W

W

(C

INTRODUCTION
GENERAL DESCRIPTION
SPECIFICATIONS
THE SCOPE OF THIS MANUAL

CHAPTER 1
THE INTELLEC 8/MOD 80 SYSTEM OVERVIEW
FUNCTIONAL DESCRIPTION OF MODULES
FRONT PANEL CONSOLE OPERATIONS
MEMORY REFERENCE OPERATIONS
Memory Read Operations
Memory Write Operations
INPUT/OUTPUT OPERATIONS
Input Operations
Output Operations
Teletype Operations
INTERRUPT OPERATIONS
PROM PROGRAMMING OPERATIONS

CHAPTER 2
THE imm8-83 CENTRAL PROCESSOR MODULE

THE FUNCTION OF A CPU

The Computer System

The Architecture of a CPU
FUNCTIONAL ORGANIZATION OF THE
CENTRAL PROCESSOR MODULE
8080 EIGHT-BIT PARALLEL CENTRAL
PROCESSOR UNIT

Architecture of the 8080 CPU

The Processor Cycle

Interrupt Sequences

Hold Sequences

Halt Sequences

Start-up of the 8080 CPU
PERIPHERAL LOGIC

Timing Logic

Instruction Fetch

Memory Reference Operations

Memory Read and Memory Write

1/Q Operations

vi

WWWWWRNNNNN ==

N oo

- Interrupt Cycle
Hold Operations
Reset
Programmed Display

UTILIZATION
Installation
Pin List

CHAPTER 3
THE imm8-61 INPUT/OUTPUT CARD
THE imm8-61 INPUT/QUTPUT CARD —
GENERAL FUNCTIONAL DESCRIPTION
The Functional Units
Module and Port Select Operations
{nput Operation
Output Operation
Teletype Input Operation
Teletype Qutput Operation
THE imm8-61 INPUT/OUTPUT CARD —
THEORY OF OPERATION
Module Selection
Input Operations
Output Operations
Teletype Communications
imm8-61 INPUT/OUTPUT CARD —
UTILIZATION
User-Available Options
Installation Data
Teletype Modifications

CHAPTER 4
THE imm8-63 OUTPUT CARD
GENERAL FUNCTIONAL DESCRIPTION
DETAILED FUNCTIONAL THEORY
Module Decoding
Port Decoding
Output Operations
CARD UTILIZATION
User Options

CHAPTER § Interrupt Operations 70

THE imm6-28 RANDOM ACCESS MEMORY CARD 53 Sense Operations 70
THE imm6-28 RANDOM ACCESS MEMORY Search/Wait Operations 71
CARD —GENERAL FUNCTIONAL DESCRIPTION 53 Processor Control Operations 71

The Four Functionat Units 53,
Memory Addressing Operations 53

54 CHAPTER 8
54 THE CHASSIS, MOTHER BOARD,
AND POWER SUPPLIES 75

Memory Write Operations
Memory Read Operations
THE Immé6-28 RANDOM ACCESS MEMORY
CARD~THEORY OF OPERATION 54
Physical Memory Implementation 54 CHAPTER 9
54

Memory Address Decoding THE immé-76 PROM PROGRAMMER MODULE 77
Memory Read Operations 56 THE 8702A PROGRAMMABLE
Memory Write Operations 56 READ ONLY MEMORY 77
THE imm#&-28 RANDOM ACCESS MEMORY FUNCTIONAL DESCRIPTION
CARD —UTILIZATION 56 OF THE MODULE 78
Memory Address Coding 56 Interface To The INTELLEC 8/MOD 80 78
Installation Data and Requirements 57 THEQORY OF OPERATION OF THE MODULE 80
Data Distribution 80
CHAPTER 6 Control and Timing 81
THE imm6-26 PROGRAMMABLE READ-ONLY Power Supply 81
MEMORY CARD 59 UTILIZATION 83
THE immé6-26 PROGRAMMABLE READ- Installation 83
'ONLY MEMORY CARD —GENERAL Power Requirements 83
FUNCTIONAL DESCRIPTION 59 Pin List 83
The Four Functional Units 59
Memory Read Operation 59 CHAPTER 10 -
THE imm6-26 PROGRAMMABLE READ- THE INTELLEC 8/MOD 80 SYSTEM UTILIZATION 87
ONLY MEMORY CARD ~THEORY INTELLEC 8/MOD 80 INSTALLATION 87
OF OPERATION . 60 SYSTEM 1/0 INTERFACING 87
Physical Memory Implementation 60 INTELLEC 8/MOD 80 SYSTEM .
Memory Address Decoding 60 OPERATING REQUIREMENTS 87
Memory Read Operations 60 EXTERNAL DEVICE CONTROLLER
Random Access Enable 61 INTERFACING 9
THE imm6-26 PROGRAMMABLE READ-
ONLY MEMORY CARD ~UTILIZATION 81
Memory Address Coding 61
PROM Installation, Removal,
Programming and Erasure 62
Installation Data and Requirements 62
CHAPTER 7 APPENDIX A .
THE INTELLEC 8/MOD 80 CONTROL CONSOLE 65 INSTRUCTION SET SUMMARY Vil
THE INTELLEC 8/MOD 80 CONTROL
CONSOLE~FUNCTIONAL DESCRIPTION 65 .
Data Display Operations 65 APPENDIX B
Manual Memory Access Operations 66 ELECTRICAL CHARACTERISTICS OF
Manual /O Access 67 LOGIC ELEMENTS USED IN THE
Interrupt Operations 67 INTELLEC 8/MOD 80 XiX
Sense Operations 67
Search-Wait Operations 67 APPENDIX C .
Pracessor Control Operations 68 ASCIl TABLE XXX
THE INTELLEC 8/MOD 80 FRONT PANEL CEN-
TRAL CONSOLE-THEORY OF OPERATION 68
Data Display Operations 68 APPENDIX D
Manual Memory Access Operations 70 BINARY-DECIMAL-HEXADECIMAL

Manual 1/0 Access Operations 70 CONVERSION TABLES XXXXit1

28

2-10
211
2-12
213
2-14
2-15
2-16

3-1
3-3
3-4
35
3-6

3-8

A Simplified INTELLEC 8/MOD 80
Block Diagram

Program Jump

CPU Module Functional Block

8080 CPU Package Configuration
8080 CPU Functional Block Diagram
#1, 9, and SYNC Timing

State Transition Diagram

Typical Fetch Machine Cycle
Interrupt Timing

Hold Operation (Read Mode)

Hold Operation {Write Mode)

Halt Timing

Oscillator-Counter Timing

Timing Generator

PROM Memory Synchronization Timing
RAM Memory Synchronization Timing
imm8-83 Central Processor Module
Schematic Diagram

1/0 Functional Btock Diagram
1/0 Module Schematic Diagram
1/0 Module Timing

Relay Circuit (Alternate)
Distributor Trip Magnet

Mode Switch

Terminal Block

Current Source Resistor

12
15
16

21
22
23
24
25
26
27

30

39
42

5828

46

it

39
3-10

41
4.2
43

5-1
5-2
5-3
6-1

6-2
6-3

741
7-2

8-1
9-1
9-2

9-3
94

10-1

TY Modification
Teletype Layout

Output Module Functional Block Diagram
Qutput Module Schematic Diagram
Output Module Timing

RAM Module Functional Block Diagram
RAM Memory Module Timing
RAM Memory Module Schematic Diagram

PROM Memory Module Functional

Block Diagram

PROM Memory Module Timing

PROM Memory Module Schematic Diagram

Front Panel Logic Schematic Diagram
Front Panel Controller Schematic Diagram

INTELLEC 8/MOD 80 Module Assignments

PROM Programmer Schematic Diagram
PROM Programmer Timing

Power Supply Functional Block
Voltage Regulator Loop: Simplified
Schematic Equivalent

INTELLEC 8/MOD 80 Rear Panel

47

a9
50
51
53
55
59
62
63

72
73

75
79
80
81
82

. 88

241
2-2
2-3

3-1

INTELLEC 8/MOD 80 Specifications

8080 Status Bit Definitions

State Definitions

CPU Module: D.C. Signal Characteristics
CPU Module Qutput Connector

Port Addresses Enabled by
1/0 Module Jumpers

vi
19
34
35

41

10-1
10-2

imm8-63 Addressing Options

P1 Pin List
J1 Pin List
J2 Pin List
J3 Pin List

1/0 Port Assignments—Module 1/0 0
1/0 Module To Back Pane! Interface Chart

51

85
85
85

89
91

Y

(L

GENERAL DESCRIPTION

The INTELLEC 8/MOD 80 (imm8-84A)} is a low-cost
computer system, designed to simplify the development of
microcomputer systems which employ INTEL 8080 micro-
processors.

The INTELLEC 8/MOD 80 uses the 8080 as its cen-
tral processing unit. The 8080 has a basic cycle time of 2.0
microseconds. The system contains a control console and
provides read-write program memory as a substitute for read-
only memory. Thus the 8080 chip can be accessed via the
control console, and programs can be debugged before being
enabled in read-only memory. Turn around time from initial
system concept to finished product is shortened, and sys-
tems development costs are thus reduced.

The INTELLEC 8/MOD 80 has its own power supply,
cabinet, display and control panel, 8192 bytes (8K) of Ran-
dom Access Memory, a Programmable Read-Only Memory
Module with 4K capacity, a PROM Programmer Module, and
an Input/Output Module which contains four 8-bit input
ports and four 8-bit output ports as well as provision for
serial communications interface.

The Bare Bones 80 is an INTELLEC 8/MOD 80 with-
out the power supply, display and control console, or cabi-
net, and is designed for 4K of RAM memory, rack-mounting.

Both the INTELLEC 8/MOD 80 system and the Bare
Bones 80 can be expanded up to 16K bytes of memory; in
addition, the 1/O capability can be expanded to support six-
teen input ports and sixteen output ports, or four input
ports and twenty-eight output ports.

The standard software for the INTELLEC 8/MOD 80
includes a resident System Monitor, a Text Editor, and an
Assembler. In addition to these INTELLEC 8/MOD 80 resi-
dent programs, there are three development programs avail-
able, which are designed for operation on LARGE-SCALE
HOST COMPUTERS. These are a macro cross-assembler, a
microcomputer simulator (INTERP/80), and a PL/M com-
piler. PL/M is a high-level language that can shorten program
development time significantly.

SPECIFICATIONS

The INTELLEC 8/MOD 80 is made up of separate
modules, each of which performs a different task in making
up a complete system. These modules are:

1) The imm8-83 Central Processor Module, which op-
erates as the Central Processor for the INTELLEC
8/MOD 80. In this capacity, it performs the fol-
lowing functions:

a) it controls the execution of program instruc-
tions, sending the appropriate control signais to
the other modules which make up the INTEL-
LEC 8/MOD 80.

b} It performs all of the necessary arithmetic, logi-
cal, and data manipulation operations necessary
for program operation.

¢) it controls overall system timing.

2) The imm6-28 Random Access Memory Module,
which provides 4,096 8-bit words of Read/Write
memory for system use, As many as four cards can
be used in a system, for a memory capacity of 16K,

3) The imm6-26 Programmable Read-only Memory
Module, which provides up to 4,096 words of Read-
only memory in increments of 256 words, and
which may be operated in parallel with the system
Random Access Memory. Again, more than one’
card may be used, giving a total Read-only memory
capacity of 16K words. *

4) The imm8-61 Input/Output Module, which pro-
vides four eight-bit input ports and four eight-bit
output ports for system Input/Output operations. |
Two of the input ports and two of the output ports
may be used with integral Teletype communica-
tions circuits to provide Teletype 1/0. Up to four
of these cards may be used in a system, giving a
total of sixteen input ports and sixteen output:
ports.

5) The imm8-63 Output Module, which provides eight
latching output ports for system Qutput operations.

Up to three of these cards may be used in a sys-
tem, giving a total capability of twenty-four output
ports,

6) The imm86-76 PROM Programmer Card, which gives
the INTELLEC 8/MOD 80 system the capability
of programming INTEL 8702A Programmable
Read-Only Memory chips.

7) The Front Panel Controller and Display Console,
which provides a means of controlling program exe-
cution, program debugging, and INTELLEC 8/
MOD 80 operation. It also provides displays of sys-
tem status and information.

8) The chassis and power supplies.

A summary of the specifications for the INTELLEC
8/MOD 80 is given in Table i-1. Specific information re-

INTELLEC 8/MOD 80 Specifications

lating to setting-up and operating the INTELLEC 8/MOD
80 is contained in Chapter 10 of this manual, and in the
INTELLEC 8/MOD 80 Operator’s Manual. .

THE SCOPE OF THIS MANUAL

This manual provides an understanding of the design
concepts and capabilities of the INTELLEC 8/MOD 80 as a
whole and its individual modules, and in addition provides
detailed theory of operation and implementation informa-
tion for each module.

For a detailed description of INTELLEC 8/MOD 80
operating procedures, including software operation, see the
INTELLEC 8/MOD 80 Operator’'s Manual. For a detailed
examination of programming at an elementary level, suitable
for an engineer with no previous programming experience,
see the 8080 Assembly Language Programmer’s Manual.

SPECIFICATIONS

Word Length 8 bits

Registers

accumulator.

Seven 8-bit general purpose registers, two of which are used to hold Memory
Addresses during Memory Reference operations, and one used as the

Instruction Set

Seventy-eight instructions, including Memory-index register, index-register-
memory, register-to-register, single register, immediate, and memory arithmetic
and logic instructions, as well as conditional and unconditional branch in-
structions, input/output, and machine instructions.

Arithmetic 8-bit parallel, binary, fixed point, two’s complement.

Memory 8192 8-bit words, Read/Write; 4096 8-bit words, Read-only. (Expandable to
16,384 words.} .

Addressing Direct — up to 16K bytes. (up to 64K using external enclosures)

Cycle Time 2.0 microseconds

Environment 0°-55°C.

Power Requirements

BV @ 12 A (max); 6 A (typ);

-9V @ 1.8 A (max); 0.5 A (typ);

-12V @ 0.03 A (max); 0.016 A (typ);

(More power may be required for expanded INTELLEC 8/MQOD 80 systems.)

AC Requirement

60 Hz; 115 VAC, 200 Watts

Size INTELLEC 8/MOD 80: 7" x 17 1/8" x 1/4" ,
Bare Bones 8: 6 3/4” x 17" x 12" (suitable for standard RETMA 7" x 19"
panel space).

Weight 30 ib.

Table i-1.

vi

i

<

A © (0 0 et ol
-(6?‘ < A 00 g‘a 4\6
o Nt Sl

The INTELLEC 8/MOD 80 microcomputer develop-
ment system consists of six independent functional
modules and a power supply, housed in a single chassis and
enclosure. This section describes the interrelationship of the
INTELLEC 8/MOD 80 functional modules, and shows the
part played by each module during typical operations.

FRONT PANEL
1 consoLe
— |
z|3
&7
3{3]=
3 EIEIL
> 2|2
5 38
H
¢ MEMORY a
S (RAM, PROM) —1
- Z G
< EREd
FEIA 2|8
R a3
&> gle
<5 z|e
LE 3
LH S
l¢—
L
cru
DATA INPUT
BUS
INPUT/OUTPUT ouTPUT
MODULE MOOULE
PROM
PROGRAMMER
MODULE

Figure 1-1. A Simplified INTELLEC 8/MOD 80 Block
Diagram.

FUNCTIONAL DESCRIPTION OF MODULES

Figure 1-1 illustrates the six functional modules of the
INTELLEC 8/MOD 80 system, and shows interconnecting
busses. The six functional modules are:

1) A Central Processing Unit (CPU) which performs
arithmetic, logical and data manipulation operat-
ions.

2) Memory module, which can be Programmabie
Read-Only (PROM), Random Access (RAM), or a
combination of the two. Though Figure 1-1
illustrates memory as a single module, it can be
physically implemented as one or more modules,
depending on the amount of memory included in a
system. The memory module provides data and
program storage; a standard system includes two 4K
RAM modules and one 4K PROM module.

3) Input/Output module. Physically there can be up to
four Input/Output modules in an INTELLEC
8/MOD 80 system. Each Input/Output module
provides four individually addressable 8-bit output
ports. A serial communications facility, which the
INTELLEC 8/MOD 80 uses for teletype interface, is
included in each module.

4) Output module. Physically there can be up to three
Output modules in an INTELLEC 8/MOD 80
system. Each Output module provides eight
individually addressable 8-bit output ports.

5) A Front Panel Display and Control Console. The
Console provides a means for manually monitoring
and controlling INTELLEC 8/MOD 80 operations.

6) PROM Programmer Module. This module provides a
timing and level shifting circuitry for programming
INTEL’s 8702A PROM:s.

The functional units of the INTELLEC 8/MOD 80 are
interconnected by the following busses:

Bus (a), the Memory Address bus, carries memory

addresses from the console or the CPU to the Memory,
Input/Qutput and Output Modules.

Bus (b} the Output Data bus, carries data from the
console or CPU to the Memory, Input/Output and Output
Modules.

Bus (c), the data from Memory bus, carries data
from memory to the CPU.

Bus (d), the Data Input bus, carries data from input
ports to the CPU,

Bus (e), the Interrupt Instruction bus, allows the
console to transmit a program interrupt to the CPU.

Bus (f), the Control bus, is used to control instruction
execution. Since the console is connected to the control
bus, instruction execution can be controlled from the
console.

Since the console operates in parallel to the CPU, it
contains a considerable amount of parallel logic, including
its own data and address registers; thus there are certain
states in which the CPU remains in control and the console
temporarily suspends operations, and there are other states
in which the console completely takes over machine
operations.

Conceptually, the CPU module provides the INTEL-
LEC 8/MOD 80 with its '‘computer’” capabilities. This
module performs arithmetic, logical and data manipuiation
operations as directed by a stored program.

A stored program is a sequence of numbers (eight
binary digits per number) which encode a sequence of
individual CPU operations. (Frequently an instruction code
is written as two hexadecimal digits rather than eight binary
digits). The sequence of individual instructions that
constitute a program are stored in the Memory module. If
the memory module includes Random Access Memory
{(RAM), it can also be used to store temporary data that
may be generated in the course of executing a program.

Almost all computer applications require information
to be transferred between the CPU module and external
devices. Such transfers take place via the Input/QOutput and
Output modules,

Communications between the INTELLEC 8/MOD 80
and an operator occur via the Front Panel Console and
teletype. .

FRONT PANEL CONSOLE OPERATIONS

Consider how console operations must be performed,
given the hardware organization illustrated in Figure 1-1.

Since the console has its own address and data
registers, and since there is a bi-directional bus link
(through the CPU) between the console and memory, data
can be read from memory to console, and written from
console to memory.

Although there is no direct path for data from input
ports to the console, performing an input access operation
from the console causes the input data to be sent through
the CPU and onto bus (c), where it is displayed on the
console.

There is no direct link between CPU registers and the
console. The system monitor has a register interrogation
capability.

MEMORY REFERENCE OPERATIONS

This section describes memory reference operations as
performed by the INTELLEC 8/MOD 80 system, and is
divided into two subsections. Memory input or read
operations, and memory output or write operations.

Memory Read Operations

A Memory Read operation is performed in order to
obtain data from a certain location in the system memory,
and to bring that data to the CPU. It is performed via the
following steps:

1) The CPU sends a Memory Address to the Memory

modules on the Memory Address bus.

2) The Memory modules send the data contained in
the selected memory location to the CPU on the
Memory Data Input bus.

The Front Panel can perform a manual Memory Read
operation by ‘taking over’ the Memory Data buses, and by
sending a manually entered Memory Address, rather than a
CPU-generated Address, to the memory modules.

Memory Write Operations

A Memory Write operation is performed in order to
send data from the CPU to a certain selected location in
memory. It is performed in the following steps:

1) The CPU sends a Memory Address to the memory
modules on the Memory Address bus.

2) The CPU sends the data which is to be stored in
memory to the memory modules on the Memory
Qutput Data bus.

3) The CPU sends a control signal to the memory
modules which causes the data to be written irtto
the selected memory location.

The Front Panel can perform a manual memory write
operation by taking over the Memory Address and Memory
Qutput Data busses, and by sending manually entered
Memory Address and Memory Data to the memory module.

INPUT/OQUTPUT OPERATIONS

This section describes Input and Output operations as
performed by the INTELLEC 8/MOD 80 system, and is
divided into three subsections.

c

Input Operations

An Input operation is performed in order to obtain
data from some external device and to bring it into the
CPU, where it can be processed. It is performed via the
following steps:

1) The CPU sends an 1/O Address, which specifies
which device is to be used for the Input operation,
to the Input/Output modules on the Memory
Address bus.

2) The Input/Output module responds by sending the
data which is present on the selected Input port
back to the CPU on the Data input bus.

An Input operation can also be performed manually
by giving the Front Panel control over the Memory Address
bus. It then. sends a manually entered /O Address and an
1/0 read command to the |nput/Output module.

Output Operations

An Qutput operation is performed in order to send
data from the CPU to an external device. It is performed via
the following steps:

1) The CPU sends an 1/O address, which specifies the
device to be used for the Qutput operation, to the
Input/Qutput and Output modules on the Memory
Address. bus. At the same time, the CPU sends the
data which is to be output to the Input/Output
modules on the Output Data bus.

2) The CPU sends an |/O write command to the
modules.

3) The Input/Output module latches the data and
sends the data which- the CPU has supplied to the
selected output device.

An Output operation may also be manually executed
by giving control of the Memory. Address/Data Qutput bus
to the Front Panel. The Front Panel sends a manually
entered 1/O Address and manually entered data to the
Input/ Qutput and Output modules.

Teletype Operations

Teletype operations are performed in exactly the same
fashion as normal, non-teletype Input and Output
operations, with the exception that the external device used
in the case of Teletype operations is an integral Teletype

communications circuit (UART) in the Input/OQutput.

module. Teletype data enters the Input/Output module via
input ports 0 and 1; data being sent to the Teletype
proceeds through output ports O and 1 on the 1/O module.
Chapter 3 explains how to install the Teletype ASR33.

INTERRUPT OPERATIONS

An Interrupt operation is performed when an external
device which requires servicing sends an Interrupt signal to
the CPU. This causes the CPU to interrupt its normal
operating sequence, perform the operations required by the
external device, and then return to the point at which it
was interrupted and resume normal operations. An
Interrupt operation is performed in the following steps:

1) The external device sends an Interrupt signal to the
CPU. The CPU stops its normal operation and
acknowledges the interrupt request.

2) The external device sends an Interrupt {nstruction
to the CPU.

3) The CPU executes the Interrupt Instruction exactly
as if it were a normal instruction.

Usually, the Interrupt Instruction will be a RESTART
instruction, A RESTART instruction causes the CPU to
branch to a certain location in memory, where an interrupt
service routine can be stored.

An Interrupt operation can be performed mandal!y
from the Control Console. In order to accomplish this, the
Interrupt Instruction is manually entered into the Front
Panel. When an Interrupt switch is depressed, the Front
Panel will generate an Interrupt signai, and will send the
manually entered Interrupt Instruction to the CPU.

In the basic system, only the Control Console initiates
interrupts, The ability to interrupt may be extended,
however, to the user’'s peripheral devices, in order to
simplify system programming and to increase system
throughput. Some modifications to the system, however,
are necessary.

PROM PROGRAMMING OPERATIONS

The INTELLEC 8/MOD 80 has been designed to offer
an easy means of programming INTEL 8702A Program-
mable Read-Only memory chips. This is done with the
use of the PROM Programming module, and is accomplished
by performing three successive Output operations:

1) Send the address within the PROM which is to be
programmed .
2)Send the data which is to be written into the
selected address
3) Send a control word which is used by the PROM
Programmer module to initiate programming
The PROM Programmer is used as the external device
for each of these Output operations. When it receives the
control word, it causes the data specified to be written into
the PROM address selected.

‘\P? W

P o D ot o W
¢ 7 W o @ eO oM
: 2 6\06‘:‘00?’% 00

The imm8-33 Central Processor Module is designed
specifically to serve as the central processing unit (CPU) of
the INTELLEC 8/MOD 80 Microcomputer Development
System. Its general purpose architecture permits the CPU
module to perform similar functions in any eight-bit
computer system. Thus the imm8-33, like the other
INTELLEC modules, can be furnished independently on an
OEM basis. All inputs and outputs are TTL-compatible, to
simplify the external interface.

The basic capabilities of the module are obtained
through the use of Intel’s 8080 microprocessor. This
processor contains an eight-bit accumulator, six eight-bit
index registers, and an eight-bit parallel arithmetic and logic
unit (ALU). Sixteen latched address lines enable the 8080
to address 65,536 bytes of external memory. As many as
256 eight-bit input ports and 256 eight-bit output ports
may also be addressed directly. A sixteen-bit program
counter and a sixteen-bit stack pointer permit flexible
handling of subroutines. Logic for the processing of hoids
and interrupts is built into the CPU.

The 8080's internal control logic recognizes and
executes 78 different instructions, These are encoded
numerically, in a binary format consisting of one, two, or
three eight-bit bytes. Instruction categories include:

(a) register-register transfers
(b} register-memory transfers

(c) arithmetic operations, including add and sub-
tract, with and without carry or borrow

(d) Boolean logic operations, including AND, OR,
XOR :

(e} decimal arithmetic
(f) input/output (1/0)
(g) stack control

(h) interrupt control
(i} register operate

(i) branch control

Five internal status flags enable conditional jumps,
calls and returns, based on carry {overflow-underflow), sign,
zero, parity, and auxiliary carry.

The Central Processor Module contains a crystal-
controlled oscillator and clock generator. These provide a
stable timing reference for all circuitry on the board. The
use of a 2 MHz clock permits a basic machine cycle of two
microseconds, for those instructions that do not reference
memory during their execution.

+ Memory interface and control logic are included on
the board, The imm8-83 contains a fully buffered
sixteen-line address bus, which communicates with the
memory’s decoding logic. An eight-line data input bus and a
buffered ‘eight-line output bus provide for the actual data
transfers. Logic on the board monitors the status signals
from the 8080 CPU, and generates a READ/WRITE (R/W)
command for the control of external memory.

1/0 interface and control are also built into the
Central Processor Module. 1/0 peripherals share eight of the
module’s sixteen address lines with memory, permitting the
processor to identify one of 256 input or 256 output
devices during execution of an 1/O instruction. A separate
eight-line input bus provides communication with the input
peripherals, while output devices share the module’s
eight-line data output bus with memory. Control signals
generated on the module are available at the edge connector
pins, to identify and synchronize input and output
operations.

A latched eight-bit output port is included on the
imm8-83. It is program addressable (FF ¢}, and is intended
primarily for convenience in console de-bugging.

The imm8-83 is equipped with an asynchronous
INTERRUPT REQUEST line and with .an eight-bit
interrupt port, enabling it to process external interrupts. A
peripheral device may request service. by placing an
appropriate binary code on the interrupt port’s lines and
simultaneously activating the INTERRUPT REQUEST line.
By doing so, the interrupting device causes the processor to

execute the instruction whose code appears at the port.
Any of the single byte instructions in the processor’s
repertoire may be used during an interrupt. The restart
(RST) instruction, a one-byte call, is particularly useful for
interruptive processing. A restart causes the processor to
jump to one of eight dedicated memory locations, where
service routines may be stored. Return to the interrupted
program is accomplished by an ordinary subroutine return
(RET), or by one of the conditional return instructions.

The Central Processor Module is also equipped with a
HOLD REQUEST line, which enables external devices to
conduct direct memory access (DMA) transfers. During an
acknowledged HOLD REQUEST, the processor suspends its
normal activity. The module’s address bus and control lines
(R/W, 770 N, and 1/0 OUT) are disabled, relinquishing
contro! to the active peripheral. The memory input data
bus is multiplexed on to the output data bus to facilitate
write or output operations. This allows the external device
to command the busses and to effect memory transfers
directly.

A RESET input permits restarting the program from
memory location zero. Any INTERRUPT or HOLD in
progress will automatically be terminated by the RESET.
The program counter is returned to ‘‘zero”. The
accumulator, status flags, and index registers are not
cleared. The HL and DE registers may be exchanged.

As a stand-alone CPU, the imm8-83 is almost entirely
self contained. It requires only DC power, at levels of:

+12+5%VDC @ 0.06 Amperes
+5+5%VDC @ 1.5 Amperes
-9+5%VDC @ 0.1 Amperes

All circuitry is mounted on a 6.18" x 8.00" printed
circuit board, and signal and power connections enter the
module through a dual 50-pin double-sided PC edge
connector (0.125" centers). No special installation will be
necessary.

The imm8-83 may also be used as a plug-in substitute
for the imm8-82, to update existing INTELLEC 8/MOD 80
systems. Installation of the Central Processor Module is
straightforward, and the CPU module itself requires no
changes. Minor modifications are necessary, however, in the
case of other modules.

Although the imm8-83's edge connector pins
correspond nominally to those of the imm8-82, it has not
been possible to maintain a strict and complete logical
overlap in the address and control lines. The imm8-60 1/0
Moduie, the imm8-62 Qutput Module, and the Front Panel
Controller will therefore have to be modified slightly.

Intel provides a kit so simplify the conversion of ex-
isting INTELLEC 8 systems. This contains the imm8-83
module, an imm8:61 module, a new front panel controller,
and all MOD 80 software. It reduces the conversion to a
simple plug-in swap. Those who elect to modify the
modules they presently have will find the instructions for

doing so in the sections of this book that pertain to those
modules.

The following subsections furnish a complete descrip-
tion of the imm8-83 Central Processor Moduie. The first
describes a generalized processing system, at a fairly elemen-
tary level, to provide background information for those who
are relatively . unfamiliar with processors and with the
language used to describe them. Users who feel competent
to discuss processors at an advanced level should skip this
introductory section. The second section describes the
functional organization of the processor module. Detailed
information on the 8080 CPU is given in the third section.
In the fourth section we show how the peripheral logic
supports the functions that the 8080 performs. Finally, in
the fifth section, we give reference information which will
be of value to those planning to use the module outside the
INTELLEC 8/MOD 80 system.

THE FUNCTION OF A CPU

This section is intended for those who are unfamiliar
with basic computer concepts. !t provides background
information and definitions which may be useful in later
sections of this chapter. Those already familiar with
computers may skip this material, at their option. It is
organized to permit quick reference.

The Computer System

The INTELLEC 8 is a modular computer system. This
means that the processing functions, the memory functions,
and the input/output functions are built into separate
plug-in cards which are then combined to form a system.
Because the functions of each of the modules are fairly
well-defined, individual plug-ins enjoy a certain degree of
independence. They are advertised as having stand-alone
capability, meaning that they are generally capable of
performing their functions in any system similar to the
INTELLEC 8. The modular organization of this reference
manual intentionally reflects the modularity of the system
it describes.

You must keep in mind, however, that modularity.
confers a very limited degree of independence. None of
these modules can do anything useful outside a system. As
a result, the discussion of any individual module must refer
continually to the activities of other modules in the same
system. It is therefore very important to know something
about the functions that each component in a system must
perform, before discussing the processor medule in detail.

A digital computer consists of:

{a) A central processsing unit (CPU)
{b) A memory
{c} Input and output provisions (1/0}

This applies, in essence, to all such computers. It
applies to the INTELLEC 8.

Memory and 1/O are relatively simple functions and
are fairly easy to rationalize. The memory serves primarily
as a place to store instructions the coded pieces of data that
direct the activities of the CPU. A group of logically related
instructions stored in memory is referred to as a program.
The CPU extracts these instructions singly, in a logically
determinate sequence, and uses them to initiate processing
actions. If the program structure is coherent and logical,
processing produces intelligible and useful results.

Processing is a complex activity, and one which
requires a lot of explanation. For now, we shall have to be
content with an intuitive understanding of what is meant
by the term. Assume for the moment that the machine
somehow manipulates data arithmetically to produce the
desired result. We shall describe the process later, in detail.

Program instructions are a form of input. The
computer can generate an output entirely on the basis of
instructions and data stored in its memory by the
programmer. In most cases, however, it is desirable to have
input provisions which augment the program as a source of
data. This is not difficuit to understand. One of the most
useful features of the computer is its speed, its ability to
react quickly to changes in its data environment or to
process large volumes of data. In one case, the machine
must have access to information much more rapidly than a
human operator can supply it. In the other, it requires
access to a data bank which can easily exceed its memory
capacity. Both problems can be solved partially by
providing the machine with one or more input ports. The
machine can address these ports and read the data
contained there, in a manner very similar to that used to
read from its memory. The addition of input ports enables
the computer to receive information from external
machinery, at high rates of speed and in large volumes.

Central processing units operate so rapidly that their
responses often seem instanteneous to human operators,
but processing usually requires several stages. Many
individual instructions can intervene between the input of
data and the output of results. Consider the simple addition
of two numbers presented to two different input ports. The
machine must read the number at one port first. It stores
the value obtained in a temporary location, while it reads
the number at the second port. Then the number in
temporary storage is added to the first, to obtain the
desired result. More complex functions than this can
generate many stages of intermediate results, all requiring
temporary storage at some time during the execution of the
program. Thus a secondary function of the memory
becomes apparent, the storage of intermediate data. In the
course of a processing task, the CPU may store data
temporarily in some memory location from which it can
later be retrieved. The processor will generally write into a
portion of the memory not occupied by program
instructions, although the machine can “program itself'’

under certain exceptional circumstances. Reading and
writing in memory are accomplished by means of program
instructions known as memory referencing instructions, so
called because they specify or imply a memory address as
an integral part of the instruction. Memory referencing
operations will be explained more fully when we describe
the CPU itself.

One or more output ports permit the computer to
communicate the results of its processing to the outside
world. The output may go to a display, for use by human
operators, or it may go directly to other machines whose
responses are controlled by the processor. The output ports
are necessary in either event, if the processor is to perform
any useful function. Output ports are addressable, in much
the same manner as inputs. The input and output ports
together permit the processor to interact with the outside
world.

The central processor unifies the system. It controls
the functions performed by the other components. The
CPU must be able to fetch instructions from memory and
execute them, and it must be able to reference memory and
1/0 ports as necessary in the execution of instructions. It
must also be able to recognize and respond to external
control signals, including INTERRUPT, HOLD, and WAIT
requests. These apparently straightforward requirements
imply a certain complexity in the way that the CPU
operates. Some of the features that enable a processor to
perform these functions are described below.

The Architecture of a CPU

TIMING

The activities of the central processor are cyclical. The
processor fetches an instruction, performs the operations
required, fetches the next instruction, performs the
operations required, fetches the next instruction, and son
on. Anorderly sequence of events like this requires timing,
and the CPU therefore contains a clock oscillator which
furnishes the refernce for all processor actions. The
combined fetch and execution of a single instruction is
referred to as an instruction cycle. The portion of a cycle
identified with a clearly defined activity is called a state,
And the interval between pulses of the timing oscillator is
referred_to as the clock period. As a general rule, one or
more clock periods are necessary to the completion of a
state, and there are several states in an instruction cycle.

PROGRAM COUNTER

The instructions that make up a program are stored in
the system’s memory. The central processor examines the
contents of the memory, in order to determine what action
is appropriate. This means that the processor must know
which location contains the next instruction.

Each of the locations in memory is numbered, to
distinguish it from all other locations in memory. The

number which identifies a memory location is called its
address

The processor maintains a counter which contains the
address of the next program instruction. This register is
called the program counter. The processor updates the
program counter by adding “1" to the counter each time it
fetches an instruction, so that the program counter. is
always current.

The programmer therefore stores his instructions in
numerically adjacent addresses, so that the lower addresses
contain the first instructions to be executed and the higher
addresses contain later instructions. The only time the
programmer may violate this sequential rule is when the last
instruction in one block of memroy is a jump instruction to
another block of memory.

A jump instruction contains implicitly the address of
the instruction which is supposed to follow it. Since that is
the case, the next instruction may be stored in any memory
location, as long as the programmed jump specifies the
correct address. During the execution of a jump instruction,
the processor replaces the contents of its program counter
with the address embodied in the jump. Thus, the logical
continuity of the program is maintained.

Program jumps are a convenience for programmers,
and the description of their use can become complicated.
However, a basic use of the jump can be illustrated here:
that where the programmer must interleave program steps
with data upon which the processor is directed to operate:

ADORESS MEMORY
M OPERATE ON M+3
PROGRAM

M PERAT! M+4

* OPERATE ON INSTRUCTIONS
w2 JUMP TO M+5
M+3 DATA FOR M PROGRAM
[DATA FOR M1 DATA

PROGRAM

M5 DO SOMETHING ELSE NS

Figure 2-1. Program Jump.

If the jump at location M + 2 were omitted, the
processor would continue to operate on the assumption
that the program structure was sequential. It would attempt
to fetch and execute the data in location M + 3and M + 4

as though those locations contained instructions. The -~

program would most probably produce results quite
contrary to those that the programmer expected.

THE STACK

A special kind of program jump occurs when the
stored program “calls” a subroutine. In this kind of jump,
the processor is logically required to “remember’ the
contents of the program counter at the time that the jump

occurs. This enables the processor fater to resume execution
of the main program, when it is finished with the last
instruction of the subroutine.

A subroutine is a program within a program. Usually it
is a general-purpose set of instructions that must be
executed repeatedly in the course of a main program.
Routines ehich calculate the square, the sine, or the
logarithm of a program variable are good examples of the
functions often written as subroutines. Other examples
might be programs designed for inputting or outputting
data to a particular peripheral device. '

To understand the value of subroutines, consider the
case where it is necessary to output five characters to a line
printer, in the course of a 200 step segment of the main
program. Suppose that the program which outputs the
character is the same, regardless of the actual idetity of the
character; in other words that it is possible to write a
generalized program which can output any character that
the main program supplies. And assume further that 20
steps are required for such an operation. We then have two
possible ways of coding this problem.

Qne possibility is to write the 20 output steps into the
main program, each time we desire to output a character.
The total length of the program will be 200 plus 5x20, or
300 steps in all. The other possibility is to write the 20 step
output program as a subroutine, and cause the main
program to jump to the address of the subroutine (call the
subroutine) whenever it is necessary to output a character.
in this case, the 20 step program need be stored only once.
The total number of instructions in memory will be
200+20, or 220.

Observe that the subroutine in this example will still
be executed five times. The processor will still have to
perform 300 operations, regardless of how we choose to
code this problem. The subroutine structure, however, is
preferred. For one thing, it conserves the programmer’s
time, since he need oniy code the output routine once. For
another, it conserves memory space, for the actual output
instructions occupy only 20 memory locations, rather than
100. These are significant advantages.

The processor has a special way of handling
subroutines, in order to ensure an orderly return to the
main program. When the processor receives a call
instruction, it increments the program counter and stores
the counter’s contents in a reserved memory area known as
the stack. The stack thus saves the address of the
instruction to be executed after the subroutine is
completed. Then the processor stores the address specified
in the call in its program counter. The next instruction
fetched will therefore be the first step of the subroutine.

The last instruction in any subroutine is a return. Such
an instruction need specify no address. When the processor
fetches a return instruction, it simply replaces the current
contents of the program counter with the address on the
top of the stack. This causes the processor to resume

(C

execution of the calling program at the point immediately
following the original call.

Subroutines are often nested; that is, one subroutine
will sometimes call a second subroutine, The second may
call a third, and so on. This is perfectly acceptable, as long

.as the processor has enough capacity to store the necessary

return addresses, and the logical provision for doing so. In
other words, the maximum depth of nesting is determined
by the depth of the stack itself. If the stack has space for
storing three return addresses, then three levels of
subroutines may be accommodated.

Processors have different ways of maintaining stacks.
Some have facilities for the storage of return addresses built
into the processor itself. Other processors use a reserved
area of memory as the stack and simply maintain a pointer
register which contains the address of the most recent stack
entry. The integral stack is usually more efficient, since
fewer steps are involved in the execution of a call or a
return. The external stack, on the other hand, allows
virturally unlimited subroutine nesting. It aiso permits
saving the contents of the other CPU registers, and so
provides for greater flexibility in the handling of
subroutines.

INSTRUCTION REGISTER AND DECODER

Every computer has a word length that is charac-
teristic of that machine. In most eight-bit systems, it is
most efficient to deal with eight-bit binary fields, and the
memory associated with' such a processor is therefore
organized to store eight bits in each addressable memory
location. Data and instructions are stored in memory as
eight-bit binary numbers, or as numbers that are integral
muitiples of eight bits: 16 bits, 24 bits, and so on.

This characteristic eight bit field is sometimes referred
to as a byte.

Each operation that the processor can perform is
identified by a unique binary number known as an
instruction code. An eight-bit word used as an instruction
code can distinguish among 256 alternative actions, more
than adequate for most processors.

The processor fetches an instruction in two distinct
operations. In the first, it transmits the address in its
program counter to the memory. In the second, the
memory returns the addressed byte to the processor. The
CPU stores this instruction byte in aregister known as the
instruction register, and uses it to direct activities during

the remainder of the instruction cycle. o

The mechanism by which the processor transiates an
instruction code into specific processing actions requires
more elaboration than we can here afford. The concept,
however, will be intuitively clear to any experienced logic
designer. The eight bits stored in the instruction register can
be decoded and used to activate selectively one of a number
of output lines, in this case up to 256 lines. Each line
represents a set of activities associated with execution of a

particular instruction code. The enabled line can be
combined coincidentally with selected timing pulses, to
develop electrically sequential signals that can then be used
to initiate specifc actions. This translation of code into
action is performed by the instruction decoder and by the
associated control circuitry.

MULTIPLE WORD INSTRUCTIONS

As we have just seen, an eight-bit field is more than
sufficient, in most cases, to specify a particular processing
action. There are times, however, when execution of the
instruction code requires more information than eight bits
can convey.

One example of this is when the instruction references
a memory location. The basic eight-bit instruction code
identifies the operation to be performed, but cannot
specify the object address as well. In a case like this, a two
or three word instruction must be used. Successive
instruction bytes are stored in sequentially adjacent
memory locations, and the processor performs two or three
fetches in succession to obtain the full instruction. The fitst
byte retrieved from memory is placed in the processor’s
instruction register, and subsequent bytes are placed in
temporary storage, as appropriate. When the entire
instruction has been fetched, the processor can proceed to
the execution phase.

MEMORY SYNCHRONIZATION

As previously stated, the activities of the processor are
referred to a master clock oscillator. The clock period
determines the timing of all processing activity.

The speed of the processing cycle, however, is limited
by the memory’s access time. Once the processor has sent a
fetch address to memory, it cannot proceed until the
memory has had time to respond. Many memories are
capable of responding much faster than the processing cycle
requires. A few, however, cannot supply the addressed byte
within the minmum time established by the processor’s
clock.

Therefore,-many processors contain a synchronization
provision, which permits the memory to request a wait
phase. When the memory receives a fetch address, it places
a low level on the processor’'s READY line, causing the CPU
to idle temporarily. After the memory has had time to
respond, it frees the processor’'s READY line, and “the
instruction cycle proceeds.

ARITHMETIC LOGIC UNIT

All processors contain an arithmetic/logic unit, which
is often referred to simply as the ALU. By way ¢f analogy,
the ALU may be thought of as a sophisticated adding
machine with its keys commanded automatically by the
control signals developed in the instruction decoder. This is
essentially how the first store-program digital computer was
conceived. .

The ALU naturally bears little resemblance to a
desk-top adder. The major difference is that the ALU
calculates by creating an electrical analogy, rather than by
mechanical analogy. Another important difference is that
the ALU uses binary techniques, rather than decimal
methods, for representing and manipulating numbers. In
principle, however, it is convenient to think of the ALU as
an electronically controlled calculator.

The fundamental operational unit in the ALU is the
accumuiator. This is the basic register in which binary
quantities are represented symbolically. Different machines
use slightly different approaches, but in general the
accumulator is both a source and a destination register. A
typical instruction will direct the ALU to add the contents
of some other register to the contents of the accumulator,
and to store the result in the accumulator itself.

The ALU must contain an adder, which is capable of
combining the contents of two registers in accordance with
the logic of binary arithmetic. The provision permits the
processor to perform arithmetic manipulations on the data
it obtains from memory and from its other inputs.

The adder is a minimum provision, but a compre-
hensive one as well. Using only the basic adder, a capable
programmer can write routines which will subtract,
multiply and divide, giving the machine. complete
arithmetic capabilities. In practice, however, most ALUs
provide other built-in functions, including hardware
subtraction, Boolean logic operations, and shift capabilities.

The ALU contains flag bits which indicate certain
conditions that arise in the course of arithmetic
manipulations. Flags typically include carry, zero, sign, and
parity. It is possible to program jumps which are
conditionally dependent on the status of one or more of
thse flags. Thus, for example, the program may be designed
to jump to a special routine, if the carry bit is set following
an addition instruction. The example is appropriate, since
the presence of a carry generally indicates an overflow in
the accumulator, and sometimes calls for special processing
actions.

We have touched here very briefly on some of the
features of an ALU, in an attempt to explain their
provisions. However, most of the ALU's operations are
really outside the province of the logic designer. He never
sees their results directly. It is the programmer who is
chiefly concerned with the capabilities of the ALU, since
they affect directly his ability to construct programs that
produce the desired results. Readers who require a more
‘detailed explanation of the arithmetic logic unit are
referred to a good programming text, such as the
8080 Assembly Language Programmer’s Manual.

INTERRUPTS

Interrupt provisions are included on many central
processors, as a method of improving the processor’s
efficiency. To understand the mechanism of an interrupt,
consider the hypothetical situation where two separate

10

processors are working simultaneously on two separate
jobs. One processor is working steadily at a low priority
job. The other is working at infrequent intervals on a high
priority assignment. The processor assigned to the high
priority task is chronically underemployed, and we may
readily improve the efficiency of this configuration, as
follows,

We use a single processor, but one which is equipped
to sense an external request for service; in other words, to
recognize and interrupt. We set this processor to work on
the low priority job, with the provision that it jump to a
routine designed to service the high priority channel
whenever it receives an interrupt. The processor resumes
the low priority task when it is finished handling the
interrupt. Note that this is, in principle, quite similar to a
subroutine call, except that the jump is initiated externally
rather than by the program.

This is quite acceptable, if the low priority task does
not consume 100% of the processor’s time; that is, if the
processor is not required to run at top speed continuously
in order to meet the requirements of that job. In most cases
this is not a problem, since real-time systems are generally
designed with a considerable safety margin in mind. The
average load on a properly designed system is well below its
peak capacity, to allow for statistically infrequent bursts of
activity, and to allow for some inevitable down time.

The interrupt feature in this simple example permits
us to increase processing efficieny up to 100%. More
compiex interrupt structures are possible, in which several
interrupting devices share the same processor but have
different priority levels. Interruptive processing is an
important feature, that enables us to maximize the
utilization of a processor’s inherent capacity.

HOLD
Another important feature that improves the through-

put of a processor is the hold. The hold provision enables
direct memory access operation (DMA),

In ordinary input and output operations, the processor
itself supervises the entire transfer. Information to be
placed in memory is transferred from the input to the
processor, and the from the processor to the designated
memory location. In similar fashion, information that goes
from memory to cutput goes by way of the processor.

Some peripheral devices, hoever, are capable of
transferring information to and from memory much faster
than the processor itself can accomplish the transfer, If any
appreciable quantity of data must be transferred to or from
such a device, then system throughput can be increased
substantially by having the device accomplish the transfer
directly. The processor must temporatily suspend its
operation during such a transfer, to prevent conflicts that
would arise if processor and peripheral attempted to access
memory simultaneously. It is for this reason that a hold
provision is included on some processors. By placing a hold
request, the peripheral with data to transfer can cause the

e

()

processor to pause until the DMA is complete. A theoretical
improvement in 1/O efficiency of up to 100% may be
gained by the judicious use of DMA,

FUNCTIONAL ORGANIZATION OF THE
CENTRAL PROCESSOR MODULE

The Intel 8080 Eight-Bit Parallel Central Processor
Unit is the major functional element on the imm8-83
Central Processor Module. All the other logic on the
module supports the functions which the 8080 CPU
performs. This leads to a natural and convenient
distinction, between the ‘‘processor” and its ‘‘peripheral
logic.”

There are a number of reasons for relegating certain
functions to support logic, rather than incorporating them
into the processor chip itself. The buffering of address and
data lines, for example, is a high power function, and high
power functions are fundamentally incompatible with small
package sizes. Large, hot-running components not only
increase the size of the package, they increase its
susceptibility to failure. The 8080 is basically a miniature
divice, and for this reason, the buffering functions are
referred to external circuitry.

Much the same argument applies to multiplexing
functions. These too would logically necessitate enlarge-
‘ment of the package, to enable the device to dissipate the
additional power. Moreover, functions of this kind imply an
expanded number of input and output pins, and this also is
inconsistent with small package size. External logic is
therefore required for multiplexing.

Still other functions are not amenable to integration.
The clock reference oscillator is a prime example. It is not
yet possible to fabricate a stable frequency reference using
monolithic techniques, so that the clock function too must
be provided by peripheral logic.

And finally, some functions are too specialized to be
included on the chip directly. One example is the
programmed display port (output port FF; 4) which is built
into the imm8-83.

Another would be signal functions such as 70 OUT
on the imm8-83, which are dictated by the particular
application rather than by the processing function. Signals
of this kind are derived by logical conditioning of the
8080's basic outputs. Though the number of functions is
often modest, incorporating them into a general-purpose
device such as the 8080 would tend to limit the range of
applications which the CPU could serve. Such functions are
therefore omitted from the chip and are left to the
discretion of individual designers to provide.

A number of considerations thus prevent us from
realizing a true ""computer on a chip,”” even though the vast
majority of the complex functions performed by a classical
“computer” are in fact incorporated into the 8080.
Memory, input/output, and control functions such as those
described above are omitted for practical reasons; in spite

of the fact that their inclusion is technically feasible. The
omission works to the advantage of the systems designer,
who is thereby freed to specify the speed and capacity of
his memory, the number of input and output ports in his
system, and the number and nature of control functions to
be performed by his central processor unit.

The consequence is, however, that the céntral
processor function is essentially a modular activity, rather
than a true chip function; that the bulk of central
processing activity can be delegated to an all-purpose chip,
but that peripheral logic will almost always be required to
round out the chip’s capabilities. This is the case in the
INTELLEC 8/MOD 80 system.

The imm8-83 therefore consists of the 8080 CPU and

the logic that supports the functions of the processor.
In addition to the 8080 CPU, the module contains the
following functional blocks:

(a) timing generator
(b} address buffer
{c) data buffer

(d) input muitiplexer
(e} status latches

(f) command logic
{g) wait logic

(h) hold logic

(i) interrupt logic
(i} reset generator
(k) output port

The functional relationship between these blocks is
shown in Figure 2-2.

The 8080 CPU exercises complete control over the
rest of the logic on the module, according to the
instructions it receives from memory.

The timing generator consists of a clock oscillator, a
counter section, level shifting circuitry, and gating logic.
The crystal-controlled oscillator delivers a symmetircal 32
MHz signal to the input of the counter section, which in
turn uses this input to derive two non-overlapping 2 MHz
clock phases, designated ¢¢ and ¢,. These are applied to
the level shifter and used to drive the 8080 CPU. Logic
circuitry within the CPU generates a SYNC pulse each time
the processor begins a sub-cycle. From the ¢,, @5, and
SYNC outputs, the gating logic develops CLKA, CLKB, and
SYNCA signals. Signals produced in the timing section then
govern all the other activities of the Central Processor
Module.

The address buffer receives its low power 'fnput from
the 8080’s sixteen-line address bus. A sixteen-line high
power output is forwarded to the memory and to the 1/0
peripherals. Note that latching and timing are controlled
internally by the CPU, and that the buffer’s output merely
follows the processor’s address lines. Data on the address

bus specifies the destination of data concurrently on the
module’s main data bus. Either a memory location oran 1/0
peripheral may be specified. The address buffer also
receives a HOLD ACK signal from the hold logic section,
whenever the module acknowledges an outside HOLD
REQUEST. During the time that a hold is in prograss, the
address buffer’s output is disabied. Disabling the buffer’s
output enables the requested peripheral to command the
address bus directly during the DMA transfers.

The function of the data buffer is similar to that of the
address buffer. This section receives an eight-line low power
input from the 8080's main data bus, and forwards a high
power eight-line output to memory and to the output
peripherals. All data transferred out of the processor goes
by way of this output bus.

Note however, that somewhat different provisions are
made for disabling the data buffer during hold operations.

Refer to Figure 2-2. Unlike the address buffer, the data
buffer receives an explicit enabling signal (DB OUT) from
the hold logic section. As shown in the diagram, the
peripheral requesting a hold can override the hold logic by
commanding the DB OUT line directly. This becomes
necessary in those cases where the requesting peripheral has
to communicate with memory via the imm8-83’s main data
bus. The data buffer must be enabled during the time that
data is being transferred from memory to the requesting
device, but disabled during the time that data is being
transferred from the requested device to memory. Control
of DB OUT is accorded the peripheral requesting a hotd, to
provide for bilateral data transfers.

The input muitiplexer is a three-way switch which
selects and forwards one of three eight-line input channels
to the processor. Input signals from the processor, the
status latches, and the command logic enable the
multiplexer to select data from memory, data from the

——» 0sc
e osc —_— %
S, RESET — % > %
RESET ——% oaic TIMING P & — CLKA
GEN. Leep CLkA —» cixs
> cLxB —» SYNCA
NT ACK P SYNCA —b WA
INTE l RALT ACK —— DB
? ~——» HOLD ATR
INTREQ —— Pt Oy
INTERRUPY
LoGIC
ALT INT REQ ——*
RESET SYNC
p——> INTE
INT ADORESS
[SYNC 8080 BUFFER T3 e 223& ESS TO MEMORY
l roy PV — GATE 18 wo
— WA |4
WAIT REQ ——>] r—’ HOLO — 08IN —
PROM MOD ENBL ———3| WAIT____HLDA o out
WAIT / ouTPUT TO CONSOLE
RAM MOD ENBL ———3{ LOGIC T 8 — PORT 8 —
FF f— DISPLAY
-
r 8
DATA TO MEMORY
T '12 8 AND 1/0 PERIPHERAL
CIRA
HOLD AEQ ———¥ |
uom.o :%.RD FETCH CYCLE
toGic sTATUS NT ACK
oeouT §— o 38—~ { AALTACK
A LATCHES
beouT TEM AEAD CYCLE
+— STACK
DATA o = 8
§ — BUFFER |8 HEIE .
MEMORY IN 5 GATE ol &
DATA
INPUT R SETTE
O === moct- 3 WA =] ——s WAITE
DATA ——— pLexER HOLD ACK COMMAND > BT
INTERRUPT R Loaic fom
{NSTRUCTION 2= | > Dal — fo00T
iNTACR 1 T T t—mam HOLD ACK I——» iToCYCLE
701N ——
0 L% WEMWARITE CYCLE
N JAM ENABLE

Figure 2-2. CPU Module Functional Block.

input peripherals, or data from the interrupt bus for input
to the processor.

The 8080’s instruction cycle is composed of one or
more machine cycles. The number and kind of macnine
cycles in a given instruction cycle depends upon the
instruction that the processor happens to have fetched from
memory. There are nine possible kinds of machine cycles:

(a) FETCH

(b) MEMORY READ
(c) MEMORY WRITE
(d) STACK READ

(e} STACKWRITE

(f) INPUT

(@) OUTPUT

(h) INTERRUPT
(i) HALT

A description of machine cycles is deferred until
Section 3.3, where we discuss the 8080 CPU. Without
getting too involved in a description of the processor’s
activities, however, we may observe that each machine
cycle calls for a slightly different response on the part of
the peripheral logic. To aid in developing the proper control
functions, the CPU outputs status information at the
beginning of every machine cycle. Status latches are
provided to capture this data, for use by the command
logic.

The status latch section receives an eight-line data
input from the module’s data buffer and a CLKA strobing
pulse from the timing generator. These inputs enable the
latches to record the eight status information bits that are
published on the processor’s main data bus at the beginning
of every machine cycle. Status information helps
coordinate the activities of peripheral logic, so that its
responses are appropriately keyed to the internal activities
of the processor. '

The command logic obtains it principal inputs from
the status latches and from the 8080 CPU. Other inputs to
this section are the HOLD ACK from the hoid logic section
and the IN JAM ENBL from the INTELLEC 8's Front
Panel Controller. Using these, the command logic generates
a WRITE command for the control of external memory, as
well as 170 IN and 170 OUT signals for the control of 1/O
peripherals. 1/0 CYCLE and MEM WRITE CYCLE outputs
are available to the INTELLEC 8's console status display.
These, together with the FETCH CYCLE and the
MEMORY READ CYCLE outputs from the status latches,
enabie the console logic to identify the machine cycle in
progress.

Wait logic montors the WAIT REQUEST line from the
system memory. If the memory is slow to respond to the
processor’s read or write commands, the wait logic causes
the processor to idle uniti the memory can complete the
transaction. A WAIT signal is available to external circuitry

during the time that the processor is idling, and serves to
acknowledge the WAIT REQUEST. A WAIT REQUEST
may be of indefinite length, but the generated WAIT
interval is always an integral multiple of the processor’s
clock period.

Neither the imm6-28 RAM Memory Module nor the
imm6-26 PROM Memory Module used with the INTELLEC
8/MOD 80 can respond fast enough to avoid placing the
8080 CPU in a WAIT state. The RAM Memory Module and
the PROM Memory Module have typical access times of
700 nanoseconds and 1200 nanoseconds respectively. The
RAM module therefore requires at least one full wait
interval during every memory reference. The PROM module
requires two. Circuitry in the wait logic section uses the
CPU module’s ¢, and SYNC timing signals, in conjunction
with external RAM MOD ENBL and PROM MOD ENBL
signal, to generate an automatic WAIT REQUEST of the
desired duration whenever one of these modules is selected.
The imm8-83 is designed to respond to a PROM MOD
ENBL with an override of the delay introduced for the
imm6-28 and 626 boards. PROM MQOD ENBL may
therefore be used to enable memories capable of responding
to the 8080 without delay.

The holid logic receives a HOLD REQUEST signal from
one or more peripheral devices. It also receives ¢, and ¢,
timing signals from the module’s timing generator. When a
HOLD REQUEST coincides with the rising edge of the ¢,
clock pulse, the hold logic forwards a HOLD to the CPU
itself. Logic within the 8080 determines when the
re-clocked hold request will be acknowledge, to ensure that
any processing functions in progress are not disrupted. The
processor Will acknowledge the HOLD within five clock
periods (2.5 microseconds), by sending a HLDA signal to
the hold logic section. After a brief delay provided by ¢,
the hold logic responds by:

(a) floating the module’s address bus

(b) floating the 8080's data bus

(c) floating the WRITE output line to memory
(d) floating the moutput line

{e) floating the /O OUT output line

This action prevents the processor from exerting any
influence on memory, via the data busses or by means of
control signals. The peripheral originating the HOLD
REQUEST is therefore free to command the memory, untit
such time as the HOLD REQUEST is retracted.

The interrupt logic monitors the INTERRUPT
REQUEST and the HALT INTERRUPT REQUEST lines
from external devices. This section also receives INT ACK
and HALT ACK signals from the status latch section. The
interrupt logic uses these inputs to develop‘én interrupt
signal which is forwarded to the processor’s INTERRUPT
input. Requests originating at the INTERRUPT REQUEST
and the HALT INTERRUPT REQUEST inputs have much
the same effect. The only significant difference between the
two inputs is that the processor responds to a HALT

INTERRUPT REQUEST only when it is stopped. Under
those circumstances, an interrupt is required to restart the
machine.

The 8080 CPU provides an interrupt enabling signal
(INTE) to the interrupt logic, indicating when the
processor’s INTERRUPT input has been disabled by the
program in progress. Instructions in the CPU’s repertoire
permit the explicit enabling and disabling of this input.
From the INTE signal, the interrupt logic develops an INT
DISABLE signal which flags the processor’s status to
peripheral devices. No interrupt requests are recognized
unless the program expressly enables the processor's
INTERRUPT line. A processor which has been stopped
inadvertently while the INTERRUPT input is disabled must
be reset or brought up from a cold start, in order to restore
it to operation. :

The processor module responds to an interrupt by
aitering the sequence of events that occurs at the end of the
last instruction cycle. The processor enters an alternative
INTERRUPT machine cycle, rather than the normal
FETCH machine cycle. As it customarily does, the
processor sends out address and status information at the
beginning of the machine cycle, but the program counter is
not incremented. An INTA status bit identifies the machine
cycle as an INTERRUPT.

These are the only unusual events as far as the
processor itself is concerned. In all other respects, the
INTERRUPT Machine-cycle resembies an ordinary instruc-
tion fetch. Peripheral logic, however, senses the entry into
the interrupt mode. The input multiplexer responds by
selecting the interrupt instruction port instead of the
processor’s memory data in port. Thus any eight-bit data
word presented to the interrupt port gets interpreted as an
instruction by the processor.

Any single-byte instruction may be inserted. There
are several possibilities, A halt {HLT) instruction may be

used to stop the processor upon completion of some task.

an external reset will be necessary for restarting the CPU.
Or an output instruction may be used to output the
accumulator’s contents during a critical phase of the
programming. Control and debugging are therefore two
possible useds of the interrupt feature.

But by far the most convenient instruction for use
with interrupts is the restart (RST). the RST is one byte
call instruction especially intended for use with interruptive
processing. Its binary instruction field contains three
variable digits that permit the programmer to specify a
jump to one of eight memory locations. The decimal
addresses of these dedicated locations are: 0, 8, 16, 24, 32,
40, 48, and 56. One of these locations can be used to store
the first instruction of a program designed to service the
interrupting device. Or it can store the first byte of an
ordianry three byte call {CALL), to another location where
such a program begins.

An important use of the RST instruction is the
start-up of the processor, following the execution of a halt

instruction. The machine may be re-started by means of an
interruptive jump to memory location ¢;, (or to some
other desired location).

Note that in the INTELLEC 8/MOD 80 system the
operator’s console is the only device for which interrupt
capability is provided. Minor modifications, however, could
extend the privilege to other peripheral devices.

Reset logic permits an external device to initialize the
processor. Logic in this section also senses a power-up
sequence, and forces a RESET automatically under those
conditions. External application of a 1.5 microsecond pulse
{minimum) or the interruption of power to the module
restores the processor’s program counter to zero. No other
circuitry on or around the chip is affected, except far the
interrupt request latch which is reset.

The built-in output port receives an eight-line 1/O
address from the module’s sixteen-line address bus
(A;s—Ag). It also receives an 170 OUT signal from the
command logic. These commands cause the latches in the
output port to register the contents of the module’s data
out bus, whenever the decoding logic senses a coincidence
of /0 OUT and the hexadecimal address FF;4. In the
INTELLEC 8/MOD 80 system, the port’s output lines
communicate with indicators on the console panel. This
enables the operator to examine the contents of the
processor’s accumulator, during test and de-bugging
operations.

8080 EIGHT-BIT PARALLEL CENTRAL PRO-
CESSOR UNIT

A brief description of Intel’s 8080 CPU is essential to
a thorough understanding of the imm8-83 Central Processor
Module.

The 8080 is a monolithic LS| central processor,
designed for applications that use an eight-bit binary
instruction/data format. It is fabircated using N-channel
silicon gate technology and is furnished in a 40-pin dual
in-line ceramic package. The use of advanced fabrication
and layout techniques has produced an exceptionally fast
microprocessor. The basic machine cycle of the 8080 is two
microseconds, for instructions that do not reference
memory during their execution. This compares with a
twenty microsecond cycle in the earlier 8008 CPU.

Package geometry and pin configurations are shown
in Figure 2-3. All pins, except the clock inputs, are at TTL
levels.

A list of the 8080Q’s capabilities reads much like a
description of the imm8-83 Central Processor Module itself.
In a very real sense, it is the chip processor that determines
the character of the module, The 8080 CPU has a repertoire
of 78 basic instructions, with provisions for arithmetic and
logical operations, register-register and register-memory
transfers, subroutine handling, 1/0O transactions, and
decimal arithmetic. Four internal status flags enable the

user to program conditional branches based on carry, sign,
zero, and parity.

Using its sixteen latched address lines, the 8080 can
access 65,536 (64K) memory locations directly. As many as
256 input devices and up to 256 output devices may be
addressed during 1/O operations, using either the upper or
the lower eight address lines (Ag—A,; and Ag—A,; are
redundant for the purpose of 1/O instructions). The 8080’s
inherent addressing capability can be extended further by
the use of bank switching, where one of the output ports is
used to select among several available blocks of memory.

A
Ayg O+—11 40 =0 Ay
GND O— 2 38 0 Ay
0, O=—{3 38 =0 Ay
Dy O] 4 37 p—=0 Ar2
Dg O+ 5 36 =0 Ays
B, O=—=l6 35 [—-0 Ag
Dy Oe—el7 U [0 Ay
ool [NTEL =f—o
D, O3 32 p—=0 Ag
o, o0 8O80 s |—o
—5V Om——ei 11 30 0 Ag
RESET 0— 12 29 0 Ay
HOLD O——a1 13 28 o0 +12v
INT O] 14 27 b—=0 Ay
#2 O0—=f 15 26 |—e0 A{
INTE O~ 18 25 [0
DBIN. O~—1 17 24 }—=0 WAIT
WR o~ 18 23 j+—o0 ReADY
syne o+—J 19 2 fe—0 4
+5V O——1 20 21 =0 HLDA

Figure 2-3. 8080 CPU Package Configuration.

The 8080 contains 6 eight-bit index registers
(scratchpad). Two of these, the H and the L registers, are
designed to double as an address pointer during the
execution of memory referencing instructions. A sixteen-bit
program counter enables the CPU to address instructions
stored in any portion of memory, and a sixteen-bit stack
pointer permits the unlimited nesting. of subroutines (or
multiple-level interrupts). Buiit-in logic for the processing
of holds and interrupts, and a synchronization provision
for slow memories, round out the CPU's capabilities.

Architecture of the 8080 CPU

The 8080 CPU consists of the following functional

units:

@ Register array and address logic

® Arithmetic and logic unit (ALU)

® |Instruction register and control section

@ Bidirectional, tri-state data bus buffer

Figure 2-4 illustrates the functional blocks within the
8080 CPU.

REGISTERS

The register section consists of a static RAM array
organized into six 16-bit registers:

® Program counter (PC)
@ Stack pointer (SP)

® Six 8-bit general purpose index registers arranged
in pairs, referred to as B,C; D,E; and H,L

® A temporary register pair called W,2

The program counter maintains the memory address
of the current program instruction and is incremented
automatically during every instruction fetch. The stack
pointer maintains the address of the next available stack
location in memory. The stack pointer can be initialized
(with a LXI SP instruction) to use any portion of read-write
memory as a stack. The stack pointer is decremented when
data is “pushed’’ onto the stack and incremented when data
is “popped” off the stack (ie., the stack grows
“downward’’).

The six general purpose registers can be used either.as
single registers (8-bit) or as register pairs (16-bit). The
temporary register pair, W,Z, are not program addressable
and are only used for the internal execution of instructions.

Eight-bit data bytes can be transferred between the
internal bus and the register array via the register-select
multiplexer. Sixteen-bit transfers can proceed between the
register array and the address latch or the incrementer
/decrementer circuit. The address latch receives data from
any of the three register pairs and drives the 16 address
output buffers (Ag—A;s), as well as the incrementer/
decrementer circuit. The incrementer/decrementer is a
purely combinatorial circuit that receives data from the
address latch and sends it to the register array. The 16-bit
data can be incremented or decremented or simply
transferred without any operation being performed.

ARITHMETIC AND LOGIC UNIT (ALU)
The ALU contains the following registers:
® An 8bit - accumuiator (ACC and a carry/link
flip-flop (CY)
® An 8bit temporary accumulator (ACT) and a
temporary carry flip-flop (ACT)

® A G.bit flag register: zero, carry, sign, parity and
auxiliary carry

® An 8-bit temporary register (TMP)

Arithmetic, logical and rotate operatioﬁs are per-
formed in the' ALU. The ALU is fed by the temporary
register ({TMP) and the temporary accumulator {ACT) and
carry flipflop. The result of the operation can be
transferred to the internal bus or to the accumulator; the
ALU also feeds the flag register.

The temporary register (TMP) receives information

from the internal bus and can send all or portions of it to
the ALU, the flag register and the internal bus.

The accumulator (ACC) can be loaded from the ALU
and the internal bus and can transfer data to the témporary
accumutlator (ACT) and the internal bus. The contents of
the accumulator (ACC) and the auxiliary carry flip-flop can
be tested for decimal correction during the execution of the
DAA instruction (see Appendix A).

INSTRUCTION REGISTER AND CONTROL

During an instruction fetch, the first byte of an
instruction (containing the op code) is transferred from the
internal bus to the 8bit instruction register.

The contents of the instruction register are, in turn,
available to the instruction decoder. The output of the
decoder, combined with various timing signals, provides the
control signals for the memory, ALU and data buffer

decoder and external control signals feed the timiag and
state control section which generates the state and cycle
timing signals.

DATA BUS BUFFERS

This 8bit bidirectional tri-state buffer is used to
isolate the CPU’s internal bus from the external data bus
(Do through D). In the output mode, the internal bus
content is loaded into an 8-bit latch that, in turn, drives the
data bus output buffers. The output buffers are switched
off during input or non-transfer operations.

In the input mode, data from the external data bus
is transferred to the internal bus. The internal bus is
precharged at the beginning of each internal state, except

blocks. In addition, the outputs from the instruction for the transfer state (T3—described later in this chapter).
-3 $2 READY INT RESET HOLD
— READ/WRITE
INTE HLDA DBIN SYNC WR WAIT AND
MULTIPLEXER
TEMPORARY REGISTER
TIMING AND
CONTROL 2(8) Wia)
- - .
g REGISTER
DECIMAL @ L, H
ARITHMETIC z 18) 8
£ E(g O3
a
Q
c 8
ACCUMULATOR g & @ (@)
L STACK POINTER 1)
PROGRAM COUNTER ¢,
INSTRUCTION READ/WRITE —
DECOOE
AND CONTROL
ACCUMULATOR
LATCH(S,
7] INCREMENTER
4 DECREMENTER 44
INSTRUC-TION
ALUigy REGISTER g
ADDRESS LATCH(1g) [+
1/0 BUS g,
7
TEMPORARY 1/0 BUFFER
FLAG() REGISTER g AND LATCH g, ADDRESS DRIVER ;g
D10 A1s0

Figure 2-4. 8080 CPU Functional Block Diagram.

(C

The Processor Cycle

The 8080 is driven by a two-phase clock oscillator, at
a maximum frequency of 2.08 MHz. ANl processing
activities are referred to the period of this clock. The two
non-overlapping clock phases, labeled ¢; and ¢, are
furnished by external circuitry. The ¢, clock divides the
processing cycle into states. A state is the smallest unit of
processing activity (480 ns. when the processor is operating
at maximum speed) and is defined as the interval between
two successive positive-going transitions of the ¢1 clock.
Timing logic within the 8080 uses the clock inputs to
produce a SYNC pulse, which identifies the first state of
every machine cyicle. The SYNC puise is triggered by the
low to high transition of @, as shown in Figure 2.5.

FIRST STATEOF
*EVERY MACHINE
CYCLE

* _/_\
% /T /~ \
SYNC ___fi______

*NOTE:

SYNC does not occur in the second and third machine cycles of a DAD in-
struction since these machine cycies are only used for an internal register-pair
add.

/ T\

Figure 2.5. ¢, ¢, and Sync Timing.

An instruction cycle consists of two functional parts,
the fetch and the execution. Each of these functional parts,
in turn, consists of a number of machine cycles. During the
fetch, a selected instruction (one, two or three bytes) is
extracted from memory and deposited in the CPU's

instruction register. During the execution part, the
instruction is decoded and translated into specific
processing activities. The fetch routine requires one

machine cycle for each byte to be fetched. The duration of
the executive portion of the instruction cycle depends upon
the kind of instruction that has been fetched. Some
instructions do not require any machine cycles other than
those necessary to fetch the-instruction; other instructions,
however, require additional machine cycles to write or read
data to/from memory or 1/0O devices. The DAD instruction
is an exception in that it requires two additional machine
cycles to complete an internal register-pair add.

Every instruction cycle contains one, two, three,

four, or five machine cycles. Each machine cycle, in turn,”

consists of three, four, or five states. A state is defined as a
constant interval, equal in length to the period of the clock
oscillator which drives the CPU (a phase). That is, a state is
so defined in all but three cases. Exceptions to the rule are
the WAIT state, the hold (HLDA) state, and the hait
{HLTA) state, described later in this chapter. A moment's
consideration will show that this is reasonable, since the
WAIT, the HLDA, and the HLTA states depend upon

external events and are by their nature of indeterminate
tength. Observe, however, that even these exceptional states
must be synchronized with the puises of the driving clock.
Thus the durations of all states, including these, are integral
multiples of the clock phase.

To summarize them, each clock phase marks a state;
three to five states constitute a machine cycle; and one to
five machine cycles comprise an instruction cycle. A full
instruction cycle requires anywhere from four to eighteen
phases for its completion (2.0 microseconds to 9.0
microseconds), depending on the kind of instruction
involved.

MACHINE CYCLE IDENTIFICATION

With the exception of the DAD instruction there is
just one consideration that determines how many machine
cycles are required in any -given instruction cycle: the
number of times that the processor must reference a memory
address, or an addressable peripheral device, in order to
fetch and execute the instruction. Like many processors,
the 8080 is so constructed that it can transmit only one
address per machine cycle. Thus, if the fetching and
execution of an instruction requires two memory
references, then the instruction cycle associated with that
instruction consists of two machine cycles. If five such
references are called for, then the instruction cycle contains
five machine cycles.

Every instruction cycle has at least one reference to
memory, during which the instructicn is fetched. A cycle
must always have a fetch, even if the execution of the
instruction requires no further references to memory. The
first machine cycle in every instruction cycle is therefore a
FETCH. Beyond that, there are no fast rules. It depends on
the kind of instruction.

Consider some examples. The add-register (ADD r}
instruction is an instruction that requires only a single
machine cycle (FETCH) for its completion. In this one-byte
instruction, the contents of one of the CPU’s six index
registers is added to the pre-existing contents of the
accumulator. Since all the information necessary to execute
the command is contained in the eight bits of the
instruction code, only one memory reference is necessary:
that actually used to fetch the instruction. Three states are
used to extract the instruction from memory, and one
additional state is used to accomplish the desired additjon.
The entire instruction cycle thus requires only one machine
cycle that consists of four states or four phases of the
external clock (2 microseconds).

Suppose now, however, that we wish to add the
contents of a specific memory location to the pre-existing
contents of the accumulator (ADD M). Althoug this is quite
similar in principle to the example just cited, several
additional steps will be necessary. An extra machine cycle
will be needed, in order to address the desired memory
location.

The actual sequence is as follows. First the processor

extracts from memory the one-byte instruction word
addressed by its program counter. This takes three states.
The eight-bit instruction word obtained during the FETCH
- machine cycle is deposited in the CPU’s instruction register
and used to direct activities during the remainder of the
instruction cycle. Next, the processor sends out as an
address the contents of its H and L registers. The eight-bit
data word returned during this MEMORY READ machine
cycle is placed in a temporary register inside the 8080 CPU.
By now three more clock periods (states) have elapsed. in
the seventh and final state, the contents of the temporary
register are added to those of the accumulator. Two machine
cycles, consisting of seven states in all, complete “ADD M”
instruction cycle.

At the opposite extreme is the save H and L registers
(SHLD) instruction, which requires five machine cycles.
During a ““SHLD” instruction cycle, the contents of the
processor’s H and L index registers are deposited in two
sequentially adjacent memory locations; the destination is
indicated by two address bytes which are stored in the two
memory locations immediately following the operation
code byte. The following events occur:

1} A FETCH machine cycle, consisting of four states.
During the first three states of this machine cycle,
the processor fetches the instruction indicated by
its program counter. In the fourth state, the
contents of the H and L registers are transferred to
temporary registers within the chip, W and Z,
respectively. Data previously held in the H and L
registers is thus saved, thereby clearing H and L to
receive incoming data.

2) A MEMORY READ machine cycle, consisting of
three states. During this machine cycle, the byte
indicated by the program counter is extracted
from memory and placed in the processor's L
register.

3) Another MEMORY READ machine cycle, con-
sisting of three states, in which the byte indicated
by the processor’s program counter is deposited in
the H register.

4) A MEMORY WRITE machine cycle, of four states,
During the first three states, the contents of the Z
register are transferred to the memory location
pointed to by the present contents of the H and L
registers. The state following the transfer is used to
increment the H and L pointers, so that they
indicate the next memory location to receive data.

5) A MEMORY WRITE machine cycle, of three
states, in which the contents of the W register are
transferred to the new memory location pointed
to by the H and L registers.

The “SHLD” instruction cycle contains five machine
cycles and takes 17 states to execute (8.5 microseconds).

Most instructions fall somewhere between the
extremes typified by the “ADD r" and the XHTL instruc-
tion which requires 18 states (9.0 microseconds). The input
(INP) and the output (OUT), for example, require three
machine cycles: a FETCH, to obtain the instruction; a
MEMORY READ, to obtain the address of the object pe-
ripheral; and an INPUT or an QUTPUT machine cycle, to
complete the transfer.

There are nine types of machine cycles that may
occur within an instruction cycle; though no one
instruction cycle will consist of more than five machine
cycles:

{a) FETCH

{b) MEMORY READ

(¢} MEMORY WRITE

(d) STACK READ

(e) STACKWRITE

«(f) INPUT

(g OUTPUT

(h) INTERRUPT

(i) HALT

The machine cycles that actually do occur in a

particular instruction cycle depend upon the kind of
instruction, with the overriding stipulation that the first
machine cycle in any instruction cycle is alwaysa FETCH.

The processor identifies the machine cycle in
progress, by transmitting an eight-bit status signal during
the first state of every machine cycle. Updated status
information is published on the 8080's data lines (Do—D-),
during the SYNC interval. This data may be saved in
latches, decoded, and used to develop control signals for
external circuitry, Table 2-1 shows how the positive-true
status information is distributed on. the processor’s data
bus.

Status signals are provided principally for the contzol
of external circuitry. Simplicity of interface, rather than
machine identification, dictates the logical definition of
individual status bits. You will therefore observe that
certain processor machine cycles are uniguely identified by
a single status bit, but that others are not. The M, status bit
(Ds), for example, unambiguously identifies a. FETCH
machine cycle. A STACK READ, on the other hand, is
indicated by the coincidence of STACK and MEMR signals.
Machine cycle identification data can also be valuable in the
test and de-bugging phases of system development.

&

8080 Status Bit Definitions

DATA BUS

SYMBOLS BIT DEFINITION

HLTA D3 Acknowledge signal for HALT instruction.

INTA* Do Acknowledge signal for INTERRUPT request. Signal should be used to
gate a restart instruction onto the data bus when DBIN is active.

INP* Dg Indicates that the address bus contains the address of an input device
and the input data should be placed on the data bus when DBIN is active.

ouT Dy Indicates that the address bus contains the address of an output device '
and the data bus will contain the output data when WR is active.

MEMR* Dy Designates that the data bus will be used for memory read data.

My Dg Provides a signal to indicate that the CPU is in the fetch cycle for the
first byte of an instruction.

STACK Dy Indicates that the address bus holds the pushdown stack address from the
Stack Pointer.

WO D4 Indicates that the operation in the current machine cycle will be a
WRITE memory or QUTPUT function (WO = 0). Otherwise, a READ
memory or INPUT operation will be executed.

*These three status bits can be used to control the fiow of data onto the 8080 data bus.

Table 2-1.

STATE TRANSITION SEQUENCE

Every machine cycle within an instruction cycle
consists of three to five active states (referred to as T1, T2,
T3, T4, TS5 or TW). The actual number of states depends
upon the instruction being executed, and on the particular
machine cycle within the greater instruction cycle. The
state transition diagram in Figure 2-6 shows how the 8080
proceeds from state to state in the course of a machine
cycle. The diagram also shows how the READY, HOLD,
and INTERRUPT lines are sampled during the machine
cycle, and how the conditions on these lines may modify
the basic transition sequence. In the present discussion, we
are concerned only with the basic sequence and with the
READY function. HOLD and INTERRUPT functions will
be discussed later.

The 8080 CPU does not indicate its internal state
directly, by broadcasting a “‘state control” output during
each state; instead, the 8080 supplies direct control ouputs
(INTE, HLDA, DBIN, WR and WAIT) for use by external
circuitry.

Recall that the 8080 passes through at least three-

states in every machine cycle, with each state defined by
successive low-to-high transitions of the ¢; clock. Figufe
2-7 shows the timing relationships in a typical FETCH
machine cycle. Events that occur in each state are referred
to transitions of the ¢, and ¢, clock pulses.

The SYNC signal identifies the first state (T1) in
every machine cycle. As shown in Figure 2-7, the SYNC
signal is related to the leading edge of the ¢, clock. There is

a delay between the low-to-high transition of ¢2 and the
positive-going edge of the SYNC pulse. There also is a
corresponding delay between the next ¢, pulse and the
falling edge of the SYNC signal. Status information is
displayed on D4 - D, during this same interval. Switching
of the status signals is likewise controlled by ¢,.

The rising edge of ¢, during the T1 aiso loads the
processor’s address lines (Ag—A,;s). These lines become
fully charged and remain charged until the first ¢, pulse
after state T3. This gives the processor ample time to read
the data returned from memory.

Once the processor has sent an address-to memory,
there is an opportunity for the memory to request a WAIT.
This it does by pulling the processor's READY line low
during state T2. As long as the READY line remains low,
the processor will idle, giving the memory time to respond
to the addressed data request. Refer to Figure 2-7.

The processor responds to a wait request by entering
an alternative state (TW) at the end of T2, rather than
proceeding directly to the T3 state. Entry into the Tw state
is heralded by a WAIT signal from the processor,
acknowledging the memory’s request. A low-to-high
transition on the WAIT line is triggered by the rising edge
of the ¢, clock.

A wait period may be of indefinite dufation. The
processor remains in the waiting condition until its READY
line again goes high. The cycle may then proceed, beginning
with the rising edge of the next ¢; clock. A WAIT interval
will therefore consist of an integral number of T,, states
and will always be a multiple of the clock period. ’

RESET d

READY-HLTA
(2)
YES
e HLTA f
READY-HLTA
NO
READY
Tw
READY
INT-INTE HOLD-INT
HOLD vES SET HOLD F/F

SET HOLD F/F

T3
HOLD
MCDE
° RESET HOLD F/F

3 |

e

RESET HOLD F/F RESET HLTA
L%
I0DE , HOLD
EXECUTION
COMPLETED
RESET HOLD F/F
P
SET INT F/F
1 U1)\NTE F/F 1S RESET IF INT F/F IS SET.
{2)NT F/F IS RESET IF INTE F/F IS RESET. ~

Figure 2-6. CPU State Transition Diagram.

20

The events that take place during the T3 state are
determined by the kind of machine cycle in progress. In a
FETCH machine cycle, the processor interprets the data on
its main bus as an instruction. During a MEMORY READ
or a STACK READ, signals on the same bus are interpreted
as a data word. The processor itslef outputs data on this bus
during a MEMORY WRITE machine cycle. And during 1/0
operations, the processor may either transmit or receive
data, depending on whether an INPUT or an OUTPUT is
involved.

During the input of data to the processor, the 8080
generates a DBIN signal which may be used externally to
enable the transfer. Machine cycles in which DBIN is
available include: FETCH, MEMORY INPUT, READ,
STACK READ, AND INTERRUPT. DBIN is initiated by
the rising edge of ¢, during state T2 and terminated by the
corresponding edge of @, during T3: Any T, states
intervening between T2 and T3 will therefore prolong
DBIN by one or more clock periods.

The 8080 CPU generatess a WR output for the
synchronization of external transfers, during those machine
cycles in which the processor outputs data. These include
MEMORY WRITE, STACK WRITE, and OUTPUT. The
negative-going leading edge of WR is referred to the rising
edge of the first @, clock pulse following T2. WR remains
low until re-triggered by the leading edge of ¢, during state
T1 of the next machine cycle. Note that any T, states

intervening between T2 and T3 of the OUTPUT machine
cycle will necessarily prolong WR, in much the same way
that DBIN is affected during input operations.

All machine cycles of at least three states: T1, T2,
and T3 as just described. If the processor has to wait for a
response from the peripheral with which it is communi-
cating, then the machine cycle may also contain one ormore
Tw states. During the three basic states, data is transferred
to or from the processor.

After the T3 state, however, it vecomes difficult to
generalize. T4 and T5 states are available, if the execution
of a particular instruction requires them. But not all
machine cycles make use of these states. It depends upon
the kind of instruction being executed, and on the
particular machine cycle within the instruction cycle. The
processor will terminate any machine cycle as soon as its
processing activities are completed, rather than proceeding
mechanically through the T4 and T5 states every time.
Thus the 8080 may exit a machine cycle following the T3,
the T4, or the T5 state and proceed directly to the T1 state
of the next machine cycle. '

Table 2-2 lists the general activities associated with
each state.

T T Tw* T3 Ta® Ts®
Al . S\
L Ul el /]
Arso T
070 /
/| oata
— f \ STABLE
READY A
WAIT / \ ‘
DeIN / DATA \
WR
STATUS ’
INFORMATION DATA *OPTIONAL STATES
1

Figure 2-7. Typical Fetch Machine Cycle.

21

. ‘State Definitions

STATE ASSOCIATED ACTIVITIES

T A memory address or 1/0 device number is placed on the Address Bus (Ay5._); status infor-
mation is placed on Data Bus (D5.,).

T2 The CPU samples the READY and HOLD inputs and checks for hait instruction.

TW (optional) Processor enters wait state if READY is low or if HALT instruction has been executed.

T3 An instruction byte (FETCH cycle), data byte (MEMORY READ, STACK READ or INPUT
cycle), or interrupt instruction {INTERRUPT cycle) is input to the CPU from the Data Bus;)
or a data byte (MEMORY WRITE, STACK WRITE or OUTPUT cycle) is output onto the
data bus,

T4 States T4 and T5 are available if the execution of a particular instruction requires them;

T5 . if not, the CPU may skip one or both of them. T4 and T5 are only used for internal processor

(optional) operations.

Table 2-2.
Interrupt Sequences

The 8080 has the built-in capacity to handle external
interrupt requests. A peripheral device can initiate an
interrupt simply by pulling the processor’s interrupt (INT)
line high.

The interrupt (INT) input is asynchronous, and a
request may therefore originate at any time during any
instruction cycle. Internal logic re-clocks the external

request, so that a proper correspondence with the driving
clock is established. As Figure 2-8 shows, an interrupt
request (INT) arriving during the time that the interrupt
enable line (INTE) is high, acts in coincidence with the ¢,
clock to set the internai interrupt latch. This event takes
place during the last state of the instruction cycle in which
the request occurs, thus ensuring that any instruction in
progress is first completed.

My

T3 T T2

T3 Ts Tg T Ty T3 Ty T2

A
i __I"T___/ B/ VAU ARV Al

AV A A W AV
L\ VAV

PC-1

Do\

Y A

X PCy

{INTA)

"

SYNC

o

oy

&
~— NN

-
/
T\

DBIN f

WR

RETURN M1
onternaL) _ff \u

INTE \

INT / L

INT F/F
(INTERNAL) _

INHIBIT STORE \

(PC+1) INTERNAL

STATUS /
INFORMATION

INTA o—p—od

X'staci Ystaci

Figure 2-8. INTERRUPT Timing

22

)

@

The INTERRUPT machine cycle which follows the
arrival of an enabled interrupt request resembles an
ordinary FETCH machine cycle in most respects. The M,
status bit is published as usual during the SYNC interval. it
is accompanied, however, by an INTA status bit (Dy) which
acknowledges the external request. The contents of the
program counter are latched onto the CPU’s address lines
during T1, but the counter itself is not incremented during
the INTERRUPT machine cycle, as it otherwise would be.
in this way, the pre-interrupt status of the program counter
is preserved, so that data in the counter may be saved in the
stack. This in turn permits an orderly return to the
interrupted program after the interrupt request has been
processed.

The interrupt cycle is otherwise indistinguishable
from an ordinary FETCH machine cycle. The processor
itself takes no further special action. It is the responsibility
of the peripheral logic to see that an eight-bit interrupt
instruction is “jammed’’ onto the processor’s data bus at
T3. In a typical system, this means that the data in bus
from memory must be temporarily disconnected from the
processor’'s main data bus, so that the interrupting device
can command the main bus without interference.

The processor will treat the code placed on the main
bus at T3 just like any other fetched instruction. Thus, any
of the processor instructions may be inserted during an
interrupt. If the code is the first byte of a muitiple word
instruction, however, a special problem is encountered. The
processor will perform succeeding MEMORY READ
machine cycles, fully expecting that the proper information
will be on its bus at the proper time. But the program
counter will advance after the first byte. Because the
program counter advances a return to the interrupted,

instruction is not possible. For this reason, one-byte
instructions are preferable in most systems for use with
interrupts.

The 8080's instruction set provides a special one-byte
call which facilitates the processing of interrupts (the
ordinary program call takes thee bytes). This is the restart
instruction (RST). A variable three-bit field embedded in
the eight-bit field of the RST enables the interrupting
device to direct a jump to one of eight fixed memory
locations. The decimal addresses of these dedicated
locations are: 0, 8, 16, 24, 32, 40, 48, and 56. Any of these
addresses may be used to store the first instruction(s) of a
routine designed to service the requirements of an
interrupting device.

Hold Sequences

The 8080 CPU contains provisions which enable
direct memory access (DMA) operations. By applying a
HOLD to the appropriate control pin on the processor, an
external device can cause the CPU to suspend its normal
operations and relinquish control of the address and data
buses. The processor responds to a request of this kind by
floating its address and data outputs, so that these exhibit a
high impedance to other devices sharing the buses. At the
same time, the processor acknowledges the HOLD by
placing a high on its HLDA output pin. During an
acknowledged HOLD, the address and data buses are under
control of the peripheral which originated the request,
enabling it to conduct memory transfers without processor
intervention.

Unlike the interrupt, the HOLD input must be
synchronized with the driving clock. A HOLD signal should
coincide with the ¢, clock pulse, and external re-clocking

(1IHOLD'SIGNAL MUST BE SYNCHRAONIZED
BY THE RISING EDGE OF 9,

Mn M1
T4 Tz Tw T3 (Tg)* (Tg)® T T T2
==
oR |
0y n /’\
= AL T T L
- - - —
Jom = e ——
faso | [| FLOATING /
070 _| / NI T TTTTTTTT B /i .
HOLD
reavest |/ ™ 1 o \
HOLD
READY i
0!
INTERNAL —/
HLDA \)

*T4 AND Ty OPERATION CAN BE
DONE INTERNALLY.

Figure 2-9. Hold Operation (Read Mode).

23

logic must therefore be provided. In a typical system, an
asynchronous HOLD REQUEST will be registered by the
rising edge of the ¢; clock impulse, and the resulting
synchronized output will drive the CPU’s HOLD line. A
coincidence of the READY, the HOLD, and the ¢, clock
sets the internal hold latch. Setting the latch enables the
subsequent rising edge of the @; clock pulse to trigger the
HLDA output.

Acknowledgement of the HOLD REQUEST precedes
slightly the actual floating of the processor’s address and
data lines. The processor acknowledges a HOLD at the
beginning of T3, if a read or an input machine cycle is in
progress (see Figure 2-9). Otherwise, acknowledgement is
deferred until the beginning of T4 {see Figure 2-10). in
both cases, however, the HLDA goes high within a brief
delay of the rising edge of the selected ¢, clock pulse.
Address and data lines are floated within a brief delay after
the rising edge of the next ¢, clock pulse.

To ail outward appearances, the preocessor has
suspended its operations once the address and data busses
are floated. Internally, however, certain functions may
continue. {f a HOLD REQUEST is acknowledged at T3,
and if the processor is in the middle of a machine cycle
which requires four or more states to complete, the CPU
proceeds through T4 and T5 before coming to a rest. Not
until the end of the machine cycle is reached will processing
activities be completely stailed. Internal processing is thus
permitted to overlap the external DMA transfer, improving
both the efficiency and the speed of the entire system.

The processor exits the holding state through a
sequence similar to that by which it entered. A HOLD
REQUEST is terminated asynchronously, when the
external device has completed its data transfer. Re-clocking

logic registers this change at the beginning of the next state
(rising edge of ¢). The internal hold latch is reset by the
subsequent leading edge of the ¢, clock pulse, and the
HLDA output returns to a low level following the leading
edge of the next ¢,. Normal processing resumes with the
machine cycle in progress, or with T1 of the next machine
cycle, depending on whether the HOLD REQUEST is brief
or extended.

Halt Sequences

When a halt instruction (HLT) is executed, the'CPU
enters the halt state (TwH) after state T2 of the next
machine cycle, as shown in Figure 2-11. There are only
three ways in which the 8080 can exit the halt state:

® A high on the RESET line will always reset the
8080 to state T1; RESET also clears the program
counter and sets the instruction register to zero.

® A HOLD input will cause the 8080 to enter the
hold state, as previously described. When the’
HOLD line goes low, the 8080 re-enters the hait
state on the rising edge of the next ¢; clock pulse.

® An interrupt (i.e., INT goes high while INTE is
enabled) will cause the 8080 to exit the halt state
and enter state T1 on the rising edge of the next
¢y clock puise. NOTE: The interrupt enable
(INTE) flag must be set when the halt state is
entered; otherwise, the 8080 will only be able to
exit via a RESET signal.

Start-Up of the 8080 CPU

When power is applied initially to the 8080, the
processor begins working immediately. The contents of its

Mn Mn+1 Mn+2
T3 T, T T, s)
s N\
o« | M L L S
- R
I -
Azs0 X | FLOATING J
—— >4 ———tme————
oro0 | ___J A | J
WA \ / *
HOLD
request |/ \
HoLD \
READY
HOLD F/F
INTERNAL i \ 3
HLOA / | S
WRITE DATA

Figure 2-10. Hold Operation (Write Mode).

24

)

L

program counter, stack pointer, and the other working
registers are naturally subject to random factors and cannot
be specified. For this reason, it will be desirable in many
situations to begin the power-up sequence with an
automatic forced RESET.

An external RESET signal of 1.5 microseconds’
duration (minimum) restores the processor’'s internal
program counter and instruction regester to zero. Program
execution thus begins with memory location zero,
following a RESET. Note, however, that the RESET has no
effect on status flags, or on any of the processor’s working
registers (accumulator, indices, or stack pointer). The
contents of these registers remain indeterminate, untii
initialized explicitly by the program.

Peripheral Logic

In this section, we describe the peripheral logic on the
imm8-83 Central Processor Module, the logic which
supports the activities of the 8080 CPU. We begin by
explaining the timing logic, since all the operations of the
module are ultimately referred to signals generated in that
section. Then we give descriptive examples of module
operations, showing how the peripheral logic extends the
basic capabilities of the 8080 processor.

Timing Logic

The timing logic consists of a crystal-controlled clock
oscillator, a counter, level shifting provisions, and
miscellaneous counting and gating circuits. These are shown
on the module schematic, Figure 2-16.

The clock oscillator furnishes a 32 MHz signal to the
input of the counting section, which uses it to develop the
¢, and ¢, clock signals used to generate the remaining
timing outputs. The clock oscillator consists of components

shown in the upper central portion of the moduie
schematic.

A 32 MHz quartz crystal, operating in the
series-resonant mode, is the basic frequency reference. The
crystal acts as a bandpass filter at the desired frequency. It
thus permits a portion of the signal developed across the
capacative divider in the transistor’s collector circuit to
reach the emitter, in proper phase to sustain oscillation.
The output from the oscillator stage is coupled to a second
stage, biased to operated as an overdriven amplifier, and the
shaped output of the second is used to drive the
synchronous counter chain.

Four 745114 high-speed J-K flip-flops constitute the
clock counter. This is a synchronous configuration, with
the steering function obtained through the use of external
coincidence gates. A slight variation on conventional
practice produces a fourth stage output which is
“displaced” with respect to the outputs of the first three
stages, by one full period of the driving clock. In all other
respects, however, the counter resembles the familiar
modulo-16 synchronous counters in common usage.
|dealized output waveforms are shown in Figure 2-12.

The 2 MHz output of the fourth counting stage
becomes the ¢, clock signal. Coincidence in the outputs of
the third and fourth, stages generates the ¢@; clock. As
Figure 2-12 shows, this produces two non-overiapping clock
signals, with characteristic pulse widths of 125 and 250
nanoseconds and separation intervals of approximately 32
and 94 nanoseconds.

The ¢, and @, clock phases are applied to the inputs
of an MH0026 level shifter and used to drive the 8080’s
clock inputs. Timing logic on the processor produces a
SYNC output, derived from ¢,. Then SYNC and clock
signals are fed to the gating logic.

My Mz
kil T2 Ts Ts T T, o Tom
"N
wl AL A AL A L Y
Arsa_| frc / ——]t] e e = e
Or0_| / IR ~" 7 -l ———— ‘
SYNC /_ —'\ /——-—\ -
OBIN r—"""‘\
wAIT
STATUS YV —
INFORMATION & .EA B
Wo wo

Figure 2-11. Halt Timing.

25

In the gating section the SYNC and the ¢, clock are
combined in a 74H00 NAND-gate section. The coincidence
of these two signals produces the CLKA output. CLKA is
used as a strobe on the module, to register the status
information sent out at the beginning of each processor
machine cycle. After passing through cascaded buffer
sections, the SYNC signal becomes CLKB. CLKB is
available at the PC edge connector, for use by the
INTELLEC 8's Front Panel Controller. A 7493 binary
counter in the gating logic derives a one-eighth submultiple
of the ¢y clock pulse, and this too is made available to logic
on the INTELLEC 8’s Front Panel Controlier. This pulse,
known as the SYNCA, is used to synchronize service
requests originating at the Console and Display Panel.
Figure 2-13 shows the timing of these signals.

Instruction Fetch

Refer to the schematic for the Central Processor
Module, Figure 2-16. An instruction fetch machine cycle
(FETCH) is the first part of every instruction cycle. The
events that take place during an instruction fetch are as
follows.

During the T1 state, the processor transmits the
contents of its internal program counter to memory, via the
8080's sixteen address lines. Assuming that no holds are in
progress, the address data passes through the sixteen
enabled tri-state buffers of the address buffer section and is
presented to external memory. Data placed on the address
bus remains stable until the T4 processing state.

Status information is also broadcast during the T1
interval, on the processor’s eight data lines. Again assuming
the absence of a hold, data on this bus passes through the
eight paralle! tri-state buffers of the data buffer section and
is forwarded to the status latches. Eight Intel 3404 Hex

Inverting Latch sections are used to register the status
information. The strobing input to these latches is the
CLKA signal from the timing section. Status information
reflecting the machine cycle in progress is thus recorded at
the beginning of every processor machine cycle. During a
FETCH machine cycle, the following status bits are
produced: M;, MEMR, and RI/WO.

Status information is cleared from the processor's
data bus during the T2 state, in preparation for the data to
be returned form memory. Such data must be present and
stable at least 20 nanoseconds prior to the end of the T2
state. Neither the PROM Memory Module nor the RAM
Memory Module used with the INTELLEC 8/MOD 80 is
capable of responding that fast, and the automatic wait
logic comes into play accordingly.

Refer to the module schematic, Figure 2-16. The
logic used to generate the appropriate wait request consists
of two 7474 latch sections and two 7400 NAND-gate
sections, shown on sheet 2.

Consider first the case where the PROM module is
selected. The PROM MOD ENABLE line (pin #97) will be
high, and the RAM MOD ENABLE line (pin #93) will be
low. At the beginning of a machine cycle, the SYNC pulse
from the timing generator is gated through the 8-9-10
section of the quad NAND-gate A18 to reset both of the
7474 latch sections. The aoutputs of both sections will
thus be high, following the rising edge of the T1-¢, clock
puilse. The high at A1-8 is applied to A27-2, as shown on
sheet 1, re-clocked by ¢,, in a 7474 latch section (A5), and
applied as a low to the CPU's READY pin. This indicates a
wait request to the 8080, and the CPU responds by entering
the TW state instead of proceeding directly to the T3 state.

Referring back to sheet 2, observe that the D input of
the upper latch section is connected through a pull-up to

32 MHz
cLocK

CNTR “A"

CNTR "B

CNTR“C"

CNTR D"

250 ns. T

Figure 2-12. Oscillator-Counter Timing.

26

S

VCC' An inverted @, clock is directed to the clock input of
this latch, which is set accordingly by the trailing edge of
¢,. Detailed timing is shown in Figure 2-14.

The resulting low at Al-6 is forwarded to A18-1,
which applies a high to the D input of the lower fatch
section. With its D input now high, the latch is set by the
trailing edge of the next @ pulse. The latch’s Q output goes
low, is re-clocked by ¢, as shown on sheet 1, and is
presented as a READY indication to the processor, with the
result that the WAIT state is terminated with the next ¢,
clock pulse. By referring to the timing diagram in Figure
2-14, we can see that two clock periods have elapsed
between the processor’s exit from T2 and its entry into T3.
This additional one microsecond interval gives the PROM
Memory Module sufficient time to respond to the address
from the Central Processor Module, and the machine cycle
may proceed.

Consider next the sequence of events that takes place
when the RAM module is selected. In this case, both the
RAM MOD ENABLE and the PROM MOD ENABLE lines
shown in Figure 2-16 will be high. The SYNC pulse will
again reset the two 7474 latch sections shown on sheet 2.
And again, the Q output of the lower latch will be
re-clocked by ¢, and forwarded to the processor as a low
signal level, indicating a wait request. Timing of this
sequence is shown in Figure 2-15.

In the present case, however, the high on the RAM
MOD ENABLE line causes the A18:1-2-3 NAND-gate
section to forward a high to the D input of the lower 7474
latch section. The trailing edge of the @, pulse occurring
during T2 will set this latch, and the wait request to the

processor will be terminated by the next ¢; clock pulse.
With reference to the timing diagram, we can see that the
resulting WAIT interval is only half that generated when the
PROM module was selected. The RAM module is inherently
faster than the PROM module, and the 0.5 microsecond
waiting period enables it to respond to the imm8-83’s ad-
dressed request.

The Central Processor Module also contains synchro-
nization provisions for other kinds of memory. Two
possibilities are envisioned: those where the memory'’s
access time is even greater than that specified for the PROM
Memory Module. Where the imm8-83 is used in conjunction
with other memories, selection logic will clamp the PROM
MOD ENABLE line low. With this condition prevailing, the
A18:8-9-10 NAND-gate section will be inhibited, and the
SYNC puise from the timing logic will be unable to reset
the two 7474 wait latches as previously described. A1-8 will
be high continuously, and no wait request will reach the
processor by that route. In this case, it is the responsibility
of the selected memory module or controller to generate a
WAIT REQUEST as necessary,

Memories with access times under 500 nanoseconds
need no synchronization but those whose access times
exceed this figure will require it. A wait is initiated from
outside the CPU module by clamping the WAIT REQUEST
line low. Figure 2-16 (sheet 1) shows the wait logic. WATT
REQUEST enter the module at pin #21. They are inverted,
gated through the 1-2-3 section of A-27, and applied to the
D input (pin #2) of A5. A5 is the same 7474 latch section
used to re-clock internally generated wait requests. It
receives a @ pulse at its clock input and produces a

| ™ | T2 | T3 | T4 | TS | Tt | T2 | T T4 |
oo 1M Mmoo nornorn
bowox __ [LML ML n
se — | —
CLKA M 11 .
cuxs 1 —
SYNCA 1 I

Figure 2-13. Timing Generator

27

synchronized wait request at its output. The low which is
applied to the processor's READY input causes the
processor to idle, until such time as the WAIT REQUEST is
removed. Note that the re-clocking mechanism requires that
a request be terminated by the beginning of the Ty, phase,
in order to guarantee an exit from the TW state at the
beginning of the next clock phase.

When synchronization has been achieved, the FETCH
machine cycle proceeds. It becomes the responsibility of
the multiplexing logic to select the memory’s reply and
forward it to the processor. The INP and the INTA status
bits from the status latch section, and the DBIN from the
8080 COU, enable the multiplexing logic to perform this
function.

Refer to Figure 2-16. The muttiplexing logic is shown
at the left of sheet 1, and consists of two pairs of cascaded
8-to-4 line multiplexers type 745267 and 74S157. These
are labelled A22, A23, A30 and A31 on the schematic.
Inputs to A30 and A31 consist of the eight-line data in bus
from memory, and the eight-line data in bus from the input
peripherals. The muitiplexer discriminates between these
two eight-line inputs on the basis of a controt signal
furnished to pin #1 of both units. A high leve! here causes
the multiplexers to select data from memory, while a low
causes them to select data from the other input devices.

The selected eightline output of the first muiti-
plexing stage is forwarded to inputs on a similar second
stage. The other eight-line input to the second stage comes
from the moduie’s interrupt instruction port. Like the first
stage, the second selects one of the two inputs, on the basis

of the signal at the pin #1 inputs of the two multiplexers. A
high selects the output of the first multiplexing stage, while
a low selects the interrupt instruction port.

The output of the second multipiexing stage is
connected directly to the processor’s eight-line data bus
(Do—D~). Observe, however, that the second stage of the
multiplexer requires an explicit enabling input. in the
absence of a low on pin #15 of the two units, the outputs
of the multiplexers are in a floating, high-impedance state.
The ability to entirely disable all inputs to the main bus
enables the bus to be used for bilateral exchanges of data.
During output, the input bus is disabled, to prevent the
conflicts that could arise if the processor and one or more
input devices were competing simultaneously for the use of
the bus.

To understand the input gating mechanism during a
FETCH machine cycle, refer to Figure 2-16 (sheet 2). The
first stage of the input multiplexer is controlied by the INP
status latch., During machine cycles in which memory is
referenced, the output of this latch is high. And assuming
that no IN JAM ENABLE is present (this external function
occurs only during the artificial input mode, “‘sense”), high
is therefore produced at the output of A32-8. This high
causes the first stages of the multiplexer to select and
forward data from memory to the input of the second
multiplexer stage.

The second stage of the muitiplexer is controlled by
the INTA status latch, shown on sheet 1 of the module
schematic. This status bit is low only during an
INTERRUPT sub-cycle. During a FETCH, the INTA latch
forwards a high to the control input of the second

w T Tw - T3 !

T

L3l

sl =

e
\ %-

[y

RAM MOD EN /
Atz

A173 '

Figure 2-14. PROM Memory Synchronization Timing.

28

multiplexer stage, causing it to select and forward the data
from the first stage to the processor.

When the processor is ready to receive data, it
generates a DBIN output signal. The rising edge of this
signal coincides with the rising edge of the T2-@, clock, and
DBIN remains active until reset by the leading edge of the
T3¢, clock. This signal is applied to a 7402 NOR-gate of
the multiplexer. Thus the previously addressed instruction
is finally gated through from memory, and stored in the
processor’s instruction register.

Some instructions will cause the processor to enter
FETCH-T4 and FETCH-T5 states. But the activity of the
peripheral logic is completed with the return of the
instruction from memory. Where T4 and T5 states are used,
they are reserved solely for internal processor functions.

The fetched instruction may be executed immedi-
ately, completing both the FETCH machine cycle and the
instruction cycle. Or it may cause the processor to execute
one or more additional memory references. These are
described in the next section.

Memory Reference Operations
{Memory Read and Memory Write)

Every operation that the CPU performs is preceded
by a FETCH machine cycle such as that just described. In
the case of certain instructions, it may be necessary to
reference memory one or more additional times in order to
completely execute the command.

Instructions that reference memory in the course of
their execution do so in a manner very similar to that used
to fetch instructions. One major difference is that the
address of the referenced location may be furnished by the
processor’s internal H and L pointer registers, rather than
by the program counter. But during MEMORY READ and

MEMORY WRITE machine cycles, the addressing, multi-
plexing and gating functions are handled in much the same
way as they are for an instruction fetch,

As far as the peripheral logic is concerned, there is
one important difference. The processor generates a DBIN
signal during those machine cycles in which it intends to
input data from memory. During those machine cylces in
which the processor outputs data to memory, it generates a
WR output signal to cue the transfer.

A MEMORY READ machine cycle is accompanied by
a DBIN signal. The peripheral logic thus handles it in
exactly the same way as a FETCH. A MEMORY WRITE
machine cycle is slightly different. The absence of DBIN
inhibits the input multiplexer, and logic on the imm38-83
conditions the processor’s WR output, to produce a WRITE
command for the control of memory.

Refer to sheet 2 of the module schematic. As shown,
the processor’s WR output is coupled through an inverter
section to pin #4 of A2, Here it is ANDed with the negative
output of the OUT status latch, to produce a signal which is
low only during the WR portion of a MEMORY WRITE
machine cycle. This output is buffered in a tri-state section,
to become the WRITE output to memory.

In the course of a MEMORY WRITE machine cycle,
address and status information are transmitted just as they
are in a MEMORY READ. During the T2 state, however,
the processor places the contents of its accumulator on the
main data bus where it is forwarded to the memory’s data
inputs. The WRITE output synchronizes the transfer,
completing the write machine cycle.

1/O Operations

All input and output operations require three
machine cycles: a FETCH to obtain the instruction, a

%

w_ [\ /]

SYNC

READY ’

WAIT

Ar173

Figure 2-15. RAM Memory Synchronization Timing.

3 z | € [4 v S | 9 | I3
e R A
TR =
G
£
A
; ? _ € _ v ¥ s I 5 T I

Figure 2-16. imm8-83 Central Processor Module Schematic Diagram (Sheet 1).

- i ¥
. | :

©
’
2
. [SRV S—
~ l
i
]
<

] [[3) ¥ @ |

Figure 2-16. imm8-83 Central Processor Module Schematic Diagram {Sheet 2).

31

MEMORY READ to obtain the eight-bit address of the
peripheral device involved, and an INPUT or an OUTPUT
to execute the transfer. FETCH and MEMORY READ have
already been described. Execution is described below.

The first byte that the processor fetches from
memory indicates the kind of transfer to be conduced. The
second byte, store immediately following the first, contains
the eight-bit address of the object peripheral. Thus, one of
256 input devices or 256 output devices may be designated
in such a transfer. Having fetched these two bytes from
memory, the processor proceeds as follows.

The third machine cycle is designated an INPUT or an
OUTPUT, depending upon the instruction byte originally
fetched. An INPUT machine cycle is identified by an INP
status bit, published during T1 as usual. An OUTPUT
machine cycle, on the other hand, will be identfied by an
QUT status bit. In both cases, the address of the designated
peripheral is also sent out during T1. Address data on lines
Ag—A, is repeated on lines Ag—A, 5.

In an input operation, status information is cleared
from the main data bus during the T2 state. Address data
remains stable, however, throughout the remainder of the
machine cycle. The output of the INP status latch is
buffered in a tri-state section and made available the
module’s edge connector (}/O IN), to enable the transfer
externaily. Details are shown on the module schematic,
Figure 2-16. (sheet 2).

Observe also that the /O IN signal is applied to
A32-13. The resuiting high at the gate’s output is inverted
subsequently and routed to the control input of the input
muitiplexer’s first stage. You will recall that a low at this
point causes the muitiplexer to select and forward data on
the peripheral input bus to the second stage muitiplexer.
The second stage, enabled by a DBIN signal from the
processor, in turn forwards the input data to the processor’s
main bus. There it is picked up and stored in the 8080°s
accumulator register.

In an output transfer, status information is again
cleared from the processor's main data bus during the T2
state. It is replaced, however, with the eight-bit data word
stored in the processor’s accumulator. Just as in the case of
input, the address lines remain stable throughout the
machine cycle. Inputs to the processor’s main data bus are
inhibited by the absence of DBIN, and the CPU generates a
WR output signal to implement the data transfer.

Referring again to sheet 2 of Figure 2-16, observe
that WR is inverted and applied to A18-4. There it is ANDed
with the inverted output of the OUT status latch, producing
an 1/0 OUT signal which synchronizes the external transfer.
Output data from the processor thus passes to its addressed
destination, completir'xg the output cycle.

Interrupt Cycle

From the point of view of the 8080 CPU, the
interrupt cycle is simply a modified FETCH machine cycle.

Externally, the operation of the CPU appears much the
same. The sequence is as follows:

An incoming INTERRUPT REQUEST enters the
Central Processor Module asynchronously at pin #42, as
shown in Figure 2-16 (sheet 1). It is gated through the
11-12-13 section of a 7400 NAND-gate {A2), and applied to
the clock input of a 7474 latch section (A4). Here the
request is stored, until the processor can properly acknow-
ledge it. The high at the latch’s Q output is forwarded
directly to the 8080's INTERRUPT input.

After completing the machine cycle in progress, the
processor acknowledges the interrupt. This it does by
entering an alternative INTERRUPT machine cycle, rather
than proceéding directly to the next instruction fetch. As
we explained, the processor transmits an address during the
INTERRUPT-T1 state, but the internal program counter is
not incremented. As a result, the logic sequence of the
interrupted program is maintained. When the interrupt has
been processed, the main program may therefore be
resumed with no loss of continuity. ’

The processor publishes an INTA status bit during
T1, identifying the machine cycle in progress as an
INTERRUPT machine cycle. This bit is saved in the INTA
status latch, and presented at the module’s edge connector,
as an external acknowledgement of the INTERRUPT
REQUEST. At approximately the same time, the 8080 CPU
disables its INTERRUPT input. This is an internal processor
function, but the resulting low at the processor’s INTE
output is buffered and made available at the edge
connector, to indicate that the INTERRUPT facility has
been disabled.

The output of the INTA status latch is forwarded to
the control pin of the input muitiplexer’s second stage,
causing the multiplexer to select and forward data at the
interrupt instruction port to the processor’s main data bus.
Thus the processor interprets data at the interrupt port as
an instruction, and executes it accordingly. The Central
Processor Module returns to its normal mode of.operation
as soon as the INTERRUPT cycle is completed.

Note that the INTA status bit is used within the
module to reset the interrupt request latch, removing the
request from the processor as soon as it has been
acknowledged. By terminating the request promptly, the
module’s interrupt logic ensures that a spurious second
INTERRUPT cycle is not generated inadvertently. .

Hold Operations

The peripheral device requesting a hold applies a
HOLD REQUEST at pin #51 of the Central Processor
Module. The request is forwarded directly to the D input of
a 7474 latch section where it is re-clocked and transmitted
to the HOLD input of the processor. As explained, the
8080 CPU responds to such a request during the next T3
{or T4) state, by floating its address and data busses and by
transmitting a HLDA signal which acknowledges the HOLD
REQUEST.

(\)

If you refer back to Figures 2-9 and 2-10, however,
you will observe that there is a brief delay between the
rising edge of the HLDA signal and the actual floating of
the busses. This makes it advisable to re-clock the HLDA,
before using it to acknowledge the request externally. To
achieve this purpose, HLDA is applied to the D input of a
7474 latch section (AB) and re-clocked by the ¢, timing
pulse. The output of the latch, which now coincides with
the processor’s internal activity, is buffered and made
available at pin #2 at the HOLD ACK signal.

Refer now to the module schematic, Figure 2-16
(sheet 1). Note that the re-clocked output of the hold ack-
nowledge flip-flop is also used by circuitry on the module
to perform the following functions:

a) float the address bus

b) float the data output bus

¢) float the 1/0 IN control line

d) float the T/0 OUT control line

e) float the WRITE control tine

f) enable the second stage of the input multiplexer
g) float the BBOUT control line

These functions may be verified by tracing out the
distribution of the HOLD ACK signal, from its origin at
AS5-9 to the various points shown on the schematic diagram
(Figure 2-16, sheet 1 and sheet 2). They assure the request-
ing peripheral complete control of the memory’s busses and
control lines, until such time as the external HOLD
REQUEST is removed.

Note that the input multiplexer has to be enabled
explicitly by the HOLD ACK signal. This is necessary,
since the memory’s data output lines have no other way of
communicating with the input of the requesting peripheral.
Note too, that the module’s data output lines are inhibited
by their common enabling line through the 8-9 section of
A26, A25 is placed in a high impedence state with passive
pull up allowing the requesting peripheral to override the
hold logic when receiving data from memory. By com-
manding the module’s DB OUT line directly, the DMA
device can establish continuity between its input lines and
the output lines from memory.

Whenever two or more peripherals in the same system
have DMA capability, there is always a chance of conflect.
One device may request a hold while the other is already in
the process of conducting a transfer. Finding the HOLD
ACKNOWLEDGE line enabled, the requesting device is
tiable to proceed with its intention to transfer data. It wil’
come into direct conflict with the first device.

To prevent this possibility, the processor module
maintains a BUS BUSY status line. Pin #53 of the module
is returned internally to the +5 Volt supply, through a 1K
pull-up resistor. It becomes the logical responsibility of a
device controller to monitor this line before requesting a
hold. if the line is high, the operation may proceed. If not,

33

it must wait. Any controller requesting a hold must clamp
the BUS BUSY line, in order to protect its prior right of
access. {Must also have a daisy chain between peripherals to
establish tie breaking priorities).

Reset

The reset logic is shown on sheet 1 of the module
schematic, Figure 2-16.

An external RESET is applied to pin #52 of the
Central Processor Module. It passes through the NOR-gate
A32: 1-2-3 and is forwarded to the CPU’s RESET input.
The processor’s internal program counter and instruction
register are zeroed, as explained on page 24. ’

However, there is also provision in the reset logic for
the generation of an automatic RESET whenever the
module is brought up from a power-down condition.
Capacitor C24 charges to the level of VCC through a 22K
resistance, R23. Under normal operating conditions, the
capacitor is fully charged. Whenever power to the module is
interrupted, however, the capacitor discharges rapidly,
through. the diode CR2. Thus, when power ultimately
returns, the charge on the capacitor must be restored
exponentially through R23. During this time, a low is
applied to pin 2 of A32, and the output of the gate
generates a RESET of the CPU. In this way, proper
initialization of the processor is assured.

Programmed Display

Logic for the programmed display port is shown on
sheet 2 of the Central Processor Module schematic, Figure
2-16.

As shown, a type 7430 NAND-gate is used to indicate
coincidence whenever the address FF ¢ is presented on the
module’s address bus. The output of the address gate is
combined with the 1/0 OUT signal in a second gate (A27),
inverted, and used to drive the common strobe inputs of
the 3404 inverting latches shown in the upper right portion
of the drawing. The coincidence of the address FF;¢ and
the /0 OUT signals accordingly causes these latches to
record the data on the module’s data out bus. Programs
may write data into this port, for display on the
INTELLEC 8's Console. .,

UTILIZATION

This section provides information on utilization of
the imm8-83, for using the module outside the INTELLEC
8/MOD 80 system.

Installation

In installing the Central Processor Module, the user
must take account of:

a) environmental extremes
b) mounting

c) electrical connections
d) power requirements

e) signal requirements

ENVIRONMENT

Temperature extremes can cause instability, or result
in permanent damage to the circuits on the module.
Ambient temperature must therefore be maintained within
the limits of 0° to 70° Centigrade. Exercise caution in
locating the module, giving particular attention to radiant
and conducive sources of heat. Remember that the module
itself, when installed, will contribute some heat to the
environment. Maintain an adequate clearance, to permit the
convective dissipation of heat from the elements on the
card.

Relative humidity is not critical to the module's
operation. .

MOUNTING

Avoid locating the module near vibrating machinery.
Exposure to prolonged or violent vibration may cause
fatigue or impact failure of connections on the board,
resulting in abnormally high noise levies or outright failure
of the assembly. !

Dimensions of the module are 6.18 x 8.00 inches. Be
sure to allow enough additional clearance to ensure
adequate cooling.

The moduie is designed to plug directly into a
standard 100-pin, double-sided PC edge connector. The
connector will serve as a mounting, as well as an electrical
junction, if the environment is not too severe. Card guide
slots are desirable, for the additional protection they
afford. Should vibration be a problem, however, or should

the assembly be used in a portable equipment application,
an additional retaining bracket will have to be provided.
Whem mounting the board, remember that it is desirable to
orient the assembly vertically wherever possible. This
optimizes convective cooling of the components on the
module.

ELECTRICAL CONNECTIONS

The basic power and control connections to the CPU
Module are made through a standard 100-pin, double-sided
PC edge connector (0.125" contact centers). CDC #VPB
01C50EQQA1 is one suitable type. Pin allocations on the
connector are given in Table 2-4.

POWER REQUIREMENTS

The Central Processor Module requires DC power, at
the following levels:

Supply Volts | Tolerance Typ Load Max Load
+12VDC 5% 0.04 Amps 0.06 Amps

+5VDC 5% 1.00 Amps | 1.50 Amps

-9VvDC 5% 0.10 Amps | 0.15 Amps

Refer to the pin list for power connections.

SIGNAL REQUIREMENTS

All data and control functions on the module are at
TTL levels. Electrical characteristics of the inputs and
outputs are given in Table 2-3 for the various types of IC
devices.

Signal discriptions and connector pin allocations are
given in Table 2-4.

Pin List

The following section describes connector pin
allocations on the Central Processor Module, The pins and
their designated signal functions are listed in Table 2-4.

CPU Module: D.C. Signat Characteristics .
Device Type
Parameter . 748xx Unit
74xx 74Hxx 8093 8095
lom High-level output current 0.400 0.500 5.2 5.2 - MA
loL Low-level output current 16 20 16 32 " mA
™ High-level input current 0.040 0.050 0.040 0.040 KA
TR Low-level input current 1.6 2.0 16 1.6 mA

Table 2-3

CPU Module Output Connector

Pin# Name Signal Function Pin# Name Signal Function
1 CLKA T2 Synchronization 38 D86 Qutput Data Bit 6
2 DeOUT Output Data Enabling 39 Ta1 Programsmed Display Bit 1
3 GND Supply Common 40 T49 Programmed Display Bit
4 GND Supply Common 41 Ta2 Programmed Display Bit 2
5 INT ACK Interrupt Cycle Status 42 W__T_-E_W Initiate External Interrupt
6 STACK Stack Reference Cycle REQ
Status 43 -9VDC Vgg Source Power
7 SYNCA @1 Modulo -8: F/P Logic 44 ‘avDC Vgg Source Power
8 Ta7 Programmed Display Bit 7 45 Ta3 Programmed Display Bit 3
9 INT REQ Interrupt Requested 486 HOLD ACK Acknowledge Hold Request
LATCH 47 -12VDC
10 01 (TH* @1 Processor Clock Out (T1) 48 -12VDC
" MADO Address Bit 49 +12VDC Vpp Source Power
12 MADY Address Bit 1 50 +12VDC Vpp Source Power
13 MAD2 Address Bit 2 51 HOLD REQ Initiate External Hold
14 MAD3 Address Bit 3 52 RESET Initiate External Reset
15 MAD4 Address Bit 4 53 BUSBUSY DMA In Progress Signal
16 MAD5 Address Bit 5 54 T/00UT 1/0 Qutput Strobe
i MADS Address Bit 6 55 0sc 32 MHz Oscillator Output
18 MAD7 Address Bit 7 56 HLTINT REQ Processor Restart Interrupt
19 MAD8 Address Bit 8 57 TNIAM Disable 1/0 IN Strobe
20 MAD9 Address Bit 9 ENABLE
21 WAIT Ready Flag from Memory 58 MEMWRITE Memory Write Cycle
REQUEST CYCLE Status
22 DBIN Input Data Enabling 58 MADI3 Address Bit 13
23 MDID Memory Input Data Bit 9 60 MAD12 Address Bit 12
24 DBO Output Data Bit @ ‘ 61 WAIT Wait Request Acknowledge
25 MDI1 Memory Input Data Bit 1 62 HLT ACK Halt Cycle Status
26 DB1 Output Data Bit 1 63 CLKB (T3)* Processor Cycle SYNC
27 MDI3 Memory Input Data Bit 3 64 TOCYCLE /O Cycle Status
28 DB3 Qutput Data Bit 3 65 MAD15 Address Bit 15
29 MDI2 Memory Input Data Bit 2 66 MAD14 Address Bit 14
30 DB2 Output Data Bit 2 67 MEM READ Memory Read Cycle -
31 MDI5 Memory Input Data Bit 5 CYCLE Status
32 DBS Output Data Bit 5 68 FETCH CYCLE Instruction Fetch Cycle
33 MDi4 Memory Input Data Bit 4 Status
. 69 ng Interrupt Instruction Bit @
34 DB4 Qutput Data Bit 4
3% MDI7 Memory Input Data Bit 7 70 IND Peripheral Input Bit @ -
36 D87 Output Data Bit 7 71 i Interrupt Instruction Bit 1
- MDI6 Memory Input Data Bit 6 72 IN1 Peripheral Input Bit 1

Table 2-4

*imm&-82 function

CPU Module Output Connector

Pin# Name Signal Function Pin# Name Signal Function
73 113 Interrupt Instruction Bit 3 88 CLKB (T3A)* Processor Sub-Cycle SYNC
74 INT DISABLE Interrupt Disabled Flag 89 02 @2 Processor Clock Out
75 INT CYCLE Interrupt Cycle Status 90 T44 Programmed Display Bit 4
76 IN3 Peripheral Input Bit 3 91 T4 Programmed Display Bit 5
77 h2 Interrupt I nstruction Bit 2 92 T46 Programmed Display 8it 6
78 IN2 Peripheral Input Bit 2 93 RAM MOD RAM Memory SYNC Select '
79 INS Peripheral Input Bit 5 ENABLE
80 4 Interrupt Instruction Bit 4 94 MADT? Address Bit 11
81 ING Peripheral Input 6 95 WRITE Memory Write Strobe
82 70N 1/0 Input Strobe 9% MAD1D Address Bit 10
83 115 Interrupt Instruction Bit 5 97 PROM MOD PROM Memory SYNC
ENABLE Select
84 IN4 Peripheral Input Bit 4
98 []] 01 Processor Clock Out
85 HEY Interrupt Instruction Bit 6
99 +5VDC Vg ‘Source Power -
86 IN7 Peripheral |nput Bit 7
100 +5VDC Vg Source Power
87 H7 Interrupt Instruction Bit 7

Table 2-4 {cont’d.)

36

*imm8-82 function

c’

37

The imm8-61 Input/Output Card has been designed
to provide the user with an input/output facility containing
four individually addressable input ports, two of which pro-
vide built-in Teletype interfacing and control and four
individually addressable output ports, again with two of the
ports providing Teletype interfacing. The need for separate
external Teletype controllers is thereby eliminated, as is the
need to design input and output facilities.

The imm8-61 Card has been designed to allow four
cards to be used in an INTELLEC 8/MOD 80 system, with
each card having a unique address by which it is referenced.
The imm8-61 Card includes all logic necessary to support a
multi-card implementation. Though each imm8-61 module
has only four input ports and four output ports, the com-
bination of two sets of jumpers and four useable card posi-
tions allows implementation of ports 0-63 (out of a pos-
sible 256) with four imm8-61 modules.

Although the imm8-61 Card has been designed to
support the Intel imm8-83 Central Processor Card, it may
be used in any application which can use its easily imple-
mented input/output sub-system, its integral Teletype com-
munications facilities, its great flexibility, and its low cost.

This section describes the operation and implementa-
tion of the imm8-61 input/Output Card at three levels; first,
the operation of the imm8-61 is described on a basic func-
tional level; second, theory of operation is provided; third,
necessary information to effectively use the imm8-61 Card
is given. This last section covers such areas as user-available
options, signal and installation requirements, etc.

THE imm8-61 INPUT/OUTPUT CARD —
GENERAL FUNCTIONAL DESCRIPTION

This section describes the operations of the imm8-61
Input/Qutput Card in general functional terms, and is di-
vided into six subsections. The first subsection describes
the five functional units which enable all of the operations
performed by the card. The second subsection describes
the Module Select and Port Select operations, as these two

operations are common to all other operations performed
by the card. The third subsection describes a typical input
operation, showing the interrelationship of the functional
blocks in that operation. The fourth subsection describes an
output operation in similar terms, while the fifth and sixth:
subsections describe, respectively, Teletype input and Tele-
type output operations.

To TTY
—m,
TELETYPE
TTY DATA IN | o rions | TTY DATAOUT
2z INPUT OUTPUT 52
2
g ¢ PORT roAT > o 3
b SELECT SELECT, »1 3
I\ ouTpPuT
5 ‘:_‘ 2 INPUT 4 U 2 ;‘-‘1
223 —3 3%
== B z a
PORT
pecooe [+
MODULE
ENABLE
MODULE .
DECODE [¢—1
v e OUTPUT DATA
INPUT DATA i
8 81Ts) T l
—
SELECTIVE SIGNAL
ROUTING BY
MOTHER BOARD .
MEMORY ADDRESS
DATA FROM
*INVERTER CIRCUITS CENTRAL PROCESSOR
(16 B1TS)

Figure 3-1. 1/O Functional Block Diagram.

The Functional Units

In order to describe its operation, the imm8-61 Card
can be divided into five functional units:

1) The Module Decode Block, which determines which
card is to be utilized for an operation when more
than one card has been installed in a system.

2) The Port Decode Block, which determines which
of the 64 possible input and output ports is to be
used for an operation.

3) The /nput Block, which contains the four input
ports and their associated logic.

4) The Output Block, which contains the four output
ports and their associated logic.

5) The Teletype Control Block, which receives data
from, and transmits data to the Teletype, and
which performs the necessary conversion of the
data (serial to parallel in the case of Teletype
Input, and parallel to serial in the case of Teletype
output).

Each operation performed by the imm8-61 Card uses
one or more of these units in its execution.

A block diagram of the imm8-61 Input/Output Card,
showing the five functional units and their interrelation-
ships, is given in Figure 3-1, and should be referred to when
reading the rest of this section,

Module and Port Select Operations

The first operation performed by the imm8-61 Card
is always a Module and Port Select operation. A Module and
Port Select operation is performed via the following steps:

1) The Central Processor {Intel imm8-83 or equiva-
lent) sends an 1/0 Address to the Module Select
and Port Seiect Blocks. This |/O Address contains
the information necessary to specify which card
is to be used for an operation (in a multi-card sys-
tem), what type of operation is to be performed
(Input or Output), and which port is to be used for
that operation. Both the complemented and non-
complemented levels on the high-order address lines
are returned to the mother-board, in turn, selec-
tively returns either the complemented or non-
complemented level for each of the high-order ad-
dress bits {depending on the card position) to the
module decoder(s}), on lines DS 10, 11, 14 and 15.
Thus the position of a module determines which
sixteen addresses {of a possible 64) it wil! respond
t0. Jumpers on the 1/0O module’s Port Decode Block
(jumping address lines 12 and 13) in turn, deter-
mine which four of these sixteen addresses are
recognized.

2) The selected card is identified by the card’s Module
Select Block, which generates an enable signal
which is transmitted to the rest of the card logic.

40

3) The Port Decode Block, on the selected card, deter-
mines which of the actual eight ports is being ad-
dressed by the 1/0O Address (0-63). It then sends
enabling signals to either the Input or the Qutput
block, depending on whether an Input or Qutput
port was addressed.

This sequence of operations takes place before every
1/Q operation,

Input Operation

An input operation is performed in order to obtain
data from an external source and to present it to the Cen-
tral Processor. The imm8-61 Input/Qutput performs an in-
put operation in the following steps:

1) The data from the external device is brought into
the Input block.

2) When the proper enabling signals are generated by
the Module Decode and Port Decode blocks, the
data which has been input from the external device
to the input block is sent out to the Central Proces-
sor on the Input Data bus. |

Output Operation

An output operation is performed in order to receive
data which is sent out from the Central Processor and to
hold it for use by an external device. The imm8-61 Card
executes an output operation in the following steps:

1) The Central Processor sends the |/O Address (0-63)
to the imm8-61 Card, and a Module and Port Select
operation is performed.

2) The Central Processor sends the data which is to be
output to the Qutput block.

3) The data is placed into the selected output port,
under control of enabling signals generated during
the Module and Port Select operations.

4) The data is held in the selected output port for use
by the external device associated with that port.

Note that data is held in an output port until another
output operation is performed using the same output port.

Teletype Input Operation

A Teletype input operation is performed in order to
accept information from an ASR-33 Teletype or Teletype-
compatible device, and to send that data to the Central
Processor. it is performed in the following steps:

1) Data from the Teletype is sent to the Teletype
Control block.

2) The Teletype Control block converts the-data to a
form useable by the Input block, and sends the data
and status signals to the Input block or input ports
Oand 1. '

3) When the proper enabling signals are sent to the
Input block by a Module and Port Select operation

C

the Teletype data is sent out to the Central Pro-
cessor on the Input Data bus.

Note that a Teletype Input operation differs from a
non-Teletype Input operation only in that the Teletype
Control block acts as a buffer between the Teletype and the
Input block.

Teletype Output Operation

A Teletype Qutput operation is performed in order to
send information from the Central Processor to the ASR-33
Teletype or Teletype-compatible device, and is performed
in the following steps:

1) The Central Processor sends an 1/O Address spec-
ifying output port 0 to the imm8-61 Card, and a
Module and Port Select operation is performed as
described in Module and Port Select Operations.

2) Teletype output data is sent by the Central Proces-
sor to the Output block via the Output Data bus.

3) The Teletype data is placed into output port O
under control of the enabling signals generated by
the Module and Port Decode blocks during the
Module and Port Select operation.

4) The data in output port O is sent to the Teletype
Control block, which converts it into a form useable
by the Teletype.

5) The Teletype Control block sends the converted
data to the Teletype.

Note that an output operation to the Teletype is equi-

valent to a normal non-Teletype Output operatian in which
the Teletype Control block is used as the external device.

imm8-61 INPUT/OUTPUT CARD —
THEORY OF OPERATION

This section describes, in detail, the theory of opera-
tion of the imm8-61 input/Output Card. The circuit-level
implementation of the features described will be given.

Module Selection

If more than one imm8-61 Card is present in asys-
tern, provisions must be made for an operation to select one
card. This capability is provided by the Module Decoding
Circuits,

Module address information is brought to imm8-61

Card edge pins; the module address is complemented by a
series of inverting latches and the complemented address is
present at additional imm8-61 Card edge pins. The user
selects an address for each imm8-61 Card, and implements
the address by selecting a set of Address and Complemented
Address signals; selected signals are externally jumpered to
the Module Selection circuits, which combine the incoming
signals through a NAND gate (A16) to provide the enabling
signal which is sent to other circuitry on the card.

4

The high-order six address lines are input through
an inverting latch. Both the complemented and non-
complemented forms of the address bits are returned to the
motherboard. The motherboard, in turn, selectively returns
either the complemented or non-complemented form of bits
10, 11, 14 and 15 (on lines DS 10, 11, 14 and 15), depend-
ing on the card position. DS 10, 11, 14 and 15 are input to
the enabling NAND gate (A16). Address lines 12 and 13 are
also input to gate A16, however, these lines are routed
through jumpers 20 and 23, respectively, on the |/O module.
The jumpers enable either the complemented or, non-
complemented form of these address lines to gate A16.
These jumpers determine which four of the sixteen ports,
assigned to this card position, will actually be recognized
by the Module Decoding Circuits (see Table 3-1).

If the high-order six address bits specify one of the
four port addresses recognized by the [/O module, gate A16
generates the module select enabling signal.

Port Addresses Enabled by 1/0 Module Jumpers

Jumpers
Card

Position 20-21 20-22 20-21 20-22
23-24 23-24 23-25 23-25

¢] 0-3 16-19 32-35 48-51

1 4-7 20-23 36-39 52-55

2 811 24-27 40-43 56-59

3 1215 28-31 44-47 60-63

Table 3-1.

Input Operations

Input operations on the imm8-61 (nput/Output Card
are handled with the Input Circuits. These are shown on the
left in the 1/O Module Schematic, Figure 3-2.

The first step in an input operation is the transmission
of an 1/O Address to the imm8-61 Card from the Central
Processor. This /O Address contains Module and Port Selec-
tion information which is necessary to determine which port
is to be used for a particular operation.

The Module Selection information is processed by the
Module Select Circuits, and causes the Module Enable signal
to be produced. This signal is led to the Input Decoder chip,
where it is used as an enabling signal. .

When it is enabled by the Module Enable signal, and
the 1/Q IN signal sent by the Centrat Processor, the Input
Decoder uses the Port Selection information contained in
the I/O Address to produce one of four Port Enable signals.
The Port Selection information comes onto the imm8-61
Card on lines MAD8 and MADS. -

The Port Enable signals are led to the four Input Port
Muitiplexers, and are used to gate one set of input signals
through the Input Port Muitiplexers onto the Input Data
Bus, where the data is available for use by the Central Pro-
cessor. Timing is shown in Figure 3-3.

a I Q [y) <

Figure 3-2. 1/0 Module Schematic Diagram

42

Output Operations

Output operations on the imm8-61 Input/Output Card
are handled by the Qutput Circuits, shown on the right in
Figure 3-2.

An Output operation begins with the transmission of
an 1/0 Address to the imm8-61 Card from the Central Pro-
cessor. This 1/0 Address contains Module and Port Selection
information which is used to determine which output port
is to be used for a particular operation.

The Moduie Selection information is processed by the
Module Select Circuits and cause the Modute Enable signal
to be produced. This signal is led to the Outout Decoder
chip.

The Central Processor then sends the data which are
to be output to the imm8-61 Card on lines DBO-DB7. Along
with the output data is sent the |/0 OUT signal, which is led
to the Output Decoder and is used as a second enabling
signal.

When the Output Decoder is enabled by the two
enabling signals Module Enable, and 1/0 QUT, it uses the
Port Selection information contained in the 1/O Address to
produce one of four Port Enable signals. The Port Selection
comes into the imm8-61 Card on lines MAD8 and MADS.

The Port Enable signals are used to gate the output
data sent by the Central Processor into the proper Qutput
Port Latches. The data is held in the Output Port Latches
until another output operation is executed using that output
port. Timing is shown in Figure 3-3.

Teletype Communications

Teletype communications can be handled directly by
the imm8-61 Input/Output Card, rather than requiring a
separate Teletype communications interface and controller.

This function is performed by the Teletype Communica-
tions Circuits, shown in the upper central section of Figure
3-2.

Teletype Communications on the imm8-61 Card are
handled through Input Ports O and 1 and Output Ports O
and 1. Input Port O handles Teletype data which are to be
input to the Central Processor; Input Port 1 handles Tele-
type status information. Qutput Port O holds the data which
are output from the Central Processor to the Teletype, and
OQutput Port 1 holds the control data used to control Tele-
type communications. All Teletype input and output opera-
tions, with the exception that the on-card Teletype Com-
munications Circuits are used as the input and output device
for Teletype operations,

The heart of the Teletype Communications Circuits
of the imm8-61 Card is the Universal Asynchronous Trans-
mitter/Receiver chip, or UART. This device receives the serial
data word which is sent by the Teletype, and converts it to
the eight-bit parallel data format used by the imm8-61 Card.
1t also transtates the eight-bit data output by the imm8-61
Card. It also translates the eight-bit data output by the
imm8-61 Card into the serial data word which is used by the
Teletype.

The UART requires a clock with a frequency of six-
teen times the baud (bits per second) rate at which it is to
transmit. This clock is provided on the imm8-61 Card by a
crystal clock generator which provides a 4.9562 MHz signal.
This signal is used to clock a series of two synchronous
counters, each of which provides a “’divide-by-sixteen” func-
tion, thus producing a 19.36 kHz signal. This signal can be
used directly, providing 1200 and 2400 baud transmission
rates suitabie for Teletype-compatible high-speed terminals,
or it may be used to clock another synchronous counter.
This third counter is set up to provide a “‘divide-by-eleven’’

I om oy otz | ot | Ta | T | T | T2 | T | T |)
mooex [T 1T M M rmn._n 1 |-
92 GLOCK M I m m m . mn _rn n m
swne 1 1
cuka il 1
Y A— ’
oy —| ("™
oz XX -
e L soror .
OUTPUT PORT X

Figure 3-3. 1/O Module Timing

43

capability, and will provide a 1,76 kHz signal which, when
used as the UART clock, will provide a 110 baud trans-
mission rate, the standard rate for ASR-33 Teletype com-
munications.

A Teletype input operation begins with the trans-
mission by the Teletype of a data word. This Teletype data
is brought onto the imm8-60 Card by way of edge pins as
signal TTY XMITR. Since the Teletype information is en-
coded as variations in current flow, while the UART oper-
ates with changes in voltage, the Teletype signal must be
converted to a form acceptable to the UART. This is done
with transistor Q2 and its associated circuitry. The signal
from transistor Q2 is led to the UART Receive Data Input,
and the UART converts it into the parallel data used by the
imm8-61 and then sends the converted data word to Input
Port 0. It also sends status information to Input Port 1. This
status information includes Parity Error (PE), Overflow
Error (OE), Framing Error (FE), and Data Available (DA).
The Central Processor can then execute a normal input
operation as described on page 40 in order to obtain
the Teletype data.

A Teletype output operation is executed simply by
sending the data which are to be output to the Teletype to
Output Port 0 via an output operation. The data which are
to be sent to the Teletype are fatched into Output Port O
Latch, and sent to the UART. The same enabling signal
which was used to latch the data into the Output Port Latch
is used to enable transmission by the UART. NOTE: Before
a transmission is attempted, Input Port 1 must be inter-
rogated to determine TTY status. The Parallel data will be
translated to the serial data format required by the Tele-
type, and will then be sent to Q3 and Q4, where the neces-
sary conversion from voltage to current coding takes place.
The converted signal is then sent to the Teletype as TTY
RCVR.

A special feature has been impiemented on the
imm8-61 Card in order to simplify Teletype paper tape
reader operations. Provisions have been made to enable
strobing of the paper tape reader one character at a time.
This operation is performed when the Central Processor
outputs a 1 in the high-order bit of Qutput Port 1. This
signal sets a latch made up of two NAND gates, which in
turn produce a signal which is sent to the Teletype paper
tape reader as TTY ROR CTL. When a character is read by
the Teletype paper tape reader and transmitted to the
imm8-81 Card, the signal generated by that transmission,
TTY XMITR, resets the latch, causing the TTY RDR CTL
signal to fall.

The Teletype Communications Circuits may be reset
by a system reset signal. This is done by bringing the signal
RESET onto the card, inverting it through an inverting
latch, and applying it to the Master Clear input of the
UART. This will initialize the UART, and prepare it for
further operations.

imm8-61 INPUT/QUTPUT CARD —
UTILIZATION

This section describes the options available to the
user of the imm8-61 Input/Qutput Card, and also gives the
information necessary to the user for proper installation and
operation of the card. There is a wide range of user-available
options on the imm8-61 Card, including the choice of usable
addresses, the choice of whether or not to use the Teletype
Communications Circuits, and the choice of a 110, 1200 or
2400 baud rate for data transmissions.

User-Available Options

By changing a module’s card position or by changing
jumper connections on an 1/O module, the user can choose

Figure 3-4. Relay Circuit (Alternate)

Figure 3-5. Distributor Trip Magnet

the port addresses that a particular [/O module- will recog-
nize. Recall that each 1/O module has four input ports and
four output ports. For any one combination of card posi-
tion and jumper connections, the module will respond to
four addresses (one for each input or output port), but by
changing the combinations, the module can be dedicated
to respond to any address between 0 and 63. Table 3-1 lists
all of the usable combinations.

This option allows a user to develop and debug pro-
grams that access up to 64 different input and output device
addresses, on an INTELLEC 8/MOD 80 system even though
the system actually includes only 16 input and 16 output
ports. The option allows lower hardware costs without
impeding development.

If it is desired, the imm8-61 Input/Cutput Card’s
internal Teletype Communications Circuits may be disabled
by removing the UART chip. If this is done, pull-up resis-
tors (resistor pack RP1) must be added to the input data
lines on Input Ports 0 and 1. The UART may also be dis-
abled by tying its output enable lines RDE and FDE to
+5v,

Teletype input and output can be accomplished with-
out the use of the UART; that is, on a serial program-
controlled basis, by positioning jumpers as follows: ’

Output: 10-12 instead of 10-11

fnput: 7-8 instead of 8-9

When the Input/Output Module is used for the Tele-
type operations, the user must ensure that no device other
than the Teletype is connected to Input Ports 0 and 1 or
Output Ports O and 1.

The different baud rates can be chosen by position-
ing jumpers as follows:

110 baud: connect jumpers 18-19;
jumper connections 16-18 and 17-18

should be open.

1200 baud: connect jumpers 16-18;
jumper connections 18-19 and 17-18

should be open.

2400 baud: connect jumpers 17-18;
jumper connections 18-19 gnd 16-18

should be open.

The imm8-61 Card has been designed to optionally
interface with the Intel imm6-76 PROM Programmer Card.
This card uses Input Port 2 for a PROM Data Out Port, and

" Qutput Ports 1, 2 and 3 as PROM Control In, PROM

Address IN, and PROM Data IN, respectively. It is neces-
sary to ensure, if this option is used, that no other device
will attempt to use these ports while PROM programming
operations are in progress.

Installation Data
Operating Temperature: 0’ to +70°C

DC Power Requirements: +5v+ 5%, .820A Max
-9v+ 5%, .030A Max

Coﬁnector: Dual 50-pin, 0.125 in. centers

Teletype Modifications

The ASR-33 Teletype must receive the following
internal modifications and external connections.
Internal Modifications

1) The current source resistor value must be changed
to 1450 ohms. This is accomplished by moving a
single wire (see Figure 3-8).

TERMINAL BLOCK

Sy A

Figure 3-6. Mode Switch

45

Figure 3-7. Terminal Block

2) A full duplex hook-up must be created internally.
This is accomplished by moving two wires on a
terminal strip (see Figures 3-7 and 3-9).

3} The receiver current level must be changed from
60mA to 20mA. This is accomplished by moving a
single wire (see Figure 3-7 and 3-9).

4) A relay circuit must be introduced into the paper
tape reader drive circuit. The circuit consists of a
relay, a resistor, a diode, a thyractor and a suitable
mounting fixture. This change requires the assem-
bly of a small “‘vector” board with the relay circuit
on it. It may be mounted in the Teletype by using
two tapped holes in the base plate (see Figure 3-4),
The relay circuit may then be added without altera-
tion of the existing circuit (see Figures 3-5, 3-8,
and 3-7). That is, wire “A’ (Figure 3-9), to be
connected to the brown wire in Figure 3-5, may be

spliced into the brown wire nearits connectorplug.
The “line’’ and “local’’ wires must then be con-
nected to the mode switch. {See Figures 3-6 and
3-9).

EXTERNAL CONNECTIONS

1) A two-wire receive loop must be created. This is
accomplished by the connection of two wires be-
tween the Teletype and the SYSTEM in accordance
with Figure 3-9.

2) A two-wire send loop similar to the receive loop
must be created. (See Figure 3-9).

3) A two-wire tape reader loop connecting the reader
control relay to the SYSTEM must be created. (See
Figure 3-9).

ToP ViEW
MODE] :
switcH |
| [
MOUNT | KEY 80ARD 1| Tare
REED — 1 | | READER
RELAY H I
@) |
CAPACITOR— : PRINTER UNIT] .
| | Taee
PUNCH
CURRENT — ! DisTIBUTOR :
e
ASSEMBLY
5 3
et ! ;
POWER ! |
supPLY G[G[G] | O |
! I
TERMINAL : | -
sTRIP] | i
TELETYPE MODEL 33TC

Figure 3-8. Current Source Resistor

Figure 3-10. Teletype Layout

-

NOTES: UNLESS OTHERWISE SPECIFIED
CUSTOMER.EXTERNAL CONNECTIONS
IEA REQUIRED MODIFICATIONS

IM IS INTERNAL MODIFICATION
EC 18 EXTERNAL CONNECTION

ITEMS WITHIN DASHED LINES REPRESENTS
CUSTOM!

TERMINAL BLOCK 151411

=

] POTTER & BRUMFIELD
RELAY

l
| m-1008
|

12v0C 800¢2 COY!
SEE FIG. z—c{

1A,
NORMAL OPEN
CONTACTS

1
| S g

SEE FIG. 3-7 CURRENT SOURCE RESISTOR
P SEE FIG. 3-8
L4 VIO 20 mA
1o REAR PANEL > <
MODULE CINCH-JONES | FULL DUPLEX YEL /
ol ol < T =
®
BLK/GRN @
@f-O—fos g
AL
RED/GRN
RECEIVE
@2 e
WHT,
.mjitﬁ FULL wn.sx
@ o & BRN/YEL
o e o ot = ————— @
SEND. "i"__ _ _HALF DUPLEX
@___ __.@..__ _____ s Y meo SEE FIG.3-7
8LK
@ ~ X 8LK
wHT @ 117V AC
- & WHT
@
SEE FIG, 3-8 TRIP MAGNET
~N~———— WIRE “A SEE FIG. 3-§
(5)
7 5
@ O, e
READER
@ o CONTROL
@ B

}

MODE SWITCH
(FRONT VIEW) -
SEE FiQ. 3-8 .

Figure 3-9. TTY Modification

47

The imm8-63 Output Card contains logic which
enables its use as a self-contained output module with eight
(8) individually addressable output ports, each of which
hoids an eight-bit byte of data sent by a Central Processor
(such as Intel's imm8-63) for use by an external device. it
also contains logic which enables the use of more than one
card in any system, with each card individually addressable.

GENERAL FUNCTIONAL DESCRIPTION

The imm8-63 Qutput Card may be divided into three
functional units as shown in Figure 4-1:

® The Module Decode Block
¢ The Port Decode Block
® The Output Port Block

The Output Port Block contains eight output ports,
each of which can communicate with a separate external
device. The Port Decode Block determines which of the
eight ports is to be used for an operation.

During an output operation, the Central Processor or
equivalent device, sends an |/O Address to the Output Card.
This information is used by the Module Decode Block to
enable output operations (for the particular module being
addressed, if there is more than one in the system), and is
also used by the Port Decode Block to enable the specific
output port which is to be used for output.

DATA —s
FROM —
P! b
€Y) o aooress | pomr ouTRuT
e
DECODE ouTPUT PORTS
—b
8
1 L
MOD *
DECODE -

Figure 4-1. Output Module Functional Block Diagram

49

The Central Processor then sends the data which is to
be output to the imm8-63 Card. The data is routed to the
Qutput Port block and is gated into the particular port
which was enabled previously by the Port Decode Block.
The data are then latched and held for use by the external
device associated with that output port.

DETAILED FUNCTIONAL THEORY

This section describes in detail the operation of the
imm8-63 Card. Actual circuit-level implementation of the
features described as functiona! blocks in the previous sec-
tion are given,

Module Decoding

If it is desired to use more than one imm8-63 Output
Card in a given system, some provision must be made to
enable selection of the particular card which is to be used,
out of all of those available. This function is provided by the
Module Decoding Circuits, shown in detail in Figure 4-2.

As shown in Figure 4-2, the Module Address informa-
tion is brought to the imm8-63 Card edge pins and is led to
edge pins. The motherboard, in turn, selectively (according
to card position) return the proper set of address and in-
verted address signals to the OUT MOD SEL gate (A14) in
the Module Decoding Circuits. In addition, address lines 12
and 13 are routed through jumper connections which pro-
vide either an inverted or non-inverted form of the address
12 and 13 signals to the OUT MOD SEL gate (A14). Ifall
the input lines to gate A14 specify that the module is
selected, the OUT MOD SEL signal is generated.

Port Decoding -

Once the proper module has been selected, as dis-
cussed in the previous subsection, an additional selection
must be made: that of one of the eight output ports which
are on each imm8-63 Card. This function is performed by
the Port Selection circuits, shown in detail in Figure 4-2,

st %S T SWHO
N 3U¥ SITIVA’ BONVISISIN T
“SNOLTENNG BIWNC SLYNVALIY
UV CINT HEVG “ETHVNL DU
FLitm Bavw 34 e Orios 1,
18uw

H

A
+

o

H = ., SV
VA H = ; -
. : e -4
] L= wo—
i 5 o
9 S < 3 ul &0 ne
n - w i B
“ 1 Age .,
L
8= ¥
2 ?
H
R
L.
4

i
ﬁéi

%
&

a8

)
p Py Srvig aFSTN -1t __e_-oﬂwt 4
7 I o
¥ = o
&] o
il =g e
¢ m :
7 B Hd\ v ¥
&1 L fE
4 m a] o E ~
1 | 4
. B

@

(rravi zo9)
SRy anaine

3
LY
i
= R
A
2¢322e38

-
-
o
3,
<
-
L]
°
—
~
-1

Figure 4-2, Output Module Schematic Diagram

J

g

(@

In order to select one of the eight output ports, three
data lines are led to the Port Decoder. When enabled by the
OUT MOD SEL signal, the Port Decoder will decode the
three incoming Port Select signals and will issue an enabling
signal to one of the eight output ports.

Output Operations

In a typical output operation, the following steps will
be executed (refer to Figure 4-2, the Schematic Diagram):

1) The Central Processor sends an |/Q Address to the
imm8-63 Module on lines MAD8-15.

2) The Module Decoding and Port Decoding circuits
decode the incoming 1/O Address, and send enab-
ling signal OUT STB to the proper output port.

3) The Central Processor sends the data which are to

be output to the imm8-63 Card, along with an Out-
put enabling signal, /0 OUT. I/O OUT activates

CARD UTILIZATION

The user has the capability of choosing which eight
addresses an imm8-63 will respond to; the user can assign
any group of addresses between 0 and 63. This section des-
cribes how to use the addressing option, and aiso supplies
a complete list of the imm8-63 card edge pins and their
associated signals.

User Options

A combination of card positioning and jumper con-
nections (on the Output Modules) determines which eight
addresses each module will recognize. Table 4-1 tists the pos-
sible combinations of card position and jumper connections,
and the address groups associated with each combination.

imm8-63 Addressing Options

the internal signal OUT STB.
4) The data which have been sent to the imm8-63 Card Jumpers
Card are latched into the proper output port by Position 1-2 23 1-2 23
signal QUT STB, where they are held for use by 56 56 45 45
external equipment. The data are held until another 0 07 16-23 32-39 48-55
output operation using the selected port takes 7 o7 1623 32.39 48.55
place, at which time they are replaced by the new
incoming data. 2 8-15 24-31 40-47 56-63
3 8-15 24-31 4047 56-63
The timing of the output operation is shown in Fig-
ure 4-3. Table 4-1
P T2 | T3) T8 | ot | om | T2 | T38| T4 |
¢ coex [T 1 Ini M I/ 1 M m N 1 .
4, cLocK M 1 IR M 1 iml ml 1 M
SYNG L | “
CLKA [I
ADORESS l L———
70 ouT | !
QUTPUT PORT X

Figure 4-3. Output Module Timing

51

52

The imm6-28 Random Access Memory Card has been
designed to provide a user with a 4,096 {4K) 8-bit words of
random-access memory, which may be used as a computer
system’s memory device.

More than one imm6-28 card may be included in a
system, for example, the imm8-83 Central Processor card
can address up to 16,384 words of memory on four separate
imm®6-28 cards.

Although the imm6-28 Random Access Memory Card
has been designed to support the Intel imm8-83 Central
Processor Card, it can be used in any other system which
requires 4K x 8 bits of RAM storage.

THE imm6-28 RANDOM ACCESS MEMORY
CARD-GENERAL FUNCTIONAL DESCRIPTION
This section describes the operation of the imm6-28

Random Access Memory Card in general functional terms,
and is divided into four subsections,

MEMORY DATA
MEMORY HEA.II_JE/ [*=——— FROM CPU (8 BITS)
14096 8-81T WRY
WORD: BUFFERS | MEMORY DATA
s) > T0 cPu (8 BITS)
ADDRESS 8LOCK
ENABLE
ADDRESS OPERATION
CONTROL CONTROL
MEMORY ADDRESS READ/WRITE
FROM CPU CONTROL
SIGNAL
FROM CPU

Figure 5-1. RAM Module Functional Block Diagram

53

The Four Functional Units

In order to describe its operation, the imm®6-28 card
has been divided into four functional units:

1) The Address Control Block, which determines
which card is to be used for a memory operation,
and which memory focation on that card is being
addressed.

2) The Operation Control Block, which controls the
execution of all operations performed by the card.

3) The Read/MWrite Buffers, which buffer the data
which is read from or written into memory.

4) The Memory Block, which contains the actual
memory components.

Each operation performed by the imm8-28 card uses
at least one of these functional units,

A block diagram of the imm6-28 card, showing the
four functional units and their interrelationship, is given in
figure 5-1, and should be referred to when readlng the rest
of this section,

Memory Addressing Operatians

In order to send data to a memory location, or to
read data from a location, it is necessary to specify the
location which is to be accessed. This function is provided
by the memory Address, a group of signals which represent
the Central Processor. Once the Memory Address is received
to select the correct location for a Memory Read or Write
operation.

The Address Control Block performs Memory Address
decoding on the imm6-28 card; it receives the Memory
Address, and translates it into three types of signals: Module
Enabling signals, which enable the selected 4K segment of
the memory; Block Enabling signals, which enable one 1024
word block within the larger 4K segment; and Address sig-
nals, which access one word within the 1024 word block.

Memory Write Operations

A Memory Write Operation is executed in order to
load data into a selected memory word; it is executed in the
following steps:

1) The Memory Address for the word which is to be
written into is sent to the imm6-28 card by the
Central Processor.

2) The Address Controf Block receives the Memory
Address and generates the signals necessary to
access the addressed memory location.

3) The Central Processor sends a data word to the
imm6-28 card, where it is received by the Read/
Write Buffer. The central Processor also sends con-
trol signals to the Operation Control Block which
indicate a Memory Write operation. :

4) The Operation Control Block generates signals
which cause data in the Read/Write Buffer to be
written into the selected memory location in the
Memory Block.

Memory Read Operations

A Memory Read operation is performed in order to
read data from a selected memory location into the Central
Processor; it is executed via the following steps:

1) The Memory Address which is to be read is sent
to the imm#8-28 card by the Central Processor.

2) The Address Control Block receives the Memory
Address and generates signals necessary to access
the addressed memory location.

3) The Central Processor sends controt signals to the
to the Operation Control Block which indicate a
Mermory Read operation.

4) The Operation Control Block generates the control
signals necessary to cause the contents of the se-
lected memory location to be sent from the Mem-
ory Block to the Read/Write Buffer, whence they
are sent on to the Central Processor.

THE imm6-28 RANDOM ACCESS MEMORY
CARD-THEORY OF OPERATION

This section describes the theory of operation of the
imm6-28 card in detail giving the circuit-level implementa-
tion of the features,

Physical Memory Implementation

The actual memory of the imm6-28 card is made up
of thirty-two Intel 2102 Random Access Memory chips,
each having a capacity of 1024 one bit words. Since the data
word used by the imm6-28 card has a total of eight bits,
the 2102 memory chips are tied together in blocks of eight,
with each of the eight chips in the block handling one of
the eight data bits; this results in a basic block of 1024
eight-bit words. Since there are four blocks per card, each
imm6-28 card has a capacity of 4096 eight-bit words.

By combining more than one card in a system, mem-
ory size can be increased in increments of 4096 words.

Memory Address Decoding

Since more than 4096 words of memory can be ad-
dressed by a Central Processor, the imm6-28 card includes
address decoding circuits (see Figure 5-2) which allows a
Central Processor to select one imm6-28 memory card.

The Memory Address which the Central Processor

sends to the imm6-28 cards consists of sixteen bits of infor-
mation, organized as a sixteen digit binary number, with the

I v o124 138 1 ot ot | oMo 12 | T3 | .Ta |
#roock [T M M M 1 1 M 1 L
¢, cLock I 1 M i Il m! 1 n M
SYNC 1 1
cLxa M 1
ADDRESS X‘ X)
cApeNAse T
DATA OUT X } READ
DATA IN P -
WRITE
RAW 1 [

Figure 5-2. RAM Memory Module Timing

-
:-

-n—
-

» 33 113 « A " e « L4 k3 A A\ At
s EEERE OEE OE e oIz
* = = z bl z = =
Ll oEEOE R OFEOE S CR

5 : - : -

4L 3-[:
DS

S

;o . - .ol nh s)

] ws £ ", BY td s wY tf we EA I 4 5 G) wel e 00t
] | vose f focea] [l nons J Jovne] [{soe) [onnc] [oo] foxaef [o0 sow] fomne | [rone] foce] N
! o] | 7 i ol o O e o o] - 0 < T | ™ «©

I

o

T

T
ll__
i T
1
T+ I
——
fis
-
i
T
‘II_
s
T
[T

gal
I

gl
o
gl

- G
g8 2 - 2
=)

L

3]

o«

T
- -]
- B =B
P 4 %
£
L
-

2

=
L
i

HiL:

» @«

e
o
(RN =y s | MER = CRE

"
o o oz

55

Figure 5-3. RAM Memory Module Schematic Diagram

tow order bit on line MADQO and the highest order bit on
line MAD15. The Address Decoding Circuits use this sixteen-
bit address as follows:

1) Since the high-order four bits of the Memory Ad-
dress effectively divide the possible memory loca-
tions into sixteen units of 4096 words each, they
are used to enable the particular card which is to be
used for a given memory operation. This is accom-
plished by bringing lines MAD12-MAD 15 onto the
imm8-28 card edge pins, inverting them to form
MAD12-MAD15, and then sending these inverted
Memory Address signals out on another set of card
edge pins. External jumpers are then used to tie
the proper combination of Memory Address and
inverted Memory Address signals to the four input
lines to the Access Enable Gate, MOD SEL 12-MOD
SEL 15. When the proper Memory Address is sent
to the imm6-28 card by the Central Processor, the
Access Enable Gate will produce a Module Enable
signal which is used to enable all memory opera-
tions for that card.

2) The next two bits of the Memory Address, MAD10
and MAD11, select one of the four 1024 word
Latches which are enabled by the Access Enable
Gate’s Module Enable signal. The two signals are
then latched into the Address Latches by signal
ADR STB, sent by the Central Processor, and are
sent to a group of four NAND gates in both their
original and their inverted form. The four NAND
gates decode the two Memory Address bits into
one of four Chip Enable signals, The Chip Enable
signals are used to enable the proper block of eight
chips (1024 eight-bit words) out of the four blocks
available on each imm6-28 card.

3) The ten low-order bits of the Memory Address,
MADO-MADS, are tied to Address Latches which
are enabled by the Access Enable Gates, They are
then sent to all of the individual memory chips,
which use them to enable the proper location out
of the 1024 available,

Memory Read Operations

A Memory Read operations is initiated by the Central
Processor. It sends a sixteen-bit Memory Address to the
imm6-28 card, which decodes the address to select one
particular memory location.

The Central Processor also sends signal Write/Read to

the imm®6-28 card. In its TRUE state, this signal indicates a
Write operation, therefore, during a Read operation, it will
be FALSE. Signal Write/Read is inverted and applied to a
NAND gate along with the Module Enable signal. The NAND
gate produces a signal which indicates a Read operation.
The Read operation signal is used as the second input to the
series of Output Buffer NAND gates, and causes the mem-
ory data to be gated through the Output Buffer NAND
gates and onto the Data Out lines DATA OUTO-DATA
QUT7. Timing is shown in Figure 5-2.

Memory Write Operations

A Memory Write operation is initiated by the Central
Processor. It sends a sixteen bit Memory Address to the
imm6-28 card, which decodes the address to select one
particular memory location for access, as described in Sec-
tion 6.2.2. When the memory chips receive the Memory Ad-
dress, they immediately respond by sending the contents of|
the addressed location to the Output Buffers, which are
series of eight NAND gates.

The Central Processor then sends the data which is to
be written into memory to the imm®6-28 card, where it is
led to the Input Latches. The Central Processor also sends
out signal Write/Read, which indicates a Write operation,
This signal is NANDed with the Module Enable signal to
produce signal WDENBL, which indicates that a Write
operation is taking place. This signal causes the data sent by|
the Central Processor to be. latched into the Input Latches.

Signal WDENBL is also used to trigger a pair of one-
shot multivibrators. These multivibrators produce a delayed
Write Enable signal. The delay is necessary to ensure that the
delayed Write Enable signal becomes TRUE, the data will
be written into the selected memory location.

THE imm6-28 RANDOM ACCESS MEMORY
CARD — UTILIZATION

This section provides the information necessary to
efficiently use the imm®-28 card in an application. In par-
ticular, the requirements for interfacing with the Intel
imm8-83 Central Processor Card are stressed.

Memory Address Coding

In order to enable Memory operations, the imm6-28
card must have an encoded address designation. The proper
positioning of the external jumpers for each block of mem-
ory is as follows:

56

Module No. Memory Addresses Memory Address Code Jumpers

RAM 0 0-4095 MAD12 MAD13 MAD14 MAD15 57-58, 62-61, 63-63, 67-68

™ RAM 1 4096-8191 MAD12 MADI3 MAD14 MAD15 58-60, 6261, 63-64, 67-68
'&/ RAM 2 8192-12287 MAD12 MAD13 MAD14 MAD15 57-68, 5961, 63-64, 67-68
RAM 3 12288-16383 MAD12 MAD13 MAD14 MAD15 58-60, 59-61, 63-64, 67-68

RAM 4 16384-20479 MAD12 MAD13 MAD14 MADI15 57-58, 62-61, 64-66, 67-68

RAM 5 20480-24575 MAD12 MAD13 MAD14 MADI15 58-60, 6261, 64-66, 67-68

RAM 6 24576-28671 MAD12 MAD13 MAD14 MAD15 57-58, 59-61, 64-66, 67-68

RAM 7 28672-32767 MAD12 MAD13 MAD14 MADI15 68-60, 59-61, 64-66, 67-68

RAM 8 32768-36863 MAD12 MAD13 MAD14 MADI15 57-58, 62-61, 63-64, 65-67

RAM 9 36864-40959 MAD12 MAD13 MAD14 MADI15 58-60, 62-61, 63-64, 6567

RAM 10 40960-45055 MAD12 MAD13 MAD14 MADI15 57-58, 59-61, 63-64, 6568

RAM 11 45056-49151 MAD12 MAD13 MAD14 MADI1S 58-60, 5961, 63-64, 6567

RAM 12 49152-53247 MAD12 MAD13 MAD14 MAD15 57-58, 62-61, 64-66, 65-67

RAM 13 53248-57343 MAD12 MAD13 MAD14 MAD1S 58-80, 62-61, 64-66, 6567

RAM 14 57344-61439 MAD12 MAD13 MAD14 MADI15 57-68, 59-61, 64-66, 6567

RAM 15 61440-65535 MAD12 MAD13 MAD14 MAD15 68-60, 59-61, 64-66, 65-67

Installation Data and Requirements

Connector: Dual §0-pin, .125 in. centers
Input Voltage: +5v¥5% @ 2.5A.
Operating Temperature: o°c.70°C

57

kgs

))
&° «\'\i’\@s”' 0\5" ‘&o‘?‘*o@o
G‘\P W
o
A

The imm6-26 Programmable Read-Only Memory
(PROM) Card has been designed to provide a user with
4,096 (4K) words of read-only memory, which may be
used as non-volatile program or data storage. '

The imm6-26 Card uses Intel 8702A Programmable
Read-Only Memory chips as its storage medium. These
chips represent a considerable advance in the field of
read-only memory, as they can be erased and reprogrammed
as the need arises. This capability makes the imm6-26 Card
a valuable addition to a system in which the stored data is
occasionally subject to change, for example, during the
development of mask-programmed read-only memory. The
imm8&-26 PROM Card can be used to store programs in final
stages of correction, before the program is well enough
defined to justify the expense of creating masks. Also, the
imm6-26 PROM Card can be used instead of read-only
memory in pre-production equipment that may have to be
shipped before mask-programmed read-only memory is
available,

More than one imm6-26 Card may be used in a
system. For example, the imm8& 83 Central Processor Card

BLOCK
MEMORY [ADORESS ADORESS MEMORY
(4096 8-81T
ADDRESS
WORD CONTROL
CAPACITY) [““worD DATA
ADDRESS
8 MoD
ENBL.
PROM
MEMORY | oisasLe
DATA CONTROL
BUFFER
PROM DATA OUT RAM ENABLE

can address up to 16,384 words of memory on four
separate imm6-26 cards,
The imm6-26 Card may also be used in parallel with
an imm®6-28 Random Access Memory Card.
Note: When used in conjunction with the imm8-83 the
8702A type used must have an access time of less
than 1.5 microsecond.

THE imm86-26 RANDOM ACCESS MEMORY
CARD-GENERAL FUNCTIONAL DESCRIPTION

This section describes the operation of the immG-ZS
Programmable Read-Only Memory Card in general func-
tional terms, and is divided into three subsections.

The Four Functional Units

In order to describe its operation, the imm6-26 Card

had been divided into four functional units:

1) The Address Control Block, which determines
which card is to be used for a memory operation,
and which memory location on that card is beirg
addressed.

2) The Operation Control Block, which controls the
execution of all operations performed by the card.

3) The Memory Data Buffer, which buffers the data
being read from memory.

4) The Memory Block, which contains the actual
memory components, ‘

A block diagram of the imm6-26 Card, showing the

four functional units and their interrelationship, is given in
Figure 6-1, and should be referred to when reading the re$t
of this section. -

Memory Read Operation

In order to obtain data from a memory location, it is

Figure 6-1. PROM Memory Module Functiona! Block
Diagram

59

r y to perform a Memory Read operation. This
operation can be divided into two phases:

1) The Addressing Phase, in which the desired memory
address is sent to the imm6-26 Card, where it is
decoded and used. to enable the specific memory
location which is to be accessed.

2) The Data Phase, where the data is sent out from
the imm6-26 Card.

The Addressing Phase is executed in the following
steps:

a) The Central Processor sends a Memory Address to
the imm6-26 Card Address Control Block.

b) The Address Control Block translates the Memory
Address into three types of signals: Module Enab-
ling signais, which enable the selected 4K segment
of the memory; Block enabling signals, which
enable one 256 word block within the larger 4K
segment; and Address signals, which access one
word within the 256 word block.

c) The Control Block checks the selected memory
address, and determines if it exists on the imm6-26
Card. if it finds that it does not exist, it sends out
disabling signals which prevent further operations
with the imm6-26 Card. At the same time, it sends
out an enabling signal which can be used by an
imm6-28 Random Access Memory Card to enable
its operation.

The Operation Control Block generates the control
signals necessary to cause the contents of the selected
memory location to be sent from the Memory Block to the
Memory Data Buffers, whence they are sent out to the
Central Processor.

THE imm6-26 PROGRAMMABLE READ-ONLY
MEMORY CARD-THEORY OF OPERATION

This section describes the theory of operation of the
imm6-26 Card in detail, giving the circuit-level implemen-
tation of the features.

Physical Memory Implementation

The actual memory of the imm6-26 Card is made up
to sixteen Intel 8702A Erasable Programmable Read-Only
Memory chips, each having a capacity of 256 eight-bit
words. This results in a basic memory block of 256 words.
Each 256 word block is a separate unit, and can be
changed by removing the existing PROM chip and installing
a new PROM, or omitted by removing the existing PROM
without reptacement. NOTE: Only standard 87G2A PROMs
can be used with the INTELLEC 8/MOD 80 system; all
8702A PROMs must have access time less than or equal to
1.5 microsecond. ’

Since there are sixteen 256 word PROMs on each
imm8-26 Card, each card has a total capacity of 4,096
words. By combining more than one card in a system,
memory size can be increased in increments of 256 words.

Memory Address Decoding

Since more than 4,096 words of memory can be
addressed by a Central Processor, the immB6-26 card includes
address decoding circuits which allow a Central Processor
to select one imm6-26 memory card.

The Memory Address which the Central Processor
sends to the imm®6-26 card consists of sixteen bits of infor-
mation, organized as a binary number, with the low order
bit on line MADO and the high order bit on line MAD15.
The Address Decoding circuits use this sixteen-bit address
as follows: '

1) Since the high order four bits of the Memory
Address effectively divide the possible memory
locations into sixteen units of 4,096 words each,
they are used to enable the particular card which is
to be used for a given memory operation. This
is accomplished by bringing lines MAD 12-MAD 15
onto the imm6-26 card edge pins, inverting them
to form MAD12-MAD15, and then sending these
inverted memory Address signals out on another
set of card edge pins. External jumpers are then
used to tie the proper combination of Memory
Address and inverted Memory Address. signals to
the four inputs to the Access Enable Gate, MS12-
MS15. When the proper Memory Address is sent
to the imm6-26 card by the Central Processor, the
Access Enable Gate will produce a Module Enable
signal which is used to enable memory operations
for that card.

2) The next four bits of the Memory Address, MADS-
MAD11, select one of the sixteen 256 word blocks.
These two signais are led to two three-to-eight line
decoders. Signal MAD11 is then used to enable
one of the two decoders, while MAD8-MAD10 are
used as inputs to the decoders. The decoders pro-
duce Chip Enable signals which are used to enable
one of the sixteen 256 word PROM chips on the
imm®6-26 card. .

3) The eight low-order bits of the Memory Address,
MADO-MAD?7, are tied to Address Latches which
are enabied by the Module Enable Access Enable
Gate. They are then sent to all of the available
memory chips, which use them to enable the
proper location out of the 256 available.

Memory Read Operations

A Memory Read operation is initiated by the Central
Processor, which sends a sixteen-bit Memory Address to the
immB-26 card. The address decoding circuits decode the
address to select one particular memory location.

The Central Processor also sends signal PROM MOD
ENBL to the imm6-26 card, enabliing operations from that
card. This signal is used as an input to the Module Enable
Gate along with the Access Enable Gate signal MOD
DECODE, as shown in Figure 6-3. When all of the inputs to
the Module Enable Gate are TRUE, it generates the PROM

J

MOD SEL signal, which is sent to the two .low-order
Address Decoders. It enables the decoders, and the proper
chip is enabled. The chip reads the low-order eight bits of
the Memory Address, and sends the data contained in the
selected memory location to the Memory Data buffers on
lines DO-D7. The Memory Buffers are also enabled by the
PROM MOD SEL sigral, and will gate the data onto the
Memory Data Out lines MD10-MD17. Timing is shown in
Figure 6-2.

Random Access Enable

Since it may be desired to mix Random Access and
Read-Only memories in a system, the imm6-26 card has
been designed to determine, for each memory operation,
whether or not PROM memory exists for the selected
Memory Address. If PROM memory does not exist for that
location, the imm6-26 card will generate an enabling signal
for Random Access memory which uses the same address.
if the two types of memories share common locations,
however, the Random Access enabling signal will not be
issued, giving the PROM memory priority.

Each PROM location on the imm6-26 card has a cor-
responding switch which is tied to one input of an eight
input multiplexer. In its normal pasition, this switch, and
thus its associated multiptexer input, is tied to +5v. When
a PROM is installed on the card, its corresponding switch is
depressed, causing the input to the multiplexer to be tied
to GROUND. When a memory operation is executed, the
four Memory Address lines MAD8-MAD11, which are used

by the address decoding circuits to generate chip enable
signals, are used as addressing inputs to the multiplexer. If
a PROM exists at the addressed location, the multiplexer
output will be HIGH. This output is led to the PROM
Resident Latch, which produces the PROM RESIDENT
signal. This signal is used as an enabling signal to the
Module Enable Gate, and thus enables PROM operations
when there is a PROM present. Likewise, if there is no
PROM present in the addressed location, the output of the
multiplexer will be LOW, the PROM RESIDENT signal will
be FALSE, the Module Enable Gate output will be FALSE,
and imm6-26 operations will be disabled.

When the Module Enable Gate output signal, PROM
MOD SEL, is FALSE, signal RAM MOD ENBL is produced
by the RAM Mcdule Enable Latch. This signal may be used
to enable a Random Access memory device which has the
same address as the PROM module.

THE imm6-26 PROGRAMMABLE READ-ONLY
MEMORY CARD — UTILIZATION

This section provides the information necessary to
efficiently use the imm®&-26 card in an application.

Memory Address Coding

tn order to enable memory operations, the imm6-26
card must have an encoded address signation. The proper
positioning of external jurnpers for each block of memory
as follows:

Module No. | Memory Addresses Card Select Coding Jumper Pin Connections

PROM 0 0-4095 MAD12, MAD13, MAD14, MAD15 | 57-58, 61-62, 63-64, 67-68
PROM 1 4096-8191 MAD12, MAD13, MAD14, MAD15 | 5860, 61-62, 63-64, 67-68
PROM 2 8192-12287 MAD12, MAD13, MAD14, MAD15 | 5758, ©59-61, 63-64, 67-68
PROM 3 12288-16383 MAD12, MAD13, MADT4, MADI15 | 58-60, 59-61, 63-64, 67-68
PROM 4 16384-20479 MAD12, MADI3, MAD14, MAD15 | 5758, 61-62, 6466, 67-68
PROM 5 20480-24575 MAD12, MAD13, MAD14, MAD15 | 58-60, 61-62, 64-66, 67-68
PROM 6 24576-28671 VAD72, MAD13, MAD14, MADI15 | 5758, 59-61, 64-66, 67-68
PROM 7 28672-32767 MAD12, MAD13, MAD14, MADI5 | 5860, 59-61, 64-66, 67-68
PROM 8 32768-36863 WAD12, MAD13, MAD14, MAD15 | 57.58, 61-62, 63-64, 65-67
PROM 9 36864-40959 MAD12, MAD13, MAD74, MAD15 | 58-60, 61-62, 63-64, 6567
PROM 10 40960-45055 WAD12, MAD13, MAD14, MAD15 | 57-58, 59-61, 63-64, 65-67
PROM 11 45066-49151 MAD12, MAD13, MAD14, MAD15 | 5860, 59-61, 63-64, 65-67
PROM 12 49152-53247 WAD12, MAD13, MAD14, MAD15 | 57-68, 61-62, 64-66, 6567
PROM 13 53248-57343 MAD12, MAD13, MAD14, MAD15 | 5860, 61-62, 64-86, 65-67
PROM 14 57344-61439 MAD12, MAD13, MAD14, MAD15 | 57.58, 59-61, 64-66, 6567
PROM 15 61440-65535 MAD12, MAD13, MAD14, MAD15 | 58-60, 59-61, 64-66, 65-67

61

PROM Installation, Removal, Programming,
and Erasure

In order to provide flexibility in memory assignment,
the imm6-26 card can be of any size desired, from 256
words to 4,096 words, in 256 word increments. This
flexibility is achieved by enabling installation and removal
of the individual PROM chips which make up the imm6-26
card’s memory.

When installing PROM chips on the imm&-26 card,
the corresponding PROM Resident switch must be depressed.
If this is not done, the imm&-26 card will not be enabled
when that group of memory addresses is accessed. To install
a PROM, merely insert it into the socket provided on the
imm®6-26 card. Likewise, to remove a PROM, merely pull it
from the socket. Again, if removing a PROM, ensure that
the corresponding switch is disabled. If this is not done,
faulty memory operations will ensue. If al! of the sixteen
PROMs are installed on an imm6-26 card, the PROM
Resident signal can be permanently enabled by installing
the ALL RPOMS RESIDENT patch between points 1 and
2, as shown in Figure 6-3.

The Intel 8702A PROMs used by the immé6-26 card
may be programmed by using the imm#6-76 PROM Program-

mer card in conjunction with the Intellec 8 system. They
may be erased by exposing them to high intensity short-
wave ultraviolet light at a wavelength of 25374. After ten
minutes of such exposure, the PROM will be erased to all
zeroes. No more exposure than is necessary should be used,
to avoid damaging the PROM. (See the Intel Memory De-
sign Handbook for more information regarding 8702A
PROM programming and erasure}. CAUTION: When using
an ultraviolet source to erase the PROM, be carefui not to
expose your skin or eyes to the ultraviolet rays because of
the damage which these rays can cause. In addition, short-
wavelength ultraviolet light generates considerable amounts
of ozone, which is also potentially hazardous.

Note: When used in conjunction with an imm8-83 module
the 8702A type used must have an access time of
less than 1.5 usec.

Installation Data and Requirements
Connector: Dual 50-pin, .125 in. centers
Input Voltage: +5v*5% @ 1.6A (max)
Operating Temperature: 0°C-70°C

1) Tw I Tw I T2 L 13 | ota TS LT 0 T2)
PR T A o T o S TR MY TR o R o A T o
mewe LM M
SYNC 1 1
CLKA iml iml ‘
ADDRESS pd X
CHIPSELECT N\ /
DATA OUT p -
NOTE: WAIT STATES PROVIDED BY imm8-83

Figure 6-2. PROM Memory Module Timing

62

[Fr o ”ﬁﬁ@ o
¥ — ; ot

B

w3
2
3
]

[o e 20 e e e,
. d o =Y — T2) ..
A s T i = I &1
oo s e o H o = .

T @ Nomas camnid o Yoo =g

T * |
| TS

100 wivo woBa -

3] 1 avw
~—{35 o ovw
{31, ¢ ovw

HH-——0 eone

T covw

T vovw

{47 5 oew

——F7) sovw | ww

{3 ©orw

{T) 2 ovmr

ey dow wvw

EJ T w T w
63

Figure 6-3. PROM Memory Module Schematic Diagram

The {INTELLEC 8/MOD 80 Control Console is de-
signed to provide a user of the INTELLEC 8/MOD 80
microcomputer development system with an easy to use
means of monitoring and controlling machine operation,
manually moving data to or from memory or input/output
devices, and running or debugging programs. Since the
INTELLEC 8 System is specifically designed for micro-
computer systems development, the Control Console has
several features which are not usually found on ““traditional’”
computer control consoles, e.g., extensive status displays
and special debugging aids.

This section describes the operation of the INTELLEC
8/MOD 80 Control Console on two levels: first, on a general
functional level, second, on a more detailed theory of
operation level.

Since the INTELLEC 8/MOD 80 Control Console has
been designed to support the imm8-83 Central Processor
Card, many of its operations cannot be described without
referring to the operation of that card. It is an absolute
necessity, therefore, that Chapter 2 of this manual be read
and fully understood before attempting to read this section,
as it is in Chapter 2 that many of the basic concepts
necessary for a proper understanding of Control Cansole
operation are developed. If a more detailed description of
operational procedures using the Control Console is desired,
refer to the INTELLEC 8/MOD 80 Operator’s Manual.

THE INTELLEC 8/MOD 80 CONTROL CONSOLE
— FUNCTIONAL DESCRIPTION

This section provides a basic, functional overview of
INTELLEC 8/MOD 80 Control Console operation. The
operations performed by the Control Console can be
divided into seven groups, as follows:

1) Data display operations, including:

Memory Data display operations, in which the
contents of a selected memory location are dis-
played;

1/O Data display operations, in which data used
for an input or output operation is dispiayed;
Status display operations, which display indica-
tions of the operating mode of the Central
Processor;

Cycle display operations, which provide a con-
tinuous display of the 8080 machine cycle;
Programmable display operations, in which the
contents of output port FFg are displayed.

2) Manual Memory Access operations, in which data
is read from or written into a selected memory
location from the Control Console rather than
the Central Processor.

3) Manual 1/0 Access operations, in which input mon-
itoring or output operation is performed from the
Control Console rather than the Central Processor.

4) Interrupt operations, in which an interrupt cycle
is initiated from the Control Console by the user.

5) Processor Control operations, which allow the user
to directly control the operation of the Central
Processor.

6) Sense operations, which allow the user to manually
enter data during a pragrammed input operation.

7) Search/Wait operations, which allow a selected
instruction to be executed a given number of
times, after which the Central Processor enters a
WAIT mode.

Each of these operational groups is discussed in a
separate subsection of thischapter.

Data Display Operations

The INTELLEC 8/MOD 80 Control Console can
perform five distinct data display operations.

65

@ Status Display

® Cycle Display

® Address Display

® [nstruction/Data Display
® Programmable Display

The Status display functions provide a visual indica-
tion of the Processor’s mode of operation. There exist eight
status display functions:

® Run

® Wait

Halt

Hold

Search Complete
Access Request
Interrupt Request
Interrupt Disable

® & o000

The eight functions are performed ig the following
manner:

1) The RUN status dispiay is lit whenever the Central
Processor is not waiting or stopped.

2) The WAIT status display is lit whenever the
Processor is in 3 WAIT state (i.e., waiting for data
to be input).

3) The HALT status display is lit whenever the
Processor is in a STOPPED state.

4) The HOLD status display is lit whenever the
Processor has acknowledged a Hold Request (as
for a direct memory or 1/0 access operation).

5) The SEARCH COMPLETE status display is fit
whenever a Search/Wait operation has been com-
pleted, and the passcounter has been counted
down to zero.

6) The ACCESS REQUEST display is lit whenever a
Direct Memory or 1/O Access request has been
made by depressing the Console Mem Access or
1/0 Access switches.

7) The INTERRUPT REQUEST display is lit when-
ever an Interrupt Request has been made via the
Control Console Interrupt or Reset switches, and
is extinguished when the Processor acknowledges
the interrupt request.

8) The INTERRUPT DISABLE display is lit when-
ever the processor has disabled its interrupt
capability.

The cycle display functions provide a visual indication
of the Processor machine state. There are eight cycle display
functions:

® Fetch
® Memory

e |/O

® DA

® Read/Input
® Write/Output

® |nterrupt
® Stack

The eight cycle functions operate as follows:

1) The FETCH cycle display is lit when the processor
is executing an Instruction Fetch operation.

2) The MEM cycle display is lit when the processor
or the Control Console is executing a Memory
Access operation.

3) The 1/O cycle display is lit when the processor or
the Control Console is executing an 1/O Access
operation.

4) The DA cycle display is !it when a Memory or 1/0
Access operation is being performed from the
Control Console rather than by the processor.

5) The Read/Input cycle display is lit when either a
Memory Read or 1/0 input operation is executed.

6) The Write/Output cycle display is lit when either
a Memory Write or 1/O Output operation is
executed.

7) The INT cycle display is lit when a processor
Interrupt cycle is in progress.

8) The STACK cycle display is lit when the processor
is accessing the stack.

The Address display function provides a visual display
of the address data used for a Memory or 1/O operation.
There are sixteen address display lights, corresponding to
the sixteen address lines.

The Address display function is performed by tying
the processor memory address lines to the display lights
through a series of buffers.

The Instruction/Data display provides a visual indica-
tion of the instruction or data fetched from memory or the
data which is read from memory or an 1/0 device. There are
eight Instruction/Data display lights, tied to the processor
data bus.

The Programmable display function provides an indi-
cation of the contents of output port FFqg.

Manual Memory Access Operations

A Manual Memory Access operation is performed in
order to read or write data to or from memory. It is accom-
plished via the following steps:

1) The Mem Access switch on the Control Console is
depressed, sending a control signal to the processor,
- which enters the HOLD state.

2) The memory address to be accessed is loaded into
the Address/Instruction/Data switches on the Con-
trol Console.

3) The LOAD switch on the Control Console is de-
pressed, loading the Address/Instruction/Data data
into the Address Register.

L

4) The address held in the Address Register is sent to
the memory module on the memory address bus.

5) The memory module responds by sending the data
currently held in the selected memory location to
the Control Console, where it is displayed by the
Instruction/Data display.

6) If it is desired to write data into memory, the
data byte to be written is loaded into the lower
eight Address/Instruction/Data switches. Switch
DEP is then depressed, sending a control signal to
the memory module which causes the switch data
to be loaded into the memory address held by the
Address Register,

Note: The deposit at halt function is not implemented on
the INTELLEC 8/MOD 80.

The address held in the Address Register can be in-
cremented by one, by depressing the INC switch, or
decremented by one by depressing the DEC switch,

Manual 1/0 Access

A Manual 1/0 Access operation is performed to allow
the user to send data to an output device, or read data from
an input device, by using the Control Console, rather than
the Central Processor. It is executed in the following steps:

1) The 1/O Access switch on the Control Console is
depressed, sending a control signal to the processor,
which enters the HOLD state.

2) The 1/O Address signifying the 1/0 device to be
used for the manual 1/O access operation is loaded
into Address Data switches 8-15 on the Control
Console.

3) If an Output operation is to be performed, the
data byte which is to be output is loaded into
Address/Instruction/Data switches 0-7.

4) The DEP switch is depressed.

5) The 1/O Address and data are sent to the Input/
Output and Output modules, which then perform
the designated input or output operation.

6) In the case of an input operation, the data from
the selected input port is displayed in the data
display light.

Interrupt Operations

An interrupt operation is performed in order to
cause the Central Processor to interrupt its normal sequence
of operations and to execute an interrupt instruction. This
instruction can be such that processor operation is directed
to a routine which will service the device originating the
interrupt.

A Control Console interrupt is executed in the
following steps:

1) The Interrupt Instruction which is to be executed

87

during the lnierrupt operation is loaded into
Address/Instruction/Data switches 0-7 on the Con-
trol Console.

2) The Interrupt switch is depressed, generating an
Interrupt signal which is sent to the Central
Processor. ‘

3) The Central Processor disables further interrupts
and enters an Interrupt cycle.

4) The Interrupt Instruction loaded into Address/
Instruction/Data switches 0-7 is sent to the Central
Processor, which executes it as a normal instruc-
tion.

Sense Operations

A Sense operation is performed in order to manually
input data to the Central Processor while it is running a
user program. |t is executed in the following steps:

1) The data which is to be input is loaded into tHe
Address/Data 8-15 switches on the Control Con-
sole.

2) The SENSE switch is depressed, generating a con-
trol signal which is sent to the Central Processor. |

3) The control signal causes the CPU to input the
data from the switches, rather than from an input
device, each time an Input instruction is executed.

Search-Wait Operations

Search-Wait operations are a powerful debugging tool
which allows the user to execute a statement in his progra
a certain specified number of times, from 0 to 256, and
then cause the Central Processor to enter a WAIT state,
wherein the contents of memory can be examined to ensure
proper program operation. |

A Search-Wait operation is executed in the following
steps: i
1) The PASS COUNT, or number of times that ab

instruction is to be executed, is loaded intp
Address/|nstruction/Data switches 0-7.

2) The LOAD PASS switch is depressed, causing thb
PASS COUNT to be loaded into the PASS register.

3) The address which is to be monitored is entered
into the Address/Instruction/Data switches *and
the LOAD switch is depressed, loading the address’
into the Address Register,

4) Each time the referenced instruction address is
encountered by the CPU, a control signal is gen-
erated. This control signal decrements the Pass
Counter Register. :

8) When the Pass Counter Register counts down to
zero, the processor will be forced into a WAIT
state if the Search/Wait switch has been depressed,
allowing the user access to the system memoryi.
This also causes the SRCH/COMP light to light. |

Processor Control Operations

The Processor Control operations allow the user to
control the operation of the INTELLEC 8/MOD 80 from
the Control Console There are eight Processor Control
functions:

1) Sense
2) Search/Wait
3) Deposit

4) Deposit at Halt (not used in the INTELLEC 8/
MOD 80 System)

§) Interrupt
6) Reset

7) Step/Continuous, which allows the user to cause
program execution to be performed one machine
cycle at a time,

8) Wait, which causes the processor to enter a WAIT
state.

The Wait function is executed by depressing the WAIT
switch on the Control Console. A control signal is then
produced which causes the Central Processor to enter a
WAIT state. Normal operations are resumed when the
switch is reset to its original positicn,

The Step/Cont function is dependent on the WAIT
function. Single-step operation cannot be performed untess
the WAIT mode is entered. Depressing the STEP/CONT
switch generates a control signal which causes the CPU to
leave the WAIT state and execute one machine cycle, After
the cycle has been executed, the WAIT mode is reentered.

THE INTELLEC 8 FRONT PANEL CENTRAL
CONSOLE ~ THEORY OF OPERATION

This section describes the physical implementation of
the features described on page 65. Again, it is necessary that
Chapter 2 of this manual be understood in order to benefit
from this section.

The Inteilec 8 Control Console is made up of three
modules:

® The Front Panel lLogic board, which holds Address
Registers, data multiplexers, data buffers, and the
Address Comparator.

® The Dispiay board, which holds the circuitry which
enables the Light-Emitting Diode displays.

® The Front Panel Controller, which holds the logic
necessary to enable the proper performance of
Console function.

These three modules work together in order to per-
form all of the Control Console operations, and so in this
section they will be discussed as one unit.

The seven operational groups discussed in this section
are:

1) Data Display operations

2) Manual Memory Access operations
3) Manual 1/O Access operations

4) Interrupt operations

5) Processor Control Operations

6) Sense Operations

7) Search/Wait operations

Data Display Operations
There are five distinct data display operations:

® Status display

® Cycle display

® Address display

® Instruction/Data display
® Programmable display -

All of these display operations utilize Light-Emitting
Diodes as their active display element. These diodes are
triggered by their input signal going to a LOW level.

The Status display functions are as follows:

Run

Wait

Hold

Search Complete
Access Request
interrupt Request
Interrupt Disable

The display functions are executed as follows:

1) The RUN status display is lit when the Central
Processor is running: i.e., when it is not in the
WAIT or STOPPED state. This is accomplished
by combining the two signals WAIT ACK, indi-
cating the WAIT state, and HALT ACK, indi-
cating a STOPPED state, through a NAND gate.
The resulting signal is inverted, producing the
RUN STATUS DISP signal which will go LOW
when the processor is running.

2) The WAIT status display is lit when the Central
Processor is in the WAIT state. This is accom-
ptished by using the WAIT ACK signal to produce
the WAIT STATUS DISP signal, which will go
LOW when the processor is in the WAIT state. In
normal operation, both the RUN and WAIT dis-
plays are lit simultaneously. This is because WAIT
states occur during all machine cycles, allowirg
ample time for memory data to be returned to
the CPU.

3) The HALT status display is lit when the Central
Processor is in the STOPPED state. This is accom-
plished by using the HALT ACK signal to produce
the HALT STATUS DISP signal, which gées LOowW
when the processor enters the STOPPED state.

4) The HOLD status display is lit when the Central
Processor has acknowledged a Hold Request. This
is indicated by the presence of signal HOLD ACK.

5) The Search Complete status display is lit when-.

This signal is used to form the HOLD STATUS
DISP signal, which goes LOW when a hold request
is acknowledged.

ever a Search/Wait operation has been completed.
This condition is indicated by the presence of sig-
nal SRCH CMPL, which is inverted to form

SRCH CMPL DISP,

6) The Access Request status display is lit whenever

a manual memory or 1/0 access has been requested
from the front panel. The two signals which are
produced by such requests are //O Access Mode
and Mem Access Mode. These two signals are com-
bined by a NOR gate and a NAND gate to pro-
duce the ACCESS REQUEST DISP signal.

7) The Interrupt Request status display is lit when an

Interrupt Request is made from the Control Con-
sole, and extinguished when the request is proc-
essed. This is accomplished by using the INT CTL
W signal produced by the Interrupt Request
switch, to set a D flip-flop, producing the INTR
REQ signal, indicating an interrupt request. This
signal is inverted to form TNT REQ DISP.

8) The Interrupt Disable status display is lit whenever

the CPU disables its interrupt capability. The INT

DSBL signal produces INT DSBL DISP.

When the Central Processor acknowledges the inter-
rupt request, it enters an interrupt cycle, indicated by sig-
nal INT CYCLE. This signal is used to clear the flip-flop
set by the request, thus extinguishing the Interrupt Request

display.

The cycle display functions are:

® ¢ 000 0 00

Fetch
Memory *

1/0

DA
Read/Input
Write/Output
Interrupt
Stack

The displays are as follows:

1) The FETCH display is lit during a processor Instruc-

2) The Memory Cycle display is lit when either the’ '

tion Fetch operation. This is indicated by the
FETCH CYCLE signal, which is passed through a
buffer to produce signal FETCH CYCLE DiSP.

processor or the Control Console is executing a
Memory Access Operation. In the case of the pro-
cessor, this is indicated by signal MEM RD CYCLE
or MEM WR CYCLE. These two signals are sepa-
rately buffered and tied to a common point as
signal MEM CYCLE DISP. This is possible as both
signals cannot occur simultaneously. Similarly, the
Control Console signal MEM ACCESS MODE can-

not occur simultaneously with a processor memory
access, so it is combined with DA ENBL, which
indicates a memory access in progress, and is then
tied to the same point as the two processor mem-
ory access signals,

3) The 1/O Cycle display is lit when a processor or
Control Console /O Access operation is in pro-
gress. The processor indicates this operation with
signal 1/0 CYCLE, which is buffered and tied to a
common point with the Console 1/0 Access Cycle
signal, which is produced by combining signalls 1/0
Access Mode and DA ENBL in a fashion similar to
that described above for memory access display
operations. This produces the 1/0 CYCLE DISR
signal.

4) The DA cycle display is lit during Control Console
memory or 1/O access operation. A Control Con-
sole Access operation is always begun by request:
ing a HOLD operation. This fact is used to pro-
duce the proper signal by buffering the HOLD ACK
signal, which indicates a HOLD operation, to pr6~
duce the DA CYCLE DISP signal.

5) The Read/input cycle display is lit whenever a
Memory Read or 1/0 Input operation is executed.
This is indicated by three signals: 1/0 IN, produced
during a Control Console /O input operation,
MEM RD CYCLE, produced during a Processor
memory read operation, and also by the combina-
tion of the Memory Access Mode and DA ENBL
signals as described in the discussion of the Mem-
ory Cycle display. The first two of these three sig-
nals are buffered and then tied to a common point
along with the third, producing signal RD/IN
CYCLE DISP.

6) The Write/Output cycle display is it when either a
memory write or |/O output operation is executed.
This is indicated by two signals: MEM WR CYCLE,
produced during a memory write operation, and
then the combination of 1/0 IN and 1/0 CYCLE,
which is true only during an 1/O OUT cycle. These
signals are tied to a common point to produce sig-
nal WR/OUT CYCLE DISP.

7) The /nt cycle display is lit when an interrupt cycle
is in_progress, which is accomplished by inverting
the INT CYCLE signal and combining it through
a NAND gate with the HOLD ACK signal which
indicates a HOLD operation, thus producing signal
INT CYCLE DISP.

8) The Stack cycle display is lit when the stack is being
accessed. The STACK CYCLE signal “produces
STACK CYCLE DISP.

The Address display lights are lit either by the data
held in the Control Console Address Register, during a Mem-
ory Access operation, or by the data appearing on the Ad-
dress/Instruction switches, during an 1/0 Access operation.

69

The choice of which set of data to use is made at a two-input
multiplexer. If neither operation is being performed, the
Address display is activated by the data on the Processor
Memory Address Lines MADO-MAD15.

The Instruction/Data display lights are lit by the data
appearing on the Processor Data Out lines DBO-DB7 except
during a Control Console data deposit operation, when they
reflect the contents of the first eight Address/Instruction/
Data switches.

The Register/Flag display lights reflect the contents
of the Processor Register/Flag flip-flops.

Manual Memory Access Operations

Manual Memory Access operations are executed in
the following manner:

1) The Mem Access switch on the front panel is de-
pressed. This causes the Request Multiplexer to
generate a HOLD REQ signal, which is sent to the
Processor.

2) The Processor responds to the HOLD request by
giving control of the memory addtess and control
buses to the Control Console, and issuing signal
HOLD ACK.

3) The memory address to be accessed is loaded into
the Address/Instruction/Data switches on the front
panel. ’

4) The LOAD switch on the front panel is depressed,
causing the switch data to be gated into the Ad-
dress Register, a sixteen-bit up/down counter.

5) The data held by the address register are gated
through a muitiplexer and fed onto the Memory
Address bus, and thence to the memory modules.

6) The memory module responds by sending the data
currently held in the addressed memory location
back on the Memory Data Input bus. The data is
then gated onto the Data Out bus, and is displayed
by the Controi Console.

7) If it is desired to write data into memory the data
byte to be written is loaded into the lower eight
Address/Instruction/Data switches, and the DEP
switch is depressed. This causes the DEPosit flip-
flop to produce the DEP REQ signal, which is com-
bined with the SYNCA and MEM ACCESS mode
signals to produce the memory write signal R/W.
R/W is then used to clear the Deposit flip-flop,
producing a pulsed write signal. The data held in
the switches is gated onto the Data Out bus at the
same time, by signal DEP DAEN, produced by
combining the DEP REQ and DA ENBL signals.
The data will thus be written into the selected
memory location.

Manual 1/0 Access Operations
A Manual 1/O access operation is performed as follows:

1) The 1/0 Access switch on the Control Console is
depressed, causing signat HOLD REQ to be gener-
ated by the Request Multiplexer and sent to the
processor.

2) The processor gives control of the memory address
and control buses to the Control Console, and issues
signal HOLD ACK.

3) The 1/0 Address signifying the 1/0 device to be ac-
cessed is loaded into A/D switches 8-15. This data
is immediately gated onto the Memory Address bus,
and sent to the I/O modules. Data which appears
on the selected 1/O device will be read onto the
the Data Qut lines by signal 1/0 IN, produced by
the 1/O ACCESS MODE signal, and will be
dispiayed.

4) If an 1/0 Output operation is to be performed, the
data to be output is foaded into the first eight
A/1/D switches, and switch DEP is depressed. This
causes a deposit operation to be performed, except
that /0 OUT is produced rather than R/W.

Interrupt Operations
An Interrupt operation is executed as follows:

1} The Interrupt Instruction which is to be executed
during the Interrupt Cycle is loaded into the eight
Address/Instruction/Data switches on the Control
Console.

2) The Interrupt switch is depressed, producing signal
INT CTL SW, which sets the Interrupt flip-flop.
This flip-flop produces signal INT REQ. This signal
causes the Request Multiplexer to issue signal NT
REQ, which is sent to the processor. 1t is also used
to produce signal INT REQEN, which causes the
data placed in the switches to be gated through a
muitiplexer and onto the Interrupt Instruction bus.

3) The processor entersan Interrupt Cycle, producing
signal INT CYCLE, which resets the Interrupt flip-
flop.

Sense Operations
A sense operation is executed in the following manner:
1) The data which is to be input is loaded into the
8 Address/Data switches.

2} The Sense switch is depressed. This causes signal
SENSE REQEN to be generated, which causes the
swtich data to be placed on the Input Data bus. It
also produces signal IN JAM ENBL, which causes

70

~
W

the switch data to be input during an input opera-
tion, rather than the normal input source data.

Search/Wait Operations

A Search/Wait operation is performed in the following
manner:

1) The pass count is loaded into the lower eight Ad-
dress/Instruction/Data switches.

2) The LOAD PASS switch is depressed, loading the
pass count into the Pass Counter, an eight-bit
counter.

3) The address which is to be monitored is loaded into
the Address/Instruction/Data switches. The LOAD
switch is depressed, loading the switch data into
the Address Registers,

4) The contents of the Address Register is compared
with the Memory Address buss by the SRCH ADR
comparator. Each time they coincide, signal ADR
CMP is produced. This signal is used to produce
PC STB, which is in turn used to count down the
Pass Counter by one.

6) When the Pass Counter reaches zero, it produces
signal SA CMP. This signal is used to set the Search
Complete flip-flop. This flip-flop’s output causes
the Request Multiplexer to issue signal WAIT REQ,
which causes the processor to enter a WAIT mode.

Processor Control Operations

Most of the processor control operations have been
previously discussed. Those which remain are the WAIT and
STEP/Continuous functions.

The wait function is executed by depressing the WAIT
switch on the Control Console. This produces the WAIT
MODE signal, which causes the Request Multiplexer to issue
signal WAIT REQ, which causes the processor to enter the
WAIT mode.

If the WAIT mode is entered, the Step/Continuous
function becomes valid. Depressing the STEP/CONT switch
causes the WAIT REQ signal to go FALSE for approximately
1 us., which enables the processor to execute one cycle of
operation, after which it again enters the WAIT mode.

J

-

||

A

sp1e91119129ddy;
i

= -
A EATAN TS AT
DIDIBIA AN

I

A\
m\p\ﬁ;mn

1

Bif

44

1

Ao
H
i

1
2L

w

T

w

T

Q

T

Figure 7-1. Front Panel Logic Schematic Diagram

E3

72

~C

.

) | Q [[1 <

Figure 7-2. Front Panel Controller Schematic Diagram

73

74

C/

3:)
X
<C
\4
™

The INTELLEC 8 Chassis, Mother Board, and Power
Supplies are designed to provide the housing, interconnec-
tion, and power services for the INTELLEC 8/MQOD 80
system.

Since these three components of the INTELLEC 8
are, essentially, very simple, they will not be described in
detail,

The INTELLEC 8/MQOD 80 uses OEM power supplies.
One supplies -3V at 1.8 Amperes. A second furnishes +5V
at 12 Amperes. And the third supplies £12V at 60 milli-
amperes. This is sufficient power to operate the standard

W& D o™ o0 WO (B
<! SV o\ A\
RO s “?05,)9‘?

INTELLEC 8/MOD 80 with one additional 1/0 or Output
module, and one additional memory module. If greater ex-
pansion is planned, maximum and typical current draw
shouid be totaled for all modules and the requirement for
an external supply evaluated. System Utilization has more
details concerning the use of the external power supply.
The Mother Board is, simply, a printed circuit board
which has mounted on it the connectors which hold the
various cards which make up the INTELLEC 8/MOD 80
System. The layout of these connectors is such that certain
modules must occupy certain locations on the Mother
Board. The suggested arrangement is shown in Figure 8-1.

BUS INTERFACE
FRONT PANEL CONTROLLER

CUSTOM INTERFACE MAY BE USED
IN ANY OF THESE LOCATIONS

MODULE

1
oo PROM, PRO

Figure 8-1. INTELLEC 8/MOD 80 Module Assignments.

76

2 C .19 N P LT
@ W o' a0 M
<€ < ‘(& @07 &‘“ 0\)
c‘t\‘? ¢ ?c,“‘ «

The imm8-76 PROM Programmer Module is a stan-
dard module for the INTELLEC 8/MOD 80 system. When
used in conjunction with the INTELLEC 8/MOD 80 Sys-
tem Monitor, the Programmer Module permits rapid, auto-
matic loading of Intel 8702A Programmable Read Only
Memories.

The program to be transferred to a PROM is first
stored in the INTELLEC 8’s program RAM memory. The
PROM to be programmed is erased, if necessary, and in-
serted in the programming socket on the Control and Dis-
play Panel. The PRGM PROM PWR switch is turned on, and
the console operator types a ‘P’ followed by parameters
which indicate the first and the last RAM addresses to be
transferred, as well as the starting address in the PROM,

The software does the rest. It transfers the eight bits
of the PROM address to output port 2. It sets up the data
to be written into the PROM, at output port 3. It pulses the
power supply the required number of times, at the required
duty cycle. And it checks the resuit of its programming by
reading the PROM’s output through input port 2. If im-
proper programming is indicated, the System Monitor prints
an exception notice at the teletype console. This program-
ming cycle is repeated at each of the memory locations
bracketed by the initial and the terminal parameters. Com-
plete programming involves the loading of 256 individual
locations, a process which requires approximately 2 minutes.
The procedure is described fully in the INTELLEC 8/MOD
80 Operator’s Manual.

The imm6-76 is designed for plug-in installation in the
INTELLEC 8/MOD 80 mainframe. It makes use of existing

connectors and other provisions. No special installation is’

necessary.

THE 8702A PROGRAMMABLE
READ ONLY MEMORY

The 8702A is a 256 x 8 bit electrically programmable
read-only memory, designed for use in limited quantity
OEM production. The 8702A is programmed by the mo-

77

mentary application of high amplitude pulses on selected
pins of the chip. The 8702A is cleared by a controiled
exposure to high intensity ultraviolet. The 8702A may be
reloaded as often as desired, making it suitable for use in
program development.

Programming of the 8702A requires a carefully con-
trolled sequence of operations. The safety of the chip
demands that both the intermittent voltages and the duty
cycle of the programming pulses be maintained within spe-
cific limits. This insures against breakdown and overheating.
On the other hand, insufficient power levels will lead to
programming- failures. An accurate balance is necessary.
The PROM Programmer Module is designed to provide
pulses of the correct level and duration, automatically.

Appendix B of this manual contains full electrical
specifications for the intel 8702A.

The 8702A is shipped to the customer in a ‘“‘cleared”
condition; that is, with zeros in all memory locations. An
internal zero-state is indicated by a HIGH on the output
pins of an enabled chip. During programming, ones are
loaded selectively into each of the chip’s memory locations.

A 8702A which has been programmed previously
must be erased prior to reloading. Erasure is accomplished
by exposing the silicon die to ultraviolet light. The device is
made with a transparent quartz lid, to permit such exposure.
Conventional room light, flourescent light, and sunlight
have no measureable effect on data stored in the 8702A,
even after years of exposure. But the device is quickly
cleared by a brief exposure to high intensity ultraviolet at
awavelength of 2637 Angstroms. The Model UVS-11 (Ultra-
violet Products, Incorporated: San Gabriel, California) is a
cheap and effective source for this purpose. Its accompany-
ing filter must first be removed. The recommended inte-
grated does (the product of Intensity and the exposure
time) is 6W-sec/cm?2. Ten minutes exposure to the UVS-11,
at a distance of 1 inch, will clear the PROM completely.
Avoid unnecessary or prolonged exposures, which are po-
tentially damaging to the PROM.

-~ WARNING —

High intensity ultraviolet can cause serious burns.
Ultraviolet radiation can also generate potentially hazard-
ous amounts of ozone. Observe the following precautions,
when using the source to erase a PROM:

(1) Never expose skin or eyes to the source directly.

{2) Do not stare fixedly at an object which is under
ultraviolet illumination. The light is invisible, but
is nevertheless injurious to eye tissue.

(3) Use the source only in a weli-ventilated area.

FUNCTIONAL DESCRIPTION
OF THE MODULE

An eight-line input, applied to the PROM’s addressing
lines, specifies the location to be programmed. Data to be
written in that location is applied to the chip’s eight output
lines. Then address lines, data lines, the PRGM pin, and all
four power lines (Vge, Vib. Vgg. and Vpp) are pulsed, to
fix the data in location. The procedure requires about 3
milliseconds, and the cycle is repeated 32 times at each of
the 256 memory locations. To prevent overheating of the
8702A, the Programmer Module maintains a 20% duty
cycle, and it therefore takes approximately 123 seconds to
program the entire chip.

To perform the required functions, the imm6-76 con-
tains an address driver bank, a data driver bank, four elec-
tronically controlled power supplies, and a control and
timing section.

The sequence of events is as follows:

1) Data to be programmed into the PROM is placed
on the input lines, in complement (negative-true)
form.

2) Address to be programmed is placed on the ad-
dress lines, in complement (negative-true) form.

3) When the programming cycle begins, the following
changes in the static conditions occur:
a) Vg switches from 5 to 47 Volts.
b} Vpp switches from 5 to 59 Voits.
c) Vgg switches from -9 to 12 Voits.
d) Vpp switches from -8 to 0.6 Volts.

e) The programming signal (PRGM) goes from O
to 47 Volts.

f) Address data changes from 0-5 Volts to 0-47
Volts.

4) 60 microseconds after the cycle begins, the address
data is switches from its complement form to its
positive-true form. :

5) 165 microseconds after the cycle begins, the
PRGM signal dips from 47 Volts to approximately
9 Voits.

6) 3 milliseconds later, the PRGM signal returns to 47
Volts.

7) 3.25 milliseconds after the beginning of the cycle
all voltages and signals are switched back to thein
normal quiescent levels.

8) 15 milliseconds after the beginning of the first
cycle, the second cycle begins.

Interface to the INTELLEC 8/MOD 80

Note that the timing relationships above are deter-
mined by control circuitry on the PROM Programmer
Module itself. The number of pulsed repetitions, however, is
determined by the controlling program. The INTELLEC
8/MOD 80 System Monitor contains a timing routine which
holds the PROM Programmer enabled for approximately
520 milliseconds, or 35 programming cycles, before step-
ping to the next memory location.

The ADDRESS [N lines on the Programmer Module
are connected to the INTELLEC 8/MOD 80 output port
#2. The DATA IN lines are connected internally to output
port #3. The INTELLEC 8/MOD 80 System Monitor writes
into these ports when a PROM is being programmed.

When the Programmer Module is not actively pro-
gramming a memory location, the contents of that location
are available at the module’s DATA OUT pins. These
outputs are connected in turn to input port #2, so that the
INTELLEC 8/MOD 80 System Monitor can check the
results if its programming.

The PROM programmer module also has two negative-
true enabling inputs, which initiate the programming cycle,
A LOW applied to pin #32 of the module selects a 20%
programming duty cycle. This input is used when program-
ming 8702A PROM. A LOW applied to pin #30 selects a
2% duty cycle, used when programming 8702A device. 1n
the INTELLEC 8/MOD 80 system, pin #32 of the module
is connected to the BIT #7 line of RAM output port L1.
Pin #30 is connected to the BIT #6 line of the same output
port. The INTELLEC 8/MOD 80 System Monitor controls
the Programmer Module by writing into that port.

A S T Wi Sl rad
TR T T i
TN Ty 7 ELRE o ~ &7
50 o] TYF S T) i)
T3 w0u ahor] RTE uaow ingw oy 9- 104 STUSNL O
= T v LR L | 9TiE| ‘9esEn2 ORI Tav sac.vsavaL v
S ST v SN | Feasoa) o~ JIv SwouIvewD v 1
N ek i|#|,_:a TOHTIZ (IR WO T TR BT T 1

OFsTIe T EINMD SIING L EALON

b

<lv
o

s Y
B PR 5e v
2%

~®303q veTIOOY

ot
- #
i S e s
{1~ = Y
ocarny
00Nt iKY
= st A
sou ki = o H
et ay =
= 28
UNHT AG-}
vem S) vt oy
&)t i3
N % g
Jvo 1) wwA, - -
Wm & =
= -
X .»u.w oy
HEem o) 37 G e
i
a
. .
o k| o

. ves T
jora

79

Figure 9-1. PROM Programmer Schematic Diagram

THEORY OF OPERATION OF
THE MODULE

Refer to Figure 9-1, the PROM Programmer Sche-
matic.

Data Distribution

The data to be programmed into the PROM enter
originates at output port #3. This eight-line signal enters
the Programmer Module through a ribbon cabie which runs
from J1 on the INTELLEC 8/MOD 80 motherboard to J1
at the top of the module. Each of the input lines is applied
to one input of an XOR-gate. The alternate inputs of these
eight gates are returned through a common line to the +5
Volt supply, so that each gate acts as an inverter to the
incoming data.

Each of the XOR-gate outputs is directed to one
input of a 7403 NAND-gate. The alternate inputs to this
bank of gates are driven in common by a signal originating
in the control and timing section of the module. At the
appropriate time in the cycle, these inputs are permitted to
swing HIGH, causing data from the XOR-gate bank to pass
through to the bases of eight driver transistors: Q19, Q15,
Q11, Q7, Q17, A13, A8, and Q5. The signal at the
collectors of these drivers is conducted out of the assembly
through a ribbon cable which attaches to J2 at the top of
the module. It goes from there to the programming socket
on the front panel of the INTELLEC 8/MOD 80. This data
undergoes three successive inversions, between entering and

leaving the imm8-76. The output will therefore be in
complementary form, as required for the programming of
the 8702A PROM.

Observe that the bases of the PROM data driver
transistors are returned through pull-up resistors to the +5
Volt supply. As a result, these transistors will be conducting
whenever the input NAND-gates are inhibited. Under these
circumstances, the signal at each of the PROM’s da'ta ping
will be applied to the base of a transistor, through a divider
consisting of a 100-ohm resistor, the DC collector resistance
of a driver transistor, and a 1K resistor. Transistors Q20,
Q16, Q12, 08, Q18, Q14, Q10, and Q6 amplify this
eight-line signal and forward it to an XOR-gate bank which
is used as an eight-line data inverter. The outputs of the
XOR-gates are applied to eight NAND-gates which have
their alternate inputs tied in common to the +5 Volt
supply. These gates are permanently enabled, and also act
as data inverters. The output of these gates is in positive-
true form. It is routed out of the assembly at J1, through a
ribbon cable to J1 on the INTELLEC 8/MOD 80’s mother-
board, and terminates at input port #2. The INTELLEC
8/MOD 80 System Monitor reads this port, to determine
the results of its programming.

Address data enters the module at J1, through a
ribbon cabie connecting it to J1 of the INTELLEC 8/MOD
80's motherboard. Data originating at output port #3 is
therefore applied to the eight-line XOR-gate bank, shown
on the right in Figure 9-1. The outputs of these gates are

16/150 m$ |
325ms
156 S ——»] 30ms
7V
PRGM (#13)]
—_— 47V
ov
M7V
Vees (#12) / \
47V
v
Vpp (#18) [\ i
+47V
+2v
Vog (#16) f \
v
08V .
Vpp (#24) [\
av
6045
e
Ial +H7v
ADDRESS 1y \ -
DATA \ 47V
-— e e e e —— oV

Figure 9-2. PROM Programmer Timing

80

™

directed to the bases of eight driver transistors, whose
outputs command the PROM address lines. Note that the
alternate inputs of the XOR-gates are tied in common to a
signal tine from the control and timing section. This line
swings LOW when the programming cycle begins. It returns
to a HIGH condition 60 microseconds later. As a result, the
address forwarded to the PROM is in complementary form
initially. Sixty microseconds after the programming cycle
begins, the address data will switch to its positive-true form,
in accordance with the PROM’s programming requirements.

Control and Timing

As shown in Figure 9-1, the programming cycle may
be initiated by a LOW applied to pin #32 or to pin #30 of
the card. The INTELLEC 8/MOD 80 System Monitor
enables the pin #32 input, selecting a duty cycle of 20% (3
mS/15 mS). The pin #30 input is set up for the 2% duty
cycle to program 8702 devices.

.

When a LOW is applied to pin #32 of the module, the
15 millisecond input muiltivibrator re-triggers itself re-
petitively, until the enabling signal is removed. This pro-
vides a series of positive-going excursions with a period of
15 milliseconds, which are used to trigger the 3.25 milli-
second program cycle one-shot.

The output of the program cycle ane-shot:

1) Complements the address to the PROM.

2) Enabies the data drivers.

3) Puises all four power supplies.

4) Triggers a 155 microsecond cascaded one-shot
delay.

Sixty microseconds after the program cycle one-shot
fires, the negative-going pulse output at A11-7 subsides, and
the address data returns to its positive-true form.

One hundred fifty-five microseconds after the pro-
gram dycle one-shot fires, A12.9-10-11-12-13-14 fires,
causing the power supply to apply a 3 millisecond PRGM
pulse to the PROM.

Three and a quarter milliseconds after the beginning’
of the programming cycle, all signals return to their quies-
cent levels.

The Programmer Module’s control timing is illus-
trated in Figure 9-2.

Power Supply

The power supply section of the PROM Programmer
Module performs the level switching functions required to
program PROMs, in response to signals which are generated
in the timing and control section of the module. The power
supply contains a rectifier section, a voltage regulator
section, a regulator control section, and six output
switches. The relationship among these is shown in a
simplified form, in Figure 9-3.

VRS
Q3s Voo (+45/+69 VDC)
CR11-CR12
PROG Q27— PRGM (+47/+9 VOC)
3ms)
REGlél:.STOR ca?
RECTIFIER N
— Vee [+45/+47 VDG
sovac CR3-CRS \/ W ec
p—> Q25 t—— TS (0/+47 vOC)
8IAS
PROTECT A\:T,g; VR1 zs
VR2/Q29
Vgg (-9/+12 VDC) .
s
1 3
PRGM PROM 818 +5v]
CLAMP
PWR ——> cLAMP
Q32/034 b _joV
(FRONT PANEL) aze/Q28
CR10
PROG I a3s -
CYCLE Q37— Vpp (-9/+0.5 VOC)
(3.25 m8) cR8

Figure 9-3. Power Supply Functional Block

81

RECTIFIER AND REGULATOR

The Programmer Module receives a 50 VAC/60 Hz
input, from two 25 Volt transformers which are located on
the INTELLEC 8/MOD 80's chassis. The secondaries of
these transformers are connected so that their outputs are
series additive, and the 50 Volt output thus obtained is
routed to the Programmer Module through J3. A full-wave
bridge consisting of diodes CR3-CR6 rectifies the 50 Volt
input to produce a +80 Volt DC output.

The +80VDC output of the rectifier is applied to a
series regulator, Q30, shown in the upper left hand corner
of Figure 9-1. The output voltage at the emitter of Q30
depends upon the signal at its base. This level is determined
in turn by a regulator loop which consists of an integrated
voltage regulator {A17), Q33, and Q30 itself.

Figure 9-4 shows a simplified equivalent of the
regulator loop. Components within the broken lines are
part of the Signetics 550 monolithic voltage regulator.

The loop input is obtained from the regulator’s

output, through an adjustable resistive divider (R91 and
R100). This level is applied to the non-inverting input of an
operational amplifier which is incorporated into A17. The
output of the amplifier drives a common-emitter stage, also
contained within A17, and the inverted output at A17-11 is
applied externally to the emitter of Q33. Q33’s collector
drives the base of the series regulator Q30, completing the
negative feedback loop.

in a stabilized configuration such as this, the opera-
tional amplifier tends to maintain an output which results
in zero error, where the error is the potential difference
between the amplifier’s inverting and non-inverting inputs,
Note that the inverting input is tied to the 550's internal
reference (approximately 1.63 Volts). In order to obtain
the desired output from the regulator, the resistive divider
is adjusted for a zero error when the regulator’s output is
approximately +47.6 Volts.

Refer to the schematic for the PROM Programmer
Module, Figure 9-1. Observe that the series regulator Q30 is

Q30 CR?7

VR-6

Figure 94, Voltage Regulator Loop: Simplified Schematic
Equivalent

82

protected against short-circuit overloads, by a bias proteg-
tion circuit consisting of Q29 and the Zener diode VR2.
Under ordinary operating conditions, Q29 will be off, and
the reverse voltage applied to VR2 will be insufficient to
cause this diode to conduct. In the event of a short-circuit,
however, the voltage drop across Q30 will rise sharply, VR2
will begin conducting when the voltage across Q30 ap-
proaches 36 Volts, applying a forward bias to Q29. As a
result, the voltage at Q29's collector will drop, clamping the
base of Q30 to a relatively low level, and limiting the
current output from the supply.

SCR1 is a crowbar switch, used to protect the PROM
being programmed from an over-voltage condition in the
supply. The normal voltage level on the Vggs line (+47.6
Volits) is insufficient to cause conduction in Zener diode
VR3. Should V(s rise above +56 Volts, however, the
diode will conduct, forward biasing the gate of the SCR
SCR1 short-circuits the output of the rectifier, and the
over-current condition blows fuse F2, interrupting AG
power to the Programmer Module. Capacitor C16 provides
an alternate gate current path, to prevent dv/dt triggering of
the SCR when power is initially applied. '

REGULATOR CONTROL

Refer again to Figure 9-3, the power supply functional
block. Note that the bias on Q30 is subject to the condition
of a clamp. The clamp circuit consists of Q32, Q34, CR10,
and associated components. These are used to switch the
regulator output on and off, producing the pulses required
for the programming of the PROM.

The base of Q34 is returned to the +80 Volt source,
through pull-up resistor R92 (refer to Figure 9-1). Under
static conditions, this transistor will conduct through
CR10, clamping the base of Q30 to a low.value. As a result
of the low forward bias, Q30 displays a high impedance,
and the output of the regulator will therefore drop to a
very low value.

The PRGM PROM PWR switch is located on the
Console and Display Panei of the INTELLEC 8/MOD 80.
Contacts of the PRGM PROM PWR switch ground the base
of Q34 when that switch is turned on. This turns Q34 off,
enabling the regulator.

The regulator’s output remains clamped, however, by
the conduction of Q32. This transistor is commanded by
the control and timing section of the Programmer Module.
The 3.25 millisecond output of the program cycle one-shot
turns Q32 off at the start of the programming cycle. With
both Q32 and Q34 disabled, the bias on Q30 rises to the
stable level established by the characteristics of the regula-
tor loop. The output of the regulator rises in consequence.

OUTPUT SWITCHES

When no program cycle pulse is present, the regula-
tor’s output is at a low level. Diode CR7 is reverse biased,
and the output voltage on the Vccg line is determined by
the clamp circuit consisting of Q26 and Q28. Under these

conditions, Q26 operates in the reverse beta mode, holding
Vces to approximately +4.7 Volts, When the program
cycle begins, the control and timing section applies a
negative-going 3.25 millisecond pulse to the base of Q28,
turning that transistor off. Q26 now operates in a conven-
tional manner, turned off by the low bias developed across
R88. With the clamp removed, the Vs line is free to
follow the rising output of the regulator section. CR7
conducts, and the Vs line rises to approximately +47
Volts.

Observe that the collectors of both the address drivers
and the data drivers are returned to the Vs line, through
their individual load resistors. Thus the normal 0 to 5 Volt
logic excursion which prevails under static conditions
changes to a O to 47 Volt excursion during programming.
This is an accord with the electrical requirements of the
PROM:s.

As Vs rises, Q25 goes into conduction, causing the
level at the CS output to go from 0 Voits to +47 Volts. -

Under static conditions, conduction through R89
holds the Vgg output to approximately ~10 Volts. The 15

"Volt drop across VR1 is not sufficient to induce an

avalanche in the Zener. During programming, however,
VCes rises to +47 Voits and the diode goes into conduc-
tion. As a result, Vgq rises to +11 Volts, approximately 36
Volts below the level on the Vg line.

The Vpp output is held to a static level of -10 Volts,
by conduction through Q36. When programming begins, a
negative-going program cycle signal is applied to the emitter
of Q37. The negative-going transition at its collector is
coupled to the base of Q36, and Q36 turns off. CR8
conducts, causing VDD to rise to about 0.6 Voits.

Under static conditions, the clamp transistor Q32 is
conducting, and Q35 is turned off by the low voltage

“applied to its base through diode CR12. The Vpp output

line is tied to V(s through R87, and the quiescent vaitage
level at this point is approximately +4.7 Volts. When the
program cycle pulse turns Q32 off, CR5 conducts, and the
voltage at the base of Q35 rises to the vicinity of +6Q Volts.
The emitter of Q35 foilows this excursion, and CR5
conducts, pulling Vpp up to a level of +59 Volts.

The PRGM line is connected to Vs through R78,
and the static level at this output is approximately +4.7
Volts. When V(s rises to +47 Volts, at the beginning of

the programming cy‘cle, the PRGM output follows. One
hundred fifty-five microseconds after the start of the cycle,
the control and timing section sends a 3 millisecond
program pulse to the base of Q27. This positive-going pulse
turns the transistor on, and the voltage at its collector falls
to approximately +9 Volts. Three milliseconds later, the
PRGM output returns to +47 Volts, where it remains until
the end of the programming cycle.

UTILIZATION
This section describes the utilization of the imm6-76.

Installation

The PROM Programmer Module is designed for plug-
in installation in the INTELLEC 8/MOD 80. No special
installation is necessary.

Plug the printed circuit board into J16 on the
INTELLEC 8/MOD 80's motherboard. A ribbon cable
connects J1 at the top of the module to J1 on the
motherboard. A second ribbon cable connects J2 on the
module to the programming socket on the front panel of
the INTELLEC 8/MQD 80.

An umbilical cable, permanently attached to the
module, plugs into J34 on the INTELLEC 8/MOD 80’s
motherboard. This connection supplies AC power to the
Programmer Module.

Refer to the INTELLEC 8/MOD 80 Operator’s
Manual for instructions on the programming of PROMs
using the INTELLEC 8/MOD 80 System Monitor.

Power Requirements
This module requires power at the following levels:

a) 50 VAC

b) +5 +5% VDC @ 1.0A (max)

¢} -1015% VDC @ 0.2A (max)

The 50 VAC source shares a fuse with the -9 Volts
supply in the INTELLEC 8/MOD 80. This 0.5 Ampere fuse,
F2, is located on the INTELLEC 8/MOD 80’s rear panel.

Pin List

Connector pin allocations on the PROM Programmer
Module are given in Tables 9-1, 9-2, 9-3, and 9-4.

83

P1PIN LIST

PIN * SIGNAL FUNCTION PIN SIGNAL FUNCTION
1 51
2 52
3 GROUND 53
4 GROUND 54
5 55
6 56
7 57
8 58
9 59

10 60

1 61

12 62

13 63

14 64

15 85

16 66

17 67

18 68

19 69

20 70

21 71

22 72

23 73

24 74

25 75

26 76

27 77

28 78

29 79

30 R/W (1701) 80

31 81

32 R/W (1702A) 82

33 83

34 84

35 85

36 86

37 87

38 88

39 89

40 90

41 91

42 92

43 -10VDC 93

44 -10vDC 94

45 95

46 96

47 97

48 98

49 99 +5 VDC

50 100 +5VDC

Table 9-1.

84

C/

J

| N—

J1PIN LIST J2 PIN LIST J3PIN LIST

PIN SIGNAL FUNCTION PIN SIGNAL FUNCTION PIN SIGNAL FUNCTION
1 DATA O IN 1 PROM DATA OUT 0 1 50 VAC (01)
2 ADDRESS O IN 2 PROM ADDRESS OQUT 0 2
3 DATA 1IN 3 PROM DATA OUT 1 3 50 VAC (02)
4 ADDRESS 1IN 4 PROM ADDRESS OUT 1 4 +80VDCOUT
5 DATA 2 IN 5 PROM DATA OUT 2 5 PROGRAMPROM POWER
6 ADDRESS 2 IN 6 PROM ADDRESS OUT 2 6 GROUND
7 DATA 3IN 7 PROM DATA OUT 3 7
8 ADDRESS 3 IN 8 PROM ADDRESS OUT 3 8
9 DATA 4 IN 9 PROM DATA OUT 4 9

10 ADDRESS 4 IN 10 PROM ADDRESS OUT 4 10

1" DATA 5 IN 11 PROM DATA OUT 5 1

12 ADDRESS 5 IN 12 PROM ADDRESS OUT 5 12

13 DATA G IN 13 PROM DATA QUT 6 13

14 ADDRESS 6 IN 14 PROM ADDRESS QUT 6 14

15 DATA 7 IN 15 PROM DATA QUT 7 15

16 ADDRESS 7 IN 16 PROM ADDRESS QUT 7 16

17 TEST DATAOUTO 17 17

18 18 18

19 TEST DATA OUT1 19 19

20 20 20

21 TEST DATAQUT 2 21 21

22 22 22

23 TEST DATAOQUT3 23 23

24 24 24

25 TEST DATA QUT 4 25 25

26 26 26

27 TEST DATA QUT 5 27 27

28 28 28

29 TEST DATAOUT 6 29 29

30 30 30

31 TEST DATAOQUT 7 31 31

32 32 32

33 +5 VDC 33 33

34 +5 VDC 34 34

35 +5VDC 35 35

36 +5 VDC 36 36

37 +5 VDC 37 37

38 +5 VDC 38 38

39 +5 VDC 39 39

40 +5 VDC 40 40

41 a4 4

42 42 42 .

43 43 43

44 44 44

45 45 45

46 46 46

47 47 47

48 48 48 -

49 49 49

50 50 50

Table 9-2. Table 9-3. Table 9-4.

85

86

a0 (O GO o o
< M 2O¥ (S, o8
¥ N 51«\\«\"}

This section gives the information necessary to install
and operate the INTELLEC 8/MOD 80 system in an
application. It is divided into four subsections.

INTELLEC 8/MOD 80 INSTALLATION

Instaliation of the INTELLEC 8/MOD 80 is very
simple, as it is delivered in a ready-to-use condition. Simply
set it on a convenient surface, plug the 110v supply cord
into the nearest 110v AC socket, and connect any desired
peripherals, and it is ready to use.

The Bare Bones 80 is almost as simple to install, as it
has been designed to mount in any standard 19-1/2 inch
RETMA panel.

SYSTEM 1/O INTERFACING

This section provides the information necessary to
properly interface external input and output equipment to
the INTELLEC 8/MOD 80. Since most of the interfacing
requirements are supplied by the internal Input/Qutput and
Output cards, interfacing is not a complex task; however,
there are certain procedures which must be followed in
order to assure the proper operation of any external devices
used.

The INTELLEC 8/MOD 80 can support up to 16

Location Ports
1/0 #0 Input ports 0-3; output ports 0-3
1/0 #1 Input ports 4-7; output ports 4-7
1/0 #2 Input ports 8-11; output ports 8-11
1/0 #3 Input ports 12-15; output ports 12-15
OR OR
*1/0#0 Input ports 0-3; output ports 0-3
OUT #1 QOutput ports 16-23
QUT #2 Output ports 8-15
OUT #3 Output ports 24-31

*Note that in this configuration none of the output ports
respond to addresses 4-7.

87

input ports and 16 output ports (when four imm8-61 |/O
Modules are used) or up to 4 input ports and 28 output
ports {when one imm8-61 /O Module and three imm8-63
Output Modules are used). The ports can be assigned to
specific modules as shown {lower left).

All of the data ports complement data to and from
the CPU, and are TTL compatible. Note that the two input
ports (0 and 1) and two output ports (0 and 1) used for
Teletype communications are not available to the user. The
data from the other ports is brought, via flat cables, to the
back panel of the INTELLEC 8/MOD 80, where it is made
available on 37 pin jacks (see Figure 10-1). External devices
may connect to these jacks using AMP 205210-1 plugs.

The standard INTELLEC 8/MOD 80 comes equipped
with only one input/Output card, providing four input
ports and four output ports. A table of the data signals
associated with these ports is given in Table 10-1.

In order to ensure the proper transmission of data
through a twisted cable of 12 feet {maximum), the user
should provide circuitry which will assist in reducing signal
noise. It is suggested that each output line be provided with
a filter network and pullup resistors. The filter is made up
of a 200 ohm resistor and a .001 uf capacitor, and the
pullup resistor should be 1K ohm.

Also, 7404-type drivers are suggested for each input
data line. These drivers should, preferably, be open-
collector type devices. If input ports 2 or 3 are used,
open-collector devices must be used, as these ports are
shared with the PROM Programmer during programming,
transfer and compare PROM operations. The user must
disable his input drivers when PROM programming
operations are being performed.

INTELLEC 8/MOD 80 SYSTEM
OPERATING REQUIREMENTS

In order to ensure proper performance, certain re-
quirements must be met in operating the INTELLEC
8/MOD 80.

R i —
LB e T o T e rocey e 3s e <]
Om 1om 3B 1% are oits sen 3

uon

REISIEEE)

7

33vaIar 7evs

v ¥ . T N T 7]

INTELLEC 8/MOD 80 Rear Panel

Figure 10-1.

1/0 Port Assignments-Module 1/0 0

SIGNAL

OUTPUT PORT 08, BIT O

OUTPUT PORT 08, BIT 7

OUTPUT PORT 09, BIT O

NS WA -

OUTPUT PORT 09, BIT

OUTPUT PORT OA, BITO

1
2
3
4
5
6
OUTPUT PORT OA, BIT 7

OUTPUT PORT 0B, BIT O

1
2
3
4
]
6
QUTPUT PORT 0B, BIT 7
GROUND
NOTES:

SYMBOL

|

(@]
ey
o
J >
NOOPWN = O

O|
bl
[=]
>

COMMENTS

UART XMIT DATAO

UART XMIT DATA 7

RDR ADV-1
PUNCH COMMAND
READER COMMAND
DATA OUT ENBL
DATA IN

DATA OUT

RAW

RAWA

PROM ADRINO
1
2
3
4
5
6
PROM ADR IN 7

PROM DATA IN 0, PUNCH DATA O

1, 1
2, 2
3, 3
4, 4
5, 5
6, 6
PROM DATA IN 7, PUNCH DATA 7

(1) Dedicated to UART/TTY operations and unavailable to user.
(2) Dedicated to PROM Programming Operation and unavailable to user.
(3) Back Panel Connector Signals appear at both LOC 3 and LOC 4.

BACK PANEL
CONN. PIN #
(3)

1

(1

10
11
29
30
12
13
31
32

(2)

1,18,19, 20, 37

MODULE
PIN #
J5

WO s WN

37-40

Table 10-1.

89

' 1/0 Port, Assignments—ModuIe 1/00

BACK PANEL MODULE

SIGNAL SYMBOL COMMENTS CONN. PIN # PIN #
Ja
INPUT PORT 0, BITO PO, 0 TTY RCV DATAO (m 2
1 1 1 3
2 2 2 4
3 3 3 5
4 4 4 6
5 5 5 7
6 6 6 8
INPUT PORT 0, BIT 7 iPo, 7 TTY RCV DATA 7 (1) 9
INPUT PORT 1, BITQ iP1,0 DATA AVAILABLE 2 11
1 1 OVERRUN ERROR 3 12
2 2 TRANSMIT BUFFER EMPTY 21 13
3 3 FRAMMING ERROR 22 14
4 4 PARITY ERROR (INHIBITED) 4 15
5 5 DATA AVAILABLE (TAPE READER) 5 16
6 6 PUNCH READY 23 17
INPUT PORT 1, BIT 7 iP1,7 24 18
INPUT PORT 2, BITO iP2,0 PROM DATA OUT (J3-16) (2) 20
1 1 (| 15) 21
2 2 (1 14) 22
3 3 (] 13) . 23
4 4 (] 12) 24
5 5 ({1 25
8 6 ({10 26
INPUT PORT 2, BIT 7 P2,7 PROM DATA OUT (J3- 9) (2) 27
INPUT PORT 3, BITO iP3,0 READER DATA 0 6 29
1 1 1 7 30
2 2 2 25 31
3 3 3 26 32
4 4 4 8 33
5 5 5 9 34
6 6 6 27 35
INPUT PORT 3, BIT 7 P3,7 READER DATA 7 .28 36
GROUND 1,18,19,20,37 37-40

NOTES:
{1) Dedicated to UART/TTY operations and unavailable to user.
{2) Dedicated to PROM PGMR and unavailable to user.
(3) Back Panel CONNECTOR Signals appear at both LOC 3 and LOC 4.

Table 10-1 {cont.).

~

1/0 Mod_uie To Back Panel Interface Chart

SIGNAL/MODULE CONNECTOR
170 1 ouT 2 ouT 3
IN | OUT |OUT_ | OUTH| OUT_ | OUTy | BIT | BACKPANEL| MODULE
(J4) | ws) |2 (J3) (J2) | (43) | No. | CONNPIN # | CONN PIN #
(Fiat Cabte)
LOC3 | Loct1 | Locs | Locs | Locg | Locy

iP4 | OPO5 | OPO9 | OPOD | OP11 | OPIC 0 2 2

1 3 3’

2 21 4

3 22 5

4 a 6

5 5 7

1 6 23 8

iP4 | OPO5 | OP09 | OPGD | OP11 | OPIC 7 24 9

iP5 | ‘OPOS | OPOA | OPOE | OP12 | OPID | 0 6 1

1 7 12

2 25 13

3 26 14

4 8 15

5 9 16

6 27 17

iP5 | OPO6 | OPOA | OPOE | OP12 | OP1D 7 28 18

iP6 | OPO7 | OPOB | OPOF | OPTA | OPIE 0 10 20

1 1 21

2 29 22

3 30 23

4 12 24

5 13 25

6 31 26

iP6 | OPO7 | OPOB | OPOF | OP1A | OPIE 7 32 27

iF7 | OPO8 | oPoC | OP10 | OP1B | OPIF 0 14 29

1 15 30

2 33 31

3 34 32

4 16 33

5 17 34

iP7 | OPO8 | OPGC | OP10 | OP1B | OPTF 6 35 35

7 36 36

GND | 1,18,19,20,37 | 37-40

Table 10-2

91

First, never operate the INTELLEC 8/MOD 80 with
the cover off. If this is done, the proper flow of air will be
disrupted, resulting in the burning-out of the internal power
supplies.

Second, use extreme care when removing or installing
individual circuit cards in the INTELLEC 8/MOD 80,
especially Input/Output board #1. The PROM Programmer
and Teletype connectors to 1/O board O are very easily
damaged, and are located very close to 1/Q board #1.

EXTERNAL DEVICE CONTROLLER
INTERFACING

The INTELLEC 8 may be used with external devices
such as disks, etc., which require a Direct Memory Access
capability. This is accomplished by the TRI-State capabilit
of the processor memory address and control buses, which
can relinquish their control of INTELLEC operations to an
external device.

92

Data in the 8080 is stored in the form of 8-bit
binary integers:

T
D; 'Dg'Ds D4 D3 Dy Dy’ Do

DATAWORD

The 8080 program instructions may be one, two or
three bytes in length. Multiple byte instructions must be
stored in successive memory locations; the address of the
first byte is always used as the address of the instruction.
The exact instruction format will depend on the particular
operation to be executed.

Single Byte instructions

lD7 T T T T T 1 Do l Op Code
Two-Byte Instructions
1 1 7T T—T1T 1
Byte One I D7 Do IOp Code
T T I I T I Data or
Byte Two 107 Do IAddress
Three-Byte Instructions
Byte One [D7 I b I ' o Do lOp Code
ByteTwo D, | T T T T T |)pata
or
By‘teThreeLD7 I I ' I I ’ ’ Do l Address

Addressing Modes:

Often the data that is to be operated on is stored in
memory. When multi-byte numeric data is used, the data,
like instructions, is stored in successive memory locations,
with the least significant byte first, followed by increasingly
significant bytes. The 8080 has four different modes for
addressing data stored in memory or in registers.

e Direct — Bytes 2 and 3 of the instruction contain
the exact memory address of the data
item {the low-order bits of the address
are in byte 2, the high-order bits in style
3).

o Register — The instruction specifies the register or
register-pair in which the data is located.

Indirect — The instruction specifies a
register-pair which contains the memory
address where the data is located (the
high-order bits of the address are in the
first register of the pair, the low-order
bits in the second).

e Register

o Immediate — The instruction contains the data it-
self, This is either an 8-bit quantity or a
16-bit quantity (least significant byte first,
most significant byte second).

Uniess directed by an interrupt or branch instruction,
the execution of instructions proceeds through consecutively
increasing memory locations. A branch instruction can spec-
ify the address of the next instruction to be executed in
one of two ways:

® Direct — The branch instruction contains the ad-
dress of the next instruction to be exe-
cuted. (Except for the ‘RST’ instruction,
byte 2 contains the tow-order-address and'
byte 3 the high-order address.) .

® Register Indirect ~ The branch instruction indicates!
a register-pair which contains the address
of the next instruction to be executed.
{The high-order bits of the address are in
the first register of the pair, the low-order.
bits in the second.) -

The RST instruction is a special one-byte call instruc-
tion (usually used during interrupt sequences). RST includes
a three-bit field; program control is transferred to the in-
struction whose address is eight times the contents of this
three-bit field.

Condition Flags:

There are five condition flags associated with the
execution of instructions on the 8080. They are Zero,
Sign, Parity, Carry, and Auxiliary Carry, and are each rep-
resented by a 1-bit register in the CPU. A flag is “'set” by
forcing the bit to 1; “reset”” by forcing the bit to 0.

Unless indicated otherwise, when an instruction af-
fects a flag, it affects it in the following manner:

Zero: If the result of an instruction has the value 0,
this flag is set; otherwise it is reset.

Sign: If the most significant bit of the resuit of the
result of the operation has the value 1, this
flag is set; otherwise it is reset.

Parity: If the modulo 2 sum of the bits of the result
of the operation is O, (i.e., if the result has
even parity), this flag is set; otherwise it is
reset (i.e,, if the result has odd parity).

Carry: If the instruction resulted in a carry (from
addition or incrementation) or a borrow
(from subtraction, decrementation, or com-
parison} out of the high-order bit, this flag
is set; otherwise it is reset.

Auxiliary Carry: If the instruction caused a carry out
of bit 3 and into bit 4 of the resulting value,
the auxiliary carry is set; otherwise it is
reset. This flag is affected by single precision
additions: subtractions, increments, decre-
ments, comparisons, and logical operations,
but is principally used with additions and
increments preceding a DAA (Decimal Ad-
just Accumulator) instruction.

Symbols and Abbreviations:

The following symbols and abbreviations are used in
the subsequent description of the 8080 instructions:

SYMBOL - MEANING

Accumulator Register A

addr 16-bit address quantity

data 8-bit data quantity

data 16 16-bit data quantity

byte 2 The second byte of the instruction .

byte 3 The third byte of the instruction

rr1,r2 One of the registers A,B,C,D,E,H,L

DDD,SSS The bit pattern for one of registers A,B,
CD,EH,L (DDD = destination, SSS =
source):

viii

p

RP

th

r

PC

sP

™

Z,S,P,CY,CA

<<t>?

DDD or SSS REGISTER NAME
000
001
010
011
100
101
110

One of the register pairs:

FrITmoOooOow)

B represents the B,C pair with B as the
high-order register and C as the low-order
register;
D represents the D,E pair with D as the
high-order register and E as the low-order
register;

H represents the H,L pair with H as th
high-order register and L as the low-orde
register;
SP represents the 16-bit stack pointer
register.

The bit pa{tern for one of the register
pairs B,D,H,SP: :

RP REGISTER PAIR
00 8-C
.01 D-E
10 - H-L
1" SP

The first (high-order) register of a desigd
nated register pair.

The second (low-order) register of a desig-
nated register pair.

16-bit program counter register (PCH and
PCL are used to refer to the high-order
and low-order 8 bits respectively).

16-bit stack pointer register (SPH and SPL|
are used to refer to the high-order and
low-order 8 bits respectively).

Bit m of the register r (bits are number,
7 through 0 from left to right).

The condition flags:

Zero, N
Sign,

Parity,

Carry,

and Auxiliary Carry, respectively,

The contents of the memory location or
registers enclosed in the parenthéses.

“Is transferred to"”
Logical product {*‘and”)
Exclusive “or

Inclusive “‘or”’

C

O

+ Addition

- Two’s complement subtraction

-~ *“1s exchanged with”

— The one’s complement

n The restart number 0 through 7

NNN The binary representation 000 through

11

for restart number 0 and 7 re-

spectively.

Data Transfer Group:

This group of instructions transfers data to and from
registers and memory. Unless otherwise indicated, condi-
tion flags are not affected by any instructions in this group.

MOV r1, r2 (Move)
(r1) <— {r2)

The content of register r2 is moved to register r1,

[o"T1ToTo o s s s

Cycles:
States:
Addressing:
Flags:

MOV r,M
(r) =— ((H) (L))

1

5
register
none

{Move from memory)

The content of the memory location, whose address
is in registers H and L, is moved to register r.

[oT 1 ToT Tl T 1Ty

Cycles:
States:
Addressing:
Flags:

MOV M,r
((H){L}) ~— ()

2

7

reg. indirect
none

(Move to memory)

The content of register r is moved to the memory
location whose address is in registers H and L.

Lo’1'1'1'o[s's[s]

Cycles:
States:
Addressing:
Flags:

SPHL (Move HL to SP)

(SP) ~— (H) (L)

2

7

reg. indirect
none

The contents of registers H and L {16 bits) are moved

to register SP,

[1‘1[1‘1'1'0'0[1]

Cycles:
States:
Addressing:
Flags:

1

5
register
none

MVI r, data
(r) <=— (byte 2}
Tl}e content of byte 2 of the instruction is moved to
register r.

olololnolol 1 T4 Ty
data

Cycles: 2
States: 7

Addressing: register immed.
Flags: none

MVI M, data {Move to memory immediate)
{(H) (L)) =— (byte 2)
The content of byte 2 of the instruction is moved to
the memory location whose address is in registers H
and L.

ol ol 1T 1T ol 1T 1Ty,
data

Cycles: 3
States: 10

Addressing: reg./ind. immed.
Flags: none

LXI1 rp, data 16 (Load register pair immediate)
{rh) <— (byte 3), {rl) =— (byte 2)
Byte 3 of the instruction is moved into the high-order
tegister (rh) of the register pair rp. Byte 2 of the in-
struction is moved into the low-order register {r1) of
the register pair rp.

g T [P

OIOIR'PO

low-order data

0 0 1

high-order data

Cycles: 3

States: 10
Addressing: immediate

Flags: none

LDA addr (Load Accumulator direct)
(A) =— { (byte 3) {byte 2)) .
The content of the memory location, whose address isi
specified in byte 2 and byte 3 of the instruction, is
moved to register A,

I I

I I

11 Tol 1Ty
low-order addr -
high-order addr

olol

Cycles: 4
States: 13
Addressing: direct

Flags: none

STA addr (Store Accumulator direct)
((byte 3) (byte 2)) =— (A)
The content of the accumulator is moved to the mem-
ory location whose address is specified in byte 2 and
byte 3 of the instruction.

ololT1T1Toly
low-order addr
high-order addr

Cycles: 4
States: 13
Addressing: direct

Flags: none

LHLD addr {Load H and L direct}
(L) -— ((byte 3) (byte 2))
(H) =— ((byte 3) (byte 2) + 1)
The content of the memory location, whose address
is specified in byte 2 and byte 3 of the instruction,
is moved to register L. The content of the memory
location at the succeeding address is moved to register
H.

I T T I I I I

0 0 1 0 1 0

low-order addr
high-order addr

0 1

Cycles: 5

(registers D and E) may be specified.

[o'o'n'P'1‘o'1'o]
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none
STAX rp (Store accumulator indirect)

({rp)) =—— (A) .
The content of register A is moved to the memory
location whose address is in the register pair rp. Note
only register pairs rp=B (registers B and C) or rp=0
(registers D and E) may be specified.

[oTolwTepToTol1To]

Cycles: 2

States: 7
Addressing: reg. indirect

Flags: none

XCHG (Exchange H and L with D and E)
(H) <—=(D)
(L) <—(E)
The contents of registers H and L are exchanged with
the contents of registers D and E.

T T

1Ty Mo T

States: 16

Addressing

Flags:

¢ direct
none

1 1 l 1 l
Cycles: 1
States: 4
Addressing: register
Flags: none

SHLD addr {Store H and L direct)
({byte 3) (byte 2)) <-— (L)
({byte 3) (byte 2) +1) =— (H)
The content of register L is moved to the memory lo-
cation whose address is specified in byte 2 and byte
3. The content of register H is moved to the succeed-
ing memory location.

ol ol 1 ToloT ol 1Ty
low-order addr
high-order addr

Cycles: 5
States: 16
Addressing: direct

Flags: none

LDAX rp (Load accumulator indirect)
(A) =— {({rp))
The content of the memory location, whose address
is in the register pair rp, is moved to register A. Note:
only register pairs rp=B (registers B and C) or rp=D

Arithmetic Group:

This group of instructions performs arithmetic opera-
tions on data in registers and memory.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, and Carry flags accord-
ing to the standard rules.

All" subtraction operations are performed via two's
complement arithmetic and set the carry flag to one to
indicate a borrow and clear it to indicate no borrow.
ADDr (Add)

(A} =— (A) +(r)

The content of register r is added to the content of

the accumulator. The result if placed in the accumu-

lator.

110'0'0'0'3'5"31

Cycles:
States:
Addressing:
Flags:

1

4

register
Z,S,P,CY,AC

N
C

C

ADD M (Add from memory)
(A) =— (A) + ((H) {L))
The content of the memory location whose address is
contained in the H and L registers is added to the
content of the accumulator. The result is placed in
the accumulator.

[1'1'0'0“}'1'1'0

ACidata (Add with carry immediate)
(A) =— (A) + (byte 2) + (CY)
The content of the second byte of the instruction and
the content of the CY flag are added to the contents
of the accumulator, The result is placed the accumu-
lator.

111 Taelol s T Tyl
data

Cycles:
States:
Addressing:
Flags:

2

7

reg. indirect
Z,8,P,CY,AC

Cycles:
States:
Addressing:
Flags:

2

7

immediate
Z,8,P,CY,AC

ADI data (Add immediate)
(A) =— (A) + (byte 2)
The content of the second byte of the instruction is
added to the content of the accumulator, The resuit
is placed in the accumulator.

SUBr (Subtract)
(A) =— (A) - {r)

The content of register r is subtracted from the con-

EREREE

olol 1Ty Ty

Cycles:
States:
Addressing:
Flags:

ADCr (Add with carry
(A) =— (A) +(r) +

2

7

immediate
Z,8,P,CY,AC

)
cyY)

tent of the accumulator, The result is placed in the

accumulator.

[1|DIOI1'0!S[SIS
Cycles: 1
States: 4
Addressing: register

Flags

SUBM (Subtract from

¢ Z,5,P,CY,AC

memory)

The content of register r and the content of the carry
bit are added to the content of the accumulator. The
result is placed in the accurmulator.

[1TolTolol1TsTsTy

(A) =— (A) = ((H) (L)}

The content of the memory location whose address
is contained in the H and L registers is subtracted from
the content of the accumulator. The result is ptaced
in the accumulator,

Cycles:
States:
Addressing:

Flags

1

4

register

: Z2,5,P,CYAC

[1ToTol1Tol1T1To]
Cycles: 2
States: 7
Addressing: reg. indirect

ADCM (Add from memory with carry)
(A) =— (A) + ((H) (L} +(CY})
The content of the memory location whose address is
contained in the H and L registers and the content
of the CY flag are added to the accumulator. The
result is placed in the accumulator.

T T 151

Flags: 2,S,P,CY,AC

SUl data {Subtract immediate) ‘
(A) =— (A) - (byte 2)
The content of the second byte of the instruction is
subtracted from the content of the accumulator. The
result is placed in the accumulator.

[1'0T0'l0 0
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z,S,P,CY,AC

1T Tol Tl Ty Ty
data '
Cycles: 2
States: 7
Addressing: immediate
Flags: 2,S,P,CY,AC

xi

SBBr (Subtract with borrow)
(A)=—(A) - {r) -~ (CY)
The content of register r and the content of the CY
flag are both subtracted from the accumulator The
result is placed in the accumulator.

1|0|OI1I1ISIS|S

Cycles: 1

States: 4
Addressing: register

Flags: Z,S,P,CY,AC

SBB M ({Subtract from memory with borrow)
(A) =— (A) = ((H) (L)) - (CY)
The content of the memory location whose address
is contained in the H and L registers and the content
of the CY flag are both subtracted from the accumu-
lator. The resuit is placed in the accumulator.

L1'o'o'1‘1‘1'1[01

Cycles: 2

States: 7
Addressing: reg. indirect

Flags: Z,S,P,CY,AC

SBl data (Subtract with borrow immediate)
(A) =— (A) - {byte 2) - (CY)
The contents of the second byte of the instruction and
the contents of the CY flag are both subtracted from
the accumulator. The result is placed in the accu-
mulator,

11Tl T Ty T 17Ty
data

Cycles: 2

States: 7
Addressing: immediate

Flags: Z,5,P,CY,AC

INCr (Increment)
(r) =— (r}+1
The content of register r is incremented by one. Note:
All condition flags except CY are affected.

ol oTpToTpT1TaTlo

Cycles: 1

States: 5
Addressing: register

Filags: Z,S,P,AC

INCM (Increment memory)
((H) (L)) =— {(H) (L)) +1
The content of the memory location whose address is
contained in the H and L registers is decremented by
one. Note: All condition flags except CY are affected.

I

oToTl 1T T4y o' o]

Cycles: 3

States: 10
Addressing: reg. indirect

Flags: Z,S,P,AC

DCRr (Decrement)
(r) =—(r}) -1
The content of the memory location whose address is
contained in the H and L registers is incremented by
one. Note: All condition flags except CY are affected.

[oToTo ol Tl

Cycles: 1

States: 5
Addressing: register

Flags: Z,S,P,AC

DCRM (Decrement memory)
((H) (L)) =— ((H} (L)) -1
The content of the memory location whose address is
contained in the H and L registers is decremented by
-one. Note: All condition flags except CY are affected.

0o Tol 1T ToT 1 ToTy]

Cycles: 3

States: 10
Addréssing: reg. indirect

Flags: X,S,P,AC

INXtp (Increment register pair)
(rh) (re) <— (RH) (R1) +1
The content of the register pair rp is incremented by
one. Note: No condition flags are affected.

ololRTPToTo 1T

Cycles: 1
States: 5
Addressing: register
Flags: none .

DCXrp (Decrement register pair)
(rh) {r1) <— (rh) {r1) -1
The content of the register pair rp is decremented by
one. Note: No condition flags are affected.

ol o TRT P T TolTHT]

Cycles: 1
States: 5
Addressing: register

Flags: none

~
C

DAD rp (Add register pair to H and L)
(H) (L) =— (H) (L) + {rh) {re)
The content of the register pair rp is added to the con-
tent of the register pair H and L. The resuit is placed
in the register pair H and L. Note: Only the CY is
affected. It is set if there is a carry out of the double
precision add; otherwise it is reset.

[oloTRTpT 1 ToToTy

Cycles: 3
States: 10
Addressing: register
Flags: CY

DAA (Decimal Adjust Accumulator)

The eight-bit number in the accumulator is adjusted

to form two four-bit binary-coded-decimal digits by

the following process: .

1. If the value of the least significant 4-bits of the
accumulator is greater than 9 or if the AC flag is
set, 6 is added to the accumulator.

2. If the value of the most significant 4-bits of the
accumulator is now greater than 9, or if the CY
flag is set, 6 is added to the most significant 4-bits
of the accumulator.

All flags are affected by the additions, if performed,

otherwise they are reset.

] I

[0 ' 0 I 1 ' 0 0 1 1 1
Cycles: 1
States: 4
Addressing:

Flags: Z,5,P,CY,AC

Logical Group:

This group of instructions performs logical operations
on data in registers and memory and on condition flags.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, Auxiliary Carry, and
Carry flags according to the standard rules.

ANATr (And)
(A) =— (A) A (n)
The content of register r is logically anded with the
content of the accumulator. Theresult is placed in the
accumulator. The CY and AC flags are cleared.

Fsls

[1ToT 1T ToTs

Cycles: 1
States: 4

Addressing:

Flags

register .
: Z,5,P,CY,AC

xiii

ANAM (And from memory)
(A) =— (A) A ({(H) (L))
The contents of the memory location whose address
is contained in the H and L registers is logically anded
with the content of the accumulator. The result is
placed in the accumulator. The CY and AC-flags are
cleared.

[1[0'1'1|0'1'1'o]

Cycles: 2

States: 7
Addressing: reg. indirect

Flags: Z,5,P,CY,AC

ANA data (And immediate)
(A} =— (A) A (byte 2)
The content of the second byte of the instruction is
logically anded with the contents of the accumulator.
The result is placed in the accumulator. The CY and
AC flags are cleared.

1Ll ool Tyl

data

Cycles: 2

States: 7
Addressing: immediate

Flags: Z,S,P,CY,AC

XRAr (Exclusive OR)
(A) =— (A) ¥ (r)
The content of register r is exclusive-or'd with the
content of the acéumulator. The result is placed in
the accumulator, The CY and AC flags are cleared.

EEEAEEEAEREY

Cycles: 1

States: 4
Addressing: register

Flags: Z,S,P,CY,AC

XRAM (Exclusive OR)
(A) =— (A) ¥ ({H) (L))
The content of the memory location whose address i$
contained in the H and L registers is exclusive-OR’d
with the content of the accumulator. The result is
placed in the accumulator. The CY and AC flags are

-

cleared. ’
[1[0[{]0[1{1[1[0'
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z,5,P,CY,AC

XRIdata: (Exclusive or immediate)
(A) <— (A) ¥ (byte 2)
The content of the second byte of the instruction is
exclusive-or’'d with the content of the accumulator.
The result is placed in the accumulator. The CY and
AC flags are cleared.

1T T Tl T T 1Ty
data

~ Cycles: 2
" States: 7
Addressing: immediate
Flags: Z,S,P,CY AC

ORATr
(A} =— (A} V (r} .
The content of register r is inclusive-OR’d with the
content of the accumulator. The result is placed in
the accumulator. The CY and AC flags are cleared.

[1|ol1l1|n|s|s]s

(OR)

Cycles: 1

States:
Addressing:
Flags:

4
register
ZS,PCY,AC

ORA M {OR from memory)
(A) =— (A) V ((H) (L))
The content of the memory location whose address is
contained in the H and L registers is inclusive-OR’d
with the content of the accumulator. The result is
placed in the accumulator. The CY and AC flags are

cleared.
1[0|1(1|0|11110
Cycles: 2
States: 7
Addressing: reg. indirect

Flags: Z,S,P,CY,AC

ORldata (OR Immediate)
(A) =— (A) V (byte 2)
The content of the second byte of the instruction is
inclusive-OR’d with the content of the accumulator.
The result is placed in the accumulator. The CY and

AC flags are cleared.

ERERERE

ol 1T 1 To

Cycles:
States:
Addressing:
Flags:

2

7

immediate
Z5PCYAC

CMP r

CMP M

CP! data

RLC

(COMPARE)
(A) - (r)
The content of register r is subtracted from the accu-
mulator. The accumulator remains unchanged. The
condition flags are set as a result of the subtraction.
The Z flag is set to 1 if (A}, = (r). The CY flag is set
to'1if (r) # (A).
Note: The auxiliary carry is affected.

]110[1[1|1|s|s|s|

Cycles: 1

States: 4
Addressing: register

Flags: Z,S,P,CY,AC

(Compare with memory)

(A) = ((H){L))

The content of the memory location whose address is
contained in the H and L registers is subtracted from
the accumulator. The accumulator remains unchanged.
The condition flags are set as a resuit of the sub-
traction. The Z flag is set to 1 if (A) = { (H) (L)).
((H) (L))} £ A,

Note: The AC flag is affected.

(1 Tol T T e T TyTo]

Cycles: 2

States: 7
Addressing: reg. indirect

Flags: Z,S,P,CY,AC

{Compare immediate)

(A) - {byte 2)

The content of the second byte of the instruction is
subtracted from the accumulator. The accumulator is
not changed. The condition flags are set by the resuit
of the subtraction. The Z flag is set to 1 if (A) = byte
2). The CY flag is set to 1 if byte 2) # (A).

Note: The AC flag is affected.

LR

IR

Cycles:
States:
Addressing:
Flags:

2

7

immediate

Z,S8PCYAC .

(Rotate left)
(An+1) = (Ap); {AQ) < (A7); (CY) =— (Ay)
The content of the accumulator is rotated right one
position. The high order bit and the CY flag are both
set to the value shifted out of the low order bit posi-
tion. Only the CY flag is affected.

[0]0[0|0l0]1l1|1J

Cycles: 1
States: 1
Flags: CY

RRC (Rotate right)

(An) =— An_1); (A7)=—(Ag); (CY) =—(Aq)

The content of the accumulator is rotated right one
position. The high order bit and the CY flag are both
set to the value shifted out of the low order bit posi-

tion. Only the CY flag is affected.

u|0,0'011]1]1[1]

Cycles: 1
States: 4
Flags: CY

{Rotate left through carry)
(An+1)=<—{Ap); (CY)=—(A7); (Ag) =—(CY)
The content or the accumulator is rotated left one
position through the carry. The low order bit is set
equal to the CY flag and the CY flag is set to the
value shifted out of the high order bit. Onfy the CY
flag is affected.

RAL

lololol s Tl T4 Ty

Cycles: 1
States: 4
Flags: CY
RAR {Rotate right through carry)
(Ap)=—{Ap+1): (CY) = (AQ); (A7) =— (CY)
The content of the accumulator is rotated right one
position through the CY flag. The high order bit is
the CY flag. The high-order bit is set equal to the CY
flag and the CY flag is set to the value shifted out of
the low order bit. Only the CY flag is affected.

I

lolololy T T T4 Ty

Cycles: 1
States: 4
Flags: CY

CMA (Complement accumulator)

(A)=—(A)

The contents of the accumulator are complemented
f{zero bits become 1, one bits become (0). No flags

are affected.

[oTol 1 ToT T T 4Ty

Cycles: 1
States: 4
Flags: none
CMC (Complement carry)
(cY) = (CV)
The CY flag is complemented. No other flags are
affected,
folol i T T T T4TH
Cycles: 1
States: 4

Flags: CY

xv

STC (Set carry)
(CY) =—1
The CY flag is complemented. No other flaps are

affected,
LoTol i TyTol T Ty]

Cycles: 1
States: 4
Flags: CY

Branch Group:

This group of instructions alter normal sequential
program flow.

Unless specified otherwise, no condition flags are af-
fected by any instruction in this group.

The two types of branch instructions are uncondi-
tional and conditional. Unconditional transfers simply per-
form the specified operation on register PC (the program
counter). Conditional transfers examine the status of one
of the four processor flags to determine if the specified
branch is to be executed. The conditions that may be
specified are as follows:

CONDITION cce
C —carry (CY=1) 000
Z - zero (Z=1) 001
M — minus (5=1) 010
PE — parity even (P=1) 011
NC — no carry (CY=0) 100
NZ — not zero (2=0) 101
P — plus (5=0) 110
PO — parity odd (P=0) 1M1

JMP addr (Jump)
(PC) =— (byte 3) (byte 2)
Control is transferred to the instruction whose ad-
dress is specified in byte 3 and byte 2 of the cur-
rent instruction.

1T Tolololol 1y
low-order addr
high-order addr

Cycles: 3
States: 10
Addressing: direct

Flags: none

Jeondition addr (Conditional jump)
If (CCC),

(PC) =— (byte 3) (byte 2)
If the specified condition is true, control is trans-
ferred to the instruction whose address is specified
in byte 3 and byte 2 of the current instruction; other-

wise, control continues sequentially.

1T il el el el ol 1Ty
low-order addr
high-order addr

Cycles: 3
States: 10
Addressing: direct

Flags: none

CALL addr (Calt)

((SP) = 1) =— (PCH)
{ (SP) —2) =-— (PCL)

(SP) =— (SP) -2

(PC) =— (byte 3) (byte 2)
The high-order eight bits of the next instruction ad-
dress is one less than the content of register SP, The
low-order eight bits of the next instruction address
are moved to the memory location whose address is
two less than the content of register SP. The content
of register SP is decremented by 2. Control is trans-
ferred to the instruction whose address is specified in
byte 3 and byte 2 of the current instruction.

1P Tal ol T ToTH
low-order addr
high-order addr

Cycles: 5
States: 17
Addressing: direct

Flags: none

Ccondition addr
If (CC),
((SP) = 1) =— (PCH)
{ (SP) - 2) =— (PCL)
(SP) —— (SP) -2
(PC) =— (byte 3} (byte 2)
If the specified condition is true, the actions spec-
ified in the CALL instruction (see above) are per-
formed:; otherwise, control continues sequentially.

{Conditional call)

1l TelTelcel 1 ToTy
low-order addr
high-order addr

Cycles: 3/5

States: 11/17
Addressing: direct

Flags: none

RET (Return)

(PCL) —— ((SP})
(PCH) =— ((SP) +1)
(SP) =— (SP}+2
The content of the memory location whose address is
specified in register SP is moved to the low-order eight
bits of register PC. The content of the memory loca-
tion whose address is one more than the content of
register PS is moved to the high-order eight bits of
register PC. The content of register PC is incremented
by 2.

[1 T ToT ol ToToTy

Cycles: 3

States: 11
Addressing: reg. indirect

Flags: none

Rcondition {Conditioned return}
1f (CC),

(PCL} ~— ((SP))

(PCH) =— ((SP) + 1)

(SP) <— (SP) + 2
If the specified condition is true, the actions spec-
ified in the RET instruction (see above are per-
formed; otherwise; control continues sequentially.

|1'1'c'c'c'o'o'o]

Cycles: 1/3

States: 5/11
Addressing: reg. indirect

Flags: none

RSTn (Restart)

({SP) = 1} =— (PCH)
({SP) - 2) =— (PCL]J
(SP) ~— (SP) - 2
(PC) <— 8" (NNN) .
The high-order eight bits of the next instruction ad-
dress are moved to the memory location whose ad-
dress is one less than the content of register SP. The
low-order eight bits of the next instruction address are
moved to the memory location whose address is two
less than the content of register SP. The content of
register SP is decremented by two. Control is trans-
ferred to the instruction whose address is eight times

the content of (NNN).

(AT TN TN NI Ty Ty

Cycles: 3 -

States: 11 :
Addressing: direct

Flags: none

™

PCHL {Jump H and L indirect - move H and L to PC)
(PCH) ~— (H)

(PCL) <-— (L)

The content of register H is moved to the high-order
eight bits of register PC. The content of register L is

moved to the low-order eight bits of register PC,

L1t Ty ToT Tl oTy

Cycles: 1
States: 5
Addressing: register

Flags: none

Stack, 1/0, and Machine Control Group:

This group of instructions performs 1/Q, manipulates
the ‘‘stack”, and alters internal control flags.

Unless otherwise specified, no condition flags are af-
fected by any instructions in this group.

PUSHrp (Push)

((SP) = 1) =— (rh)
((SP) -2)=— (r1)

(SP) ~— (SP) -2
The content of the high-order register of register pair
p is moved to the memory location whose address is
one less than the content of register SP. The content
of register pair rp is moved to the memory location
whose address is two less than the content of register
SP. The content of register SP is decremented by 2.
Note: Register pair rp = SP may not be specified.

1 lalrTpT ol s Toly

Cycles: 3

States: 11
Addressing: reg. indirect

Flags: none

PUSH PSW (Push processor status word)

((SP) = 1) =—(A)
((SP) = 2) g =— (CY), ((SP) =2) 1 -1
((SP) -2) 2 =«—(P), ((SP)-2) 3 =0
((SP) -2) 4 =—— (AC), ((SP})~2)5=—0
((SP) -2} g =— (2), ((SP) -2) 7 =—(S)

(SP) =— (SP) -2
The content of register A is moved to the memory lo-
cation whose address is one less than register SP. The
contents of the condition flags are assembled into a
processor status word and the word is moved to the
memory location whose address is two less than the
content of register SP. The content of register PS is
decremented by two. ’

[1 71T TaTol 1 Toly

Cycles: 3
States: 11
Addressing: reg. indirect
Flags: none

POPrp {Pop)
(r1) =— ((SP))
(rh) «— ((SP) +1)
(SP)=— (SP) +2
The content of the memory location, whose address
specified by the content of register SP, is moved to
the content of register SP, is moved to the low-order
register of register pair rp. The content of the memory
{ocation, whose address is one more than the content
of register SP, is moved to the high-order register of
register pair rp. The content of register PS is incre-
mented by 2.
Note: Register pair rp = SP may not be specified.

(1T TrTPpTololol 1]

Cycles: 3

States: 10
Addressing: reg. indirect

Flags: none

POP PSW (Pop processor status word)
(CY) =— ((SP))g
(P} =—((SP))2
(AC) =— ((SP))4
(Z) =— ((SP))g
(S) =—((SP))7
(A) =— ((SP) +1)
(SP) ~— { (SP +2)
The content of the memory location whose address is
specified by the content of register SP is used to re-
store the condition flags. The content of the mem-
ory location whose address is one more than the
content of register SP is moved to register A. The
content of register SP is incremented by 2,

1 Ta T T Tolololy

Cycles: 3

States: 10
Addressing: reg. indirect

Flags: Z,5,P,CY,AC

XTHL (Exchange stack top with H and L)
(L) =~ ((SP))
(H) =— ((SP) +1)
The content of the L register is exchanged with the
content of the memory location whose address is
specified by the content of register SP. The content
of the H register is exchanged with the content of the
memory location whose address is one more than the
content of register SP.

[17a T Tololol Ty

Cycles: 6

States: 18
Addressing: reg. indirect

Flags: none

IN port (Input)
(A) <— (data)
The data placed on the eight-bit bi-directional data bus
by the specified port is moved to register A.

1'1'0'1'1'0'1’11
port

Cycles: 3
States: 10
Addressing: direct

Flags: none

OUT port {Output)
(data) <-— (A)
The content of register A is placed on the eight-bit
bi-directional data bus for transmission to the spec-
ified port.

1'1'0’1'0‘0'1[1]

Cycles: 3
States: 10
Addressing: direct

Flags: none

El (Enable interrupt)
The interrupt system is enabled following the execu-

tion of the next instruction.
LT T T T Tl T

Cycles: 1
States: 4
Flags: none

xviii

DI (Disable interrupt)
The interrupt system is disabled immediately follow-
ing the execution of the instruction,
RREEREREREAE RN
Cycles: 1
States: 4
Flags: none
HLT (Halt)
The processor is stopped. The registers and flags are
unaffected.
[oT 1 T Ty Tol 1 THTy
Cycles: 1
States: 4
Flags: none
NOP (Noop)
No operation is performed. The registers and flags are
unaffected.

ololTololToToTolo

Cycles: 1
States: 4
Flags: none

intgl Silicon Gate MOS 8080
SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSOR

= Sixteen Bit Stack Pointer and Stack
Manipulation Instructions for Rapid
Switching of the Program Environment

= Decimal,Binary and Double
Precision Arithmetic

» Ability to Provide Priority Vectored
Interrupts

= 512 Directly Addressed 1/0 Ports

The Intel 8080 is a complete 8-bit parallel central processing unit (CPU). It is fabricated on a single LS| chip using Intel's n
channel silicon gate MOS process. This offers the user a high performance solution to control and processing applications
The 8080 contains six 8-bit general purpose working registers and an accumulator. The six general purpose registers may be
addressed individually or in pairs providing both single and double precision operators, Arithmetic and logical instructions se
or reset four testable flags. A fifth flag provides decimal arithmetic operation,

The 8080 has an external stack feature wherein any portion of memory may be used as a last in/first out stack to store
retrieve the contents of the accumulator, flags, program counter and all of the six general purpose registers. The sixteen bi
stack pointer controls the addressing of this external stack. This stack gives the 8080 the ability to easily handle multiple leve|
priority interrupts by rapidly storing and restoring processor status. It also provides almost unfimited subroutine nesting,
This microcoprocessor has been designed to simplify systems design. Separate 16-line address and 8-line bidirectional data
busses are used to facilitate easy interface to memory and {/O. Signals to control the interface to memory and 1/0 are pror
vided directly by the 8080. Ultimate control of the address and data busses resides with the HOLD signal. it provides the
ability to suspend processor operation and force the address and data busses into a high impedance state. This permits OR
tying these busses with other controlling devices for (DMA) direct memory access or multi-processor operation.

= 2 us Instruction Cycle

= Powerful Problem Solving
Instruction Set

» Six General Purpose Registers
and an Accumulator

= Sixteen Bit Program Counter for
Directly Addressing up to 64K Bytes
of Memory

D, -0y
B1-DIRECTIONAL
DATA BUS

DATA BUS
BUFFER/LATCH

8080 CPU FUNCTIONAL
BLOCK DIAGRAM

(8817T) (8 BIT)
INTERNAL DATA BUS INTERNAL DATA BUS

4y Y ey Th
3 3
MCUMULATOR] TEMP. REG. INSTRUCTION
[) L) L REGISTER (8) MULTIPLEXER _
W (8} z @
FLAG ® TEMP REG. TEMP REG.
FLIP-FLOPS
ACCUMULATOR - s @ c @
LATCH (81 Q REG. REG.
INSTRUCTION o
NARITHMETIC @ D@)
A wogic DECODER @ REG. REG.
UNIT MACHINE "‘j H 8 L [[__ REGISTER
(ALY CYCLE 2 REG. REG. ARRAY
® ENCODING 116
N & STACK POINTER !
e
PROGRAM COUNTER
DECIMAL INCREMENTER/DECREMENTER
ADJUST = ADDRESS LATCH (18]
J 7
[TIMING
] AND
CONTROL
Ay ld v [ADORESS BUFFER "”I -
SUPPLIES | — +sv DATABUS INTERRUPT HOLD WAIT
WRITE_CONTROL CONTROL CONTROL CONTROL SYNC CLOCKS
— 5V
=% LTI LT
WH DBIN INTE INT HOLD HOLD WAIT SYNC 41 92 RESET A Ay
ACK READY s
ADDRESS BUS

©intel Corp. 1974

XX

CJ

L

SILICON GATE MOS 8080

8080 FUNCTIONAL PIN DEFINITION

The following describes the function of all of the 8080 1/0 pins.
Several of the descriptions refer to internal timing periods.(1]

A1s.Ag (output three-state)

ADDRESS BUS; the address bus provides the address to memory
(up to 84K 8-bit words) or denotes the I/0 device number for up
to 256 input and 256 output devices. Ag is the least significant
address bit.

D7-Dg {input/output three-state)

DATA BUS; the data bus provides bidirectional communication
between the CPU, memory, and 1/O devices for instructions and
data transfers. Dg is the least significant bit.

SYNC {output)
SYNCHRONIZING SIGNAL; the SYNC pin provides a signal to
indicate the beginning of each machine cycle.

DBIN (output)

DATA BUS IN; the D8IN signal indicates to external circuits that
the data bus is in the input mode. This signal should be used to
enable the gating of data onto the 8080 data bus from memory
or 1/0.

READY (input)

READY: the READY signal indicates to the 8080 that valid mem-
ory or input data is available on the 8080 data bus. This signal is
used to synchronize the CPU with slower memory or /0 devices.
I after sending an address out the 8080 does not receive a READY
input, the 8080 will enter a WAIT state for as long as the READY
line is low.

WAIT (output)
WAIT; the WAIT signal acknowledges that the CPU is in a WAIT
state.

WR (output)
WRITE; the WR signal is used for memory WRITE or 1/0 output
control. The data on the data bus is stable while the WR signal is

active (WR = 0).

HOLD (input)

HOLD; the HOLD signal requests the CPU to enter the HOLD
state. The HOLD state allows an external device to gain control
of the 8080 address and data bus as soon as the 8080 has com-
pleted its use of these buses for the current machine cycle. Itis
recognized under the following conditions:

® the CPU is in the HALT state.

® the CPU isin the T2 or TW state and the READY signal is active.
As a result of entering the HOLD state the CPU ADDRESS B8US
(A15-Ag) and DATA BUS (D5-Dg) will be in their high impedance
state. The CPU acknowledges its state with the HOLD AC-
KNOWLEDGE (HLDA) pin.

HLDA (output)

HOLD ACKNOWLEDGE; the HLDA signal appears in response

‘to the HOLD signal and indicates that the data and address bus

will go to the high impedance state. The HLDA signai begins at:

® T3 for READ memory or input.

® The Clock Period following T3 for WRITE memory or OUT-
PUT operation.

i
A

Ay 011 0 =0 Ay
GND O——{ 2 39 =0 Ay '

D, O=—+13 38 ped Ayy

Oy O=—vt4 37 f—e0 Ay

LA e 38 =0 Asg

0, ow—sls 38 f—=0 Ay

0; Ow—ei7 U a0 Ay

D, o=—={8 INTEL =}{—o4n

D, O=—={9 32 p—0 Ay

D, O+ 10 8080 unf—onx
-5V O——t 11 30 f—e0 Ay
RESET O—t 12 20 |0 Ay
HOLD 00— 13 28 p—o0 +12v
INT O 14 27 b0 Ay

2 O—edl 15 28 f—=0 Ay
INTE O=—rt 16 25 =0 Ay
OBIN Ow—r{ 17 24 a0 WAIT
WR O=—] 18 23 f+——0 READY
SYNG O] 19 2 f—0 ¢
+8V O——1 20 21 —=0 HLDA

In either case, the HLDA signal appears after the rising edge of @,
and high impedance occurs after the rising edge of ¢5.

INTE {output}

INTERRUPT ENABLE; indicates the content of the internal inter-
rupt enable flip/flop. This flip/flop may be set or reset by the En-
able and Disable Interrupt instructions and inhibits interrupts
from being accepted by the CPU when it is reset. [t is auto-
matically reset (disabling further interrupts) at time T 1 of the in-
struction fetch cycle (M1) when an interrupt is accepted and is
also reset by the RESET signal.

INT (input)

INTERRUPT REQUEST; the CPU recognizes an interrupt re-
quest on this line at the end of the current instruction or while
halted. If the CPU is in the HOLD state or if the Interrupt Enable
flip/flop is reset it will not honor the request. ’

RESET {input)[2] .
RESET; while the RESET signal is activated, the content of the
program counter is cleared and the instruction register is set to 0.
After RESET, the program will start at location O in memory.
The INTE and HLDA flip/flops are also reset. Note that the
flags, accumulator, and registers are not cleared.

Vss Ground Reference. .

Vad +12 £ 5% Voits.

Ve +5 £ 6% Volts.

Vo -5 5% Volts (substrate bias).

1,02 2 externally supplied clock phases. (non TTL compatible)

SILICON GATE MOS 8080

ABSOLUTE MAXIMUM RATINGS*

*COMMENT:
Temperature Under Bias 0°C to +70° C Stresses above those listed under "Absolute Maximum Rat-
Storage Temperature _65°C to +150°C ings" may cause permanent damage to the device. This is a
All tnput or Output Voltages - stress rating only and functional operation of the device at
With Respectto Vag -0.3V to +20V these or any other conditions above those indicated in the op-
Vee. Vpp and Vss With Respect to Vgg -0.3V to +20V erational sections of this specification is not implied, Exposure

to absolute maximum rating conditions for extended periods
may affect device reliability.

Power Dissipationc.oovinnuunn.. 1.5W,

D.C. CHARACTERISTICS
Ta = 0°C, 10 70°C, Vpp = +12V £ 5%, Vg = +5V £ 5%, Vg = -5V £ 5%, Vsg = OV, Unless Otherwise Noted.

Symbol Parameter Min. Typ. | Max. | Unit Test Condition
ViLe Clock Input Low Voltage Vgs—1 Vsst06| V
ViHe Clock Input High Voltage Vpp-1 Vop+1 A"
Vie Input Low Voltage Vgs—1 Vgst+0.8 \'
Vi input High Voltage 3.3 Vee+t v
loL = 1.7mA on the Data Bus
| .4 oL
VoL Output Low Voltage 0.45 v loL =.75mA on all other outputs
VoH Output High Voltage - 37 \ lon = 100uA.
lpp(av) | Avg. Power Supply Current (Vpg) 40 67 mA |].Operation
R
lcciav) | Ava. Power Supply Current (Vec) 60 75 mA IA - 2548c
= 48 usec
lgg(av) | Avg.Power Supply Current(Vgg) .01 1 mA e
Iy Input Leakage £10 HA Vss S ViN € Ve
oL Clock Leakage +10 A | Vgs < Vcrock < Vop
Ip (3! Data Bus Leakage in Input Mode -100 HA Vgs € VN € Ve
| Address and Data Bus Leakage +10 uA Vappr/ioaTa = Vee
FL During HOLD -100 VADDR/MDATA = Vss
TYPICAL SUPPLY CURRENT VS,
CAPA(:JTANCE TEMPERATURE,NORMALIZED.(!
TA =25°C V¢c =Vpp = Vss =0V, Vgg = -5V 5% "
Symbol Parameter Typ. Max, Unit Test Condition
Co Clock Capacitance 10 20 pf fo=1MHz s
2 10
CiN Input Capacitance 5 10 pf Unmeasured Pins 5
- H T ——
Cout QOutput Capacitance 10 20 pf Returned to Vgg g
- Q
NOTES: i
1. For definitions the user is directed to the following publications: F o8
A. Programming Manual for the 8080 Microcomputer System. .
B. 8080 Microcomputer Users Manual. :
C. From CPU to Software.
2. The RESET signal must be active for a minimum of 3 clock cycles. 0.0 ey =y e

3. When DBIN is high and V| > V| an active pull up of nominaily 2kQ
will be switched onto the Data Bus,
. Alsupply / AT 5 =-0.45%/°C.

AMBIENT TEMPERATURE ("C)

»

xxii

SILICON GATE MOS 8080

™~ A.C. CHARACTERISTICS
b Ta =0°C 10 70°C, Vpp = +12V £ 5%, Ve = +6V £ 5%, Vgg = -5V * 5%, Vgs = OV, Unless Otherwise Noted

Symbol Parameter Min. | Max. | Unit Test Condition
tey(3) | Clock Period 048 | 2.0 | usec

t, t Clock Rise and Fall Time 5 50 | nsec

to1 $1 Puise Width 60 nsec

t92 @2 Pulse Width 220 nsec

tog Delay ¢y to ¢ 0 nsec

tp2 Delay ¢, to ¢4 70 nsec

tn3 Delay ¢y to ¢, Leading Edges 130 nsec

tpa (21 | Address Output Delay From ¢, 200 | nsec | R =4.5kq, € =100pf
top (2] | Data Output Delay From ¢, 220 | nsec | Ry =2.1kQ, C(_ = 100pt
tpe (2] | Signal Output Delay From ¢, or ¢4 (SYNC, WR WAIT HLDA) 120 | nsec | R|_=4.5kR, C|_ = 50pf
tor [2] | DBIN Delay From ¢, 25 140 | nsec | Ry =2.1k%2, Cy_ = 50pf
toy (1] Delay for Input Bus to Enter Input Mode During DBIN tor | nsec

tost Data “Setup Time’ During ¢4 and DBIN 50 nsec

TIMING WAVEFORMS 121 (Note: Timing measurements are made at the following reference voltages: CLOCK ““1"' = 9.5V,
e “0" = 1.0V; INPUTS “1" = 3.3V, “0" = 0.8V; OUTPUTS “1” = 2.0V, “0” = 0.8V.)

B prermt] forfm
. ;FE /;l i n \ n
< i ' - -
., PRl ——
fe-tog tog b
— o
. D S B _ X I ~ 1 X]
e Ftoal " r————-l wa
e el g fo— | oo
o0 ’d B TN 4 | T) 54 T
? =1 ~ owb— | : o [e
SYNC ——__———-—Jc B +
oen - tor =t b top = i
—— T
READY __ _ _ _ A O
I st)
waIT '"—';;
Howo --}: Y @ i — toc F
HLDA _ E
INT _—ﬁ&) 0l
[l
i £

xxiii

SILICON GATE MOS 8080

A.C. CHARACTERISTICS (Continued) .
Ta =0°C 10 70°C, Vpp = +12V £ 5%, Ve = +5V £ 5%, Vgg = -5V + 5%, Vgg = 0V, Unless Otherwise Noted

Symbol Parameter Min. | Max. | Unit Test Condition
tps2 Data "“Setup Time" to ¢ During DBIN 150 nsec

tpn (1 | Data “Hold Time'"” From ¢, During DBIN tor nsec

tig (2] INTE Output Detay From ¢3 200 | nsec | Ry = 4.5k%2, C|_ = 50pf
tRs Ready “‘Setup Time'"* During ¢ 120 nsec

tHs Hold “Setup Time'’ to ¢o 140 nsec

tis INT “Setup Time" During ¢ (During ¢4 in Halt Mode) 180 nsec

th "Hold Time'' From ¢ (Rsady, INT, Hoid) 0 nsec

tep Delay to Float During Hold {Address and DATA BUS) 120 | nsec

twal2l | Address Stable From WR tpa nsec | Ry =4.5kst, C|_ = 100pf
taw(2] | Address Stable Prior to WR [CH nsec | Ry = 4.5k02, C = 100pf
twp!2! | Output Data Stable From WR tps nsec | R = 2.1k, Cy_ = 100pf
tpw(2] | Output Data Stable Prior to WR 16l nsec | Ry =2.1kQ, Cp = 100pf

NOTES: 1. Data input shouid be enabled with DBIN status. No bus conflict can then occur and data hold tima is assured.
2. Loed circuit

8080
QUTPUT

3 oY =103+ 192+ 102+ g2 * trpt * tiat > 480ns.

TYPICAL a OUTPUT DELAY VS. A CAPACITANCE

+20

+10

SPEC

A4 OUTPUT DELAY (ns)

-100 -0 L +50 +100

4 CAPACITANCE (af)
(Cactuat = Cspec!

>

. 'Tho following are relevant when interfacing the BOSO to devices having Vi = 3.3V:

al Maximum output rise time from .8V to 3.3V = 140ns @ Cy_ = SPEC. :

b} Output delay when measured to 3.0V = SPEC + 60ns ® C_ = SPEC.

¢ If Cy_* SPEC add .8ns/pf it C > Cgpgc, subtract 3ns/pf (from modified dalay) if C_ < Cspgc.

tAW = 21CY -tD3 ~trg2 ~120nsec.

TDW " 1CY ~tD3 ~trg2 -150nsec.

Data in must be stable for this period during DBIN *T3. Both tpgy and tpgg must be satisfied.

Ready signai must be stable for this period during T2 ar Tyy. (Must be externally synchronized.)

. Hold signal must be stabie for this period during T2 or Ty when entering hold mode, and during T3, T4, Tg
and Ty when in hold mode. {Must be externally synchronized.)

10. Interrupt signal must be stable during this period of the last clock cycle of any instruction to be recognized

on the i ion, (External ization is not required.}
1. During hait mods only, timing is with respect to ¢ falling adge.
12. This timing diagram shows timing relationships only, it does not represent any specific machine cycle.

LR EY

wwiv

SILICON GATE MOS 8080

INSTRUCTION SET

The accumulator group instructions include ARITHMETIC and
LOGICAL OPERATORS with DIRECT, INDIRECT, AND (M-
MEDIATE addressing modes.

MOVE, LOAD, and STORE instruction groups provide the ability
to move either 8 or 16 bits of data between memory, the six
working registers and the accumulator using DIRECT, INDIRECT,
and IMMEDIATE addressing modes.

The ability to branch to different portions of the program is pro-
vided with JUMP, JUMP CONDITIONAL, and COMPUTED
JUMPS. Also the ability to CALL to and RETURN from sub-
routines is provided both conditionally and unconditionally. The
RESTART (or single byte call instruction) is useful for interrupt
vector operation.

Double precision operators such as STACK manipulation and
DOUBLE ADD instructions extend both the arithmetic and inter-
rupt handling capability of the 8080. The ability to INCREMENT

Data and Instruction Formats

and DECREMENT memory, the six general registers and the ac-
cumulator is provided as well as EXTENDED INCREMENT and
DECREMENT instructions to operate on the register pairs and
stack pointer. Further capability is provided by the ability to RO-
TATE the accumulator LEFT or RIGHT through or around the
carry bit.

Input and output may be accomplished using memory addresses
as 1/0 ports or the directly addressed 1/0 provided for in the
8080 instruction set.

The following special instruction group completes the 8080 in-
struction set: the NO-OP instruction, HALT to stop processor
execution and the DAA instructions provide decimal arithmetic
capability. STC allows the carry flag to be directly set, and the
CMC instruction allows it to be complemented. CMA comple-
ments the contents of the accumulator and XCHG exchanges the
contents of two 16-bit register pairs directly.

Data in the 8080 is stored in the form of 8-bit binary integers. All data transfers to the system data bus will be in the

same format.

D; Dg Dg Dy D3 Dy Dy Dg

DATA WORD

The program instructions may be one, two, or thtee bytes in length. Multiple byte instructions must be stored
in successive words in program memory. The instruction formats then depend on the particular operation

executed.

One Byte Instructions
[07 Dg Dg Dy D3 Dy Dy Do | OP CODE

Two Byte Instructions

D; Dg Dg D4 D3 D, Dy Do | OP CODE
D; Dg Ds Dg D3 Dy Dy Dg | OPERAND
Three Byte instructions

[D7 Dg Dg D4 D3 Dy Dy Do | OP CODE
[D; Dg Ds D4 D3 D, Dy Dy

[D7 Dg D D4 D3 Dy Dy D

For the 8080 a logic ““1"" is defined as a high level and a logic 0" is defined as a low level.

LOWADDRESS OR OPERAND 1
HIGH ADDRESS OR OPERAND 2

TYPICAL INSTRUCTIONS

Register to register, memory refer-
ence, arithmetic or logical, rotate

return, PUSH, POP, ENABLE or
DISABLE

INTERRUPT INSTRUCTIONS

Immediate mode or |/0 instructions

JUMP, CALL or DIRECT LOAD
AND STORE INSTRUCTIONS

SILICON GATE MOS 8080

INSTRUCTION SET

Summary of Processor Instructions

Mnsmonic

MOV, 2
MOV M, ¢
MOV M
HLT
LT
MVEM
INR ¢
OCRr
INR M
OCR M
ADD ¢
ADCr
SuBr
S88 ¢

ANAT
XRA ¢
ORA T
CMPr

ADOM
ADCM
susm
SBB M

ANA M
XRAM
0RAM
cMP M
ADH
ACl

s
sl

AN
XRt

ORI
%)
RLC
ARC
RAL
RAR

NOTES:

Description

Move register to register
Move registsr to memory
Move memory to register
Hait

Move immediate register
Move immediate memory
Increment ragister
Dacrament ragister
Incrament memary
Decrement memary

Add register 10 A

Add rgister t0 A with carry
Subtract register from A
Subtract registar from A
with borrow

And register with A
Exclusive Or register with A
Or register with A

Compars register with A
Add memory to A

Add memory to A with carry
Subtract memary trom A
Subtract memary from A
with barrow

And memory with A
Exclusive Or memory with A
Or memory with A
Compare memory with A
Add immediate to A

Add immediate to A with
carry

Subtract immediate from A
Subtract immadiate from A
with borrow

And immediate with A
Exclusive Or immediate with

A

Or immadiate with A
Campare immediate with A
Rotate A left

Rotate A right

Ratate A left through carry
Rotate A right through

carry

Jump unconditional
Jump on zarry
Jump on no carry
Jump on z8r0
Jump on no zer0
Jump on pasitive
Jump on minus
Jump on parity sven
Jump o parity odd
Cail unconditional
Call on carry

Call on no carry
Call on zero

Call on na 2ero

Call on pasitive
Call an minus

Call on parity even
Call on parity odd
Return

Return on carry
Return on no carry

e L L)

oo o =

PP CREROOE T~ —— =

coococoaoa

cooe - -—-coao

Instruction Code (1]
Og D4 D3 D7 Dy Dy

0 0D DS § §
1 1 0 s 8§ S
0 oD1! 1t O
1t 01 10
0 0D 1 10O
1 1 0 1 1 0
o D D1 0O
c o D1 0
t 1 01 00
11 01 ¢ 1
e 0 0 5 S S
0 0 1§ § S
0t 8 8 § S
0t 18 8 s
t 0 0 8 S5 §
t 018 § S
11 08 8 S
11 15 § §.
o 0 0t 1 0
¢ 0 11V 10
g 1 0 v 1 0
e 1 1 v 1 0
10 0 1 1 0
1011t
i1 0t 19
L R A I
o 0 0 1t 1t 9
o 0o 1 1 10
e 1 0 1 10
0 3 1 1 1 0
10 1 1 ¢
t o1t 110
t 1 01 1 @
1 1Tt 1 10
¢ 0 8 1 11
[I N A A |
0 vt 0 v 1
o 1 1 1 11

POOm—-w-b0OOOem——0o0OS
B L R X R S,
P mO 0P —0 -0 n00—0—~0
oo s ue s ne—mmcocCcOOOO0
P O OO DOOE OO O e mmt s me e
co-ocooococco-0oRooOGo

Clock (2}
Cycles

R S N T L L T

NN aNE e s s

NN~~~

-

Dascription

Raturn on 2er0

Retum on no zero

Raturn on paositive

Return on minus

Retum on parity even
Return on parity odd
Rastart

Input

Qutput

Losd immediate agister
PairB&C

Load immediate register
PairD&E

Losd immediate register
PiirH&L

Load immediate stack pointer
Push registar Pair 8 & C on

k
Push register Pair 0 & E on
stack
Push ragister Pair H & L on

stacl

Push A and Flags.

on stack

Pog register pair 8 & C off
k

stac!

Pog register pair O & E off
stack

Pop ragisier pair 4 & L off
stack

Pop A and Flags

off stack

Store A direct

Load A direct

Exchange 0&E, H&L
Registers

Exchange top of stack, H& L
H & L to stack pointer

H & L to program counter
AddB&CwHAL
AddD&EwHEL
AddH& Lo HE&L

Add stack pointer to H & L
Stare A indirect

Stare A indirect

Load A indirect

Load A indirsct
Increment B & C registers
Increment D & E registers
Increment H & L registers
Increment stack pointer
Decrament B & C
Decrement D & €
Oacrement H & L
Decrement stack pointer
Compliment A

Set carry

Compliment carry
Decimal adjust A

Store H & L direct

Losd H & L direct
Enable Interrupts

Dissbie interTupt
No-gperation

1. DDSorSSS —000B —001C—010D —011 E— 100 H — 101 L — 110 Memory — 111 A,
2. Two possible cycle times, (5/11) indicate instruction cycles dependent on condition flags.

—~—oo

L L L L L L L L L X L N Yo

B - D000 PP ROANREORCAD O — — ~

Instruction Code(1]
Ds 04 03 Dz Dy Do

9 0 10 0 0
0 0 00 00
1 1.0 0 00
t 1+ 1.0 00
t 01 0 00
1 ¢ 00 0 0
A A A1 1
¢ 1t 0 11
01 0 0 1 1
0 00 0 01
0 1 00 0 1

1 1 00 ¢ 1
0 0 0 1 0 1
0 1t 0t 01

t v 00 10
t1r 18 10
T ¢ 1 0 1

G it GO “scocGBO OG-
a—dg:n—-o—a—-o—-a—-.a—a-a—-a—ﬂﬂ—c
©e--00-0n~-n-ccooonooammmamo
cocoeo----cocccccccccccccccos
Gt mdd i dd i sascoceoe—
[U U

D

L N R R e

rrazs

xxvi

N
@

Silicon Gate MOS 8102-2

1024 BIT FULLY DECODED STATIC MOS
RANDOM ACCESS MEMORY

intal

= Access Time — 850ns Max.
= Single +5 Volts Supply Voltage

= Directly TTL Compatible — All Inputs

and Output
= Static MOS — No

Clocks or

Refreshing Required
= Low Power — Typically 150 mW
= Three-State Output — OR-Tie

Capability

The Intel 8102-2 is a 1024 word b
N-channel MOS devices integ
therefore requires no clocks or refreshin

same polarity as the input data.

The 8102-2 is designed for microcom
bit storage, and simple interfacing are i
It is directly TTL compatible in all res
enable (CE) lead allows easy selection o
The Intel 8102-2 is fabricated with N-channel silicon
and production of high performance, easy-to-
a monolithic chip than either conventional MOS technology or P

Intel’s silicon gate technology also provides excellent

use of low cost silicone packaging.

rated on a monolithic arra

= Simple Memory Expansion — Chip
Enable Input

= Fully Decoded — On Chip Address
Decode

= Inputs Protected — All Inputs Have
Protection Against Static Charge

= Low Cost Packaging — 16 Pin Plastic
Dual-In-Line Configuration

use MOS circuits and

y one bit static random access memory element using normally off
y. It uses fully DC stable (static) circuitry and
g to operate. The data is read out nondestructively and has the

puter memory applications where high performance, low cost, large
mportant design objectives.

pects: inputs, output, and a single +5 volt supply. A separate chip
f an individual package when outputs are OR-tied.

gate technology. This technology allows the design
provides a higher functional density on
-channel silicon gate technology.

protection against contamination. This permits the

PIN CONFIGURATION LOGIC SsYMBOL BLOCK DIAGRAM |
A ®
s [. Auo—k ‘__@0 vee
As] . — A, A‘@% -——4@) GND
A D —
Am p— A: " ® now CELL
ARRAY
g —a, "b& SELECTOR 32 AOWS
—a, 8102-2 32 COLUMNS
A] 1 A,% .
—1A,
A5 —4Ag Dout - ao
A]] T T
Ao [: RW CE am% COLUMN 110 CIRCUITS
‘ T3 Data
oATA (@) CONTROL COLUMN SELECTOR
PIN NAMES) — T - 17
D il
D DATA INPUT CE CHIPENABLE |
AgAg ADDRESSINPUTS | Doyr DATAGUTPUT | o o @ ®
RMW__ READMWRITE INPUT | Voo POWER (+6v) | O - #n numBers A [,
As i .)

xxvii

SILICON GATE MOS 8102-2

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias 0°C to 70°C

Storage Temperature —65°C to +150°C

Voltage On Any Pin

With Respect To Ground -0.5V to +7V

Power Dissipation 1 Watt

*COMMENT:

Stresses above those listed under ““Absolute Maxi-
mum Rating” may cause permanent damage to the
device. This is a stress rating only and functional
operation of the device at these or at any other
condition above those indicated in the operational
sections of this specification is not implied. Expo-
sure to absolute maximum rating conditions for
extended periods may affect device reliability.

D.C. AND OPERATING CHARACTERISTICS

T, =0°C to +70°C, Ve = 5V £5% unless otherwise specified

LIMITS
SYMBOL PARAMETER pyee e T UNIT | . TEST CONDITIONS
Iy INPUT LOAD CURRENT 10 uA Vin=0105.25V
{ALL INPUT PINS)

ILom OUTPUT LEAKAGE CURRENT 10 uA CE = 2.2V, Vgur = 4.0V

oL OUTPUT LEAKAGE CURRENT ~100 HA CE = 2.2V, Vg = 0.45V

lcet POWER SUPPLY CURRENT 30 60 mA ALL INPUTS = 5.26V
DATA OUT OPEN
T, = 25°C

leca POWER SUPPLY CURRENT 70 mA ALL INPUTS = 5.25V
DATA OUT OPEN
Ta=0°C

Vil INPUT “LOW” VOLTAGE 05 +0.65 v

Vin TNPUT “HIGH" VOLTAGE 23 Vee v

VoL OUTPUT “LOW" VOLTAGE +0.45 v ToL= 1.9mA

Von OUTPUT “HIGH"” VOLTAGE 22 Y Ton= —T004A

(1) Typical values are for T o= 259C and nominal supply voltage,

TYPICAL D.C. CHARACTERISTICS

POWER SUPPLY CURRENT VS,
AMBIENT TEMPERATURE

7 Voo = 5.25V

-~
\~~
80 S

T .-

N “TT10 1

g 60 —— POINTS

<

4

w

: 40

8 \\.\rvwc“
30 T—
20

0 10 20 30 4 50 80 70
AMBIENT TEMPERATURE (°C)

POWER SUPPLY CURRENT VS,
SUPPLY VOLTAGE

60
%0 T
AMBIENT TEMPERATURE = 26°C
.
g
£ r
g 30
\
] S
3 2
< L1
8 /
10
[
3) s 8

Vee (VOLTS)

v

c/

SILICON GATE MOS 8102-2

A.C. CHARACTERISTICS T,; =0°C to 70°C, Ve =5V £5% unless otherwise specified

[LIMITS
SYMBOL PARAMETER UNIT
[min. | rve] max.
READ CYCLE .
the . READ CYCLE ‘ 850 | ns
ta ACCESS TIME 500 850 ns
teo CHIP ENABLE TO OUTPUT TIME 500 ns
toH1 PREVIQUS READ DATA VALID WITH RESPECT 50 ns
TO ADDRESS
tonz PREVIOUS READ DATA VALID WITH RESPECT 0 ns
TO CHIP ENABLE
WRITE CYCLE
twe WRITE CYCLE 850 ns
taw ADDRESS TO WRITE SETUP TIME 200 ns
twp WRITE PULSE WIDTH 600 ns
twR WRITE RECOVERY TIME 50 ns
tow DATA SETUP TIME 650 [ns
ton DATA HOLD TIME 100 | s
tew CHIP ENABLE TO WRITE SETUP TIME 750 ‘ ns
{1) Typical values are for TA=25°C and nominal supply voltage.
CAPACITANCE T, =25°C, f=1MHz
A.C. CONDITIONS OF TEST symaoL TEST T';':"TS n(nf;
Input Pulse Levels: +0.65 Volt to 2.2 Volt ~ -
Input Pulse Rise and Fall Times: 20nsec Cin INPUT CAPACITANCE 3 5
Timing Measurement Reference Level: 1.5 Voit (ALL INPUT PINS) Viy = OV
Output Load: 1 TTL Gate and C|_= 100 pF Cour SSJ:L:TOSAPAC'TANCE 7 10
WAVEFORMS)
READ CYCLE WRITE CYCLE

RC wc

Amss>< D Aooﬁes>< ‘

o] w1
— — [
CHIP ’ CHIP tow
ENABLE ENABLE
ToHz
4 3
A AW 'wp
DATA : READ/
ouT . WRITE
L

M

~»{ ToHy -1 oH
ow
DATA DATA CAN DaTa caN
IN CHANGE DATA STABLE CHANGE

XXix

Ion lma)

SILICON GATE MOS 8102-2

TYPICAL D.C. CHARACTERISTICS

INPUT CURRENT VS.
INPUT VOLTAGE

EFFECTIVE INPUT
CHARACTERISTIC

OUTPUT SINK CURRENT VS,
OUTPUT VOLTAGE

Vecl' sov ' * v, Im\, AMBIENT re#saalruas l o°C 7
" B o 2 » ekl
, A=
= V e
7 TYPICA E = 1 / /
g H / 0°¢
S 3 Y. ;
-28 R 2
3 VY (
' s . Ve » 4.75V 4
4 OUTPUT “LOW" TYPICAL
-8 / |
° DEVICE weuT | F [
. Wy Max] SPECT v miN. 0 |
e R ° 1 2) (] as 10 15
Vi (VOLTS) Vi (VOLTS) Vou (VOLTS}
RELATIONSHIP BETWEEN OUTPUT
OUTPUT SOURCE CURRENT VS, OUTPUT CURRENT VS. OUTPUT SINK CURRENT, NUMBER Of OR-TIES,
OUTPUT VOLTAGE VOLTAGE WITH CHIP DISABLED AND QUTPUT VOLTAGE
+ a3
I T T T
AMBIENT TEMPERATURE [Voo 478V
-5 - ::_‘ 29 |
/:53'2 } ° f ‘VPN:AL
7 | s 20
i z -5
-10 < -
\\ £ g 1
i i - =
\ ‘r 3 ~10 L a7 2
I
- owor e Tveieac | EE - 22v 23 s
| -1 Vee 5.0V —
l 19 .
\ . H
° 2 3 0 T e s Y s w3 w s s
Vow (VOLTS) Vouy (YOLTS) Vo (VOLTS)
TYPICAL A.C. CHARACTERISTICS
ACCESS TIME vs. ACCESS TIME VS.
LOAD CAPACITANCE AMBIENT TEMPERATURE
1400
Tanzs'C Vegs 478V
Ve v 4.
EREE - e .
1000
SPEC. POINT SPEC. POINT
=) i B
K L] ’ v .
Iy e LAt
- :
%0 100 150 200 250 300 350 e % % % s

LOAD CAPACITANCE (pF}

AMBIENT TEMPERATURE (°C)

NUMBER OF OR TIES

intel' schottky Bipolar 8205

= |[/OP

= Simple Expansion — Enable Inputs

= High

Technology — 18ns Max. Delay

= Direc
Circu

The 8205 decoder can be used for expansion of systems which utilize input ports, output ports, and mem-
ory components with active low chip select input. When the 8205 is enabled, one of its eight outputs goes
single row of a memory system is selected. The 3 chip enable inputs on the 8205 allow easy
system expansion. For very large systems, 8205 decoders can be cascaded such that each decoder can drive

“low"”, thus a

HIGH SPEED 1 OUT OF 8 BINARY DECODER

ort or Memory Selector = Low Input Load Current — .25 mA
max., 1/6 Standard TTL Input Load

. Minimum Line Reflection — Low
Speed Schottky Bipolar Voltage Diode Input Clamp
= Qutputs Sink 10 mA min.

16-Pin Dual-In-Line Ceramic or
Plastic Package

tly Compatible with TTL Logic
its

eight other decoders for arbitrary memory expansions.

The Intel 8205 is packaged in a standard 16 pin dual-in-line package; and its performance is specified over
re range of 0°C to +75°C, ambient. The use of Schottky barrier diode clamped transistors to
itching speeds results in higher performance than equivalent devices made with a gold diffu-

the temperatu
obtain fast sw

sion process.
PIN CONFIGURATION LOGIC SYMBOL
\ %4
Ag 1 16 Vee Ao Oofo——
Ay 2 15 [— A 04 fo—-
A (] 1o, —a; o jo—
g, [13 o, o p—
8205 8205
g []s 12[oy 04—
E3 6 1o, —of £y osjo—
0, [}~ 10 Jos —e, 0 fo—
Gro[]s 9f Jos o s o jo—
ADDRESS ENABLE CUTPUTS
PIN NAMES Ay Ay Ar|E, E; Ejf0 t 2 3 4 5 6 7
L Lt L L H|IL H H H H H H H
H L L [N H|H L H H H H H H
Ag- A ADDRESS INPUTS LM LJL L H[H H L H H M OHH
== H H L |t L HIH H H L H H H H
Eq B3 ENABLE INPUTS L L H[L L H[H H H H L H H H
Oy O; DECODED OUTPUTS H L H[L L HiH H H H H L HoH
L W H L L HiH H H H H H L H -
H H H L L H[H H H H H H H L
X X X JL L L H H H H H H H H
X X X |H LIH H H H H H H H
X X XL H LIH H H H H H H H
X X X |H H LIH H H H H H H H
X X X IH L H[(H H H H H H H H
X X XL H H[H H H H H H H H
X X X |H H HI/H H H H H H H H

xxxi

SCHOTTKY BIPOLAR 8205

OUTPUT CURRENT (mA}

ABSOLUTE MAXIMUM RATINGS*

—65°C to +125°C
-65°C to +75°C

—-65°C to +160°C
—0.5 to +7 Volts
~1.0 to +5.5 Voits
125 mA

Ceramic
Plastic

Temperature Under Bias:

Storage Temperature

All OQutput or Supply Voltages
Alt input Voltages

Qutput Currents

*COMMENT

Stresses above those listed under "Absolute Maximum Rat-
ing’’ may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or at
any other condition above those indicated in the operational
sections of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability,

D.C. CHARACTERISTICS T, =0°C to +75°C, V¢ = 5.0V £5%
8205
SYMBOL PARAMETER LiwiT uNIT TEST CONDITIONS
MIN. MAX.
le INPUT LOAD CURRENT -0.25 mA VCC =525V, VF =0.45V
‘R INPUT LEAKAGE CURRENT 10 pA Vcc =526V, Vp = 5.25V
VC INPUT FORWARD CLAMP VOLTAGE -1.0 v VCC =475V, Ic =-5.0mA
Vou OUTPUT "LOW" VOLTAGE 045 | V Ve = 475V, I = 10.0mA
vOH OUTPUT HIGH VOLTAGE 24 v VCC =475V, ‘0H =~-1.5mA
VIL INPUT “LOW"” VOLTAGE 0.85 \ VCC =5.0V
VIH INPUT “HIGH” VOLTAGE 2.0 v Vcc =5.0V
lsc OUTPUT HIGH SHORT -40 [-120 mA Vog = 5.0V, Vg r = OV
CIRCUIT CURRENT
Vox OUTPUT “LOW"” VOLTAGE 08 v Veg = 5.0V, gy = 40mA
@ HIGH CURRENT
ICC POWEB SUPPLY CURRENT 70 mA VCC =5.25V
TYPICAL CHARACTERISTICS
OUTPUT CURRENT VS. OUTPUT CURRENT VS.
OUTPUT “LOW” VOLTAGE OUTPUT “HIGH” VOLTAGE DATA TRANSFER FUNCTION
100 —r °
Ta® 75"‘3 ~ P \[,cc -[sml l ﬁ(\l\ v.:I . s.lw
w0 Tar25C~{ ¥ 0 | v Taz25°C .0 i
Ve = 5.0V Ta=0C{ = Ta=0CT] Tp = 75°C s
] E M Ta=0C
80 ft—t—t—t L Ld 5 g 30
' / £ 3 \
4 s - 2
40 / f_:’ -30 5 20 Taz 3¢
g as. Ty = 75°C - \
= 75% > o
o Ta* 78—/ 3 1o ’ \
AR \ 1\
0 Z rarEe] | -0 0 \
L] 2 A 8 .8 1.0 0 1.0 20 30 4.0 5.0 0 2 4 6 B 10 1214 16 1.8 20

OUTPUT "“LOW" VOLTAGE (V)

OUTPUT “HIGH” VOLTAGE (V)

INPUT VOLTAGE (V)

SCHOTTKY BIPOLAR 8205

8205 SWITCHING CHARACTERISTICS

Vec

CONDITIONS OF TEST: TEST LOAD:

Input pulse amplitudes: 2.5V

Input rise and fall times: 5 nsec
between 1V and 2V

Measurements are made at 1.5V

TEST WAVEFORMS

ADDRESS OR ENABLE
INPUT PULSE

ouTPuUT
4

L S .

A.C. CHARACTERISTICS T, =0°C to +75°C, V¢ = 5.0V +5% unless otherwise specified.

SYMBOL PARAMETER MAX. LIMIT UNIT TEST CONDITIONS
the 18 ns
t_, ADDRESS OR ENABLE TO 18 ns
t, QUTPUT DELAY 18 ns
t_ 18 ns
Cn L INPUT CAPACITANCE P8205 4ltyp.) pF f =1 MHz, Vgg = OV
C8205 S(typ.) pF Vgjag = 2.0V, T4 =250C

1. This parameter is periodically sampied and is not 100% tested.

TYPICAL CHARACTERISTICS

ADDRESS OR ENABLE TO OUTPUT ADDRESS OR ENABLE TO OUTPUT
DELAY VS. LOAD CAPACITANCE DELAY VS. AMBIENT TEMPERATURE
20 T 2 T
Vee = 8.0V) Ve = 5.0V
T, =25°C " c, = 30pF
L.
o_ 15 G] o 15
ui e w3 ot
3 > Sty as P o o o e e o e e e e e
z< =" . za e
ey] wa
g8 0 — g3 0
e Lo
8o ! 83
2 s 2 s -
o 0
° 50 100 150 200 0 2 50 7%

LOAD CAPACITANCE (pF) AMBIENT TEMPERATURE (°C)

xxxiii

intal" silicon Gate MOs 8702A

2048 BIT ERASABLE AND ELECTRICALLY
REPROGRAMMABLE READ ONLY MEMORY

» Access Time — 1.3 usec = [nputs and Outputs TTL Compatible
Max. = Three-State Output — OR-Tie
= Fast Programming — 2 Minutes for Capability

Ail 2043 Bits . = Simple Memory Expansion Chip
Fully Decoded, 256 x 8 Organization Select Input Lead

Static MOS — No Clocks Required

The 8702A is a 256 word by 8 bit electrically programmable ROM ideally suited for microcomputer system
development where fast turn-around and pattern expefimentation are important. The 8702A undergoes
complete programming and functional testing on each bit position prior to shipment, thus insuring 100%
programmability.

The8702A is packaged in a 24 pin dual-in line package with a transparent quartz lid. The transparent quartz
lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be
written into the device. This procedure can be repeated as many times as required.

The circuitry of the 8702A is entirely static; no clocks are required.

A pin-for-pin metal mask programmed ROM, the Intel 8302, is ideal for large volume production runs of
systems initially using the 8702A.

The 8702A is fabricated with silicon gate technology. This low threshold technology allows the design and
production of higher performance MOS circuits and provides a higher functiona! density on a monolithic
chip than conventional MOS technologies.

PIN CONFIGURATION BLOCK DIAGRAM
ATAOUT1 DAT.
M m [\J 24 :]Vou D ouT DATAQUT 8
a]- 3 Dvcc
OUTPUT
a3 2[JVec &— BUFFERS
*oatA ouT 1[4 sy 21f A t
*pata out 2{]s 20 JA 2048 BIT
PROGRAM —=| PROM MATRIX
*paTA 0UT 3]s 1ol JAs (266 X 8)
87024
*DaTA OUT 4 []7 18] J4e
*pataouTs |8 A DECODER
*paTA OUT 6|9 16§ JVas .
*0ATA OUT 7] 10 15{ v, -
= o
*DATA ouT 8[| 11 (MsB) 14]Es DRIVERS
e
vee (]2 13]] PROGRAM
E :] Ag Ay Ay
*THIS PIN IS THE DATA INPUT LEAD DURING PROGRAMMING. .
PIN NAMES
AcAy ADDRESS INPUTS
CHIP SELECT INPUT
D0y 007 DATA OUTPUTS

XXXV

TN

SILICON GATE MOS 8702A

PIN CONNECTIONS

The external lead connections to the 8702A differ, depending on whether the device is being programmed (1) or used in read

mode. (See following table.)

PIN 12 13 14 15 16 22 23
MODE (Vgc) | (Program) (CS) (Veg) | (Vgg! (Vge) | Vee!
Read Vee | Vec GND | Vee | Vag Vee | Vee
Programming GND | Program Pulse | GND | Vg Pulsed Vg (Vi gap) | GND | GND

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias 0°C t0 +70°C
Storage Temperature —66°C to +125°C
Soldering Temperature of Leads (10sec) +300°C
Power Dissipation 2 Watts
Read Operation: Input Voltages and Supply

Voltages with respectto Vog +0.5V to —20V

Program Operation: Input Voltages and Supply

Voitages with respectto Veo vv v .t —48V

*COMMENT

Stresses above those listed under “Absolute Maximum Rat-
ings" may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at
these or at any other condition above those indicated in
the operational sections of this specification is not implied.
Exposure to Absolute Maximum Rating conditions for ex-
tended periods may affect device reliability. :

READ OPERATION
D.C. AND OPERATING CHARACTERISTICS

Ta =0°C to 70°C, Vee = +5V£6%, Voo = —OV£5%, Via = ~QV+5%, unless otherwise noted.

SYMBOL TEST MIN. TYPI3 mAX. |uNIT CONDITIONS
Iy Address and Chip Select 10 HA Viy =0.0v
Input Load Current
Lo Output Leakage Current 10 pA Vour = 0.0V, CS= Vee —2
Ippo | Power Supply Current 5 10 mA | Vgg=Vee. C8=Ve -2
. lg = 0.0mA, T, = 25°C
lopt | Power Supply Current 35 50 mA | CS=V¢c -2
loL =0.0mA, T, =25°C
o2 Power Supply Current 32 46 mA CS=0.0
loL =0.0mA, T, =25°C .
= Continuous
bo3 Power Supply Current 385 60 mA CS:VCC -2 Operation
lo =0.0mA , T, =0°C
'CF1 Qutput Clamp Current 8 14 mA Vout = ~1.0V, T, =0°C
lera QOutput Clamp Current 13 mA | Vour =10V, T, = 25°C
lsg Gate Supply Current 10 pA
Vit tnput Low Voitage for -1.0 0.65 v
TTL Interface .
ViL2 Input Low Voltage for Voo Vee —6 \
MOS Interface
Vi Address and Chip Select VCC -2 VCC +0.3 v
Input High Voltage
foL Output Sink Current 1.6 4 mA Vour = 045V
VOL Output Low Voltage -7 0.45 v lOL = 1.6mA o
VOH Output High Voltage 35 \" ‘OH = —200 uA
Note 1: iln the programming made, the data inputs 18 are pins 4—11 respectively. CS = GND.
Note 2: Vg may be clocked to reduce power dissipation. In this made average Ipp increases in proportion to Vg g duty cycle. (See p. 5)
Note 3: Typical values are at nominal voltages and T4 = 25°C.

XXXV

SILICON GATE MOS 8702A

A.C. CHARACTERISTICS

T, =0°C to +70°C, Vee =5V 5%,V =-9V ;5%, Vgg = —9V £5% unless otherwise noted

SYMBOL TEST MINIMUM | TYPICAL MAXIMUM UNIT
Freq. Repetition Rate 1 MHz
ton Previous read data valid 100 ns
tace Address to output delay 1.3 us
tovge Clocked Vg set up 1.0 us
tcs Chip select delay 400 ns
teo Output delay from CS 900 ns
top Output deselect 400 ns
tone Data out hold in clocked Vg5 mode (Note 1) 5 us

Note 1. The output will remain valid for topc a3 long as clocked Vg Is at Voo, An address changs may occur as 300n as the output is sansed
(elocked VGG may still be at Vo). Data becomes invalid for the old address when clocksd Vgg is feturned to Vg g.

CAPACITANCE* T, =25°C

SYMBOL TEST MlNIiV!UM TYPICAL 7 MAXIMUM UNIT CONDITIONS

Cin Input Capacitance 8 15 pF My = Vec Alt
Cour Output Capacitance 10 15 pF CS=Vee unused pins

Cy . Vog Capacitance
(Clocked Vgg Mode)

Vout =Vee are at A.C.

0 pF Vas = Vee ground

This parameter is periodically sampled and is not 100% tested.

SWITCHING CHARACTERISTICS

Conditions of Test:
Input puise amplitudes: 0 to 4V; ty, tx <50 ns
Output load is 1 TTL gate; measurements made
at output of TTL gate (t,, <15 ns)

A) Constant V., Operation

- CYCLE TIME = I/FREQ -~
i
Vin %
aooness i !
90%
A h 1
i teg)
Vin M | ,..xc,,_.:
=3 1 J I \
\ .
Vie) |
) l
Vou 1
DATA I
out
v N
oL e P DATA OUT
INVALID

DESELECTION OF DATA OUTPUT IN OR.TIE OPERATION
—

Vin <
ADORESS X
v P

"W <

Clocked Vcc; Operation

— — - CYCLE TIME « 1 FREQ. ———

B)
.
) i
Vi pr=y
ADORESS d
0%
Vie
V,

!
I3 L L |
I]

1
i
i
1
|
|]
et
OVgg '

vy !
CLOCKED \} |
v, 1
GG
Vag | {SEE NOTE 1)

1

1

o '
-

L

Vine
ADDRESS

Vi I T

H NOTE 2 - e 20n

Vin : - ———] T

’ '

s \ Il o

L |

Mo ! ¢

Vou |
oataour ! ' P
:‘-‘ tacc -

"uu .
NOTE 1: The output will remain valid tor 19,4 as long a3 clocked Vg g
is at Vee. An address change may Gccur as 3000 as the output is sensed
(clocked Vgg may still be at Vo). Data becomes invalid for the old
sddress when clocked Vgg is returned to Vgg.

NOTE 2:' 1t CS makes a transition trom Vi 1o Vjy while clocked Vg5
is #t VGG. then deselection of output occurs at toQ as shown in static
oparation with constant Vgg.

XXxvi

SILICON GATE MOS 8702A

TYPICAL CHARACTERISTICS

OUTPUT CURRENT VS. OUTPUT CURRENT VS,
[} CURRENT VS, TEMPERATURE Vpp SUPPLY VOLTAGE TEMPERATURE
[o1] oD
» 3 s T T s
: [TTTTT A I i
7 AN Voo © 8V - E 4}~ Vee * -9V E Vee * OV
N Voo® -V _ H VoL = +AsV H Voo™ -
: N Vag® - 7 é ik Ta - ,g.c/ § \\ V°°_ _: ,
i INPUTS = Voo H r i ‘. ™ Vo » o0
5 : \ ‘wlvwrs ARE OPEN 5 2 _— E N o * *
3 Operaving Range —_| ol
¥ I P ; deoL_
% B N 3 F 3
» L : ofH% P
» Ao H 5 & -7 8 -0 H 10 20 30 40 %0 0 0 W 0
a T 5 Voo “"‘:V V°‘-|“5' w 5 ' AMBIENT TEMPERATURE 1°C)
b 4 [g Vee "tV E Ve‘ - I.V
0 ° Vag * -V 4 g Voo -V
° 0 s« 60 o w00 120 8 Vou * 00V w | | e
g oL e St vgge v
AMBIENT TEMPERATURE (4C) 8-as < ol Vou® 0OV
H [~ — i L
13 E | .—-—"’/S-nw
* B lsnnnuli
3 - 3.
OUTPUT SINK CURRENT
VS. OUTPUT VOLTAGE
AVERAGE CURRENT VS. DUTY
| [f { CYCLE FOR CLOCKED Vgg
144
~ | . T
3 Ve * o8V « tod i | l
s Voo = -ov CLOCKED Vg + -V I
g Vg + -V | toor 38 Vpo "V
€ Ta = 2%°C i S vy]
; 80 e Th e L1
a T | &-oov - L~
£ L i -
3 bl tE —
e e
{ 2 oo & 1
-« =1 <2 -1 @ w1 2 3 °s) £ 3 ") =)) % % 100
OUTPUT VOLTAGE (VOLTS) ouUTY GYcLE 1%
ACCESS TIME Vs. ACCESS TIME VS,
LOAD CAPACITANCE TEMPERATURE
400
1200 .
1 100
F — 3 I ——
£ 4000 w 1000
H 3
z = %00
2 3
- 1TTLLOAD 200
3 Voo " 8V g 17TLLOAD ~ 20t
0 Voo "V T} 700 Voo = 8V p—
Vag = -V L 600 Vop = -8V 4
T, *2=C Vog = -9V -
500 500
iy (11 111
Y0 10 20 3 40 50 60 70 80 90 100 010 20 0 40 50 60 70 %0 %

LOAD CAPACITANCE (pF}

AMBIENT TEMPERATURE {*C}

XxXxvii

SILICON GATE MOS 8702A

PROGRAMMING OPERATION

D.C. AND OPERATING CHARACTERISTICS FOR PROGRAMMING OPERATION
Ta=25°C, Voo =0V, Vgg =+12V £ 10%, CS = OV unless otherwise noted

SYMBOL TEST MIN. TYP. MAX. | UNIT CONDITIONS
[Address and Data Input 10 mA Vi = —48V
Load Current)
IL12p Program and Vg4 10 mA Viy = —48V
Load Current
lsg Vge Supply Load Current .05 mA
loop'" | Peak I Supply .| 200 MA | Vpp = Vge= —48V
Load Current Voo = —35V
Viue Input High Voltage 0.3 \
Viip | Pulsed Data Input —-46 -48 v
Low Voltage
VIL2P Address Input Low —40 —48 \
Voltage
Vil Pulsed Input Low Voo —-46 -48 \
and Program Voltage
Vi Puised Input Low -35 —40 Vv
Vg Voltage

Note 1: Ippp flows only during Vpp, VGG on time. Ippp should not be allowed to exceed 300mA for greater than 100usec. Average power
supply current ppp is typically 40mA at 20% duty cycle,

A.C. CHARACTERISTICS\ FOR PROGRAMMING OPERATION
Tamsient = 25°C, Vo = OV, Vgg =+ 12V + 10%, CS = OV unless otherwise noted

SYMBOL TEST MIN, TYP. MAX. | UNIT CONDITIONS
Duty Cycle (Vpp , Vgg ! 20 %
topw Program Pulse Width 3 ms Vg =35V, Vpp =
Vorog = —48V
tow Data Set Up Time 25 us
toH Data Hold Time 10 us
tyw Vop . Vgg Set Up 100 us
tvp Vop . Vgg Hold 10 100 us
tacw @ | Address Complement 25 us
Set Up
tacH @ | Address Complement 25 - us
Hold
tATW Address True Set Up 10 Hs .
tATH Address True Hold 10 us '

Note 2. Al 8 address bits must be in the complement state when puised Vpp and Vgg move to their negative levels. The addresses (0 through
255) must be programmed as shown in the timing diagram for a minimum of 32 times.

xxxviii

SILICON GATE MOS 8702A

SWITCHING CHARACTERISTICS FOR PROGRAMMING OPERATION
PROGRAM OPERATION
Conditions of Test:
Input pulse rise and fall times < 1usec
CS=ov
PROGRAM WAVEFORMS

— tacu f—
" 4, v |
: = " |
0 bt
I
- |
SINARY COMPLEMEN™ | | BINARY ADDRESS
ADDRESS ADDRESS OF WORD | | | OF WORD TO BE !
I

TO BE PROGRAMMED

PROGRAMMED

-40 to —48

]

PULSED Vpp
POWER SUPPLY

—48 to —48

0

PULSED Vggq
POWER SUPPLY

—35 to -40

o0

PROGRAMMING
PULSE

46 to —48

[}
DATA INPUT

PROGRAMMING OPERATION OF THE 8702A

ADDRESS
When the Dsta input for | Then the Data Output WORD A7 Ag A5 A4 Az Az Aq
the Program Made is: during the Raad Mode is:
- [o [+] 0 [] 0] 0 0
V|Lip =~—48V pulsed | Logic 1 = Vou = ‘P on tape I1 f f ;’ ‘I’ ‘]’ f ;’ ,"
, . [[N T N R A
ViHp =~ OV Logic 0 = Vo ='N’ on tape 258 1 1 ’ 1 I 1 1 1

Address Logic Level During Read Mode:
Address Logic Level During Program Mods :

Logic 0=V {~.3V)
Logic 0= Vi 2p [~—40V)

Logic 1 = Vi (~ 3V}
Logic 1 = Viyp (~OV)

XXXiX

SILICON GATE MOS 8702A

PROGRAMMING INSTRUCTIONS
FOR THE 8702A

1. Operation of the 8702A in
Program Mode

Initially, alt 2048 bits of the ROM are in
the “‘0” state (output low). Information
is introduced by selectively program-
ming “1"s (output high) in the proper
bit locations.

Word address selection is done by the
same decoding circuitry used in the
READ mode (see table on page 6 for
logic levels). All 8 address bits must be
in the binary complement state when
pulsed Vy, and Vg move to their nega-
tive levels. The addresses must be held
in their binary complement state for a
minimum of 25 usec after Vo and Vg
have moved to their negative levels.
The addresses must then make the
transition to their true state a minimum
of 10 usec before the program pulse

is applied. The addresses should be
programmed in the sequence 0 through
265 for a minimum of 32 times. The
eight output terminals are used as data
inputs to determine the information
pattern in the sight bits of each word.
A low data input level (— 48V) will pro-
gram a “1"" and a high data input level
(ground) will leave a ‘0" (see table on
page 6). All eight bits of one word are
programmed simultaneously by setting
the desired bit information patterns on
the data input terminals.

During the programming, Veg, Voo and
the Program Pulse are pulsed signals.

ll. Programming of the 8702A Using
Intel Microcomputers

Intel provides low cost program devel-
opment systems which may be used to
program its electrically programmable
ROMs. Note that the programming
specifications that apply to the 8702A
are identical to those for Intel’'s 1702A.

A. Intellec 8

The Intellec series of program de-
velopment systems, the Intellec
8/Mod 8 and Intellec 8/Mod 80, are
used as program development tools
for the 8008 and 8080 microproces-
sors respectively. As such, they are
equipped with a PROM programmer
card and may be used to program
Intel’s electrically programmable
and ultraviolet erasable ROMs.

An ASR-33 teletype terminal is used
as the input device. Through use of
the Intellec software system monitor,
programs to be loaded into PROM
may be typed in directly or loaded
through the paper tape reader. The
system monitor allows the program
to be reviewed or altered at will
prior to actually programming the
PROM. For more complete informa-
tion on these program development
systems, refer to the Intel Micro-
computer Catalog or the intellec
Specifications.

B. Users of the SIM8 microcomputer
programming systems may also
program the 8702A using the
MP7-03 programmer card and the
appropriate control ROMs:

SIM8 system—Control ROMs
A0860, A0861 and A0863.

1il. 8702A Erasing Procedure

The 8702A may be erased by expo-
sure to high intensity short-wave ultra-
violet light at a wavelength of 2537A.
The recommended integrated dose (i.e.
UV intensity x exposure time) is *
6W-sec/cm?, Examples of ultraviolet ,
sources which can erase the 8702A

in 10 to 20 minutes are the Model
UVS-54 and Model S-52 short-wave
ultraviolet lamps manufactured by
Ultra-Violet Products, Inc. (5114 Walnut
Grove Avenue, San Gabriel, California).
The lamps should be used without
short-wave filters, and the 8702A to

be erased should be placed about one
inch away from the lamp tubes.

S N $
SO e

The INTELLEC 8 uses a seven-bit ASCI! code, which is the normal 8 bit ASC!I code with the parity (high order) bit
always reset,

GRAPHIC OR CONTROL ASCI! (HEXADECIMAL) GRAPHIC OR CONTROL ASCIl {HEXADECIMAL)
NULL 00 ACK 7C
SOM 01 Alt. Mode o}
EOA 02 Rubout 7F
EOM 03 ! 21
EOT 04 - 22
WRU 05 # 23
RU 06 $ 24
BELL 07 % 25
FE 08 & 26
H. Tab 09 ‘ 27
Line Feed 0A (28
V.Tab 08) 29
Form oc 2A
Return oD + 28
SO OE ' 2C
Sl OF - 2D
DCO 10 . 2E
X-On 1 / 2F
Tape Aux. On 12 : 3A
X-Off 13 ; 38
Tape Aux. Off 14 < 3C
Error 15 = 3D *
Sync 16 > 3E
LEM 17 ? 3F
SO 18 [58
S1 19 / 5C
S2 1A] 5D
s3 1B + S€ -
sS4 1c - 5F
S5 1D @ 40
S6 1E blank 20
S7 1F 0 30

XXXX]

GRAPHIC OR CONTROL ASCIl (HEXADECIMAL)

NYXXS<CANVDIPUVOZZINrAC—IOTMOOD®POONDOSHWN=
s
o

XxxXii

°
N

Ve P

S
P‘O e(’\\5 o\@ 5\0P9»6
*P \\

HEXADECIMAL ARITHMETIC

ADDITION TABLE

0 1 2 4 5 6 7 8 9 C

1 02 03 05 06 07 |08 09 OA 0D

2 03 04 06 07 08 |09 OA 0B |[OC 0D OF

3 04 05 07 08 09 |0OA 0B OC | 0D OF

4 05 06 08 09 0A 0B 0C OD 10

5 06 07 09 O0A 0B | 0C 0D OE bl

6 07 08 OA 0B O©OC | 0D OE OF 12

7 08 09 0B 0C ODjOE OF 10 13

8 09 0A 0C 0D OE OF 10 M 14

9 0A 08 oD O0E OF | 10 11 12 15

A 0B OC OE OF 10|11 12 13 16

B 0oC 0D OF 10 11]12 13 14 17

C | 0D OE 10 11 12|13 14 15 18

D | OE OF 1M1 12 13|14 15 16 19 | 1A

E GF 10 12 13 14|16 16 17 1A

F 10 11 13 14 15|16 17 18 1A 1B

MULTIPLICATION TABLE

1 2 5 6 7 8 9 A B C D E
2 04 06 0A OC|OE 10 12414 16 18 |1A 1IC
3 06 09 OF 12|15 18 1B |1E 21 24 |27 2A
4 08 0OC 14 18| 1C 20 24 128 2C 30 |34 38
5 0A OF 19 1E| 23 28 2D 32 37 3C |41 486
6 0cC 1E 24 | 2A 30 36 [3C 42 48 |4E 54
7 OE 23 2A |31 38 3F |46 4D 54 | 5B 62
8 10 28 30 (38 40 48 50 58 60 68 70
9 12 2D 36 ! 3F 48 51 |BA 63 6C |75 7E
A | 14 32 3C| 46 50 5A |64 6E 78 |82 8C
B 16 21 37 424D 58 63 |6E 79 84 | 8F O9A
C 18 24 3C 48|54 60 6C |78 84 90 |9C A8
D 1A 27 41 4E| 5B 68 75 |8 8F 9C | A9 B6
E 1C 2A 46 54 |62 70 7E|8C 9A A8 |B6 C4
F 1E 2D 48 5A| 69 78 87 |96 A5 B4 | C3 D2

xxxxiii

O BN -

POWERS OF TWO

E

2 n2
1 01.0
2 105
4 2025
8 30.125
16 4 0.062 5
32 5 0.03t1 25
64 6 0.015 625
128 7 0.007 812 5§
266 8 0.003 906 25
512 9 0.001 953 125
1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25
4 12 0.000 244 140 625
8 192 13 0.000 122 070.312 5
16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125
65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 §

1 048 576 20 0.000 000 953 674 316 406 25

2 097 152 21 0.006 000 476 837 158 203 125

4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 053 604 644 775 390 625

67 108 864 26 0.000 000 014 901 161 193 847 656 25
134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
636 870 912 29 0.000 000 001 862 645 149 230 957 031 25
073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

1

2

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25

8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

7 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368-35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625

137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 00C 000 001 818 989 403 545 856 475 830 078 125

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5

2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25

4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
000 000 000 113 686 837 721 616 029 739 379 882 812 5

000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
028 421 709 430 404 007 434 844 970 703 125
000 000 000 014 210 854 715 202 003 717 422 485 351 562 5
000 007 105 427 357 601 001 858 711 242 675 781 25

000 003 552 713 678 800 500 929 355 621 337 890 625
000 000 000 001 776 356 838 400 250 464 677 810 668 945 312 &
000 888 178 419 700 125 232 338 905 334 472 656 25
000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125

000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5

000 111 022 302 462 515 654 042 363 166 809 082 031 25 ‘
000 000 000 000 065 511 151 231 257 827 021 181 583 404 541 015 625

000 00 027 755 575 615 628 913 510 590 791 702 270 507 812 5

000 000 000 000 033 877 787 807 814 456 755 295 395 851 135 253 906 25
000 000 000 000 006 938 893.903 907 228 377 647 697 925 567 676 950 125
000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5
000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25

000 000 000 000 000 867 361 737 988 403 547 205 962. 240 695 953 369 140 625
000 000 000 Q00 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5
000 00C 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25
000 000 000 00C 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 12

8 796 083 022 208 43

17 592 186 044 416 44
35 184 372 088 832 45

ggg 8
g

8

g

140 737 488 355 328 47

281 474 976 710 656 48
562 949 953 421 312 49

g 8
g &
g 8

838
(=]
8
g
o
(=]
8

251 799 813 685 248 51

503 599 627 370 496 52
007 199 254 740 992 53
014 398 509 481 984 54
028 797 018 963 968 55

057 594 037 927 936 56
115 188 075 855 872 57

8833

888

g&g
g

460 752 303 423 488 59

921 504 606 846 976 60
843 009 213 693 952 61
686 018 427- 387 904 62
372 036 854 775 808 63

0000 0000 0000 00O0O 0000 ©
o
88 3388
[=]
8
[=]
Q
[=]

a8
[=¥=]
(=3
[=3
(=]
o
3

XXXXiv

72
1 182

23
163
DEO
8AC7

17
281
503
057
921

17
E8
918
5AF3
8D7E
8652
4578
8683
2304

68
099
592
474
599
594
504

16
268
294
719
511
186
976
627
037
606

98

6F5
3B9A
5408
4876
D4AsS
4E72
107A
A4C6
6FC1
5D8A
A764
89E8

65
048
777
435
967
476
627
044
710
370
927
846

64
3E8
2710
86A0
4240
9680

-E100

CAQ0
E400
E800

A000
4000
8000
0000
0000
0000
0000

TABLE OF POWERS OF SIXTEEN,,
16"

n

0 0.10000
1 0.62500
2 0.39062
3 0.24414
4 0.15258
5 0.95367
6 0.59604
7 0.37252
8 0.23283
9 0.14551
10 0.90948
1 0.56843
12 0.36527
13 0.22204
14 0.13877
15 0.86736

00000
00000
50000
06250
789086
43164
64477
90298
06436
91522
47017
41886
13678
46049
78780
17379

00000
00000
00000
00000
25000
06250
53906
46191
53869
83668
72928
08080
80060
25031
78144
88403

TABLE OF POWERS OF 10,,

W N EAEWN - O D

- e e e e e
O A WN - O o

17

N

10
1.0000 0000 0000
0.1999 9999 9999
0.28F5 C28F 5C28
0.4189 374B CBA7
0.68DB 8BAC 710C
0.A7C5 AC47 1B4A7
0.10C8 F7A0 BSED
0.1AD7 F29A BCAF
0.2AF3 1DC4 6118
0.44B8 2FA0 9B5A
0.6DF3 7F67 SEF6
0.AFEB FFOB CB24
0.1197 9981 2DEA
0.1C25 C268 4976
0.2D09 370D 4257
0.480E BE7B 9D58
0.734A CASF 6226
0.8877 AA32 36A4
0.1272 5DD1 D243
0.1D83 C94F B6D2

XXXXV

0000
999A
F8C3
EFQE
B296
8423
8D37
4858
738F
52CC
EADF
AAFF
1119
81C2
3604
566D
FOAE
B449
ABA1
AC35

00000
00000
00000
00000
00000
00000
25000
40625
62891
51807
23792
14870
09294
30808
58755
654721

X X X X X X X X X X X X X X X X

167!
1672
1673
1674
167
1675
167
1677
1678
1677
1677
16-10
16-“
16-11
16—13
16‘14
16—14
16-15

X X X X X X X X X X X X X X X X X X

107!
1072
1073
1074
107
1077
1078
107°
10-10
10-12
10—-13
10-14
10-15
10—16
10-[8

The table below provides for direct conversions between hexadecima! integers in the range 0-FFF and decimal integers in the

HEXADECIMAL-DECIMAL INTEGER CONVERSION

range 0-4095. For conversion of larger integers, the table values may be added to the following figures:

Hexadecimal Decimal Hexadecimal Decimal

01 000 4096 20 000 131072

02 000 8192 30 000 196 608

03000 ° 12 288 40 000 262 144

04 000 16 384 50 000 327 680

05 000 20480 60 000 393 216

06 000 24 576 70 000 458 752

07 000 28672 80 000 524 288

08 000 32768 90 000 589 824

09 000 36 864 AQO 000 655 360

0A 000 40 960 BO 000 720 896

08 000 45 056 C0 000 786 432

0C 000 49 152 DO 000 851 968

0D 000 53 248 EO0 000 917 504

0E 000 57 344 F0 000 983 040

QF 000 61440 100 000 1048 576

10 000 65 536 200 000 2097 152

11 000 69 632 300 00 3145728

12 000 73728 400 000 4194 304

13 000 77 824 500 000 5242 880

14 000 81920 600 000 6 291 456

15 000 86 016 700 000 7 340 032

16 000 90 112 800 000 8388 608

17 000 94 208 900 000 9437 184

18 000 98 304 AQ0 000 10 485 760

19.000 102 400 80O 000 11534 336

1A 000 106 496 €00 000 12 582912

1B 000 110 592 D00 000 13631488

1C 000 114 688 EQO0 000 14 680 064

1D 000 118 784 F0O0 GO0 15 728 640

1E 000 122880 1 000 000 16 777 216

1F 000 126 976 2 000 000 33 554 432

4] 1 2 3 4 5 6 7 8 9 A B C D E F

000 | 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
010 | 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 | 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 | 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063
040 | 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 | 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
060 | 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
070 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0126 0126 -0127
080 | 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 | 0144 0145 0146 0147 0148 0143 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
0AO | 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
08B0 | 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0188 0190 0191
0co | 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
0DO0 [0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
0EO [0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OF0 | 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

XXXXVi

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd}

5

0 1 2 3 4 6 7 8 9 A 8 C D E F
100 | 0266 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 | 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 | 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
130 | 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319
140 | 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0331 0333 0334 0335
150 | 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
160 | 0362 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 | 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383
180 | 0384 0385 0386 0387 0383 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 | 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
1A0 | 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
180 | 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447
1C0 | 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
1D0 | 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
1E0 [0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
1FO [0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511
200 | 0512 0513 0514 0615 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 | 0528 0529 0530 0831 0532 0633 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 | 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 | 0560 0861 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
240 | 0576 0577 0678 0679 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
250 | 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 | 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
270 | 0624 0625 0626 0627 0628 0629 0630 0631 . 0632 0633 0634 0635 0636 0637 0638 0639
280 | 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 | 0656 0657 0658 0669 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A0 | 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2B0 | 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2C0 | 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
200 | 0720 0721 0722 0723 (0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2EQ | 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F0 | 0762 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 . 0766 0767
300 | 0768 0769 0770 0771 Q772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 | 0784 0785 0786 0787 0788 0789 0790 0791 0792 Q793 0794 0795 0796 0797 0798 0799
320 | 0B0OO 0301 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 | 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
340 | 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 | 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 (0860 0861 0862 ‘0863
360 | 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 | 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 (0892 0893 0894 0895
380 | 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 | 0212 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3A0 | 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3B0 [0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 (0956 0957 - 0958 0959
3C0 | 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3D0 | 0976 0977 0978 0979 0980 0981 0982 0983 (0984 0985 0986 0987 0988 0989 0990 0991
3EO0 | 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F0 | 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

XXXXVil

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd}

0 1 2 3 4 5 6 7 8 9 A 5] C D E
400 |1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
410 | 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
420 | 1056 1057 10658 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
430 {1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
440 | 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
450 | 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
460 1120 1121 1122 1123 1124 1126 1126 1127 1128 1129 1130 1131 1132 1133 1134
470 | 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
480 | 1152 1153 1154 1155 1156 1157 11568 1159 1160 1161 1162 1163 1164 1165 1166
490 | 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
4A0 | 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
4B0 {1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
4C0 11216 1217 1218 1219 1220 1221 1222 1223 1224 1226 1226 1227 1228 1229 1230
4D0 11232 1233 1234 1235 1236 1237 1238 1239° 1240 1241 1242 1243 1244 1245 1246
4EQ0 | 1248 1249 1250 1251 1252 1253 1254 1265 1256 1257 1258 1259 1260 1261 1262
4F0 | 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
500 | 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
610 | 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
520 | 1312 1313 1314 1316 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
630 |1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
640 | 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
650 | 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
560 | 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
670 | 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
580 {1408 1409 1410 141t 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
590 | 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
SA0 | 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
5B0 | 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
5C0 | 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
500 | 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
6E0 | 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 . 1518
6F0 | 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
600 | 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
610 | 1552 1553 1554 155656 1566 1557 1558 1569 1560 1561 -1562 1563 1564 1565 1566
620 | 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
630 | 1584 1585 1586 1587 1588 1588 1590 1591 1592 1593 1594 1595 1596 1597 1598
640 | 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 16.10 1611 1612 1613 1614
650 | 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
660 | 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
670 | 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
680. [1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
690 | 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
6A0 | 1696 1697 1698 1699 1700 1701 1702 1703 1704 1706 1706 1707 1708 1709 ' 1710
680 | 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
6C0 | 1728 1729 1730 1731 1732 1733 1734 1736 1736 1737 1738 1739 1740 1741 1742
600 | 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
6EO { 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
6F0 [1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

XXX XViii

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

1] 1 2 3 4 5 6 7 8 9 A B C D € F
700 | 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
‘710 | 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
720 | 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 | 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
740 | 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 | 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 | 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 . 1903
770 | 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
780 | 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 193t 1932 1933 1934 1935
790 | 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7A0 | 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
780 | 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
7Cc0 | 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
700 { 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E0 { 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7F0 | 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
800 | 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
810 | 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 | 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 | 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
840 | 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 | 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 | 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 | 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
880 | 2176 2177 2178 2179 2180 2187 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
890 | 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A0 | 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
880 | 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8CO | 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
800 | 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8EQ | 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F0 | 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
900 | 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 { 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 | 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 | 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
940 | 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 | 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
960 | 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 | 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
980 | 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 | 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2450 2460 2461 2462 2463
QA0 | 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
980 | 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
'9CO | 2496 2497 2498 2499 2500 2501 2502 2503 2604 2505 2506 2507 2508 2509 2510 2511
9D0 | 2512 2513 2514 25156 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9EQ | 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
OF0 | 2544 2545 2546 2547 2548 2549 2550 2551 2652 2553 2554 2555 2556 2557 2558 2559

XXXXiX

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B C D E F

AQO | 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
A10 | 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591@
A20 | 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 | 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
A40 | 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
ABS0 | 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 | 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 | 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
AB0 | 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
AQ0 | 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAQ | 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO | 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
ACO | 2752 2753 2754 2755 2756 2757 2758 2759 2760 4761 2762 2763 2764 2765 2766 2767
ADO | 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEQ | 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO | 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2B15
BOO | 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
B10 | 2832 2833 2834 12835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2B47
B20 | 2848 2849 2850 3851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2B63
B30 | 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
B840 | 2880 2881 2882 2883 2884 2885 2866 2887 2888 28389 2890 2891 2892 2893 2894 2895
B50 | 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 28911)
B60 | 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927}
B70 | 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2041 2042 2 943¢
B8O | 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2054 2955 2966 2957 2958 2059
BOO | 2060 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAQ | 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2088 2989 2990 2991
B8O | 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BCO | 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
800 | 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO | 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFO | 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
C00 | 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
C10 | 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 | 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C30 | 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
CA0 | 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150, 3151
C50 | 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C60 | 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C70 | 3184 3185 3186 3187 3188 3188 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
C80 | 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 | 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAO | 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 -3246 3247
CBO | 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
CCO | 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 33 7“
CDO | 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 4
CEOQ | 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFO | 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

(-_/

.

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B C D E F
DOO {3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
D10 | 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D20 | 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D30 | 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
D40 [3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D50 | 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D60 | 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D70 [3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
D80 | 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D90 | 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DAQ | 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DBO | 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3617 3518 3519
DCO | 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 35631 3532 3533 3534 3535
CCO | 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEQ | 3652 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFQ | 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
EQO | 3584 3586 36586 3687 3588 3589 3500 3591 3592 3593 3594 3505 3506 3597 3598 3599
E10 | 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E20 | 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 | 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
E40 | 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
ES0 | 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
EB0 | 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E70 | 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
EB0 | 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
ESO0 | 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAQ | 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBO | 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
ECO | 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDO | 3792 3793 3794 3795 3796 3797 3798 3793 3800 3801 3802 3803 3804 3805 3806 3807
EEO | 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFQ | 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
FOO | 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
F10 | 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F20 | 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F30 | 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
F40 | 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914° 3915 3916 3917 3918 3919
F50 | 3920 3921 3922 3923 3924 3926 3926 3927 3928 3929 3930 3931 3932 3933 3934- 3935
FB0 | 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F70 | 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
F80 | 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F90 | 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAO | 4000 4001 4002 4003 4004 4005 4006 4007 4008 4008 4010 4011 4012 4013 4014 4015
FBO | 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
FCO | 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FDO | 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEQ | 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFO | 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

Li

c/

in

INTEL CORPORATION, 3065 Bowers Ave., Santa Clara, California 95051 (408) 246-7501

©1974 Printed in U.S.A, MCS-307-1074-3K

A

.

C

€030 MICROPROCESSOR

1. INTRODUCTION

The 2880 is a complete 8-bit paralizt cantral processing unit
_(CPUY for use in general purpose digiiai computer systems. It is
fabricsted on a single LSI chip using: Intel’s n-channel siticon
gate MOS process, thus offering much higher performance than
conventcnal microprocessars (2ps instruction cyclel. A com-
pleta micro computer system is formed when the 8620 CPU is
interfacad with 1/O ports {up to 256 input and 258 output
peorts) and any type or speed of semi-conductor memory.
Although significantly higher in performance than existing mi-
croprocessors, the 8030 has been designed to be software com-
patible at the source coda level with Intel's 8603 micro-
processor. Like the 8008, the 8080 contains six 8-bit data
registzrs, an 8-bit accumulator, four 8-bit temporary registers,
four testable flag bits, and an 8-bit paralle! binary arithmetic
unit. The 8080 also provides decimal arithmetic czpability,
and it includes sixteen bit arithmetic and immediate operators
which greatly simplify memory address calculations, and high
speed zrithmetic operations.
The €020 has a stack architecture wherein any portior?of the
extzmal memory can be used 25 a last in/first out stack to
store/relrizve the contents of the accumulator, the flags, or
any cf tha data registers.

£C20 also contains a 16-bit stack pointer to control the ad-

* wfessing of this external stack. One of the major edvantages of
the stk is that multiple level interrupts can easily be handled
since complete system status can essily be saved when an inter-
rust eocurs and then be restored after the interrupt. Another
mejor edvantage is that almost unlimited subroutine nesting is
possinle.

This processor has been designed to greatly simplify system de-
sign. Seperate 16-line address and &-line bidirectional data
buzes &2 used to allow direct interface to memories and 1/0
peris. Control signals, which require no decoding, are provided
directly by the processor. All busses, including control, are
TTL compatible.

Communication on v-2 addrass lines 2nd the data lines can be
interlocked by us GLD input. When the HLDA (Hold
Acknowledge) sisnsh is issued by the CPU, CPU operation is
suspended and the xccress and daa lines are forced to be in
the FLOATING sizza. This permits “OR-tying” the address
and data busses witR other devices such as direct memory ac-
cess channels {DMA)

The 8080 has many instructions which are extremely useful
and extend the rang: of zppliczbility of the CPU. The instruc-
tion groups are as fclicws:

® Data register azd memory transiers v

© Conditional or unconditional branches and subroutine
calls -
1/0 operations
Direct Load/Stare Accumulstor
Save, Restore Data Registars, Accumulator and Flags
Dcuble Le Qperation in Data Registers

Increment Deerement/Addition

Direct Loz?/Stere (H 2nd L)

Load tmm 2

Index Regizar Modification
Indirect Jump
Stack Pointer Wadification

e .
terrupt enzbie flip-flop
zment Llemcry of data registers

Increment/Da:

8080 ADDRESSING MODES:
DIRECT
REGISTER
REGISTER INZIRECT
IMMEDIATE

Figura 1. 8080 CPU Functional Block Diagram

@mm
INTERNAL DATA BUS

7

ACCUMULATOR
Y

FLAG S
£L1P ELOPS

IRSTALLTILN,
REGISTER =

Il

LATEH (3

7
e RS !

INSTRUCTION
DECC!

AND
MACHINE

CYCLE
ENCCDING

REGISTER
rum

CECIMAL
ADJUST

!

|

rowen [— 12y
SUPPLIES | —m w5 DATA BUS INT
WRITE CONTROL €O

HCLD

T
SWTROL CCNIROL SYNC CLOCKS

TINING

AND
CONTRGL

— Y I

—-G~=!a‘l|¢!

W CBIN INTE INT HOLD MOLOWAST
acx A1

{ SYNC 21 22

Y

8080 MICROPROCESSOR

2. PROCESSOR TIMING
2-1. G803 FUNCTIONAL PIN DEFINITION

The following dascribes the function of all of the 8080 10O sins.
Several of the descriptions refer to internal timing periods.

AysAg loutput three-state)

ADDRESS BUS; the address bus provides the address to memory
{up to 64K 8-bit words} or denotes the 1/Q device number for up
to 258 input and 256 output devices. Ag is the least significant
address bit.

D;-Dg linput/output three-state)

DATA BUS; the data bus provides bidirectional communication
berween the CPU, memory, and /0 devices for instructions and
dazna transfers. Dg is the least significant bit.

SYNC {output)

SYNCHRONIZING SIGNAL; the SYNC pin provides a signal to
indicate the beginning of each machine cycle. -

DBIN (output) s

DATA BUS IN; the DSIN signal indicates to external circuits that
the data bus is in the input mode. This signal should be used 10
enzhle the gating of dataonto the 8080 data bus from memory
or 1/0.

READY (input}

READY:; the READY signal indicates to the 8080 that valid mem-
ory or input data is available on the 8080 data bus. This signal is
used to synchrenize the CPU with slower memory or 1/O cevices.
1£ after sending an address out the 8080 does not receive a READY
input, the 8030 will enter 2 WAIT state for as long as the READY
line is low. (READY can also be used to single step the CPU.}

WAIT (output)
WAIT; the WAIT signal ecknowledges that the CPU is in2 WAIT
state.

WR {output)

VIRITE; the WR signal is used for memory WRITE or 1/0 output
contrel. The dzta on the data bus is stable while the WR signat is
.active low (TR = 0).

HOLD {input)

HOLD; the HOLD signa! requests the CPU ta enter the HOLD
stzte. The HOLD state allows an external device to gain contrel
of the §020 address and data bus as soon as the 80820 has com-
pleted its use of these buses for the current maching cycle. Itis
recognized under the following conditions:

© the CPU isin the HALT state.

® the CPU isin the T2 or T\ state and the READY signal is active.
As a result of eatering the HOLD state the CPU ADDRESS BUS
{A5-Ag) and DATA BUS (D7-Do) will be in their high impedance
siata. The CPU acknowledges its state with the HOLD AC-
KNOV/LEDGE (HLDA) pin.

HLDA (cutput)

HOLD ACKNOWLEDGE: the HLDA signat appears in response

to the HOLD signal and indicates that the data and acdress bus

will go to the high impecance state. The HLDA signa! begins at:

© T3izr READ memery cr input,

© The Cleck Period following T3 for WRITE memory or CuT-
PUT cperation.

i o/
A O . 40 p—e0 An i
GND 00— 2 39 >0 Aie |
o, 0+—*{3 38 =0 Ay3 |
Dy O+ 4 37 —>0 A2
Dy O=—]5 36 f—0 A5
0, 016 35 0 Ag
D, O 7 - 34 —=0 Ag
o, o=z [NTEL 3}|—o~
D, O=—{9 32 b—=0 Ag
b, 0= 10 8080 nl—oa
-sv 0— 11 3p p—e0 A,
RESET O——} 12 29 b0 A3
HOLD O——={ 13 28 }——o0 +i2v
INT O—=] 14 27 b—=0 A;
02 O—i 15 26 }—=0 A
INTE 0e—] 16 ° 25 b—=0 A
DBIN Qe—oi 17 24 }—0 WAIT
WR O=—118 23 f+—0 READY
SYNC O=—1 19 22 f=—0 ¢4
+5v O—— 20 21 HLDA

Figure 2. Pin Configuration

In either case, the HLDA signal 2ppears after the rising edge of ¢4
and high impsdance occurs 2fier the rising edge of ¢2.

INTE loutput!{t]

INTERRUPT ENABLE: indicates the content of the internal inter-
rupt enable flip/flop. This flip/flop may be set or reset by the En-
able and Diszble Interrupt instructions and inhibits interrupts
from being 2ccepted by the CPU when it is reset. It is auto-
matically resa: {disabling further interrupts) at time T1 of the in-
struction fetch cycle (M1) when an interrupt is accepted and is
also reset by th2 RESET signal.

INT ({input)

INTERRUPT REQUEST; the CPU recognizes an interrupt re-
quest on this line at the end of the current instruction or while
halted. I the CPU is in the HOLD state or if the Interrupt Enable
flip/flop is resat itwill not honor the request.

RESET linput}

RESET; while the RESET-signal is activated, the content of the
program counter is cleared. ‘After RESET, the program will start
at location 0 in memory. The INTE and HLDA flip/flops are also
the flags, accumutator, stack pointer, and registers

45 + 5% Volts.
Ve -5 5% Volts {substrate bias}
s €1 instructio, the CPU wilt accept intecrupts on the
s to allow proper processing of the RET instruction it an
interrust is pending after the service routine.

C

8080 MICROPROCESSOR

e

READY [
war / \ i
i i : T
! Y
[/ \
D e DATA -
H
", AW i / ¢
H o STATLS : &
: {INFORRATION . H
{ DaTA !
i !
Ao S4301E READY. oFTIoNAL FETCMDATA CATICNAL
MEMCRY ADDRESS HGLD AXO KALT
o ISSTRUCTICN ST
40 DEVICE NLUZER o R Seution |
o UemoRy WRITEDATR o
STATUS INFORMATION o Twe 1F AZOUIRED
INTA «®T
MLTA o
MEMR b,
w8 sTacK

Figure 3. Basic 8080 Instruction Cycle

2-2. TIMING

Instructions in the B080 contain one to three bytes. Each in-
struction requires from one to five machine or memory cycles
for fetching and exec cycles are called M1,
2, . .., M5, Each machine cye!2 reqguires from three to
five states T1, T2, . . ., T5 for its completion. Each state
has the duration of one clock period (0.5 micro-second). There
are three other states (\WWAIT, HOLD, and HALT) which last
one to an indefinite number of cloek periods, as cantrolled by
external signals. Machine cycle M1 is ahways the operation-code
fetch cycle and lasts four er fiva clock periods. Machine cycles
112, M3, M4, and M5 normally last three clock periods each.
To understand the basic operation of the 8080, refer to the
simplified state diagrem shown in Figure 4 and the timing
diagram of Figure 3.

During T1 the content of the program counter is sent to the
address bus, SYNC is true, and the data bus contains the status
information pertaining to the cycle that is currently being ini-
tizted. T1is always followed by ancther state, T2, during which
the conditicn of the READY, HOLD and HALT Acknowledge
Signals are tested. If READY is true, T2 can be entered; other-
wise, the CPU will go { the + state (TW) and stay there
ot 2s long 25 READY is felsa.

READY thus allews the CPU speed to by synchronized to 2
memory with any access tima o7 10 eny input cevice. Further-
maore, by properly controlling the READY line, the user can
single-step thrcugh his pregram.

During T3, the data coming frem memory is availeble on the

data bus and is =z
1 only) as shom
instruction
signals to ¢
the machinz ¢
At the end
T5, the 8CZC
less the in
ecution. In
repeated for
struction.

Itisonlydurt
interrupt
during w!
INTERRUPT

megzhert.
intervals re
executed, 1
until an int

ons then generate the basic
a trensfers, the timing, and
f the new instructions,

plete, or else at the end of
machine cycle M2, un-
ne machine cycle for its ex-
1 cycle is entered. The loop is
znc states as required by the in-

v

2 of the last machine cycle that the
¢ 2 special M1 cycle is entered,
¢ increment takes place and
status is sent out. During this
 instructions will be sent to
e,

~ge from a minimum of four
a3 instructions, like register
-ructions, up to a maximum of
instructions (exchange the con-
contant of the top two lo-
t~2 maximum clock frequency of 2
i instructions will be executed in

rem 2 @52 O ps. If a HALT instruction is

5 2 WAIT state and remains there

8080 MICROPROCESSOR

2-3. STATUS INFORMATION
Instructions for the 6C30 require from on2 to five machine
cycles for complete axecution. The €030 sends out 8 bit of
status iaformation on the data bus at the beginning of each
machine cycie {(during SYNC time). The following table dafines
the staws information.

STATUS INFORMATION DEFINITION

Data Bus : ’
Symbois Bit Definition
INTA® Dy Acknowledge signal for INTERRUPT re-
quest. Signal should be used to gate are-
start instruction onto the data bus when
DBIN is active.
Indicates that the operation in the current
machine cycle wili be.a WRITE memory
or QUTPUT function {WO = 0).Otherwise,
a READ memory or INPUT operation will
be executed.
Indicates that the address bus holds the
pushdown stack address from the Stack
Pointer, -
Acknowledge signal for HALT instruction.
indicates that the address bus contains the
address of an output device and the data
bus will contain the output data when
VWR is active.
Provides a signal to indicate that the CPU
is in the fetch cycle for the first byte of
2n instruction.
Indicates that the address bus contains the
address of an input device and the input
data should be placed on the data bus
when DBIN is active.
Designates that the data bus wiill be used
for memory read data.

o 04

STACK D,

HLTA D3
aut Da

My Ds

NP D

MEMAR® D,

*Thess three status bits can be used to control
the ficw of data onto the 8080 data bus.

STATUS WORD CHART

I STATUS LATCH

CLOCK GEn
& ORIVER

SYATUS
LATCH

8212

oaN

e

zate

sTaTis

TYPE OF MACHINECYCLE

/S

Ge
N
2 »

/ // PR
/ o &/ /E
©/ o /&S A
SS/SSS /Sy
§/ /5, 8/55/
/x\/'\ N AY
@/@g /e
§/§5/8 &5/
/& FE&
Ve
~ S
/ / /® STATUS WORD
7o e
1 0l »|e|e|d®ie &~
Do . INTA cofofoj;o0j0jo0jc. 1ie "1
D; c WO |1 i1jci1fjoj{1io0 11 ¢
Dz STACK |0 oo i1li1]le6jo.0!0 ¢
D3 | HLTA 0 |ofoiolololo @o!: 1
Dg - OUT o|loloiololoil1 ©:.¢c . ¢
5 M 1 lojoj;0j{0jcCcj0o 1:¢0 1
D INP 0o |o|lofo]oj1lo0o:.0i0 i ¢C |
D7 MEMR | 1 |1 |0 1]0]0[0.0{1%t ;0|

-

C

8080 MICROPROCESSOR

READY « HLTA

READY

|

YES
INO
»
T

\;J

C O
7

YES

NO

§ INST.
L] EXECUTION
COMPLETED

HOLD
¥ monz

|ets

SITHOLDF/F

HOLD

FISITHOLDEF

RESITHOLD F.F

YES
NO
YES

SETINTF/F

C

Fizure 4. CPU State Transition Diagram

ISSET
IS RESET

8080 MICROPROCESSOR

3. PROCESSOR INSTRUCTION SET

3-1. COMPLETE FUNCTIONAL DEFINITION
The following pages present a detailed description of the complete 8020 Instruction Set.

Symbols Meaning
<B2> Second byte of the instruction
<B3> Third byte of the instruction ’ -
r One of the scratch pad register references: A, B,C. D, E, H, L
c One of the following flag fiip-flop references:
fla:

Condition for True .
carry — Cuzrilow, underflow

zero — Result is zero
PS sign —MNE3 cf resultis 1"
parity — Pzrity of resuit is even
M Memory location indicated by the contents of regis:ars Hand L
() Contents of location or register
A . Logical preduct
h Exclusive “or"
\4 Inclusive “or"
[Bit m of register r
sP Stack Pointer
PC Program Counter
« Is transferred to
XXX A “don’t care”
SsS Source register for data
00D Destination register for data
Register #
{SSS or DDD) Register Name

000 B

oo C

010 D

o011 E

100 H

101 L

110 Memory

M ACC

8080

INSTRUCTION SET

Mnemoric Bytes Cyctes Descripticn of Operation

MOVr.r, 1 1 {r.) « (r)) Load registerr, with the corie~:cfr.. The'contentof r,
remains unchanged.

MOV M 1 2 (r) « (M) Load register r with the ¢ * of the memory location
addressad by the contents of reg!

KOV M, ¢ 1 2 (M)« {r) Load the memory lccation
registers H and L with the contentcfr

MY 2 2 ()« <8.> Load byte two cf the ins'

<B.;>

MY 2 3 (M)« <B,> Loadbytetwoofthein

<B.> focztion addressed by the contents of

C

8080 MICROPROCESSOR
Mnemonic Bytes Cycles Description of Operation

NE 7 1 1 {r1 = () = 1 Thecontent of r—z«ys!ér ris:»
the condition flip-flops except carry are

DCRr 1 1 (r} = (r) = 1 The contentol registerrisc 2d by one. All
of the condition flip-flops except carry are 2 d by the result.

ADD 1 1 (A) — (A) + (r) Add the content of register r 1o the content of
register A and place the result into register . (All flags affected.)

ADCr 1 1 (A) — (A) + (r) + (carry) Add the content zf registaer r and the

contents of the carry flip-flop to the content of the A regisier and
place the result into Register A. (All flags afizcted.)

sugr 1 1 (A) — (A) — (r) Subtract the content of register r from the content
of register A and place the result into registzr A. Tws's complement
subtraction is used. (All flags affected.)

S$BBr 1 1 (A) — (A) — {r) — (borrow) Subtract the ccntent of register r and

the content of the carry flip-flop from the cctent of register A and

place the result into register A. (All flags ed.}
ANA T 1 1 {A) — (A} A (r) Place the togical product cf ihe register A and
register r into register A. (Resets carry.)
XRAr 1 1 (A) — (A} ¥ (r) Place the “exclusive - or” cf the ccatent of register A
4 and register r into register A. (Resets carry ;
ORAT o 1 1 {A) — (A) V (r} Place the “inclusive - or"" ¢? the ccntant of register A
. and register r into register A. (Resets carry.’
b CMPr 1 1 (A) — (r} Compare the content of register A with the contentof

register r. The content of register A remains
flip-flops are set by the result of the subtr.
indicated by the zero flip-flop set to 1.
indicated by the carry flip-fiop, setto "'1.

2d. The flag
vy (A =1)is
1}is

L Eg
23sthan A <

ADDM 1 2 (A)—{A) + (M) ADD
ADCM 1 2 (A) — (A) + (M) + (carry} ADD with carry
suBM 1 2 (A)—(A) — (M) SUBTRACT
S8B M 1 2 (A)—(A) — (M) — (borcow) SUBTRACT with borrow
ANAM 1 2 (A)—(A)A(M) Logical AND
XRAM 1 2 (A) —(A)¥(M) Exclusive OR (M) aczrassad by the contents of
ORAM 1 2 (A)—(A)V(M) Inclusive OR registes Hand L.
CMP M 1 2 (A) — (M) COMPARE
ADI 2 2 (A)—(A) +
<B.> ADD
ACH 2 2 {A) — (A) + <B,> + (carry)
<B;> ADD with carry
sut 2 2 (A)—(A) -
 SUBTRACT
s8I 2 2 (A)—(A) — <B,> — (borrow)
<B.> SUBTRACT with borrow .
AN} 2 2 (A —(AALB>
<B,> Logical AND
XRt 2 2 (A} — (A} <B;>
<B,> Exclusive OR .
CRI 2 2 (A - (A
<B,> Inclusive CR
CPI 2 2 (A) -~
 COMPARE
‘ RLC 1 1 AL —ALA <A, (carry) —A;

Rotate the centent of register Aleft e
Rotate A. into A, and into the carry !
RRC 1 1 A_~ AL A, <A (carry) — A,
Rotate the content of register A right or2
Rotate A, into A, and into the carry flip

~
8080 MICROPROCESSOR
Mnemonic Bylas Cyclas Description of Oparation
RAL 1 1 AL A, (carry), {carry) — A.
Rotat, content of Register A lefi cne bt
ccntent of the carry {lic-licp into A..
A into the carry flip-flop.
RAR 1 1 A. —A._ A~ (carry), (carry) — A,
Rotate the content of register A right one bit.
Rotate the content of the carry flip-flop into A;.
Rotate A, into the carry flip-flop.
JMP 3 3 (PC) < <B,><B,> Jump unconditionally to the instruction located
<B,> in memory location addressed by byte two and byte three.
<B;>
Jc 3 3 If(Carry) = 1 (PC) — <B;> <B,>
<B;> .
<B,> Qtherwise (PC) = (PC) + 3
JINC 3 3 If(Carry) = 0(PC) « <B,> <B;>
<B;>
<B;> Otherwise (PC) = (PC) + 3
JZ 3 3 If(Zero) = 1(PC) « <B;> <B,>
<8,>
 Otherwise (PC) = {PC) + 3
JINZ 3 38 If(Zero) = 0 (PC) « <B;> <B.>
<B;>
<B,> Otherwise (PC) = (PC) + 3
JP 3 3 If (Sign) = 0(PC) « <B,> <B;>

<B;> Otherwise (PC) = (PC) + 3
M 3 3 It (Sign) = 1{PC) < <B,> <B.>
<B;>
<B,> Othenwise (PC) = (PC) + 3
JPE 3 3 i {Parity) = 1(PC) « <B,> <B.>
<B;>
<B;> Otherviise (PC) = (PC) + 3
JPO 3 3 if (Parity) = 0 (PC) < <B,> <B;>
<B;>
<B,> Otherwise (PC) = (PC) + 3
HLT 1 1 On receipt of the Halt Instruction. the activity of the processor is
immeZiately suspended in the STOPPED state. The content of all
registers and memory is unchang2d and the PC has been updated.
CALL 3 5 [SP—1][SP — 2]« (PC), (€P) = (SP) — 2
<B,> (PC) — <B;> <B;>
<B;> Trans‘zr the content of PC to th= pushdswn stack in memory
address=d by the register SP.
The ccntent of SP is decremented by twe. J :mp unconditionally to
the instruction located in memery Iccation addressed by byte two and
byte three of the instruction.
cc 3 3/5 It(carry) = 1[SP — 1] [SP — 2] —PC.
<B;> (SP} = {SP) — 2, (PC) — <B.> <B,>;
<B;> otherwise (PC) = (PC) + 3
CNC 3 3/5 1f{carry) = @ [SP - 1][SP — 2} — PC, .
<B;> (8P) = (SP) — 2, (PC) —
<B,> otherwise (PC) = (PC) +
cz 3 3/5 Ii(zere) = 1{SP —1][SP — 2! —~PC,
<B.> (8P) = (SP) - 2, (PC) -~ <> <B.>:
<B;> oth: (PC) = (PC) + 3
CNZ 3 3/5 f(zero} = 0[SP -~ 1](SP - 2] - PC,
<B;> (S?) = (SP) — 2, (PC) - <B;> <B.>; -
<B,> otherwisz (PC) = (PC) +
CcP 3 3/5 M (sign) = 0 [SP — 1} [SP — 2] — PC,
<B;> (8P) = {SP) — 2. (PC} — <B.> <B,>:
<B,> othgruise (PC) = (PC) + 3

8

C

8080 MICROPROCESSOR

hlnemenic
CM

B
B,
CPE
<B;>
<B,>
CPO
<B,>
<B,>

RET

RC
RNC

RZ

(_// RNZ

RP
RM
RPE

RPO

IN
<B,>

ouT
<B.>

(9431
<B:>
/ <B,>
L/ LXID
<B.>
<B,>
LXI H
<B;>
<B,>

Bylas

3

3/5

3/5

3/5

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

Cycles Descriplion of Operatioa

itfsign) = 1{3P — 1] [SP — 2] ~ PC,
(SP) = (SP) ~ 2, (PC) — <B,>» <3,>;

otnerwise (PC) = (PC) + 3

It {parity) = 1 {SP ~ 1] [SP —~ 2] — PC,
(SP) = (SP) — 2, {PC) — <B,> <B,>;

otherwise (PC) = (PC) + 3

If (parity) = 0 [SP ~ 1] [SP — 2] — FC,

(SP) = (8P) — 2, (PC) « <B;> <B,>;
ctherwise (PC) = (PC) + 3
{PC) « {SP] [SP + 1] (SP) = (SP) + 2. Rzstiurn to the instruction in
the memory location addressed by tha last vziues shifted into the
pushdown stack addressed by SP.
The content of SP is incremented by two.

If(carry) = 1 (PC) [SP], [SP + 1],
(SP) = (SP) +

otherwise (PC) = (PC) + 1

If {carry) = 0 (PC) {SP], [SP + 1],
(SP) = +2;

otherwise (PC] (PC) + 1

if (zero} = 1 (PC) « [SP], [SP + 1},
(SP) = (SP) + 2;

otherwise (PC) = (PC) + 1

If {zero) = O (PC) « [SP], [SP + 1],
(SP) = (SP) + 2;

otherwise (PC) = (PC) + 1

if {sign) = 0 (PC) « [SP], [SP + 1].
(SP) = (SP) + 2;

othenvise (PC) = (PC) + 1

If (sign) = 1 (PC) [SP] [sP + 11,
(SP) = (SP)

otherwise (PC) (PC) +1

I (parity) = 1 (PC) « [SP], [SP + 1],
(SP) = (SP) + 2

otherwise (PC) = (PC) + 1

If (parity) = O(PC) « [8P], [SP + 1],
(SP) = (SP) +

otherwise (PC) = (PC) +1

[SP = 1] [SP = 2] —~ (PC),

(SP) = (SP) — 2

(PC) - (00000000 00AAALOD)

{A) « (Input data)

At T, time of third cycle, byte two of the i

the 170 device number, is sentto tha /0 ¢

lines”, and the INP status informaticn, inst

at sync time. New data for the accumulat:

bus when DBIN control signal is active, T|

(Output data) — (A)

At T, time cf the third cycle, byte two of ths ‘rstructic tich

denctes the 1/0 device number. is sentto t e through

the address lines”, and the OUT status infcrmaticn is sm* outat

sync time. The content of the accumulater s mads avaiizble on the

data bus when the WR control signa! is 0.

(C) «~ <B.>! (B) — <B,>

Load byte two of the instruction intc C. Loz

instructicn into B.

(E)~ (D) — <B,>

Load byte two of the instructicn into E. Lezz Syte 3 cfthe ir
into D

(L} « <B.>, (H) ~ <8;>

Load byte two of the instruction into L. Lezz oyte three of the

instruction into H.

oz r‘ed fro’ﬂ edata

e three cf tha

“The device address appears on A; — Ajand A, — A,

<ndition flip-fleps are not affected.

8080 MICROPROCESSOR
Mnemonic Bytes Cycles Description of Cperation
LAl SP 3 3 3.2, I8P), - B,)
<8 > o of the instruction into the lowar order 8-bit of the
<3, 2r and dyi2 three into the highar order 8+bit of the stack
PUSH PSW 1 3 [SP — 1} -—(A), [SP — é] « (F),{SP}) = {SP) — 2
Save the contents of A and F (5-flags) into the pushdown stack
addressad by the SP register. The content of SP is decremented by
two. The tiag word will appear as follows:
D;: CY, {Carry)
1
D.: Parity (even)
D 0 .
D.: CY,
D;: 0 .
D,: Zero
D.: MSB (sign)
PUSHB 1 3 [SP =~ 1] —(B)[SP — 2] < (C), (SP) = (SP) — 2
PUSHD 1 3 [SP - 1]— (D) [SP — 2] « (E), (SP) = (SP} ~ 2
PUSHH 1 3 [SP —1]1—(H)[SP — 2] —(L).(SP) = (SP) — 2
POP PSW 1 3 (F)— [8P), (A) «[SP + 1],(SP) = (SP) + 2
Restore the last values in the pushdown stack addressed by SP into A
and F. The content of SP is incremented by two.
POPB 1 3 (C)—[SR),(B) —[SP + 1],(SP) = (SP} + 2
POPD 1 3 (E)—[SP].(D) « [SP + 1], (SP) = (SP) + 2
POPH 1 3 (L)< [SPL.(H) ~ [SP + 1], (SP) = (SP} + 2
STA 3 4 [<B;>]— (A)
<B,> Store the accumulator content into the memory location addressed by
<B;> byte two and byte three of the instruction.
LDA 3 4 (A) < [<By>]
<B;> Load the accumulator with the centent of the memory location
<B;> addressad by byte two and byte three of the instruction.
XCHG 1 1 (H)—— (D) (E} «— (L)
Exchange the contents of registers H and L and registers D and E.
XTHL 1 5 (L)~—[SP], (H) «— [SP + 1]
Exchangz the contents of registers H, L and the last values in the
pushdown stack addressed by registers SP. The SP register itself is
not changed. (SP) = (SP)
SPHL 1 1 (SP) — (H) (L)
Transfer the contents of registers H and L into register SP.,
PCHL 1 1 {PC) — () (L) JUMP INDIRECT
DAD 8P 1 3 (H) (L) = (H) (L) + (SP)
Add the content of register SP to the content of registers Hand L
and place the result into registers H and L. i the overflow is
generatad, the carry flip-tiop is set; otherwise, the carry flip-flop is
reset. The other condition flip-flops are not affected. This is useful
for addressing data in the stack.
DADB 1 3 (H{L-—-HWL+@)C)
DADH 1 3 (H{L)—(H}{L) + H) (L)
(double precision shift left H and L)
DAD D 1 3 (ML) —MH({) + D)E) -
STAXB 1 2 [(B) (O = (A)
Stere the accumulator content in the memory location addressed by
the co % of registers B and C.
STAXD 1 2 [(OyEN--(A)
Stere the accumulator content into the memary location addressed by
the co ¢ of register D and E. B
LDAXB 1 2 (A~ (B} (C)]

Load the accumulator with the content of the memory location
addressed by the content of registers B and C.

10

C

8080 MICROPROCESSOR

Mnamonic Bytes Cyclas Descriplion of Operation

LDAXD 1 2 (A D) (E
Load 1t CUMUIAIoTr with the coniari o — 2707,
by the con'ent ci ragister D and E

INX B 1 1 (BHC) - (B)(C) + 1

The content of register pair B and C s irc

condition flip-fiops are not affected.
INXH 1 T (H) (L) (H) (L) + 1

The content of register Hand L is increm

condition flip-fiops are nct affectec.

INX D 1 1 (D) (E)«-(D)(E) + 1
INX SP 1 1 (SP)--(SP) + 1
DCXB 1 1 (BY(C)--(B)(C) ~ 1
DCXH 1 T WL =Ly -
DCXD 1 1 (D)(E)-(D)(E -1
DCX SP 1 1 (SP)- (SP) -1
CMA 1 1 (A - (A
The content of accumulator is com
flnp-.lops%re not affectad.
319 . 1 1 (Carry) — 1
Set the carry flip-ficp to 1. The other corc
affected.
b CMC 1 1 (carry) — (carry)
The content of carry is complementsd
flip-tlops are not affectad.
DAA 1 1 Decimal Adjust Accumulator
The 8-bit valu
arithmetic op
valid BCD digits b/ adding a value ac
Accum
I (Y > 10) or (carry frombit) then Y = ¥ ~ &2
i (X > 10) or (carry frombit 7) or [{Y > =T and (X
X = X + 6 (which sets the carry 4
Two carry flip-ficps are usad {or t
carry from bit 2 (ihe f
the carry from bit 7 and is the usv
All condition {lip-fiops are affected ¢
SHLD 3 5 [<B,> <B.>] — (L), |
<B.> Store the centents ¢f
<B,> addressed by by:e .
LHLD 3 5 (L) [<B.>L(H) — [<B..
<B.> Load the registers H and L with t
<B.> addressed by byte two and byle th
El 1 1 Interrupt System Enabie
D! 1 1 Interrupt System Diszble
The Interrupt Enabie flip-flop (INTE
above mentioned instructions. The
INTE is set. When the IN| <rgqa! is
will be reset imme
instruction exacut
INTM 1 3 [MIe
HancLisir
(carry are aff.
DCR M 1 3 MM -1

Hand L is dscrem 2. All
carry are affected by the rasult.

11

8030 MICROPROCESSOR

3-2. DATA AND INSTRUG
Daia in the 8583 i3 bt
in 12 same format

ERASS

The program instructicns may be one,
two, or three bytes in length. Multiple

byte instructions rmus: &2 stored in

succesive werds in program memory,
The instruction formats then depend
on the particular cperaticn executed.

3-3. INSTRUCTION SET

Summary of Precessor nsiructisns

Mramonic Deseriztan 0,
MOV, Mo

MOV M, ¢
MOVe M
HLT
MVIe
MVEM
INRY
DCRy
INR M
DCR M
ABD
ADEr
Susrs
s88¢

ANA 1
XRA ¢
ORAY
CMP
ABDM
ADCM
susm
seeM

ANA M
XRA M
ORAM
CMP M
ADI
ACH

sur
S8l

ANL
XRt

TION FORMATS
2 tne form of 8-5it &

Tz Byte Instructions

—_—
{57 Ds Ds D4 D3 D5

ary witegars. All cala

fers to 1

trans

0P CODE

{o, Dg Ds Dy Dy D7 Dy OPZRAND

Trree Eyte Insteuctions

3, C5 Ds Dg 03 D; 04 C

For

Insraction CodelV!

239520 1D reqistar

~wa-cooOoBOcBOO
P - T -]

ococomooo

wmanoe

mmelazaith A 1t
Crimmediaewity 11

Orim=22 22 mmth A
= ediate with A

ER R R
e -

12

@ e

—

5| 0P CODE

. 7]
9; Dg Ds Do D3 D, Dy ;| LOWADDRESSCACPERAND 1

M Mt Mt Bt Bhockt Mt M

[o; pg D5 D4 D3 O; D,

amEOanen DOABmmOONO=O=0 §

oo

Gome -

rmm o onon

HIGH ADDRZ3S OR OPERAND 2

. Conn?
03 D3 D2 By Do Codies
D DS S S s
108 5 3§ 7
2 01 10 7
o1 o1o¢ 1
0 D11 7
101 T f 13
001130 s
001 5
161 2 oa 13
1o 1 ¢ i3
0 0Ss s S 3
¢ t s s s 2
T oSS S < -
11 s 5°S €
g 6 s 5§ k]
01 s s s 4
108 s S8 2
1 15 5§ +
¢ 01 1L 7
L S B) H
1001 3¢ 1
LI 7
0 00 1 3 o 7
[IR B 7
F T T b
[T A 7
¢ 01 18 7
611t o3 1
1ot 3
111 i
o 1 ¥

o1 1t 2 7
1T et 3 .
Tyt ?
e ¢t B
[BRI %
[| 2
LI T T T :
o5 1o 1
toroe 1 g 1
1eotor 0 ”
01 0 o0 12
0 o0 13 3
108 1 ¢ 12
t e 1o 12
coroe o1t 12
g oL 1oC 3

a2 sysiam data bus wiil be

TYPICAL INSTRUCTIONS .

Register to register, memory refer-

ence, arithmetic or logical, rotate
eeturn, push, pop, enable or disable
Intereupt instructions

Immediate mode or 1/0 insteuctions

Jump, call or direct load and store
instructions

is dafinad as a high level anct a logic "0 15 Cefined a5 2 low level.

C

SEBQ_MICRQPRQCESSOR

Maemoae Cixnztan SN
2318 S Vosos
[24 st oa zarry to
(L G ng cury [T
€z Cailan 2 ’ 1126
374 Catt o no zers 1120
44 Call 07 Sontin LI I |
(] Calt ¢n muns 1o
23 Cait on panty sves 110
=) Catl o oarity 522 1110
. RET Ratrn (BRI
RC Return on gaesy 15
RANC Return oa 3 carry LIS B |
Az Ruturn 63 765 V130
RNZ 118 0
/P o1
RM 1o
RPE Retara o5 zanty eve LA)
/70 Razurn o sae.sy 562 ol
RST Renn [TV NP
N oo
ouT T8
Lxig 00 ¢ ¢
o 8 0 ¢ 100 01 °
. LXLH 06 3 6 00 0 bl
L §P 3°6 1 1 coo o0 1 LE]
Q_/ * PUSHB 180 01 ¢ 3 i
PUSKD Puthregater Pas D& Eca L T T O I I "
stk
PUSHH Puthrguer Par HE L 2e 11 1 001 01 it
stack
PUSH PSY Push A aad Fags LI S T I A u
on srazk
#0738 Pog regnter caw B & C 11 0 0 00 0 13
stack
P0P D Pop reguster 223 0 & £ ff Tyt 1006 0 1
stack
POPH Pepregsmr ar HE L 28 T1 1 0 00 01 1
stack -
POPPSY Pop Aand Frags 11 1 1 60 ¢ 12
o stack
STA Stare A dieect [B ¢ 1 3 n
LoA Load A ¢urect 60 1 110 10 3
XCHG Exchange DAE, HEL 11 [[l
Regista
Exch 1 i
Hal 1 3
HE L tapraga- i 3
AZIBBCiHEL i 3
ACdDBEnHBL 1 i
1 i

Leag Al 2z
Lead Az
tncrement 2 % € -2

e g Uy s an

e BOEaNORONNOOOMAMMID 0N
R R N L L L L L pep
[T I U N ol
B POt " . EEOB e OO = -
cecoo-e-—-~c0c0coOcOOBDOODOCOA

NCTES: 1. DDDorSSS - 0008~ 001 C - 016D ~CI1E —100H - 101 &
2. Two possdle cycle tirmes (311} incdicate instruction cycles depe-z

T encaroitien flags.

8080 MICROPROCESSOR

4. HOW TO USE THE PUSHDOWN STACK

Addr. L i PC C SP Content
N-1 INSTR.N — 1 N sP — {INTERRUPT ARRIVES HERE)
N INSTR. N Restart instruction inserted here
N+1 INSTR.N + 1 «---(1)SP -2 Save PC value N in stack using
restart instruction to jump o' S.
L SUBROUTINE FOR HANDLING INTERRUPT
S PUSHH S+1 --=-{2)SP ~ & Save HL in stack.if desired
: El Enable further interrupts if
: desired.
S+n POPH S+n+1 ----{3)SP — 2 * Restore HL from stack
S+n+1 RET - N ----(4)SP Return PC from stack
»
STACK CONTENTS LOW MEMORY
U] 2) (4)
Saved H&L| L - TOS
H
—TOS
Saved PC N Saved PC N Saved PC N — TOS
X X X X
Old top
of stack
(TOS)

NOTE: The user can initialize the stack point SP register with a LXI SP instruction to use 2ny
section of read-write memory as a stack. The SP is mented when data is pushad cnto the
stack, and incremented when deta is popped {that is the stack “grows downwerd™).

——— -—

POP/RETURN PUSH/CALL

STACK

Low HIGH
ADDRESS ADDRESS

C

8080 MICROPROCESSOR

5. PROGRAMMING EXAMPLES

{Decimal operation)

a. Decimal Additicn:

Memory address of Augend; D and E is (ALPHA)
Memory address of Addend; H and L is (BETA)

Mnemonic Operand Explanation

X1 D. ALPHA toad 0 and E Immec.ate

|54 H.BETA Lead H and L Immed.ale

Mvi c.8 Lead Cwith 8"

XRA Exclusive or A with A
LOOP: LDAX 2] Load A with (DZ)

ADC » Acd M 1o A (RL)

DAA Decimal Adjust

STAX D Store A 10 (DE)

INX H Increment HL

INX 2] Increment DE

BCR [Decrement C

INZ LOOP i not zero go to toop

Calculation time (16 digits) ~ 230 :s2Cc @

b. Decimal Subtraction
Memory address of Minuend; D and E (ALPHA)
Memory address of Subtrahend; H and L (BETA)

Mnemonic Operand Explanation Bytes
LXi D. ALPHA toad D and E immadiats 3
wi H.BETA Ltozd H and L Immadiate 3
Vi c.8 Loac C with 8" 2
STC Set Carry 1
LOOP: MVI A, 98H Load A with 99 HEX 2 EE =35
ACH 0 Acd wilh carry 2
uB M Subtract M from A 1
XCHG Exchange DE and KL 1
ADD M Add Mto A . 1
DAA Decimal Adjust 1
MOV MA LeadAto M 1
XCHG Exchange DE and HL 1
INX D increment DE 1
INX H Increment HL 1
DCR c Decrement C 1
Nz LoorP 3

Calculation time {16 digi's) ~ 230 usec

c. Binary Multiplication Loop
A contains Multiplier, D and E is Multiplicand, H and L z-

Explana;;a:n

Mnemenic Operand Bjlas
(4] H.O Initializ2 Pa; 3
MYI B.8 8 — B to co: 2

LOOP: DAD H Shift partial p. 1
RAL Rotate mutip! 1
JINC DEC Test mu 3
DAD D Add multiphicand 1o pariy - T
ACI c

D=C: DCR B8 Decrement B ioco co T
INZ LOCP Testtoszeif 8 = 0 1o it 2

Calculaticn time for 8 x 16 multipiy ~ 230 usec

d. Accumulator Leading

Mnemenic Cperand Explanaticn Bytas

MOV AB Load A with Reg 1

MY A 23 Loaz Aw-nDan2 2

LDA 4083 Lead Avith ¢ 3

MOV A M Load Ausing H 1

LDAX B Load Ausing Ba~ 1

LDAX »] Load Ausing D an 1

LHLD 4033 toad A indirect using LCC 40S <

MOV AN

POP A Load A with cata stack K

i 1 : H

8080 MICROPROCESSOR

6. TIMING DIAGRAMS
a. Relation between READY and DBIN

SYNC ! ’ ~

TN DaTAMUST
SN BE STABLE

16

C

§08_9l\ﬂ_l(72RVOPROCESSORV

Relation between RZADY, WAIT and WR

T, T [T

% T I

T

i i T i T S T
i i
Asg ! ’ i
- | i
050 ! / Y
. i ;
WA \ :
i i i N
! H i -
READY \ 1 ! /—._—
i i ¢
warr . s \
L

b. Non-Memory Reference Instruction (AR;)

T T

al T T Lt T T L

READY

(J WAIT

A

STATLS

INFORMATION ®

NSTE R Retw vz Sists eed Charton Pae £

.17

8080 MICROPROCESSOR

c. Meinory Reierence Instruction (CALL)

Arso / PC3

070 [T eve) roamme 7 L_ge X

]

oBIN {
pren ‘]
READY .
WAIT —— ” |
WR H
| P AV S A AV
1 ! H i : : !
i b i : isavel save
! i i : H A ‘ C,
H H
STATUS ; h ¢ x ; ¢)
INFORMATION @ @ H @ i x@ ‘} | @
- ! i . . 1 i
i ; i : i B H i i
i ; : i
i ! ! ‘ ! : i i !
NoTE: () Rater 10 Status Word Chart on Page 4.
d. Input Instruction
My 7 "z 7 M3
Ty T2 T3 Ta T T2 T3 T ! T2 i T3
. i
A N N e nene e
: i i ! ;
@« [\ !
i i ! i 10 DEVICE NUMBER
Arso fevTe M sYTE i INPLT DATA TO
CONE I ACCUMULATOR
070 N _ _ J FLoATING, / * _?_ K [N

SN A

i

I\

SYNC ___/—T ™\ |

T\

[21:100) ' 1 \ . ' . \
READY — et - 4
warr
; ?
Telancn ® Xo X®
: H

i i i

C

8080 MICROPROCESSOR

e. QUTPUT INSTRUCTION

1:0 DEVICE

ACCUMULATOR

SYNC
oBIN
READY - -
= i i
i H i
H {] {
1 1 H 1 i
WAIT ot - :

(e CHE X ® [@

L :

NOTE: (W) Rater 15 Soras Word Charton Pan .

{. HOLD OPERATION (READ MODE)

HOLD t
REQUEST o~ \
; + .
HOLD [' \ i
READY ‘ [1 : ‘
HOLO F/E ; ! .
INTERNAL _..___....___—J B L.—..—-———-—-——

HLDA ! v

. ERATION CAN BE
© 13 SEE ATTACHED ELECTRICAL CHARACTERISTICS. ALLY.

8080 MICRGPROCESSOR

 HOLD Operation (Write mode)

Ase X : ;gonmc J

S I B T

HOLD ‘ B ‘
RECQUEST : \

HOLD !/ ! I \

READY

MOLD F/F : -
INTERNAL . / | . i \

: t : i :
HLDA : i - f \

: | WAITEDATA | ° .

My o M2 i M3
T T T RN ! L R
: * T - t
| : (HLY, + (DEJy - (HLy, i ! L (MU 4+ (BN -~ (ML
| : : ¢ .
T T
SO J U VO | VONNE WNNN WY NN WY) WY 3 WU 4 VAN WY | W

a H T T ADSRESI DOE e Ty / .
w0 f ; ! 25 a=s;bo:siuorcna.’ac i\rno—muc‘ : ; J!

Mamﬁf——“ _______ D e |
|

T i : @ i

HOLD * \ . H
HEWEST——.—.—/ : i -

L2 i }

1% "CAD” INSTRUCTION
READY SIGNAL WILL NOT BE 2ECUIRZD 'ZIONLY ONE SYNC SIGNAL 'HLDA SIGNAL APPEARS AT ONE CLOCK
PERIOD FOLLOWING T3 TIME

20

C

8080 MICROPROCESSOR

g. Interrupt

5 >
1HeS

Ao 1 \ A : ;
T G A SRR S TR
svic \ L U
Ay i — N ! i ! !
»a : _____"f

RETURN W, 1\

T

(NTERNAL)

INTE

INT -

INTFF
(INTERNAL

\ -

INHIBIT STORE
{PC1) INTERNAL

— 1

STATUS) - .
weormation —] ® i i
: i

b ~
N7 () Reter 19 Strns Wort Chart on Page 4.
h. Relation between HOLD and INT in the HALT state
- My
San T o T o ot o % T %

DEN

O e e G L

HOLD F.F
(INTERNAL

INTFF
UNTEANAL

STATUS
INFORMATIZN

______F}__——"—“_—'M

t

l i

3T

v
-

S
to

o
&

wote

Reter ta Serma Mz Chorton Prge &,

o1

8080 MICROPROCESSOR

i. HALT lnstruction

waiT
TRroRamIcN ® ! - 3x @ ;
| i
! 7 |
NOTE: (§) Reter to Status Word Chart an Page &,
j. RESET

Tn

Tn+1

Tn+2 Tn+3 Tn+i-1) Tari T i T2

!
|
n N M N n

Ar________--__:f___q
T oaTNG pe-o .
L

1
i
-~
i

i

t

|

meseT | (0 f T \
pTERNAL : ; { \ :
; | ! —\
swe | ! .
7
DBIN , I 1‘ ! 5 /
] |)
i i
status ! : ®
A
INFORMATION | X@ i

("WHEN RESET SIGNAL IS ACTIVE, ALL OF CONTROL OUTPUT SIGNALS WILL BE
CLOCK PERIODS LATER, THE RESET SIGNAL MUST BE ACTIVE FOR A MiNIMU!

MEDIATELY OR SOME b
£E CLOTK CYCLES. IN

THE ASOVE DIAGRAM N AND | MAY BE ANY INTEGER,
L

NoTe (1) Rafer to Status Wore Chart on Pagn &

22

C

8080 MICROPROCESSOR

MINIMUM 8080 SYSTEMS

C

LI ATCAESS BUS 18 >
RAM RAM
ROWM
8318 8101 8101 .
R 24 SYSTEM TUTPUT SYSTEM INPUT
H VAN
H ¥
i i
: I Lo
H L
€080 P |
o] 8212 { vee] 8212 ono—] 8212
i
oBIN —D l g -
! ;
i
" Y | [0 I
010y i —OIRECTIONAL DATA SIS 1t :)
T
oo { 1 E]
f
- g STATUS LATCH H
Vea =] ¢ ROM
K/’ < 8212 Row
T PORY
} I oUTPUT 1 QUTPUT PORT
CLOCK ‘ MEMR
GINERATOR o, ITTL: INPUT
Figure 5. Minimum 8080 System.
32K (33
2K BYTES ROM
256 BYTES RAM - r
1 INPUT PORT MEMORY 1o
1 QUTPUT PORT
ADDRESS 215 (15}
A=Ay >
VR][
Ars
2
ROM CS
DBIN ———————-l 8316
880 en |eus
DRIVER °
8215
&-0,K
! 8218 | 2! OIRECTIONAL
i CATABUS (B} °
' =S ! .
i
: GND —d L
! GND] 8212 8212
' Ars — THIS ARCHITECTURE PROVIDES THE
! CES'ENERI W' ™4 ANTH SET OF IN-
CLOCK . CRIVER ve
GENERATOR CCNTROL
IMEMCIY CPERATION)
SYSTEM INPUT

Figure 6. Minimum BOBO System {(MEMORY MAPPED 1/0).

23

.
A = TUCCPERATION)

8080 MICROPROCESSOR

Ay By 3 ZDDAESS 305 151 >
HOLD ———e
[y p—— b T2 ,
GAD ~ereemand
“sv 080
. SYSTEM
T IV PU— CONTROLLER :
Ry ypm—
0,0, G
wa - of .
E. OBIN 8228
RESET HLDA (SEE Ix CONTROL BUS
SYNC NOTE oW
A\
b %
b— WA
% %
]
24 il)
LOCK — .
e AT
WAIT REQ -] {SEENOTE2Z osc
RESET ————0)
-
Figure 7. 8020 Standard Interface.
Ay By 805 331
[ey ——
4
[*V; pom—— e INTE
Re o
:;EL\ g 171 ac2 8212
215 nn 8137A 751
[
8080 SYSTEM
CONTROLLER

WATREQ
wE2T

3 - MENW
READY oain wn Pios
RESET HLDA —
SYNC (SEE oW
NOTE
E l |) -

(STENCTED) os¢
e

0

Figure 8. 80C0 Standard System Architecture.

24

ACTES
1.SES PAGE 43
2 SEEPAGE L2

E—"

C

8080 MICROPROCESSOR

8. ELECTRICAL SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS*

Temperature UnderBias

torage Temperature -65°C to +150°C
Ali Input or Qutput Voltages
With Respect toVgg « o ovvvonenn.s- -0.3V t0 +20V
Vee. Vop and Vgg With Respect to Vgg -0.3V 1o +20V
Power Dissipation iitieanaann 1.5W

“COMMENT.:

Stresses above those listed under "Absolute Maximum Rat-
ings" may cause permanent damage to the device, Thisis a
stress rating only ard functional operation of the device at
these or any other conditions above those indicated.in the op-
erational sections of this specification is not implied. Exposure
to / i rating for extended periods
may affect device reliability.

8-1. D.C.CHARACTERISTICS

Ta =0°C, 10 70°C, Vpp = +12V £ 6%, V¢ = +5V £ 5%, Vgg = -5V £ 5%, Vgs = 0V, Unless Otherwise Noted.

Symbol Parameter Min. Typ. Max, Unit Test Condition
-
Ve Clock [nput Low Voltage Vgs—1 Vss+0.6| V
Vine Clock Input High Volitage Vpp-1 Vpoo+1 \
Vie input Low Voitage Vgs—1 Vss+0.8 v o
L/ Vin Input High Voltage 33 Veetl | V. §
11 lov = 1.7mA on the Data Bus
Vou Output Low Voltage 045 v i }low = -75mA on all other outputs
VeH QOutput High Voltage 3.7 VvV iflsp=100A.
Ippiavy | Avg. Power Supply Current (Vpp} 40 67 mA {]Operztion
20
lccravy | Avg. Power Supply Current (Vec) 60 75 mA i} iA - Z:BC
Y = .40 Usec
los tav) | Avg. Power Supply Current (Vaa) o1 | 1 | mA €
i | input Lezkage +10 HA Vss < Viy <V
ter | Clock Leakage 10 A | Vss < Vcrock < Voo
Ipr 131 | Data Bus Leakage in Input Mode -100 | wA | Vss<Viy<Vce
. Address and Data Bus Leakage +10 vA : Vacormata = Vee
During HOLD ; -100 | VaozrmATA = Vss
TYPICAL SUPPLY CURRENT VS,
&2. CQPACXTANCE‘ . TEMPERATURE, NORMALIZED. l
T,=25C Ve = Vpp = Vss = 0V, Vgg = -5V #5% e :
Symbol Parameter Typ. | Max. Unit Test Condition
Co Clock Capacitance 10 20 pf fe= 1 MHz
Cin Input Capacitance [3 10 pf Unmeasured Pins s i ; —
Cout QOutput Cepacitance | 10 20 pf Returned to Vsg E ':
> i
NOTES: z ¢
1. Ths RESET signal must be active for a minimum of 3 clock cycles. :
2. wMen CBIN is high 2¢ Viy > ViH an active pu!l up of nominally 22
wi'! be switched cnto the 0203 Bus.
(/ aAlsipply [ATp = -C.45%7C.
% =) s

AMBIENT TEMPERATURE {*C)

i s

8080 MICROPROCESSOR

8-3. A.C. CHARACTERISTICS .
Ta =0°C 10 70°C, Vpp = #12V £ 5%, Ve = +5V = 5%, Vag = -5V = 5%, Vgg =0V, Uniess Otherwise Noted

Symbol Paramatar Min. | Max. | Unit Test Condition
teyl3l | Clock Period 0.48 | 2.0 {usec

.t | Clock Rise and Fall Time 5 | 50 |nsec ’
1oy ¢y Pulse Width . 60 nsec

to2 ¢7 Pulse Width 220 nsec

tp1 Delay ¢ to 92 i 0 nsec

tp2 Delay 92 t0 ¢4 70 nsec

to3 Delay ¢4 to ¢, Leading Edges 130 nsec -
toaf2} | Address Output Delay From ¢ 200 | nsec | R = 4.5k22, €y = 100pf
tpp (2] | Data Output Delay From ¢ 220 | nsec | Ry = 2.1k, Cy_= 100pf
toc{2 | Signal Output Delay From ¢y, or ¢7 (SYNC, WA WAIT HLDA} 120 | nsec | Ry =4.5xQ, CL = SOpt
tog (20 | DBIN Delfay From 92 - 25 | 140 jnsec | Ry =~2.1k02, € = S0pf
toif1l | Delay for Input Bus to Enter Input Mode During DBIN tor | nsec

tosy Data “’Setup Time" During ¢4 and DBIN 50 nsec

TIMING WAVEFORMS vl (Note: Timing measurements are made at the following reference voltages: CLOCK “1” = 9.5V,
“Q" = 1.0V; INPUTS 1" = 3.3V, “0” = 0.8V; QUTPUTS 1" = 2.0V, “0” = 0.8V}

oy ! — oy
i

_ A il \ .
. | 75 e v

:I]-:{
D_.

. ’ i
o1 ~ or . ' : i]
i - i L
— R P }
. . T i
Ay — | - ___Z--_...._.__-_-._.__.._- —————d
[+ toa aw i
i : . . | N i
be—too | — o e et i
. ~-. y
- i .o _jox . i DATA OUT:|
o) Y i S W
—> oy - low

i

I

!

' B ' 1
h

i

I

svrc . atciine ! i
1 toc o R i]
oaIx i . X 3 ! ! L

|
- lps-e;

C

8080 MICROPROCESSOR

A.C. CHARACTERISTICS (Continued)

Ta = 0°C 10 70°C, Vpp = +12V £ 5%, Ve = =5V £ 5%, Vgg = -5V = 5%, Vgg = OV, Uniess Stherwisz Noteg

H

Symbal | Paramater Min. | Max. Ueat i Test Condition
tos2 Data ""Setup Time™ to ¢ During DBIN 150 rsec

ton!t! | Data “Hold Time™ From ¢5 During DBIN [| =sec

yel2l INTE Output Delay From ¢ 200 By =33k, Cy = S0pf
trs Ready “‘Setup Time'* During ¢2 120

tHs Hold **Setup Time” to ¢ 140 i

tis INT “Setup Time" During ¢ [During &1 in Halt Moda) 180

tH “Hold Time" From @2 (Ready. INT, Hold) 0

teD Delay to Float During Hold tAccress and DATA BUSH 120 i=

twal2l | Address Stable From WR tp3 ¢ n2e | By =45, Cy = 100p!
taw!2) | Address Stable Prior to WR s} i TS2C . | By = 25¢, Cp = 10091
twol2! | Output Data Stable From WR o3 | | msec | Ap = 2.1k2, Cy_ = 100pf
towi2l | Output Data Stable Prior o WR - 18] | {78 | R =21k2. C = 1000t

NOTES: 1. Data input shou'c B eratisd with DIIN status Mo 2us confics com then 2eur and Cata hold time isassured.
2. Lead circuit

Aty

4 REZDY

waIr

»

HOLD

DR,

i 5,

6.

7

L/ .
INT 9.

.y

—tg~

INTE

- N —— 12

3.

. During hait moce only, timing s with resect

ICY D3 2 TTO2T eI T

TYPICAL 3 QUTPUT DELAY VS. 3 CAPACITANCE

The following are reieva~t when imterfaci
al Maxi

Raaxy signyl must De 5
ol sigas!
ane Ty when i
Irteerpt sgnal mus be 520!
o the foliowing instruchan. (E xternal syneheir ST o 3 761
1 eope.

2oy notrecree

N3 e cxt o* e @z CIDER Sezia Sf 2Ry MATTLCTION £ be cecognized
s rac t

This timing G:agram shows Lming relaticns™ any soecitic meching cycle.

27

8030 MICROPROCESSOR

9. MCS-80"" COMPONENT SUPPORT FAMILY

RAMs

8101
8111
8102
8102A
8107A

ROMs
8302
8308
8316

8702A

8704
8604

Static 256 x 4

Static 256 x 4 (Common 1/0)
Static 1K x 1

Static 1K x 1 (High Speed)
Dynamic 4K x 1

256 x 8

1K x 8 {High Speed)
2K x 8

256 x 8 (Erasable)
512 x 8 {Erasable)
512 x 8 (High Speed)

Mask

PERIPHERALS

8205 1 of 8 Decoder

8210 Driver 8107A

82144 Priority Interrupt Control Unit

8216 Bi-Directional Bus Driver

8224 Clock Generator — 8080

8228 System Controller — 8030
INPUT/OUTPUT

8212 8-Bit 1/0 Port

8255 Programmable Peripheral Interface

8251 Universal Communication Interface

28

/l
—1

