent sign (%) may follow the letter to
denote an integer array. The array may have 1 to 4 dimen-
sions as defined by the number of parameters (I)., The value
of each I defines the maximum value of the index for that
dimension,

The second form is used to set the maximum length of a
string variable, The name of the variable is one of the
letters A-Z followed by the dollar sign ($). The length
specified must be less than or equal to 250 and overrides
the default length specified in the SIZES statement,

The third form is used to defime a strinmg array. The array
name consists of one of the letters A-Z followed by the dollar
sign (8), A string array may have 1 to 3 dimensions as
defined by the number of parameters (I) specified. The wvalue
of each I defines the maximum value of the index for that
dimension. The last parameter specified in the parameter

list is the maximum length of each string element.

Dimension statements are executed dynamically, therefore
the parameters may be either constants or expressions.

END
14¢0¢ END

The END statement is optional in BASTC, Execution will
terminate when the END statement is executed and may not
be continued with the CONT command. It is recommended
that an END statement be the last statement of a program
to serve as a listing aid. Its presence ensures that the
listing is complete, .

5-38
5/77

5.20.6

5.20.7

Rev.

2

EXEC string expression
180 EXEC AS

The EXEC statement is a feature unique to Micropolis BASIC.
The EXEC statement causes the string expression to be passed
to the BASIC Interpreter and to be executed as a statement.
The exnression may consist of one or more BASIC statements
separated by colons(:). The expression passed is checked for
syntax errors and then executed if valid. The following
program is given as an example of the power inherent in this
statement. The program accepts arithmetic statements from
the terminal and prints the results -- effectively operating
the terminal as a desk calculator,

LIST

10 INPUT A$: EXEC "PRINT "+A$: GOTO 10
READY

RUN

? 2+2

4

? SIN(3.14159/4)

.70710595
"

FLOW

19 FLOW

The FLOW statement turns on the program trace feature which
aids in debugging BASIC programs. The program trace will out-
put to the terminal the program line of each statement which
is executed. The program line will be output again if the
THEN portion of an IF . . . THEN statement is executed. The
program trace is turned off by the NOFLOW statement.

5-39
5/77

5.20.8 TFOR numeric = numeric TO numeric STEP numeric

variable expression expression expression
39 FOR X =1 TO 39
49 TFOR Y =~ 3@ to O STEP -1
5¢ FOR X = A to B

The FOR statement initiates the repeated execution of a set

of statements following it. The set begins with the statement
immediately following the FOR statement. The set ends with
the NEXT statement that contains the same variable as the

FOR statement. The numeric variable controls the number of
times the set of statements is to be executed and is called the
loop variable. The set of statements to be executed is
referred to as a FOR , . NEXT loop.

The expressions specify the initial value of the loop
variable, the terminal value of the loop variable, and the
value to be added to the loop variable after each pass
through the loop (step). The step parameter is optional;
when not specified, a default value of +1 is used.

The statements within the FOR , . . NEXT are executed
until the value of the loop variable is stepped outside
the range defined by the initial and terminal values.

The STEP value can be negative, as in:

20 FOR I = 1G@ to O STEP -19
This statement would cause the initial value of the loon
variable I to be set at 1f@, subtract 1¢ from the looo
variable each time the loop was completed, and terminate
executing the loop when the loop variable contained the
value P, .

The statement 15 FOR J = § TO @ would cause the FOR looo

to be executed one time. That is, the statements between
the FOR J. . . . and the NEXT J statements would be executed
once before the loop variable of 0§ + 1 would be compared to
the limit value of #. At this point the loop variable limit
would have been exceeded and program execution would fall
through to the next line number.

A set of FOR , . .TO. . .NEXT statements may be nested within
one or more sets of FOR. ., .TO, . .NEXT statements. For
example:

1/ FORK =1 TO 98
24 FORL =1 TO 15
39 PRINT K,L

4@ NEXT L

50 MEXT KR

Rev, 2 5/77 5-40

Rew.

2

When nesting FOR. . .TO. . .NEXT statements it is imperative
that the inside loop (in this case the L loop) be completely
enc losed within the outer loop.

If the above statements had been entered incorrectly as follows:

The error
statement

If a GOTO
loop, the

5/77

14
24
3¢
49
50

FOR K = 1 TO 99
FOR L = 1 TO 15
PRINT K,L

NEXT K

NEXT L

message '"™MISSING FOR" would occur when the "NEXT L'
is encountered.

or IF, . .THEN statement is executed from within a
program execution will continue in a normal manner,
BASIC will continue the loop from the current value of the

loop variable if the loop is re-entered at some later point.

5-41

5.20.9 GOSUB § linenumber
numeric expression

219 GOSUB 1¢¢4@

The GOSUB statement causes a set of statements to be executed as
a subroutine,

When a GOSUB statement is executed, control is transferred to the
first statement whose line number is specified in the GOSUB
statement, The referenced line number and all statements following
it will be executed until a RETURN statement is encountered.
Control is then returned to the statement following the GOSUB,
Consider the following:

15¢ GOSUB 21@: PRINT A + B
16¢ END

21¢ INPUT X,Z

220 A =X+ 1: B =2-14
23@ RETURN

When line number 158 is executed, control is transferred to line
number 210. Line 21@ and 22¢ are executed, then 23@, the RETURN
statement. The RETURN causes control to be transferred to the
statement immediately following the GOSUB. Therefore, the sum
of 4 + B will be printed before the program ends.

GOSUB statements can be nested. That is, a subroutine can
contain a GOSUB statement that references another subroutine.
Control will be returned to the first subroutine when the RETURN
statement of the second is executed. The message STMT # NOT
FOUND will be output if a GOSUB statement references a line
number that does not exist in the program.

BASIC allows an expression to be used as the lipe number. If

this is done, care must be taken to insure that the value of

the expression is a positive real number. The fractiomal part

of the number will be truncated in forming the limne number.

A NUMBER OUT OF RANGE error will occur if the number is inwvalid.

Rev., 2 5/77 5-u2

5.20,10

5.20.11

GOTO line number
numeric expression

168 GOTO 5099
206 GOTO A+B

The GOTO statement causes control to be transferred to the first
statement in a specified program line, A GOTO statement may
reference any line in a program, including its own line. The

line number may be specified as a constant or a numeric expression
Care must be taken to ensure that the expression evaluates to a
positive real value. The fractional part of the number will be
truncated in forming a line number. If the value is invalid, a
NUMBER OUT OF RANGE error will occur. If the line number does
exist in the program, a STMT # NOT FOUND will occur.

IF logical expression ‘:ggggl STATEMENT [:STATEYENT |
THEN line number '
19 IF ALB THEN PRINT ""
2 IF. A =2 GOTO 144

3 IF A

4 THEN 104
44 IF A =2 AND C = 3 THEN D = 2: GOTO 14¢d¢

The first form aof the TF statement provides conditional execution
of one or more statements based upon the value of a logical
expression.

The statements subject to conditional execution must all reside
within the same program line as the IF statement. 1If the logical
expression evaluates to '"true', then the statements are executed.
If the expression evaluates to "false', then all remaining state-
ments within the line are ignored. The keyword THEN is optional
in this form.

The second form of the IF statement provides a conditional
program branch based upon the value of a logical expression.

If the expression evaluates to "true', control is transferred
to the first statement in the specified program line. If the
expression evaluates to "false', program execution continues

at the next sequential program line. The line number must be
specified as a constant. If the line number specified does not
exist in the program, a STMT # NOT FOUND error occurs.

5/77 5-43

Rev.

5.20.12

5.20.13

6 9,77

N

INPUT ["prompstring”;*‘] variable list

19 INPUT A,AS
29 INPUT "ENTER NUMBERS"; A,B

The INPUT statement prompts for data to be entered from the
terminal and waits for the user to enter the data. If a
prompt string followed by a semicolaon (;) is included, the
string is output, followed by a gquestion mark (?) before
waiting. If a prompt string followed by a comma (,) is
included, the string is output and then the questicn mark
is output on the next line before waiting for entry. If

ne prompt string is included, a question mark is output

to the next terminal line before waiting for input.

One value must be entered for each variable in the variable
list.” Values may be numeric or string constants separated
from each other by the current string delimiter. Strings
entered do not need to be enclosed in quotes (") unless they
contain the string delimiter. If a string constant is
erroneously entered in place of a numeric constant, a

TYPE ERROR occurs, followed by the message REENTER FROM
BEGINNING. This means that all values in the variable list
should be entered again in proper order. The Tast value
entered is delimited by a carriage return. If too few values
are entered, INSUFFICIENT INPUT is output to the terminal and
the statement waits for more input to satisfy the variable
1ist. If too many values are entered, EXTRA INPUT IGNORED

is output to the terminal and the program continues execution.

[LET] variable = expression

19, LET A =5
2p A$ = "FAT HIPPQ"

The LET statement causes the expression to be evaluated and
assigns the resulting value to the variable. The data type
of the expression and the variable must be the same type or
a "TYPE ERROR" results. The LET keyword is optional.

5-44

5.20.14

5.20.15

5.20,16

5.20.17

MEMEND numeric expression
18 MEMEND 16R7000

The MEMEND statement is used to define the upper limit of the
memory space used by BASIC. One of the main applications of
this statement is to reserve memory for assembly language
subroutines which may be placed above the address specified
by the expression.

NEXT numeric variable
18 NEXT X

The NEXT statement terminates the loop initiated by the
FOR statement that contains the same variable. While the
loop is being executed, each time contrcl reaches the NEXT
statement, the loop variable is incremented by the STEP
value, or by 1 if s STEP value was not defined.

When loop execution terminates, control passes to the
statement following the NEXT statement.

If a NEXT statement is encountered prior to the execution
of a FOR statement naming the same loop varizble, a 'MISSING
FOR error occurs.

NOFLOW
509 NOFLOW

The NOFLOW statement turns off the program flow trace
which may be activated by a FLOW statement.

ON numeric expression GOTO line number list

160 ON K+5 GOTO 200, 300, 400
208 ON J COTO A+50, 40@,B

The ON...GOTO statement causes control to be transferred to

the line number whose positional wvalue in the line number list
is equal to the expression. If the exnression is zero or
greater than the number of lines in the 1list, control is

passed to the next statement. If the expression is fractional,
the fraction is truncated prior to the GOTO being executed.

If the expression is negative a NUMBER OUT OF RANGE error
occurs, The line numbers in the line number list may be
numeric constants or numeric expressioms. If a line number

in the list does not exist a STMT # NOT FOUND error occurs.

5-45

Rev.

2

5.20.18

5.20.19

5,20.20

5/77

ON numeric expression GOSUB line aumber list

184 ON X GOSUB 500, 640, 70a, 804
206 ON Z+2 GOSUB B,C, 609

The ON...GOSUB statement causes execution of the subroutine
beginning at the line number whose positiomal value in

the line number list is equal to the value of the numeric
expression.

If the expression is zero or greater than the number of
lines ipn the list, control is passed to the next statement.
1f the expression is fractional, the fraction is truncated
prior to the GOSUB being executed. If the expression is
negative a NUMBER OUT OF RANGE error occurs.

The line numbers in the line number list may be numeric
constants or numeric expressions. If a line number in the
1ist does not exist a STMT # NOT FOUND error occurs.

When a RETURN statement is encountered in the subroutine,
control returns to the statement followng the ON..,.GOSUB
statement.

OUT (numeric expression 1) = numeric expression 2
188 OUT (16R1®) = 208

The QUT statement causes the value of expression 2 to be
output to the I/0 nort specified by exnression 1. Both
expressions must be numeric expressions with values in the
range @ to 255 or a NUMBER OUT OF RANGE error occurs.

POKE (numeric expression 1) = numeric expression 2

14¢ PORE (16R64G0) = 200
208 POKE (A) =B

The POKE statement stores the value specified by expression
2 in the memory location specified by expression 1. Ex-
pression 1 must be in the range @ to 65535 and expression 2
must be in the range # to 235. If the value for either
expression is outside of the specified range, a NUMBER OUT
OF RANGE error occurs, Care must be exercised to ensure
that the location POKE'd does not cause BASIC to crash.

5-46

5.20.21

Rev.

6

PRINT expression {i} [TAB(numeric expressioq].

199 PRINT A;B;C
2¢¢ PRINT TAB(19); "THE ANSWER IS''; FMT(A,"Z2Z9V.99")

The PRINT statement causes the value of the exnressions in
the expression list to be output to the terminal, Exrressions
are output in the formats described in section 5.16.3.
"Output Formats'.

An output line conSists of up to 250 characters and is
partitioned into 16 character print fields. Print rosition
within an output line is controlled as follows:

1) An expression is output starting at the current
print position. Each expression must be separated
from the next expression by a comma (,) or a
semicolon ().

2) TIf the expression is followed by a2 semicolon,
the print position is set to the next position
following the last character output for the
expression. If the expression is the last
expression of the PRINT statement then output
generated by subsequent PRINT statements will
start at this position on this line of the output
on the terminal.

3) If the expression is followed by a comma, the
print position will be set to the beginning of
the next 16 character print field after out-
putting the expression. TIf the expression is
the last expression of the PRINT statement then
output from subsequent PRINT statements will
begin at this position on this line of output
on the terminal.

4) TIf the last expression of the PRINT statement is
not terminated by a comma or semicolon then the
print nposition is set to the first character of
the next line after outputting the value of the
exnression.

5) The print nosition may be explicitly set by including
references to the tab function which operates only
in PRINT or PUT statements. TAB moves the n»rint
rosition to the position snecified by the value of
the tab function parameter. If the position is
already beyond the specified value when the print

5-47
5/77

statement is executed then the specified value is
simply ignored.

BASIC contains a parameter which specifies the length of a
physical output line on the termimal. TIf a print line
which is longer than the terminal width is output, carriage
returns and line feeds will automatically be inserted to
wrap the output across as many physical lines as necessary.

Rev, 2 5/77 5-48

5.20.22 READ variable list
1§ READ 4,B,CS

The READ statement reads values from the BASIC programs
internal data list which is created by including data
statements within the program. One value is read from

the data list for each variable appearing in the wvariable
list., 1If there is insufficient data in the data list to
satisfy the variable list then RAN OUT OF DATA will be
output. If a string value is read for a numeric variable
then a TYPE ERROR will occur. Values are read sequentially
from the data list unless the pointer which points to the
next value to be read is repositioned by use of the RESTORE
sStatement.

5.20.23 REM remark text
14 REM THIS JUNK IS A REMARK AND IS NOT EXECUTED

The REM statement is used to include comment text. The
character (!) may also be used to include comments in a
program line. The REM statement and any characters fol-
lowing a () character in a program line are non-executable
and are ignored.

5,20.24 RESTORE [numeric expressicﬁ]

10 RESTORE
2¢ RESTORE 25

The RESTORE statement is used to position the data list
pointer which allows control of the sequence in which

data items are read from the program's internal data list.
The pointer will be set to the first data item of the data
statement whose line number is specified by the numeric
expression. If an expression is not specified, the pointer
will be set to the first item in the first data statement
appearing in the program.

5.20.25 RETURN
19¢ RETURN

The RETURN statement transfers control to the statement
immediately following the last GOSUB statement executed.

If a RETURN statement iIs encountered prior to the execution
of a GOSUB statement the error message NOTHING TO RETURN
TO is output to the terminal.

5-~49

5.20.26 SIZES { numeric numeric numeric numeric

constant 1, constant 2, constant 3, {constant 4

20 SIZES (5,4,80)

30 SIZES (6,5.49,3009)
The SIZES statement is used to specify the number of bytes
of storage to be used for real variables (RSIZE), integer
variables (ISIZE) and string variables (SSIZE), and the
maximum program size when using chained program segments
(see section 5.21.2.6). Constant 1 - constant 3 are positive
integer constants. The value of constant 2 specifies ISIZE
which must be greater than 1 and less than RSIZE. The value
of constant 1 specifies RSIZE which must be greater than
ISIZE and less than 3@. The value of constant 3 specifies
SSIZE which must be greater than § and less than 251.

Constant 4 is an optional parameter. If it is present it
specifies the maximum number of bytes allocated for program
size, after which variable space allocation begins.

%f no S%ZES statement is executed, the default SIZES are
5,3,48).

The SIZES statement may not be executed if any variables are
already allocated. If any of the constraints described are
violated, a SIZES ERROR error occurs.

5.20.27 STOP
106 STOP

The STOP statement causes the execution of a BASIC program
to cease. The execution may be resumed from the line
following the STOP statement with a CONT command.

5.20.28 STRING string expression
19 STRING ";"

The STRING statement defines the current string delimiter
used to terminate a string accessed by an INPUT or GET
statement. The end of string will be signified by either
the end of the record or the first occurence of the string
delimiter. If a STRING statement has not been executed,
the default delimiter is the comma (,).

Rev, 6 9/77 5-50

5.21

BASIC DISK FILE I/0

A file is a data structure which mav be accessed as a named entity and consists
of a collection of data grouped into elementary units called records., The file
structure is generally used for storing data on mass storage devices such as a

disk.

Disk Extended BASIC provides the ability to create and access files stored

on the disk, Common maintenance operations such as renaming or deleting a file
are included,

Rev,

5.21.1 Disk Files

Each file stored on a diskette is identified by a file name, which may be

from 1 to 1§ characters long. The characters may be letters, digits
0-9, or the special characters period (.), slash (/), or hyphen (-).

The wminimum amount of space required to store a file is one track. When a
"new' file is opened, a complete track is allocated. This track and any
other track assigned by the BASIC file system to this file remain upa¥%ail-
able to any other file until released by the user. The maximum number of
files that can be stored on a disk is a functionm of the number of tracks
available on the disk. The Mod I disk drive provides 35 tracks per
diskette; Mod II provides 77 tracks per diskette. OQOne track per diskette
is required for the file directory, so the maximum number of files is
either 34 or 76. Conversely, the maximum size of a file is 34 or 76
tracks. Each track consists of 16 sectors of 256 bytes per sector. A
file is accessed sector by sector; therefore a '"record! is 1 sector.

Actual placement of files is maintained by the BASIC file system. One
track is allocated for each 'mew'" file opened, When 16 records have been
written to a particular file, another track is allocated, The file
appears contiguous to the program, even if it is not stored on contiguous
tracks. It is not possible to store one file on more than one disk; that
is, a file may not span disks.

Files may be stored in 3 formats: Program, Object and Data.

1) Program Files ~ A program file is a BASIC program which was stored
by a SAVE command as described in section 5.6, The data consists
of the BASTIC program text as it resided in the program buffer with
keyword compression. A LOAD command will load the data from a
program file into the BASIC program buffer.

2) Object Files - An object file is an image of a block of memory
which was saved using the memory range option of the SAVE command.
A LOAD command will read the data back into the memory locations
from which it was saved. This is the format in which assembly
language programs may be stored on the disk.

2 5/77

3) Data Files - Data files contain data created by and are
accessible to BASTIC programs by use of the PUT and
GET statements. Each execution of a PUT statement
stores 1 record in the file, Data within each record
is represented as ASCIT characters,

Each record is a 250 character string. A data file
may not be loaded using the LOAD command. Micronolis
BASIC provides the ability to access the records of a
data file either sequentially or directly. (commonly
referred to as random access)

In addition to the format, a file may also have Write
Protect and Permanent attributes.

1) Write Protect - A file which is Write
Protected cannot be re~writtenm but may
be deleted by a SCRATCH command. This
is a software Write Protect not related
to the physical Write Protect provided
by a Write Protect tab installed on a
diskette. If a physical Write Protect
tab is installed on a diskette, all
operations which attempt to modify a
file or the directory will yield a

WRITE PROTECT error.

2) Permanent - A Permanent file may be re-
written but may not deleted by a SCRATCH command.

A file may be both Permenent and Write Protected,

Several “eywords are provided to manipulate disk files as described
below:

5.21.2 Disk File Commands

7--mands are provided to load and save program or object files, delete
“ile, and to display a list of the files which reside on a diskette.
Although commands may arpear in a BASIC nrogram, commands will gemerally
be executed in Immediate mode. All disk commands reference the directorv
o the desired diskette. If the diskette is not loaded or a malfuncticn
exists in the disk drive which causes it to return a not ready status
the message JRIVE NOT UP will be output to the terminal when a command
is executed. 1If the drive is unable to read or write on the diskette
properly them a PERM I/O ERROR will result,

[a]
i
—~
-~
-~
i
3
n
e

Rev.

5,21.2.1 DISPLAY string expression

DISPLAY "1: DIR"
DISPLAY AS

The DISPLAY command will output the directory of the diskette loaded
inte the drive specified by the string expression. The value of the
string expression must be of the form:

" [unit{l DIR" where unit is the drive

unit address in the range of @ to 3. 1If omitted, drive @ is assumed,
If the string is a constant it must be enclosed in quotes (). If

a directory does not exist on the diskette a ‘FILE NOT FOUND error
results.

5.21.2.2 LOAD string expression
LOAD "2 :DEMOPGM"

The L0OAD command loads a program or object file into memory. The
file is specified by the string expression which must evaluate to
the following form:

" [Fnit:] filename" where unit is the

unit address in the range 9 to 3. If omitted, unit @ is assumed.

The file name may be any wvalid filename. 1If the string is a constant
it must be enclosed in quotes ("). 1If the desired file does not
reside on the diskette a FILE NOT FOUND error results. If the

file is a data format file, a NOT A LOAD FILE error results.

5.21.2.3 PLOADG string expression
PLOADG '@:NEXTSEG"

The PLOADG statement operates like a combined LOAD command and RUN
command. It loads the program file named in the string expression
into the current program buffer and then transfers control directly
to the logic of the RUN command. 41l variables and file status from
the preceding program are reset to the initialize condition and
execution begins with the first line of the new program.

The PLOADG statement may be used to cause automatic execution of
several program files in sequence. This is accomnlished by using
a PLOADG statement as the last executed statement of each program
in the sequence, such that it names, loads and begins the next
program in the sequence. Note, however, that no nrogram variables
or open files are retained from ome vnrogram or segment to the next.

3 6/77 5-53

The string expression in the PLOADG statement must evaluate to the
following form:

" [unit :] filename"

where unit is the unit address in the range @ to 3. If omitted,
unit @ is assumed. The file name mav be any valid filename. If
the string is a constant, it must be enclosed in quotes ("), If
the desired file does not reside on the diskette a FILE NOT FOUND
error results, If the file is a data format file, a NOT A LOAD
FILE error results. If the file is an object file rather than a
program file, it will be loaded just as if a LOAD command had been
used and the current program will continue executing with the
statement after the PLOADG statement.

5.21.2.4 SAVE string expression (ﬁemory address rang%]

SAVE '"N:1:NEWPRG"
SAVE '"N:LOADER" 16R700¢, 16R7DFF

The SAVE command stores program format or object format files on the
diskette, The file is specified by the string expression which must
evaluate to the following form:

" [N) [dnit:]filename”

If the file to be saved does not already exist on the diskette, the
"™:" must prefix the unit/file name to cause the creation of a new
file in the directory on the diskette. The unit is the drive unit
address in the range @#-3. If omitted, unit § is assumed. If the
string is a constant it must be enclosed in quotes (').

The filename may be any valid filename.

If the memory range option is not included, the contents of the
BASIC program buffer will be stored in the desired file in ~Togram
format.

If the memory range option is specified it must be of the form:

numeric expression 1, numeric expression 2
The numeric expressions must evaluate to positive real values in
the range # - 65535. Fractional parts will be truncated. The
contents of memory from expression ! to expression Z will be
stored in the desired file in object format.

6/77 5-54

If "N:" is not specified for a new file, a FILE NOT FOUND
error results. If a file has a Write Protect attribute,

it cannot be overwritten and a WRITE PROTECT error will
occur if an attempt is made to save it. If a file specified
as new already exists a DUPLICATE NAME error occurs.

5.21.2.5 SCRATCH string expression
SCRATCH "1:JUNKFILE"

The SCRATCH command deletes a file from the diskette directory
and releases the tracks allocated to the file for use by other
files. The file to be scratched is specified by the expression
which must evaluate to the form:

“funit:] filename" where the unit is

the drive unit address in the range @ - 3. The filename may
be any valid filename. If the expression is a constant it
must be enclosed in quotes ("). 1If the unit address is
omitted, unit P is assumed.

If the specified file does not exist, a FILE NOT FOUND error
results. If the file has a permanent file attribute then it
cannot be deleted and a PERM FILE error occurs.

5.21.2.6 CHAIN string expression
999 CHAIN "NEXTPART"

The CHAIN statement loads the BASIC precgram file specified

in the string expression into the current program buffer and
then transfers execution control to the first line of the
newly loaded program segment. This operation is similar to
the PLOADG statement with the important exception that the
CHAIN statement preserves all allocated variables, user
defined assembly language functions, SIZES parameters, and
the current string delimiter from the last program segment.
These preserved values are passed to the newly loaded program
segment which may use them just as if it had assigned them.
Note that open file information and user defined BASIC
functions are not preserved by the CHAIN statement. If any
files are open when a CHAIN is executed they are implicitly
closed. This means that the filenumber is disassociated

from the filename and made free for reuse; but the directory
is not updated and therefore any changes in the length of

the file are not recorded. In general, all open files should
be properly CLOSEd before executing a CHAIN statement.

Rev. 6 9/77 B-54.1

Rev.

The CHAIN statement is a powerful tool which facilitates
the construction of programs much larger than available
system memory would otherwise permit. It makes it pessibie
to transfer data and control from section to section of a
yery large program that has been divided into separately
loadable segments. To use the CHAIN statement effectively
certain rules must be observed.

6 9/77

1)

2)

3)

The program size of a segment being chained in
cannot be greater than the program size of the
program currently in the program buffer. If

this condition does occur a LOAD QVERRUN error
will be reported. A procedure for avoiding this
condition is to specify the size of the largest
program in a chained program set as the fourth
argument of a SIZES statement (see section
5.20.26). This SIZES statement should appear as
the first statement of the first executed program
of the chained set. The program size of each
segment can be determined by LOADing it and using
the PGMSIZE function (see section 5.18.1.3).
Assuming a set of three program files named

SEG1, SEG2, SEG3, the following example jllustrates
the procedure:

LOAD "SEG1"
READY

PRINT PGMSIZE
472

READY

LOAD "SEG2"
PRINT PGMSIZE
526

READY

LOAD “SEG3"
PRINT PGMSIZE
126

READY

In this exampie the largest PGMSIZE is 526. If
SEG1 were the first file to be executed and the
standard system precisions were desired, then the
statement SIZES (5,3,4@,526) would be included

as the first statement of SEGT.

A1l files should be closed before executing a
CHAIN statement.

A CHAIN statement should not normally be executed
from within a FOR-NEXT loop. If this {is done only
the current value of the Toop index variable will
be preserved across the CHAIN.

5-54.2

4) A CHAIN statement should not normally be executed from within
a subroutine. If this is done the RETURN information for that
subroutine is lost across the CHAIN,

5) A program segment which is to be CHAINed should not normally
contain a SIZES statement since SIZES statements cannot be
executed after any variables have been allocated. The only excep-
tion is the case of the SIZES statement used to set the maximum
program size. A special internal test allows such a statement
to be chained back to as necessary.

5.21.2.7 LINK string expression

LINK "MDOS"
LINK "DISKCOPY"

The LINK command loads the overlay file specified in the string expression
into memory and transfers control to the execution address of the overlay.
This command is designed primarily for use with Micropolis supplied overlay
files such as MDOS and DISKCOPY. These files completely replace BASIC in
memory when LINKed to. They take over the control of the computer system
and provide their own operating commands and dialogue.

The string expression must evaluate to a valid filename. The file must be
an overlay type C through F. If the specified file is not found or the
disk unit is not ready, control will return to BASIC where the error will

be reported. If an unrecoverable disk error occurs during the LINKing
process, the system will execute a soft halt. This is done because BASIC
has already been partially destroyed and the new system has not been
successfully loaded. The computer must be reset and a new system booted in.

The LINK command can be used to load and transfer control to a machine
language program file that runs in high memory above the end of BASIC

(see MEMEND statement). It can return to the BASIC interpreter by jumping
to the system warmstart address.

5.21.3 DISK I/0 STATEMENTS

BASIC statements are provided which allow a BASIC program to create and
transfer data to .and from data format files, and to perform certain file
maintenance functions on any type file such as renaming a file or changing
the attributes of a file. The operation of disk I/0 statements differs from
the disk commands as follows:

5-54.3

Rev. 7 3/78

1) Disk I/O statements refer to files through a program

"File Number'. An OPEN statement must be executed to
associate a file on the diskette with a ~rogram file
number,

2) When all I/0 cperations on a file are complete, a file
must be closed by executing a CLOSE statement. Closing
a file comsists of updating the directory to reflect all
operations which have been performed since the file was
opened, and disassociating the file from the program
file number. CAUTION: A file which has been written to
must ALWAYS be closed or data written to the file may be
lost. ’

Prior to any operation which accesses the disk, BASIC ensures that
the drive is ready to accept commands. If the diskette is not

loaded or a malfunction exists which prevents the drive from
performing operations then a DRIVE NOT UP error results. If the
disk is unable to perform the specified read/write operation properly,
a PERM I/0 ERROR results.

A program file number may be in the range § to 9. As many as 10
filesmay be open at once within a program. If an I/0 statement
attempts to access a file which has not been opened by an OPEN
statement then a TFILE NOT OPEN error results.

If an I/0 statement specifies a file number outside the range §
to 9 then a NOT A FILE# error occurs.

5.21.3.1 OPEN file number string expression options

14 OPEN 1 "N: NEWFILE"
20 OPEN 2 "JOE" END 1P@¢ ERROR 5004

The OPEN statement opens the snecified file for access by disk
I/0 statements. The file is selected by the string expression
which must evaluate to the form:

"EN:] Emit Z] filename"

If the file to be opened does not exist on the diskette, the characters
"N:" must be included in the unit/filename to cause the creation of a
new file in the directory. The file created is a data format file. The
unit specifies the drive unit address which must be in the range #-9,
The filename may be any valid filename. 1If the string is a constant,
it must be enclosed im quotes ("), 1If the unit address is omitted,
unit @ is assumed, If the specified file does not exist and is not
declared as a new file, a FILE NOT FOUND error occurs. If a file
specified as new already exists, a DUPLICATE NAME error occurs.

Rev, 8 9/78

Rev,

The filenumber must be a numeric expression with a value of # - 9.
The filename specified will be associated with this file number

until the file is closed and all file I/0 directed to the file number
will be performed using this file.

Each open file has two associated pointers which point to the next

record to be accessed in a sequential PUT or GET statement. When

a file is opened, the sequential GET pointer is initialized to

point to the first record. The sequential PUT pointer is initialized

to point to the record following the last record. The last record in

the file is considered the end of the file for GET statements. The

last record +1 is considered the end of file for PUT statements.

For example a 5 record file would have pointers initialized as follows:
J:_‘ EOF for a GET (Read)

f"EOF for a PUT (Write)

RECORD 1 2 ‘ 3 l 4 ls] 6 !
Sequential Sequential
GET pointer PUT pointer

An open file may be read from and written to both sequentially and
directly by record.

The open statement includes several options which are listed below:

1) CLEAR - The CLEAR option overrides the normal initialization
of the sequential GET & PUT pointers. The pointers are
initialized so that the file is empty. A subsequent GET
will encounter an end-of-file, A PUT will write into
record 1. This option is gensesrally used to initialize the
pointers for re-writing a file sequentially.

2) END numeric expression

The END option specifies the line number to GOTO when the
end-of-file is encountered during a read operation. The
numeric expression must evaluate to a prositive real number
which is a valid program line within the program when the
fractional part, if any, is truncated. TIf the line does
not exist, a STMT # NOT FOUND error occurs. This option
allows the BASIC program to handle an end-file condition
without the program being aborted. If the END option is
not specified, the normal end-file handling is to abort
the program with an END-FILE error.

N
wun
~
~3
~4
(9]
L]
wu
o3}

Rev.

3) ERROR numeric expression

The ERROR option specifies the line number to GOTO if a
disk I/0 error occurs. The numeric expression must
evaluate to a positive real number which is a valid
program line within the program when the fractional part,
if any, is truncated. If the line does not exist, a
‘STMT # NOT FOUND error occurs. This option allows

a BASIC program to handle disk I/0 errors without being
aborted. If the error option is not included, a disk
I/0 error will cause the appropriate error message to

be output and abort the program. the ERR function may
be used in the error handling program section to determine
the type of error.

5.21.3,2 PUT filenumber RECORD record number expression List

180 PUT 1 A;B;C
206 PUT 1 A;AS$+",":; B
3¢9 PUT 1 RECORD 3 A:B;C

The PUT statement causes the values of the expressions in the ex-
pression list to be written onto a record of the file specified by
the filenumber expression. The filenumber must be a numeric ex-
pression having a value of the digits @ - 9 when the fractional
part, if any, is truncated.

Each execution of a PUT statement writes one racord into the file.

Each disk record is composed of a 25@ character string and is, in
fact, a print line. FEach expression in the expression list 1is
evaluated, converted to a string if the resulting value is numeric,
and is placed in the string in exactly the same way that print lines
are built. The rules for building the string are as follows:

1) The record string is partitioned into 16 character fields.
A pointer which is initialized to point to the first char-
acter in the string keeps track of the next position in
the string to be lcaded.

2) Expressions are evaluated as they are encountered in
scanning the expression list and from left to right,
and are converted to strings according to the formats
described in section 5.16.3 "Qutput Formats'., The
resulting string is loaded into the record string
beginning at the pointer position. Each expression must
be separated from the next expression by a comma(,) or a
semicolon(;).

5-37

6 9/77

3) If the expression is followed by a comma(,) after the
expression has been loaded into the string, the string is
padded with enough blanks to position the pointer to the
beginning of the next 16 character field.

4) If the expression is followed by a semicolor(;), after the
expression has been loaded into the string the pointer is
set to the character position following the last character
of the expression,

5) After all expressions have been loaded into the record
string, any remaining characters in the string are pada
with blanks and the record-string is written onto the
diskette.

EXAMPLE: If A = 19p and B = -2.5, the statement:
18¢ PUT 1 A:B

would cause the following record to be written on
the disk: (Note: P denotes a blank)

A R 24¢ Craracter pad
The Statement
190 PUT 1 ALB

would cause tne foliowing record to be written to
the disk:

”ﬁlﬂﬂhébbbﬂﬁﬁbbbﬁ,- 2.5 %? .. B
A PAD B 229 Character pad

The expressions in the expression 1ist may be numeric and string in any
order subject to the following restrictions: (1) If a string expression
follows a numeric expression it must be immediately preceded by the
current string delimiter. (2) The Tast character of a string expression
must be the current string delimiter. These restrictions Must Be
Strictly Followed or the expression will not be properly read back.

On Input, numeric values are delimited by blanks. The output format of
numeric values always follows the value with a blank, so numeric strings
built as described will always read back correctly. Strings, however,
may contain embedded blanks. The input logic which reads a record from
the disk Tooks for the current string delimiter to denote the end of a
string. If a string follows a numeric value, the blank following the
numeric field will be included in the string unless the current string
delimiter precedes the string.

Rev. 8 9/78 5-58

Rev.

6

One solution to this problem is to concatenate the string delimiter
on all string variable references, include the string delimiter in all
string constants, and precede all string expressions following numeric

expressions with the string delimiter.
EXAMPLE :

To write the values of A,B$,C, E$ and F$ on the diskette, the PUT
statement would be

lﬁ@ PUT 1 A;”,“’*‘B$+“,“;C;”,”+E$+","“,F$+“,”
(This example uses the default delimiter, comma (,))

If it is desired to change the string delimiter, the following approach
could be used to implement the previous example:

19 D$ = ";" ¢! SET STRING DELIMITER
2¢ STRING D$

18¢ PUT 1 A;D$+BS+D$;C;D$+ES+DS;FS+DS

If this approach is used, the string delimiter must be the same
when a record is read as when it was written or incorrect results
will be obtained.

' If the record option is not included, the record is written into the

file at the record number specified by the sequentialPUT pointer. The
pointer is then incremented by 1.

If the record number option is included, the record is written into
the record specified by the record number expression. The record
number expression must have a value which is a positive real number,
The fractionmal nart is truncated. If the record number is greater
than the end-of-file as described in 5.21.3.1, a PARM ERROR

occurs.,

NOTE: Writing a record directly by use of the RECORD option does
not affect the sequential put pointer. The rointer will
only be moved by a sequential PUT or execution of a PUTSEEK
statement,

If an attempt is made to write more than 258 characters into a
record, the first 258 characters will be written and the remaining
characters will be truncated. A warning message WARNING - TRUNCATED
QUTPUT will be output to the terminal,

9/77 5-59

5.21.3.3 GET filenumber RECORD record number wvariable list

198 GET 1 A,B,CS
206 GET 1 RECORD 180 A,B C$

The GET statement reads a record from the file specified by the
filenumber expression and assigns the values read to the variable
list. The filenumber exrression must evaluate to one of the digits
@ - 9. The fractional part, if any, is truncated.

If a string is read for numeric variable, a TYPE ERROR results.
1f too few wvalues exist in the record string to satisfy the
variable list, a RAN OUT OF DATA" error occurs. If an attem;t
is made to get a record which is past the last record, amn END
FILE error occurs.

If the RECORD option is not included, the record read is the
record specified by the sequential GET pointer. The sequential
GET rointer will then be incremented by 1.

If the RECORD option is included, the record read is the record
specified by the recordnumber expression. The expression must
evaluate to a positive real pumber. The fractional part will be
truncated,

NOTE: The sequential GET pointer is not affected by a direct
GET. The pointer will only be modified by a sequential
GET or by execution of a GETSEEK statement.

5.21.3.4 CLOSE filenumber

198 CLOSE 1

The CLOSE statement causes the file specified by the filenumber
expression to be closed for disk I/0. The filenumber exnression
must evaluate to one of the digits @ - 9 when the fractiomal =~art
is truncated.

Closing a file consists of updating the file entrv in the diskertte
directory to teflect all operations which were performed upon the
file since it was opened, and disassociating the file from the
program filenumber. As & rule, all files which are opened in a
program should be closed before the rrogram terminates. All files
which have been written into QTuSt be closed or the directory will
not be updated and data written into the file mav be lost. Any
files which are left open are implicitly closed by a RUN command
or any command that modifies the program buffer, such as a DELETE,

Rev, 2 5/77 5-60

LOAD or line insertion/deletion. Implicit closure does not update
the directory.

5.21.3.5 ATTRS (filenumber) = numeric expression
198 ATTRS (2) = 19

The ATTRS statement sets the file attributes of the file referenced
by the filenumber to the value of the pumeric expression. The file-
number expression must evaluate to one of the digits @-9 when the
fractional part is truncated. The numeric expression, when the
fractional part is truncated, must evaluate to a valid combination
of the attribute values which are described below:

VALUE ATTRIBUTE
1 Program File

6!
8 Object File

2 Permanent File

1 Write Protect

A file which does not have a Program or Object attribute is assumed
to be a Data Format file. Some examples are:

fl

19 = 16+2+1 Write protected, permanent, ~rogram file

9 = 8+1 . = Write protected, object file

26 16+8+2 Invalid combination - This would identify
a file as being a Permanent Program file and
Object file, which is not possible,.

1]
[

A main intent of the ATTRS statement is to allow the user to change

- the Write Protect and Permanent attributes only. The File Format
attributes should not be changed. The current value of the attribute
parameter may be accessed by the ATTR functiocn.

5.21.3.6 EOF (filenumber) = expression
154 EOF (9) = 59

The EOF statement sets the file length parameter of the file
referenced by the file number to the value of the expression.
The filenumber expression must evaluate to one of the digits

- 9 when the fractiomal part is truncated. The expression
must evaluate to a positive real number. The fractiomal part
will be truncated. The EOF statement is used to decrease the
length of a file. The value of the expression should be set to
1 greater than the last record number. For example if a file
contains 108 records and it is desired to delete the last 50
records, the statement

198 EOF (1) = 51

3-61
Rev, 2 5/77

Rev.

would cause recerd 5@ to be the last accessable record. The following
cautions apply to the use of EOF statement:

1) The EOF statement does not reset the sequential PUT/GET
pointers. 1If they are set beyond the new EOF an END-FILE
error will occur if a PUT or GET is attempted., Reset the
pointers to the proper values with the GETSEEK and PUTSEEK
statements.

2) Do Not Set The EQF Beyond the true length of the file.
Any sectors remaining on the last allocated track may be
read by a GET and will yield garbage.

3) Resetting the EOF does not release the now unused tracks
for system use. De-allocate the unused tracks by executing
a FREESPACE statement.

5.21.3.7 TFREESPACE filenumber
1f¢ FREESPACE 1

The FREESPACE statement de-allocates any tracks allocated to the
file referenced by filenumber which are beyond the current end of
file. Filenumber expression must evaluate to one of the digits

@ - 9 when the fracticnal part is truncated. If there are no
excess tracks allocated an "END FILE" error results.

5,21.3.8 GETSEER (filenumber) = numeric expression
5¢ GETSEEK (1) = 29

The GETSEEXK statement sets the sequential GET pointer associated
with the filenumber to the value of the numeric expression. The
filenumer expression must evaluate to one of the digits @ - 9 when
the fractional part is truncated. The numeric exrression must
evaluate to a positive real number. The fractional part is
truncated. The value must be greater than zero and less than or
equal to the last record number or a2 PARM ERROR or END FILE
error will occur when a sequential GET is verformed. The current
position of the pointer may be accessed by using the RECGET functiom.

5.21.3.9 PUTSEEK (filenumber) = numeric expression

184 PUTSEEK (2) = 3¢

The PUTSEEK statement sets the sequential PUT pointer associated
with the filenumber to the wvalue of the pumeric exnression. The
filenumber expression must evaluate to one of the digits @ - 9
when the fractional part is truncated. The numeric expression must

8 9/78 5-62

evaluate to a positive real number. The fractiomal part is truncated.
The value must be greater than zero and less than the last record
‘number +2 or a PARM ERROR will occur when a sequential PUT is
performed. The current value of the rointer may be accessed by

using the RECPUT function.

5.21.3.19 RENAME (filenumber) = string expression
108 RENAME (1) = "NEWNAME"

The RENAME statement changes the name of the file referenced by
the filenumber to the value of the string ex~ression. The file-
number expression must evaluate to one of the digits @ - 9 when
the fractiomal part is truncated. The string expression must
evaluate to a valid file name. The current name can be accessed
using the NAME function.

5.21.4 DISK I/0 FUNCTIONS

Disk File I/0 functions are included within BASIC to provide information
about a currently open file. Each function reference includes a file
number expression which must evaluate to one of the digits @ - 9 when the
fractional part is truncated., If the specified file number does not

have a file currently opened to it a FILE NOT OPEN error occurs. The
disk file I/0 functions are detailed in table 5.3,

5-63
Rev, 2 5/77

TABLE 5.5 DISK I/0 FUNCTIONS

Function
Reference VALUE

ATTR (n) Returns the attribute parameter associated with
file n. See section 5.21.3.5 for a description
of the value.

ERR Returns the error code associated with the last
disk error. The error codes are:

- No Error

- Permanent I/0 Error
- End-File

- Disk Full

- File Not Found
Duplicate Name

- Parameter Error

- Drive Mot Up

~ Permanent File

- Write Protect
Invalid File Name
Printer Attention

The error code is not reset by a successful operatimnﬁ
so is meaningless unless an error occurs, |

WONOYWG BWMND S
i

— 3
no —
.} 1

ERRS Returns the error message string associated with the
last disk error.

f— S

NAME (n) Returns a string containing the name of the file
i associated with file pumber n.

b — e

RECGET (n) Returns the value of the sequential GET pointer
associated with file number n.

| RECPUT (n) Returns the value of the sequential PUT pointer
) associated with file number n.

SIZE (n) Returns the SIZE (in records) of the file associated
with £ile number n,

Returns the number of disk tracks currently
allocated to file number n.

e

TRACKS (n)

FREETR (n) Returns the number of disk tracks currently
available for allocation (free) on the disk
unit associated with file number n.

Rev. 8 9/78 5-64

5.22 BASIC PRINT FILE QUTPUT

Micropolis BASIC provides a set of print file output features for systems which
have a hard copy printer device in addition to the standard keyboard-display
This section specifies each of the printer related language features
and discusses how to use the available features to solve some common printer
programming problems.

terminal.

Rev.

5.22.1 Printer Related Language Features

The printer related language features consist of seven statement and option
They achieve a high flexibility of output control by expanding the

keywords.

disk file I/0 scheme to include print file and terminal file output and by
adding a physical device assignment capability. Following are descriptions
of each statement syntax and function.

5.22.1.1 OPEN filenumber string expression option(s)

6

9/77

19 OPEN 1 "*p" PAGESIZE 66 ENDPAGE 999
2@ OPEN 2 =T
3P OPEN 7 "*N"

The syntax of the OPEN statement in this context is the same as that
for disk files as shown in section 5.21.3.1. The statement associates
a filenumber with a filename specified in the string expression.

The filenumber must be a numeric expression with a value of § ~ 9.

The string expression which contains the filename must have one of
three specific values which designate a particular output print device.

1)

2)

Filename *P associates the filenumber being opened with the
system printer,

Filename *T associates the filenumber being opened with the
display element of the system terminal.

Filename *N associates the filenumber being opened with a null
output device. The output directed to that file will be
discarded or drained.

Any other filename will be interpreted as a disk file name per
section 5.21.3.1.

There are two print file options available with the QPEN
statement:

a) PAGESIZE numeric expression

This option allows the programmer to set a 1imit value for
an internal system counter which counts the number of lines
output to the associated filenumber. The counter is incre-
mented on each PUT statement to the associated file, unless
that PUT statement ends in a comma or semicolon (see section
5.22.1.2). Each time the 1imit count is reached, the

5-65

counter is reset and the system checks for a correspond-
ing ENDPAGE option.

The numeric expression must evaluate to a whole number from
@ - 65535, If a print file is opened without a PAGESIZE
option the internal 1imit value defaults to a value of 66
which is the number of 1ines per page on standard 11 inch
forms.

b) ENDPAGE Tinenumber

This option specifies a program line number to which the
system will perform a GOSUB each time that the limit is
reached on the internal lines per page counter. The line-
number must be a numeric expression which evaluates to a
legal linenumber. That line should be the beginning of a
subroutine which programs some appropriate end of page
actions and which ends with a RETURN statement. The RETURN
will go back to the statement immediately after the PUT
statement which triggered the end of page action.

If no ENDPAGE option is specified for a given file the
internal lines per page counter is just reset each time the
limit is reached and processing continues normally.

5.22.1.,2 PUT filenumber expression list

5.22.1.3

Rey.

6

15 PUT @ "TOTAL = "; AT, "ITEM NAME ="; 8BS
25 PUT 7 A, B;

The PUT statement causes the values of the expressions in the
expression list to be assembled into an output record which is then
output to the print file device associated with the filenumber.

The filenumber must be a numeric expression with a value in the
range @ - 9. The expression 1ist consists of a sequence of
constants and/cr variables separated by commas or semicolons., The
rules by which the output record is assembled are the same as those
for PRINT statements as detailed in section 5.20.271. Separate
carriage width wraparound control is provided for the printer
device. If the expression 1ist ends with a comma or semicolon then
no carriage return line feed is output. In this case the internal
lines per page counter of the associated file is not incremented.
(see section 5.22.1.1 - PAGESIZE option). The TAB and FMT func-
tions may be used in PUT statements.

CLOSE filenumber

99 CLOSE 6
99 CLOSE 2

The CLOSE statement causes the file specified by the filenumber
expression to be closed for output. The filenumber must be 1in
the range § - 9. When a print file is closed the associated
filenumber is freed for use in a subsegquent OPEN to another file.

9/77 5-66

5.22.1.4

5.22.1.5

Rev., 6

8/77

Any files which are left open are implicitly closed by a RUN command
or by any command that modifies the program buffer, such as DELETE,
LOAD or line insertion change.

ENDPAGE f1ilenumber
25 ENDPAGE . 7
28 ENDPAGE R6

The ENDPAGE statement is related to the ENDPAGE option described in
section 5.22.1.1. However, it is syntactically and functionally
distinct. Its function is to end the current output page of the
designated filenumber and thereby position the output device to the
beginning of the next logical page. The filenumber must be a numeric
expression with a value in the range @ - 9. When the ENDPAGE state-
ment is executed the current value of the lines per page counter
associated with filenumber is subtracted from its limit value. The
result determines the number of empty lines which are output to the
file device to complete the current logical page. When the ENDPAGE
statement is complete the associated lines per page counter is reset
to mark the beginning of the next logical page.

ASSIGN (physical device number, logical stream indicator, device
width, null count)

19 ASSIGN (2,1,88,6)

2@ ASSIGN (2,2,132)

3@ ASSIGN (1,1)

The ASSIGN statement is a dual purpose statement which provides the
ability to specify the connections of physical output print devices
to logical output streams and the values for carriage width and
nullcount of the referenced physical device. The physical device
number must be a numeric expression which evaluates to a 1 or a 2.
The logical stream indicator must be a numeric expression which
evaluates to a 1, 2 or 3. The device width and nullcount must be
numeric expressions with values in the range 1 - 255. They are
optional parameters in the ASSIGN statement. If they are not in-
cluded, the values corresponding to the referenced physical device
are not changed. If only the device width is included, then the
nullcount is left unchanged. Note however that specifying a null-
count requires that a device width also be specified, i.e., if the
statement only contains thres arguments, the third will always be
treated as a device width.

Logical output stream number 1 consists of all output generated by
system messages, keyboard echoing, PRINT statements, LIST commands,
and PUT statements when the correspanding filenumber is open to *T.
Logical output stream 2 consists of all output generated by LISTP
commands and by PUT statements when the corresponding filenumber is
open to *P. The logical stream indicator may be set to a vaiue of
3 to represent both Togical output streams 1 and 2.

5-67

Physical device number 1 represents the display element of the
keyboard display device that is configured as the system terminal.
(see section 3.3.1 on terminal configuration). Physical device
number 2 represents the hard copy print device which is configured
as the system printer. (see section 3.3.4).

The output of a logical stream is directed to all physical devices
which are assigned to it. A physical device may be assigned to

one or both logical streams. Whenever a physical device is ASSIGNed
its previous assignment state is effectively cancelled. A list of
legal device connections follows:

ASSIGN (1,1) -~ connects terminal display to stream 1 only

ASSIGN (1,2) - connects terminal display to stream 2 only

ASSIGN (1,3) -~ connects terminal display to stream 1 and
stream 2

ASSIGN (2,1) ~ connects printer to stream 1 only

ASSIGN (2,2) - connects printer to stream 2 only

ASSIGN (2,3) - connects printer to stream 1 and stream 2

In its initialized state BASIC connects the terminal to stream 1
only and the printer to stream 2 only. This state can be restored
by executing an ASSIGN (1,1) followed by an ASSIGN (2,2).

When the terminal and printer devices are configured each device

has a carriage width and a nullcount parameter associated with it.
These parameters may be altered under program control by specifying
optional 3rd and 4th arguments in an appropriate ASSIGN statement.
The width parametar determines the maximum number of spaces on each
1ine for the given device. When a line is output that is Tonger
than width the autowrap feature is activated and a carriage return
line feed is inserted between character number width and width +1.
The autowrap feature may be disabled at configuration time. The
width parameter may be changed on a given device by restating the
current device assignment with a new width argument. For example,
if the terminal were currently assigned to stream 1 with a width

of 80, it could be changed to a width of 72 with the statement
ASSIGN (1,1,72). HNote that any such change remains in effect until
a subsequent ASSIGN statement alters it or until the system is re-
loaded. The nullcount parameter is one greater than the number of
nulls which are output after each carriage return output to a given
device, It is important with unbuffered character serial devices
which may lose characters while the carriage is being returned.

The ndlcount parameter for a given device may be dynamically changed
by restating the current device assignment and WIDTH with a new
nullcount. For exdmple, if the printer were currently assigned to
stream 2, 132 columns, no nulls (nullcount = 1), it could be changed
to stream 2, 132 columns, 5 nulls by using the statement ASSIGN
(2,2,132,6).

Rev. 6 9/77 5-68

Rev.

5.22.1.6

5.22.1.7

Because BASIC is an finteractive language it depends on the avail-
ability of a display deyice for system messages and keyboard

echoing. An interlock is therefore built in to ensure that stream

1 always has at least one device assigned to it. If an ASSIGN state-
ment is processed the result of which would violate this condition,
then physical device 1 is automatically assigned to stream 1 as part
of the ASSIGN being processed,

LISTR X - Y

LISTP

LISTP 14
LISTP -10
LISTP 10~
LISTP 1@-1¢@

The LISTP command causes a listing of the program in the current
program buffer to be directed to logical output stream 2 which {s
normally connected with the system printer. This COMMAND is anal-
ogous to the LIST command (see section 5.5) with two exceptions.
The LIST command directs its output to logical stream 1 which is
normally connected to the system terminal display. The LISTP
command outputs a paginated.listing with three blank lines at the
top and bottom of each page and 6@ lines of 1isting as standard.
(see 5.22.1.7).

X and Y must be legal linenumber constants.
LISTP prints the entire program buffer.

LISTP X prints only 1ine X if present or the first 1ine greater than
X if no line X exists. :

LISTP X- prints all lines starting with X or the first greater than
X through the end of the program buffer.

LISTP -Y prints from the beginning of program buffer thru I1ine Y or
the first greater than Y.

LISTP X-Y prints from line X or first greater than X through line Y
or first greater than Y.

PAGESIZE numeric expression

~ PAGESIZE 42

6 9/77

The PAGESIZE command is related to the LISTP command., It causes the
number of lines of 1isting per page of the LISTP command to be set

to the value of the numeric expression in the PAGESIZE statement,
This number is the number of actually printed 1ines not {ncluding the
3 blank Tlines at the top and bottom of each page. For exampie, to
1ist a program on paper which holds 48 1ines per page, the statement
PAGESIZE 42 would be the proper value to use, When BASIC {s config-
ured the default value for this parameter is 68.

5-69

NOTE that the PAGESIZE statement as described here is syntactically
and functionally distinct from the PAGESIZE option of the OPEN
statement as described in 5.22,1,1

5.22.2 Notes On Printer Related Programming

5.22.2.1

Rev.

Used properly and with care the printer related language features in
Micropolis BASIC provide for highly flexible and efficient programming
of many common print file related functlons This section provides some
examples and commentary.

6

Separating Print Files and Interactive Messages

There is a Targe variety of applications which can be programmed in
the following thres part structure:

1) Output to the terminal display a sequence of prompting
messages which Tead the user through a process of entering
variable data from the terminal keyboard.

2) Process the input data through algorithms which create de-
sired output data.

3) CQutput to the printer one or more pages which present the
desired output data with proper labelling in an appropriate
report format.

This structure requires the ability to separate output which is
normally intended for the operators terminal from output which is
normally intended for the system printer. In Micropolis BASIC the
separation may be accomplished by using PRINT statements for terminal
dispiay messages and PUT statements to aopen print files for system
printer output. The technique is illustrated by the following program
for building a depreciation schedule chart.

8/77 5-70

Rev,

! +e+ DATAH IMFUT ZECTIOM

FRIMT “"THIZ PrROGEAM WILL EUILD A DEFFECIATIOM SCHEDULE®
FRIMT "SHOWIMG YEAR BY YEAR DEFRECIATION OF A FIXED ASIET"
FRIMT "AT STRAIGHT LIME AMD 200% ACCELEFRTED FATES,. ™

FRINT

PRINT "PLERZE EMTER RIZET WALUE "3
IHFUT A

FRIMT “PLEAZE EMTER TERM IM VEARZ":
IMPUT T

FRIMT “FLERZE EMTER FIRIT YERR OF TERM ¢EG. 13771";

IMPUT

]

: see PRIMT OUT CHART HEADIMEE
L]

OFEM 3 "ep"

FUT SsPUT 2

FUT = "DEPRECIATION ZCHEDULE FOR E "iRi" OWER “3Ti"

FUT S:PUT 2
FUT 2 YERR"s "ST. LH. DEP."s "EALAMCE": "200% DEF. s
FUT = :

!

! eee COMFUTE AMD FRIMT EACH LIME

i

E1=A: E&=A1 I=A-T:FE="§22ZZ20W, 33"

FOR k=1T70T

BE1=R1-%

Ii=z+R2-T

E2=pa-D

FUT 3 Y FMT (T FEr s FMTCEL«FEs s FMT vDa FED « FMT ¢ BEs FED
'.|.‘= J*l

MEXT K

CLOSE 3

END

6 9/77 5-71

i

YERR CZa "

“BALAMCE"

RN

THIS PROGRAM WILL EUILD A DEFRECIATION ZCHEDULE
SHOWIMG YEAR By YEARR DEPFECIATION OF A FISED RIIET
AT STRAIGHT LIME AMD 200% RCCELERATED ERTEZ.

FLEAZE EMTER AISET YALLUE ¥ 100000
FLEASE ENTER TERM IM YERARZT &35
PLEAZE EMTER FIRST vERR OF TERM ¢Ei. 137727 179

1]

DEPRECIATION SCHEDULE FOR & 100000 OYER &5 YERR (D

5T. LH. DEPF. ERLAMCE S0u DEF. ERLAMCE

m
B]
x

40&0.&@ R

1330 % RS =000, 00 ‘E
1921 RS SO00, 00 E 4 ToR, 0N ‘L
1232 0 400,00 + FOATVL.E0 % o
19 T oS000, 00 B E ASER.50 % L
1 400000 ¥ OS50] i5
1 T4 000, 00 F OTeO00n, 0n O SEre.eS '+ S0
1= 'L SO0, 00 O OTE000, an B3 S350, 2% B3 [
0 4000, 00 FOASOQO, 00 P 4462, FT7 ‘+ Bt
EoS40G0n, a0 Eoe3000, 010 k3 105,75 ‘E iz
E 4000, 00 F o000, an FOIFTYV.E0 R 3 =
R G000, 0n EOSe 00, 0n 23 4TS 10 T]
* Ok 4000, a0 ToS2a00., a0 o219V, 03 3 =3
0 SA000, 00 BodEann, un o294, 33 B3 i
oS 000, a0 B4 000, 00 F TR, OGS +
o4 000, 00 EoS000G, 0o R S2dEa, S ‘L
T G000, 00 R i F OZ22En, =7 ‘+
0 S000, 00 R X T oSinv. 14 3
B3 4000, 00 B3 (KX R 19 ST B
‘® U000, 00 E 0, 0 5 i .S RS
B3 000, oo 4 o R . 3 ‘L
0 S000, 00 1000, a0 R T
R G000, 00 Fo1E000, g R ‘5
‘& S00n, N ‘® SO, an '+ 5
2005 ‘% SO00., 00 ‘E G000, o R ‘5
2004 o oS000, an R . 31 R 5

READY

Rev. & 9/77 5-72

5.22.2.2

Rey. 6

8/77

Paginating Print Files

When the number of 1ines in a print file spans several printed

pages it is often reguired to print the file with page numbers,
headings and an equal number of lines an each page. The ENDPAGE ,
statement and the PAGESIZE and ENDPAGE options of the OPEN statement
provide a useful set of toois for accomplishing this goal. The
foliowing example shows the depreciation schedule program of section
5.22.2.71 modified to print on 2@ line pages with each page numbered
and titled. HNote the use of the PAGESIZE and ENDPAGE options in
line 328 in conjunction with the page heading subroutine at 1ine 64¢.
NOTE also the use of the ENDPAGE statement in line 514 which ejects
the last report page and leaves the printer at the top of the next

blank page.

5-73

§

FRIMNT
FRIMT
FRINMT
FREIMT
FRIMT
IMFUT
FREIMT
IMFLT
FREIMT
IMFUT v

A

T

FEM =
=1:0G0%
1=R:E2

FOR k=1
El=E1-3%
D=2k~
Bz=k2-D
FUT
Tyl

MHE®T K

Yol

ZTOP
e
Al !
o !

FUT

"THIEZ
CEZHOWIMG
“HT

EMDPAGE =2:CLOZE

8 eee [RTH IMFUT

"PLEHZE ENTEFR

see COMFUTE AHI

TOoT
T

- -

BRI gl

£40 PUT 3 TRE(F20"F
S50 PUT 2

eED PUT % "TEFRECI
eV PUT S1FRUT 2

BETS OFUT 9" YEAR”. "IT.
are FUT 3

T P=R+1

Y10 RETURH

Q93 EMD

Rev. 6 9/77

=

FROGERM WILL BLUILD
YERR BY
STREAIGHT LIME AMD 00

A

"PLEASTE EMTER TERM

Fx

*++ PHOE HEADIMS

LM,

8 e

TOHETULE FOR % 3

ZECTION

YERR DEFEECIATION OF

SZET WHLUE A

IM-YERRT "

“FLERZE EMTER FIRIT WERRF OF TEFM (EG.

FIMT EACH LIME

TURROWTIME

AR

[s

LDEF. " "BALAMZE "« "200%

A DEPRECIARTIOH

HOCELERRTED

OveER

H

SoHEDLILE"
A FT1#ED

ATIET”

FRTEZ.

-

D VA FMT R FE2 o FMT oBLaFEX o FMT Do PR o FMT (RS Pl

TEF. "

TR

YERR CZ)

CEALAMCE"

RERDY

RUM

THIZ PROGRAM WILL EBUILD R
SHOWIMG YERR EBEY YERR DEFRE
AT ZTRAIGHT LINE AMD z00%

*LERSE ENTER
~LEAZE EMTER
FLERZE ENTER

RISET VALUE 7
TERM IN VEARE
FIRST YEAR OF

DEFRECIATION ZCHEDULE FOR

ZT. LM. ILE
S000, 00
SO0, 00
SO00, an
SO00, 00
SO0, an

[T i ol e e e e e ot

Qe SO00, 00
Qe 4000, 00
= SO0n, 1o
aEE SO0n, g
SR S000, 00
HE S000, an
23] GO0, On

JEPRECIATIOM ZCHEDULE FOR

m
o
an

2T. L. DE
G000, 0n
4000, 00
G000, 00
Soon, o0
S00a, 0n
G000, 00
SO0n, 0
G000, 00
SO00, 00
S000, 00
SO00, 00
4000, 00

D

10 0
s oD

0
)

T

)

s g 0 20 A
D
f RN (R KR Ry SIR S) I SO Y I (1)

I IRE LTI X IR i il o S S A e e
- SURNY
I] i

(1Y

r
IFH

n

DEFRECIATION SCHEDULE FOR

YEARR ZT. LH. DE

SN0 $ 4000, 00

Rev. 6 9/77

DEFRECIARTION
CIATIOM OF A
RCCELERATED

FIYED
RATEZ.

7 25

TERM <ER. 137727

‘5 100000

aver &

F. ERLAMCE

e 000, 00
FE00n, 00
o
an

TEOO0, N0
TEano., an
wES000, oo
=4000, 00

0, a0
nn

(2]
in
N

% 100000

0
m
m
m

F. ERLAMCE

44000, 00
GO000, 00
SE000,. 00
ZE00n, a0
“““ o0

Eo24000, an

f==]
X
1
=

-

=

N

2

o o20000, 00
3 O1S000,. 00
T oiE000.0n0
‘5 S00a0, 00
RS G000, an

) 10000

OvER

[K]

F. BERLANCE

k3 .

5-75

ZDHEDLULE

HEEZET

Ln

R R

DEP.

‘% =S000, 0o
‘| TEE0, 00
T OEFTL.20
‘5 CEE.E
3 31,
:I; oy .

v b 1 =) =) D T e)

L) £ DN
D Ul () B I OSSN

b~
L3 D fa Je oL

on -
RN Y IS KR FEI Y Ve

-
By
=J
"

TERR (D

e 1] s

LEF.

[%

. []
Fael 3

F AR S|

N b—b.f_n_'l in

o o D e

1}

00 00 Ja e o) oo) B N0 D0

Fo RO Y

SO0y TP,

Eoo10Ei.42

ERLAMCE

30 e D

DO D e D3 03 o o

1T

s SART
2

[S

-
3
&

n
i)
71
.m
T

fanl
I
r
o
)
m

R ¥ =
T oz o=
1 2oegs v
* =
- !

=

o N0 e 00

TR PO P RS s PO 1Y}

Y

S e TN R ORI R DR RN

D0 L)y o =) L e
L)

m
T
] N o s
m
ol

ERLAMCE

E lz4z8.482

5.22.2.3

5.22.2.4

Spooling Print Files To Disk For Later Output

The commonality of the QPEN, CLOSE and PUT statements to both disk

and print files makes it possible to alter a print file program so
that the output is saved in a disk file instead of sent to the printer,
The procedure is to change the filename in the relevant OPEN statement
from "*P" tp some appropriate disk filename. For example, line 328

in the depreciation program 1isting might be changed to

323 OPEN 9 "N:DEP-REPORT™ PAGESIZE 2@ ENDPAGE 60@

A print file that has been spooled to disk in this manner can be
printed out at a later time by using the following program:

5 INPUT "ENTER PAGE WIDTH OF FILE TO BE PRINTED";A
1¢ DIM AS(A)

2@ STRING CHARS(16RFF)

3@ INPUT "ENTER NAME OF FILE TO BE PRINTED";A$
4¢ OPEN 1 AS END 9¢

5@ OPEN 2 "*p"

6@ GET 1 AS

7@ PUT 2 AS

8@ GOTO 64

9¢ CLOSE 1

109 CLOSE 2

11@ END

Note that the string into which each disk record is read must be
dimensioned to a length which matches the expected page width of
the report (lines 5 and 19). This ensures that the extra blank
padding that fills each disk record will not be printed out causung
extra blanks lines on most printers.

Note also that Tine 2@ changes the system string delimiter to a
value that is illegal in normal print files. This ensures that the
entire content of each Tine will be ass1gned to and printed fromA$ -
regardless of which characters appear in the print file. If this
were not done any commas in the print file would cause erroneous
output.

Draining File Output To A Null Device

During the program development and test process or in a reduced
system hardware environment it is sometimes useful to run a program
which outputs one or more files and be able to suppress one or more
of the output files while the rest of the program runs normaily

In Micropolis BASIC this is easily accomplished by changing the
filename in the open statement of each file to be suppressed to a
"*N". When the program is run all output to "*N" files will be
suppressed or drained away without otherwise affecting program
operation. The following program illustrates this idea.

10 DIM A$(4,30)

20 FOR J=1 TO 4:A$(J)="":NEXT J
3¢ INPUT " FIRST LINE ";A$(1)
4@ INPUT "SECOND LINE ";A$(2)

5@ INPUT " THIRD LINE ";A$(3)

6@ INPUT "FOURTH LINE ";A$(4)

7@ B$="LABELS"

8@ INPUT "ADD TO DISK FILE (Y/N)";X$
9@ IF X$="Y" THEN B3="=xN"

'Igg C$="*P"

11@ INPUT "PRINT LABEL (Y/N)";X$
12¢ IF X$= "Y" THEN CS="=N"

]3g X$=","

143 OPEN 1 BS ‘

15@ PUT 1 A$(1)+X$+AS(2)+XS+AS(3)+X$+AS(4)+AS
16@ CLOSE 1

173 OPEN 2 C$

18@ FOR J=1 TO 4:PUT 2 A$(J):NEXT J
193 CLOSE 2

209 GOTO 29

The file output section attempts to add four Tines of input to a
label file and then print a copy of the new label entry. If either
or both of these functions is refused by the operator during the
input section, the program changes the filename variable for the
associated OPEN statement to "*N". When the output section exe-
cutes the refused function output is simply drained, i.e. not
putput anywhere.

5.22.2.5 Echoing Of Terminal Output To Printer

On systems with a video terminal and printer device it is often
desirable to obtain a hard copy audit trail of all system program
operation, including all of the prompts and system messages normally
directed to the terminal oniy. This is easily done by using the
statement

ASSIGN (2,3).

This statement causes the hard copy printer to be connected to logical
output stream 1 which includes all print statements, input dialogue,
keyboard echoing, *T files, and system messages; and to logical out-
put stream 2 which includes all *P print files. Thus everything
aimed at the terminal thru stream 1 will also go to the printer.

This echo mode remains active until changed. The statement ASSIGN

(2,2) will restore the system to normal which is device 1
(terminal) connected to stream 1 and device 2 (printer) connected to
stream 2.

Rev. 8 §/78 5-77

(This page left blank deliberately.)

Rev, 4 7/77 6-1

#RITE OTECT
L 1 E/‘curour

|~ DRIVE SPINDLE HOLE

|~ SECTOR/INDEX HOLE
(BOTH SIDES)

X / ~
.._// ‘_—__.—.NS—Q
READ/WRITE HEAD ACCESS STRESS RELIEF MOTCHES

HCLE (3CTH SICES)

Fizure 6.1

6-2
Rev. 8.1 2/5/79

VI.

6.0

DISK SUBSYSTEM THEOQORY AND DIRECT PROGRAMMING

INTRODUCTION

This section describes the Micropolis flexible disk subsystem in
sufficient detail to enable an experienced 8f80 assembly language
programmer to implement a disk driver.

6.1

FUNDAMENTALS OF THE FLEXIBLE DISK: MEDIA

6.1,1 Recording Medium

The recording medium used with the Micropolis flexible disk
subsystem is illustrated in Figure 6.1. The medium consists
of a thin, oxide coated circular disk permanently housed in
a protective plastic jacket. The disk rotates freely within
the jacket, which is lined with a material that cleans the
disk as it rotates, Several holes in the nlastic jacket
allow a disk drive to access the disk. When a diskette is
loaded into a drive, the disk is clamped to a motor-driven
spindle through the drive spindle hole. The read/write head
and the load pad which nresses the disk against the head,
access the disk through the read/write head access holes,

A photo detector senses sector and index holes through the
sector/index hole., A switch in the disk drive senses the
Write Protect cutout. If a Write Protect tab is placed

over the cutout, the diskette may be read, but may not be
written on. If the cutout is open, both read and write
operations may be performed.

6.1.2 Disk Data Format

Figure 6.2 illustrates the format of data recorded on the
diskette. Data is recorded on the diskette on concentric
tracks., The outermost track is Track @ and the innermost
track is 76 in Mod II subsystems and Track 34 in Mod I
subsystems. Each track has an unformatted capacity of
625@¢ bytes. Disk data transfers are performed on a block
basis, which would require a 6250 byte RAM buffer in the
computer for a full track size block. This buffer size

is wasteful of memory, so the actual format used divides

a track into blocks of more manageable size called sectors,
The format used in the Micropolis flexible disk subsystem
divides each track into 16 sectors. The beginning of each
sector is indicated by a sector hole punched in the disk.
This hole is sensed by a sector/index semsor in the disk
drive. An index hole is located halfway between the holes
for sector 15 and sector @ and indicates the next hole is
sector @,

6-3

Rev., & 7/77

\\\\

y

\N

ooooooooo

’ e
y \N\\\\\\\\\

‘ z
\\\\\“

G

- \\\§§

\

4

a

sssssssssss

sssssssssss

EEEEEE

AAAAAAAA

CCCCCCCC

19 SECTCR

10

Rev, & 7/77

Rev,

Each sector has an unformatted canacity of anproximately 390
bytes. However, not all of the available storage space can be
used for data. The electronics in the disk drive and the nature
of the media and drive mechanism require a certain amount of
space be given up to accommodate the electronic characteristics
and to allow sufficient tolerance in the recording format to
permit interchanging diskettes between different disk drives,
Briefly, the factors which must be taken into account are:
mechanical tolerance in the physical distance between sector
holes punched in the disk; alignment of the sector/index sensor
with respect to the read/write head; response of the sector/
index sensor and logic; disk speed variation; write clock
frequency tolerance; and, acquisition time of the read data
decoder. :

The recommended sector format is illustrated in Figure 6.2,

This is the format used in disk files created by the Micropolis
Disk Extended BASIC software and is the format required by the
disk bootstrap located on the controller board. This format

was designed to make the best trade-off between storage capacity
and tolerance margins. Although other formats could possibly
utilize more storage capacity, they would be incompatible with
the bootstrap and a complete discussion of the engineering
considerations necessary to design another format is beyond

the scope of this section.

A disk sector consists of the following fields:

1) Preamble: The preamble is composed of anproximately 4@ bytes
of zero (@) data bits, The oreamble is automatically generated
by the disk controller and is necessary to provide tolerance
for the mechanical alignment and electrical characteristics
of the sector/index sensor. It also provides a field of known
data pattern for synchronization of the read data decoder.

2) Sync: The sync byte is a byte of (FFH data which is used in
the disk controller to define the beginning of useful data.

3) Header: The header is a 2 bvte block consisting of the binary
track address of the track on which the sector resides (§-76 (3%&))
and the address of the sector (0-15). The header is used to
verify that the proper sector is being accessed in a disk I/0
operation.

4} Data: The data field consists of 266 bvtes of user data.

5) Checksum: The checksum is a one byte error detection code which
provides error detection in read operations. The checksum is
computed as follows: a) The accumulator and carry are initially
cleared; b) Each byte of the header and data fields is added to
the accumulator with carry. 1In write operations, the computed
checksum is written immediately following the data £field. In
read operations, the checksum is re-computed from the read data
and is compared with the checksum byte which is read. If they
do not compare, a read error has occurred.

6-5

I~
~1}
~
~J
~d

MIUTER {NTERF A CE

T T

! £ SO TIMER

UM ABDRF 5§

SEHECTLOGIC
UL SH EC Y
- ‘

4B SECTOR
ANDRESS

IMDEX SEPARATOR

SLCIOR FLAG
-~ -4 SECIOR CounTe

SECTOR (MTERRUPT
PP R il

WACE 76RO STATUS
[P P

ORIVE SFECT

’ STER

T DRECUON

-

] oY

|
|
o
|
|

XFER READ'Y f T FRASE
e

FOSHHORER
COMMOL

WRHTE PROIFC T s
StATUS arAD I CRIIE PROIFCT
T T 1

conmey
WRITE
I R . —

1

‘ BBILDATA

“RITE E1ia8LE
BT e
i
t

SEREAL RITF Bala
e e

CRITE QATA
e oDt

RRITOATA SERIAL BOAD Rata

OATA DFCODER

READY STAILS ; -
PPt
CONROU iR ’

-
ALAD WREE FRASE
CORAL LOGIC
-
=

HMOTOR
CoRImet
towae

TREVE VEEE ROPILS

STEPPER
MOIOR
SRV

SECTOR/tNDLX PULSE

READ. WRITT ERAST COMIPEIE AT DATA

Pigure 6.3

HEAD LOAD
SOLFHON

HOTOR

HEAD CARREAGE

SECIOR, HDEY.
PUEST SUHSOR

WRITE FROTECY
WA

SPIIDE FAOTOR COMBRAL

o OISEFTRE LOADLD WA TON

ORIVE B4ECHRATICS

t~

~

~F

Rev.

6) Postamble: The rest of a sector from the checksum to the next
sector hole is filled with zero data bits. The length of the
postamble allows for the mechanical tolerance in the placement
of sector holes on the disk and tolerance for disk speed and
write clock variations,

‘6.2 HARDWARE FUNDAMENTALS

Figure 6.3 is a block diagram of the Micropolis flexible disk
subsystem. The components of the subsystem may be grouped as:
spindle drive control; sector logic; position control logic;
read/write logic; select and head load logic.

1) Spindle Drive Control: The disk drive spindle motor is
controlled by a micro-switch that senses when the diskette
is inserted and loaded, or unloaded. When the diskette is
loaded, the disk is accelerated to a speed of 3¢@ RPM.
After an appropriate delay to allow the speed to stabilize,
the drive is ready to accept commands. If the drive is
selected by the controller, the drive will indicate this
state by asserting ready status.

2) Sector Logic: When the disk is rotating, the sector/index
hole sensor provides the controller with an electrical pulse
corresponding to each hole punched in the disk. The controller
separates the sector and index pulses and counts the sector
pulses, thereby providing the programmer with the 4 bit address
of the sector currently passing under the read/write head. A
flag bit in the status register is provided to indicate when
the sector address is valid and when a read or write operation
may be initiated,

3) DPosition Control Logic: The read/write head is mounted on a
carriage which is moved from-track to track by a stepper
motor-driven lead screw. Positioning is accomplished by
specifying the desired direction (inm or out) and issuing
a step command. Control logic in the drive electronics
generates all the signals necessary to cause the motor to
move a track in the desired direction, When a drive is
first selected, such as at power om, the track position of
the drive is indeterminate. Before read or write operations
may be performed, the positioner must be recalibrated as
follows: when the carriage is positioned at track @, a
microswitch associated with the positioning mechanism is
made. The state of this "track @'" switch is provided as
a status bit. Recalibration consists of examining the
track # status and if it is not true, issuing a command to
step out., . After an appropriate delay to allow the command
to be executed, the process is repeated. Once the positioner
has been calibrated, the software must keep track of the
current positien.

Rev. & 7/77

4)

Read/Write Logic: Data is transferred between the computer

and the controller on a byte-by-byte basis. For write
operations, the controller generates the preamble and then
converts 8-bit byte data from the computer to the serial
data which is recorded on the disk. When the computer
stops supplying data, the controller automatically writes
zero data to the rest of the sector until a sector pulse
is sensed, For read operations, the controller converts
the serial data stream coming from the disk to 8~bit bytes
and automatically detects the sync byte to determine when
valid data is available,

The controller generates a "transfer ready" status flag
which indicates that the controller is ready to accept
data in a write operation, or that data is available in
a read operation.

The controller is accessed using a technique called
"memory-mapped I/0". This means that the controller
command, status and data registers are treated as
memory addresses and that controller read/write commands
are actually memory referemce instructions. When the
controller data register is accessed in a read or write
operation, the controller forces the computer to wait
until the controller is ready to transfer data, TFrom
the computer's point of view, the controller appears to
be slow memory.

The read/write control logic in the drive electronics
provides the conversion between the serial digital data
at the controller interface and the serial data signals
at the read/write head. Whenever the drive is performing
a write operatiocn, the positioner control and read logic
is disabled and the appropriate signals are generated to
drive the read/write and erase heads. The erase head used
in flexible disk drives is a "trim" erase head. 0ld data
written on a sector is implicitly erased by being written
over by new data. However, any slight track positioning
errors could eause sufficient remnant old data to be left
in the space between tracks to cause data reliability
problems. To eliminate this error scurce, an erase head
which erases the disk a small distance on either side of
the newly written data is provided. This erase head is
located a small distance behind the read/write head and
cleans up the inter~-track gap after data is written.

When a write operation is terminated by the occurrence of

a sector pulse, the erase head is left on a sufficient
amount of time for the last data written to be trimmed.
Since the position control and read logic will be inhibited
until the write operation is complete (including the erase),
a new operation must not be attempted for at least one
millisecond after the termination of 2 write operation.

7/77 6-38

The drive contains a microswitch which senses the write
protect cutout in the diskette jacket. When the write
protect tab is installed, the write/erase control logic
is inhibited. The state of the write protect switch is
available as a status bit.

5) Select and Head Load Logic: The controller will support
up to &4 disk drive units connected in a ''daisy chain"
configuration. The drive electronics in each unit are
conditioned by the drive select such that only one drive
at a time will respond to, or provide, signals on the
controller/drive interface. When a drive is not selected,
the spring-loaded pressure pad which holds the disk in
contact with the read/write head is moved away so that there
is no contact and the head is '"unloaded'. When the drive is
selected, a solenoid is energized, which allows the load pad
to contact the disk so read or write operations may be
performed, The controller contains a 4-second timer which
automatically deselects all units if the controller has not
been accessed for four seconds.

6.3 CONTROLLER REGISTERS

The disk controller occupies a 1K byte block of memory from F4@@H to F7FFH.

The first half (F4@0H to FS5FFH) is reserved for om-board bootstrap ROM., The

controller command, status and data registers start at address F6@fH and are
defined as follows:

1) OQutput Registers

Command Register

Q... 3 4 3 2. 1 0
COMMAND N MOD
CODE S

F6@PH or
Fe@d1H

L3

MOD = Command Modifier

The commands available are:

Code Command Modifier
@a1 Select drive Contains drive unit address ($-3)
g10 Set interrupt emable §1 = enable interrupt

{controls sector 510

disable interrupt
pulse interrupt) '

- P11 Step 1 track 80 = step out
$1 = step in
190 Enable write Not used
191 Reset controller ‘ Not used
6-9

Rev. & 7/77

Rev,

2)

Write Data Register

F6@2H If the write data register is referenced when the
transfer flag is set during a write operation, the
controller expects a data byte to be on the S10¢
buss data lines., The PRDY line will be held false
until the controller has accepted the data, then
the PRDY line will be set true for 1 bit time
(4 usec). (See the status register description
for the definition of the transfer flag.)

Input Registers

Sector Register

F6gH 76 5. 4 |3 2 1 g
5 I !
'C N §
STl T SECTOR ,
| R, | T ADDRESS f
B oo
I S R P / !
! L PG ! o //J }
‘ S A i
le.i |- /7 |
Bits Definition
0-3 Sector Address: Address of the sector currently
passing under the read/write head of the selected
drive.
4,5 Reserved.
6 Sector Interrupt Flag: Indicates an interrupt
request has been generated by a sector pulse,
Flag is reset by issuing a rTeset or an interrupt
disable command.
7 Sector Flag: Indicates the sector address is

Status Register

F6Q1H

7/77

valid and that a read or write operation may be
performed. Flag is true for 30 usec at the start
of each sector. All data transfers must be
initiated within 100 u seconds of the flag going
true,.

-

6 S 14 1.3 12 1)
X P R | W T § U A
F I E P | K L N D
E N A T g | T I D
R, | T D ;D T R
E ¥ L
F i]
L ; ; ' f
G. § } f
1) | S !
6-10

F6@2H

Rev.

8

Bits Definition
8-1 Unit Address: Address of the currently selected
drive. Address is valid only if SLTD is true.
2 SLTD: Unit selected. This flag is low true,
i,e.,
= Selected
1 = Not selected
SLTD is true if a drive has been selected and
the 4-second timer has not expired. SLTD is
low true so that the software may detect when
the controller is not installed (non-existent
memory references yield @FFH).
3 TK@: Track @ status from selected drive.
4 WPT: Write protected status from selected drive,.
5 READY: Ready status from the selected drive,
When true, indicates the drive is ready to
perform commands.
6 PINTE: PINTE status from the S1@p BUSS.
7 XFER FLAG: Transfer flag. 1In write operationms,

indicates that the controller is ready to accept
data from the computer. In read operationms,
indicates the controller has data available to
the computer. When the software detects the
transfer flag has set, all data transfers are
performed by accessing the controller data
register, which automatically synchronizes the
transfer by use of the PRDY line.

Read Data Register

If the read data register is accessed when the transfer flag is
set during a read operation, the controller will hold the PRDY
line false until a byte of data is available. The controller
will then place the data on the S10# BUSS data lines and set
PRDY true for 1 bit time (4 usec). The data will only be
available for this 1 bit time period.

9/78

6-11

Figure 6.4

DRIVE SELECT LOGIC N MILLISECOND TIMER
(SELECT) [peLAY)
RERD READ
STATUS STRTLIS /
Status Read <

Re-triggers

4 gecond
timer DELA Y
L MsEC

SEL&T { EX1T)
DESIRED

WA

DELAY
25@
MSES

Regap
STATUS

DRivE AloT WP

: [Eezon)

Rev, & 7/77 6-12

6.4 DISK OPERATIONS

The following paragraphs describe in detail the steps involved in performing
each of the operatioms required to operate the Micropolis flexible disk drive
subsystem.

6.4,1 Select a Drive

A drive must be selected prior to any status read, step or data transfer
operation. Selection must be performed for each operation since the 4
second timer may have deselected a unit since it was last accessed. The
important considerations in selecting a drive are:

1) When the drive is selected, the head will be loaded. A
minimum of 75 milliseconds must be allowed for the head
to load and settle.

2) The sector counter is located in the controller, When a
drive is selected, a2 minimum of 250 milliseconds must be
allowed for the sector counter to synchronize to the drive,

Figure 6.4 is a flowchart of the select operation.

NOTE that all delays are generated by a software timing loop

subroutine, A read status command is included to re-trigger

the & second timer every time the delay routine is entered,

6.4.2 ©Position the Head

A drive must be selected before a step command can be issued to cause

the head to move 1 track. One step command of the appropriate direction
(in or out) must be issued for each track moved. A minimum delay of 30
milliseconds must be allowed between each step command, (Note a step
in moves the head toward the center of the disk and therefore to a higher
track number,) Typical logic to implement a 1 track step is illustrated
in Figure 6.5.

After the head is positioned to the desired track, an extra delay must be

allowed for the head to settle before read/write operations are attempted,
The complete process for an N track move is illustrated in Figure 6.6,

6.4.3 Restore to Track @

When a drive is first selected, the position of the read/write head is
indeterminate, Prior to performing disk data transfers, the positioner
must be 'recalibrated'" which consists of stepping the head out until tne
track @ switch is made. 1If the drive already indicates track § status
when first selected, the head is stepped in 8 tracks, then out to ensure

a good track P position. Once calibrated, the software must keep track of
the current head position for each drive. The restore lagic recommended
is illustrated im Figure 6,7.

6-13

Figure 6.5

STEP 1 TRACK

{ sTEPIN) STERPOWT

I85mE T5SME
STERP 104 STEPQUT
COMMAND CommanD

>

]

DELAY.
3D MmsEC

EXiT

;

Figure 6.6
POSITION N TRACKS

POSITION

J

SELECT
DRIVE

§TEP
IN/ouT

Rev. & 7/77 6-14

Figure 6.7 RESTORE TO TRACK @

(RESTORE)

SELECT
DRIVE

If already at track @, move
off 8 tracks then restore to
ensure a good position.

P A

8 A
TRALKS
YES

[STEP

------- If 85 step out commands have
been given and track @ has
not been reached, something
is wrong.

l @ msEC

DELAY t

(exIT

L

RESTORE ERROR

6-15
Rev. 4 7/77

~

6.4.4 Write Operation

Figure 6.8 illustrates the logic necessary to perform a sector write
operation. The program illustrated requires a 268 byte memory buffer
with the first two bytes set to the track and sector address. The
sync byte and checksum are generated in the program., The steps
involved in writing a sector are:

Rev,

4

D
2)

)]

4)

5)

6)

7)

Move the data to the write buffer,
Select the drive,

Wait for sector flag. When the flag goes true compare the
gsector address with the desired sector address. When the
desired sector is found, issue an enable write command.

The enable write command causes the controller to generate
the preamble, Wait for transfer ready flag to indicate the
controller is ready to receive data. The software must then
write the sync byte. The timing of the software loop which
tests for XFER readv and then outputs the sync byte is
extremely critical. The sync byte must be on the S18@ buss
data lines within 32 usec after XFER ready sets. The
following code satisfies the timing requirements:

(HL = F6P1H and A = @ when this loop is entered)

*Wait for XFER ready flag

WAIT ORA M
JP WAIT
*INSERT SYNC BYTE
INX H
MVI M, #FFH

Each successive data byte must be made available within 33
useconds of the previous byte. When the data register is
accessed, the controller will hold PRDY false until it accepts
the data and then allow PRDY to go true for 1 bit time. The
timing constraints on the write loop are therefore a maximum
loop time of 32 useconds and a minimum loop time of 1 bit time
(4 useconds), These figures do not include any margin for
clock tolerance, so the actual design goals should be about

28 and 6 useconds for a conservative design,

When the checksum has been written, stop accessing the controller
write register, The controller will automatically zero fill the
rest of the sector.

After the checksum is written, the program waits for the next
sector flag, At this time the controller terminates the write
operation and the erase delay in the drive starts., The 1 milli-
second software delay allows sufficient time for the erase delay
to expire so that step and read functions are again enabled,

7/77 6-16

Figure 6.8

Controller
generates
preamble

Write
sync
byte

Main
write
loop

Rew, 4

SECTOR WRITE

< werTe)

SELECT
DRIVE

WARIT
SELTOR

ENRBLE
WRITE

REARD
STATH S

7777

GET CATA
IO M
BUFF&ER

ADD OATA
T
CRECK SUr~

~mn-Wait for

1 WARIT SEcTo R, desired
i sector
READ
SECTOR
STATUS
S—
DESIED

SECTOR

6-17

ExiT
W RITE
CHECRSUM
RYTE
~==Zero
£#11
sectar
to next
sector
mark
~~~~~~~~ Wait for
erase
delay in
DELAY drive
1 MASEC

( Ex'T )



6.4.5 Read Operation

Figure 6,9 illustrates the logic necessary to perform a sector read
operation. The program illustrated requires a 268 byte read buifer.
The track/sector ID will be read inte the first two bytes of the
buffer and when the operation is complete, will be compared against
the desired track/sector address. The steps involved in reading a
sector are:

1) Select the drive,

2) Wait for the sector flag. When the sector flag is true,
compare the sector address with the desired sector.

3) When the desired sector is found, wait for the transfer
flag to set to indicate disk data is available. Note
that no command is necessary to start a read operation,
but you must always wait for a sector flag to indicate
the start of the read.

4) When the transfer flag is set, the sync byte will be
available in 25-28 useconds. The sync byte will only
be available for 3-4 wuseconds so the timing of the loop
which checks for the transfer ready flag is critical. The
following code satisfies the timing requirements:

(HL = F6@1H and A = @ when this loop is entered)
* Wait for XFER RDY flag

WAIT ORA M
JP WAIT
*GOBBLE SYNC BYTE
INX H
MOV A,M

5) Each successive data byte will be awvailable within approximately
25 useconds and will be available for about 3 useconds.
When the controller data register is accsased, the
controller will hold PRDY false until the data is
ready, then will place the data on the 35108 buss data
lines and allow PRDY to go true for 1 bit time. Once
the software has read a byte, it must not access the
data register again until this bit time has expired.
The timing constraints on the read loop are therefore
a maximum loop time of 25 useconds and a minimum loop
time of 5-6 useconds, These figures reflect a
conservative margin to allow for timing variations
in the disk read data. :

6) The last byte to be read from the disk is the checksum.

The checksum read should be compared with the re~computed
checksum, to determine if a read error has occurred.

Rev. 4 7/77 6-18



Rev, &

Figure 6.9

SECTOR READ

("o )

|

SELECT
DRIVE

wa

S8ECTOR

T

|

!

READ ;

gTATUS

READ
DaTa
GYrEF

Wait for

to detect
sync

- byte and
discard

A0D O
TO

CHECKSIAN

ATA

controller

Capture sync

Te

MOvE DATA

BUFFER

7/77

6~19

CHECRSUM FRICQ

HERDER EFERRRofl,

- FRReq ]

First 2 bytes of
buffer should be
track/sector ID



6.5

7) If no checksum error is detected, the first two bytes
read should be compared with the desired track and
sector addresses to ensure the correct sector was read.

ERROR HANDLING

An impertant consideration which may not be ignored im the design of a
flexible disk driver is the handling of errors which occur. Magnetic
storage devices in general dre subject to errors. The succeptability
of the diskette to damage or contamination due to handling makes error
handling particularly important in flexible disk systems. Most errors
are of a temporary nature and will be invisible to the system with a
properly designed driver. '

Most errors can be attributed to one or more of the following sources:

1) Transient Electrical Noise

2) Media Contamination - Particles of foreign substances may become
lodged between the head and the recording surface of the disk and
cause data errors.

3) Head Positioning - The read write head may be positioned to the
wrong track if the specified step rate is exceeded or may be
marginally positioned if a drive is misadjusted,

4) Disk Centering - Due to the flexible material of which the disk
is comstructed, or in the event the disk is damaged or distorted
due to mis-handling, it is possible that a diskette may be
improperly clamped to the spindle in the disk drive.

The following procedures are recommended to perform proper error handling
in disk read/write operations:

Rev,

/

&4

Read Operations

1) Step the positioner to the desired track.

2) Perform the read operation as described in Section 6.9.5. 1If a
header or checksum error occurs, re-read the sector up to 5 times.

3) If the 5 retrys were unsuccessful, step the positioner off one
track and then back to the desired track. Repeat Step 2, 1If
still unsuccessful, step the positioner off one track in the
other direction and then back. Repeat Step 2,

4) Perform the restep procedure given in Step 3 up to &4 times. If
still unsuccessful, deselect the unit and wait about 200-milli-
seconds for the head to unload. Reselect the unit, restore to
track @, and re-seek to the desired track. Repeat Steps 2 and 3.

5) Perform the reselect function given in Step 4 up to 3 times. 1If
still unsuccessful, abort the operation with a permanent I/0 error.

7/77 6-20



Write Operation

1) Step the positioner to the desired track.

2) Read the sector immediately preceding the desired sector. Any
arrors which occur should be handled in the manner described
for normal read operations. This operation ensures the head is
properly positioned to the right track and the sector counter is
synchronized with the disk.

3) Write the desired sector as described in Section 6.4.4.

4) Read the sector just written to ensure the data was recorded
properly. 1If an error occurs, repeat Steps 2, 3, and &4 up to 5 times.

5) If unsuccessful, perform the restep operation as described for the
read operation and repeat Steps 2, 3, and 4,

6) 1If & restep operatioms are unsuccessful, perform the reselect
operation as described for the read operation.

7y 1If 3 reselect operations are unsuccessful, abort the operation
with a permanent I/0 error.

If a permanent I/0 error occurs, the disk may be improperly centered, there
may be a defect in or damage to the recording surface of the disk, or the
disk may have been writtem on a marginal drive.

The ''restep'' procedure described takes advantage of the hysteresis present

in all positioning systems. Friction in the positioner causes the head
position to deviate slightly from the nomipal track position. This position
will be different when the head is stepped to a track from different directions.
In normal operations, this slight position error is well within the tolerance
1imits fotr proper operations. However, if errors are encountered in reading

a disk which was written on another drive that is marginally aligned, the
slight difference may be enough to recover the data.

The '"reselect! procedure serves to dislodge any foreign particles and to
recalibrate the positioner, should it be positioned to the wrong track,

6.6 DISK DRIVER

As a comprehensive example of all the principles presented in this section, a
sample disk driver is presented here. This driver provides the facilities to
seek to a track, seek and read a sector, seek and write a sector, and seek
and verify a sector. This verify operation is a special case of a sector
read but only the header bytes are transferred into the buffer. This allows
the use of a single disk buffer to perform write operations, which consist

of a header check prior to write, writing the sector, and a read-after-write
check.

The power-on recalibration is transparent. The driver maintains a table
containing the current track address of each drive connected to the controller,
The user's power on initialize software must set the entries in this table to
PFFH, The fuirst time a drive is accessed, the driver will recognize this

flag and recalibrate the positioner on the drive before performing the
specified operation.

Rev. & 7/77 ' 6-21



When the driver is ealled, the HL register must point to a parameter block
(referred to as a disk control block) which specifies the operation to be
performed. When the driver returns, the condition code will reflect the
status of the operation. (See the listing for details,)

The DCB is structured as follows:

-
ADDRESS i 6 5 4 3 2 1 )
. 7 R A FN
DCE + & S A T CODE
1D R
DCB + 1 F A UNIT
L W ADDR,
A F
L
G L (
G 7
DCB + 2 SECTOR ADDRESS
DCB + 3 TRACK ADDRESS
DCB + 4 BUFFER ADDRESS LSB
l
DCB + 5  BUFFER ADDRESS MSB

The DCB entries are described as follows:

FN CODE Function code

# = Seek only

1 = Seek and read sector

2 = Seek and write sector
3 = Seek and verify sector

ID FLAG Pre-Write Header (ID) Check Flag
@ = Perform check
1 Inhibit check

[T

RAW FLAG Read-After-Write Check Flag
@ = Perform check
1 = Inhibit check

UNIT ADDR, Drive Unit Address
g -3

Sector and Track Address are the address of the sector which is to be
written or read and the address of the track upon which the sector
resides, The driver will seek as necessary to move the head to the
desired track.

The Buffer Address 1is a 16 bit memory address stored in standard
8080 low/high format. This must be the address of a 268 byte read/
write buffer, The first two bytes of the buffer are reserved for the
header,

Rev. & 7/77 6-22



To perform a write operation, move the data to the read/write buffer,
set up the DCB, and call the driver.

To perform a read operation, set up the DCB and call the driver. When

the operation is complete, the data from the desired sector will be in
the read buffer,

Rev. 4 7/77 6-23



wZ-9

*NOILYEId0 3HL ONIWH0JYId
NI g=sn 28 0l g3d44nsg
FLIEA/QYEE FHLI 40 SS3HOAVY
LYvVls 3HLl ST 553940V gEd44ng
SSIHAQY HEI4Ng SPw+gdn
(Ve (9L=0) SSIHAAY MIVAL £+g0an
{S1=8> $SILCAV =I0103S Z+E340
‘LIGIHNI=1
“UH0IEEd=g T0HINOD
HIFHD O Iliga-3sd L
LIGIHNI=1Y
“RE0AE3 =P I0ELINDD
¥OIHD HIIHUM-EEZIIYV-0Y3d 9
553800y LINn 1-2
NOTLIONNS l1g
193135 LINNCSHYIL CTONINOD 1+820n0

SHASIU UALIVAEOANG NO BNILIHA d04
1+8200 NI 3DV1d TIC8INOD Ad
J2A0IEEENA0 38 NYD SHIIHD ZLlda
4314V Jvdaz ONV XJ3HD 41 3HIILON
av3d KNSHIIHD
JiTd8-83idYv~-0v3Es v A8 Q3I41d3A
NEHL 51 NILLlTzZd 801035 3HL (g
NOILYE3gD 3LIEA FHI HWHOAYEd (¢
E0133S Q341530 FHLI INICES3E0dsd
ATIIVIGIWWI ©0L235 3JHL NI
01 Z01035/7¥2vdl 3IHL AdTddn (1
240 L15ISNDD SNOILVEILO Ilida

B0Ll33ds5 Ad1ddn GNY X®3Z3AS €
s0l123s E1748 JONV ¥33Is ¢
d0423%5 Qv3d anv ¥IIs 4
ATIND ¥MOvdEl ¥33ds @

JA0D NOILONNd 2+3000

$Sx077104d SY

dBeNliLEis $1 aNY J=SWE0443d F8 04
NDILVEE340 SHL SENTAZEd HIOIHA ¥O018
T0HINQD XMSIQ 5.2235a ZTHL 5T 534a
NDILP=3540 30443 ZNp

AzU3=3d ¢ 22U 01IXSd TIVI
23S 01 T4 4NICS Z346iy IXT

SEJNBNBES INITIVO

1

LR I B R B R I S B R R R R N S R R K R R R R N A O R I 2. T B B N 3

3k 3 3k 2k 3k i 7k 3k 2k 2k i IR 3k i 3k ok ke ke e ka3 3k ok sk sk gk S 3k ak e 3K ok ok R kK

LLsT EANIrM 8

WELSASEIIS H51d JTTEIXETS
0

SIT1040431IW 504 "H3ATSE0 H51d

LIRS K B R

NDI1YE0dEDS SITT0d0=EITN LHDISAS0D

L3 K B I N 3

e 3k s a3k 3k ok 2 e I A o T 9K 3K K 3K 20 3K K 3K 9K 03 K K 3K K K KK K e R kK

LL/

/

B CAvy



gee

489 F2

2>

3

**************************************{***************

DSKIO

ALL OPERATIONS
RECUIRE A 268 BYTE BUFFER
ORGANIZED AS FOLLOWS:

BYTE @ ~-- TRACK ID
BYTE 1 ~- SECTOR ID
BYTE 2-267 ~- DATA

BYTES @ AND | ARE FILLED
IN AS NECESSARY BY THE
DRIVER

THE DISK 1,0 DRIVER RETURNS WITH
THE CONDITION CCDE SET TO Z IF
THEE OPERATION WAS SUCCESSFUL AND
NZ IF AN ERROR OCCURRED. THE
A BEGISTER WILL CONTAIN AN ERROR
CODE AS FOLLOWS: .

| =~ PERMANENT 1/0 ERRQOR -~ AN

UNRECOVERABLE DISK ERROR
CCCURRED

2 -- PARAMETER ERRQR ~ ONE QF TEE
PARAMETERS IN THE DCB IS
INVALID

3 -- DRIVE NOT UP - THE ZELECTED
DRIVE IS NOT REALY

4 ==« VRITE PROTECT - THE SELECTED

DRIVE IS WEITE PROTECTED AND
A WRITE OFEFATION WAS
SPECIFIED

INITIALIZATION REGUIREMENTS®

1) THE DRIVEZR CONTAINS A TABLE
LABLED "TRACK™ WHICH CONTAINS
THE CUREENT TRACK POSITION FOR
EACH DRIVE CONNEXTED TO THE
CONTROLLER. EACH ENTRY MUST BE
INITIALIZED TC FFH TO CAUSE THE
TRACK PQSITION OF EZACH DRIVE TO
BE RE~CALIERATED THE FIRST TIME
IT IS ACCESSED

2) THE PARAMETER LABELED "TRKMX"
MUST BE SET TO THE HIGHEST

TRACK ADDRESS WHICH IS 76 FOR
MOD 11 SUBSYSTEMS AND 34 FOR

MOD I SUBSYSTEMS

3> THE 16 BIT PARAMETEE LABELED
»DADRFTMUST BE SET TO THE ADDERESS

OF THE DISK CONTEQLLER WHICH IS
THE BOCT PROM ADDRESS+240H

OFG X‘'400°"
DI

6-25



Rev,

aagi
a4a@2
@a@3
Bad4
4@
2408
2488
a4acC
B48D
Guld
a412
413
g4l 4
8415
a416
gaty

g41a
galb
B4l1E
pu2e
a423
aa24
g425
gaz7
gaz9
242C
A42D
Q4u2E
2430
@433
2434
437
2438

2438

B43E

Ba4q)
2a44
B4a4s

7/77

C5

DS

ES
2109009
39
220887
El

ES
11F526
A686
7E

12

23

13

95
C21224

21F5826
7E
FEG4
D2D285
23

7E
EGJF
FE@4
D2D225
23

7E
FE1@
pD2D285S
23
3AFER6
36
FAD2@5

CDE4@3

CDDS@g4

3AFS@86
B7
CACCA4

DS@1@

»*

* ox

* KR XK KX

* X * ¥

PUSH B SAVE REGISTERS
PUSH D

PUSH H

LX1 H.@ SAVE STACK POINTER
DAD 5P

SHLD STACK

POP H GET POINTER TO
PUSH H USER®*S DCB

LXI D,DCE COPY USER DCE TO
MVl BLDCELEN INTERNAL DCE

MOV A.M

STAX D

INX H

INX D

DCE B

JNZ DsSP1¢@

VALIDATE DCE PARAMETERS

LX1 H.DCB FUNCTION MUST BE
MOV  ALM 3 OR LESS

CP1 4

JNC PARMER PARAMETER ERRCR
INK H

MOV  A.M UNIT ADDRESS MUST
ANI X'3F°? BE LESS THAN 4
CPI 4

JNC PARMER

INX H

MOV ALM SECTOR MUST BE
CPI 16 15 OR LESS

JNC PARMER

INX H

LDA TREKMX TRACK MUST BE LESS
SUB M THAN OB EQUAL TO
JiM PARMER MAX TRACK

ENSURE DRIVE IS OPERATIONAL
CALL SLCT

SEEK TO DESIRED TRACK

CALL SEEK

GET FUNCTION PARAMETER FROM DCB

AND PERFORM ANY OTHER REQUIRED
FUNCTION

LDA DCEBFN DONE IF FUNCT=
0RA A SEEK ONLY(8)
JZ D31ea@ DONE

PERFORM READ/WRITE FUNCTION

RETRY CONTROL FOR READ/WRITE

6~26



Lz-9

31 Qqox INNOD
E0Ll33IS IIvdsMavd
3lT4A

0D 135 LIZTHNT
AS3IHI J3AYVIH d7T

40wl d0d YMOIHD
401335 avzy

NOILONDS 139

224408 13S34Hd

anNv

veg
e A2 K
9

2s540d
BpLBSd

104
Ng2d

30104

(73]

8Re2sd
o
Beosd
TYATI:

4013553

gsasd
v
Ndg3d
2aAv4dig
avgoa

W4

HOA
INY
8243
van
ZNP
INY
vaTl

e Ce
-}11-—1-‘,
RPN = S

EAN
204
dWpr
TI9D

aviad

ZNe
30d
vaT
d7IHS
aTHT

02434

NOTILONNL JEYISIT L33T3S

AZLET1T V1S

SS9 InM

Adl:zZeT  VY.is

ey IAN

SEILNNOD AdLlEET ¥ULS

AZLIE LIASEE 'Y InW
LTI0SZ¢ Ty ud0des

071 LINENVWEEg J7IN453200100S

LON JdI°S3WIL € 01 40 INOJ

38 TITH SIHL *dINE03=38 HE TIIA

SIENJIT0UL AGLIAE 2 ANV T T3InIT
IHL gAY MIvYd4L JES1530 ZHI 04

®Hove CEL0W ANV J3LIVEEITVIZU

TT1a

24

JINDILISOd FHLCQELIETISEL

39 TTIA4 LIND 3HL NIHL TvIE JHIL

Jv0TING 04

QILIFTIS3C F3 TTIA

LINI

EHLCTNA4553200AS LON ST 34Nd320dd

Agl3s ¢ TINIT IHL

41

-- €

SFIWIL ¥ 0Ll di d3A404¥3d 38 T71I14

SAELIE 2 TEAZT IHL

39 TTIN SACSLIY

1714

*A3NI

LON 34Y SAUL3IYd 1 T3AZT 3HL 4

J3w<d04Y3d

Cd353dd

T TEA3T JHL ONV
MovE ONV XOvdl Jdd0 JEJ44ELS
HdENOILISO0d JIHLFTNISSIIINS

34

NOTLVJ3d0 DNIAN3H40 3FHL 40 SAELIS

S 04 4273540000 40dEE
$SA0TTI0S

1 --2

g 1718

NV 41 == 1
SY J3a1a03d

51 3dl00dls AglEd TT2ndT €OV

TSNOTL

Y=E3d0

X

296353

»*

(&
[aY
Q

i

v
HOX OH N N K OK OE KON R R X KRR XK KRR KK KO

Iy

Ly
4893
ac
9gL4ve
ver330
pl9z
S@94YC

73L680

ag
A TSN
9813800

737923

ac
9254dve
LvB@oee
586392

Lewaeg
$23¢€
il@szcte
7@3¢
L3922t
£g3¢t

VARECH

SLva
Uiva
65L7D
9L%7D
CLWD
1Lw2
z9ve

dovs
vowg
LOw?Z
Yo d

1972
PO
asvoe
vSvo
LSS0

vehwe
2sro
drve
avwo
Yy o
gwve



Rev. &

247D
Q488
@483
Q486
B4ags
Q48A
B48D
BABF
2491
494
Ras7
gass

498
B49E
Q49F

dan2
G4AS
GLAB
G4AT
g4AC

Q4AF
g4aB2
g4B3
2486
2489

B4EC
@4BF
gac2
g4cC3
B4Co

p4ace

g4ccC
gacrF
24D8
24Dl

7/77

CDE1@6
C2a2084
CD2F@6
3AF7@6
47
3JAF6D6
E64@
EE4@
CuaRl1@6
Cia224
3ar
c2p2as

3AF706
47
CDEB1@é6

CACCRA4
A48T
3D

320407
Cas57a4

CD3685
3AP587
3D

328587
C25284

CD63@es
3AB627
3D

320687
C24D@4

C3CCes

240807
F9
El
D1

DS@279

DS@ER

* *

2 2 B O o* % %
in
[
0
[N

LR B B

* % # H

Dsl1@@

CALL READCK DO PRE=-WRITE HDR

JNZ DS69¢ CHECK ~ ABORT ERR
CALL WSECT GO WRITE

Lba DCBSC DO RAVW CHECKSUM
MOV  EsA READ CHECK

LDA DCEUN UNLESS INHIBITED
ANI RAFI

XR1 PRAFI

CNZ READCK

JMP DS@9@ G0 CHECK FOR ERR
DCR A

JNZ PARMER TRAP=-JUST IN CASE

VERIFY SECTOR

LA DCESC
MOV E.A
CALL READCK DO CHECKSUM READ

CHECK FOR ERRQOR

JZ Ds128 NO ERROR~-EXIT
LDA LI1RTRY LEVEL | == RETRY
DCR A UP TO 5 TIMES

5TA LIRTRY
JNZ DS5S@58

RETRIED 8 TIMES =~ STEP OFF TRACK
AND BACK AND REPEAT

CALL RESTEP

LDA L2RTRY PERFORM UP TO 4
BCR A TIMES

STA L2RTRY

JNZ DS@42

STEPPED OFF 4 TIMES -~ DESELECT
DRIVE TO UNLOAD HEAD THEN
SELECTLRESTQRE AND RE-SEEK

CALL RESLCT

L.DA L3RTRY PERFOEM UP TQ 3
DCR A TIMES

STA L3RTRY

JNZ DS@30

UNSUCCESSFUL =- ABORT WITH
PERMANENT I,/0 ERRCR

JMP PERMER

END OF OPERATION .

LHLD STACK RESTORE STACK PTR
SPHL
POF H RESTORE REGISTERS
POP D

6-28



24D2
24D3
Q4D4

©w4D5s
@uD8
24D%
e4ncC
P4DE
Q4CF
Q4E2
B4ES
B4ES
A4ES
D4EA

Q4ED
D4FO
B4F3
P4F4
G4FT
Q4FA
G4FD
Q4FE
6501
ese4
eses
¢s26

@s@7
€598
2586
252A
€52E
@50t
2511
2513
8516
g81g6
251a
B51B
as1c

231D
d4s1E

Cl
20
co

CDE4ES
ES
CDBLES
3EFF
BE
C2E5@4
CD79@5%
JAF8Z6
4F

56
Cagags

FAFAQ4
CDB705
ap
C2roda
c3elegs
CDiDgs
3C
C2FAB4
cpbares
71

El

cs

FS

D5

ES

AF
3207287
2AC267
3661
111E20
CR17@6
El

D1

Fl

co

F5
Ds

EIADE

¥ * * #*

EEK

RN KRR

SEKIN

SEKQUT

SEEKR!
SEEKER

U;***
m
il
-
2

STPI

*
*
*

STPOUT

PQOP
NOP
RET

SEEK

CAaLL
PUSH
CALL
MUI
CMP
JNZ
CALL
Lpa
MOV
SURB
JZ

B

SPACE FOR EI
TO DESIRED TRACK
SLCT ENSURE DPIVE 3SLTD
H AND EREADY
LDTRK POINT HL TO TRACK
ALXFF° SEE IF DRIVE HAS
M BEEN INITIALIZED
SEEXKI TES~-CONTINUE
RESTOR CALIBFATE POSITION
DCBTK GET TRACK FREOMNM DCB
CsA SAVE IN C
M ALREADY AT TRACK?
SEEKE YES~RETURN

NOT AT TRACK =-- ISSUE THE
APPROPRIATE NUMBER OF STEPS TO

MOUE

JM
CAaLL
DCR
JNZ
JMP
CALL
INR
JNZ
CAaLL
Mov

TQ THE DESIRED TRACK

SEKOUT

STEPIN

A

SEKIN

SEEKRI1

STPOUT

A

SEKOUT

SETTLE VAIT HEAD SETTLE
M,C STORE TRACK
H

PQSITIONER IN 1 TRACK

i PSSV

D

H H
SH

PUSH
PUSH

A SET DIRECTION FLAG
DIRCTN

DADR STEP IN ONE TRK
M,STEP+1

0,28 WAIT STEP TIME
TIMER

H

D

" PSW

POSITIONER OUT | TRACK

PSW
D

6-29



Rev,

g~

951F
4529
g522
2528
a528
£52A

852D
@52E
8531
8534
@535

@536
8539
@53a
@538
BS3E
P54l
@s42
B545
P3S46
2549
254C
AS4F
@552
@555
8556
2559
A55C
A585F
@562

8563
564
2567
2569
as86C
956F
8572
8573
8576

7/77

ES
3EFF
328787
20287
3668
€313@5

DS
112A02
CD17026
D1
ce

CDBD@S
TE
B?
24208
CD7585
ce
3AB787
B7
£a2568%
CD@795
CD2r@s
CD1D@s
CD2pas
ce
CD1D@s
cpapes
CD@785
CDeDas
ce

ES
2A8297
3640
11C800
CD1796
CDE48S
El
CD7985
C3D584

PUSH
MU L
STA
LHLD
MVI
JMP

*

*

* WAIT

*

SETTLE PUSH
LX1
caLL

POP
RET

i7

POSSIBLE
OF DRIVE

% % K X X K%

RESTEP CaALL
MOV
O0RA
JNZ
CALL
RET

RSTPA LDA
ORA
JNZ
CALL
CALL
CALL
CALL
RET

RSTPB CALL
CALL
CALL
CAaLL
RET

H
A X°FF* SET DIRECTION FLAG
DIRCTN

DADR
Ms»STEP STEP OUT ONE TRK
STP1 GO WAIT STEP TIME

HEAD SETTLE TIME

D

D,i@ i2 MILLISECONDS
TIMER

D

STEP QFF TRACK ONE AND BACK TO CORRECT

MARGINAL TRACK POSITION
WHICH WROTE THE DISK

IF TRACK @ SUEBSTITUTE RESTOR

LDTRK GET CRNT TRK ADDR
AsM GET CRNT TRK

A

RSTPA

RESTOR USE BESTOE IF TK &

DIRCTN
A
RSTPB
STEPIN
SETTLE
STPOUT
SETTLE

STPOUT
SETTLE
STEPIN
SETTLE

BRETREY ROQUTINE TQ RESTCRE TO 9 THEN

*
*
* LIFT HEAD.,
*
R

ESLCT FUSH
LHLD
MV1
LX1
caLL
calLl
FPOP
CALL
JMP

LR B B

LOWER KEAD AND RESEEK

H

DADR )
M,RESET RESET CONTROLLER
0,208

TIMER

SLCT RESELECT.LOWR HEAD
H

RESTOR

SEEK GO RE-~SEEK

RESTORE POSITIONER TO TRACK 2
PQSITIONER MUST BE STEPPED 0QUT
UNTIL THE TRACK @ SVITCH IS MADE

6-30



79
TA
7B
yTE
80
583
365
386
387

588
589
S8C
58D
SBE
591
1592
1593
1595

3598
159A
358D
255E
d5A1

Z5A4
B5A6
B5A7
25A9
25AC
BsAF
85BO

@sB3

Rev,

E5

Cs
CDED®@5
36FF
CDE8BS
3600
cl

El

cso

ES
CDE4@5
DS

Cs
2A02a87
23

TE
E608
CAR4@S

JE@E
CDR7¢s
3D
C29A0Q5
cp2pgs

BESS
7E
E6a8
C2B6085
cDiD@s
ap
C2A6@5

c3cces

* TO CALIBRATE TRACK POSITION

*

RESTOR PUSH H
PUSH B
CALL LDTRK POINT HL TO TRACK
MUI M,X'FF' PRESET TO BAD TRK
CALL RESTRI BESTOPE TO TX 0
MUI M.O SET TRACK=8
POP B
PQP H
RET
*
* RESTORE TO TK @
* N
RESTR! PUSH H
CALL SLCT ENSURE UNIT SLCTD
PUSH D AND READY
PUSH B
LHLD DADR POINT TO STATUS
INX H BYTE
MOV  ALM ALREADY AT
ANI TK® TRACK 2 2
JZ  REST3 NO - PRESS ON
*
* ALREADY AT TRACK @ ~ STEP
* IN 8 TIMES THEN RESTORE
* TO ENSURE GOOD POSITION
* oo
MUI A8
REST2 CALL STEPIN STEP IN 8
DCR A TRACKS
JNZ REST2
CALL SETTLE WAIT SETTLE TIME
=
* STEP OUT UNTIL TRACK @ SWITCH
* IS ACTUATED OR UNTIL 85 STEPS
* HAVE BEEN ISSUED SO THAT WE
* DONT BANG AGAINST THE STOP
* FOREVER IF TKZ SWITCH IS
* BEOKEN
»* . -
REST3 MVI C,85 LOAD MAX STEPCNT
REST3A MOV ALM TRACK @7
ANI TK®
JNZ REST4 YES- PRESS ON
CALL STPOUT STEP OUT ONE TK
DCR C MAX STEPS ?
JNZ REST3A NO - TRY AGAIN
*
* MAXIMUM NUMBER OF STEPS HAVE
* BEEN ISSUED - ERROR ABORT
*

JMP
*

*FOUND TRACK ¢

PERMER

- WaAalT

* SETTLE TIME THEN EXIT

6-31



BPSB6 CD2D@AS REST4 CALL SETTLE WAIT HEAD SETTLE

g5B% Ci POP B
B8%BA DI POP D
BSEB E1 POP H
23BC C9 RET

*x

* LOAD ADDRESS OF CURRENT TRACK ON
* CURRENT UNIT INTO HL

*

BSED DB LDTEK PUSH D
@SBE 3AF6R6& LDA DCBUN
B5C1 E6@3 ANI1 23 MASK QUT UNIT
g5C3 EF MOV  EsA
B5C4 1620 MUI D.@
Z8C6e 21FCB6 LX1I H.TEACK POINT KL INTO
g5C9 19 Dab D TRACK TAELE
a5CA DI POP D
25CR C9 RET
*
*
x*
®
* ERROR EXITS
x*,
85CC 3E21 FERMEER MVI Aal
g3CE B7 OR& A
A5CF C3CCR4 JMP £s1aa
gsp2 3EQ2 FARMER MVI1 AL2
@g5Cc4a B7 0RA A
@5D5 C3CCo4 JMP DSiga
2508 J3EB3 DRIVER MVI A3
gspAa EB7 ORA A
go0DB C3CCa4 JMP  DS1@2
GSDE 3EQ4 PROTER MVI A.,4
A5Ed B7 ORA A
ASEl C3CCo4 JMP DE1@n
*
*
*
e 3 o 3 ¢ 3 ke oK 3K sk Ok K 3 K o o 3k K 2K 3 % 3 3 oK 3 K oK 36 o K o K ok ok kK
* REGISTER DEFINITIONS AND »
» FLAG EQUATES FOR MICROPQOLIS *
* FLEXIBLE DISK CONTEQLLER B x*
e 3 2 e A3 2K A A K K K K K 3 3 K ok e e K oK 3 K A K 4 K K o
*
x*
*
F4@4d BPROM EQU X'Fuge
Foa RDIADR EQU BRPBEOM+X 2200 *
*®
* DATA REGISTERS
*
Feaze WDATA EQU DIADR+X @2
Fe@2 RDATA EQU ¥DATA
E 3
* STATUS REGISTERS

Rev. & 7/77 6~32



FeRa DSECTR EQU DIADR
* g-3 SECTOR COUNT
* 4 SPARE
* S SPARE
* 6 SCTR INTERRUPT FLAG
* 7 SECTOR FLAG
*
* FLAG BITS
*
Be4Q SIFLG EQU K'"4@°
PeB8d EFLG EQU X'&@°
ez DTMR EQU X'2¢°*
*
*
Fedi DSTAT EQU DIADR+!
* g=1 UNIT ADDRESS
* 2 UNIT SELECTED (LOW TRUE)
* 3 TRACK O
* 4 WRITE PROTECT
* S DISK READY
* é PINTE
* 7 TRANSFER FLAG
*
* FLAG BITS
E 3
2282 TFLG EQU X'*8@°
AR40 INTE TQU X'40°¢
go29 RDY EQU X°'29°
pala WPT EQU X*10°
2808 TK@ EQU X'*'@g8*
gaa4 USLT EQU X'g4°
*
*
x COMMAND REGISTER
*
Fedo DCMND EQU DIADR
*(ALSO WILL RESPOND TO DISK+1)
*
* 2-1 COMMAND MODIFIER
* 5-7 COMMAND
"
* COMMANDS
*
Pa2a SLUN EQU X'292° SELECT UNIT
* MODIFIER CONTAINS UNIT ADDRESS
ga4an SINT EQU X'49° SET INTERRUPT
* MODIFIER =1 ENABLE INTERRUPT
* =@ DISABLE INTERRUPT
2e6a STEP EQU X*62°* STEP CARRIAGE
* MODIFIER =88 STEP QUT
* =@1 STEP IN
20892 WTCMD EQU X+*8@° ENABLE WRITE
* NO MODIFIER USED
R2A2 RESET EQU X'a@°* RESET CONTROLLER
* NO MODIFIER USED
*
*
6-33
Rev. 4 7/77



Rev. &

@86

25E4
@SES
Z3E6
@5ET
BSEA
235ED
@SEF
@5Fa
85F1

@sF2
@5F3
@S5F5S

@5F6
a5F7
@5FA
BEFB
@5FD

BSFE
2621
604
B625
2627
2688
26829
g6gc
PEZE
gele
2611l
861z
2613

2614

2617
ga618
2619
as61cC
B61D
261rF
B6290
622

7/77

Ds

CS

ES
202087
3AF666
E683
47

23

7E

4F
E627
A8

79
Caacas
78
F624a
77

11FAGS
Cb1786
7E
E687
A8

7E
c21866
E628
EE20
E!

1

D1

c8

C3DE@S

Cs

ES
2A0287
7E
@eed
78
D&g1
B7

]
N
]
4

i # %4 % %R

ri
0O
-

SLa1e

SLa2@

IMER

Tig1Q

EQU 134 SECTOR LNGTHrs2

SELECT DRIVE SPECIFLED
BY UNIT ADDRESS IN DCB

PUSH D

PUSH B

PUSE H

LHLD DADR GET CONTROLLER ADR
LDA DCRUN GET UNIT ADR FROM
ANI X*@3°* DCB

MOV BsA AND SAVE

INX H POINT TO STATUS
MOV  ALM AND READ

MOV  C,A SAVE STATUS

ANI Xrg7° MASK USLD & ADDR
XRA B DEEIRED UNIT PREV

NOTE~-THIS TEST WILL FAIL IF
CONTROLLER IS NOT PLUGGED IN

MOV ALC SELECTEDR?

JZ SLe1e YES=CHECX EDY

MOV  ALB GET UNIT ADDRESS

OR1 SLUN BUILD COMMAND

MOV  M,A QUTPUT COMMAND
WAIT 258 MSEC FOR -

LX1 D,250 SECTOR CNTR TO

CALL TIMER GET IN 5YNC

MOV  A.M GET STATUS

ANI X'97° SELECTED NOW?

XBRA B

MOV  A.M GET STATUS AGAIN

JNZ  SL@2g ERROR IF NOT SLTD

ANI RDY ENSURE UNIT 15

XRI RDY BEADY

POP H

POP B

POP D

RZ RETURN IF OX

DRIVE NOT UP ERROR
JMP DRIVER

I MILLISECOND TIMER
DE=(DELAY) TIME IN MSEC

A IS DESTROYED

PUSH B

PUSH H

LHLD DADR

MOV ALM RE-TRIGGER 4

MUI B,%6 SECOND TIMER

MOV ALB COUNT

Sul 1 DELAY LOCP=1.088

CRA A MSEC #58@ NSEC
6-34



2623

2626
0627
P628
@629
Rea2C
862D
B62E

B62F
4632
@635
2636
8637
2639
863C
263D
863E
B63F
@64l
ge4aq
Q647
2648
8649
64C
264D
@64E
BE4F
@652

@655
2657

2658
2659

@65C
65D

865F

2660
2661

Rev,

c22p@6

1B
7E
B2
C21Feé
El
Cl1
ce

CDE4@5S
3AF 726
47

Ccs
AEB6
2AB287
ES

23

7E
E612
C2DERS
2A8007
E5

B1
JAFE886
77

23

70
2AB207
CDESAdé6

3683
23

Bé
F258¢26

23
36FF

AF

EB
26249

4 7/77

* 4 o

* K ¥ ¥

WSECT

* R o K

JNZ TI1218+)

IMSEC EXPIRED ~- DECREMENT DELAY
MULTIPLIER & CHECK FOR DONE

DCX D

MOV ALE
ORA D

JNZ TIig1o
POP H

POP B

RET

WRITE 1 SECTOR

CALL SLCT ENSURE UNIT SLD
LDA DCBSC AND READY

MOV RB.,aA

PUSH B

MUI C,L,SCLEN € <~ BYTCTr2

LHLD DALR GET CONTROLLER ADR
PUSH H

INX H READ STATUS

MOV  a.M ABORT IF

ANI WPT WRITE PROTECTED
JNZ PROTER

.LHLD BUFADR GET BUFFER ADDE
PUSH H

FOP D MOVE TO DE

LDa DCBTK MOVE TRACK AND

MOV M-A SECTOR ID TO WRITE
INX H BUFFER

MOV MLB

LHLD DADR GET CONTROLLER ADR
CALL GETSEC WAIT FOR SECTOR

FOUND DESIRED SECTOR~-
ENAELE WRITE

MUI  M,UTCMD
INX H

WAIT FOR TRANSFER FLAG

CRA M
JP wsSg1@

INSERT SYNC BYTE

INX H

MUl MLX'FF°*

XRA A CLEAR CAFRRY

XCHG

MUI B, AND CHECKSUM
6-35



*> WRITE HEADER & DATA FIELD

2663 7E WS@28 MOU AL.M GET BYTE FROM MEM
gs64 12 STAX D WRITE TC DISK
2665 B8 ADC E ADD TO CKSUM
2666 47 MOV EL,A SEVE CXSUM
2657 22 INX H NEXT EYTE
de&8 7= MOV  AsM -ZTC=
2669 12 STAaX D
d66A BB ADC B
2668 47 MOV  BLA
geaC 23 INX H
2e6D @D pcr ¢
866 C26306 JNZ WS@28
*
* END OF DATA ~- INSERT CHECKSUM
* .
2671 78 MOV ALB
8672 12 STaX D
b 3
* WAIT END COF SECTQR
*
2673 EI FOP H
9674 AT XRA A
267% Bé WEB3d OR&A M VAIT SCTE FLAG
2aT76 F27825 JP IS83%
2679 112132 LXI L.l WAIT 1 MSEC FQR
g67C CDh1786 CALL TIMER ERASET DELAY
267TF Ci PP B
2682 C9 RET
*
¥k
* READ | SECTOFR
* VERIFY CHECKSUM AND HEADER
*
* RETURNS Z=0K
* NZ=ERBGOR
&x
268] CDE4Z5 READAL CALL :SLCT ENSURE UNIT IS
* RDY +» SLTD
a6e84 2AFTBE LbA DCBESC GET SECTOE ADDR
68T 47 MOV E.A FROM DCB
2688 C5 PUSH 2
@68% PESS MUl C,SCLEN £ <= BYTCT/2
2688 CDDABsS CALL WTSYNC ¥aiT DESIRED
* SECTOR & STEREIP
x SYNC BYTE
*
* FOUND DESIRED SECTCE - HEAD
*»®
@e8E EB KCHG
R6SF Q688 MUl B,@ CLR CHECKSUM
%*
* READ LOOP
*
26891 1A RDAI® LDAX D READ FROM DISK
2692 17 MOV MLA MOVE TO BUFFER

Rev, 4 7/77 6-36



8693
2694
8695
0696
0657
2698
2699
2694
B69E
R65C

PEIF
26A0
26Al
26A2

@6A3
Q6A6
RP6AT7
26AA
P6AB
B6AC
B6AD
R6AE
Q6AF
26826

@681
2682
B6BS
@6B7

26BA
26BC
368D
28BE
JE6BF

Rev., &4

23
88
47
1A
77
23
88
47
2D
Ca291ade6

1A
Bg
C1
co

2A0087
EB
CDBD@5
la
BE
co
13
1A
BE&
co

Cs
CDE495
QEES
CDDéd6

2620
TE
12
88
47

7177

»*
*
*

RDAB22

LR BE B B B S N E S N

s )

‘EADCK

£ 3

INX H NEXT LOC

ADC B ADD TO CHECKSUM
MOV BLA AND SAVE

LDAX D NEXT READ

MOV M,A ~ETC~-

INX H

ADC B

MQU E.,A

DCR C END OF DATA?
JNZ RDAL1® NO~LOOP

END OF DATA~-READ CHECKSUM

LDAX D

CMP B . COMPARE WITH

PCP B COMPUTED CHECKSUM
BENZ RETUEN IF ERROR

CHECKSUM QOK-VERIFY HEADER

LHLD BUFADR PQINT DE TO EREAD
XCHG BUFFEPR

CALL LDTRK POINT TO CURRENT
LDAX D TRACKX AND COMPARE
CMP M WITH TRACK ID READ
RNZ

INX D

LDAX D COMPARE SECTOR ID
CMP B WITH DESIRED SCTR

RET
VERIFY SECTOR

READ THEOUGH SECTOR WITHOUT
MOVING DATA INTO MEMORY AND
VERIFY TRACK AND SECTOR 1D

AND CHECKSUM

ONLY TRACK AND SECTOR ID ARE READ
INTC MEMORY AND CHECKSUM IS
VERIFIED

SECTOR 1S SPECIFIED BY B REG

RETURNS Z=0K

NZ=ERROR
PUSH B SAVE SECTOR
CALL SLCT ENSURE SLTD&RDY
MUI CLSCLEN=! C <= BYTCT/2-!
CALL WTSYNC WAIT SECTOR & STERP
OFF SYNC BYTE
MUL E.,@ CLR CHECKSUM
MOV ALM FEAD TRACK 1ID
STAX D SAVE IN BUFFR
ADC B ADD TO CHECKSUM
MOV B.,A AND SAVE
6~37



266Co 13 INX D

@6C1 7E MOV ALM READ SCTR ID
g6Cc2 12 STAX D AND SAVE
@6C3 88 ADC B
@6Ca 47 MOV B.A
86C5 00 NOP
*
* READ THROUGH REMAINDER OF SECTOR
* TO COMPUTE & VERIFY CHECKSUM
*
86C6 7E RDCK1@ MOV A.M READ FROM DISK
@6C7 88 ADC B ADD TO CHECKSUM
g6ce a7 MOV BLA SAVE CKSUM
86C% 20 NOP
26CA 22 NOP
@6CB 7E MOV  ALM -ETC-
G6CC 88 ADC B
@6CD 47 ' MOV B.A
B6CE D DCR C
@6CF C2C6086 JNZ RDCK18
a*x
* END OF DATA - READ CHECKSUM
b 3
@6D2 7E MOV  ALM
@6D3 C3A206 JMP RDAG2@ GO CHECK HDR &
* CHECKSUM
*
»*
* WAIT FOR DESIRED SECTOR
* TO COME AROUND AND STRIP OFF
* SYNC BYTE FOR READ ROUTINES
-
P6D6 240087 WTSYNC LHLD BUFADR GET BUFFER ADDRESS
@6D9 EB XCHG
26DA 2402087 LHLD DADR AND CONTROLLER ADR
@6DD CDES@6 CALL GETSEC VAIT FOR SECTOR
B6EQ 23 INX H
@6E1 B6 WTSE18 ORA M VAIT FOR XFER RDY
B6E2 F2E106 JP  WTS21@ FLAG
@6ES 23 INX H OK-READ IN SYNC
@6E6 TE MOV  ALM BYTE - - THROVW IT
G6ET AF XRA A AWAY,CLEAR CARRY
B6E8 C9 RET AND GO READ
*
* WAIT FOR DESIRED SECTOR TO COME
* ARQUND
*
@6ES TE GETSEC MOV ALM WAIT FOR SCTR FLAG
@6EA B7 ORA A
G6EB F2E986 JP  GETSEC
@6EE Z6@F ANI X'@F°* 0K =IS THIS THE
P6FE A8 XRA B ONE WE WANT?
@6F1 C2E906 JNZ GETSEC NO=WAIT
@6F4 C9 RET PRESS ON
L3
* RAM STORAGE REQUIRED FOR DRIVER

Rev. &4 7/77 6-38



@6FS
26F5
26F6
B6F7
R6F8
26F9
Baece

poce
249
@6FEB

26FC
Q6FD
@6FE
J6FF

g7e2

8782

2784
2785
2706

787
2788

B78A

4C

FF
FF
FF
FF

»

*

*

DCE
DCBFN
DCBUN
DCBSC
DCBTK
DCBAD
DCBLEN
*

*®

HCI
RAFI1
TRKMX
*

*
*
*
*
*
*
*
*
TRACK

»
*
BUFADR
x
*
*

PEF6 DADR

Rev, 4

*
*
LI1RTRY
L2RTRY
L3RTRY
*
DIRCTN
STACK
*

*«

*

7/77

INTERNAL DISK CONTROL BLOCK

EQU
DS
DS
DS
DS
DS
EQU

EQU
EQU
DC

*
1
1
!
1
2
*~CCB
X'ge°

X a0
76

HEADER CHECK INH
RAW CHECK INHIBIT
MOD 2

CURRENT TRACK TABLE

MUST BE INITIALIZED TO FF

AT POWER ON TO CAUSE DISK TO

BE RESTORED TO TRACK 2

THE FIRST TIME IT IS ACCESSED TO
CALIBRATE TRACK POSITION

Dec
sl o}
BC
DC

DS

DC

X*'FF*
X*'FF°
X'FF°?
K'FF?

CURRENT BUFFER ADR

BEC(CIADR) DISK CTLR ADDR

RETRY COUNTERS

D&
DS
DS

DS
DS

END

1
1
1

SAVED SP

6-39






APPENDIX A ~ BASIC_ ERROR MESSAGES

ARGUMENT - Argument in a function reference is the wrong data type or missing,

ARRAY INDEXING ERROR =~ A reference to an array element contains an invalid
index. May also be caused if an attempt is made to reference an array ele-
ment before the array is defined in a DIM statement.

CONVERSION ERROR -~ Attempt to assign a real value to an integer variable and
the converted value is too large,

DIGIT BEYOND RADIX -~ A number specified in radix format includes a digit which
is invalid for the specified radix.

DISK FULL - An attempt was made to allocate another track for a file and no
free tracks remain.

DRIVE NOT UP - The desired disk unit does not have a diskette loaded, is not
up to speed, or has a malfunction which prevents it from accepting commands.

DUPLICATE NAME - An attempt. was made to OPEN a file name which already exists
as a new file.

END-FILE - The end-of-file was encountered in a disk file read.

EXTRA INPUT IGNORED - The response to an INPUT statement contained more values
than were needed to satisfy the variable Tist and the extra values were
ignored.

FILE ALREADY OPEM =~ File number specified in an OPEN statement already has a
file opened to it.

FILE NOT FOUND -~ File name specified in a disk I/0 command does not exist on
the specified diskette. ‘ :

FILE NOT OPEN - File number specified in a disk I/0 statement does not have
a file name opened to it.

FILE TYPE ERROR -~ The attributes of the referenced file are inconsistent with
the requirements of the statement or command that referenced it.

ILLEGAL IMMEDIATE - An attempt was made to use a statement as a direct command,
' but the statement is only valid within a BASIC program.

INPUT OVERFLOW -~ A program line greater than 250 characters in length was en-
tered -~ the entire program line is cancelled.

INSUFFICIENT INPUT ~ The response to an INPUT statement contained insufficient
values to satisfy the variable list.

INTERRUPT - Execution of a program was interrupted by entry bf a CNTL/C key at
the terminal.

INVALID DISK FILE NAME -~ Disk file name specified is not a valid disk file
name.

i A<l



LOAD OVERRUN - The length of the BASIC program being loaded exceeds the
memory space currently available to BASIC.

LOG OF NEG # - Attempt was made to pass a negative or zero value to the
1.0G or LN function.

MEMORY QVERFLOW - Insufficient memory exists for execution of the program.

MISSIMG FOR - A NEXT statement was encountered prior to execution of a
FOR statement specifying the loop variable.

NOT A FILE # - File number specified in a disk 1/0 statement is not one of
the digits 0 ~ 9.

NOT A LOAD FILE - Attempt to load a data format disk file.

MOT A RECORD # - The value following the RECORD option in a GET or PUT
statement is not a valid record number.

NOTHING TO RETURM TO - A RETURN statement was encountered prior to executing
a GOSUB statement.

NUMBER OUT OF RANGE - The value of an expression referenced is illegal.
Refer to the description of the statement in error for the range of
valid values.

OVERFLOW - Numeric overflow - Result of an operation is too large to be
contained in a variable.

QUTPUT QVERFLOW - A PRINT or PUT statement has attempted to create an output
Tine (record) greater than 250 characters in length. This exceeds the
maximum internal buffer capacity. The line (record) is not output.

PARM ERR - Disk I/0 Parameter error - usually caused by setting the sequential
GET/PUT pointers to an invalid value.

PERM FILE - An attempt was made to SCRATCH a permanent file. *

PERM I/0 ERROR - A disk 1/0 error occurréd which was not recoverabie in the
disk 1/0 retry logic.

PRECISION ERROR - A numeric function or the + operator was referenced with
RSIZE greater than 10. :

READY - The BASIC interpreter is ready for entry of commands or program
1ines at the terminal.

RAN QUT OF DATA - A READ statement depleted the data 1ist before satisfying

the variable list. A GET statement encountered the end of the current
record without satisfying the variable Tist.

Rev. 8 9/78 A-2



SIZES ERROR - One of the parameters of a SIZES statement is invalid or
there are already variables allocated when the statement is encountered.

SQRT OF NEG # ~ Attempt to pass a negative number to the SQR function.
STACK OVERFLOW - The statement in error contains an expression which is
too complex. Break the expression into multiple expressions which are
Tess complex.

STMT # NOT FOUND - The statement in error tried to transfer control to a
program 1ine number which does not exist.

SYNTAX - The statement in error is not recognizable or contains an invalid
structure such as unequal right and left parentheses.

TYPE ERROR - Attempt to assign a value of the wrong data type to a variable.

WRITE PROTECT - An attempt was made to write on a file with a write protect
attribute or the diskette on which the file resides has a write protect
tab installed.

UNDERFLOW - Numeric underflow - The result of an operation is too small to
be assigned to a variable.

X+Y INDETERMINATE - Attempt to take a fractional power of a hegative number
or @ or to raise @ to a negative or # power, which are undefined operations.

ZERQ DIVIDE - Attempt to divide by zero which is an undefined operation.

A-3
Rev. 8 9/73






APPENDIX B — BASIC UTILITY

B.8 DESCRIPTION

The MDOS System diskette included with each system contains a BASIC
utility program.

The functions provided are:

1

3)

ITnitializing a diskette: This must be done before a newly

purchased diskette can be used by MDOS or M.BASIC to store
data or programs. The INIT command in MDOS may be used
instead. It has the same effect.

Examining and modifying memory: Used to examine, and change
if desired, the contents of any location in memory. The P
command in the Extended Systems Monitor is simllar.

Saving BASIC: Writes a copy of M.BASIC plus the RES module
onto a diskette. Used for creating a BASIC-only system
diskette.

B.l CALLING THE UTILITY

1) Make sure you have mounted in drive # an MDOS system
diskette, or BASIC-only diskette with both M.BASIC and the
BASIC Utility on it.

2) Use normal operating procedures to get M.BASIC in control,
indicated by the READY prompt.

3) Enter the command LOAD "UTILITY" (return).

4) When the system responds with READY, enter RUN (return) . The
Utility will sign on with:

BASIC UTILITY PROGRAM~-VERSION X.X
ENTER KEY TO SELECT DESIRED FUNCTION
F FORMAT DISK

M MEM EXAM/MODIFY

S SAVE BASIC

E EXIT

FUNCTION?

5) To select a function, enter the associated letter, followed
by a return.

6) After completing a function, the program will request another
command. Enter E to return to M.BASIC.

7) If the program is for some reason unable to complete a
function, it may return to the M.BASIC executive. To get
back to the Utility, begin again at step 3.

Rev. 8.1 2/5/78 B-1



B.2 INITIALIZING A DISKETTE - FUNCTION F

The Utility refers to this as the FORMAT DISK function.
Initialization consists of writing track and sector address
information in each sector of the data area of the diskette and
writing an empty Directory on the Directory track.

Since initialization essentially erases a diskette, DO NOT
initialize the System diskettes included with your system.

1) In response to F (return), the Utility will output:
SPECIFY UNIT NUMBER?

2) Enter the number of the drive to be used (4 to 3) and press
return. The program responds with:

INSERT BLANK DISKETTE IN UNIT X.
ARE YOU READY?

If you wish to get out of this functicn, press ({return),
otherwise, continue.

3) Load the diskette you wish to initialize into the specified
drive.

4) Enter ¥ (return).

The Utility will initialize the diskette. This takes about 70
seconds.

When completed, the Utility will request the next function command.

B.3 MEMORY EXAM/MODIFY -~ FUNCTION M

In response to M (return), the Utility will output:

ENTER ADDRESS?

Type the hexadecimal representation of the desired memory address
followed by a carriage return. The Utility will print the
hexadecimal value of the contents of the desired memory location,

followed by a guestion mark (?). Enter one o¢f the following
responses:

1) If a hexadecimal number from # - FF followed by a carriage
return is entered, the contents of the memory location just
displayed are set to the value entered. The contents of the
next sequential memory location are then displayed and the
Utility prompts for the next response.

2) If a carriage return only is entered, the contents of the

next sequential memory location are displayed and the Utility
prempts for the next response.

B-2 Rev. 8.1 2/5/79



3) If a colon (:) followed by a carriage return is entered, the
Utility prompts for the entry of a new address to
display/modify as described above.

4) If an exclamation mark (!) followed by a carriage return is
entered, the Utility exits the memory modify/display function
and prompts for a new function select.,

B.4 SAVE BASIC - FUNCTION 8
1) In response to S (return), the Utility will output:
ARE YOU READY?
If you want to get out of this function, press (return),
otherwise, continue.

2) Mount the diskette on which you wish toc store M. BASIC in
drive @. (The diskette MUST be newly initialized. If it is
not, do section B.2 above, first.)

3) Enter Y (return).

4) ThevUtility will save M. BASIC on the diskette, and set its
attributes to permanent and write~protected. When completed,
the Utility will request the next function command.

5) If you wish to copy the BASIC Utility onto the BASIC-only
diskette, exit from the Utility by entering E as the next
function. After the BASIC prompt READY, enter SAVE
"N:UTILITY" (return).

6} To copy any assembly language utility, such as DISKCOPY, onto
the BASIC-only diskette, use the FILECOPY command in MDOS.

Rev. 8.1 2/5/79 B-3






APPENDIX C - ACCESSING DISKCOPY FROM BASIC

DISKCOPY is a special overlay utility that writes an absolute binary copy

of one disk onto another. The utility overlays MDOS or BASIC. It uses

all available memory during the copying process. The more memory in a system
the faster the copying process. On average it takes about two minutes to
copy and verify all 315k bytes of a MOD II disk.

NOTE 1: Previous versions of DISKCOPY will not run with BASIC 3.8 and
DISKCOPY 3.9 will not run with earlier versions of Micropolis
BASIC.

NOTE 2: In multiple drive systems DISKCOPY can be copied onto another
disk by using the FILECOPY utility under MDOS (Section 4.7).

The DISKCOPY utility is invoked from BASIC by using the LINK command.
LINK "[unit:]DISKCOPY"
a sign-on message is output:

MICROPOLIS DISKCOPY VS X.X - COPYRIGHT 1978
SPECIFY UNIT # FOR ORIGINAL (SOURCE) DISKETTE
?

DISKCOPY waits until the unit number is entered. WWhen a number between
P and 3 is entered it prompts:

SPECIFY UNIT # FOR DESTINATION DISKETTE
?

and waits until the unit number (@ to 3) is entered. It then prompts:

PUT DISKETTES IN SPECIFIED UNITS
TYPE Y WHEN READY
?

and waits for a Y. A note of CAUTION, we strongly recommend placing a

write protect tab on the original (source) diskette. It is possible to

put the wrong diskette in the wrong drive or type the wrong unit numbers.

If your original does not have a write protect tab and you make an error,
the original can be overwritten. The write protect tab provides a physical
interlock which disables the write electronics. '

When a Y is typed DISKCOPY wiil start the copying process. During copying,
the process can be temporarily halted between read source and write destina-
tion cycles by typing a control S. The process is restarted by typing any
other key except a control C.

The control C will cancel the entry or copy process and prompt:

CANCELLED
MORE ?

Rev. 7 3/78 C-1



If a Y is typed DISKCOPY starts from the top asking for the unit numbers
again. If an N is typed DISKCOPY prompts:

PUT SYSTEM DISKETTE IN UNIT @

TYPE Y WHEN READY
?

When a Y is typed the disk in unit @ is rebooted. If it's an MDOS diskette
MDOS is booted. If the disk in unit @ is a BASIC only disk or some other
bootable system, it will be booted in and sign on. DISKCOPY is cverlayed
by the incoming system and is no longer in memory.

when the disk has been copied and verified correctly DISKCOPY outputs:

GOOD COPY
MORE ?

If the copy cannct be‘comp]eted or does not verify correctly DISKCOPY outputs:
PERM I1/0 ERROR ON DESTINATIQM DISKETTE

or

PERM I1/0 ERROR OM SOURCE DISKETTE

indicating where the error occurred.

It is possible for single drive systems to make use of the DISKCOPY utility
to copy from one disk to another. In this case it is imperative that the
original diskette be write protected with a write protect tab. The procedure
involves specifying the same unit number for both source and destination
disks. Immediately after typing a Y in response to the TYPE Y WHEN READY
prompt, type a control S. The DISKCOPY program will read as many tracks from
the source disk as can be contained in main memory and then pause. When the
select indicator light goes out, remove the source diskette and insert the
destination diskette. Press the return key and as soon as the select
indicator 1ight comes on type a control S again. When the select indicator
- light goes out again the data from the source disk has been written to the
destination disk and one complete cycle is finished. This process is
repeated, swaping the source and destination disks in and out until the
entire disk is copied. After the last data is written onto the destination
disk, the program goes directly into a verifying process and will not pause
until this is over. When the source is placed back into the drive and the
return key is pressed the system will prompt: GOOD COPY or output an error
message as discussed above. At this point the copy is complete.

c-2

Rev. 7 3/78



APPENDIX D - SUMMARY OF MDOS ERROR MESSAGES

D.1 MDOS EXECUTIVE AND SHARED SUBROUTINES

BAD FILE #

The file number specified is greater than 8.

BAD RECORD #

The record number specified is greater than exists in the specified file.
CANCELLED

A control C was typed at the'conso]e, canceling an operation.

COMMAND NOT FOUND

The word typed as a command name, or implicit command (file name) does
not exist. The command was spelled incorrectly or the file name was

not found on the specified disk.

DISK FULL

An attempt was made to allocate an additional track to a file, and no
free tracks exist. The file is closed and the message is output. Some
data may have been successfully written to the file before additicnal
track space was needed.

DRIVE NOT UP

The disk unit specified is not loaded.

DUPLICATE NAME

The file name already exists on the unit specified. A1l files on a-disk
must have unique names.

END-FILE

The end of the file has been reached during a disk read.

FILE NOT FOUND

The file name specified does not exist on the unit specified.

FILE NOT OPEN

The file with the specified number has not been opened.

Rev. 7 3/78



INDEX PAST EOR
The index position is beyond the end of the record.
LOAD ADDRESS ERROR

The address specified with a file to be loaded into memory would cause
the file to overwrite the operating system.

PARM ERR

A parameter is out of range for a particular command, to big or to small.

This is different than a syntax error caused by a parameter beyond the maximum
input range,

PERM FILE

The file specified with a SCRATCH command or with the B8SCRATCH subroutine
has an attribute with bit 1 set high indicating a permanent file.

PERM I/0 ERR

A disk I/0 error occurred which was not recoverable by the disk I/0 retry
Togic.

READ ONLY FILE

The specified file has an attribute with bit @ set high. This inhibits
rewriting of the file.

SYNTAX ERROR

The syntax of a command is wrong. This may be due to incorrect spelling,
or parameters beyond the maximum input ranges; 19 characters for ASCII
and four hex digits for numeric.

SYSTEM VERSION ERROR

An attempt was made to run a systém program on the wrong version of the
system.

WRITE PROTECT

The unit specified with a SAVE command or a subroutine that writes to the
disk has a disk in it with a write protect tab in place.

WRONG FILE TYPE

The file type does not correspond to the type of operation that is to
be performed.

D.2 EDITOR
FILEBUFFER OVERFLOW

Rev. 8 9/78 D-

EN]



This message occurs whenever there is less than 256 bytes of buffer space
remaining in the edit buffer. Input can continue until the buffer is
completely full, but the message will be repeated after each carriage
return. The file should be written to disk and a new file started. If

a file is loaded from disk and is too large to reside in the buffer, this
message is output and the load is aborted. No data is loaded. This is
most likely to occur in conjunction with the APPEND command. If an APPEND
causes an overfollow, it is aborted and the files that were in the buffer
prior to the command are not changed.

FILE ON DISK NOT UPDATED, PROCEED?

The current working file in the editor buffer has not been saved or resaved
to disk. If you want to continue without updating the disk then type a Y
in response, otherwise type an N. )

FILE NOT NAMED

A name has not been given to the current editor file prior to trying to
save it onto a disk.

LINE NOT FOUND

A line number which does not exist in the current text file was specified
in an EDIT command.

LINE NUMBER OVERFLOW

The editor command RENUM specified an increment that caused the 1ine number
to exceed 9999 decimal. The file is only partially renumbered and care
should be taken to do an additional RENUM with a smailer increment to assure
that the file is properly numbered prior to doing any editing on the file.

STRING NOT FOUND

The SEARCH MASK specified with a SEARCH or CHANGE command in the editor
does not exist in the text.

D.3 ASSEMBLER
See Secticn 4.5.3.

Rev. 8.4-4 7/26/79







APPENDIX E -~ RES.I/0O SOURCE LISTING

Addr Bl B2 B3 B4 E Line

¢0oco
0000
0000
0000
0G00
0000
0ce0
0000
0000
0000
0000
0000
0000
0000
0C00
0000
0000
0c0¢
0000
0000
0000
0c0o0
0c00
0000
0000
felels;
0000
0ooe
0000
0aoQ
0000
0000
0000
0000
0000
0000
0000
0000
00C0
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
Gcooo
0000
0000
0000
CAEC

Rev.

8.

04EC
04F0
0502
078D
0792
0797
07E5
07EA
04EA
04E7

B onon

000D
000A
0008
0003
0013
0013
0018
Q007F
005F

[ I}

0010

L}

CcODC =
€098 =

0000
0000
G000
0000
0000
0000

0003
0002
0000
0001

W

1 2/5/79

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560

Label

2/79

¥ o4 % H % * A A F

*

@CONSOLEADDR
@CIOTABLE
@LIOTABLE
@CDIN

@cpouT
@CDBRK
@LDouT
@LDATN
@D1PORT

RES
*

* now, general

*

CR

LF

BS
CNTC
CNTS
CNTU
CNTX
DEL
USCORE
*

CANCELLED
*
MIN

MOUT
*

Opcd

Operand

1/0 source file for Micropolis RES module
on Vector MZ, version 4.1

by Neale Brassell,
Vector Graphic Inc.

first, general system equates from SYSQ

EQU 04ECH
EQU 04F0H
EQU 0502H
EQU 078DH
EQU 0792H
EQU 0797H
EQU Q07ESH
EQU 07EAH
EQU 04EAH
EQU 04E7TH
equates

EQU ODH
EQU 0AH
EQU 08H
EQU 03H
EQU 134
EQU 15H
EQU 184
EQU 7FH
EQU SFH
EQU 16
EQU 0CODCH
EQU 0C098H

* Get printer etc.

*

DIAB
CENT
DECW
OTHR
BASE
ANY

%
SSTAT
SDATA
PSTAT

PDATA
*

REQ
REQ
REQ
REQ
REQ
EQU

EQU
EQU
EQU
EQU

from user, and compute ports

‘Diablo (l=Yes, O=No):’

“Centronics (l=Yes, O0=No):’
"Decwriter, TTY, etc (1=Yes, 0=No):’
“Any other printer (1=Yes, 0=No):’
"Bitstreamer base address:’

DIAB! CENT!DECW!OTHR

BASE+3 ;serial status
BASE+2 ;serial data
BASE sparallel O
BASE+1 ;parallel 1

* Ok! first, the vectors to the i/o tables

*

ORG

E-1

@CONSOLEADDR



Addr

04EC
O4EE
04F0
04F0
04F0
C4FO
(07:330]
04F0
04F2
04F4
04F6
C4F8
04FA
G4FC
O4FE
O4FE
O4FF
0500
0501
0502
0502
0502
0502
0502
0502
0504
0506
0508
0504
050cC
O05CE
0510
0510
0511
0512
0513
0514
0514
0514
0514
0514
0514
0517
0518
051A
051B
051D
0520
0522
0524
0527
0529
0524
052cC
052D
052E

Bl

FO
02

14
2E
77
F8
00
04
OF

00
01
4F
03

00
8E
EA
00
27
11
13

00
01
83
01

CD
78
FE
C8
FE
C2
06
FE
CA
EE
Co
06
3C
c9

B2 B3 B4 E Line

04
G5

05
05
05
05
06
06
06

00
05
05
00
06
06
06

8D 07
03

15
22 05
18
5F
24 05
7F

08

057¢
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0860
0870
0880
0890
0900
0910
0920
0930
0940
0950
0960
0970
0980
0990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120

Label Opecd Operand
DW @CIOTABLE
DW @LIOTABLE
%
* the console i/o table
*
ORG @CIOTABLE
*
DW CIN
DW COUT
DW CBRK
DW CDIN
DW CpouT
DW CDBRK
oW CDINIT
*
WRAPFLAG DB 0
NULLCT DB 1
WIDTH DB 79
CURSOR DB 3
%
* next, the list i/o table
*
ORG @LIOTABLE
*
DW 0
DW LouT
bW LATN
W 0
DW LboUT
DW LDATN
DW LDINIT
*
PWRAPFLAG DB 0
PNULLCT LB 1
PWIDTH DB 131
PCURSCR DB 1
*
* now for the logical i/o routines
*
* {CIN} logical console input
%
CIN CALL @CDIN
MOV A,B
CP1 CNTC
RZ
CPI CNTU
JNZ $+3
MVI B,CNTX
Crl USCORE
JZ BSPCE
RI DEL
RNZ
BSPCE MV B,BS
INR A
RET
*
E-2

;logical input

;logical output

;logigal break check
;physical input
;physical output
;physical break check
;physical initialization

swraparound flag
;null count (+1)
swidth (~1)

;cursor position

;placeholder for input
slogical output

;logical attention check
;placeholder for input
;physical output
;physical attention check
;physical initialization

;wraparound flag
snull count (+1)
swidth (-1)
;line position

;get character

37 C?
;return if so
;70

;xlate "U into "X
sunderscore?

; DEL?

;make backspace
:force NZ

Rev. 8.1 2/5/79



Addr Bl B2 B3 B4 E Line Label Opcd Operand

052E 1130 * {COUT} logical comsole output

052E 1140 *

052E ED 5B FE 04 1150 CouT LDED WRAPFLAG

0532 24 00 05 1160 LHLD WIDTH ;get wrap, null, width, cursor
0535 78 1170 MOV A,B ;get character

0536 FE 0A 1180 CrI LF ;linefeed?

0538 CA 92 07 1190 Jz @CpouT ;output, ignor if so
053B FE 0D 1260 CPI CR ;return?

053D CA 5F 05 1210 JZ CROUT ;handle special

0540 FE 18 1220 Cp1 CNTX ;"X character?

0542 CA 6F 05 1230 Jz CNTXOUT ;handle special also
0545 FE 08 1240 CPI1 BS

0547 C2 4D 05 1250 Jkz CCUT1 ;print if not BS
054A 25 1260 DCR H

054B 25 1270 DCR H ;adjust curscr counter
054C 00 1280 NOP ;(space for patch)
054D CD 92 07 1290 COUTI1 CALL  @cCpouT ;print character
0550 7B 1300 WRAP MOV ALE ;get wrap flag

0551 B7 1310 ORA A

0552 €O 1320 RNZ sreturn 1f no wrap
0553 7C 1330 MOV ALH ;jget cursor

0554 BD 1340 cMp L send of line?

0555 C2 69 0S 1350 JNZ DONE ;done if not

0558 06 0D 1360 CCRLF MVI B,CR

0554 CD 92 07 1370 CALL  @cpout ;print LF

055D 06 0A 1380 MVI B,LF

055F CD 92 07 1320 CRrOUT CALL @cpout ;and CR

0562 06 00 1400 MVI B,0 smake a null

0564 15 1410 DCR D ;decrement counter
0565 C2 5F 05 1420 JNZ CROUT ;loop

0568 AF 1430 XRA A

0569 3C 1440 DONE INR A ;increment cursor ptr
056A 32 01 05 1450 STA CURSOCR ;save

056D B7 1460 ORA A

036E C9 1470 RET ;return

056F 06 5C 1480 CNTXOUT MVI B, "\’ ;print \ instead of “X
0571 CD 92 07 1490 CALL  @cpouTt

0574 C3 58 05 1500 JMP CCRLF ;g0 print CRLF

0577 1510 =

0577 1520 * {CBRK} logical console break check

0577 1530 *

0577 CD 97 07 1540 CBRK CALL  @CDBRK

0574 CO 1550 RNZ ;return if no char
0578 78 1560 MOV ALB ;get char

057C FE 13 1570 CrP1 CNTS ;782

057E C2 89 05 1580 JNZ CANC

0581 CD 8D 07 1590 PAUSE CALL @CDIN ;get char

0584 FE 13 1600 CPI CNTS ;another ~§?

0586 Ca 81 05 1610 Jz PAUSE

0589 FE 03 1620 CANC CrI CNTC ;7C?

0588 3E 10 1630 MVI A,CANCELLED ;error code, just in case
058D C9S 1640 RET ;return

058E 1650 =

058E 1660 * {LOUT} logical list output

058E 1670 *

058E ED 5B 10 05 1680 LoOUT LDED PWRAPFLAG ;get wrap, nulls

REV. 8.1 2/5/79 E-3



Addr Bl B2 B3 B4 E Line Label Opcd  Operand

0592 2A 12 05 1690 LELD PWIDTH ;and width, cursor
0595 78 1700 MOV A,B

0596 FE 0A 1710 Cr1 LF ;linefeed?

0598 C2 A2 05 1720 JNZ LOUTO

059B CD E5 07 1730 CALL  GLDOUT :print directly if LF
059E DA EE 05 1740 ~JC ATT ;handle if ATTN
0541 C9 1750 RET

05A2 FE OD 1760 LOUTO CPI CR sreturn?

0544 CA CC 05 1770 JZ LCROUT

05A7 TE 18 1780 Crl CNTX ;"X character?
05A9 CA DF 05 1790 JZ LCNTXOUT

05AC FE 08 1800 Crl BS ;backspace?

05AE C2 B4 05 1810 JNZ LOUT1

05B1 25 1820 DCR H ;adjust cursor
05B2 25 1830 DCR H

05B3 00 1840 NOP :(spot for patch)
05B4 CD E5 07 1850 LOUT1 CALL  @LpOoUT ;print character
05B7 DA EE 05 1860 Jc ATT shandle if ATTN
05BA 7B 1870 LWRAP MOV ALE ;wraparound?
05BB R7 1880 ORA A

05BC CO 1890 RNZ ;jreturn if not
03BD 7C 1900 MOV AH ;get cursor

O3BE BD 1910 CMP L ;too far right?
05BF C2 D9 05 1920 JNZ LDONE

05C2 06 0D 1930 LCRLF MVI B,CR

05C4 CD E5 07 1940 CALL @LpouUT ;print LF

05C7 DA EE 05 1950 JC ATT ;check ATTN
05Ca 06 0A 1960 MVI B,LF

05CC CD E5 07 1970 LCROUT CALL  @LDpOUT ;print CR

05CF DA EE 05 1980 JC ATT

05D2 06 00 1990 MVI B,C ;ereate a null
05D4 15 2000 DCR D ;count

05D5 C2 CC 05 2010 JNZ LCROUT sprint nulls
05D8 AF 2020 XRA A

05D9 3C 2030 LDONE INR A ;inc cursor

C5DA 32 13 05 2040 STA PCURSOR ;save it

05D B7 2050 CRA A

O5DE C9 2060 RET ;return

05DF 06 5C 2070 LCNTXOUT MVI B,"\’ ;xlate here, too
05El CD E5 07 2080 CALL  GLDOUT ;print

05E4 D2 C2 05 2090 JNC LCRLF ;handle CRLF if no ATTN
05E7 C3 EE 05 2160 Jrp ATT ;go to ATTIN routine
05EA 2110 *

05EA 2120 * {LATN} list logical attention check

035EA 2130 * ’

05EA CD EA 07 2140 LATN CALL @LDATN ;do it

035ED DO 2150 RNC ;done if NC

0SEE 21 EA 04 2160 ATT LXI H,E@D1PORT ;on ATTN,

05F1 3E 01 2170 MVI ALl ; reset

0SF3 77 2180 MOV M,a ; assignments
05F4 3C 2190 INR A ; to their

05FS 23 2200 INX H ; defaults,

05r6 77 2210 MOV M,A ; and indicate
05F7 C9 2220 RET ; an error.

05F8 2230 *

E-4 Rev., 8.1 2/5/79



Addr

05F8
05F8
05F8
05F8
05F8
05F8
O5FB
GSFE
O5FF
0600
0€e00
0600
0600
0601
0604
0604
0604
0604
0607
060A
060B
0eccC
060D
060E
060F
060F
06CF
060F
0610
0611

Rev,

Bl B2

CD DC
CA E8
47
C9

78
C3 98

CD DC
CA 0D
47
AF
c9
3C
CS

AF
CS

8.1

B3 B4 E

Co
05

co

co
06

2/5/79

Line Label Opcd Operand
2250 *
2260 * now for the physical i/o drivers
2270 *
2280 * {CDIN} physical console input
2290 *
2300 CDIN CALL  MIN ;get stat/char
2310 JZz CDIN jnone yet
2320 MOV B,A ;satisfy requirements
2330 RET ;that’s that
2340 *
2350 * {CDOUT} physical console output
2360 *
2370 CDOUT MOV A,B ;get character
2380 JMP MOUT ;go primt it
2390 *
2400 * {CDBRK} physical console break check
2410 *
2420 CDBRK CALL  MIN ;get stat/char
2430 Jz CB1 ;no char
2440 MOV B,A ;save char
2450 LRA A ;set Z
2460 RET , sreturn
2470 CBl INR A ;clear Z
2480 RET ;and return
2490 *
2500 * {CDINIT} physical console initialization
2510 *
2520 CDINIT XRA A sclear CY
2530 RET ;console is always init’ed
2540 *
E-5



Addr

0611
0611
0611
0611
0611
0611
0612
0613
0613
0613
0613
06l4
0616
0618
061A
gelc
O61E
0620
0622
0624
0626
0627
0627
0627
0627
062A
06238
0628
062B
062B
06238
062B
062B
0628
062B
062B
062B
062B
C62B
06238
0628
0628
062B
062B
062B
C62EB
0628
062B
062B
0628
062B
0628
062B
062B
062B
062B

Bl B2 B3 B4 E Line

AF
CS

AF
D3
D3
D3
3E
D3
3E
D3
3E
D3
c9

CD
D8

03
03
03
40
03
CE
03
27
03

EA 07

2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110

Label Oped Operand
*
* Now for the physical list routines.
*
* {LDATN} physical list ATTN check
*
LDATN XRA A ;none of our devices
RET ; have this feature
*
*# {LDINIT} physical list initialization
*
LDINIT XRA A ssend nulls
ouT SSTAT
ouT SSTAT
OUT SSTAT
MVI A,40H ;send reset
ouT SSTAT
MVI A,0CEH ;:send mode
ouT SSTAT
MVI A,27H ;send command
ouT SSTAT
RET sreturn
*
* {LDOUT} physical list output
*
LDOUT CALL @LDATN ;formality
RC
& e
IFT DECW ;if TTIY, Decwriter, etc.
PRT ‘General selected’
*
LO1 IN SSTAT ;get status
RAR
JNC Lol ;wait till ready
MOV A B
ouT SDATA ;output data
LRA A ;elear C
RET ;return
*
ENDIF
R
IFT DIAB ;if Tiablo
PRT "Diablo selected’
*
101 IN SSTAT ;get status
RAR )
JNC LO1 swait till ready
MOV A,B
ouT SDATA ;output character
CrI LF ;linefeed?
JNZ XARET sreturn if not
MVI B,CNTC ;send ETX char
CALL  LDOUT
L02 IN SSTAT ;get return status
ANT 2
JZ LC2 swalt till reply ready
IN SDATA ;get reply
E-6 Rev. 8.1 2/5/79



Addr Bl B2 B3 B4 E Line Label
0628 3120

062B 3130 XARET
0628 3140

062B 3150 *
062B 3160

062B 3170 % me—memm
062B 3180

0628 3190

062B 3200 *
062B 3210 Lol
062B 3220

0623 3230

0628 3240

0628 3250

0628 3260

0628 3270

06238 3280

0628 3290

062B 3300

062B 3310

062B 3320

0623 3330 *
0628 3340

0628 3350 * —eee—
0628 3360

062B 3370

062B 3380 *
062E C3 92 07 3390 Lol
062E 3400 *
062E 3410

062E 3420 * mememe
062E 3430 *
062E 3440

062E 3450

C62E 3460 *
062E 3470 Lol
062E 3480 *
062E 3490

062E 3500 % -
062E 3510 *
062E 3520

062E 3530 *
062E 3540

Rev. 8.1 2/5/79

Opcd

MVI

XRA
RET

ENDIF

IFrT
PRT

IN

JC

MOV
ORI
OUT
ANI
oUT
ORI
OuT
RA
RET

ENDIF

IFF
PRT

NIy
ENDIF
IFT
PRT
RET

ENDIF

Operand

B,LF ;restore LF

A ;zap carry flag
yrefturn

CENT ;1f Centronics

‘Centronics selected’ -

PDATA sget status

L01 swait till not busy

A,B

128 ;strobe on

PDATA

127 ;strobe off

PDATA

128 ;strobe on

PDATA

A ;elear C flag
;return

ANY ;1f no printer at all
“No printer’ :

ECDouT ;dummy routine

OTHR ;special driver
"Special printer’

;juser must write special driver






APPENDIX F - MICROPOLIS DISK BOOTSTRAP

The Micropalis Disk Bootstrap Program resides in PROM on the controller

B board, occupying the first 512 bytes of the controller address space.

The bootstrap is involved by starting program execution at the base address

of the controller. An address-independent relocator determines the controller
base address and moves the bootstrap code from PROM to Tow RAM system

memory where it is executed. The Bootstrap Program selects drive unit 92

and reads the contents of sector P of track @ (the System Loader Pragram)

into memory. Sector @ must be formatted as described in Section 6.1.2

and must be organized as follows:

Byte B Track ID
Byte 1 Sector ID
Byte 2-11 (Ignored)
- Byte 12-265 System Loader Program
Byte 266-267 Load Address

Sector P is read into RAM at the system loader origin specified by bytes

266 and 267. After a successful read, the bootstrap transfers control to
load address +12. The DE register pair will contain the controller base

address.

The Bootstrap Program requires approximately 1K of RAM memory from address
9@H.

Rev. 7 3/78



Rev.

-4

FEZQ

FEZE
FEQ2

FEJL

0C42
2ese
232¢

FE2

7 3/78

2z 248 2 e o o 2 o 9% e XX 2k e oo e e Ae e ofp ol e ode e ofe e e dle e e e dleak ez e e e

MICROPOLIS DISK BOCTSTRAP

VERSION 2 --— RELOCATABLE
BOOTSTRAP — OPERATES WITH
CONTROLLER STRAPPED FOR ANY
LOCATICN FROM C@@ZH~-FCe2QH

PRCM PART NUMBERS:
BIGH 800303-21-4C
LOW 8229@3-22-2C

RELEASE 1.9
COPTRIGHT MICRCPCLIS COFPORATION
CCTOBER 11 1377

E ot 3 3 SR % 3 3 3¢ b 3 & %S

e et e e et e el st e s e e Rl ke ek e
s e e e e st e e e e e e e o e e e o e e e e e e o s ek X Ao
REGISTER DEFINITIONS AND *
FLAG EJUATES FOR MICROPCLIS #

FLEXIBLE DISK CONTRCLLER B *
e s e e e e 3 e e e e e e e e e S e s sde e e e ook e e e el ke

6 3 B 3 3+ 36 3F 3 B 2R 3 3F 3 B Sk 3F SR 3 3 3 % 3

PROM EQU X'F420°
DEFINITIONS GIVEN FOR STANDARD
ADDRESS OF F4@0H —- CONTROLLER
MAY ACTUALLY BE STRAPPED FOR '
ANY 1X BOUNDARY FROM (20¢H -FCQQH

ECU BPROM+X72238°

-
w
~

DATA REGISTERS

= & it o 3 4t 3 o 3t 3 Sk

DATA EQU DISK+X 22’
RDATA EQU WDATA
b

* STATUS REGISTERS
#

DSECTR EQU DISK

% -3 SECTOR COUNT

* 4 SPARE

* 5 SPARE

# 6 SCTE INTERRUPT FLAG
* 7 SECTOR FLAG

-3

% FLAG BITS

) A

SIFLG EQU XI‘48°
SFLG EU ¥'8¢2°
DTMR T30 17287
*
&

DSTAT EQU DISK+1



2289
2d4¢
2022
geZie
2228
2034

reee

2829

0040
do€e

geae
0242

C@oF
ges6

Rev. 7 3/78

# O3 St 0 e O R % oy Ron ORI O 3 T O 5 %

BB B 2

3
=
-3
vy G

RLY
WPT
X 2
USLT

MNT

—

[
<
=

H.
= .
3

r3
=1
jav)

[ea] =}
wy r—
=y 3
3 =

SDLY
&
BEYTCT

b3

[\S]
1

1 UNIT ADDRESS
2 UNIT SELECTED (I0OW TRUE)
3 TEACK @

¢ WRITE PROTECT
5 DISK READY

5 PINTE

4 TRANSFER FLAG
FLAG BITS

EQU X"82°

EQU X’49°

EGU %7227

EQU X197

EQU X"28”

EQU X7d4”

COMMAND REGISTER
EJU DISK

ALSO WILI RESPOND TC DISX+1)

g-1 CCMMAND MODIFIER
£-7 CCOMMAND

COMMANDS

EQU X’22° SELECT UNIT
MOLIFIZE CONTAINS UNIT ADDRESS
EQU 17427 SET INTERRUPT

MODIFIER =1 ENABLE INTERRUPT
=g DISABLE INTERRUPT

EQU X'82° STEP CARRIAGE
MCDIFIER =63 STEP OUT
=31 STEP IN
EQU X’eg” ENABLE WRITE
NO MODIFIER USED
ECU X'4a° RESET CONTRCLLER

NC MOZIFIER USED

DISK PARAMETERS

EQU 15 STEP+SETTLE TIME
DIVIDED BY 2.8775
EQU 134 BYTCT/2

****#****************#******#*******#***

%
*
=

*
*
*

a5
PROM~RESIDENT BOOTSTRAP

k-4
%
e 38 38 e v e 3k e Ko e w2 ofe e Seode e she e ol e de e e e e e e ol e e ¥ e e e oo e e e

BCOTSTRAP REQUIRES AT LEAST 1X
CF RAM MEMCRY FROM 92H

F-3



23A€

eaae

22 €ER
286C
JOEF
2870
2072
gervc
207€
2e7s
2€78
ge7c
eevr
20¢€¢
ae81
2CEz
2284
08z
2e87
2@88
2289
2084
22838

248C

3
21A239¢
9
3ECS
CDAZ29
EB
2AA0CC
2E30Q
ES
2110022
29

ES

Fl
ZE1A
@s
2e3sDd
B

B

R

1A

77

Rev. 7 3/78

3 03 3k 3 2k 3t F 3 3E 3F 3% 3¢ 3 b 3 Gt

3k

TCRG

O

3 3% k3

RELOC

REG19

ELEE I N L

RELOCATES FROM PROM INTO RAM THEN
BOOTSTRAP LOADS SECTOR ZERg OF
TRACK ZERO INTO RAM AND STARTS
THE PRCGRAM LOADED

SECTOR ZERZ IS ORGANIZED AS
FOLLOWS :

BYTES 2-1 HEADER

BYTZS 2-265 USER PROGRAM
BYTES 266-267 RAM ALTRESS

BOOTSTRAP WILL READ SECTOR ZERC
INTO RAM STARTING AT THX
ADTRESS SPECIFIED BY BYTES

266 & 267 ANKD WILL START

TEE PROGRAM AT RAM ADDRESS +12

EQU  X7A2° CONTROLLER  BASE
ADDRESS SAVET HERE

ORG CTORG-X"35" CTOFG+2-RLCLEN)

RELOCATOR ~-- YOVES BCOTSTEAP INTO
RAM AND STARTS BOOTSTRAP

DI
L¥I H,CTORG+2 STUFF A RETURN IN
SPEL RAM AND CALL IT TO

MVI ~,X°C9° DETERMINE ADDRESS
CALL CTORG+2 OF CONTROLLEFR

XCEG SAVE RAM ADIR

LELD CTORG GET ADDRESS WHICH
MVI L,2 WAS PUSEEL ON STAC
PUSHE H  MSR IS CTLR AIDR
LXI B,BTDSP1 BUILD MOVE LOOP
DAD 3B ADDRESS

PUSH X STUFF ON STACK

POP H ADJUST 8P

MYI C,BTDSP2 3BUMP HL TO START
DAD B OF BCOT COUDE

MVI 3B,BTLEN

ICHG

DCX ¢»? ADJUST SP TO POINT
DCX SP TO RE@12 CN STACK
LDAX D MOVE BYTE TROM

MOV M,A PROM TQ RAM

COMPARE MEMORY WITH A REG —-
IF DIFFERENT THEN DESTINATICN
RAM IS BAD OR IS PRCOM ~=
RELOCATOR WILL LCOP IN MOVE
LOOP UNTIL SUCCESSFUL

cMP M GOOL MOVE?



d28T
20 EE
P@8F
2289¢
2e21
@9z
022
zece
2255
CZCA
288T
2ecF

221D
2214
0937

22A2
20Az
d0A4

22A€
Z2AS
CRAA
JOAC
QCAF
203802
23Rz
2233

2E€B6

2e3r"7

2Z3B8

Rev., 7

C2

23

12

25

ce

1
cAAdee
1123d2
18
22A2C0@
2640
C3D42¢

ZAA200
7E
E68¢
CAAGQD
7E
E6CF
A8
C2AS92

23

B6

¥23872¢

3/78

e

ETISP1
BTDSP2
KLCLEN
e

BOCT
TAIR
LDRST

i

% b

*

oI L R A B B B B

ISEC

* 3

Lgas

0o 3

I+ 3

ENZ NO~-LQOQP?

INX EH

INX D

DCR 3 DONE?

RNZ NO-LOC?

POP H YES~CLEAN UP STACK
LELD CTCRG BUILD CCNTECLLER
L¥I D,X°20@° ADDRESS TRCM BASE
DA D

SELD DADR AND SAVE

MVI M,RESET RES2T CONTRCLLER
J¥P SL3a12 ANT GC START BOCT

EJU REJ13-RELOC
EJU *~-RE212
EQU *-RELCC

Ecy %
DS 2
DS 2

READ 1 SECTOR

B=SECTCR
C=BYTECOUNT /2
CE=READ BUFFER
A,HL ARE DESTROYET
RETURNS Z=0K
NZ=ERRCR

WAIT FCR DESIRED SECTOCR

LHLD DADR

MCV A LM WAIT SCT? FLAG
ANI SFLG

JZ RDSEC+3

MOV A LM 0K~IS THIS THE
ANI ZX73F” DESIRED SCTR?
XFA B

JNZ HDSEC+3 NC-WAIT
FCUND DESIRED SECTCR GO READ

INX H

0RA M WAIT FCR TRANSFER
FLAG

JP RDBE5

TRANSFER FLAG SET-STRIP

~

F-5



JE€3B3B
2¢BC
g@3BD
@CBE
2CRF
gect
aec2

2eC2
Zec4
gace
2¢CE
@ecw
gecs
32C9
gacha
P@CGE
4eCC
2@CD
ZeCE

2301
ged2
@e@nz

29D4
@aL7
28D%
2@LA
¢eDE
220C
2QLE
20FE0

QAE3
2QES
deE8
22 ES
JBEA
2OLEB
20ET
Q@LF

Rev. 7 3/78

1A
77
23
88
47
1A
77
23
88
47
@D
C2C322

iA
B2
ce

2AA232
362¢
23

7E

2B
E624
EE2¢
C2D4g@

2ESE
CD42cd1
23

7E

2B
£624
EE22
C2D4go

® o3 3t

L212

»
£

SLez@

LDAX
MCV
INX
ADC
MOV
LDAX
MOV
INX
ADC
%oV
DCE
JNZ

END
LDAX

CMP
RET

SELECT DRIVE 2

LHLT
MVI
INX
MOV
DCX
ANI
XRI
JNZ

MYI
CALL
INX
MOV
DCX
ANI
IRI
JNZ

BYTE

4

td o 2% ¢

LCOP

= .

OWwmTowoim T
e

RDO1LY

READ SYNC BYTE
CLEAR CARRY

AND CEECKSUM

READ FROM DISK
MOVE TO BUFFER
NEXT LoOC

ADL TC CHECKSUM
AND SAVE

NEXT REAT

-ETC~

END CF DATA?
NO-LOOP

CF DATA-READ CHECKS'M

T
B

DADR
M,SLUN

5

AM

H
RDY+USLT
RDY
S1212

€,94
TIMER

d

A M

B
RDY+USLT
RTY
SLa12

|
[}
o

COMPARE WITH
COMPUTED CHECESUM

SELECT DFIVE

CHECK SLTD & RDY
WAIT UNTIL OK
T0 PROCEED

WAIT 258 MSEC
FOR SECTOR CNTR
TG SINC

READ STATUS AGAIN
TO ENSURE STILL

0K TO PROCEED
NO-TRY AGAIN



@e¥e
28F2
¢eF4
2aFE
22¥F7

JdBYA
2@¥C
JOFE
212¢
4122
21024

a1ev
g12g
212¢
Z1CF
412C
210F
4111
€112
211€

2116
g11c
211F
2122
212z
21z¢8
21238
g1zk
2131
2134
213%
213€

J127
21238
R1Z¢
213C
212F
214¢
€143
2144
214%
214€

Rev. 7 3/78

23

7E
EEJE
2B
Ca2721

geoaE
3EEL
JECF
CD4c21
g<c
C2¥C22

23

7%
EE28
ZB
21901
36€2
gECT
CD4941
czeva1

21%F21
CL37e1l
CzD42¢
2A69¢<
2244029
Cp37a1
Cz2D4g22
201420
11acCe9
15

1

S

ES
B
218622

[ BE IR B

ZERC

- - I

cze1e

CZ2za

%
cia23z

# 3k 4¢3k b

1 €2]

o

ZERQ

CDAB0d

El
C23731
EE
7E
23
B6

RESTCRE DRIVE TC TRACK 32

INX & READ STATUS
oV AWM

ANI TY¥2 TRACK 27
DCX H®

JZ CZ239 NO-PRESS CN

IF ALRZADY AT TRACK ZERC
STEP IN THEN BACK OUT
TC ENSURE A GOOD POSITICN

MYI B,8 STEP IN 5 TKS
Myl ~,STEFP+1 STEP IN
¥¥1l C.SDLY TELAY SEEX +

CALL TIMER SETTLE TIME
DCR B

JNZ CZ212 LOOP UNTIL IN
INX H READ STATUS
MOV A LM TRACK @72

ANI TK2

ICX H

JNZ RSZERO YES—-PRESS ON
My1I ™,STEP NC-STEP OUT

vl C.SDLY DELAY

CALL TIMER THEN TEST AGAIN
J¥P (72209

READ THRCUGE SECTCR ZERC
ONE TIME TC FINZ FRAM ADDRESS
THEN EEAD PROGRAM IN & START

LXI H,BIBUF

CALL RZER®Z READ SCTR ZERO-
JNZ SL219 RESEEK IF HDE BAD
LHLT BTBU¥+266 GET PGM ADDRESS
SHLD LIRST GO LOAL PGM
CALL RZEERD
JNZ SILel2 RESEEK IF HDR BAD
LELT LILRST CCMPUTE START
LXI D,12 ADDRESS AND GO
DAL D START PROGRAM
POP D (CTLE CRG STILL
PCHL ON STACK:
PUSE E SAVE RAM ADDRESS
XCHC DE<-ADDRZSS
IXI B.BYTCT
CALL RDSEC READ IN SECTOR @
PCP E
JNZ RZXE@ RETRY IF CKSUM :RR
PUSd H
MOV A LM CEECK EEADER
INX H
CRA M

F-7






APPENDIX G - "FEATURES"™ PROGRAM TO OPTIONALLY SHORTEN BASIC

M.BASIC contains features which are very useful during program
development but unnecessary when running debugged production
programs. It is possible to selectively delete some or all of these
features. When these features are removed the program buffer
(user's program space) is enlarged. Without removing them, the
program buffer begins at 5D86 (Hex) whereas when all the features
which can be removed are removed, the program buffer begins at 5709.
This is the same place it did in version 3.8 of M.BASIC.

A special assembly languge program called FEATURES is supplied to
selectively remove features from BASIC. The three features which
can be removed are MERGE, RENUM, and EDIT. The procedure is as
follows:

1) Load BASIC fron an MDOS system diskette or from a BASIC-only
diskette. This must be BASIC version 4.4. ‘

2) Type LINK "FEATURES" then depress (return).

3) The program will then begin by displaying:
BASIC V.S. 4.0 FEATURES PROGRAM

ENTER NUMBER OF DESIRED FUNCTION (CONTROL-C TO EXIT)

1-REMQVE MERGE .
2-REMOVE RENUM AND MERGE
3-REMOVE EDIT, RENUM AND MERGE

?

4) Select the desired function and enter its number. You have
only the 3 choices given. The program will begin executing
as soon as you touch one of the number keys. If you want to
return to BASIC rather than executing the program, depress
control-C (hold CTRL key down while depressing the letter C)
instead of one of the numbers.

5) When the selected features are removed, the system is
returned to BASIC automatically.

NOTE: If you run the FEATURES program using a disk whose BASIC is
already shortened and if you select any of the features which had
been removed, then the program will set the Beginning of the program
buffer back to where it was originally, as if the feature had not
been removed, but the feature itself will not be added back on.
Thus, the program buffer will be shrunk, but you will not have the

feature. In shert, be careful that you do not try to remove a
feature that has already been removed.

The shortened BASIC created by the FEATURES program may be saved ona
newly initialized diskette for use as a BASIC-only diskette. Follow

Rev, 8.1 2/5/79 G-1



the procedure in Appendixz B before you exit from BASIC, in order to
do this.

The shortened BASIC can also be saved on your Personalized MDOS
System Diskette, or a copy of it. To do this, type the following
lines after BASIC's "READY" prompt, with the desired system disk in
drive 8 (each line is followed by depressing return):

OPEN 1 "BASIC":ATTRS(1)=4
SCRATCH "BASIC"

SAVE "BASIC" 16R1572, 16RSDFF
ATTRS(1)=16RF:CLOSE 1

Following the last line, your system diskette has a copy of the
shortened version of BASIC, which will be used everytime you enter
the command BASIC. You can use the DISKCOPY command in MDOS to copy
this sytem diskette.

If you do not save your shortened BASIC in one of these ways, then
since it only exists in the system's memory, it will be lost when
you turn the power off or return to MDOS. Until then, you c¢an use
it for programming in BASIC.

G~2 Rev. 8.1 2/5/7¢9



APPENDIX H - INTERFACING TO A CENTRONICS PRINTER

Centronics Printer

VECTOR GRAPHIC PRINTER INTERFACE

General

The Vector Graphic Printer Interface provides the means to connect a Centronics
line printer such as the 700 series of printers or equivalent to the Vector MZ
or other Vector Graphic microcomputers. The interface is designed to utilize
the Vector Graphic Bit Streamer I/0 board parallel ports via connection to one
input port and one output port.

The software driver program monitors the BUSY signal from the printer and when
the printer is not BUSY (BUSY=0) the program may transfer a character of data at
which time the printer BUSY signal goes true thus holding off data transmission
until the printer is once again ready to accept data.

I/0 PORT BIT ASSIGNMENTS

PCRT 01 CUTPRUT

BIT | 7 6 5 4 3 2 1 0

STROBE | DATA | DATA | DATA | DATA | DATA | DATA | DATA

6 5 4 3 2 1 0

PCRT 01 INPUT

BIT 7 6 5 4 3 2 1 0

- - - | -1 -1 =1 - |BUSY

Rev. 8.1 2/5/79 H-1



INTERFACE PARTS LIST

1 ea Serial I/0 cable (Bit Streamer to Vector MZ backpanel.

1 ea Printer cable (Vector MZ backpanel to printer)

1 ea 6 pin Molex connector.

INSTALLATION INSTRUCTIONS

CAUTION - Power must be off before proceeding with installation.

Bit Streamer I/0 Board

a)
b)

c)

Cut the circuit trace at J3-19.

Add a short jumper wire from J3~-19 to J2-17.

Add the 6 pin Molex connector on the circuit or back side

of the board as shown in Pigure 1.

Install the Bit Streamer in a chassis slot near the back

panel of the computer chassis.

Plug in the 24 pin dip plug (part of the I/0 cable) into J3 of
the Bit Streamer. If your computer does not have this cable
(Vector P/N IO-1327) one must be obtained.

Serial I/0 Cable

a)

Install the serial I/0 cable in the Vector MZ with the 25 pin
connector attached in an available cutout on the rear panel
and connect the 6 pin Molex plug to the Bit Streamer as

shown in Figure 1. This now becomes the connector to use with

your terminal (Hazeltine, etc).

H~2 Rev. 8.1 2/5/79



CABLE WIRE LIST AND DIAGRAM

VECTOR MZ/CENTRONICS I/0 CABLE

Jl J2 CENTRONMNICS : COMPUTER
VECTOR MZ CENTRONICS SIGNAL NAME SIGMNAL NAME
6 11 BUSY port 01 bit 0 IN
25 7 DATA 6 port 01 bit £ OUT
24 6 DATA 5 port 01 bit 4 OUT
16 3 DATA 2 port 01 bit 1 OUT
15 4 DATA 3 port 01 bit 2 OUT
17 2 DATA 1 port 01 bit N QUT
12 8 DATA 7 pert 01 bit 6 CUT
14 5 DATA 4 vort 01 bit 3 OUT
11 1 STROBE port 01 bit 7 CUT
7 16 GROUND -
J1 J2
1 = 120"
DB-25P Amphenol 57-30360
or equiv..

Rev. 8.3-4 7/1/79 H-3



CABLE WIRE LIST AND DIAGRAM

SERIAL I/0 CRABLE

Jl J2
BIT STREAMER VECTOR MZ BACK PANEL SIGNAL NAME
1 7 GROUND
5 3 TRANSMIT DATA
6 2 RECEIVE DATA
J1 J2
=
—
o ]
=
1 = 12"
6 Pin Molex DB=258
H~4 Rev. 8

« 1

2/5/79



Ay

T8

6L/S/2

S-H

o SERIAL T/®
CA8Ls

foaoga

@
sy

[ SRRERRANLN
a— TOMPER
i
JA

BITsTREAMER
(BAck sm&)

_Fleurs 1






APPENDIX I - TROUBLE SHOOTING IF MDOS DOES NOT LOAD

This section is applicable the first time you attempt to load MDOS
using the Extended System Monitor B command.

1) If the disk drive select light does not go on in response
to command B, check the connection between the mainframe and the
console. If this is not the problem, then the system requires
attention by the dealer or by Vector Graphic.

2) If the MDOS has not signed on within 24 seconds, but the
disk drive select indicator light is still glowing, the bootstrap
ROM has been unable to read the loader into memory from the
diskette. Depress RESET. Check whether the correct diskette was
inserted in the correct drive, that it is inserted facing correctly
(label leftward or upward), and that it is fully inserted and fully
mounted (snapped into place). 1If not the problem, inspect the
diskette for obvious contamination or damage. Reload the diskette
and begin again with the Monitor B command.

3) If the system has not signed on but the unit select
indicator has extinguished, the loader may not have been able to
read the rest of the system into memory. The probable cause is a
malfunctioning memory chip. Use the Extended Systems Monitor
command N to test memory. (See the Extended Systems Monitor
manual.) If this test terminates at a value below Cgg@H (i.e. 48K),
it indicates malfunctioning memory: The ending address is the
location of the malfunction. If N reveals no problem, then try
command T, a more thorough memory test. Use the ending address
given by command N, less 1, as the second address in the command T
argument, and use @088 as the first address. To use an Extended
System Monitor command, depress RESET on the front panel of the
mainframe. Then enter the command you want, after the Monitor
prompt * appears. :

4y If there is no problem with memory, the system requires
attention by a service representative.

Rev., 8.1 2/5/79 I-1






APPENDIX J - GAMES AND DISPLAYS ON THE MDOS SYSTEM DISKETTE

STARTREKG, CIVILWAR, and LUNAR are games wriltten in BASIC. Get into
BASIC, then enter:

PLOADG "<game name>" (return).

The games are self-explanatory, with the exception of STARTREKG.
STARTREKG uses the classic set of rules familiar to all computer
Startrek aficianados. For others, a little trial and error gets the
player going.

FINANCE is a BASIC program for computing various interest and
annuity problems. It 1s useful on a day-to-day basis for users
working with investment problems. Its operation 1is
self-explanatory. To start it, use the PLOADG command as with
games, above.

FLASH7 is a demonstration of the graphics capability of the
Flashwriter II board. Do not attempt to use it unless your system
uses this board, indicated by 80 X 24 display on a video monitor or
Mindless Terminal. Also, it will not work if the system 1is set up
to run word-processing (i.e. it is a MEMORITE II system, or the Word
Management System character generator PROM's have been installed on
the Flashwriter II board.) It will only work if the system has the
graphics character generator PROM's which are installed when MZ
systems are manufacturerd.

To use FLASH7, mount an MDOS System diskette in drive 0. Get into
the MDOS command mode (usually done by depressing B _(return) after
turning on or reseting the machine.) Then type FLASHY (return).
The program will begin executing, showing off the many features of
the Flashwriter II board, including graphics, lack of glitches on
screen, multiple cursors, reverse video, and so on. The program
will execute indefinitely by repeating itself until halted by the
operator with the RESET botton. This program 1s an excellent demo
for dealers. (Dealers who want to demo Word Management System on
the same system must forego it, however.)

The operator may interact with FLASH7 (unlike the earlier FLASH6) in
various ways. First, touching the space bar at most times will
freeze the screen, for closer examination. Another space bar will
resume the demo. Second, the operator can cause the demo to Jjump
directly to any of several points within its cycle, if that
particular part of the demo is of special interest. This 1is
accomplished by pressing one of the following letters at almost any
time while the demo is operating: :

letter part of demo letter part of ﬁemo

C Character Set B Introducing System B

R Sphere L Higher Level Languages
G Gettysburg Address S Bubble Sort

D Darth Vader

Rev. 8.4~ 7/26/79 J-1







APPENDIX K - CHANGING MICROPOLIS BOOTSTRAP ROM AND DISK I/O
ADDRESSES

The disk Bootstrap ROM and Disk Controller I/0 addresses are
located in the 1K block from the base address D8@# to DBFF.

The user may change this location by changing jumpers on the disk
controller board. If this is done, however, the B command in the
Extended Systems Monitor will no longer function, unless the new
base address is F4g@. If not, in place of B, the operator must use
the G command followed by the new base address.

No software changes are necessary. Disk I/O routines in the RES
module automatically find the disk controller and Bootstrap
addresses.

This is also true if the CP/M operating system is used. However,
the MEMORITE and Word Management System word processing software,
and the MZOS operating system, can only function with the disk

controller and Bootstrap block beginning at the normal D809
location.

Use the following procedure to change the location of the block:

1. Refer to figure K.l, locate the base address desired and
determine the jumpers required.

2. Referring to figure K.2, locate the address jumper
locations on the controller board. Vector Graphic ships the board
with jumpers Wl and W4 installed.

3. Remove one or both of the installed jumpers and replace
with jumpers required for the desired address. Use short lengths of
wire, a 25-30 watt soldering iron, and resin-core solder. To avoid
blowing LSI chips with static electricity, do not work in a carpeted
room. Touch the contacts on the board edge with one hand before
beginning to solder. :

Rev. 8.1 2/5/79 K-1



ADDRESS BIT

JUMPER
ATS A14 A13 A12 Al1 AJ0 A9 A8 JUMPER INSTALLED

BASE ADDRESS N/A IWT W2 W3 WA | N/A W WZ W W

| CO! 00 - CIFF 1 1l a o0 o ol0 0 A 2

L C41 00 - CTFF 1 10 0o 0o 11]0 0 Y Y Y N

t C81 00 - CBFF 1 1]0 0o 1 000 Y Y N Y

' CC! 00 - CFFF 1 110 0o 1 1100 Y Y N N

L DO 00 - D3FF 1 1o 1 0 00 0 Y O OoN Yy

T ANDARD § 04§ 00 - D7FF 1T tlo 1 0 100 Y N YN
ADDRESS | 08| 00 - DBFF 1 1,0 1 1 0,00 Y N Ny
| DC! 00 - DFFF 1 1(0 1 1 110 0 Y N NN

' £0 00 - E3FF 1 111 0 0 010 0 NOoY Yy

| €41 00 - E7FF 111 0 o0 1o oo Ny YN

' EQ1 00 - EBFF 1 1{1 0 1 o0lo o NOoY Ny

| EC 1 00 - EFFF 1 111 0 1 10 0 Ny NN

| FO 100 - F3FF 1 171 1 0 oo o NNy v

"F41 Q0 - FTFF 1T 111 1 a0 110 0 NN YN

| F31 00 - FBFF 1 101 1 1 olo o NCOONON Y

chE 00 - FFFF 111 1 7 1o o NN NN

As an example, if you wish to use base address FA00 install jumper at 3.

FigureK.1 Controller Base Address Jumper Configurations

Rev. 7



sl

oray

pai» A imeif
rojl—t
I

) :

1

|

1

Address Jumpers

Figure K.2 Locating The Controller Address Jumpers

K-3
Rev. 7






APPENDIX L — CHANGING CLOCK RATE TO 2 MHz

To operate the system at 2 MHz speeds, a jumper must be removed from
the disk controller board, as follows:

1)

2)

Refer to figure L.l. Locate the ribbon cable edge connector
and the resistors R25, R6 and R7.

Between R25 and R6 is a jumper location, W9. Remove the
jumper there with a 25-30 watt soldering iron. To avoid
blowing LSI chips with static electricity, do not work in a
carpeted room. Touch the contacts on the board edge with one
hand before beginning to solder.

A jumper must then be added to the Z-88 board at location "A".
Location "A" will be found under the top row of chips, directly
under the third chip from the left, U3. If necessary, refer to the
figure found in the Z-8f Board User's Manual.

Rev.,

8.1 2/5/79 L-1



/ Speed Jumper

BERR

3

Figure L.1 Locating the controller processor speed jumper

L-2
Rev. 7



APPENDIX M - WRITING A CONSOLE PHYSICAL I/0 ROUTINE

For users wishing to replace the console physical driver in the
Vector Graphic Extended Systems Monitor, this section describes the
console I/0 requirements of the RES module.

vour version should be written in place of the routines in RES.I/0
found from lines 2258 to 2548. RES.I/O is the source code for the
I/0 routines in the RES module. It will be found on your MDOS
System Diskettes. The listing is in Appendix E.

If there are any other routines to rewrite, such as printer
routines, do this before assembling RES.I/O. To assemble RES.I/O
refer to Appendix O where the procedures are explained.

1) Lines 728 - 75@ in the @CIOABLE can be changed if required.

2) The logical input, output and break check routines (CIN,
COUT, and CBRK) should not have to be changed. They are
tailored to support all MDOS and BASIC requirements.

3) The console physical input routine (CDIN) must have the
following characteristics:

a) It must return all registers except A & B unchanged.

b) It can use the A register (destroy it).

c) It must return an ASCII character including the parity bit
if any, in the B register.

d) It must return the carry flag clear (NC). The other
status flags can be in any state.

 4) The console physical output routine (CDOUT) must have the
following characteristics:

a) It must take an ASCII character in the B register.
b) It must return all registers except A unchanged.
c) It can use the A register (destroy it).

d) It must return the carry flag clear (NC).

e) The other status flags can be in any state.

5) The console physical break check routine (CDBRK) must have
the following characteristics:

a) It must check the console input status port to determine
if a key has been pressed.

b) If no key has been pressed it must return all registers
except A unchanged and the zero flag clear (NZ).

c) If a key has been pressed it must return the byte, in the
B register. The A register can be used (destroyed). All
other registers must be unchanged. The zero flag must be
set (Z).

d) The status flags other than zero can be in any state.

6) It will probably not be necessary to change the Physcial

Rev. 8.1 2/5/79 M-1



Console Device Initialize routine (CDINIT).

M=-2 Rev. 8.1 2/5/79



APPENDIX N - WRITING A PRINTER PHYSICAL I/0 ROUTINE

This Appendix is used when you want to write a custom version of the
printer physical I/0O routines in the RES module.

Rev.

1)

2)

3)

4)

5)

RES.I/0 is an assembly language source code file found on the
MDOS System Diskettes. In order to rewrite any part of the
I/0 routines in the RES module, rewrite the relevent portions
of this source file, using the Line Editor in MDOS. Note
that RES.I/O is not the source file for the entire RES
module, but only the I/O portion of it. '

Write the your printer driver routine beginning at line 3474
in the RES.I/O. Make sure the contents of lines 3528-3549
are at the end of your routine. The first line must use the
label L#l, not LDOUT. Do not over-write the other printer
physical I/0 routines in the Source code (only yours will be
assembled, as you will see.) The parts of the new routine
must have the following characteristics: )

a) The character to be output is passed to the physical
output routine in the B register in ASCII.

b) The physical output routine can use (destroy) the A
register.

c) All registers except A must be returned unchanged.

d) Some printers can signal when paper is out, the motor is
off, or they are out of ribbon. The system supports
printers which can signal a PRINTER ATTENTION condition.
If the printer needs attention, the physical output
routine should return with the carry flag set (C). If
your printer does not support a printer attention
condition, then always return with the carry clear (NC).
The other status flags can be returned in any state.
LDATN, the routine which handles printer attention, must
not destroy any registers except A.

Lines 89¢-928 in the @LIOTABLE can be changed if desired.

The present contents of lines 35289 - 354@ must be at the end
of your routine, or it will not assemble.

Turn to Appendix & when you are ready to assembly and save
the new RES module.

8.1 2/5/79 N-1






APPENDIX O - REASSEMBLING AND SAVING THE RES MODULE

Follow the procedure in this appendix after you have modified the
RES.I1/0 source code using the Line Editor in MDOS. When you are
done with this appendix, the RES module program will be modified on
your MDOS System Diskette, and ready to use.

Rev.

1)
2)
3)

4)

5)

6)

7)

8.

Mount Personalized MDOS System Diskette in Drive 0.

In MDOS, enter ZSM "RES.I/O" "CRES" "E" (return).

Four questions will appear on the screen one after the other.
Your answers to these questions tell the assembler which
printer driver to include in the assembled code. Your
choices will be a standard Diablo protocol driver, a standard
Centronics protocol driver, a standard Decwriter and Teletype
protocol driver, or a driver you have written yourself
according to the instructions in Appendix N. As each
question appears, depress a 0 if you do not want that driver,
or a 1 if you do. Answer 1 to only one of the questions, and
0 to the other three. 1If you did not write your own and are
not sure which of the three standard drivers you need, review
section 2.2 in Chapter 2 which includes examples of the
different types of printers.

After the fourth question, another question will appear on
the screen, asking ''Bitstreamer base address?" The answer to
this question is 0 if the Bitstreamer board is jumpered to
respond to port #'s 0, 1, 2, and 3, and it is 4 if the
Bitstreamer board is jumpered to respond to port #'s 4, 5, 6,
and 7. Generally, the former is the case if you are using a
serial terminal such as a Hazeltine, and the latter is the
case if you are using a Flashwriter board to interface a
memory-mapped terminal such as Vector Graphic's Mindless
Terminal or a memory-mapped video monitor such as a Hitachi.
(If for some reason you have chosen to jumper the Bitstreamer
board for a different set of port #'s, then respond with the
lowest # of the set you are using.)

After the last question, the object code will be assembled.
At the end of the assembly , the message "END = XXXX" will
appear. This value must be under 0700. If it is not, then
the routines you have written are too long, and must be
shortened.

At this point, with the code successfully assembled, the new
I1/0 portion of the RES module is on disk as a temporary file
called "CRES" but not yet overlayed over the entire RES
module on the system diskette. To do this, enter TYPE "CRES"

C (returm), and then CRES (returm). Finally, type SCRATCH
'"CRES" (return) to clear this workfile from the disk.

The complete RES module with all changes is now in memory,
but not yet stored on disk. Debug it now. Proceed when it

3-A 7/1/79 0-1



is finalized-.

8) To save the new RES module, follow the instructions in
Section 2.2.0 of this manual.

10) NOTE: Do not overlay one of the pre-written printer drivers

as instructed in Chapter 2, sections 2.2.1 and 2.2.2. Steps 3
and 4 above already installed the correct driver,

0-2 Rev. 8.3~-A 7/1/79



APPENDIX P - MAP OF I/0 PORTS

On the following page you will find a chart which lists all the I1/0
ports that an 8080 or Z380 can address, in hexadecimal notation. An
I1/0 port is accessed when the processor executes an IN xx or OUT xx
instruction, where xx is the one of the port numbers in the chart.
The port number will appear on the lower half of the address bus
instead of a memory address, and either SINP or SOUT will be active
high which tells memory NOT to react and tells I/0 devices that it
is their turn. Each I/0 device and board has gating circuitry which
detects when its own port number is on the bus. Usually, I/0
devices have dip-switches or jumper pads with which you can assign
any port number.

Next to some of the ports, you will find the names of commonly used
boards which respond to those port numbers. Some of these boards
are Vector Graphic's and some are not. In the case of the Vector
Graphic boards, most of them can be assigned ANY port number, either
by dip-switch or jumper. The numbers shown for these boards are
those that Vector Graphic software expects. Use this information to
avoid present and future conflict when you are assigning port
numbers to hardware. You can also use this sheet as a worksheet if
vyou are assigning a number of ports.

Rev. 8.3-A 7/1/79 P-1



MaP QOF PORTS
00 VaGa flLash~|V.G. 40 V.G. 16K bank select 13U (s8]
01 Writers Big~ o1 81 c1
02 Streamer (42 82 Cc2
03 V.G. I 43 83 Cc3
04 Riz- Alternate (44 84 C4
05 Streamer Bitc- 45 85 C3
06 LT Streamer (46 86 Cb
Q7 L 47 87 c7
08 48 88 C8 VDM (not V.G.)
09 49 a¢e c9
0A 4A 84 Ca
0R 4B 8B CB
oc 4C 8c CC
0D 4D 8D Cch
QE LE 8E CE
OF AF ar CF
10 a0 50 20 pli]
11 Al 51 91 D1
12 A2 D+7A Board 52 92 D2
13 A3 (not V.G.) 53 93 D3
14 Ab Sa 94 Da
15 AS 55 25 DS
16 A6 56 96 D6
17 A7 57 a7 D7
18 58 93 D8
19 59 99 D9
14 54 9A DA
13 5B 9B DB
1c 5C acC DC
1D 5D 9D DD
ik On/OfLC Dazzler SE 9E DE
1F Mode (Mot V.G.) I5F 9F DF
20 50 AQ EO
21 61 Al E1
22 62 A2 E2
23 63 A3 E3
24 64 AL E4
25 65 AS ES
26 66 A6 E6
27 67 A7 E7
28 63 A8 £3
29 69 A9 E9
24 6A AA EA
23 - 63 AB EB
2C 6C Status Tarpell AC EC
2D 6D Data Tape AD ED
2= 6E Status (Not V.G.) |AE EE
2F 6F Data AF EF
30 10 BO FO
31 71 B1 1
32 72 B2 F2
33 73 B3 F3
34 7 & B4 Fé
35 75 BS £S
36 76 B6 Fa V.G,
37 77 B7 F7 Jovstick
48 73 B8 F8 Tarpell
39 79 B2 F9 Disk
3a 74, Ba. FA (not V.G.)
3B 7B BR 7
ic 7C BC FC
3D 7D BD FD
3E /& V.G. Video Digltizer |BE FE Imsai Memory (not V.G.
3% 7T RF FY FYont nanel (20t V.G.
- P-2 Rev. 8.3-A 7/1/79




APPENDIX Q - MEMORY DIAGNOSTICS

MDIAG

If you have some reason to suspect that the computer's main memory
is malfunctioning, use the Memory Diagnostic program on the MDOS
System Diskette. Simply turn the system on, mount the system
diskette in drive 0 (the right-hand drive), type B following the
Monitor prompt (*), type MDIAG following the MDOS prompt (>), then
depress the RETURN key. The program will load into the scratch-pad
area of memory (not part of main memory) and execute.

MDIAG tests the contiguous memory beginning at 0000. There are
actually two tests going on at the same time. Each repetition
("pass") of the program fills the next 8K block of memory with
random numbers, and then tests it for changes. At the same time, it
also fills all of memory with a certain fill code, and then tests
all of it for changes. A display appears showing the result of each
repetition. The program waits a certain ''delay time'" after filling
before it tests memory. After all 8K blocks of main memory have
been tested, the delay time is increased, and the program repeats
beginning with 0000.

The display shows for each repetition the TOP OF MEMORY (the lowest
address which is not in main memory), ACTIVE BLOCK (the first
address of the 8K block currently subject to the random number
test), the PASS NUMBER (incremented after each repetition), the FILL
CODE (the code used to £ill all of main memory as the second part of
the test), the DELAY TIME currently being used, the number of ERRORS
READ, and an ERROR DUMP showing the last 10 errors encountered,
giving the address which malfunctioned, the code written, and the
code read.

MDIAG will run indefinitely, with ever increasing delay times, if

allowed to. It is used at the factory to burn the systems in for
long periods of time. To stop it, depress the RESET key.

Monitor T Command

The T memory test is part of the Extended Systems Monitor PROM which
comes in the system. To activate it, depress the RESET key, then
type T, followed by the beginning address (in hex) of the block you
want to test, then the ending address of the block. For example, to
test the 48K of main memory, type T 0000 BFFF. The program will
begin executing immediately.

The program stores random numbers into memory, then tests to see if
any have changed. If memory is perfect, you will see nothing on the
screen. However, if anything changes, the program displays the
address, the code written, and the code read back. Then it
continues testing. It will go on until stopped by depressing the
RESET key.

Comparing with MDIAG, the strengths of the "T" test are 1) it allows

Rev. 8.3-A 7/1/79 Q-1



vou to test portions of memory which are not contiguous beginning at
0000, for example an 8K block from EQQQ0 to FFFF, or the screen
memory, normally from DOQO to D7FF; 2) it displays ALL the errors,
rather than the last 10, allowing you to pinpoint all malfunctioning
locations, and 3) you can use it without disk drives, if needed.

The weaknesses are 1) it may not show up errors produced by dynamic
memory over a delay time longer than T uses, whereas MDIAG increases
the delay time to long enough intervals; and 2) you must know the
ending address of memory. MDIAG is considered the better test for
dynamic memories, which are used in the standard Vector Graphic
systems.

Monitor N command

N is a non-destructive memory test. To activate it, depress the
RESET key, then type N. It will make only ome pass through memory,
temporarily storing each byte, testing whether 00 and FF can be
stored and recalled correctly, and then replacing the original
contents. It does this until an error is found, whereupon it prints
the address, the code written, and the code recalled, and then
returns to the Monitor executive.

This program is most useful for determining how much main memory a
given system has, because if no errors are found, it will print out
the first address of ROM memory which is above main memory. The N
test is not nearly as thorough as either the T test or MDIAG, and it
only reports the first error found. However, it allows you to test
memory without destroying any of the contents, unlike the others.

MAP

MAP is a utility which tells you whether RAM, ROM or no memory at
all, is at each address in the system. This includes all special
purpose memory such as video boards, scratch-pad, and so on. Use
MAP if vou are not sure what is in the system. If the system is
standard, then the result should be the same as the map in Figure
1.2 (Chapter 1), with the PROMs appropriate for your configuraticn.

To run MAP, simply turn the system on, mount the system diskette in
drive 0 (the right-hand drive), type B following the Monitor prompt
(*), type MAP following the MDOS prompt (>), the depress the RETURN
key. The progrm will load and execute. The resultant display is a
matrix of memory that is fairly self-explanatory. You only have to
know that the addresses increase from left to right in blocks of 100
Hex (256 bytes). You can run MAP with RAM holding data or program
without losing anything; it is a non-destructive test, except for

the area it uses itself, which is the scratch~pad area beginning
from DCOO to DDFF.

Q-2 Rev. 8.3-A 7/1/79



