6-7501

Programming Manual
for the 8080
Microcomputer System

PRELIMINARY EDITION

VOLUME 1

O L May 1974 o

This manual describes the assembly language format, and how
to write assembly language programs. For detailed information
on the operation of specific assemblers, the corresponding
Operator's manuals should be consulted

.

1.0

SECTION

INTRODUCTION

—- TABLE OF CONTENTS --

COMPUTER ORGANIZATION

THE

3.1

3.2

WORKING REGISTERS

MEMORY

PROGRAM COUNTER
STACK POINTER
INPUT/OUTPUT

COMPUTER PROGRAM REPRESENTATION IN MEMORY

MEMORY ADDRESSING

DIRECT ADDRESSING
REGISTER PAIR ADDRESSING
STACK POINTER ADDRESSING
IMMEDIATE ADDRESSING
SUBROUTINES AND USE OF THE
STACK FOR ADDRESSING

CONDITION BITS

CARRY BIT
AUXILIARY CARRY BIT
SIGN BIT

ZERO BIT

PARITY BIT

8080 INSTRUCTION SET

ASSEMBLY LANGUAGE

HOW ASSEMBLY LANGUAGE IS USED
STATEMENT MNEMONICS

LABEL FIELD

CODE FIELD

OPERAND FIELD

COMMENT FIELD

DATA STATEMENTS

TWO'S COMPLEMENT REPRESENTATION
DB DEFINE BYTE(S) OF DATA

DW DEFINE WORD (TWO BYTES)

OF DATA

Page No.

[
]
-

NN!?!;)NNN N
t U
AU VIWWRNNNE

1

L8] Nt}JNN

1
o

2-11

2-12
2-12
2-13
2-13
2-13

w
i

] 7
HNOUTR e

o+

w wwc:owuw

|
[
(&)

3-15
3~18

3-19

T LTt -

BRSSP SN S SN S SR

b

- TABLE OF CONTENTS -- (Cont.)

SECTION Page No.
3.2.4 DS DEFINE STORAGE (BYTES) 3-20
3.3 CARRY BIT INSTRUCTIONS 3-21
3.3.1 ‘STC SET CARRY 3-21
3.3.2 CMC COMPLEMENT CARRY 3-22
3.4 SINGLE REGISTER INSTRUCTIONS 3-22
3.4.1 INR INCREMENT REGISTER OR
MEMORY 3-23
3.4.2 DCR DECREMENT REGISTER OR
MEMORY 3-24
3.4.3 CMA COMPLEMENT ACCUMULATOR 3-25
3.4.4 DAA DECIMAL ADJUST
ACCUMULATOR 3-26
3.5 NOP INSTRUCTION 3-28
3.6 DATA TRANSFER INSTRUCTIONS 3-29
3.6.1 MOV INSTRUCTION 3-30 j
3.6.2 STAX STORE ACCUMULATOR 3-31
3.6.3 LDAX LOAD ACCUMULATOR 3-32
3.7 REGISTER OR MEMORY TO ACCUMULATOR
INSTRUCTIONS 3-33
3.7.1 ADD ADD REGISTER OR MEMORY
TO ACCUMULATOR 3-34
3.7.2 ADC ADD REGISTER OR MEMORY
TO ACCUMULATOR WITH CARRY 3-35
3.7.3 SUB SUBTRACT REGISTER OR MEMORY
FROM ACCUMULATOR 3-36
3.7.4 SBB SUBTRACT REGISTER OR MEMORY)
FROM ACCUMULATOR WITH BORROW 3-38
3.7.5 ANA LOGICAL AND REGISTER
OR MEMORY WITH ACCUMULATOR 3-39
3.7.6 XRA LOGICAL EXCLUSIVE-OR
REGISTER OR MEMORY WITH
ACCUMULATOR (ZERO ACCUMULATOR) 3-40
3.7.7 ORA LOGICAL OR REGISTER OR
MEMORY WITH ACCUMULATOR 3-42
3.7.8 CMP COMPARE REGISTER OR MEMORY
WITH ACCUMULATOR 3-44
ii

SECTION

3.8

3.9

= TABLE OF CONTENTS -~ (Cont.)

Pag:e No.
ROTATE ACCUMULATOR INSTRUCTIONS 3-46
3.8.1 RLC ROTATE ACCUMULATOR LEFT 3-46
3.8.2 RRC ROTATE ACCUMULATOR RIGHT 3-47
3.8.3 RAL ROTATE ACCUMULATOR LEFT
THROUGH CARRY 3-48
3.8.4 RAR ROTATE ACCUMULATOR RIGHT
THROUGH CARRY 3-49
REGISTER PAIR INSTRUCTIONS 3-50
3.9.1 PUSH PUSH DATA ONTO STACK 3-50
3.9.2 POP POP DATA OFF STACK 3-52
3.9.3 DAD DOUBLE ADD 3-53
3.9.4 INX INCREMENT REGISTER PAIR 3-54
3.9.5 DCX DECREMENT REGISTER PAIR 3-55
3.9.6 XCHG EXCHANGE REGISTERS 3-56
3.9.7 XTHI. EXCHANGE STACK 3-57
3.9.8 SPHL LOAD SP FROM H AND L 3-58
IMMEDIATE INSTRUCTIONS 3-59
3.10.1 LXI LOAD REGISTER PAIR 3-61
IMMEDIATE
3.10.2 MVI MOVE IMMEDIATE DATA 3-62
3.10.3 ADI ADD IMMEDIATE TO 3-63
ACCUMULATOR
3.10.4 ACI ADD IMMEDIATE TO ACCUMULATOR 3-64
WITH CARRY
3.10.5 SUI SUBTRACT IMMEDIATE FROM 3-65
ACCUMULATOR
3.10.6 SBI SUBTRACT IMMEDIATE FROM 3-67
ACCUMULATOR WITH BORROW
3.10.7 ANI AND IMMEDIATE WITH 3-69
ACCUMULATOR
3.10.8 XRI EXCLUSIVE-OR IMMEDIATE 3-70
. WITH ACCUMULATOR
3.10.9 ORI OR IMMEDIATE WITH 3-71
ACCUMULATOR
3.10.10 CPI COMPARE IMMEDIATE WITH 3-72
ACCUMULATOR
DIRECT ADDRESSING INSTRUCTIONS 3-73
3.11.1 STA STORE ACCUMULATOR DIRECT 3-74
3.11.2 LDA LOAD ACCUMULATOR DIRECT 3-74
3.11.3 SHLD STORE H AND L DIRECT 3-75
3.11.4 LHLD LOAD H AND L DIRECT 3-76

iii

SECTION

3.12

3.14

== TABLE OF CONTENTS -~ (Cont.)

JUMP INSTRUCTIONS

3.12.1 PCHL LOAD PROGRAM COUNTER
3.12.2 JMP JUMP

3.12.3 Jc JUMP IF CARRY

3.12.4 JNC JUMP IF NO CARRY
3.12.5 JZ JUMP IF. ZERO

3.12.6 JNZ JUMP IF NOT ZERO
3.12.7 JM JUMP IF MINUS

3.12.8 JpP JUMP IF POSITIVE
3.12.9 JPE * JUMP IF PARITY EVEN
3.12.10 JPO JUMP IF PARITY ODD

CALL SUBROUTINE INSTRUCTIONS

3:13.1 CALL CALL

3.13.2 CC CALL IF CARRY

3.13.3 CNC CALL IF NO CARRY
3.13.4 CZ CALL IF ZERO

3.13.5 CNZ CALL IF NOT ZERO
3.13.6 CM CALL IF MINUS

3.13.7 CP CALL IF PLUS

3.13.8 CPE CALL IF PARITY EVEN
3.13.° CPO CALL IF PARITY ODD

RETURN FROM SUBROUTINE INSTRUCTIONS

3.14.1 RET RETURN

3.14.2 RN RETURN IF CARRY

3.14.3 RNC RETURN IF NO CARRY
3.14.4 RZ RETURN IF ZERO

3.14.5 RNZ RETURN IF NOT ZERO
3.14.6 RM RETURN IF MINUS

3.14.7 RP RETURN IF PLUS

3.14.8 RPE RETURN IF PARITY EVEN
3.14.9 RPO RETURN IF PARITY ODD

RST INSTRUCTION
INTERRUPT FLIP-FLOP INSTRUCTIONS

3.16.1 EI ENABLE INTERRUPTS
3.16.2 DI DISABLE INTERRUPTS

INPUT/OUTPUT INSTRUCTIONS

3.17.1 IN INPUT
3.17.2 OUT OUTPUT

Page No.

3-77

3-78
3-80
3-81
3-81
3-82
3-82
3-83
3-83
3-84
3-84

3-86

3-87
3-88
3-88
3-89
3-89
3-9¢
3-90
3-91
3-91

3-92

3-93
3-93
3-94
3-94
3-95
3-95
3-96
3-96
3-97

3-98
3-99

3-100
3-100

3-101

3-102
3-103

[e

ﬁ?

-~ TABLE OF CONTENTS =-- (Cont.)

; ¢ SECTION

s

3.18 HLT HALT INSTRUCTION
3.19 PSEUDO~INSTRUCTIONS

3.19.1 ORG ORIGIN

3.19.2 EQU EQUATE

3.19.3 SET

3.19.4 END END OF ASSEMBLY

3.19.5 IF AND ENDIF CONDITIONAL
ASSEMBLY

3.19.6 MACRO AND ENDM MACRO
DEFINITION

PROGRAMMING WITH MACROS

4.1 WHAT ARE MACROS?
4.2 MACRO TERMS AND USE
4.2.1 MACRO DEFINITION
4.2.2 MACRO REFERENCE OR CALL
4.2.3 MACRO EXPANSION
4.2.4 SCOPE OF LABELS AND NAMES
WITHIN MACROS
4.2.5 MACRO PARAMETER SUBSTITUTION

REASONS FOR USING MACROS
SEFUL MACROS

b
.
oW

4.1 LOAD INDIRECT MACRO
4.2 OTHER INDIRECT ADDRESSING MACROS
4.3 CREATE INDEXED ADDRESS MACRO

PROGRAMMING TECHNIQUES

5.1 BRANCH TABLES PSEUDO-SUBROUTINE
5.2 SUBROUTINES
5.2.1 TRANSFERRING DATA TO
SUBROUTINES
5.3 SOFTWARE MULTIPLY AND DIVIDE
5.4 MULTIBYTE ADDITION AND SUBTRACTION
5.5 DECIMAL ADDITION
5.6 DECIMAL SUBTRACTION
5.7 ALTERING MACRO EXPANSIONS

Page No.

3-104
3-105

3-106
3-107
3-108
3-109

3-110
3-111

4-13
4-13

4-13
4-15
4-15

T e <ot i ot B o

c

SECTION

= TARELE OF CONTLNTS -- (Cont.)

6.0 INTERRUPTS

6.1

APPENDIX A
APPENDIX B
APPENDIX C

APPENDIX D

3-1

WRITING INTERRUPT SUBROUTINES

INSTRUCTION SUMMARY

INSTRUCTION EXECUTION TIMES AND BIT PATTERNS B-1

ASCII TABLE
BINARY-DECIMAL~HEXADECIMAL CONVERSION
TABLES

LIST OF FIGURES

AUTOMATIC ADVANCE OF THE PROGRAM
COUNTER AS INSTRUCTIONS ARE EXECUTED

ASSEMBLER PROGRAM CONVERTS ASSEMBLY
LANGUAGE SOURCE PROGRAM TO HEXADECIMAL
OBJECT PROGRAM

vi

C~-1

D-1

T T g e e s e

-~ TERMS --

TERMS . DESCRIPTION

Address A 16-bit number assigned to a memory
lecation corresponding to its sequential
position.

Bit - The smallest unit of information which can

be represented. (A bit may be in one of
two states, represented by the binary digits
0 or 1).

Byte A group of 8 contiguous bits occupying a
single memory location.

The smallest single operation that the
computer can be directed to execute.

Instruction

A program which can be loaded directly into
the computer's memory and which requires |no
alteration before execution. BAn object
program is usually on paper tape, and is |pro
duced by assembling (or compiling) a source
program. Instructions are represented by

Object Program

Program

Source Program

System Program

User Program

Woxd

nnnnB

binary machine ‘code in an object program.

A seqguence of instructions which, taken as
a group, allow the computer to accomplish
a desired task.

A program which is readable by a programmer
but which must be transformed into object
program format before it can be loaded
into the computer and executed. Instruc-
tions in an assembly language source
program are represented by their assembly
language mnemonic.

A program written to help in the process
of creating user programs,

A program written by the user to make the
computer perform any desired task.

A group of 16 contiguous bits occupying two
successive memory locations. (2 bytes).

nnnn represents a number in binary format.

vii

R e R

TERMS

nnnnD nnnn represents a number in decimal format. ‘
nnnno nnnn represents a number in octal format.
nnnnQ nnnn represents a number in octal format.
nnnnH nnnn yepresents a number in hexadecimal
format.
A representation of a byte in memory. Bits
001 1 RP IO which are fixed as 0 or 1 are indicated by
0 or 1; bits which may be either 0 or 1 in

different circumstances are represented by
letters; thus RP represents a three-bit
field which contains one of the eight
possible combinations of zeroes and ones.

viii

RTINS L S, e S g . T

1.0 INTRODUCTION

ﬁ? This manual has been written to help the reader program
the INTEL 8080 microcomputer in assembly languvage. Accord-
ingly, this manual assumes that the reader has a good undexr-
standing of logic, but may be completely unfamiliar with
programming concepts.

For those readers who do understand programming concepts,
several features of the INTEL 8080 microcomputer are described
below. They include:

® 8-bit parallel CPU on a single chip

® 78 instructions, including extensive memory referencing,
flexible jump-on-condition capability, and binary
and decimal arithmetic modes

® Direct addressing for 65,536 bytes of memory

e Fully programmable stacks, allowing unlimited sub-
routine nesting and full interrupt handling capability

® Seven 8-bit registers

There are two ways in which programs for the 8080 may be
assembled; either via the resident assembler or the cross
assembler. The resident assembler is one of three system
programs available to the user which run on the 8080, the
others being an Editor and a System Monitor. The cross assembler
runs on any computer having a FORTRAN compiler whose word size
is 32 bits or greater, and generates programs which run on

the 8080.

The experienced programmer should note that the assembly
language has a macro capability which allows users to tailor
the assembly language to individual needs.

A R e 3

2.0 COMPUTER ORGANIZATION

This section provides the programmer with a functional overvie
of the 8080. Information is presented in this section at a
level that provides a programmer with necessary background
in order to write efficient programs.

To the programmer, the computer is represented as consisting
of the following parts:

(1) Seven working registers in which all data operations
occur, and which provide one means for addressing memory

(2) Memory, which may hold program instructions or data
and which must be addressed location by location in
in ordar to access stored information.

(3) The program counter, whose contents indicate the next
program instruction to be executed.

(4) The stack pointer, a register which enables various
portions of memory to be used as stacks. These in

turn facilitate execution of subroutines and handling
of interrupts as described later.

(5) Input/Output, which is the interface between a progfam
and the outside world.

2.1 WORKING REGISTERS

The 8080 provides the programmer with an 8-bit accumulator and
six additional 8-bit "scratchpad” registers.

These seven working registers are numbered and referenced via
integers 0,1,2,3,4,5, and 7; by convention, these registers mad
also be accessed via the letters B,C,D,E,H,L, and A (for the
accumulator), respectively.

some 8080 operations reference the working registers in pairs
referenced by the letters B,D,H and PSW. These correspondencd
are shown as follows:

INDIVIDUAL REGISTER REFERENCE

Register B i 0 1 Register C

. Register D___.| 2 3 f. Register E

Register H___.§ 4 5 .. Register L

Register A

the

0]

REGISTER PAIR REFERENCE

Register Pair B 0 1
Register Pair D 2 3
Register Pair H ———f 4 5

7

Register Pair PS?:::E@
special data byte

NOTE: When register pair PSW is specified, the first (most
significant) 8 bits referenced are a special byte reflecting

the current status of the machine, -as described in
Sections 3.9.1 and 3.9.2.

2.2 MEMORY

The 8080 can be used with read only memory, programmable read
only memory and read/write memory. A program can cause data
to be read from any type of memory, but can only cause data to
"be written into read/write memory.

The programmer visualizes memory as a sequence of bytes, each of
which may store 8 bits (represented by two hexadecimal digits).
Up to 65,536 bytes of memory may be present, and an individual
memory byte is addressed by its sequential number from 0 to
65,535D=FFFFH, the largest number which can be represented by

16 bits.

The bits stored in a memory byte may represent the encoded form
of an instruction or may be data, as described in Section 3.2.

2.3 PROGRAM COUNTER

The program counter is a 16 bit register which is accessible to
the programmer and whose contents indicate the address of the
next instruction to be executed as described in Section 2.6.

2.4 STACK POINTER

A stack is an area of memory set aside by the programmer in
which data or addresses are stored and retrieved by stack
operations. Stack operations are performed by several of

the 8080 instructions, and facilitate execution of subroutines
and handling of program interrupts. The programmer specifies
which addresses the stack operations will operate upon via

a special accessible 16-bit register called the stack pointer.

N T M0 L, 5 4 T 98 0 g e

o
1

2.5 INPUT/OUTPUT

Tc the 8080, the outside world consists of up to 256 input
devices and 255 output devices. Each device communicates
with the 8080 via data bytes sent to or received from the
accumulator, and each device is assigned a number from 0 to
255 which is not under control of the programmer. The instrudg
tions which perform these data transmissions are described
in Section 3.17.

2.6 COMPUTER PROGRAM REPRESENTATION IN MEMORY

A computer program consists of a sequence of instructions.

Bach instruction enables an elementary operation such as the
movement of a data byte, an arithmetic or logical operation
on a data byte, or a change in instruction execution sequence.
Instructions are described individually in Section 3.

A program will be stored in memory as a sequence of bits
which represent the instructions of the program, and which

we will represent via hexadecimal digits. The memory address
of the next instruction to be executed is held in the program

counter. Just before each instruction is executed, the program
ruc-!

counter is advanced to the address of the next sequential insy
tion. Program execution proceeds sequentially unless a transf
of~-control instruction (jump, call, or return) is executed, wh
causes the program counter to be set to a specified address.
Execution then continues sequentially from this new address in
menory .

Upon examining the contents of a memory byte, there is no way
telling whether the byte contains an encoded instruction or
data. For example, the hexadecimal code 1FH has been
selected to represent the instruction RAR (rotate the contentg
of the accumulator right through carry); thus, the value 1FH
stored in a memory byte could either represent the instruction
RAR, or it could represent the data value 1FH. It is up to th
logic of a program to insure that data is not misinterpreted a
an instruction code, but this is simply done as follows:

Every program has a starting memory address, which is the memg
address of the byte holding the first instruction to be execut
Before the first instruction is executed, the program counter
will automatically be advanced to address the next instruction
be executed, and this procedure will be repeated for every
instruction in the program. 8080 instructions may require 1,2
or 3 bytes to encode an instruction; in each case the program
counter is automatically advanced to the start of the next
instruction, as illustrated in Figure 2~4.

er-
ich

of

e
S

ry
ed.

to

’

i

A R 3o e

Memory Instruction Program Counter
Address Number Contents
0212 i 1 0213
0213 }) 0215
0214

0215 1 3 . 0216
0216) 0219
0217 y 4

0218

0219 5 021B
021Aa

021B ¢ 6 021C
021C) 021F
021D 7

021E

021F 8 0220
0220 9 0221
0221 10 0222

FIGURE 2-1. »
AUTOMATIC ADVANCE OF THE PROGRAM COUNTER
AS INSTRUCTIONS ARE EXECUTED

In order to avoid errors, the programmer must be sure that a

data byte dces not follow an instruction when another instruction
is expected. Referring to Figure 2-4, an instruction is expected
in byte 021FH, since instruction 8 is to be executed after
instruction 7. If byte 021FH held data, the program would not
execute correctly. Therefore, when writing a program, do not
store data in between adjacent instructions that are to be executed
consecutively.

NOTE: 1If a program stores data into a location, that location
should not normally appear among any program instructions.
This is because user programs are (normally) executed from
read-only memory, into which.data cannot be stored.

A cglass of instructions (referred to as transfer-of-control
instructions) cause program execution to branch to an instruction
that may be anywhere in memory. The memory address specified by
the transfer of control instruction must be the address of
another instruction; if it is the address of a memory byte holding
data, the program will not execute correctly. For example, re-
ferring to Figure 2-4, say instruction 4 specifies a jump to
memory byte 021FH, and say instructions 5,6 and 7 are replaced

by data; then following execution of instruction 4, the program
would execute correctly. But if, in error, instruction 4
specifies a jump to memory byte 021EH, an error would result,
since this byte now holds data. Even if instructions 5, 6 and 7
were not replaced by data, a jump to memory byte 021EH would
Cause an error, since this is not the first byte of the
instruction.

2~4

&

Upon reading Section 3, you will see that it i$s easy to avoid
writing an assembly language program with jump instructions that
have erroneous memory addresscs. Information on this subject
is given rather to help the programmer who is debugging progran
by entering hexadecimal codes directly into memory.

[+1]

2.7 MEMORY ADDRESSING

By now it will have become apparent that addressing specific
memory bytes constitutes an important part of any computer
program; there are a number of ways in which this can be done,
as described in the following subsections.

2.7.1 DIRECT ADDRESSING
With direct addressing, an instruction supplies an exact memory
address.

The instruction:
"Load the contents of memory address 1F2A into the
accunulator"
is an example of an instruction using direct addressing, 1F2A
being the direct address.

This would appear in memory as follows:

Memory Address Memory
any 3A
instruction
ny + 1ns
any 1 23 being executed
any + 2 1F

The instruction occupies three memory bytes, the second and

third of which hold the direct address.

i e 2 e e i S s

2.7.2 DREGISTER PAIR ADDRESSING

A memory address may be specified by the contents of a register
pair. For almost all 8080 instructions, the H and L registers
must be used. The H register contains the most significant 8
bits of the referenced address, and the L register contains the
least significant 8 bits. A one byte instruction which will
load the accumulator with the contents of memory byte 1F2a
would appear as follows:

Memoxry Registers
B
Instruction
being executed} - 7B C
D
E
1F H
2A L
A

In addition, there are two 8080 instructions which use either
the B and C registers or the D and E registers to address memory.
As above, the first register of the 'pair holds the most sig-
nificant 8 bits of the address, while the second register holds
the least significant 8 bits. These instructions, STAX and LDAX,
are described in Section 3.6.

2.7.3 STACK POINTER ADDRESSING

Memory locations may be addressed via the 16-bit stack pointer
register, as described below.

There are only two stack operations which may be performed;
putting data into a stack is called a push, while retrieving
data from a stack is called a pop.

NOTE: In order for stack push operations to operate, stacks
must be located in read/write menory.

STACK PUSH OPERATION:

16 bits of data are transferred to a memory area (called a stack)
from a register pair or the 16 bit program counter during any

stack push operation. The addresses of the memory area which |is
to be accessed during a stack push operation are determined by

using the stack pointer as follows:

(1) The most significant 8 bits of data are stored at
the memory address one less +than the contents of
the stack pointer.

(2) The least significant 8 bits of data are stored at
the memory address two less than the contents of
the stack pointer.

(3) The stack pointer ;s automatically decremented by ;
two. J

For example, suppose that the stack peinter contains the address
13A6H, register B contains 6AH, and register C contains 30H. Then)|
a stack push of register pair B would operatc as follows: ‘

I

; Before Push N ’ Memor& Address After Push

sP 30 13a3 FF | sp)
[13a6 | PF 1384 30 1das

B FF 13A5 6A B
E:‘E FF 1306 FF N

9]

p=dl|

Q

STACK POP OPERATION

16 bitz of data are transferred from a memory area (called a stack
to a register pair ox the 16-bit program counter during any sgtack
pop operation. The addrecses of the memoxry ar

:a which is to e
5?% accessed during a stack pop operation are determined by using the
’ stack pointer as follows:

(1) The second register of the pair, or the least
significant 8 bits of the program counter, are
loaded from the memory address held in the
stack pointer.

(2) The first register of the paix, or the most
significant 8 bits of the program counter, are
loaded from the memory address one greater
than the address held in the stack pointer.

(3) The stack pointer is automatically incremented
by two.

For example, suppose that the stack pointer contains the address
1508H, memory location 1508H contains 33H, and memory location
1509H contains O0BH. Then a stack pop into register pair H would
operate as follows:

- Before Pop X Memor§ Address p After Pop
SP FF 1507 F? SP
1508 33 1508 33
H 0B 1509 0B H
F 7 FF lS?A e

The programmer loads the stack pointer with any desired value

by using the LXI instruction described in Section 3.10.1. The
programmer must initialize the stack pointer before performing
a stack operation, or erroneous results will occur.

2.7.4 IMMEDIATE ADDRESSING
An immediate instruction is one that contains data. The
following is an example of immediate addressing:

"Load the accumulator with the value 2AH".

The above instruction would be coded in memory as follows:

I O 1 g ot

Memory

3E e Load accumulator immediate

2A cagem——---~Value to be loaded into accumulator

Imrediate instructions do not reference memory; rather they
contain data in the memory byte following the instruction code
byte.

2.7.5 SUBROUTINES AND USE OF THE STACK FOR ADDRESSING

Before understanding the purpose or effectiveness of the stack,
it is necessary to understand the concept of a subroutine.

Consider a frequently used operation such as multiplication. T}
8080 provides instructions to add one byte of data to another
byte of data, but what if you wish to multiply these numbers?
This will require a number of instructions to be executed in
sequence. It is quite possible that this routine may be requirg
many times within one program; to repeat the identical code
every time it is needed is possible, but very wasteful of
mELOrY :

—

l
] Program
|

Routine
| Program
!

Routine
|
| Program
i
_Routine
[

etc

e

pd

A more efficient means of accessing the routine would be to
store it once, and find a way of accessing it when needed:

e
Program I

[

D w\\%_’___.

Program I » Routine

|
Program l

i

!

A frequently accessed routine such as the above is called a

subroutine, and the 8080 provides instructions that call and
return from subroutines.

When a subroutine is executed, the sequence of events may bhe
depicted as follows:

Main Program

Call instruction

~~\§~§"?"*Subroutine
Next%instructiona@””’/’

The arrows indicate the execution sequence.

When the "Call" instruction is executed, the address of the "next
instruction (that is, the address held in the program counter),
is pushed onto the stack (see Section 2.4), and the subroutine
is executed. The last executed instruction of a subroutine will
usually be a "Return Instruction”, which pops an address off

the stack into the program counter, and thus causes program

execution to continue at the "Next" instruction as illustrated
below:

PRI e e, Tt

il

Memory

Address Instruction
0C02
0Cco3 CALL SUBROUTINE Push ad&resa
0co4 02 of next|inst]
0co5 or tion (0G06H)
0C06 NEXT INSTRUCTION._, onto the stad
and branch
: to subroutini
0F00 starting at
OFol OF02H |
0F02 FIRST SUBROUTINE INSTRUCTION
0F03
— Body of subroutiae
P Pop return :
— address (QCO6H
off stack|and
OF4E return to | next
E4F RETURN instruction

Subroutines may be nested up to any depth limited only
&? by the amount of memory available for the stack. For example,
i the first subroutine could itself call some other subroutine
and so on. An examination of the sequence of stack pushes
LJ‘ and pops will show that the return path will always be identicpl
to the call path, even if the same subroutine is called at mor
than one level.

[¢)

2.8 CONDITION BITS

Five condition (or status) bits are provided by the 8080 to
reflect the results of data operations. All but cne of these
bits (the auxiliary carry bit) may be tested by program instrug-
tions which affect subsequent program execution. The descriptions !
of individual instructions in Section 3 specify which condition
bits are affected by the execution of the instruction, and
whether the execution of the instruction is dependent in any
way on prior status of condition bits.

In the following discussion of condition bits, "setting” a bit
causes its value to be 1, while "resetting" a bit causes its
value to be 0.

Ty

NOTE:

2.8.1 CARRY BIT

The carry bit is set and reset by certain data operations, and its
status can be directly tested by a program. The operations
which affect the carry bit are addition, subtraction, rotate, and
logical operations. For example, addition of two one-byte numbers
can produce an answer that does not fit in one byte:

Bit No, 76543210

BE= 10101110
+74= 01110100
122001006010

é‘overflow=l, sets carry=1
An addition operation that results in an overflow out of the high-
order bit will set the carry bit; an addition operation that could
have resulted in an overflow but did not will reset the carry bit.

Addition, subtraction, rotate, and logical operations follow
different rules for setting and resetting the carry bit.
See Section 3.2.1 and the individual instruction descriptions
in Chapter 3 for details. The 8080 instructions which
use the addition operation are ADD, ADC, ADI, ACI, and DAD.
The instructions which use the subtraction operation are

SuB, SBB, SUI, SBI, CMP, and CPI. Rotate operations are
RAL, RAR, RLC, and RRC. Logical operations are ANA, ORA,
XRA, ANI, ORI, and XRI. ’

2.8.2 AUXILIARY CARRY BIT

The auxiliary carry bit indicates overflow out of bit 3 in the
same way that the carry bit indicates overflow out of bit 7.
The state of the auxiliary carry bit cannot be directly tesced
by a program instruction and is present only to enable one
instrdction (DAA, described in Section 3.4.4) to perform its
function. The following addition will reset the carry bit

and set the auxiliary carry bit:

Bit No. 76543210
2E = 00101110
+74 = 01110100
T0T00010

A2

ngarryzoh-mw~Auxiliary Carry = 1

The auxiliary carry bit will be affected by all addition,
subtraction, increment, decrement, and compare instructions.

2.8.3 SIGW BIT

As described in Section 3.2.1, it is possible to treat a
byte of data as having the numerical range -128 to +127 0
In this case, by convention, the 7 bit will alwdys represént
the sign of the number; that is, if the 7 bit is 1, the
number is in the range ~1281 to -1. If bit 7 is 0, the

9

nuuber is in the range 0 to w12710.
At the conclusion of certain instructions (as specified in
the instruction description sections of Section 3), the sign

bit will be set to the condition of the most significant bit
of the answer (bit 7).

2.8.4 ZERO BIT

This condition bit is set if the result generated by the execution
of certain instructions is zero. The zero bit is reset if the
result is not zero.

A result that has a carry but a zero answer byte, as illustrated
below, will also set the zero bit:

O Bit No. 76543210

1 1
+ 0 1

~=o
Cio =
O O

{f

O O
QIO =
fed{ell ol

4

Carry out///», Zero answer

of bit 7.
Zero bit set to 1.

2.8.5 PARITY BIT

Byte "parity" is checked after certain operations. The number
of 1 bits in a byte are counted, and if the total is odd, "odd"
parity is flagged; if the total is even, "even" parity is flagged.

The parity bit is set to 1 for even parity, and is reset to 0
for odd parity.

3.0 THE 8080 INSTRUCTION SET

This section describss the 8080 assembly language instruction
set.

For the reader who understands assembly language programming,
Appendix A provides a complete summary of the 8080
instructions.

For the reader who is not completely familiar with assembly
language, Section 3 describes individual instructions with
examples and machine code equivalents.

3.1 ASSEMBLY LANGUAGE

3.1.1 HOW ASSEMBLY LANGUAGE IS USED

Upon examining the contents of computer memory, a program would
appear as a sequence of hexadecimal digits, which are interpreted
by the CPU as instruction codes, addresses, or data. It is
possible to write a program as a sequence of digits (just as
they appear in memory), but that is slow and expensive. For
example, many instructions reference memory to address either a
data byte or another instruction:

Hexadecimal
Memory Address
1432 TE
1433 C3
1434 C4
1435 14
1436
14C3 FF
14cC4 2E
14C5 36
14ce |77

Assuming that registers H and L contain 14H and C3H respectively,
the program operates as follows:

Byte 1432 specifies that the accumulator is to be loaded with the
contents of. byte 14C3.

Bytes 1433 through 1435 specify that execution is to continue
with the instruction starting at byte 14C4.

3-1

Bytes 14C4 and 14C5 specify that the L register is to be loaded
with the number 36H.

Byte 14C6 specifies that the contents of the accumulator are to
be stored in byte 1436.

Now suppose that an error discovered in the program logic

necessitates placing an extra instruction after byte 1432. Program

code would have to change as follows:

Hexadecimal
Memcry Address 0ld Code New_Code

1432 1E_ I i?E
1433 ¢3 New_Instruction
1434 C4 c3
1435 14 Cc5
1436 . 14
1437 . .

14C3 FF .

14cC4 28 FF
14C5 36 2E
14Cé6 77 37
14C7 77

Most instructions have been moved and as a result many must be
changed tc reflect the new memory addresses of instructions or
data. The potential for making mistakes is very high and is
aggravated by the complete unreadability of the program.

Writing programs in assembly language is the first and most sigr
nificant step towards economical programming; it provides a
readable notation for instructions, and separates the programmer
from a need to know or specify absolute memory addresses.

Assembly language programs are written as a sequence of instrucH
tions which are converted to executable hexadecimal code by a
special program called ap ASSEMBLER. Use of the 8080
assembler is described in the 8080 Operator's Manual.

E

Assembly language
program written by ASSEMBLER . Executable machline
programmer PROGRAM code
SOURCE PROGRAM OBJECT PROGRAM
FIGURE 3-1

ASSEMBLER PROGRAM CONVERTS ASSEMBLY LANGUAGE
SOURCE PROGRAM TO OBJECT PROGRAM

As illustrated in Figure 3-1, the assembly language progran
generated by a programmer is called a SOURCE PROGRAM. The
assembler converts the SOURCE PROGRAM into an egquivalent
OBJECT PROGRAM, which consists of a sequence of binary
codes that can be loaded into memory and executed.

For example:

One Possible Version
Source Prograum of the Object Program
NOW: MoV ?,? . 7 78
I v I I E
LER: MOV M,A 77

NOTE: 1In this and subsequent examples, it is not necessary
to understand the operations of the individual
instructions. They are presented only to illustrate
typical assembly language statements. Individual
instructions are described in Sections 3.3-3.18.

Now if a new instruction must be added, only one change is
required. Even the reader who is not yet familiar with
assembly language will see how simple the addition is:

R,

NOW: MOV A,B
(New instruction inserted here)

Cpx ¢!
J7 LER
LER MOV M,A

The assembler takes care of the fact that a new instruction will
shift the rest of the program in memory.

3.1.2 STATEMENT MNEMONICS

Assembly language instructions must adhere to a fixed set of
rules as described in this section. An instruction has four
separate and distinct parts or FIELDS.

Field 1 is the LABEL field. It is the instruction's label or
name, and it is used to reference the instruction.

Field 2 is the CODE field. It defines the operation that is
to be performed by the instruction.

Field 3 is the OPERAND field. It provides any address or data
information needed by the CODE field.

Field 4 is the COMMENT field. It is present for the programmer's
convenience and is ignored by the assembler. The programmer

uses comment fields to describe the operation and thus make the
pProgram more readable.

The assembler uses free fields; that is, any number of blanks
may separate fields.

Before describing each field in detail, here are some general
examples:

Label Code Operand
HERE: MVI c,o ; Load the C register with zero
THERE : DB 32H + Create a one-byte data

; constant

LOOP: ADD E ; Add contents of E register
. to the accumulator
RLC ;7 Rotate the accumulator left

34

NOTE: These examples and the ones which follow are intended to
illustrate how the various fields appear in complete
assembly language statements. It is not necessary at thi
point to understand the operations which the statements
perform.

3.1.3 LABEL FIELD

This is an optional field, which, if present, may be from 1 to
5 characters long. The first character of the label must be
a letter of the alphabet or one of the special characters @ (at

sign) or ? (question mark). A colon (:) must follow the last
character. (The operation codes, pseudo-instruction names, and
register names are specially defined within the assembler and
may not be used as labels. Operation codes are given in Section
3.2 - 3.18 and Appendix A; pseudo-instructions are described in
Section 3.19).
Here are some examples of valid label fields:
LABEL:
Fl4F:
@HERE:
?ZERO:
Here are some invalid label fields:
123: begins with a decimal dj
LABEL is not followed by a co
ADD: is an operation code
END: is a pseudo-instruction

The following label has more than five characters; only the
first five will be recognized:

INSTRUCTION: will be read as INSTR:

Since labels serve as instruction addresses, they cannot be
duplicated. For example, the sequence:

ur

2]

1gi

L.on

BERE: JMP THERE
THERE: MOV c,D

THERE: CALL SUB

is ambiguous; the assembler cannot determine which address is
to be referenced by the JMP instruction.

Cne instruction may have more than one label, however. The
following sequence is valid:

LOOP1: ; First label
LOOP2: MOV Cc,D ; Second label
amp LooP1
Jmp L0OP2

Each JMP instruction will cause program control to be transferred
to the same MOV instruction.

3.1.4 CODE FIELD

This field contains a code which identifies the machine operation
(add, subtract, jump, etc.) to be performed: hence the term
operation code or op code. The instructions described in
Sections 3.2 - 3.18 are each identified by a mnemonic label

which must appear in the code field. For example, since the "jump"
instruction is identified by the letters "JMP", these letters
must appear in the code field to identify the instruction as
"Jump".

There must be at least one space following the code field. Thus,
HERE: JMP THERE

is legal, but:
HERE JMPTHERE

is illegal.

3.1.5 OPERAND FIELD

This field contains information used in conjunction with the code
field to define precisely the operation to be performed by the

instruction. Depending upon the code field, the operand field

may be absent or may consist of one item or two items separated
by a comma.

There are four types of information {[(a) through (d) below] that
may be regquested as items of an operand field, and the information
may be specified in nine ways [(l) through (9) below], as
summarized in the following table, and described in detail in
the subsequent examples.

OPERAND FIELD INFORMATION

Information required Ways of specifying
(a) Register (1) Hexadecimal Data
(b) Register Pair (2) Decimal Data

(c) Immediate Data (3) Octal Data

(d) 16 bit Memory Address (4) Binary Data

(5) Program Counter ($)
(6) ASCII Constant

} (7) Labels assigned values
(8) Labels of instructions
(8) Expressions

The nine ways of specifying information are as follows:

(1) Hexadecimal data. Each hexadecimal number must be followed
by a letter 'H' and must begin with a numeric digit

(0-9),
Example:
Label Code Operand Comment
HERE : B MVI C,0BAH ; Load register C with the

; hexadecimal number BA

g

{(2) Decimal data. Each decimal number may optionally be
followed by the letter 'D', or may stand alone.

Example:

Label Code Operand Comment
ABC: MVI E,105 ; Load register E with 105

(3) Octal data. Each octal number must be followed by one of
the letters 'O' or 'Q'.

Example:
Label Code Operand Comment
LABEL: MVI A,720 ; Load the accumulator with

; the octal number 72

(4) Binary data. Each binary number must be followed by the
letter 'B’'.

Example:
Label Code Operand Comment
NOW: MVI 10B, 11110110B ; Load register two (the
; D register) with OF6H
JUMP : JMP 00101110111110108 ; Jump to memory address
B ; 2EFA

(5) The current program counter. This is specified as the
character '$' and is equal to the address of the current

instruction.

Example:
Label Code Operand
GO: JMP $ + 6

The instruction above causes program control to be
transferred to the address 6 bytes beyond where the
19 JMP instruction is loaded.
A

(6) An ASCII constant. This is one or more ASCII characters
enclosed in single quotes. Two successive single quotes
must be used to represent one single quote within an ASCII
constant. Appendix D contains a list of legal ASCII
characters and their hexadecimal representations.

Example:
Label Code Operand Comment
CHAR: MVI E,'*! Load the E register with

‘
; eight-bit ASCII represen-—
; tation of an asterisk

(7) Labels that have been assigned a numeric value by the
assembler. The following assignments are built into the
assembler and are therefore always active:

B assigned to 0 representing register B
C " " l " " C
D "w " 2 " e ” D
E " Ll 3 " " E
t} H ”n " 4 L " H
L " w” 5 "w ” L
M " "6 " a memory reference
A " "7 " register A
Example:
Suppose VALUE has been equated to the hexadecimal
number 9FH. Then the following instructions all
load the D register with 9FH:
Label Code Operand
Al: MVI D, VALUE
A2: MVI 2, 9FH
A3: MVI 2, VALUE

(8) Labels that appear in the label field of another instructfion.

e e e et o e o RS e S O O30 R R AT S8 i T vt sreh e e o

Example

.

Label Code Operand Comment.

HERE : JMP THERE ; Junp to instruction at
; THERE

THERE : MVI D,9FH

(9)

OR, XOR,

and right parentheses.

" All operators treat their arguments as 16~bit quantities, and
generate 1l6-bit quantities as their result.

The operator
The operator
when used as
operand when

The operator

The operator

operands, discarding any remainder.

The operator
dividing the

The operator

The operator
operands.

The operator
operands.

Arithmetic and logical expressions involving data types (1)
to (8) above connected by the arithmetic operators (+)

(addition), -
/ (division), MOD (modulo),

(unary minus and subtraction), * (multiplication
the logical operators NOT, AND,
(shift right), SHL (shift left), and left

~
~

SHR

+ produces the arithmetic sum of its operands.

- produces the arithmetic difference of its operands
subtraction, or the arithmetic negative of its

used as unary minus.

* produces the arithmetic product of its operands.

/ produces the arithmetic integer quotient of its
MOD produces the integer remainder obtained by

first operand by the second.

NOT complements each bit of its operand.

AND produces the bit-by-bit logical AND of its

OR produces the bit-by-bit logical OR of its

The operator XOR produces the bit-by-bit logical EXCLUSIVE-OR
of its operands.

The SHR and SHL operators are linear shifts which shift their
first operands right or left, respectively, by the number of bit
positions specified by their second operands. Zeroes are
shifted into the high-order or low-order bits, respectively,

of their first operands.,

N T S B

e

ey

The programmer must insure that the result generated by any
operation fits the requirements of the operation being coded.
For example, the second operand of an MVI instruction must be
an 8-bit value.

Therefore the instruction:
MVI, H,NOT O

is invalid, since NOT 0 produces the 16-bit hexadecimal number
FFFF. However, the instruction:

MVI, H,NOT 0 AND OFFH
is valid, since the most significant 8 bits of the result are
insured to be 0, and the result can therefore be represented
in 8 bits.
NOTE: An instruction in parentheses is a legal expression of

an optional field. 1Its value is the encoding of the
instruction.

Examples:

HERE : MVI C, HERE SHR 8 2E1A

Label Code Operand Arbitrary Memory Addrest

The above instruction loads the hexadecimal number 2EH (16-bit
address of HERE shifted right 8 bits) into the C register.

Label Code Operand
NEXT: MVI ' D, 34+40H/2

The above instruction will load the value 34+ (64/2)=34+32=66
into the D register.

Label Code Operand
INS: bB (ADD C)

The above instruction defines a byte of value 81H (the encodin
of an ADD C instruction) at location INS.

Operators cause expressions to be evaluated in the following
order:

1. Parenthesized expressions
2. *,/m, MOD, SHL, SHR

3. +, - (unary and binary)
4. NOT
5. AND

6. OR XOR

In the case of parenthesized expressions, the most deeply paren-
thesized expressions are evaluated first:

Example:

The instruction:

MVI D, (34+40H) /2
will load the value

(34+64) /2=49 into the D register.
The operators MOD, SHL, SHR, NOT, AND, OR, and XOR must be
separated from their operands by at least one blank. Thus
the instruction:

MVI C,VALUE ANDOFH
is invalid.

Using some or all of the above nine data specifications, the
following four types of information may be requested:

(a) A register (or code indicating memory reference) to serve a
the source or destination in a data operation--methods
1,2,3,4,7, or 9 may be used to specify the register or
memory reference, but the specifications must finally

evaluate to one of the numbers 0 - 7 as follows:
Value Register
0 B
1 C
2 D
3 E
4 H
5 L
6 Memory Reference
7 A (accumulator)

4

Example:

_9 Label Code _ Operand
INS1: MVI REG4, 2EH
INS2: MVI 4H, 2EH
INS3: MVI 8/2, 2EH

Assuming REG4 has been equated te 4, all the above instructions
will load the value 2EH into register 4 (the H register).

(b) A register pair to serve as the source or destination in a
data operation. Register pairs are specified as follows:

Specification Register Pair

B Registers B and C
D Registers D and E
H Registers H and L
PSW One byte indicating the state of the
condition bits, and Register A (see
Sections 4.9.1 and 4.9.2)
SP The 16-bit stack pointer register
J
NOTE: The binary value representing each register pair varies
from instruction to instruction. Therefore, the programmer
should always specify a register pair by its alphabetic
designation.
Example:
Label Code Opexrand Comment
PUSH D ; Push registers D and E
; onto stack
INX Sp ; Increment 16-bit number
; in the stack pointer

(¢) Immediate data, to be used directly as a data item.

e

Example:
Label Code Operand Comment
; HERE : MVI H, DATA ; Load the H register with
ﬁ ;7 the value of DATA

(€8]
H
ot
a

Here are some examples of the form DATA could take:

ADDR AND OFFH (where ADDR is a 16-bit address)
127

gt

VALUE (where VALUE has been equated to a number)
3EH=10/(2 AND 2)

(d) A 16-bit address, oxr the label of another instruction in

memory.
Example:
Label Code Operand Comment _
HERE : JMpP THERE Jump to the instruction

;
; at THERE
H

JMP 2EADH Jump to address 2EAD

3.1.6 COMMENT FIELD

The only rule governing this field is that it must begin with a
semicolon (;).
HERE: MVI C, OADH ; This is a comment.

A comment field may appear alone on a line:

Begin loop here

~e o e

3.2 DATA STATEMENTS

This section describes ways in which data can be specified in
and interpreted by a program. Any 8-bit byte contains one of
the 256 possible combinations of zeros and ones. Any particulany
combination may be interpreted in various ways. For instance,
the code 1FH may be interpreted as a machine instruction (Rotatg
Accunmulator Right Through Carry), as a hexadecimal value
1FH=31D, or merely as the bit pattern 000011111l.

Arithmetic instructions assume that the data bytes upon which
they operate are in a special format called "two's complement";
and the operations performed on these bytes are called "two's
complement arithmetic".

WHY TWO'S COMPLEMENT?

Using two's complement notation for binary numbers, any subtraction

operation becomes a sequence of bit complementations and
additions. Therefore, fewer circuits need be built to perform
subtraction.

3.2.1 TWO'S COMPLEMENT REPRESENTATION

When a byte is interpreted as a signed two's complement number,
the low-order 7 bits supply the magnitude of the number, while
the high-order bit is interpreted as the sign of the number (0
for positive numbers, 1 for negative).

The range of positive numbers that can be represented in signed
two's complement notation is, therefore, from 0 to 127:

0 = 00000000B=0H

1 = 00000001B=1H
126D = 01111110B=7EH
127D = 01111111B=7FH

To change the sign of a number represented'in two's complement,
the following rules are applied:

(a) Complement each bit of the number (producing the so-called

one's complement.

(b) Add one to the result, ignoring any carry out of the
high-order bit position.

Produce the two's complement representation of -10D.

cxample: ;
”” Following the rules above:

+10D = 00001010B

Complement each
bit : 11110101B
Add one : 111101108

Therefore, the two's complement representation of -10D is F6H.
(Note that the sign bit is set, indicating a negative number).

Example: What is the value of 86H interpreted as a signed two's
complement number? The high~order bit is set, in-
dicating that this is a neuative number. To obtain
its value, again complement each bit and add one.

86H = 1 0 00 0110B
Complement each bit: 01 1 11 001B
Add one : 011110108
Thus, the value of 86H is -7AH = -122D

The range of negative numbers that can be represented in signed
two's complement notation is from -1 to -128.

~=1=11111111B-=FFH
-2=111111108B-=FEH
~127D =1 000000 1B = 81H
-128D =1 0000000B = 80H

To perform the subtraction 1AH-0CH, the following operations
are performed:

Take the two's complement of 0CH=F4H

Add the result to the minuend:

lJAH=00011010
+(-0CH) = F4aH=11110100
00001110 = OEH the correct answer

wWhen a byte is interpreted as an unsigned two's complement
nunber, its value is considered positive and in the range
0 to 25510:

3-16

0=00000000B = OH

1-=00000001B=1H
127D = 01 111111B=7FH
128D = 1 000000 0B = 80H
255D = 1111 1111B=FFH

Two's complement arithmetic is still valid. When performing an
addition operation, the carry bit is set when the result is

greater than 255D. When performing subtraction, the carry bit
is reset when the result is positive. If the carry bit is set,
the result is negative and present in its two's complement form,

Example: Subtract 98D from 197D using unsigned two's complement
arithmetic.

197D = 1100 01 01 = C5H
-98D =1 0011110 = 9EH
overflow ~=1] 01T 10001 1=63H=99D

Since the overflow out of bit 7 = 1, indicating that the answer
is correct and positive, the subtract operation will reset the
carry bit to 0.

Example: Subtract 15D from 12D using unsigned two's complement

arithmetic.
12D = 0 0 001100 = O0CH
-15D = 1 111000 1=0F1lH
overflow————————0] T L 1 1 1 1 0 1 = -3D
Since the overflow out of bit 7 = 0, indicating that the answer

is negative and in its two's complement form, the subtract
operation will set the carry bit. (This also indicates that a

"horrow" occurred while subtracting multibyte numbers. See Section

5.3).

NOTE: The 8080 instructions which perform the subtraction
operation are SUB, SUI, SBB, SBI, CMP, and CMI. Although
the same result will be obtained by addition of a
complemented number or subtraction of an uncomplemented
number, the resulting carry bit will be different.

Example: If the result -3 is produced by performing an "ADD"
operation on the numbers +12D and -15D, the carry bit
will be reset; if the same result is produced by per-

forming a "SUB" operation on the numbers +12D and +15D,

‘the carry bit will be set. Both operations indicate
that the result is negative, che programmer must be
aware which operations set i resct the carxy bit.

*ADD"™ +12D and -15D
+12D = 00001100
+(-15D)= 1111000 1
00 1111110171 =~3D

\‘causes carry to be reset

3.2.2 DB DEFINE BYTE(S) OF DATA
Format
Label Code
oplab: DB

"list" is a list of either:

1)

“SUB" +15D from +12D

+12D
- (+15D

00
11
11

i o
= o
o -
O
cloo
= o

//557!

Operand

list

Arithmetic and logical expressions involving any of

the arithmetic and logical operators, which evaluate
to eight-bit data quantities

2)

Description: The eight bit-value
eight-bit ASCII representation of
the next available byte of memory

Strings of ASCII characters enclosed in quotes

of each expression, or the

each character is stored in
starting with the byte

addressed by “oplab". (The most significant bit of each ASCII

character is always =0).

Example:

Instruction Assembled Data (hex)
HERE: DB 0A3H A3
WORD1: DB 5*2, 2FH~0AH 0A25
WORD2: DB 5ABCH SHR 8 5A
STR: DB 'STRINGSpl' 535452494E472031
MINUS: DB -03H FD

NOTE:

In the first example above,

the hexadecimal value A3

must be written as 0A3 since hexadecimal numbers must

start with a decimal digit.

3-18

R g .

(See Section 3.1.5.)

causes carry to be

T

3.2.3 DW DEFINE WORD (TWO BYTES) OF DATA

e

Format:

“1igt" is a list of expressions which evaluate to 16 bit data

Label

oplab: DW

quantities.

Description:
are stored in the lower address memory byte (oplab).,
nificant 8 bits are stored in the next higher addressed byt
This reverse order of the high
is normally the case when storing addresses
statement is usually used to create address
transfer-of-control instructions; thus LIST
one or more statement labels appearing elsewhere in the progra

sig

(oplab +1).

Examples:

Assume COMP address memory location 3BICH and FILL addresses

memory location 3EB4H.

Code

Operand

The least significant 8 bits of the expression
and the most

and low address byte
in memory. This

constants for the
is usually a list |of

Instruction

ADD1: DW
ADD2: DW
ADD3: DW

COMP
FILL
3C01H, 3CAEH

Assembled Data (hex)

1C3B
B43E
013CAE3C

Note that in each case, the data are stored with the least si

nificant 8 bits first.

st

3.2.4 DS DEFINE STORAGE (BYTES)

Label Code operand
oplab: DS exp
"exp" is a single arithmetic or logical expression.

Description: The value of EXP specifies the number of memory
bytes to be reserved for data storage. No data values are
assembled into these bytes: in particular the programmer should
not assume that they will be zero, or any other value. The

next instruction will be assembled at memory location oplab+EXP
(oplab+10 or oplab+l6 in the example below) .

Examples:

HERE : DS 10 ; Reserve the next 10 bytes
DS 10H ; Reserve the next 16 bytes

This section describes the

upon the carry bit. Instructions

as follows:

3.3 CARRY BIT INSTRUCTIONS

instructions which operate directly
in this class occupy one byte

00 1 1is
| .

The general assembly language format is:

Label Code
LABEL: op

Operand

0. for STC
1 for CMC

T i . _—not used
STC or CMC

2
,1_____*_______Optional instruction label

3.3.1 STC SET CARRY

Format:
Label Code
oplab: STC
1

00
Bl

1101
!

Description:

Condition bits affected:

Carry

The carry bit is set to one.

Ogerand

3,3.2 CMC COMPLEMENT CARRY

U

Format:

Label Code Operand
oplab: CcMC ———
0011
g 01 [lelflll

Description: If the carry bit = 0, it is set to 1.
bit = 1, it is reset to 0.

Condition bits affected: Carry

3.4 SINGLE REGISTER INSTRUCTIONS

If the carry

This section describes instructions which operate on a single
register or memory location. If a memory reference is specified,
the memory byte addressed by the H and L registers is operated
upon. The H register holds the most significant 8 bits of the
address while the I, register holds the least significant 8 bits

of the address.

322

3.4.1 INR INCREMENT REGISTER OR MEMORY

Format:
Label Code Operand
oplab: INR reg

\\‘B,C,D,E,H,L,M,or a

for register
001 for register
010 for register
011 for register
100 for register
101 for register
110 for memory reference
111 for register A

HEmEOOW

Description: The specified register or memory byte is incremente
by one.

Condition bits affected: Zero, sign, parity, auxiliary carry
Example:
If register C contains 99H, the instruction:

INR C

will cause register C to contain 9AH.

Format:

Dascription:
by one.

g«ﬁﬁﬁlg‘

DCR M
regist

H

L, Label

oplab:

“rndition bits affected:

If the H register contain
and memory location 3A7CH

Code

:,4,2 DCR DECREMENT REGISTER OR MEMORY

DCZ’_J

The specified register or memory byte is decremented

Operand

reg

‘\B,C,D,E,

000 for

DCR M

references
ers

and L

will cause memory location 3A7CH to contain 3FH.

Memory before

SN
B 40
indicating
memory location 3A7C
3-24

001 for
010 for
01l for
100 for
101 for
110 for
111 for

Zero, sign, parity, auxiliary carry

s 3AH, the L'register contains 7CH,
contains 40H, the instruction:

Memory

DCR M

To illustrate:

H,L,M, or A

register
register
register
register
register
register
memory reference
register A

FoHoow

after

3F

R Q,/”

3.4.3 CMA COMPLEMENT ACCUMULATOR

)

Format:
Label Code Operand
oplab: CMA ——
00101111
I T

Description: Each bit of the contents of the accumulator is
complemented (producing the one's complement) .

Condition bits affected: None
Example:

If the accumulator contains 51H, the instruction CMA will cause
the accumulator to contain OAEH.

Accumulator =01010001-=251lH
kY Accumulator =10101110=AEH

%

C

3.4.4 DAL DECIMAL ADJUST ACCUMULATOR

Format:
Label Code Operand
oplab: DAA ———

60100111
| A 2 I B e)

Description: The eight-bit hexadecimal number in the accumulator
is adjusted to form two four-bit binary-coded-decimal digits by

the following two step process:

(1) If the least significant four bits of the accumulator
represent a number greater than 9, or if the auxiliary
carry bit is equal to one, the accumulator is
incremented by six. Otherwise, no incrementing occurs.

(2) If the most significant four bits of the accumulator
now represent a number greater than 9, or if the
normal carry bit is equal to one, the most significant
four bits of the accumulator are incremented by six.
Otherwise, no incrementing occurs.

If a carry out of the least significant four bits occurs during
Step (1), the auxiliary carry bit is set; otherwise it is un-
affected. Likewise, if a carry out of the most significant
four bits occurs during Step (2), the normal carry bit is set;
otherwise, it is unaffected:

NOTE: This instruction is used when adding decimal numbers. It
is the only instruction whose operation is affected by

the auxiliary carry bit.

Condition bits affected: Zero, sign, parity, carry, auxiliary
carry

; gggmgle:
)

Suppose the accumulator contains 9BH, and both carry bits = 0.
The DAA instruction will operate as follows:

(1) Since bits 0-3 are greater than 9, add 6 to the accumulatar.
This addition will generate a carry out of the lower four
bits, setting the auxiliary carry bit.

Bit No: 765432110
Accumulator=1 0 0 1 1 0 1 1 = 9BH
+6 = 0110

10100001 =3alH

\:‘Auxiliary Carry = 1

(2) Since bits 4-7 now are greater than 9, add 6 to these bitsg.
This addition will generate a carry out of the upper four
bits, setting the carry bit.

Bit No: 76543210

Accumulator=1 0 1 0 0 0 0 1 = AlH
+6=0 1 1 0
3 1] 0000

\§Carry = 1

0001

Thus, the accumulator will now contain 1, and both carry bits
will be = 1.

For an example of decimal addition using the DAA instruction,
see Section 5.5.

3.5 NOP INSTRUCTIONS

The NOP instruction occupies one byte.

Format:
Label Code Operand
oplab NOP —_—

0
22000009

Description: No operation occurs. Execution proceeds with the
next sequential instruction. i

Condition bits affected: None

3.6 DATA TRANSIFER INSTRUCTIONS

This section describes dinstructions which transfer data betwee

registers or between memory and registers.

Instructions in this class occupy one byte as follows:

(a) For the MOV instruction:

0 1Lps 7ls x
3 2 o 0

I et S

000

001
010
011
100
101
110
111

for
for
for
for
for
for
for
for

NOTE: DST and SRC cannot both = 110B

(b) For the remaining instructions:

G0 0 0 0
8t

1
!

0
I

[ty

0 for register pair Bj V\\\\\\\\O for STAX

1 for LDAX

1 for register pair D

When a memory reference is specified in the MOV instruction,
the addressed location is specified by the H and L registers.

=1

register
register
register
register
register
register
memory referernce
register A

HomEHoOOw

The L register holds the least significant 8 bits of the address;

the H register holds the most significant 8 bits.

R e gy e wesa v,

The general assembly language format is:

Label Code Operand
LABEL: ¥OV DST, SRC

not both

Optional instruction label

~oxr-

Label Code Operand
LABEL: OoP RP

\\\\B or D

STAX or LDAX

Optional instruction label

3.6.1 MOV INSTRUCTION

Format:
Label Code Operand
oplab: MOV dst,src
——

Description: One byte of data is moved from the register)

specified by SRC (the source register) to the register specified
by DST (the destination register). The data replaces the contents
of the destination register; the source register remains unchanged.

Condition bits affected: None

i i A,B,C,D,E,H,L, or M (DST and SBRC

:M)

Ezgggle 1:

Label Code Operand Comment

MOV AE
to the A register

MOV D,D Move contents of the D

~e o me e N

register to the D registen,
i.e., this is a null opergtion

Move contents of the E registel

NOTE: Any of the null operation instructions MOV X,X can also be

specified as NOP (no-operation) .

gﬁgmgle 2:

Assuming that the H register contains 2BH and the L register
contains E9H, the instruction:

MOV M,A

will store the contents of the accumulator at memory location
2BESH.

3.6.2 STAX STORE ACCUMULATOR

Format:

Label Code Operand

oplab: STAX ’/’/////rp

Description: The contents of the accumulator are stored in
the memory location addressed by registers B and C, or by
registers D and E.

Condition bits affected: None

w
1
{ar
ot

Example:

If register B contains 3FH and register C contains 16H, the
instruction:

STAX B

will store the contents of the accumulator at memory location 3F16H.

3.6.3 LDAX LOAD ACCUMULATOR

Format:

Label Code Operand
LDAX rp

00 O0fXfL 010
Lot

Description: The contents of the memory location addressed
by registers B and C, or by registers D and E, replace the
contents of the accumulator.

Condition bits affected: None

Example:

If register D contains 93H and register E contains 8BH, the
instruction:

LDAX D

will load the accumulator from memory location 938BH.

3-32

3.7

This section describes the instructions which operate on the
accumulator using a byte fetched from another register or memory.
Instructions in this class occupy one byte as follows:

000
001
010
011
100
101
110
111

Instructions in this
the byte in the register spec
is specified, the instruction

REGISTER OR MEMORY 'TO ACCUMULATOR INSTRUCTIONS

for ADD

1.0 q % R’E’G

oL

for ADC
for SUB
for SBB
for ANA
for XRA
for ORA
for CMP

location addressed by registers H and L.

the most significant 8 bits of the address,
holds the least significant 8 bits

byte will remain unchanged by any o
class; the result will replace the contents o

The general assembly language instruction format is:

Label

LABEL:

s

Code Operand
OP REG
Nt o’

‘\\\A,B,C,D,E,H,L, or M

DD, ADC, SUE,

Optional instruction label

ified by REG.

000
001
010
011
100
101
110
111

SBB, ANA, XRA, ORA, or CMi

for
for
for
for
for
for
for
for

class operate on the accumulator using
If a memory reference
s use the byte in the memory

The H register holds
while the L register
of the address.
£ the instructions in this

f the accumulator.

register
register
register
register
register
register
memory reference
register A

CtomEHOOW

The specified

B TR oty |

3.7.1 ADD ADD REGISTER

Format:
Label
oplab:

OR MEMORY TO ACCUMULATOR

Code

)\

Operand

reg

e

Description:

P L N

1 0j0 0 ORI G
I} fod Lot

The specified byte is added to the contents of

the accumulator using two's complement arithmetic.

Condition bits affected: Carry, sign, zero, parity, auxiliary

carry
Example 1:

Assume that the D register contains 2EH and the accumulator
contains 6CH. Then the instruction:

ADD D

will perform the addition as follows:

2EH = 00101110
6CH = 01101100
9AH = 10011010

The zero and carry bits are reset; the parity and sign bits are
set. Since there is a carry out of bit A,, the auxiliary carry
bit is set. The accumulator now contains~9AH.

Example 2:
The instruction:
ADD A

will double the accumulator.

o g s, s 3 s o

e |

3.7.2 ADC ADD REGISTER OR MEMURY TO ACCUMULATOR WITH CARRY

S

Format:
(./ FOLRdL

Label Code Operand
oplab: ADC reg

a

Nt i,

1 0j0 0 1 REG
g | 3]

Description: The specified byte plus the content of the carry
bit is added to the contents of the accumulator.

Conditon bits affected: Carry, sign, zero, parity, auxiliary

carry
™
A Example:
(~/ Assume that register C contains 3DH, the accumulator contains 42H

and the carry bit = 0. The instruction:
ADC C

will perform the addition as follows:

3pbH=00111101

42H = 01000010
CARRY = 0
RESULT = 0 1 111 111-=7FH

The results can be summarized as follows:

Accumulator FH
Carry

Sign

Zero
Parity
Aux. Carry

[

5
0
0
0
0
0

If the carry bit had been one at the beginning of the exampl
the following would have occurred:

W

3DH
42H
CARRY
RESULT

001111
010000

LI I 1}

100

o
(=)
<
[=]

Accumulatox
Carry

Sign

Zero

Parity

Aux. Carry

[1 A I I}

3.7.3 SUB SUBTRACT REGISTER OR MEMORY FROM ACCUMULATOR

Format:

Label Code Operand
oplab: SUB reg

Description: The specified byte is subtracted from the accumulator

using two's complement arithmetic.

If there is no overflow out of the high-order bit position, in-

dicating that a borrow occurred, the carry bit is set; otherwise

it is reset. (Note that this differs from an add operation, which

resets the carry if no overflow occurs).

Condition bits affected: Carry, sign, zero, parity, auxiliary
carxy

Example:
Assume that the accumulator contains 3EH. Then the instruction
SUB A

will subtract the accumulator from itself producing a result of
zero as follows:

3EH 00 10
+ (~3EH) 11 0 1 negate and add one
+ 1 to produce two's complement
—=1]0 0 0 0 0 0 0 0 Result = 0

o

111
000

o+

Overflow

Since there was an overflow out of the high-order bit position,

and this is a subtraction operation, the carry bit will be reset.

Since there was an overflow out of bit A3, the auxiliary carry
bit will be set.

The parity and zero bits will also be set, and the sign bit will
be reset.

Thus the SUB A instruction can be used to reset the carry bit (s
zero the accumulator).

ind

o

e

3.7.4 SBB SUBTRACT REGISTER OR MEMORY FROM ACCUMULATOR WITH
BORROW

Eormat:
Label Code Operand

oplab: SBB reg

N\

P T e
10/01 1REG

Description: The carry bit is internally added to the contents
of the specified byte. This value is then subtracted from the
accumulator using two's complement arithmetic.

This instruction is most useful when performing subtractions. It

adjusts the result of subtracting two bytes when a previous
subtraction has produced a negative result (a borrow). For an
example of this, see Section 5.4. :

Condition bits affected: Carry, sign, zero, parity, auxiliary
carry (see Section 3.7.3 for details).

Example:

Assume that register L contains 2, the accumulator contains 4,
and the carry bit = 1. Then the instruction SBB L will act as
follows:

02H + Carry = O03H
Two's Complement of 03H = 11111101

Adding this to the accumulator produces:
Accumulator = 04H =

]

xoverflow = 1 causing carry to be re

o O
ol o
O O
O O
ol
i =
(o]l]
[ad Ll =]

= 01lH = Result

The final result stored in the accumulator is one, causing the
zexo bit to be reset. The carry bit is reset since this is a

set.

subtract operation and there was an overflow out of the high-order

bit position. The auxiliary carry bit is set since there was

a overflow out of bit A,. The parity and the sign bits are reset.

3

3.7.5 ANA LOGICAL AND REGISTER OR MEMORY WITH ACCUMULATOR
Format.:
Label Code Operand
Oplab: ANA reg
\ o
e, s
1o/t 00 LR E G
! (I ()
Description: The specified byte is logically ANDed bit by bit
with the contents of the accumulator. The carry bit is reset
to zero.

The logical AND function of two bits is 1 if and only if both
the bits equal 1.

Condition bits affected: Carry, zero, sign, parity

Example:

Since any bit ANDed with a zero produces a zero and any bit ANI
with a one remains unchanged, the AND function is often used tg
zexro groups of bits.

Assuming that the accumulator contains OFCH and the C register
contains OFH, the instruction:

ANA C
will act as follows:
Accumulator = 1111110 0 = OFCH
C Register = 0 000111 1=0FH
Result in]
Accumulator = 0 0 0 0 1 1 0 0 = OCH

This particular example guarantees that the high-order four bifge

of the accumulator are zero, and the low-order four bits are

unchanged.

O NGV T B e s i O £

1]

L S 20 NP Y g

3.7.6 XRA LOGICAL EXCLUSIVE~OR REGISTER OR MEMORY WITH
ACCUMULATOR (ZERO ACCUMULATOR)

Format:
Label Code Operand
oplab: XRA reg

10j201REG
L

Description: The specified byte is EXCLUSIVE-ORed bit by bi
with the contents of the accumulator. The carry bit is resa
to zero.

The EXCLUSIVE-OR function of two bits equals 1 if and only i
the values of the bits are different.

Condition bits affected: Carry, zero, sign, parity

Example 1:

Since any bit EXCLUSIVE-ORed with itself produces zero, the
EXCLUSIVE-OR can be used to zero the accumulator.

Label Code Operand
XRA A
MOV B,A
Mov c,A

These instructions zero the A, B, and C registers.

ot

th

Example 2:
Any bit EXCLUSIVE-ORed with a one is complemented (0 XOR 1 = 1,
1 XOR 1 = 0).

Therefore if the accumulator contains all ones (OFFH), the
instruction:

XRA B

wil produce the one's complement of the B register in the accumq
ulator.

Example 3:

Testing for change of status.

Many times a byte is used to hold the status of several (up to
eight) conditions within a program, each bit signifying whether

a condition is true or false, enabled or disabled, etc.

The EXCLUSIVE-OR function provides a quick means of determining
which bits of a word have changed from one time to another.

Label Code Operand
LA: MOV A,M : STAT2 to accumulator

INX H ; Address next location
LB: MOV B,M ; STAT1 to B register
CHNG: XRA B ; EXCLUSIVE~-OR STAT1 and STAT2
STAT: ANA B ; AND result with STATI1
STATZ2: DS 1
STATL: DS 1

3-41

Assume that logic elsewhere in the program has read the status
of eight conditions and stored the corresponding string of eight
zeros and ones at STAT1 and at some later time has read the same
conditions and stored the new status at STAT2. Also assume that
the I and L registers have been initialized to address location
STAT2. The EXCLUSIVE-OR at CHNG produces a one bit in the
accumulator wherever a condition has changed between STAT1 and
STAT2.

For example:

Bit Number 76543210
STATL = 5CH= 01011100
STAT2 = 78H = 01111000
EXCLUSIVE~OR= 0 01 0 0 1 0 O

This shows that the conditions associated with bits 2 and 5
have changed between STAT1 and STAT2. Knowing this, the program
can tell whether these bits were set or reset by ANDing the result
with STATL.

Result = 0 0 1 0 6100
sTATl = 01011100
AND = 000001100

Since bit 2 is now one, it was set between STAT1 and STAT2; since
bit 5 is zero it is reset.

3.7.7 ORA LOGICAL OR REGISTER OR MEMORY WITH ACCUMULATOR

Format:
Label Code Operand
oplab: ORA reg

N/

10(1L10REG
L.l L

Description: The specified byte is logically ORed bit by bit
with the contents of the accumulator. The carry bit is reset
to zero.

4 The logical OR function of two bits equals zero if and only if
i both the bits equal zero.

condition bits affected: Carry, zero, sign, parity

Example:

since any bit ORed with a one produces a one, and any bit ORed
with a zero remains unchanged, the OR function is often used
to set groups of bits to one.

Assuming that register C contains OFH and the accumulator contalins
334, the instruction:

ORA C
acts as follows:
Accumulator =0 0 11 0 0 1 1 = 33H
C Register = 0000111 1= 0FH
Result = Accumulator = 0 0 1 1 11 1 1 = 3FH

This particular example guarantees that the low—-order four bits
of the accumulator are one, and the high-order four bits are
unchanged.

e o e

C

3.7.8 CMP COMPARE REGISTER OR MEMORY WITH ACCUMULATOR

Format:
Label Code Operand
oplab: cMpP reg

Description: The specified byte is compared to the contents
of the accumulator. The comparison is performed by internally
subtracting the contents of REG from the accumulator (leaving
both unchanged) and setting the condition bits according to
the result. In particular, the zero bit is set if the guantities
are equal, and reset if they are unequal. Since a subtract
operation is performed, the carry bit will be set if there is
no overflow out of bit 7, indicating that the contents of REG
are greater than the contents of the accumulator, and reset
otherwise.

NOTE: If the two quantities to be compared differ in sign, the
sense of the carry bit is reversed.

Condition bits affected: Carry, zero, sign, parity, auxiliary
carry

Example 1:

Assume that the accumulator contains the number OAH and the E
register contains the number 05H. Then the instruction CMP E
performs the following internal subtractions:

Accumulator = OAH = 0 0 0 0 1 0 1 O
+ (-E Register)= -5H =11111011
1100000101 =result

\\overflow = 1, causing carry to be reget

-
H T TP 3 T T A - . . y R g RN

ohe accumulator still contains OAH and the E register still
contains O05H; however, the carry bit is reset and the zero bit

reset, indicating E less than A.

1£ the accumulator had contained the number 2H, the internal
subtraction would have produced the following:

Accumulator
+ (~E Register)-

il
o
N
=

o

= result

koverflow=0, causing carry to be set

The zero bit would be reset and the carry bit set, indicating E
greater than A.

Example 3:

Assume that the accumulator contains —1BH. The internal subtracti
now produces the following:

Accumulator = -1BH =111 00 101
+ (-E Register)= =-5H = 1 1111011
11 T 1100000

\overflowzl, causing carry to be res

Since Fhe two numbers to be compared differed in sign, the
- resetting-of the carry bit now indicates E greater than A.

on

ROTATE ACCUMULATOR INSTRUCTIONS

This scction describes the instructions which rotate the contents
of the accumulator. No memory locations or other registers are
referenced.

Instructions in this class occupy one byte as follows:

"
t 00 for RLC
01 for RRC

10 for RAL

11 for RAR

The general assembly language instruction format is:

Label Code Operand
LABEIL: oP
o

ahagbedait
W\\\-not used

RLC, RRC, RAL, or RAR

Optional instruction label

3.8.1 RLC ROTATE ACCUMULATOR LEFT
Format:

Label Code Operand

oplab: RLC ——

bDescription: The carry bit is set equal to the high-order bit of
tyc accumulator. The contents of the accumulator are rotated one
bit position to the left, with the high-order bit being transferred
to the low-order bit position of the accumulator.

Condition bits affected: Carry

e

qupglc:

Assume that the accumulator contains OFZH. Then the instruction:

acts as follows:

Before RLC is executed: Carry Accumulator

=Tl 0]~

[1]r]2]ofof1fo]1]

After RLC is executed:

Carry = 1 A = (OE5H

3.8.2 RRC ROTATE ACCUMULATOR RIGHT

Format:

Label Code - Operand
oplab: RRC ——

Description: The carry bit is set equal to the low-order bit of
the accumulator. The contents of the accumulator are rotated one
Lit position to the right, with the low-order bit being transferred
to the high-order bit position of the accumulator.

Condition bits affected: Carry

T Pl s WS4 33 v st e 5 8 A A58 T ———————

Example:

Assume that the accumulator contains 0F2H. Then the instruction:
RRC

acts as follows:

Before RRC is executed: Accumulator Carry

ma PENBOORE ~[

Aft RRC is executed: ensy
= [e Tl efT]

A=T79H Carry=0

3.8.3 RAL ROTATE ACCUMULATOR LEFT THROUGH CARRY

Eg;mat:
Label Code Operand
oplab: RAL ——

000101111
[! ()

Description: The contents of the accumulator are rotated one bit
position ‘to the left.

The high-~order bit of the accumulatorvreplaces the carry bit, while
the carry bit replaces the low-order bit of the accumulator.

Condition bits affected: Carry

Example:

Assume that the accumulator contains OB5H. Then the instruction:

acts as follows:
Before RAL is executed: Carry Accumulator
—G- o e[3[o]t |
After RAL is executed: [o]1]1]o]1]o]2]o |
Carry = 1 A = 6AH

3.8.4 RAR ROTATE ACCUMULATOR RIGHT THROUGH CARRY

Format:

0 090 11 } H

Description: The contents of the accumulator are rotated one blit

position to the right.

The low-order bit of the accumulator replaces the carry bit, while

the carry bit replaces the high-order bit of the accumulator.

Condition*bits affected: Carry

Example:

Assume that the accumulator contains 6AH. Then the instruction:
RAR

acts as follows:

1 AR B B I S A i £ 8 RS

Before RAR is executed: Accumulator Carry

r‘""iollllIOIlIOIlIOi 2
After RAR is executed: [lloll{lioillolll E]
A=0B5H Carxy=0

3.9 REGISTER PAIR INSTRUCTIONS

This section describes instructions which operate on pairs of
registers.

3.9.1 PUSH PUSH DATA ONTO STACK

Format:
Label Code Operand
oplab: PUjH/_______ <ID,
P \B,D,H, or PSW
11| R Pjo 101
£ ! LI
N g’

00 for registers B and C
01 for registers D and E
10 for registers H and L
11 for flags and register A

Description: The contents of the specified register pair are
saved in two bytes of memory indicated by the stack pointer SP.

The contents of the first register are saved at the memory
address one less than the address indicated by the stack

pointer; the contents of the second register are saved at the
address two less than the address indicated by the stack pointer.
If register pair PSW is specified, the first byte of information
#aved holds the settings of the five condition bits, i.e., carry,
fero, sign, parity, and auxiliary carry. The format of this

yte is:

3~50

N o s

:iﬁ 2 io @?‘LJ > 11 <

state of sign bit \:iiistate of carry bit
always 1

4 [
{4
State of parity bit
State of auxiliary
carry bit

state of zero bit
always 0—

always 0

In any case, after the data has been saved, the stack pointer is
decremented by two.

condition bits affected: None

Example 1:

Assume that register D contains 8FH, register E contains 9DH, and
the stack pointer contains 3A2CH. Then the instruction:

PUSH D

stores the D register at memory address 3A2BH, stores the E register

at memory address 3A2AH, and then decrements the stack pointer by
two, leaving the stack pointer equal to 3AZAH.

Before PUSH ! . After PUSH
HEX
SP MEMORY ADDRESS MEMORY Sp
3a2C PE 3A29 FF 13A2A
FF 3A2A 9D
D FF 3A2B 8F D
FE 3A2C FE
8F ! i 8F
| =
E l E
|
[on] ,
|
Example 2:

Assume that the accumulator contains 1FH, the stack pointer contains

502AH, the carry, zero and parity bits all equal 1, and the sign
and auxiliary carry bits all equal 0. Then the instruction:

PUSH PSW

stores the accumulator (lFH) at location 5028H, stores the value

474, corresponding to the flag settings at location 5029H, and decre-

ments the stack pointer to the value 5028H.

3.9.2 POP DPOP DATA OFF STACK

Format:
Label Code Operand

ab: rp
oplab: POP m\\\
/__// B,D,H, or DPSW

l!l % 4(%01011

q_mwx\\\\\- 00 for registers B and C

01 for registers D and E
10 for registers H and L
11 for flags and register A

Description: The contents of the specified register pair are
restored from two bytes of memory indicated by the stack pointer
SP. The byte of data at the memory address indicated by the

stack pointer is loaded into the second register of the register
pair; the byte of data at the address one greater than the address
indicated by the stack pointer is loaded into the first register
of the pair. If register pair PSW is specified, the byte of

data indicated by the contents of the stack pointer plus one is
used to restore the values of the five condition bits (carry,
zero, sign, parity, and auxxllary carry) using the format described
in Section 3.9.1.

In any case, after the.data has been restored, the stack pointer
is incremented by two.

Condition bits affected: If register pair PSW is specified, carry,
sign, zero, parity, and auxiliary carry
may be .changed. Otherwise, none are
affected.

Example 1:

Assume that memory locations 1239H and 123AH contain 3DH and 93H,
roupectlvely, and that the stack pointer contains 1239H. Then the
struction:

POP H
loads register L with the value 3DH from location 1239H, loads

register H with the value 93H from location 123AH, and increments
the stack pointer by two, leaving it equal to 123AH.

0 60 L8 A5 1 R T b TR S 5 S 2 g ’ — MBS i S e o b

i
]

Before POP] After POP
J

MEMORY HEX MEMORY
Sk ADDRESS SP
1239 FF 1238 FF 123A
3D 1239 3D
H 93 123A 93 H
FE 123B FE
or | |
L [L

[ro] |

Example 2:

Assume that memory locations 2CO0H and 2C0l1H contain FFH and C3H
respectively, and that the stack pointer contains 2C00H. Then
the instruction:

POP PSW

will load the accumulator with FFH and set the condition bits
as follows:

C3H= 110 0 0 0 1 1

Sign bit=1 l-»—Carry bit=1
Zero bit=1 me—Parity bit=0
Aux. carry bit=0 -=e-

3.9.3 DAD DOUBLE ADD

Format:
Label Code Operand
oplab: DAD Ip

""" "~___ B,D,H, or SP

00Oy RPL 001
i

for registers B and C
01 for registers D and E
10 for registers H and L
11 for register SP

.

RIS 14 oo v e s

Description: The 16-bit number in the specified register

pair is added to the 16-bit number held in the H and L registers
using two's complement arithmetic. The result replaces the
contents of the H and L registers.

Condition bits affected: Carry

Assume that register B contains 33H, register C contains 9FH,
register H contains AlH, and register L contains 7BH. Then
the instruction:

DAD B

performs the following addition:

Registers B and C = 339F
+ Registers H and I = Al7B
New contents of H and L = D51A

Register H now contains D5H and register L now contains 1AH.
Since no carry was produced, the carry bit is reset = 0.

Example 2:
The instruction:
DAD H
will double the 16-bit number in the H and L registers (which

is equivalent to shifting the 16 bits one position to the left).

3.9.4 INX INCREMENT REGISTER PAIR

Format:
Label Code Operand
oplab: INX rp
f—————" _B,D,H, or SP

0 0f R P 01 1
T I

RO,

R —. 00 for registers B and C

01 for registers D and E
10 for registers H and L
11 for register SP

pescription: The 16-bit number held in the specified register
pair is incremented by one.

condition bits affected: None
Example:

1f registers D and E contain 38H and FFH respectively, the
instruction:

INX D

will cause register D to contain 39H and register E to contain
O0H.

If the stack pointer SP contains FFFFH, the instruction:
INX SP

will cause register SP to contain 0O0COH.

3.9.5 DCX DECREMENT REGISTER PAIR

Format:
Label Code Operand

oplab: DCX

rp
© ™~—_B,D,H, or SP

00
XTI

o

.

Description: The 16-bit number held in the specified register
pair is decremented by one.

00 for registers B and C
01 for registers D and E
10 for registers H and L
11 for register SP

Condition bits affected: None
Example:

If register H contains 98H and register L contains O00H, the
instruction:

DCX H

yill cause register H to contain 97H and register L to contain
CIH

3.9.6 XCHG EXCHANGE REGISTERS

Format:

Label Code Operand
oplab: XCHG ——

11101011
Do b b g

Description: The 16 bits of data held in the H and I registers
are exchanged with the 16 bits of data held in the D and E registers.

Condition bits affected: None

Example:

If register H contains 00H , register L contains FI'H, register

D contains 33H and register E contains 55H, the instruction XCHG

will perform the following operation:

Before XCHG After XCHG

'U

33

ﬁi}
w0
[l i t=
o
e}

[55]
(oo [

3.9.7 XTHL EXCHANGE STACK

Format:
Format
Label Code Operand
oplab: XTHL ——
11100,011
S O T T
Description: The contents of the L register are exchanged with

the contents of the memory byte whose address is held in the
stack pointer SP. The contents of the H register are exchanged
with the contents of the memory byte whose address is one greater
than that held in the stack pointer.

Condition bits affected: None

Example:

1f register SP contains 10ADH, registers H and I contain OBH and
3CH respectively, and memory locations 10ADH and 10AEH contain
FOH and ODH respectively, the instruction XTHL will perform the
following operation: | ’

Before XTHL H After XTHL
HEX
Sp MEMORY ADDRESS MEMORY sp
10AD] FF 10AC FF 10AD

FO 10AD 3C

i 0D 10AE 0B H
FF 10AF I

i 0B]]

3.9.8 SPHL LOAD SP FROM H AND L

Format:

Label Code Operand
oplab: SPHL ——

1111100 1
bkt bt 5y

Description: The 16 bits of data held in the H and L registers

replace the contents of the stack pointer SP.
H and L registers are unchanged.

Condition bits affected: None

Example:

The contents of the

If registers H and L contain 50H and 6CH respectively, the instruc-
tion SPHL will load the stack pointer with the value 506CH.

g I ST A i

3.10 IMMEDIATE INSTRUCTIONS

This section describes instructions which perform operations using
a byte or bytes of data which are part of the instruction itself.

Instructions in this class occupy two or three bytes as follows:

(a) For the LXI data instruction (3 bytes):

0 OJRP|0, D DATA
8 ! ;,0,1,?1}'{1},,2,;,,,[

TT~00 for registers B and C
01 for registers D and E

10 for registers H and L
11 for register SPp

(b) For the MVI data instruction (2 bytes) :

O URE G 0)

‘\\\\\‘* 000 for register

001 for register

010 for register

. 011 for register

(_/ 100 for register
101 for register
110 for memory reference M
111 for register A

DATA
[|

FmEOOw

(c) For the remaining instructions (2 bytes):

11 OlelO
RN

DATA
fod L

- » 1

001 for ACI
010 for sSUI
011 for SBI
100 for ANI
101 for XRI
110 for ORI
111 for CPI

?P“ LXI instruction operates on the register pair specified by
PYOMSIng two bytes of immediate data.

-0t MVI instruction operates on the register specified by REG
L/‘ ‘eBiE one byte of immediate data. If a nemnory reference is
brtlijed, the instruction operates on the memory location

3~59

N S .5 55 A . e P o

addressed by registers H and L.

The H register holds the most

significant 8 bits of the address, while the L register holds
the least significant 8 bits of the address.

The remaining instructions in this class operate on the

accumulator using one byte of immediate data.

the contents of the accumulator.

The general assembly language instruction format is:

Label Code Operand
LABEL: LXT Rp, DATA
8 w\\\\lsvbit data quantity
B, D, H, or SpP
Optional instruction label
-or-
Label Code Operand
LABEL: MVI REG, DATA
e e ——
‘\\‘\BNbit data quantity
' A, B, C, D, E, H, L, or M
Optional instruction label
-or-
Label Code Operand
LABEL: oP DATA
——— e st —— e’

‘\““‘\\B—bit data quantity

ADI, ACI,
or CPI

SUI, SBI, ANI, XRI,

Optional instruction label

3-60

The result replaces

OR

3.10.1 ©LXX LOAD REGISTER PAIR IMMEDIATE
Format:
Label Code Operand
oplab: LXI p, data
PR 2 P N) e
P D A T A
M Rl AT A Gl AT SR IR I SR R NI TR I

Description: The third byte of the instruction (the most sig-
nificant 8 bits of the 16-bit immediate data) is loaded into

the first register of the specified pair, while the second byte
the instruction (the least significant 8 bits of the 16-bit

immediate data) is loaded into the second register of the specified

pair. If SP is specified as the register pair, the second byte

the instruction replaces the least significant 8 bits of the stack
pointer, while the third byte of the instruction replaces the most

significant 8 bits of the stack pointer.

Condition bits affected: None

NOTE: The immediate data for this instruction is a 16-bit guantity
All other immediate instructions require an 8-bit data value
Example 1:

Assume that instruction label STRT refers to memory location 103H

of

(=259) . Then the following instructions will each load the H
register with 0lH and the L register with 03H:

LXI H,J03H

LXI H,259

LXI H,STRT

Example 2:

The following instruction loads the stack
3ABCH:

LXIT

SP,3ABCH

pointer with the value

3.10.72 MVI MOVE IMMEDIATE DATA

Format:
oplab: MVI reg, data

—__ﬁ,ﬁ*’/////lifﬂ*~~/4\~/—\\

CANESL L PR R

Description: The byte of immediate data is stored in the speci-
fied register or memory byte.

Condition bits affected: None

EXAMPLE
Label Code Operand Assembled Data
Ml: MVI H, 3CH 26EC
M2: MVI L, 0F4H 2EF4
M3: MVI M, OFFH 36FF

The instruction at M1 loads the H register with the byte of
data at M1 + 1, i.e., 3CH.

Likewise, the instruction at M2 loads the L register with 0F4H.
The instruction at M3 causes the data at M3 + 1 (0FFH) to be
stored at memory location 3CF4H. The memory location is obtained
by concatenating the contents of the H and L registers into a
16-bit address.

NOTE: The instructions at M1 and M2 above could be replaced
by the single instruction:

LXI H, 3Cr4H

3~-62

/
[
Y

9

!

3.10.3 ADI ADD IMMEDIATE TO ACCUMULATOR

Format:
Label Code Operand
oplab: ADI dagi
“ //'\./\/\

1Y4oo00/L10f D A T A
£ i

] LI SO SO A I

pescription: The byte of immediate data is added to the contents

of the accumulator

Condition bits affected:

carry

Example:

using two's complement arithmetic.

Carry, sign, zero, parity, auxiliary

Label

AD1:
AD2:
AD3:

Code Operand Assembled Data
MVI A, 20 3E1l4
ADI 66 C642
ADI -66 C6BE

1he inst;uction at
instruction at AD2

AD1 loads the accumulator with 14H.
performs the following addition:

Accumulator = 14H = 00010100
AD2 Immediate Data = 42H = 01000010
Result = 01010110 = 56H =

The parity bit is set. Other status bits are reset.

The

New accumulg

tor

The instruction at AD3 restores the original contents of the
accunmulator by performing the following addition:

00010100 = 14H

Accumulator = 56H = 01010110
AD3 Immediate Data =0BEH = 10111110

Result

The carry, auxiliary carry, and parity bits are set. The zero
and sign bits are reset,

3.10.4 ACI ADD IMMEDIATE TO ACCUMULATOR WITH CARRY

Forq&g:

Label Code Operand
oplab: ACI data
/ \
P /“W\

11001{110fl p A T 3
Pt I O T T O

Description: The byte of immediate data is added to the contents
of the accumulator plus the contents of the carry bit.

Condition bits affected: Carry, sign, zero, parity, auxiliary
carry

Label Code Operand Assembled Data
Cl: MVI A, 56H 3E56
C2: ACI -66 CEBE
C3: ACI 66 CE42

Assuming that the Carry bit = 0 just before the instruction at C2
1s executed, this instruction will produce the same result as
instruction AD3 in the example of Section 3.10.3.

That 1s:

. Accumulator = 14H
&u 2 Carry =1
L// the instruction at C3 then performs the following addition:
Accumulator = 14H = 00010100
C3 Immediate Data= 42H = 01000010
Caxry bit =1 = 1
Result = 01010111 = 57H

3,10.5 SUI SUBTRACT IMMEDIATE FROM ACCUMULATOR

Format:
Label Code Operand
oplab: sUIx data
. f
‘{\ '«i e
C 11010110513 A T A
3 5. L.l S I A A T B

Description: The byte of immediate data is subtracted from the
contents’ of the accumulator using two's complement arithmetic.

Singe this is a subtraction operation, the carry bit is set,
indicating a borrow, if there is no overflow out of the high-
srder bit position, and reset if there is an overflow.

Condition bits affected: Carry, sign, zero, parity, auxiliary
Carry

Example:

This instruction can be used as the equivalent of the DCR
instruction.

Label Code Operand Assembled Data
MVT A, 0 3100
sl: sSuUr 1 D501

The MVI instruction loads the accumulator with zero, The SUI
instruction performs the following subtraction:

00000000
11111111 two's complement

TIITITIT = -1H

Accumulator = 0H
=51 Immediate Data =-1H
Result

oo

Since there was no overflow, and this is a subtract operation,
the carry bit is set, indicating a borrow.

The zero and auxiliary carry bits are also reset, while the sign
and parity bits are set.

3.10.6 SBI SUBTRACT IMMEDIATE FROM ACCUMULATOR WITH BORROW

Format:

<*/ Label Code Operand
oplab: SBI data

a2 b

11701 1i1 11
11 OF Py b7, 2

Description: The carry bit is internally added to the byte of
immediate data. This value is then subtracted from the accumul
using two's complement arithmetic.

forming multibyte subtractions. -For an example of this, see
Section 5.4.

Since this is a subtraction operation, the carry bit is set if
there is no overflow out of the high-order position, and reset
if there is an overflow.

Condition bits affected: Carry, sign, zero, parity, auxiliary

This instruction and the SBB instruction are most useful when pe

ator

i } carry
Example:
Label Code Operand Assembled Data
XRA A AF
SBI 1 DEO1

The XRA instruction will zero the accumulator (see example in

Section 3.7.6). If the carry bit is zero,
will then perform the following operation:

Imnediate Data + Carry = OlH
Two's Complement of 0l1H = 1111111

Adding this to the accumulator pr

Accumulator = 0H = 00000000
11111111

-1H
0

-
et
-
=
[
—
-
[
on

overflow

The carry bit is set, indicating a borrow.
carry bits are reset, while the sign and pa

If, however, the carry bit is one, the SBI
perform the following operation:

Immediate Data + Carry = 02H
Two's Complement of 02H = 1111111

Adding this to the accumulator pr

Accumulator = 0OH = 00000000

11111110
11111110 = ~-2H
overflow = 0

This time the carry and sign bits are set,
and auxiliary carry bits are reset.

T MBI 1 i 5 A P 3« 3 715 et

the SBI instruction

1

oduces:

= Result

causing carry to be set

The zero and auxiliary

rity bits are set.

instruction will

0

oduces:

= Result

causing carry to be se

2t

while the zero, parity,

3,10.7 ANI AND IMMEDIATE WITH ACCUMULATOR

rFormat:
LSSl

Label Code Operand
oplab: ANI data
™ e /——_,/_/\,

11f1 00110 A T
0 ST 1 ot e et A0S O O MO W1

pPescription: The byte of immediate data is logically ANDed with
the contents of the accumulator. The carry bit is reset to zerd

Condition bits affected: Carry, zero, sign, parity

Example:
Label Code Operand Assembled Data
MOV A, C 79
Al: ANI OFH EGOF

The contents of the C register are moved to the accumulator. Th
ANI instruction then zeroes the high-order four bits, leaving th
low-order four bits unchanged. The zero bit will be set if and
only if the low-order four bits were originally zero.

If the C register contained 3AH, the ANI would perform the
following:

00111010
00001111
00001010 = OAH

Accumulator = 3AH
AND (Al Immediate Data) = OFH
Result

o

RN L, g oty

.

3.10.8 XRI EXCLUSIVE-OR IMMEDIATE WITH ACCUMULATOR

Format:

Label Code Operand

oplab: XRI data

/ 3

1110 1{1 10 "
o 1J ! ? 2 % t %] ﬁ

Description: The byte of immediate data is EXCLUSIVE-ORed with
the contents of the accumulator. The carry bit is set to zero.

Condition bits affected: Carry, zero, sign, perity

Example:

Since any bit EXCLUSIVE~ORed with a one is complemented, and
any bit EXCLUSIVE-ORed with a zero is unchanged, this instruction
can be used to complement specific bits of the accumulator.
For instance, the instruction:

XRI 81H
will complement the least and most significant bits of the

accumulator, leaving the rest unchanged. If the accumulator
contained 3BH, the process would work as follows:

Accumulator = 3BH = 00111011
XRI Immediate data = 81H = 10000001
Result = 10111010

o

3.10.9 ORI OR IMMEDIATE WITH ACCUMULATOR

Format:
Label Code Operand
oplab: ORI data
P, e

11110110{39 A T A
(S JOCOO N ST O O S I

Description: The byte of immediate data is logically ORed with
the contents of the accumulator.

The result is stored in the accumulator. The carry bit is reset
to zero, while the zero, sign, and parity bits are set according
to the result.

Condition bits affected: Carry, zero, sign, parity

Example:
Label Code Operand Assembly Data
MOV A,C 79
OR1l: ORI OFH F60F

The contents of the C register are moved to the accumulator.
The ORI instruction then sets the low~order four bits to one,
leaving the high-order four bits unchanged.

If the C register contained 0BS5H, the ORI would perform the
following:

10110101
00001111
10111111 = OBFH

Accumulator = 0BS5H
OR(OR1l Immediate data) = OFH
Result

wouu

3-71

3.10.10 CPI COMPARE I[MMEDIATE WITH ACCUMULATOR

Format:
Label Code Operand
oplab: CPI data
AN P

0041 114100} p A T &
; S r gt

Description: The byte of immediate data is compared to the
contents of the accumulator.

The comparison is performed by internally subtracting the data

from the accumulator using two's complement arithmetic, leaving
the accumulator unchanged but setting the condition bits by the
result.

In particular, the zero bit is set if the quantities are equal, an
reset if they are unequal.

Since a subtract operation is performed, the carry bit will be
set if there is no overflow out of bit 7, indicating the immediate
data is greater than the contents of the accumulator, and reset
otherwise.

NOTE: If the two quantities to be compared differ in sign, the
sense of the carry bit is reversed.

Condition bits affected: Carry, zero, sign, parity, auxiliary

carry
Example:
Lakel Code Operand Assembled Data
MVI A, 4aH 3E4A
CPI 40H FE40

The CPI instruction performs the following operation:

Accumulator = 4AH
+(~Immediate data) =~40H

01001010
11000000
1100001010 = Result

Wy

Overflow 1 causing carry to be reset
The accumulator still contains 4AH, but the zero bit is reset
indicating that the quantities were unequal, and the carry bit
is reset indicating DATA is less than the accumulator.

3.11 DIRECT ADDRESSING INSTRUCTIONS

This section describes instructions which reference memory by a
two-byte address which is part of the instruction itself.
Instructions in this class occupy three bytes as follows:

00 jjloploc 10fLOW A DD il ADD
| I I O N I T JONE NS O U OO0 JUR TS U N NN O O
“]’“ \\-M’N\/ﬂ-\~/’/ \‘ﬂ/“\ff
most significant 8
3 bits of a memory
E address
least significant 8 bits of a
memory address
— 10 for STA
11 for LDA
00 for SHLD
01 for LHLD

Note that the address is held least significant byte first.

The general assembly language format is:

Label Code Operand
LABEL: op EXP
‘K-A l16-bit memory address
TA, LDA, SHLD, or LHLD
e Optional instruction label

IR s gy v e o 5 S

3.11.1 STA STORE ACCUMULATOR DIRECT

Format:

Label Code Operand

oplab: STA adr

00 T[0T L ow ADDJJHI ADD .
fok § L) | O SO T N TN O) S SO A A A A

Description: The contents of the accumulator replace the byte
at the memory address formed by concatenating HI ADD with
LOW ADD.

Condition bits affected: None

Example:

The following instructions will each store the contents of the
accumulator at memory address 5B3H:

SAC: STA 5B3H
STA 1459
LAB: STA 010110110011B

3.11.2 LDA LOAD ACCUMULATOR DIRECT

Format:

Label Code Operand
oplab: LDA adr

.\/ /—\/\f\\&/\/\
00121010} LOW ADD HI ADD
td i il Lo b bkl Lot 1

Description: The byte at the memory address formed by concatenati

HI ADD with LOW ADD replaces the contents of the accunmulator.

Condition bits affected: None

3-74

ng

S T e A o T RS5O 23 mr

ke

Example:

‘.

The following instructions will each replace the accumulator
contents with the data held at location 300H:

LOAD: LDA 300H
LDA 3%(16*16)
GET: LDA 200H+256

3.11.3 SHLD STORE H AND L DIRECT

Format:

Label Code Operand
oplab: SHLD adr
/ { N
~ £ e N

00 1lj00f010
Y X |

L oW ADRY} EI A DR
(I R T .| I T T

Description: The contents of the L register are stored at the
memory address formed by concatenating HI ADD with LOW ADD.
The contents of the H register are stored at the next higher
memory address.

Condition bits affected: None

Example:

If the H.and L registers contain AEH and 29H respectively, the
instruction: .

SHLD 10AH

%ill perform the following operation:

Lot AP AN e

|

N A5 ey

|

HI ADD with LOW ADD replaces
byte at the next higher memory address replaces the contents of

the H register.

Condition bits affected:

Example:

If memory locations 25BH and 25CH contain FFH and 03H
respectively, the instruction:

will load the L regis

with 03H,

Memory ! Memory
Before SHILD [After SHLD
HEX
L_.....__,.___~ ADDRESS
00 | 109 0
00 10A 29
00 10B AE
Y }0C 00
|
3.11.4 LHLD LOAD H AND L DIRECT
Format:
Label Code Operand
oplab: LHLD adr
00 L0 LU 1L 0] Low A DD HI A DD
B J 1 [S O W O TN S I
‘Description: The byte at the memory address formed by concatenating

the contents of the L register. The

None

LHLD 258H

ter with Fri, and will lozd the - register

376

3.12 JUMP INSTRUCTIONS

S

This section describes instructions which alter the normal
execution sequence of instructions. Instructions in this class
occupy cone or three bytes as follows:

(a) For the PCHL instruction (one byte):

11101010111

[N

~
.

(b) For the remaining instructions (three bytes

i
el
O

11|x x x[0 1x|{Low ADDIHI
i B L1 1 !

vk b _,-\/ﬂ_,// \\~_/—\v/~_,~

most significant 8
of a memory addres

least significant 8 bit
a memory address

1 for JMP, 0 otherwise

000 for JMP or JNZ
001 for Jz

010 for JNC

011 for JC

100 for JpPO

101 for JPE

110 for Jp

111 for JM

Hote that, just as addresses are normally stored in memory with
the low-order byte first, so are the addresses represented in the
Jump instructions.

The three-byte instructions in this class cause a transfer of
P{Ogram control depending upon certain specified conditions. If
the specified condition is true, program execution will continue
~the memory address formed by concatenating the 8 bits of HI ADD
tie third byte of the instruction) with the 8 bits of LOW ADD
-11¢ Second byte of the instruction). If the specified condition
false, program execution will continue with the next sequential

i

-hstruaction.

o

The general assembly language format is:

Label Code Operand
LABEL: PCHL e

) ‘k\\not used

Optional instruction label

—-Oor-
Label Code Operand
EXP

OoP
\\\\\\ w\\~A 16-bit address

JMpP, JC, JNC, JZ, JNZ, JM, JP, JPE, JPO

LABEL:

—Optional. instruction label

3.12.1 PCHL LOAD PROGRAM COUNTER

Format:
Label Code Operand

oplab: PCHL ———

11101001
BT Dt T T

Description: The contents of the H register replace the most
significant 8 bits of the program counter, and the contents of
the L register replace the least significant 8 bits of the
program counter. This causes program execution to continue

at the address contained in the H and L registers.

Condition bits affected: None

Example 1:
If the H register contains 41H and the L register contains 3EH,
the instruction:

PCHL

will cause program execution to continue with the instruction
at memory address 413EH.

Example 2:

Arbitrary Assembled
Memory Address Label Code Operand Data
40C0 ADR: DW LOC 0042
4100 STRT: LELD ADR 2AC040

PCHL ES

4200 LOC: NOP 00

Program execution begins at STRT. The LHLD instruction loads
registers H and L from locations 40ClH and 40COH; that is, with
421 and 0OH, respectively. The PCHL instruction then loads the
program counter with 4200H, causing program execution to continue
at location LOC.

3-79

3.12.2 JMP JUMP

Formats

Label Code Operand

oplab: o Jmp L adr \

1/}//"\/\“’”\ /*\/\\/—\
11!000’01{1!LOW ADDI HI ADD
° L | bl Lol bl do Lo 4

Description: Program execution continues unconditionally at
memory address adr.

Condition bits affected: None

Example: -
Arbitrary Memory Assembled

Address Label Code Operand Data |
3C00 JIMP CLR C3003E
3C03 AD: ADI 2 c602
3000 LOAD: MVI A, 3 3E03
3D02 JMP 3C03H C3033C
3E00 CLR: XRA A AF
3E01 JMP $-101H C3003D

The execution sequence of this example is as follows:

The JMP instruction at 3CO0H replaces the contents of the program
counter with 3EQOH. The next instruction executed is the XRA
at CLR, clearing the accumulator. The JMP at 3EO01lH is then
executed.

P

whe program counter is set to 3D00OH, and the MVI at this address
, loads the accumulator with 3. The JMP at 3D02H sets the program
sgunter to 3CO03H, causing the ADI instruction to be executed.

(/ srom here, normal program execution continues with the instruction
at 3C0OSH.

3.12.3 JC JUMP IF CARRY

Format:
Label Code Operand
oplab: Jc ad

/r\
& //—s.,/_,,—\\ N —
111011610 L OW A DD H I A DD
! J Lot hddedn b L | O U O A

tescription: If the carry bit is one, program execution continues
4t the memory address adr.

iCondition bits affected: None

L// for a programming example, see Section 3.12.10.

1.12.4 JNC JUMP IF NO CARRY

Yormat:
Label Code Operand
oplab: Jne adr

1 OlO}OlOJLOW ADDI
L] L1 R LI I I

aallied]
=~

3-81

Bt e e e R S R ST v R A e e

Description: If the carry bit is zero, program execution continues ‘
at the memory address adr.

Condition bits affected: None

For a programming example see Secticon 3.12.10.

3.12.5 JZ JUMP IF ZERO

Format:
Label code Operand
oplab: Jz adxr
Aﬁ”“/
. /””\“’/\"M“\\ e e
llOOl’OlOILOW ADD |HI ADD
1 fod Jood ST R JU W O | e
Description: If the zero bit is one, program execution continues e

at the memory address adr.
Condition bits affected: None

For a programming example, see Section 3.12.10.

3.12.6 JNZ JUMP IF NOT ZERO

Format:
Label Code © Operand
oplab: JNZ

///\

Wi k//""/\-’ ~ //'-~/”\~,,-\
D
L

e Lo,
1 1j0 0 O 0 l 0‘ W A D
[L | Lol

pescription: If the zero bit is zero, program execution continues
? at the memory address adn

condition bits affected: None

For a programming example, see Section 3.12.10.

3.12.7 JM JUMP IF MINUS

Format:
Label Code Operand
oplab: JM adr

N

1111 lIO 1 0| L OW ADD ’H I A DD
| || A O L O O I .

Description: If the sign bit is one (indicating a negative result),
program execution continues at the memory address adr.

g

Condition bits affected: None

For a programming example, see Section 3.12.10.

3.12.8 JP JUMP IF POSITIVE

Format:
Label Code Operand
oplab: Jp adr
A«/’f////iji—\\g/N<:i::::j //:EES//\\"/—ﬁ\\
lllloJOJ.O LOW ADD HI A DD
l (I Lol TN AU B O | bod bt L1

e

Des
program execution continues at the memory address adr.

Condition bits affected: None
For a programming example, see Section 3.12.10.

3.12.9 JPE JUMP IF PARITY EVEN

Format:

Label Code Operand
oplab: JPE adr

AN

11|21 10101, W ADDlHI D D
J;Osflﬁ(fszku}\]rm

Description: If the parity bit is one (indicating a result with
even parity), program execution continues at the memory address

adr.

Condition bits affected: None

For a programming example, see Section 3.12.10.

3.12.10 JPO JUMP IF PARITY ODD

Format:

Label Code Operand
oplab: JPO

W/ //\ad}\ -

111100‘010} LOwW ADD,HI A DD
[[() {1 [

Ll 1 ! (I N |

cription: If the sign bit is zero, (indicating a positive resul

t),

o

pescription: If the parity bit is zero (indicating a result with
odd parity), program execution continues at the memory address
adl .

¢ondition bits affected: None

rxamples of jump instructions:

this example shows three different but equivalent methods for
jumping to one of two points in a program based upon whether or
not the sign bit of a number is set. Assume that the byte to be
tested is in the C register.

Assembled

Label Code Operand __Data
ONE: MOV A,C 79

ANT 80H E680

Jz PLUS CAXXXX

JNZ MINUS C2X¥XX
TWO: MoV A,C 79

RLC 07

JNC PLUS : D2XXXX

JHP MINUS C3¥XXX
THREE : MOV A,C ., 79

ADI 0 C600

JM MINUS FAXXXX
PLUS: SIGN BIT RESET
MINUS: SIGN BIT SET

The AND immediate instruction in block ONE zerces all bits of
the data byte except the sign bit, which remains unchanged. If
the sign bit was zero, the zero condition bit will be set, and
the JZ instruction will cause program control to be transferred
to the instruction at PLUS. Otherwise, the JZ instruction will
ely update the program counter by three, and the JNZ instruc-
'n will be executed, causing control to be transferred to the
truction at MINUS. (The zero bit is unaffected by all

jwmp instructions) .

“he RLC instruction in block TWO causes the carry bit to be set

iual to the sign bit of the data byte. If the sign bit was

¢t, the JNC instruction causes a jump to PLUS. Otherwise the
instruction is executed, unconditionally transferring control

P2OMINUS. (Note that, in this instance, a JC instruction could

* Substituted for the unconditional jump with identical results)|.

B g e

The add immediate instruction in block THREE: c¢auses the
condition bits to be set. If the sign bit was set, the Jiu
instruction causes program control to be transferred to MINUS.
Qtherwise, program control flows automatically into the PLUS
routine.

3.13 CALL SUBROUTINE INSTRUCTIONS

This section describes the instructions which call subroutines.
These instructions operate like the jump instructions, causing
a transfer of program control. In addition, a return address
is pushed onto the stack for use by the RETURN instructions

(Section 3.14).

[nstructions in this class occupy three bytes as follows:

11xxx]10Jx’Low ADD'HI ADD
] Lood 1 [Loondonead Lodo oo b 1 1 |

|
it '?’\\,_,Q\V/—\\g,/’_&“\\/,__”,/~

i“m_m05t significant

bits of a memory
address

~l€ast significant 8 bits of a
memory address

1 for CALL, 0 otherwise

] 000 for CALL or CNZ
i 001 for cz

010 for CHC

011 for CC

100 for CrO

101 for CPE

110 for CpP

111 for CM

Note that, just as addresses are normally stored in memory
with the low-order byte first, so are the addresses represented
in the call instructions.

3-86

The general assenbly language instruction format is:

Label Code Operand
LABEL: oP suh
EL: 2 sub

ha

~~A l6-bit memory address
ALL, CC, CNC, CZ, CN%, CM, CP, CPE, CFO

Optional instruction label

Instructions in this class call subroutines upon certain
spacified conditions. If the specified condition is true,

a return address is pushed onto the stack and program execution
continues at memory address SUB, formed by concatenating the

8 bits of HI ADD with the 8 bits of LOW ADD. If the specified
condition is false, program execution continues with the

next sequential instruction.

3.13.1 CALL CALL

Format:
Label Code Operand
oplab: CALL sub
/ . / \K
P Y& /“‘«_./_/—\\ /—\M\

11000/l 0lJLOW A DD HI A DD
! L.d] | A O

Description: A call operation is unconditionally performed to
subroutine sub.

Condition bits affected: None

For programming examples see Section 5.

3.13.2 € CALL IF CARRY

Format:
Label Code Operand
oplab: - CC auh
fﬂyf’///// ,f/”“M
ey
P /”_\“”/\\”’_“\\ /”—““”’A\"’”“‘\
114011{1001 LOW ADD]HI ADD
LI Lol LS T S A | I O S T |

Description: If the carry bit is one, a call operation is

performed to subroutine sub.

Condition bits affected: None

For programming examples using subroutines, see Section 5.

3.13.3 CNC CALL IF NO CARRY

Format:

Operand

sub

1 0101100] LOW
! leedl 1

ADDI HI ADD
. It

Description: If the carry bit is zexo, a call operation is

performed to subroutine sub.

Condition bits affected: None

For programming examples using subroutines, see Section 5.

e

3.13.4 CZ CALL IF ZERO)

Format:
Label Code Operand
oplab: Ccz ‘”/////,sub
WA&//—\/\/\ . /\/\/\

Description: If the zero bit is one, a call operation is
performed to subroutine sub.

Condition bits affected: None

For programming examples using subroutines, see Section 5.

3.13.5 CNZ CALL IF NOT ZERO

Format:
Label Code Operand
oplab: " CN2Z sub

g U

11!000,100! LOow ADD‘ HI ADD
I} Lol ! | [N |

Description: 1If the zero bit is zero, a call operation is
performed to subroutine sub.

Condition bits affected: None

For programming examples using subroutines, see Section 5.

T o W 80 RS 8 . 4L 1 0T S AR .40 £ 1§ £ 1052 2 83

3.13.6 CM CALL IF MINUS

Format:
Label Cade Operand
oplab: CHM sub
P //~m\,/ﬁ\~fw~\\ /,,~\%,/\N/»~\\
11111]100’L0w ADD| HI ADD
A Lot () N NN WO T S I | bdhd o 1|

Description: If the sign bit is one (indicating a minus result),
a call operation is performed to subroutine sub.

Condition bits affected: None

For programming examples using subroutines, see Section 5.

3.13.7 CP CALL IF PLUS

Format:
Label Code Operand
oplab: cp /ub
ﬂwNéffffffzzi:::_,”\~,—~\\ //—\\,/\\,—~\\
111 1¢}100 LOW A DD HI A DD
i) [Lt 1 I frdnd bt 1

Description: If the sign bit is zero (indicating a positive
result), a call operation is performed to subroutine sub.

Condition bits affected: None

For programming examples using subroutines, see Section 5.

L/.

i

3.13.8 CPE CALL IF PARITY EVEN

Format:
Label Code Operand
oplab: CPE sub
”ﬁ//////i;,__/»\éfiii://j;"'//\"ﬂ“‘\

111 0 1jL 00O LOW A DD HI A D
! Lo Lot fetod ol) ! l

- T

L !

Description: If the parity bit is one (indicating even parity)
a call operation is performed to subroutine sub.

Condition bits affected: None

For programming examples using subroutines, see Section 5.

3.13.9 CPO CALL IF PARITY ODD

Format:
Label Code Operand
oplab: CPO sub
,«///,//,///“\~//\~,_‘_//,\\’/\\w,%\\

11!100‘100[LOW ADD(HI
i L4 1 IR IR 1]

Description: If the parity bit is zero, (indicating odd parity),
a call operation is performed to subroutine sub.

Condition bits affected: None

For programming examples using subroutines, see Section 5.

3.14 REVURN FROM SUBROUTINE INSTRUCTIONS

This section describes the instructions used to return from
subroutines. These instructions pop the last address saved
g on the stack into the program counter, causing a transfer
Q/‘ of program control te that address.

Instructions in this class occupy one byte as follows:

ljl!I{lX}}{IOIO(X

pnkocgnthaimini ——

N

~1 for RET, 0 otherwise

000 for RET or RNZ
001 for Rz

010 for RNC

011 for RC

100 for RRO

101 for RPE

110 for RP

111 for RM

The general assembly language instruction format is:

Label Code Operand

JABEL H i .

L/ A" N-V;’ \\\
: not used

\RET, RC, RNC, RZ, RNZ, RM, RP, RPE, RPO

dptional statement label

Instructions in this class perform RETURN operations upon certain

specified conditions. If the specified condition is true, a

return operation is performed. Otherwise, program execution
. continues with the next sequential instruction.

Y

3.14.1 RET

Format:

Description:

RETURN

Label

oplab:

Code

RET

ARN

.

Y

00 #
|1

0 (1

Operand

A return operation is unconditionally performed.

Thus, execution proceeds with the instruction immediately
following the last call instruction.

Condition bits affected: None

3.14.2 RC RETURN IF CARRY

Format:
Label Code Operand
oplab: RC ———

.

E11‘011!ooo
] i1 |-

Description:
performed.

Condition bits affected:

For pProgramming examples, see Section 5.

None

If the carry bit is one, a return operation is

3.14.3 RKNC

RETURN IF NO CARRY

Format:
Label Code
oplab: RNC
1 1lO 1 0/000
J [1
Description:
performed.

Condition bits affected:

For programming examples,

3.14.4 RZ RETURN IF ZERO
Format:
Label
oplab:

None

see Section 5.

Code

RZ

%

1 001Jooo
[[_—

Description: If the zero

performed.
Condition bits affected:

For programming examples,

Operand

If the carry bit is zero, a return operation is

Operand

bit is one, a return operation is

None

see Section 5.

- u-w*i‘

W

3.14.5 RNZ RETURN IF NOT ZERO

Format:

Label Code Operand
oplab: -

AN

) 1! 00 ol 0 o[o‘

Description:
performed.

Condition bits affected: None

For programming examples, see Section 5.

3.14.6 RM RETURN IF MINUS
Format:

Label Code Operand

oplab: RM ———

¢
P,
11'111’000
L] 1 |t

Description: If the sign bit is one (indicating a minus

a4 return operation is performed.
Condition bits affected: None

For programming examples, see Section 5.

If the zero bit is zero, a return operation is

result) ,

3.14.7 EP

Format:

Description:

RETURN IF PLUS

Label Code operand

oplab: RP ———

R .

11110000
[Lot

If the sign bit is zero (indicating a positive

result), a return operation is performed.

Condition bits affected: None

For programming examples, see Section 5.

3.14.8 RPE

Format:

. Description:

RETURN IF PARITY EVEN

Label Code Operand

oplab: RPE _—

3

b e,

11101‘000
H -]

If the parity bit is one (indicating even parity),

a return operation is performed.

Condition bits affected: None

For programming examples, see Section 5.

i

o

oy

i

3.14.9 RPO RETURN IF PARITY ODD

ggrmat:
Label Code
oplab: RPO

Description: If the parity bit is zero,
a return operation is performed.

Condition bits affected: None

For programming examples, see Section 5.

Operand

(indicating odd parity),

3.15 R3T INSTRUCTION

This section describes the RST (restart) instruction, which is
a special purpose subroutine jump. This instruction occupies
cne byte.

Label Code Operand
oplab: RST exp

/

lLEXP‘ll
Py gy)

| b

NOTE: "exp" must evaluate to a number in the range 000B to 111B.

Description: The contents of the program counter are pushed
onto the stack, providing a return address for later use by
a RETURN instruction.

Program execution continues at memory address:
0000000C00CO0EXPO0OGOGSB

Normally, this instruction is used in conjunction with up to
eight eight-byte routines in the lower 64 words of memnory

in order to service interrupts to the processor. The interrupt-
ing device causes a particular RST instruction to be executed,
transferring control to a subroutine which deals with the
situation as described in Section 6.

A RETURN instruction then causes the program which was originally
running to resume execution at the instruction where the
interrupt occurred.

Condition bits affected: None

Y

@

Ezamgle:

Label Code Operand Comment

RST 10 - 7 : Call the subroutine at
; address 24 (011000B)

RST E SHL 1 ; Call the subroutine at
; address 48 (110000B). E is
; equated to 11B.

RST 8 : Invalid instruction

R8T 3 : Call the subroutine at
; address 24 (011000B)

For detailed examples of interrupt handling, see Section 6.

INTERRUPT FLIP-FLOP INSTRUCTIONS

3.16

section describes the instructions which operate directly
Instructions in

This
upon the Interrupt Enable flip-flop INTE.

this class occupy one byte as follows:
1111 ::(o 11
| !
\\
1 for EI
0 for DI
The general assembly language format .is:
Label Code Operand
ADEL: X -
1&\\\\not used
EI or DI

Optional instruction label

e

e N R 3 0 O L R 8 T B i R g 8 1A g £k e e iy

3.16.1 EI ENABLE INTERRUPTS
Format:
Label Code Operand
oplab: BI ———
11111011
| S O N
Description: This instruction sets the INTE flip-flop, enabling

the CPU to r

Condition bi

3.16.2 DI

Format:

Description:
the CPU to i

Condition bits affected: None

ecognize and respond to interrupts.

ts affected: None

DISABLE INTERRUPTS

Label Code Operand
oplab: DI —

This instrugtion resets the INTE flip~flop, causihg
gnore all interrupts.

3-100

£

3.17 INPUT/OUTPUT INSTRUCTIONS

This section describes the instructions which cause data to be
input to or output from the 8080. Instructions in this class
occupy two bytes as follows:

1101x011 Ev. .
Lt ! it N

8~bit device number

1 for IN
0 for ouT

The device number is a hardware characteristic of the input or
output device, not under the programmer's control.

The general assembly language format .is:

Label Code Operand
_LABEL: oP EXP

‘\'
N aAn eight-bit device number
IN or OUT

Optional instruction label

3-101

3.17.4 I INpUp

Format:

(,/ Label Code Operand
oplab: IN %fxp
11011011 E X P
Ledoednd dend ot Lodedcdo bl

Description: An eight-bit data byte is read from input device
number exp and replaces the contents of the accumulator.

Condition bits affected: None

Example:
Label Code Operand Comment
IN 0 ; Read one byte from input
; device # 0 into the
‘ ; accumulator
(% IN . 10/2 ; Read one byte from input
; device # 5 into the
; accumulator

3~102

3.17.2 OUT CUTPUT

Format:
Label Code Operand
oplab: ouT exp
4
/’—\\../\._,———m,\
11010011 E X b !
L SO R N | N T T A
Description: The contents of the accumulator are sent to output

device number exp.

Condition bits affected: None
Example:
Label Code Operand Comment
ouT 10 i Write the contents of the
; accumulator to output -
; device # 10
ouT 1FH ; Write the contents of the
‘ ; accumulator to output
; device # 31
3~102

R —— e O = —
ENE LAY HALY INSTRUCTION

This section describes the HLT instruction, which occupies one
byte.

Format:

Label Code Operand
oplab: HLT w—s‘;ﬂa—/
not used

01120110
| -

Description: The program counter is incremented to the address
of the next sequential instruction. The CPU then enters the
STOPPED state and no further activity takes place until an
interrupt occurs.

NOTE: If the interrupt system is disabled (INTE flip-flop = 0)
and a HLT is executed, the 8080 must be powered down and
then repowered to resume operation.

Condition bits affected: None

3-104

3.19 PSEUDO -~ INSTRUCTIONS

This section describes pseudo-instructions recognized by the
assembler. A pseudo~instruction is written in the same fashion
as the machine instructions described in Sections 3.3 - 3.18,
but does not cause any object code to be generated. It acts
merely to provide the assembler with information to be used
subsequently while generating object code.

The general assembly language format of a psuedo=~insgtruction i

T

Label Code Operand Comment

NAME .QPNB

op
N e’ e
h\\\\ “\\Operand, may be optional
ORG, E

QU, SET, END, IF, ENDIF, MACRO, [END.

NAME May be required, optional, or illegal

NOTE: Names on pseudo-instructions are not followed by a colon,
as are labels. Names are required in the label field
of MACRO, EQU, and SET pseudo-instructions. The label
fields of the remaining pseudo-instructions may contain
st optional labels, exactly like the labels on machine
instructions. 1In this case, the label refers to the
memory location immediately following the last previously
assembled machine instruction.

)

3.19.1 ORG ORIGIN

Format:
Label Code Operand
oplab: ORG EXp

A 1l6~bit address

Description: The assembler's location counter is set to the
value of exp, which must be a valid 16-bit memory address. The
next machine instruction or data byte(s) generated will be
assembled at address exp, exp+l etc.

If no ORG appears before the first machine instruction or data
byte in the program, assembly will begin at location 0.

Example 1:

Hex Memory Assembled
.Address Label Code Operand —Data
ORG lo00H

1000 MOV A,C 79

1001 i ADIT 2 c602

1003 JMP NEXT Cc3501¢0
EERE: ORG 1050H

1050 NEXT: XRA N AF

The first ORG pseudo-instruction informs the assembler that the
object program will begin at memory address 1000H. fThe second
ORG tells the assembler to set its location counter to 1050H ;
and continue assembling machine instructions or data bytes from
that point. The label HERE refers to memory location 1006H,
since this is the address immediately following the jump instruc-
tion. Note that the range of memory from 1006H to 104FH is
still included in the object program, but does not contain
assembled data. In particular, the programmer should not assume
that these locations will contain zero, or any other value.

3-106

i

Example 2:

The ORG pseudo-instruction can perform a function equivalent to
the DS (define storage) instruction (see Section 3.2.4). The
following two sections of code are exactly equivalent:

Memory Assemble
address Label Code Operand Label Code Operand Data
2C00 MOV A,C MOV A,C 79

2C01 JMP NEXT JMP NEXT c3lo2c
2C04 DS 12 ORG $+12

2C10 NEXT: XRA a NEXT: XRA A AF

3.19.2 EQU EQUATE

Format:
Label Code Operand
name EQU exp 3

v\\An expression

Required name

Description: The symbol "name" is assigned the value of EXP by
the assembler. Whenever the symbol "name" is encountered sub-
sequently in the assembly, this value will be usea.

NOTE: A symbol may appear in the name field or only one EQU
pseudo-instruction; ie., an EQU symbol may not be

redefined.
Example:
Label Code Operand Assembled Data
PTO EQU 8

ouT PTO D308

3-107

The OUT instruction in this ewample is equivalent to the
statement:

ouT 8
If at some later time the programmer wanted the name PTO to

refer to a different output port, it would be necessary only
to change the EQU statement, not every OUT statement.

3.19.3 SET

Format:
Label Code Operand
name SET exp

An expression

Required name

Description: The symbol "name" is assigned the value of exp by

the assembler. Whenever the symbol "name" is encountered sub-
sequently in the assembly, this value will be used unless
changed by another SET instruction.

This is identical to the EQU equation, except that symbols
may be defined more than once.

Example 1:

Label Code Operand Assembled Data
IMMED SET 5

ADT IMMED C605
IMMED SET 10H~6

ADT IMMED c60A

%)
H
-

~1.08

Example 2:

Before every assembly, the assembler performs the following SET
statements:

Label Code Operand
B SET 0
C SET 1
D SET 2
E SET 3
H SET 4
L SET 5
M SET 6
A SET 7

If this were not done, a statement like:
MOV D,A
would be invalid, forcing the programmer to write:

MOV 2,7

3.19.4 END END OF ASSEMBLY

Format:
Label Code Operand
oplab: END -—

Description: The END statement signifies to the assembler that
the physical end of the program has been reached, and that
generation of the object program and (possibly) listing of the
source program should now begin.

One and only one END statement must appear in every assembly, an
it must be the (physically) last statement of the assembly.

3-109

3.19.5 IF AND ENDIF CONDITIONAIL ASSEMBLY

Format:
Label Code

oplab: iF

s £t a t e m

oplab: ENDIF

Description: The assembler evaluates exp
zero, the statements between IF and ENDIF are ignored.
the intervening statements are assembled as if the IF and ENDIF

were not present.

Operand

w\\\an expression

If exp evaluates to
Otherwise

Example:
Label Code Operand Assembl~d Data
COND SET OFFH
IiF COND
MOV A,C 79
ENDIF
COND SET 0
IF COND
MOV A,C
ENDIF
XRA C A9

3-110

.. the statements.

3.19.6 MACRO AND ENDM MACRO DEFINITION

Label Code Operand

name MACRO list

// o~ A list of expressions,
normally ASCII constants

Required name
s t a t e m e n t s

oplab: ERDM ——

Description: For a detailed explanation of the definition and use
of macros, together with programming examples, see Section 4.

The assembler accepts the statements between MACRO and ENDM as
the definition of the macro named "name". Upon encountering "name"
in the code field of an instruction, the assembler substitutes

the parameters specified in the operand field of the instruction
for the occurences of "list" in the macro definition, and assemblig

“ NOTE: The pseudo-instruction MACRO may not appear in the list
of statements between MACRO and ENDM; i.e., macros may
not define other macros.

3-111

A o

4.0 PROGRAMMING WITH MACROS

Macros (or macro instructions) are an extremely important tool
provided by the assembler. Properly utilized, they will incre
the efficiency of programming and the readability of programs
It is strongly suggested that the user become familiar with

the use of macros and utilize them to tailor programming to sy
his specific needs.

4.1 WHAT ARE MACROS?

A macro is a means of specifying to the assembler that a symbg
(the macro name) appearing in the code field of a statement

actually stands for a group of instructions. Both the macro
name and the instructions for which it stands are chosen by

the programmer.

Consider a simple macro which shifts the contents of the accun
one bit position to the right, while a zero is shifted into tH
high-order bit position. We will call this macro SHRT, and de
it by writing the following instructions in the program:

Label Code Operand

SHRT MACRO
RRC ;s Rotate accumulatq
ANI 7FH ; Clear high-order
ENDM

We can now reference the macro by placing the following instry
tions later in the same program:

Label Code Operand
LDA TEMP ; Load accumulator
SHRT

which would be equivalent to writing:

Label Code Operand
LDA TEMP ; Load accumulator
RRC
ANI 7FH

The example above illustrates the three aspects of a macro: th
definition, the reference and the expansion.

The definition specifies the instruction sequence that is to b
represented by the macro name. Thus:

ase |

it

ulati

fine|

i

it St i b

Label Code Operand

SHRT MACRO
RRC
ANI TFH
ENDM

is the definition of SHRT, and specifies that SHRT stands for
the two instructions:

RRC
ANI 7FH

Every macro must be defined once and only once in a program.
The reference is the point in a program where the macro is

referenced. A macro may be referenced in any number of statements
by inserting the macro name in the code field of the statements:

Label Code Operand
LDA TEMP
SHRT : Macro reference
STA TEMP

The expansion of a macro is the complete instruction sequence

represented by the macro reference:

Label Code Operand
LDA TEMP
RRC } ; Macro reference
ANT 7FH
STA TEMP

The macro expansion will not be present in a source program, but
its machine language equivalent will be generated by the assembler
in the object program.

Now consider a more complex case, a macro that shifts the
accumulator right by a variable number of bit positions specified
by the D register contents.

This macro is named sV, and defined as follows:

Label Code Operand

sHv MACRO

LOOP : RRC ; Rotate right once
ANI T¥H ; Clear the high-order bilt
DCR' D ; Decrement shift countex
JNZ LOOP ; Return for another shifit
ENDM

The SHV macro may then be referenced as follows:

Label Code Operand
LDA TEMP
MVI b, 3 ; Specify 3 right shifts
SHV
STA TEMP

The above instruction seqguence is equivalent to the expression:

Label Code Operand
LDA TEMP
MVI D, 3
LOOP: RRC
ANI 7FH
- DCR D
;3 JINZ LOOP
| STA TEMP

Note that the D register contents will change whenever the SHWV
macro is referenced, since it is used to specify shift count.

A better method is to write a macro which uses an arbitrary re-
gister and loads its own shift amount using macro parameters.
Such a macro is defined as follows:

Label Code Operand
SHV MACRO REG, AMT
MVI REG, AMT
LOOoP : RRC
ANI TFH
DCR REG
JNZ LOOP
ENDM

~ N m ~e we

SHV may now b= referenced as

Label

Code

Operand

LDa

TEMP

; Assume Register C is free,

the expansion of which is given by:

SHV

C, 5

Label Code Operand
MVI C, 5
LOOP : RRC
ANT TEH
DCR C
JINZ Loor

Here is another example of an SHV reference:

Label

Code

Operand

’

and the equivalent expansion:

SHV

E, 2

Label Code Operand
MVI E, 2
LOOP: RRC
ANI 7FH
DCR E
JNZ ‘LooP

While the preceding examples will provide a general idea of the
efficiency and capabilities of macros, a rigorous description

; Assume Register E is free, and a 2-place shift is needed,

Load shift count into register spe
by REG ‘

Perform right rotate
Clear high-order bit
Decrement shift counter

follows:

and a 5-place shift is needed

cifj§

of each aspect of macro programming is given in the next sectionl

I ————r
4.2 MACRO TERMS AND USE

Section 4.1 explains how a macro must be defined, is then refere
and how every reference has an equivalent expansion. FEach of

these three aspects of a macro will be described in the
following subsections.

4,2.1 MACRO DEFINITION

Format:
Label Code Operand
name MACRO plist
m a c r o b o d y
ENDM

Description: The macro definition produces no assembled datla

in the object program. It merely indicates to the assembler
that the symbol "name" is to be considered equivalent to the

group of statements appearing between the pseudo instructions

MACRO and ENDM (Section 3.19.6). This group of statements,

called the macro body, may consist of assembly language instjuc-

tions, pseudo-instructions (except MACRO or ENDM), comments,
references to other macros.

"plist" is a list of expressions (usually unquoted character
strings) which indicate parameters specified by the macro
reference that are to be substituted into the macro body.

These expressions, which serve only to mark the positions where

macro parameters are to be inserted into the macro body, are
called dummy parameters.

Example:

The following macro takes the memory address of the label
specified by the macro reference, loads the most significant
8 bits of the address into the C register and loads the leasf
significant 8 bits of the address into the B register. (This
is the opposite of what the instruction LXI B,ADDR would do)

Label Code Operand

LOAD MACRO ADDR
MVI C, ADDR SHR 8
MVI B, ADDR AND OFFH
ENDM

LABEL:

INST: -

or

ot

2LQLCNCE ¢
Code Operand
LOAD LABEL

is equivalent to the expansion:

Code Operand

MVI C, LABEL SHR 8

MVI B, LABEL .AND OFFH
The reference:

Code Operand

LOAD INST

is equivalent to the expansion:

Code Operand
MVI C, INST SHR 8
MVI B, INST AND OFFH

The MACRO and ENDM statements inform the assembler that when
the symbol LOAD appears in the code field of a statement, the
characters appearing in the operand field of the statement

are to be substituted everywhere the symbol ADDR appears in

the macro body, and the two MVI instructions are to be inserted
into the statements at that point of the program and assembled.

4.2.2 MACRO REFERENCE OR CALL

Format:
Label Code Operand
name plist

"name" must be the name of a macro; that is, "name" appears in th
label .field of a MACRO pseudo-instruction.

“plist" is a list of expressions. Each expression is substituted
into the macro body as indicated by the operand field of the
MACRO pseudo-instruction. Substitution proceeds left to right;
that is,the first string of "plist" replaces every occurrence
of the first dummy parameter in the macro body, the second
replaces the second, and so on.

p

If fewer parameters appear in the macro reference than in the
definition, a null string is substituted for the remaining ex-

pressions in the definition.

If more parameters appear in the reference than the definition|

the extras are ignored.

Example:

Given the macro definition:
Label
MAC1

The reference:

Code
MACRO

DCR
ENDM

Code

MAC1

is equivalent to the expansion:

The reference:

code

XRA
DCR

Code

MACL

is equivalent to the expansion:

Code

XRA
DCR

Operand
Pl, P2, COMMENT

p2
Pl COMMENT

Operand
C, D, '; DECREMENT

Operand

D
C ; DECREMENT

Operand
E, B

Operand

B
E

REG

4.2.3 MACRO EXPANSION

The result obtained by substituting the macro parameters into the
macro body is called the macro expansion. The assembler assembleg
the statements of the expansion exactly as it assembles any other
statements. In particular, every statement produced by expanding
the macro must be a legal assembler statement.

Example:
Given the macro definition:
Label Code Operand
MAC MACRO Pl
PUSH Pl
ENDM

the reference:

MAC B
will produce the legal expansion:

PUSH B
but the reference:

MAC C
will produce the illegal expansion:

PUSH C

which will be flagged as an error.

4.2.4 SCOPE OF LABELS AND NAMES WITHIN MACROS

In this section, the terms global and local are important.

For our purposes, they will be defined as follows: A symbol
is globally defined in a program if its value is known and
can be referenced by any statement in the program, whether

Or not the statement was produced by the expansion of a macro.
A symbol is locally defined if its value is known and can

be referenced only within a particular macro expansion.

R . 454 A5 o, L

Instruction Labels: Normally a.symbol may appear in the label
field of only one instruction. If a label appears in the body

of a macro, however, it will be generated whenever the macro

referenced. To avoid multiple-label conflicts, the assembler
treats labels within macros as local labels, applying only to

particular expansion of a macro. Thus, each "jump to LOOP"
instruction generated in the example of Section 4.1 refers

uniquely to the label LOOP generated in the local macro expanmsion

Conversely, if the programmer wishes to generate a global label

from a macro expansion, he must follow the label with two col
in the macro definition, rather than one. Now, this global |
must not be generated more than once, since it is global and
therefore must be unigue in the program.

For example, consider the macro definition:

Label Code Operand
TMAC MACRO
LOOP: -
JMP LOOP
ENDM

If two references to TMAC appear in a program, the lapel Loor
will be a local label and each JMP LOOP instruction will refe

to the label generated within its own expansion:

Program

.

TMAC
1.00P: — %

JHP 7o)o)-Jomumm—

LOOP: — —r?

JMP LOOP consmtcsied

If in the macro definition, LOOP had been followed by two suc
colons, LOOP would be generated as a global label by the firs
reference to THMAC, while the second reference would be flagge

as an erxor.

N
i
=]

ons |
abel!

ressi

e

o

"Equate" Names: N on equate statements within a macro are %
alwvays local, defined only within the expansion in which they

are generated.

For example, consider the following macro definition:

R

Label Code Operand
EQMAC MACRO
VAL EQU 8
DB VAL
ENDM

The following program section is valid:

Label Code Operand Assembled Data
VAL EQU 6
DBl: DB VAL 06
EQMAC
VAL EQU 8
DB VAL 08
DB2: DB VAL 06

VAL is first defined globally with a value of 6.
reference to VAL at DB1 produces a byte equal to 6.

Therefore the
The macro

reference EQMAC generates a symbol VAL defined only within the
macro expansion with a value of 8; therefore the reference to
VAL by the second statement of the macro produces a byte equal
to 8. Since this statement ends the macro expansion, the refer-
ence to VAL at DB2 refers to the global definition of VAL. The
statement at DB2 therefore produces a byte equal to 6.

"Set" Names: Suppose that a "set" statement is generated by a
macro.- If its name has already been defined globally by another
set statement, the generated statement will change the global
value of the name for all subsequent references. Otherwise,

the name is defined locally, applying only within the current
macro expansion. These cases are illustrated as follows:

Consider the macro definition:

Label Code Operand
STMAC MACRO
sSYM . SET 5
' DB SYM
LERDM

O —

The following program section is valid:

Label Code Operand Assembled Data
SYM SET 0
DB1: DB SYM 00
STMAC
SYM SET 5
DB SYM 05
DB2: DB SYM 05

SYM is first defined globally with a value of zero, causing th
reference at DBl to produce a byte of 0. The macro reference
STMAC resets this global value to 5, causing the second
statement of the macro to produce a value of 5. Although
this ends the macro expansion, the value of SYM remains equal
to 5, as shown by the reference at DB2.

Using the same macro definition as above, the following progrg
section is invalid:

Label Code Operand Assembled Data
STMAC

SYM SET 5
DB SYM 05

DB3: DB "SYM *X¥ERROR**

Since in this case SYM is first defined in a macro expansion,
its value is defined locally. Therefore the second (and final
statement of the macro expansion produces a byte equal to 5.

The statement at DB3 is invalid, however, since SYM is unknown

globally.

e

~

4.2.5 MACRO PARAMETER SUBSTITUTION

The value of macro parameters is determined and passed into
the macro body at the time of the macro referenced, before the
expansion is produced. This evaluation may be delayed by enclosir
a parameter in quotes, causing the actual character string to

be passed into the macro body. The string will then be evaluated
when the macro expansion is produced.

Example:

Suppose that the following macro MAC4 is defined at the beginning
of the program:

Label Code Operand
MAC4 MACRO Pl
ABC SET 14

DB Pl

ENDM

Further suppose that the statement:
ABC SET ’ 3

has been written before the first reference to MAC4, setting
the value cf ABC to 3.

Then the macro reference:
MAC4 ABC

will cause the assembler to evaluate ABC and to substitute the
value 3 for parameter Pl, then produce the expansion:

ABC SET 14
DB 3

If, however, the user had instead written the macro reference:
MAC4 "ABC'
the assembler would evaluate the expression 'ABC', producing the

characters ABC as the value of parameter Pl. Then the expansion
is produced, and, since ABC is altered by the first statement of

ng

the expansion, Pl will now produce the value 14.
Expansion produced:

ABC SET 14

DB ABC ; Assembles ap 14

4.3 REASONS FOR USING MACROS

The use of macros is an important programming technique that c¢an

substantially ease the user's task in the following ways:

(a) Often, a small group of instructions must be repeated manhy
times throughout a program with only minor changes for each

repetition.

Macros can reduce the tedium (and resultant increased chance

for error) associated with these operations.

(b) If an error in a macro definition is discovered, the program
can be corrected by changing the definition and reassembling.
If the same routine had been repeated many times throughout
the program without using macros, each occurrence would have
to be located and changed. Thus debugging time is decreased.

(c) Duplication of effort between programmers can be reduced

the most efficient coding of a particular function is dis-
covered, the macro definition can be made available to all

other programmers.

On|

L

(d) As has been seen with the SHRT (shift right) macro, new and

useful instructions can be easily simulated.

4.4 USEFUL MACROS
4.4.1 LOAD INDIRECT MACRO

The following macro, LIND, loads register RI indirect from mer
location INADD.

That is, location INADD will be assumed to hold a two-byte men

address (least significant byte first) from which register RI
will be loaded.

4-13

ory

ory

Hex
Memory Address
134cC 50 Indicates address
of data
134D 13
134E
134F RI
1350 FF L

If the address of INADD is 134CH, register RI will be loaded from

the address held in memory locations 134CH and 134DH, which is 1350H]

Macro definition:

Label Code

LIND MACRO
LHLD
MOV
ENDM

Macro reference:

Label

; Load register C
;7 location LABEL.

Macro expansion:

Label

Operand

RI, INADD
INADD

RI, M

Code

LIND

Code

LHLD
MOV

Comment

; Load indirect address
; into H and L registers
; Load data into RI

Operand

indirect with the contents of memory

¢, LABEL

Operand

LABEL
c, M

4.4.2 OTHER INDIRECT ADDRESSING MACROS

Refer to the LIND macro definition of Section 4.4.1. Only the

MOV RI,M instruction need be altered to create any other

indirect addressing macro. For example, substituting MOV M,RI

will create a "store indirect" macro. Providing RI is the

accumnulator, substituting ADD M will create an "add to accumul-

ator indirect" macro.

As an alternative to having load indirect, store indirect, and
.other such indirect macros, we could have a "create indirect
address" macro, followed by selected instructions. This alter-

native approach is illustrated for indexed addressing in
Section 4.4.3. '

4.4.3 CREATE INDEXED ADDRESS MACRO

The following macro, IXAD, loads registers H and L with the base
address BSADD, plus the 16-bit index formed by register pair RP

(RP=B,D,H, or SP).

Macro definition:

Label Code Operand Comment

IXAD MACRO RP, BSADD
LXT H, BSADD ; Load the base address
DAD RP ; Add index to base address

ENDM
Macro reference:
Label Code Operand

; The address created in H and L by the following n
: call will be Label + 012EH

MVI D, 1
MVI E, 2EH
IXAD D, LABEL
Macro expansion:

Label Code Operand
MVI D, 1
MVI E, 2EH
LXI H, BSADD
DAD D

4-15

nacro

Program Routines
-

f —— ~j'7<i—-m._§*~w_~____~‘-ﬁh
normal subroutine ret;;;\\x\\“-\\\‘\~\\\w~
sequence not followed by

branch table program

Label

START:

GTBIT:

GETAD:

BTBL:

Code Operand
LXI H, BTBL
RAR

Jc GETAD
INX H

INX H

JMP GTBIT
MoV E,M

INX H

MOV D,M
XCHG

PCHL

bW ROUT1
DW ROUT2
DW ROUT3
DW ROUT4
DW ROUTS
DW ROUT6
DW ROUT7
DW ROUTS

~ o~

~e =~

~e ~e

~ s

~e we o we N

Registers H and L will point
to branch table.

(B,I.)=(H,L)+2 to point to
next address in branch table.
A one bit was found. Get
address in D and E.

Exchange D and E with H and L.
Jump to routine address.

Branch table. Each entry
is a two-byte address
held least significant

byte first.

The control routine at START uses the H and L registers as a
pointer into the branch table (BTBL) corresponding to the bit of
the accumulator that is set. The routine at GETAD then transfers
the address held in the corresponding branch table entry to the H
and L registers via the D and E registers, and then uses a PCHL
instruction, thus transferring control to the selected routine.

5.2 SUBROUTINES

Frequently, a group of instructions must be repeated many times
in a program. As we have seen in Section 4, it is sometimes
helpful to define a macro to produce these groups. If a macro
becomes too lengthy or must be repeated many times, however,
better economy can be obtained by using subroutines.

A subroutine is coded like any other group of assembly language
statements, and is referred to by its name, which is the label

of the first instruction. The programmer references a subroutine
by writing its name in the operand field of a CALL instruction.
When the CALL is executed, the address of the next sequential
instruction after the CALL is pushed onto the stack,

(see Section 2.4), and program execution proceeds with the first
instruction of the subroutine. When the subroutine has completed
its work, a RETURN instruction is executed, which causes the top
address in the stack to be popped into the program counter,
causing program execution to continue with the instruction
following the CALL. Thus, one copy of a subroutine may be called
from many different points in memory, preventing duplication of
code.

Example:

Subroutine MINC increments a 16-bit number held least-significant-
byte first in two consecutive memory. locations, and then returns
to the instruction following the last CALL statement executed.

The address of the number to be incremented is passed in the H

and L registers.

Label Code Operand Comment
MINC: INR M ; Increment low-order byte
RNZ ; If non-zerc, return to
;s calling routine
INX H ; Address high-order byte
INR M ; Increment high-order bhyte
RET ; Return unconditionally

- - L COW LT PO Gl .

Arbitrary
Yemory Address

Arbitrary
I— Memory Address

‘U aco0 | EEEE mine 3¢00 | MINC

m//

then the first call is executed, address 2C03H is pushed onto
the stack indicated by the stack pointer, and control is trans-
ferred to 3CO0H. Execution of either RETURN statement in MINC
vill cause the top entry to be popped off the stack into the
srogram counter, causing execution to continue at 2C03H (since
the CALL statement is three bytes long).

stack Before Stack While Stack After
CALL MINC Executes RETURN is Performed
Stack

E¥ Fr Pointer FF

L/‘ E 3¢ 3¢

’ Stack :

FF Pointer 00 00 —Stack Pointe
FF FF FE

then the second call is executed, address 2EF3H is pushed onto
-he stack, and control is again transferred to MINC. This time,
:ither RETURN instruction will cause execution to resume at 2EF3H.

iote that MINC could have called another subroutine during its
:Xxecution, causing another address to be pushed onto the stack.
‘his can occur as many times as necessary, limited only by the
size of memory available for the stack.

‘ote also that any subroutine could push data onto the stack for
-emporary storage without affecting the call and return sequences
s long as the same amount of data is popped off the stack before
:Xecuting a RETURN statement.

C

U
a1

“

Sy

5.2.1 TRANSFERRING DATA TO SUBROUTINES

A subroutine often requires data to perform its cperations.
In the simplest case, this data may be transferred in one or mord
registers. Subroutine MINC in Section 5.2,for example, receives
the memory address which it requires in the H and L registers.

Sometimes it is more convenient and economical to let the sub-
routine load its own registers. One way to do this is to place
a list of the required data (called a parameter list) in some
data area of memory, and pass the address of this list to the
subroutine in the H and L registers.

For example, the subroutine ADSUB expects the address of a three-
byte parameter list in the H and L registers. It adds the first
and second bytes of the list, and stores the result in the third
byte of the list:

Label Code Operand Comment
LXX H, PLIST Load H and L with addresses

of the parameter list

~e we we

CALL ADSUB Call the subroutine
RETL: .
PLIST: DB 6 ; First number to be added
DB 8 ; Second number to be added
DS 1 ; Result will be stored here
LXI H, LIST2 ; Load H and L registers for
CALL ADSUB ; another call to ADSURB
RET2: -
LIST2: DB~ 10
DB 35
DS 1
ADSUB: MOV A, M ; Get first parameter
INX H ; Increment memory address
MoV B, M ; Get second parameter
ADD B ; Add first to second
INX H ; Increment memory address
MOV M, A ; Store result at third paranmeter
; store
RET 7 Return unconditionally

y

The first time ADSUB is called, it loads the A and B registers
from PLIST and PLIST+1 regpectively, adds them and stores the
result in PLIST+2. Return is then made to the instruction at RETI.

(9]
e

First call to ADSUR:

ADSUB: [E E E

06 PLIST

08 PLIST+1

= QLg PLIST+2

The second time ADSUB is called, the H and L registers point to
the parameter list LIST2. The A and B registers are loaded with

10 and 35 respectively, and the sum is stored at LIST2+2. "Returh

is then made to the instruction at RET2.

Second call to ADSUB:

ADSUB: l E ' s

0A LIST2

23 LIST2+1

2D LIST2+2

Note that the parameter lists PLIST and LIST2 could appear any-
where in memory without altering the results produced by ADSUB.

This approach does have its limitations, however. As coded,
ADSUB must receive a list of two and only two numbers to be
added, and they must be contiguous in memory. Suppose we wanted
a subroutine (GENAD) which would add an arbitrary number of
bytes, located anywhere in memory, and leave the sum in the accum
lator.

e

This can be done by passing the subroutine a parvameter list whi
is a list of addresses of parameters, rather than the parameter

themselves, and signifying the end of the parameter list by a
number whose first byte is FFH (assuming that no parameters
will be stored above address FFOOH).

Call to GENAD:

L

H
GENAD : 5 o
B]

g

l_...k, Y / PARM1

ADR2 PARM4

ADR3
: PARM3
ADR4
FEFF Ng2| parM2

As implenented below, GENAD saves the current sum (beginning wi
zero) in the C register. It then loads the address of the firs

parameter into the D and E registers. If this address is greate

than or equal to FFOOH, it reloads the accumulator with the sum
held in the C register and returns to the calling routine. Oth
wise, it loads the parameter into the accumulator and adds the
sum in the C register to the accumulator. The routine then loo
back to pick up the remaining parameters.

ch

Label Code Comment.
LXY H, PLIST ; Calling program
CALL GENAD
PLIST: DW PARM1 ; List of parameter
DW PARM2 H addresses
DW PARM3
DW PARMA4
DW OFF¥FH ; Terminator
PARMI1: DB [
PARMY : DB 16
PARM3: DB 13
PARM2: DB 82
GENAD : XRA A ; Clear accumulator
LOOP: MOV c, A ; Save current total in C
MOV E, M ; Get low order address byte
.; of first parameter
INX H
MOV A, M ; Get high order address byte
; of first parameter
CPI OFFH ; Compare to FFH
JZ BACK ; If equal, routine is complete
MoV D, A ; D and E now address parameter
LDAX D i Load accumulator with parameter
ADD C ; Add previous total
INX H ; Increment H and L to point
; to next parameter address
JMP LOOP ; Get next parameter
BACK: MOV A, C ; Routine done -- restore total
RET ; Return to calling routine

Note that GENAD could add any combination of the parameters with
no change to the parameters themsclves. The sequence:

Mg

LXY H, PLIST

CALL GENAD
PLIST: DW PARM4

DW PARM1

DW OFFFFH

would cause PARM1 and PARM4 to be added, no matter where in
memory they might be located (excluding addresses above FFQOQH).

Many variations of parameter passing are possible. For example
if it was necessary to allow parameters to be stored at any
address, a calling program could pass the total number of
parameters as the first parameter; the subroutine would load
this first parameter into a register and use it as a counter to
determine when all parameters had been accepted.

5.3 SOFTWARE MULTIPLY AND DIVIDE

The multiplication of two unsigned 8-bit data bytes may be
accomplished by one of two techniques: repetitive addition, or y
of a register cshifting operation.

Repetitive addition provides the simplest, but slowest, form of
multiplication. For example, 2AH*74H may be generated by adding
74H to the (initially =zeroed) accumulator 2AH times.

Using shift operations provides faster multiplication. Shifting
a byte left one bit is egquivalent to multiplying by 2, and 1
shifting a byte right one bit is equivalent to dividiny by 2.
The following process will produce the correct 2-~byte result of
multiplying a one byte multiplicand by a one byte multiplier:

(a) Test the least significant bit of the multiplier.
I1f zero, go to step b. If one, add the multiplicand
to the most significant byte of the result.

(b) shift the entire two-byte result right one bit positid

(c) Repeat steps a and b until all 8 bits of the multiplig
have been tested.

For example, consider the multiplication:

2AH*3CH=9D8H

se

2]

LOW=~ORDER B YTI:“
MULTIPLIER MULTIPLICAND OF RESULT OF RESULT
Start 00111100 00101010 00000000 00000000
Step 1 a-——m=omme e e e o e
b 00000000 00000000
Step 2 A== e e e e e
: b 00000000 00000000
Step 3 = e e e e e 00101010 00000000
b 00010101 00000000
Step 4 amrmm e e e e 00111111 00000000
b 00011111 10000000
Step 5 ammem e e e e e 01001001 10000000
b 00100100 11000000
Step 6 A== e e e e 01001110 11000000
b 00100111 01100000
Step 7 A= e e e
b 00010011 10110000
Step 8 a=~==mmm oo
b 00001001 11011000
Step l: Test multiplier 0-bit; it is 0, so shift 16-bit result
right one bit.
Step 2: Test multiplier l-bit; it is 0, so shift 16-bit result right
one bit.
Step 3: Test multiplier 2-bit; it is 1, so add 2AH to high-order
byte of result and shift 16-bit result right one bit.
Step 4: Test multiplier 3-bit; it is 1, so add 2aH to high-order
byte of result and shift 16~bit result right one bit.
Step 5: Test multiplier 4-bit; it is 1, so add 2AH to high-order
byte of result and shift 16-bit result right one bit.
Step 6: Test multiplier 5-bit; it is 1, so add 2AH to high-order
byte of result and shift 16-bit result right one bit.
!
Step 7: Test multiplier 6-bit; 1t is 0, so shift 16-bit result righlt
one bit.
Step 8: Test multiplier 7-bit; it is 0, so shift 16-bit result
right one bit.
The result produced is 09D8.
The process works for the following reason:
The result of any multiplication may be written:
Equation 1: BIT7*MCND*2’ + BTrresmcnd#2° + . . . +BITO*MCND*20
where BITO through BIT8 are the bits of the multiplier (each egual
to zero or one), and MCND is the multiplicand.
5-10

i

For example:

MULTIPLICAND MULTIPLIER
00001010 ® 00000101

6

. 14
oxoar*27 + oroan*2® + oroam*25 + oroam*2? &
0*0an*23 + 1#0au*22 + o*oam*2’ + 1%0an+2°

il

06101000 + 00001010 = 00110010 = 5010

2dding the multiplicand to the high-order byte of the result
the same as adding MCND*28 to the full 16-bit result; shiftin
the 16-bit result one position to the right is equivalent to
multiplying the result by 2-1 (dividing by 2).

Therefore, step one above produces:

(BTTO0 * McND * 28) * 271

Step two produces:

((BITO * McND * 20) * 21 4 (BrT1 * MonD * 28)) #
= BITO*MCND#26 + BIT1 * MCND * 27

and so on, until step eight produces:

BITO * MCND * 20 + BIT1l * MCND * 2l + . o o +BIT

MCND * 27

which is equivalent to Equation 1 above, and therefore is the
correct result.

Since the multiplication routine described above uses a numbe
of important programming techniques, a sample program is give
with comments.

The program uses the B register to.hold the most significant
of the result, and the C register to hold the least significa
byte of the result.

The 16-bit right shift of the result is performed by two rota
right-through-carry instructions:

—

Zoro carry and

Then rotate C to complete the shift

B

Register D holds the multiplicand, and register C originally

holds the multiplier.

MULT : MVI B, 0 H
MVI E, 9 ;
MULTO: MOV A, C ;
RAR ;
MOV c, A H
DCR E
JZ DONE ;
MOV A, B
JNC MULT1
ADD D H
MULTI: RAR H
MOV B, A
JMP MULTO
DONE :

Initialize most significant byte
of result

Bit counter

Rotate least significant bit of
multiplier to carry and shift
low-order byte of result

Exit if complete

Add multiplicand to high-order byt
of result if bit was a one
Carry=0 here; shift high-order
byte of result

An analagous procedure is used to divide an unsigned 16-bit
number by an unsigned 8-bit number.

subtraction rather than addition,

instead of rotate-right instructions.

The program t:es the B

least signif nt byte
D register t: .:0old the divisor.
in the C reg:.ter, and

and C registers to hold the most and
of the dividend respectively,

the remainder is generated in the B registern

Here, the process involves
and rotate-left instructions

and the
The 8-bit quotient is generated

DIV: MVI B, 9 ; Bit counter
MOV A, B
DIVO: MOV B, A
MOV A, C ; Rotate carry into C registerj roti
RAL ; next most significant bit to |carry
MoV C, A
DCR E
JZ DIV
MOV A, B ; Rotate most significant bit Ho
RAL ; high-order quotient
SUB D ; Subtract divisor. If less than
JINC DIVQ ; high-order quotient, go to DIVO
ADD D ; Otherwise add it back
JMP DIVO
DIV1: RAL
MOV E, A .
MVI A, OFFH ; Complement the quotient
XRA C
MOV C, A
MOV A, E
RAR
DONE :
5.4 MULTIBYTE ADDITION AND SUBTRACTION

The carry bit and the ADC (add with carry) instructions may be
used to add unsigned data quantities of arbitrary length. Con-
sider the following addition of two three-byte unsigned hexa-
decimal numbers:

32AF8A
+ 84BAS0

B76AIA

This addition may be performed on the 8080 by adding the two
low-order bytes of the numbers, then adding the resulting carry
to the two next-higher-order bytes, and so on:

) l)

32 AF 8A
84 BA 90
B7 64 ia
carry=1 carry=1

The following routine will perform this multibyte addition,
making these assumptions:

The C register holds the length of each number to be added (in
this case, 3).

ox¢ Dyte DeGInning at Nemory JoGauciohh ot n aho el T

peciively.

The result will be stored from low-order byte to high-order byte
beginning at memory location FIRST, replacing the original contentg
of these locations.

Memory before addition Memory after addition
FIRST 8A - promrmrt e I TRST 1A T carry
; Q 1 T BN *
FIRST+1 AF . - i FLRSTH 1. 6A +carry
Lt]
FIRST+2 32 g b LRST+2 B7
bt
SECND 90 ot SECND 90
SECND+1 BA A SECND+1 BA
SECND+1 84 P SECND+2 84
Label Code Operand Comment _
MADD: LXI B, FIRST ; B and C address FIRST
LXI H, SECND ; H and L address SECND
XRA A ; Clear carry bit
LOOP: LDAX B ; Load byte of FIRST
ADC M ; Add byte of SECND with carry
STAX B ;s Store result at FIRST
DCR C ; Done if C = 0
JZ DONE
INX B ; Point to next byte of FIRST
INX H ; Point to next byte of SECND
JMP LOOP ; Add next two bytes
DONE :
FIRST: DB 9ol
DB 0BAH
DB 84H
SECND: DB 8AH
DB OAFH
DB 32H

Since none of the instructions in the program loop affect the
carry bit except ADC, the addition with carry will proceed
correctly.

%

When location DONE is reached, bytes FIRST through FIRST+2 wi
contain 1A6AB7, which is the sum shown at the-beginning of this

section arranged from low-order to high-order byte.

The carry (or borrow) bit and the SBB (subtract with borrow)
instruction may be used to subtract unsigned data quantities

of arbitrary length. Consider the following subtraction of two

two-byte unsigned hexadecimal numbers:

1301
- 0503
ODFE

This subtraction may be performed on the 8080 by subtracting
two low-order bytes of the numbers, then using the resulting
bit to adjust the difference of the two higher-order bytes if
borrow occurred (by using the SBB instruction).

Low-order subtraction (carry bit = 0 indicating no borxow):

00000001 = O1H
11111101 = ~-(03H+carry)
11111110 = OFEH, the low-order result

overflow = 0, setting carry = 1 indicating a boxy
High-order subtraction:

00010011 = 13H

11111010 - {05H+carry)
00001101
overflow = 1, resetting the carry bit indicating
borrow

Whenever a borrow has occurred, the SBB instruction increment
the subtrahend by one, which is equivalent to borrowing one
from the minuend.

In order to create a multibyte subtraction routine, it is neg
only to duplicate the multibyte addition routine of this
section, changing the ADC instruction to an SBB instruction.

program will then subtract the number beginning at SECND from the

number beginning at FIRST, placing the result at FIRST.

11

the
carri

row |

no

essal

The

S LECLMAL ADDITION

[S2}
v

Any 4-bit data quantity may be treated as a decimal number as
long as it represcents one of the decimal digits from 0 through
g, and does not contain any of the bit patterns representing
the hexadecimal digits A through F. In order to preserve this
decimal interpretation when performing addition, the value 6
must be added to the 4-bit quantity whenever the addition
produces a result between 10 and 15. This is because each 4-
bit data guantity can hold 6 more combinations of bits than
there are decimal digits.

Decimal addition is performed on the 8080 by letting each 8-bit
byte represent two 4-bit decimal digits. The bytes are summed
in the accumulator in standard fashion, and the DAA (decimal
adjust accumulator) instruction is then used as in Section 3.

to convert the 8-bit binary result to the correct representation
of 2 decimal digits. The settings of the carry and auxiliary
carry bits also affect the operation of the DAA, permitting the
addition of decimal numbers longer than two digits.

To perform the decimal addition:

2985
+ 4936

7921
the process works as follows:

(1) Clear the carry and add the two lowest-order digits of each
number (remember that each 2 decimal digits are represented
by one byte).

85 = 10000101B
36 = 00110110B
carry = 0
///ﬂ@ 101110118
caryy = 0 auxiliary carry = 0

The accumulator now contains BBH.

(2) Perform a DAA operation. Since the rightmost four bits are?2
10D, 6 will be added to the accumulator.

Accumulator = 10111011B
6 = 01108
110000018

-16

[543

-

i’

(3)

(4)

A routine which adds decimal numbers, then, is exactly
analagous to the multibyte addition routine MADD of Section 5.4
and may be produced by inserting the instruction DAA after the
ADC M instruction of that example. Each iteration of the
program loop will add two decimal digits (one byte) of the
numbers.

TInce e e o I pITE e ow >10, 6 will be added
to these bits, setting the carrxy bit.

Accumulator = 110000018
6 = 0110 B
1} 601000018

carry bit = 1

The accumulator now contains 21H. Store these two digitsl|

Add the next group of two digits:

29 = 00101001B
49 = 010010018
carry = 1
6] 0I110011B
carry = 0//// auxiliary carry =1

The accumulator now contains 72H.

Perform a DAA operation. Since the auxiliary carry bit
is set, 6 will be added to the accumulator.

Accumulator = 01110011B
6= ___ 01108
QLfllllOOlB

carry bit = 0

Since the leftmost 4 bits are< 10 and the carry bit is
reset, no further action occurs.

Thus, the correct decimal result 7921 is generated in two
bytes.

~

5.6 DECIMAL SUBTRACTION

Each 4-bit data quantity may be treated as a decimal number as
long as it represents one of the decimal digits 0 through 9. Tha
DAA (decimal adjust accumulator) instruction may be used to permi
subtraction of one byte (representing a 2-digit decimal number)
from another, generating a 2-digit decimal result. 1In fact, the
DAA permits subtraction of multidigit decimal numbers.

+

The process consists of generating the hundred's complement of
the subtrahend digit (the difference between the subtrahend digidy
and 100 decimal), and adding the result to the minuend digit.

For instance, to subtract 34D from 56D, the hundred's complement
of 34D (l00D-34D=66D) is added to 56D, producing 122D which, when)
truncated to 8 bits gives 22D, the correct result. If a borrow
was generated by the previous subtraction, the 99's complement of]
the subtrahend digit is produced to compensate for the borrow.

In detail, the procedure for subtracting one multi~-digit decimal
from another is as follows:

(i) Set the carry bit = 1 indicating no borrow.

(2) Load the accumulator with 99H, representing the number 99
decimal.

(3) Add zero to the accumulator with carry, producing either 99H
or 9AH, and resetting the carry bit.

(4) Subtract the subtrahend digits from the accumulator, producing
either the 99's or 100's complement.

(5) Add the minuend digits to the accumulator.

(6) Use the DAA instruction to make sure the result in the
accumulator is in decimal format, and to indicate a borrow
in the carry bit if one occurred.

Save this result.

(7) 1If there are more digits to subtract, go to step 2.
Otherwise, stop.

Example:

Perform the decimal subtraction:

4358D

-~ 1362D
2996D

4

(1)
(2)
(3)

(4)

(5)

(6)

(7)
(8)
(9)

(10)

(11)

set carry = 1
Load accumulator with 99H.

Add zero with carry to the accumulator, producing 9AH.

Accumulator = 10011001B
0 = 00000000B
Carry = 1

T0011010B = 9AH

Subtract the subtrahend digits 62H from the accumulator.

Accunmulator = 10011010B
62H = 10011110B -
1] 001110008
Add the minuend digits 58H to the accumulator.
Accumulator = 00111000B
58H = 01011000B

//’Q]Iﬁﬁfﬁﬁﬁﬁﬁ = 90H
carry = 0 “K\\‘““§“\\auxiliary carry = 1

DAA converts accumulator to 96H (since auxiliary carry = 1
and leaves carry bit = 0 indicating that a borrow occurred

Load accumulator with 99H.
Add zero with carry to accumulator, leaving accumulator =
subtract the subtrahend digits 13H from the accumulator.
Accumulator = 10011001B
I3 = 11101101B
1} T0000110B
Add the minuend digits 43H to the accumulator.
10000110B

01000011B
0} T1601001B = C9H

Accumulator
43H

nu

carxy = 0 auxiliary carry = 0

DAA converts accumulator to 29H and sets the carry bit =1
indicating no borrow occurred.

Therefore, the result of subtracting 1362D from 4358D is 2

99H. |

996D|

i

T tollowing subroutine will subtract one 1l6-digit decimal
nurber from another using the following assumptions:

The minugnd is stored least Significant (2) digits first beginning
at location MINU.

The subtrahend is stored least significant (2) digits first be-

f(_/ ginning at location SBTRA.

The re;ult will be stored least significant (2) digits first,
replacing the minuend.

Label Code Operand Comment
DSUB: LXT D, MINU ; D and E address minuend
LXT H, SBTRA ; H and L address subtrahend
MVI c, 8 ; Each loop subtracts 2 digits
; (one byte), therefore program
; will subtract 16 digits.
STC i Set carry indicating no borrow
LOOP : MVI A, 99H ; Load accumulator with 99H.
ACI 0 ; Add zero with carry
SUB M ; Produce complement of subtrahend
XCHG ;7 Switch D and E with H and L
ADD M ; Add minuend
bAA i Decimal adjust accumulator
MoV M, A ; Store result
XCHG ; Reswitch D and E with H and L
DCR C ; Done if C = ¢
JZ DONE
INX D ;i Address next byte of minuend
L/ INX H -7 Address next byte of subtrahend
JMP Loop i Get next 2 decimal digits
DONE : NOP

il

5.7 ALTERING MACRO EXPANSIONS

This section describes how a macro may be written such that
identical references to the macro produce different expansions.
As a useful example of this, consider a macro SBMAC which needs
to call a subroutine SUBR to perform its function. One way

to provide the macro with the necessary subroutine would be to
include a separate copy of the subroutine in any program which
contains the macro. A better method is to let the macro itself
generate the subroutine during the first macro expansion, but

skip the generation of the subroutine on any subsequent expansion.

This may be accomplished as follows:

Consider the following program section which consists of one
global set statement and the definition of SBMAC (dashes indicate
those assembly language statements necessary to the program,
but irrelevant to this discussion):

Label Code Operand
FIRST SET OFFH
SBMAC MACRO

CALL SUBR

IF FIRST
FIRST SET 0

- JMP ouT
SUBR:: -

RET
OUT: NOP

ENDIF

ENDM

jo1]

The symbol FIRST is set to FFH, then the macro SBMAC is define

The first time SBMAC is referenced, the expansion produced will
be the following:

Label

FIRST

SUBR:

OUT:

IF

SET
JMP
RET
NOP

Operand

SUBR

FIRST

ouT

Since FIRST is non~zero when encountered during this expansion,
the statements between the IF and ENDIF are assembled into the
program. The first statement thus assembled sets the value of
FIRST to 0, while the remaining statements are the necessary
subroutine SUBR and a jump around the subroutine. When this
portion of the program is executed, the subroutine SUBR will be
called, but program execution will not flow into the subroutine's

definition.

On any subsequent reference to SBMAC in the program, however,
the following expansion will be produced:

Label

Code

SBMAC

CALL

IF

Operand

SUBR

FIRST

Since FIRST is now equal to zero, the IF statement ends the

macro expansion and does not cause the subroutine to be generated
again. The label SUBR is known during this expansion because

it was defined globally (followed by two colons in the definition)

4]

~22

6.0 INTERRUPTS

Often, events occur external to the central processing unit
which require immediate action by the CPU. For example,
suppose a device is receiving a string of 80 characters from
the CPU, one.at a time, at fixed intervals. There are two
ways to handle such a situation:

(a) A program could be written which inputs the first character,
stalls until the next character is ready (eg., executes 4
timeout by incrementing a sufficiently large counter),
then inputs the next character, and proceeds in this
fashion until the entire 80 character string has been
received.

This method is referred to as programmed Input/Output.
(b) The device controller could interrupt the CPU when a
' character is ready to be input, forcing a branch from thg

executing program to a special interrupt service routine.

The interrupt sequence may be illustrated as follows:

INTERRUPT
Normal /’ Program
Program e Execution

Execution Continues

Interrupt Sexvice
Routine

The 8080 contains a bit named INTE which may be set or reset
by the instructions EI and DI described in Section 3.16. When
ever INTE is equal to 0, the entire interrupt handling system
is disabled, and no interrupts will be accepted. When INTE is
equal to 1, the interrupt handling system is enabled, and any
interrupt will be accepted.

When the CPU recognizes an interrupt request from an external
device, the following actions occur:

C

The instruction supplied by the interrupting device is normally
an RST instruction, (see Section 3.15), since this is an efficien
one byte call to one of 8 eight-byte subroutines located in the
first 64 words of memory. For instance, the teletype may
supply the instruction:

with each teletype input interrupt. Then the subroutine which
processes data transmitted from the teletype to the CPU will be
called into execution via an eight~-byte instruction sequence at
memory locations 0000H to 0007H.

A digital input device may supply the instruction:

Then the subroutine that processes the digital input signals
will be called via a sequence of instructions occupying memory

locations 0008H to O00OFH.

1) The instruction currently being executed is completed.
2) The interrupt enable bit, INTE, is reset = 0.

3) The interrupting device supplies, via hardware, one
instruction which the CPU executes. This instructign

does not appear anywhere in memory, and the programmer

has no control over it, since it is a function of
the interrupting device's controller design. The
program counter is not incremented before this
instruction.

I

RST OH

RST 1H

Device a
Supplies RST OH Transfers control to i 0000 Subrouting
device a
0007
Device b
‘ Transfers control to 0008 Subrouti
Supplies RST 1H Ao devigz ;ne
000F
Device x
) Transfers control to 0038 i
Supplies RST H } E:SEEZtine
003F

Note that any of these 8-byte subroutines may in turn call longer
subroutines to process the interrupt, if necessary.

6~2

for

for

for

P

——==3C0C MOV E,A

kny device may supply an RST instruction (and indeed may supply
any 8080 instruction).

The following is an example of an Interrupt sequence:

ARBITRARY
MEMORY ADDRESS ;NSTRUCTIOQ
3CO0B MOV C,B lInterrupt from Device | Cg

Device 1 supplies
RST OH

Program Counter =
3C0C pushed onto
the stack.

Control transferred

—L_to 0000

0000 Instruction 1
Instruction 2

Stack popped into
program counter

Device one signals an interrupt as the CPU is executing the
instruction at 3COB. This instruction is completed. The program
counter remains set to 3COC, and the instruction RST OH supplied
by device one is executed. Since this is a call to location zero
3C0C is pushed onto the stack and program control is transferred
to location 0000H. (This subroutine may perform jumps, calls, or
any other operation). When the RETURN is executed, address 3C0C
is popped off the stack and replaces the contents of the program
counter, causing execution to continue at the instruction
following the point where the interrupt occurred.

6.1 WRITING INTERRUPT SUBROUTINES

In general, any registers or condition bits changed by an interrupt
subroutine must be restored before returning to the interrupted
program, or errors will occur.

For example, suppose a program is interrupted just prior to *the
instruction:

Jc LoC

and the carry bit equals 1. If the interrupt subroutine happens
to zero the carry bit just before returning to the interrupted
program, the jump to LOC which should have occurred will not,
causing the interrupted program to produce erroneous results.

Like any other subroutine then, any interrupt subroutine should
save at least the condition bits and restore them before
performing a RETURN operation. (The obvious and most convenient
way to do this is to save the data in the stack, using PUSH and
POP operations .)

Further, the interrupt enable system is automatically disabled
whenever an interrupt is acknowledged. Except in special

cases, therefore, an interrupt subroutine should include an EI
instruction somewhere to permit detection and handling of

future interrupts. Any time after an EI is executed, the
interrupt subroutine may itself be interrupted. This process may
continue to any level, but as long as all pertinent data are

, saved and restored, correct program execution will continue
automatically.

A typical interrupt subroutine, then, could appear as follows:

Code Operand Comment
PUSH PSW ; Save condition bits and accumulator
EI i Re-enable interrupts
. :
. ; Perform necessary actions to service
. ; the interrupt
POP PSW i Restore machine status
RET ; Return to interrupted program

P

C

e

This appendix provides a summary of 8080 assembly language
Abbreviations used are as follows:

instructions.

A

s
n

ADDR

Aux. carry
Camrry
CODE
DATA

DATALG

INTE
LABEL:
M
Parity
PC
PCH
PCL

REGM

AFPLENDLA A

—=— INSTRUCTION SUMMARY ~-

The accumulator (register A)

Bit n of the accumulator contents, where n may have any vg
from 0 to 7 and 0 is the least significant (rightmost) bit.

Any memory address

The auxiliary carry bit

The carry bit

An operation code

8 bits (one byte) of data

16 bits (2 bytes) of data
Destination register or memory byte
A constant or mathematical expression
The 8080 Interrupt enable flip-flop
Any instruction label

A memory byte

The parity bit

Program Counter

The most significant 8 bits of the program counter

The least significant 8 bits of the program counter

Any register or memory byte

lue

oY

Ry A vegister pair. | Legal register pair symbols are:

B for registers B and C

D for registers D and E

H for registers H and L

SP for the 16 bit stack pointer

PSW for condition bits and register A
RP1 The first register of register pair RP
P2 The second register of register pair RP.
sion The sign bit
sp The 16-bit stack pointer register
SKRC Source register or memory byte
zero The zero bit
Xy The value obtained by concatenating the values Xand Y
[1 An optional field enclosed by brackets
(} Contents of register or memory byte enclosed by parenthese

e Replace value on lefthand side of arrow with value on right|
hand side of arrow
CARRY BIT INSTRUCTIONS
Format:
[LABEL:] CODE

CODE DESCRIPTION
STC (carry) — 1 Set carry
CMC {carry) -—— (EETTY) Complement carry

Condition bits affected: Carry

B2

SINGLE REGISTER INSTRUCTIONS

Format:

[L.ABEL:] INR REGM

[LABEL:] DCR REGM

[LABEL:] CMA

[CABEL:] DAA
Code Description
INR (REGM) =-— (REGM)+1 Increment register REGM
DCR (REGM) -———(REGM)-1 Decrement register REGM
CMA (a) - (A Complement accumulator
DAA If (Ao'Aq) > 9 or (aux. carry)=1, Convert accumulator

(a) ——= (a)+6 contents to form

Then if (A4—A7) »>9 or (carry)= two decimal

1 (2) = (n)+6*24 digits
Condition bits affected: INR,DCR : Zero, sign, parity
CMA : None
DAL : Zero, sign, parity, carry, aux.

NOP INSTRUCTION

carry!

Format:

fLABEL:] NOp
Code Description
NCP] = e e - - No operation

Condition bits affected: None

'+ Format:

[LABEL:] MOV DST,8KRC
fLABEL:] CODE RP
“NOTE: SRC and DST not both = M
NOTE: RP=BorD
Code -Description a
MOV (DST) == (SRC) Load register DST from register SRQ l
STAX (RP)e——e— (n) Store accumulator at memory
location referenced by the specified
Jegister pair
LDAX (a) - ((RP)) Load accumulator from memory
location referenced by the specified
register pair

-Condition bits affected: None

"REGISTER OR MEMORY TO ACCUMULATOR INSTRUCTIONS

TFormat;
[LABEL:] CODE REGM

Code g Description E
ADD (A) =—— (A)+(REGM) Add REGM to accumulator
ADC (A) ~— (A)+(REGM)+(carry) Add REGM to accumulator

with carry
SUB () =—— (A)~(REGM) Subtract REGM from accumulator
SBB (A) =— (A)-(REGM)-(carry) Subtract REGM from accumulator

with borrow
ANA (A) =——— (A) AND (REGM) AND accumulator with REGM
XRA (A) =——— (A) XOR (REGM) EXCLUSIVE~ORaccumulator

with REGM

y

T

Code Description

ORA (&) ~— (A} OR (REGM) CR accumulator with REGM

CMP Condition bits set by (A)-(REGM) Compare REGM with
accumulator

Condition bits affected:

ADD, ADC, SUB, SBB: Carry, sign, zero, parity, aux. carry

AWNA, XRA, ORA: Sign, zero, parity. Carry is zerced.
Zero set if (A)=(REGM)

LT3
&

CMP: Carry, sign, zero, parity, aux. carry.
Carry reset if (A) < (REGM)
Carry set if (A) 2 (REGM)
ROTATE ACCUMULATOR INSTRUCTIONS
Format:
[LABEL:) CODE
Code Description
RLC (carry)~—- A7, An+I’*~An' AO — A7 Set carry = Af' rdtate
accumulator left 1
RRC (carry) — AD' An-—~ Am»l , A7 —_ .l\.0 vSet carry = A 0 rgtate |
. accumulator right
RAL AmI'" An' (carry) — A7, AO — (carry) Rotate accumulator
! left: through the garry
RAR A—D>n ., (carry)—A_, A~ (carry) Rotate accumulator
n ntl 0" "7 .
xight through chrry

Condition bits affected: Carry

Format;

REGISTER PAIR INSTRUCTIONS

{LABEL:] CODE1 RP
~op-
[LABEL:] CODE2

HNote: For PUSH and POP, RP=B,D,H, or PSW

For DAD, INX, and DCX, RP=B,D,H, or SP

Codel

Description

«PUSH

POP

DAD

INX
DCX

((SP)-1)~— (RP1), ((SP)-2)-— (RPZ),

(Sp)~— (SP)-2

(RP1)=— ((SP)+1), (RP2)—. ((SP)},

(SP) =— (SP)+2

(HL)=——(HL) + (RP)

(RP) — (RP)+1
(RP}— (RP)-1

Save RP on the
stack

RP=A saves accumulator

and condition bits.
Restpre RP from
the stack

RP=A restores accumula
and cendition bits,
Add RP to the 16-bit
number in H and L,
Increment RP by 1
Decrement RP by 1

tor

Code?

Description

XCHG

XTHL

SPHL

(H) == (D}, @L)~—

()

(L) == ((sP)), (H)— ((SP)+1)

{8P) — (H): (L)

Exchange the 16 bit
number in H and L with
that in D and E.
Exchange the last
values saved in the
stack with H and L.
Load stack pointer from
H and L.

Condition bits affected:

PUSH, INX, DCX, XCHG, XTHL, SPHL: None

POP : If RP=PSW, all condition bits are restored from the stack, otherwise

none are affected.

DAD

Format:

Carry
IMMEDIATE INSTRUCTIONS

[LABEL:] LXI
-or-

[LABEL:] MVI
-or-

[LABEL:] CODE

Note: RP=B,D,H, or SP

RP, DATA16
REGM, DATA

REGM

1

-

| e (RP) = —~ DATA 16 Move 16 bit immediate Data

into RP

MVI (REGM)>———DATA Move immediate DATA into REGM

ADI (A)=—— (A) + DATA Add immediate data to accumujator

ACI (2)———(A) + DATA + (carry) Add immediate data to accumulator
with cany

sUI (A} =—~ (A) - DATA Subtract immediate data from
accumulator

SBI (3) =~——(A) - DATA - (carry) Subtract immediate data from
accumulator with borrow

ANT (A) =—— (A) AND DATA AND accumulator with immedigte
data

XRI (p) —— (A) XOR DATA EXCLUSIVE-OR ccumulator with
immediate data

ORI (A) ~—— (A} OR DATA OR accumulator with immediate
data

CPIL Condition bits set by (A)~DATA Compare immediate data with
accumulator

Condition bits affected:

LXI, MVI: None

ADI, ACI, SUI, SBI. Carry, sign, zero, parity, aux. carry

AWI, XRI,ORI: Zero, sigm, parity. Carry is zeroed.

CPI: Carry, sign, zero, parity, aux. carmy. Zero set if (&) = DATA
Carry reset if (A)< DATA

Carry set if (A} > DATA

DIRECT ADDRESSING INSTRUCTIONS

Format;
[LABEL:] CODE ADDR

CODE DESCRIPTICN

STA " (ADDR) - 2) Store accumulator at location
ADDR

LDA (A) —— (ADDR) Load accumulator from locatior
ADDR

SHLD (ADDR) — (L), (ADDR+1) — (H) Store L and H at ADDR and
ADDR+1 3

LHLD (L)«— (ADDR), (H)~ (ADDR+1) Load L.and H from ADDR and ADDR+]

N

Condition bits affected: None

A-7

JUMP INSTRUCTIONS

[LABEL:] PCHL
-or-~

[LABFL:] CODE ADDR
CODE DESCRIPTION
PCHL (PC)s—- (HL) Jump to location specified by

register Hand L

TMP (PC)=-——ADDR’ Jump to location ADDR
jC If (carry) = 1, (PC)=~—— ADDR .

If (carry) = 0, (PC)—— (PC)+3 Jump to ADDR if carry set
JNC If (carry) = 0, (PC)=——— ADDR

If (carry) = 1, (PC)—— (PC)+3 Jump to ADDR if carry reset
12 If (zero) =1, (PC)~—— ADDR

If (zero) =0, (PC)=— (PC)+3 Jump to ADDR of zero set
INZ If (zero) =0, (PC)—— ADDR

If (zero) =1, (PC)—— (PC)+3 Jump to ADDR if zero reset
P If (sign) =0, (PC)-—— ADDR

If (sign) =1, (PC)~——— (PC)+3 Jump to ADDR if plus
™M If (sign) =1, (PC)—— ADDR .

If (sign) =0, (PC)— (PC)+3 Jump to ADDR if minus
JPE If (parity)=1, (PC)=—— ADDR

If (parity)= 0, (PC)— (PC)+3 Jump to ADDR if parity even
JPO 1If (parity)= 0, (PC) ADDR

If (parity)= 1, (PCl~— (PC)+3

Jump to ADDR if parity odbd

Condition bits affected: None

A-8

CALL INSTRUCTIONS

Format:
[LABEL:] CODE ADDR
CODE DESCRIPTION
CALL [((sP)-1)=—— (PCH), ((SP)-2)=—(PCL), (SP)—(SP)+2, (PC) ~— ADDR

CGC

CKC

Cz

CNZ

(o1

L5708

CPE

CPO

If {carry) =1,
If {carry) = 0,

If (carry) = 0,

If (carry) = 1,
If (zero) =1,
If (zero) =0,

If (zero) =,

If (zero) =1,

If (sign) = 0,
If (sign) =1,
If (sign) =1,
If (sign) =0,
If (parity)=1,
If (parity)= 0,
If (parity)= 0,

If (parity)=1,

Call subroutine and push return

address onto stack

((SP)~1)~(PCH), ((SP)-2)—(PCL), (SP) —(SP)+2,
(PC) «— ADDR
(PC) =— (PC)+3 Call subroutine if carry set

((SP)-1)—(PCH), ({SP)~2)=—(PCL), (SP)~—(SP)+2,
(PC) =—— ADDR
(PC) — (PC)+3 Call subroutine if carry resdt

((SP)-1)~(PCH), ((SP)-2)-— (PCL), (SP)=—(SP)+2,
(PC)»~——— ADDR
(PC) = (PC)+3 Call subroutine if zero set

((SP)-1) -~ (PCH), ((SPJ-2) (PCL), (SPy— (sP)+2,
(PC) = ADDR .
(PC) =— (PC)+3 " Call subroutine if zero reset

((sP)~1)=— (PCH), ((SP)~2)—(PCL), (SP)=—(SP)+2,
(PC) — ADDR

(PC)=— (PC)+3 Call subroutine if sign plus
{(3p)~1)— (PCH), ((sP)-2)—(PCL), (SP)=—(SP)+2,
(PC)— ADDR

(PC) — (PC)+3 Call subroutine if sign minys

((SP)~1)—(PCH), ((SP)-2)-—(PCL), (SP)— (SP)+2,
(PC) — ADDR
(PC) ~— (PC)+3 Call subroutine if parity even

((SP)—I)M(PCH)A, ((sP)~2)-—(PCL), (SP)~— (sp)+2,
(PC)— ADDR
(PC)~— (PC)+3 Call subroutine if parity odd

Condition bits affected: None

s s A e)

Format:

{LABEL:] CODE

copEe DESCRIPTION

RET (PCL)—((SP)), (PCH)=—((SP)+1), (SP)~—(SP}+2
Return from subroutine

RC If (carry) = 1, (PCL}—((SP)), (PCH)~— ((SP)+1), (SP)~— (SP)+2

If (carry) = 0, (PC)~—(PC)+3 Return if carry set
RNC {1If (carry) = 0, (PCL)=—((SP)), (PCH)--{(SP)+1), (SP)— (SP)+2

If (carry) = 1, (PC)—(PC)+3 Retuin if carry reset
RZ {If (zero) =1, (PCL)—((SP)), (PCH)— ((SP)+1), (SP)— (SP)+2

If (zero) = 0, (PC)~ (PC)+3 Return if zero set
RNZ HIf (zero) =0, (PCL}—((SP)), (PCH)— ((SP)+1), (SP)~— (SP)+2

If (zero) =1, (PC)— (PC)+3 Return if zero reset
RM If (sign) =1, (PCL)=—((SP)), (PCH)—-((SP)+1), (SP)~- (SP)+2

If (sign) =0, (PC)—(PC)+3 Return if minus
RP If (sign) = 0, (PCL}—((SP)), (PCH)= ((SP)+1), (SP)~—(SP)+2

If (sign) =1, (PC)~—(PC)+3 Return if plus
RPE } If (parity)= 1, (PCL)=—((SP)), (PCH)—((SP)+1), (SP)=— (SP)+2

If (parity)= 0, (PC)=—(PC)+3 Return if parity even
RPO If (parity)= 0, (PCL)~—((SP)), (PCH)= ((SP)+1), (SP}— (SP)+2

If (parity)= 1, (PC)—(PC)+3 Retumn if parity odd

Condition bits affected: None

RST INSTRUCTION

Format;

[LABEL:] RST EXP

Note: 0 EXP 7

CODL{ DESCRIPTION

RST ((SR)-1)=—(PCH), ((SP)~2)~—(PCL), {SP)-—(SP)+2
(PC)-—0000000000EXPO0OQB Call subroutine at address
s ifled by EXP

e tzrmd

Condition bits affected: None
2-10

i
PR 5

INTERRUPT FLIP FLOP INSTRUCTIONS

Format:
[LABEL:] CODE
CODE DESCRIPTION
EI (INTE) —— 1 Enable the interrupt system
DI (INTE) — 0 Disable the interrupt system

Cébndition bits affected: None

INPUT/OUTPUT INSTRUCTIONS

Fdrmat:
[LABEL:] CODE BEP
CODE DESCRIPTION
:3 IN (a) <~—— input device Read a byte from device EXP intq
v the accumulator
ouT output device (A) Send the accumulator contents t
device EXP

Céndition bits affected: None

HLT INSTRUCTION

Format:
[LABEL:] HLT
CODE DESCRIPTION
HLT | —emeeecemec———— Instruction execution halts until
an interrupt occurs.

Condition bits affected: None

PSEUDO - INSTRUCTIONS

ORG PSEUDO -~ INSTRUCTION

Format:
ORG EXP
Code Description
ORG LOCATION COUNTER ~= EXP Set Assembler lo-
cation counter {o
EXP
EQU PSEUDO~ INSTRUCTION
Format:
NAME EQU EXP
Code Description
EQU NAME =e——————EXP Assign the value EXP to the
symbol NAME
SET PSEUDO ~ INSTRUCTION
Format:

NAME SET EXP

A~-12

Code Description
SET NAME === EXP Assign the value EXP to the sym
NAME., which may have been pre~
viously SET.
““END PSEUDO ~ INSTRUCTION
Format:
END
Cude Description
END End the assembly.
B
0
CONDITIONAL ASSEMBLY PSEUDOC - INSTRUCTIONS
Format:.

ir EXP
-and-

ENDIF

Code Deécrip‘cion
IF If EXP =0, ignore assembler statements until ENDIF
is reached, Otherwise, continue assembling statements.
ENDIF End range of preceding IF.
MACRC DEFINITION PSEUDO - INSTRUCTIONS
Format:
NAME MACRO LIST
~and-
ENDIM
Code Description
MACRO Define a macro named NAME with parameters
LIST
ENDM End macro definition

A-14

Gl

APPENDIX B

==INSTRUCTION EXECUTION TIMES AND BIT PATTERNS--

This appendix summarizes the bit patterns and number of time
states associated with every 8080 CPU instruction.
When using this summary, note the following symbology:

1) DDD represents a destination register. SSS represents a
source register. Both DDD and SSS are interpreted as

follows:
DDD or SS$ Interpretation

000 Register B

001 Register C

010 Register D

011 Register E

100 Register H

101 Register L

110 A memory register
111 The accumulator

2) Instruction execution time equals number of time periods
multiplied by the duration of a time period.

A time period may vary from 480 nanosecs to 2 msec.

Where two numbers of time periods are shown (eg. 5/11),

it means that the smaller number of time periocds will be
required if a condition is not met, and the larger number
of time periods will be required if the condition is met.

)
b4

o

o

™

o

o

¢

[=1

i ENESESPS IS ON IS IS o et 1t omd md oof o omf

= 0 et o d rd gt e 11111111100000011110000334 CooCNMERNBWMLLY
. 7////////0////////11111111111111111 e

o 111111111155555555

G Ll R R R

r

@

2

£

3

=

DO 100000000100000000111111111111111001111111100001111
Wul O0000000000000000011100000000000011110000001111111]¢
(o]

~ 111111111000000000100000011110000000000000000000000
™

-

L

T

B-2

v

77770555500444444447777777777777777‘444000000000
v~ 4 - rMrdririr-ird i el i

NMOO0OO0OO0OHOHOHNUUNNNNNNOODODODODOOODODODOCODOOHMMrMrkiOOOODOD OO

DAt el D000 ONMINWVIWVIW U et ed rd vl rmd ret emd vt b ot od o rmd =t 7t md =l ol el ot rd e el et rd] i i

Vrdrdrt el A e e R 1 NN Wt rdrd rd i e el el e il il S A A D O DD OO DO

OCOCACAAMHNMOOOHOMOMOriOMOrH-OM-MO MO MO MO rMOMOMOMfOMOrkiOT ~HO

o

S

583

HOSEOAR OO ATAA A OO~ r OO OO OO~ -t OOMNr{OOMHriCOA O OO~ OO

HONQSAQMEH A OO0 00 rmrmrrdtOCOO -l O0OCrHHHROOOOOOODC O m vl

[§

TLAIN dar AT LY LN

; =kt~ OO0 00D DO C OO TCCOOOOCOOOOOOrmrdrdrdrded md rd O C O O rmi r=d v7d o4 v=f r=f o=f ot 0d
O OO0V COOOCCOOCOOrirderderirderdrdodrdriricdedrmirdrdr{rd rd ri rd vrd rd 7l ©O O O O 4 7§ o=d ¢ vd od 04 od 4
o~
'™
a3
e L — e
HOE R AL EE Mk Mk RN eEEESEEE S
5 BEUSEERSASEALEASIEEaRSR sgnusnmy ponsyaaa 0 8, He
= ped _t =
S S2HenRERRERRRRR I nEaE23RR 38590002 K882 38858585585
o o

C
C

VI IT T D N
-

Mt At OO~ O

Dl DO Number of Time Peridgds ‘

aisinininiaielnlaloErrar=

COCOmMmMHMOOOOO

N AN A HOOHHO O

CrHOHOAHOOGC O

COrrdirdrdrirdirdrd i 4 O

COOCODOOOOO O

COCOVDOCOOON—D

MNEMONIC D7 D6

DCX B
DXC D
DCX H
BCX Sp
CMA
STC
CHC
DAA
SHLD
LHLD
EI
DI

Kop

The 8080. uses a seven-bit ASCII code, which is the normal 8 bit ASCI1I cd

APPENDIX "C"™
— ASCII TABLE --

with the parity (high-order) bit always reset.

% Graphic or Control

ASCII (Hexadecimal)

NULL
SOM
EOCA
EOM
EOT
WRU
RU
BELL
FE
H.Tab
Line Feed
V. Tab
Form
Retum
SO

ST
DCO
X-On
Tape Aux. On
X-Off
Tape Aux. Off
Error
Sync
LEM
Se

Si

s2

S3

S4

S5

S6

s7

pde

Graphic or Control

ASCII Hexadecimal

ACK
Alt. Mode
Rubout

+ 2~ T RV 3

| Y

TN

ank

woNounhwNOOE fPENHoVI A

7C

S

Graphic or Control

ASCII Hexadecimal

Nr<><5<qv-im:ccvozgﬁﬁummmmmunm»

41
42
43

=2

