System 88
- BASIC

Revision 3

PolyMorphic
- Systems

460 Ward Drive - Santa Barbara Cdalifomia @31 (805) 967-2351

This manual is PolyMorphic Systems part number 810162,
Copyright 1979, Interactive Products Corporation. It is to be
- used in conjunction with the following System disks.

If you are wusing Version 3 of the operating system software,
you should be using one of the following system disks.

5" System Disk 820171

5" System Disk (extra memory for extra speed) 820172
8" System Disk 820174

8" System Disk (extra memory for extra speed) 820173

If you are using Version 4 of the operating system software,
you should be using one of the following system disks.

5" System Disk 820189
5" System Disk (extra memory for extra speed) 820190
8" System Disk 820168
8" System Disk (extra memory for extra speed) 820188

Use one of the following system disks for double density 8813
systems (Both have Version 4 of the operating system.)

5" Double Density System Disk Part Number 820168
5" Double Density System Disk (extra memory for extra speed)
820191

Copyright 1979, Interactive Products Corporation
469 ward Drive
Santa Barbara, CA 93111

All Rights Reserved

LIMITED WARRANTY and LIMIT OF LIABILITY

Interactive Products Corporation (dba PolyMorphic Systems)
makes ©No Warranty, express or implied, concerning the
applicability of this program to any specific purpose. It
is solely the purchaser's responsibility to determine its
suitability for a particular purpose. Interactive Products
Corporation accepts no liablility for 1loss or damage
resulting from the use of this software beyond refunding

the original purchase price.

THIS STATEMENT OF LIMITED LIABILITY IS IN LIEU OF ALL OTHER
WARRANTIES OR GUARANTEES, EXPRESS OR IMPLIED, INCLUDING
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

O

PART ONE: TUTORIAL

NOTE: If you are already familiar with one or
more prior versions of PolyMorphic's BASIC, you
will propably benefit most by reading the preface
which explains the new additions to each version
of BASIC. The tutorial section of this manual
has been updated and indexed to reflect these
changes. Y new addition to the BASIC
documentation is the BASIC Reference Guide which
is Part II of this manual. This guide |is
intended to serve as a daily reference for those
who have read, and are familiar with, the
information in the tutorial section.

PREFACE
(For Users of the Original PolyMorphic Systems Disk BASIC)

This manual describes the third version of PolyMorphic
Systems disk BASIC, version C¥4L. The new version of BASIC
is greatly improved, with many new features we believe
you'll find useful, as well as improvements to the existing
features,

We want to direct your attention to the items in the new
BASIC that may affect the programs you wrote using previous
versions. In particular, some programs written with the
FIRST version of BASIC will not run with the new BASIC
unless they are edited. If you have been wusing the
original version of PolyMorphic Systems BASIC, read with
care ALL of the list below of the changes made since that
version was released.

If you have been working with the second version of
PolyMorphic Systems BASIC, version Bf8A, skip the first
part of the 1list below and just read the latter part,
starting at the heading "FOR USERS OF THE SECOND VERSION,
B#8A (AND THE ORIGINAL VERSION.)"

You should £find when you read the descriptions of the new
features that the differences (and the procedures for
editing old programs to run with the "new BASIC) are
self-evident.

FOR USERS OF THE ORIGINAL POLYMORPHIC SYSTEMS DISK BASIC,
Agl :

1l) If vyou indexed strings -using the subscript syntax, you
will have to convert those program lines to the new method
of indexing strings (using string functions MID$, LEFTS,
and RIGHTS$). Since the new BASIC uses string arrays, you
may want to convert your string indexing program lines to
string array statements.

2) You can now dimension your arrays to begin with either
the first or the zeroeth element. If you want all arrays
to begin with index @, use the DIMJ statement at the
beginning of your program.

3) Note that the Boolean 1logical operators function a
little differently now when applied to data: they treat

each piece o0f data as a 16-bit integer, and operate
bitwise. -

4) The new BASIC occupies more memory space than, the old
version.

5) When you load in a BASIC program, the current contents
of memory are NOT erased. In this way you can concatenate
BASIC programs. You can now formally merge BASIC programs
using CHAIN.

6) You can now make multiple assignments in BASIC.
EXAMPLE:

A,B,C,D,E,F=0 To save memory space, you may
wish to convert your present assignment statements to the
above format where appropriate.

7) WAIT and PAUSE have now been added to BASIC. If you
have programs that check the keybocard port to see if a
character has been inputted by the user of your program
before continuing execution of your program, you may want
to use WAIT. If you have "time out" loops that count down
a certain amount of time before continuing execution of
your programs, you may want to use PAUSE.

8) The use of the random number generator function has
changed. See Section 6 for more information.

9) You can now include format specifications within the
argument of a STRS function.

18) You can now perform many matrix functions (e.g., MAT
PLOT, MAT PRINT, MAT READ, MAT IF, etc.).

11) There are now special array functions: SUM, PROD, MAX,
MEAN, STD, and MIN. '

12) The Run~Time-BEnvironment 1is now saved. This means
that if you interrupt a program, you can reassign a value
to a variable and continue execution of that program. The
values of the variables in a program are not cleared unless
you use the CLEAR statement or begin execution of a program
from its first 1line.

13) The new version of BASIC includes a file-management
system that 1lets you back up your BASIC programs on tape.

14) If you used the PLOT feature within a FOR-NEXT 1loop,
you may want to convert those program lines to use the MAT
PLOT feature. You will find that this change greatly
increases the speed of your plot.

15) You will find that many new scientific functions hnave
been added to BASIC. You may want to replace your
subroutines that calculate these functions with the

appropriate BASIC functions.

16) There are now debugging statements that you <can
incorporate into -your program (e.g., ON ESCAPE, ON ERROR,
DUMP, etc.). See Section 18 for more information. You <can
also single-step a program.

17) A data record (the characters between two carriage
returns) can now be any length (not 128 characters or less,
as before).

FOR USERS OF THE ORIGINAL POLYMORPHIC BASIC,
FOR USERS OF THE ORIGINAL POLYMORPHIC BASIC,
AND OF THE SECOND VERSION, BO3A

18) You may now use the CLEAR command as a program
statement.

19) The RANDOMIZE statement selects a random seed for the
RND function. When you use RANDOMIZE in a program, every
run of the program uses a different set of random numbers.

2) The new command DIGITS sets the degree of precision of
calculations. Eight by default, the number of digits of
precision can vary from six to 26.

21) The new statement LINK works like CHAIN but deletes
the current program and variables in memory before bringing
in the new program.

22) ON ERRCR and ON ESCAPE program lines may now include a
THEN clause, which causes the program to treat the ON ERROR
or ON ESCAPE statement as a GOSUB.

23) The statement RESET shuts off ON ERROR and ON ESCAPE
processing. RESET also ends the use of WALK and restarts
normal running.

24) The variable LINE returns the line number of the 1line
in which an error occurred. '

25) The statement DRAW draws a screen 1line from the
current cursor position to a position given in the DRAW
statement arguments.

26) Instead of being able to determine the ASCII value of
only the first character in a string, the ASC function now
lets you specify which character in the string you want the
ASCII value of.

SECTION

SECTION

SECTION

SECTION

SECTION

TABLE OF CONTENTS

l. INTRODUCTION.::.eeececessasccssosscscsccsanaas P
1.1 MANUAL CONTENT :eeeeecsoecesccesccscossssossessslbd
1.2 THE EXAMPLES IN THIS MANUAL..coccevscosccsoascl?

PART I: BASIC

2. GETTING INTO BASIC:iccceesacocosossacassosscacasssll
2.1 THE KEYBOARD AND DISPLAY...cccoecnee ceacacsssasll
2,1.1 Giving Instructions to BASIC..eceews 19

2 Carriage RetUIMNiceeoccscoccocoscscacesaldl
.3 Interrupting BASIC..eceeevcccscaceasll

.4 What To Do If You Make A Mistake....21

2.2 PRIMARY ELEMENTS OF A BASIC INSTRUCTION...e... 21
2.2.1 OperatOrS.ccececccesccsccnsscssaes eeesae2l

2.2.1.1 Arithmetic operators......2l

2.2.1.2 Relational operators......23

2.2.1.3 Logical operators.c...... .24

2.2.2 OperandSecececess- tessesesessnsacoes a5

2.2.2.1 ConstantS...cceeocscea eeseal5

2.2.2.2 StringS.ccccccscscsosessesld

2,2.2.3 Variables....... cecscacsasa 26

2.2.2.4 EXpPresSsioOnNS...c.iseceseccccsslbd

2.2.3 Special CharacterS.ceesecccscsss ceaveald

2.3 DIRECT STATEMENTS .ececeocasccscaccscsse esecssae 27

3. INPUTTING YOUR PROGRAM....cece.. csescos csceses .29
3.1 PROGRAM LINE NUMBERS...¢ccccoccocscscccnsan aee29
3.2 MULTIPLE STATEMENTS PER LINE....cececocssn ces.31

. RUNNING YOUR PROGRAM: CONTROL COMMANDS .e.coose.32
el LIST.eeeeceasccnasase ceecccascsssecsecsaccance e .32
.2 REN (RENUMBER) e e eeevccscoccncscccccose ceessscceesedl
.3 RUN...... cecenecec e cheeececcacoevecsoss ceoaen 35
4.3.1 Wwhen RUN is Given a Line Number.....35

4.3.2 When RUN is Not Given the Optional
Line Number....coeeeeee. ceeeccccoscnnes 35
4 CONTROL-Y...¢.. csacescesse ceecescecccscscecsscnence 36
5 CON (CONTINUE) ceoescesoceaccesccaocs ceceascnss e e 30
6 CLEAR. ..ceccaencsocnosscecacssscsscans cseescen e coeed?
7 SCR (SCRATCH) cceosceosesscoosncocasocosssansscas .«.38
8 DEL (DELETE) ceceeesaces T 38
9 XREF (CRCSS REFERENCE) ceceese ccescscnnve P ¥
13 WALK (SINGLE STEP) ecesvecwe-. e asceeccsscsecsecsnes e 38
1l SUMMARY OF CONTROL COMMANDS ecoecoeee ces e .38

- N
o o

. PROGRAM STATEMENTS .sccsoecesccecacnccnses R A |
.1 GENERAL PROGRAM STATEMENTS..... e escscsceancace 41
5.1.1 REM (Remark)....ceee. cessececsenvosas 41
5.1.2 ST0P..cciceetccccocsoncasccascsns ceeses 41
5.1.3 Assignment Statement (LET)....c.. ee.42
5.2 INPUTTING DATA. . cceececaccccsscnsaccsosccosssccs 43
5.2.1 INPUT and INPUTl...eeeeeeoe cescsecnes 43

Ul n

SECTION

SECTION

SECTION

wm (%]
.
U

8.3
8.4
8.5

Inputting From Disk FileS.eceeeevoes.dd

5.2.2

5.2.3 DATA and READ..seececcooncaassssescsidd
5.2,4 RESTORE:.:vececcccocrovsosnosossaocsesasdd
5.2.5 8Single Character Input Functions

INP(B) and INP(l)eeeeeecnconnoeannsndb
OUTPUTTING DATA.cecescssosaccscscssncsasssccnassd?
5¢3¢] PRINT.:eeoeccassssssasscoascsscasessd?
5.3.2 Formatting the PRINT Statement......48
5.3.3 Outputting to Disks and Printer.....53
ITERATION: THE FOR-NEXT LOOP..cccccccsvosccased3
5.4.1 Nesting of FOR-NEXT LOOPSecccocsseasdb
BRANCHING STATEMENTS ... coceesnsccacscacsccccsnnsedd
5.5.1 GOTO.:eeecesanssceacononssssssssacnceadd
ON..eeGOTO.eestvscesccsssscascssscsseacbdl

5.5.2
5.5.3 ON...GOSUBteeaceessocasasonsonneresabld
5.5.4 IF~THEN:cecoeceooaoocns P (YA
5.5.5 ELSE..iicecesesencccsccscascoaneacsnnsnessbdd
5.5.6 EXIT..iceceeesescccontasascasconcessbd
STATEMENTS MODIFYING PROGRAM EXECUTION........64
5.6.1 CHAIN.::.eeesosancocncassncsssoeneessbd
5.6.2 LINK...eoceevooonoan ceesesesccesantvana 65
5.6.3 DUMP..ececoscncancnns cesecseesacanas 65
5.0¢4 WAIT....oeeeesosncecsoscsncssccnncsnsssssbdd
5.6.5 PAUSE Necveceesececoccsncnoscccccnsesabd
5.6.6 ON ERROR..ecevevencen seseesacssseans 65
5.6.7 ON ESCAPEcececececcsssssascanannss ..65
SUMMARY OF PROGRAM STATEMENTS.....cvceess ceee.65

FUNCTIONS AND SUBROUTINES...ccoccscceoscscosaasabd?
INTRINSIC FUNCTIONS......... ceesecncccssos ees.69
6.1.1 Regular Intrinsic FunctionS.........69
6.1.2 Intrinsic Functions Directly Accessing
Memory and the 8680 System..........71

6.1.3 Intrinsic String FunctionsS...e.ecee. 72
USER-DEFINED FUNCTIONS..cceooaes g
SUBROUTINES ceeceecscoosccossosssssosscscacscccscald

STRINGS AND ARRAYS.ecteccevsscscscosscssscssscscscscse 77
ARRAY S cctesocscacesoncorsaasaocacssosacscssecses 77

7.1.1 The DIM Statement..icceeeecacas cecaoes 78

7.1.2 Optional Array Origins...... ceeceees 78
STRINGS S . cteeecososceasssososocsascscsascssnossscselB

THE MAT STATEMENT .. .cvececosccccscesacssoascsosacsoes 81
MAT i eceecococnsecoosoossoosncsnssososscscsacasecs 81

ASSIGNMENTS USING THE MAT STATEMENT....¢ee....81
8.2.1 Multi-Dimensioned Arrays Using MAT..82

8.2.2 Multiple Assignments Using MAT...... 83
8.2.3 Order of Assignment in MAT

Statements....... ceceescacsseencans .84

MAT IN COMBINATION WITH OTHER STATEMENTS......84

8.3.1 MAT IF StatementS..eceecs. sesessasassBD

THE # FEATUURE IN MAT STATEMENTS...¢¢.es.0....86
MAT WITH STRING ARRAYS.O.......'......'......'87

SECTION
SECTION

SECTION

SECTION

SECTION

SECTICN

8.0

9.
14.
11.
11.1
11.2
11.3
11.4

11.5

11.6
11.7

1z,
12.1
12.2

13.
13.1

14.
14.1

14.2
14.3

14.4

14.5

l4.6

SPECIAL ARRAY FUNCTIONS..eeteeeececcacesscaasses8?

1l SUM.eeeoetesscosasaossccansacscaes seessa88
e2 PROD:c¢ecoscscecoansoscacncasnas ceeeesaB8
.3 MAX and MIN..eeeocoessesnncsooasccesnseal8
ed MEAN.eceeeoeosesccosoocsasnaaasnacs ceeeee88
5 STDc¢ecesccooscosscacosssnancsnssscsccsaea 89

THE PLOT FEATURE'.I....I..........C..I.Igl
OPTIMIZING YOUR BASIC PROGRAM.::ceeooeeceseess9dl

DEBUGGING BASIC PROGRAMS...ccecesescecscsassssd?

RUN-TIME ENVIRONMENT..coesecoececcscocsccscancead?
THE DUMP COMMAND/STATEMENT.:ceoeeeen cesceaseedB

11.2.1 DUMP in Direct Mode...c.co.. ceeseans 98

11.2.2 DUMP as a Program Statement........ 99
CROSS REFERENCE (XREF) cecevesocoscscescecscsaasllf

O T T 9 1
SINGLE-STEPPING IN BASIC.sceeecoaccse ceocsnessllB
ON ERROR (ERR) ceveoesonans ceeesccasssns cecnces 141
ON ESCAPE.ccceacccses ceecsesesssensaces eeessealD2
RESET.c.ececen cesecsssececs e csevecsevneace 182

PART II: BASIC AND THE DISK SYSTEM

FILE CHANNELS .cceeeeereerccenccncncas cseesenae 165

THE BASIC FILE CHANNELS...c.cceceese cecseeaon 165
FILE CHANNEL MEMORY USE..c.cccceesccccncscccas 185

BASIC DATA FILES: OVERVIEW.:.eceoeeeen ceeeeesalB7

DATA RECORDS..ceeveveceecsoassecscssoscsnaca .108

CREATING AND USING BASIC DATA FILES.....cc... 189

FILE STATEMENT ELEMENTS ceecsaccocacsoasaccseslld9
14.1.1 The File Channel...sccceasoscooscscs 119
14.1.2 The Keyword....... P I I
14.1.3 File SpecificationN...cececssccccas 111
14.1.4 The File MOd@:::eeeceacssssnssosaall

CREATING A DATA FILE: OPEN KEYWORD AND CUT

FILE MODE...sceoocassasascososeasacsossnssscscssse 112

OPENING A DATA FILE FOR INPUT: OPEN KEYWORD

AND INPUT FILE MODE..eccecoccacesosccasaaacss 114

DATA TRANSFER: PRINT, INPUT, INP, OUT...¢...115
14.4.,1 Writing Data to a Data File:

PRINT and OUT.eveccccecccs cacessaaslld

14.4.1.1 PRINT ..t eevvooene ceacnes 115

14.4.1.2 OUT..eetrieeeocccaanens «.117
14.4.2 Reading Data from a File: INPUT

and INP..cceseocassoccoccoacnscas e 117

l14.4.2.1 INPUT...... cecaseasananse 118

14.4:2.2 INP..veeecooases P I

CLOSING A DATA FILE: CLOSE KEYWORD, BYE,

AND EXEC.vceeoee cesescccsccccs cecscccssoa eesol20

SELECTING A PARTICULAR DATA RECORD: POS AND

REW KEYWORDS .t ceeooesacssscscocoscssacscsssssesslll
14.6.1 “Rewinding" a Data File (REW).....1l21
l4.6.2 Positioning a Read to a Particular

. Data Record (POS) ececeosacsssasssalll
14.6.3 Fast Read Positioning (Fast P0S)..122
14.7 UPDATING DATA RECORDS: INOUT FILE MODE......123

SECTION 15, CONNECTING BASIC TO A PRINTER OR SPECIAL
DEVICES eceeeoecoecosceonsosceccsosocssosencscccooeelll
15.1 SENDING DATA TO THE SYSTEM PRINTER...¢.e¢e...127
15.2 USING SPECIAL DEVICES (DEF) ceveecoececesseeeeal28

SECTICN 16. SAMPLE PROGRAMS AND SUMMARY OF BASIC FILE-
HANDLING COMMANDS ¢ ceececcocsccsonanscovscascs .131
16.1 SAMPLE PROGRAMS..:eccecessccsvsaaccase eseessessoslll
16.1.1 Building a Small Data File with
Fixed-Length Records........ seessal3l
16.1.2 Opening a Fixed-Length Record File
in INOUT MOdE€..ceceeeccescccsaasssal32
16.1.3 Updating a File Without Using POS.133
16.1.4 OQutputting Calculations to a Data
File.ivieeoseeosososaaaononcas eeeeaeal3l
16.2 SUMMARY OF BASIC FILE-HANDLING COMMANDS.....134

APPENDIXES
APPENDIX A. THE BASIC ERROR MESSAGES...¢cceecasacssss eee137
APPENDIX B. RUNNING BASIC AND LOADING AND SAVING BASIC
PROGRAMS .. s ceteceecccecsoncncccccss eeseeeeeald3
l. RUNNING BASIC OR BASIC PROGRAMS.... eees.153
2. LOADING PROGRAMS FROM BASIC.ceeceececesassssasssld3
3. SAVING BASIC PROGRAMS..... ceseescccsacaccseasaslbd
4. LOADING PROGRAMS SAVED BY POLY 88 BASIC.......1l55
5. CHAIN.I..'.....'I..Q.....I.."‘.l...... 155

6. BASIC PROGRAMS AS SYSTEM FILES....eecseeseeessld?
APPENDIX C. SAMPLE PROGRAMS .. ¢.cceeccessoccosocnsasa see..159

APPENDIX D. THE BASIC CHARACTER SET.¢ccaccocssasssscsesoasll?
l. HOW TO DISPLAY CHARACTERS BY USING POKE.......177

1.1 Video Screen Memory AddresseS........177

1.2 Using POKE..eesooesaoscnsasosscasnscssasl8

2. CHART OF BASIC CHARACTERS .:sccevesocsccaca eee.178
2.1 Control CharacCterS.cessesscsoccosccsss 178
2.2 Numbers and Letters of the Alphabet..179
2.3 Special SymbolS...cvesescccscosnocnsoene 180
2.4 Greek Letters......... cees e seecccane 189

APPENDIX E. INTERFACING WITH ASSEMBLY-LANGUAGE PROGRAMS
AND MEMORY..¢oecteteersonccncsaces sesccnene ee..181
l. ASSEMBLY-LANGUAGE INTERFACE CALL.............181
2. MEMORY EXAMINATION AND MODIFICATION: PEEK AND

3.
4.
5.

APPENDIX F.

POKE.oieeeeeeoveenconnans Geececsrseeecscs oo 181

2.1 PEEK....... 4 ¢ & & @ 9 v o o *® o & @ 9 ..0181
2.2 POKE...eesoononsaas R - 2
ACCESSING THE I/O PORTS: INP AND OUT...csess ..182

ACCESSING THE TYPE-AHEAD BUFFER: INP(4),

INP(l), INP(2), AND OUT B.cceeecsassssccoscssslB2
RE-ENTERING BASIC FROM FRONT PANEL DISPLAY....182

COMMANDS, STATEMENTS FUNCTIONS, AND KEYWORDS
RECOGNIZED BY BASIC........ N ¥ -

I 1

BASIC REFERENCE GUIDE (Insert)

PolyMorphic Systems BASIC Manual Page 15
Section 1
INTRCDUCTION

BASIC 1is a relatively easy computer language to learn, yet
many sophisticated applications programs are written in
BASIC. Its original developers, Dartmouth College
Professors Kemeny and Kurtz (1963), conceived of it as a
language simple enough to be used by beginners yet powerful
enough to carry out complex computation.

The System 88 system disk includes a BASIC interpreter that
lets you <create and run programs in BASIC. This BASIC
interpreter, which we will simply call BASIC, is invoked or
loaded into memory so as to be used by typing BASIC (and a
carriage return). The BASIC files you create are
automatically tagged with a .BS filename extension (BS for
file source), and when a file with a .BS extension is run,
the system (again automatically) brings in BASIC to run it.

The BASIC interpreter on your system disk is itself
actually a file written 1in machine language, which can
accept instructions and data expressed in the BASIC
language and interpret them so that the computer's central
processor can understand them. ’

There is no single official version of BASIC actually in
widespread use. A minimal version is recognized by the
American National Standards Institute as common to all
extended versions, but each extended version is different.
This manual describes the Extended BASIC which is a part of
the PolyMorphic Systems disk-based microcomputer system and
which is provided on the System Disk.

NOTE: If you already know how to program 1in
BASIC, this manual should give you all you need
to begin creation of a BASIC program using your
PolyMorphic Systems microcomputer. You may, in
fact, be able to get along quite well 99 per cent
of the time by just referring to the PolyMorphic
Systems BASIC Quick Reference Guide, referring
only occasionally to this manual.

If you are an absolute beginner you will want to read one
of the many books on BASIC, aimed at the novice before
reading this manual.

Page 16 BASIC Manual PolyMorphic Systems

1.1 MANUAL CONTENT
This manual is divided into the following sections:
PART I: THE BASIC LANGUAGE

Part 1 incorporates everything that describes the current
version of BASIC itself, exclusive of the ©procedures for
working with it on the PolyMorphic Systems microcomputer.
You are now reading Section 1, the introduction.

Section 2: Getting Into BASIC. This section deals with
the primary elements used in building a BASIC program, such
as tech niques for creating and editing text, and discusses
airect statements.

Section 3: Inputting Your Program. Section 3 explains how
you actually type in your BASIC program and tells you about
program line numbers and multiple-statement lines.

Section 4: Running Your Program. This section discusses
the various control commands you can use when you run your
BASIC program.

Section 5: Program Statements. These are the BASIC
building blocks.

Section 6: Functions and Subroutines. This section
discusses functions pre-~defined in System 88 BASIC and
user—-defined functions. It also deals with the concept of
subroutines.

Section 7: Strings and Arrays. This section talks about
the concept of strings and arrays and how to use them in
BASIC.

Section 8: The MAT feature. This section describes the
unique System 88 BASIC matrix feature.

Section 9: The PLOT Feature. The System 88 BASIC PLCT
feature 1is described and demonstrated in this section.

Section 1@: Optimizing Your BASIC Program. This section
discusses ways you can speed up your BASIC programs and
increasetheir efficiency.

Section 11: Debugging Your BASIC Program. This section
discusses the methods you can use to “debug" (fix) your
BASIC programs, using the powerful debugging tools provided
by PolyMorphic's System 88 BASIC.

PART II: BASIC AND THE DISK SYSTEM

Part II describes the actual use of PolyMorphic Systems

PolyMorphic Systems BASIC Manual Page 17

Disk BASIC.

Section 12: File Channels. File channels are the paths to
and from BASIC and other parts of the system (for example,
BASIC data files, printer, video screen) over which the
system transfers data.

Section 13: BASIC Data Files: OQOverview. Data files
contain the data the BASIC files create and use.

Section 1l4: Creating and Using BASIC Data Files. This
section explains how to store and access the data generated
and manipulated by a BASIC program.

Section 15: Using the printer from BASIC. You can run a
printer directly from a BASIC program by wusing the
technique described here.

Section 16: Sampile Programs and Summary of BASIC
File-Handling Commands.

Appendix A: Error Messages Generated by BASIC. This
appendix lists the error messages generated by BASIC, along
with possible causes for those messages.

Appendix B: Loading BASIC and Loading and Saving a BASIC
program.

Appendix C: Sample Programs. This appendix contains
sample programs which demonstrate the knowing use of the
various features of PolyMorphic Systems BASIC.

Appendix D: The BASIC Character Set. The character set
for PolyMorphic Systems BASIC is given 1in this appendix,
including ASCII.

Appendix E: Interfacing with the Assembler and Memory.This
appendix discusses methods for interfacing BASIC and
assembly language programs. It also shows you how to
directly access memory.

Appendix F: Commands, Statements, Functions, and Keywords
Recognized by BASIC.

1.2 THE EXAMPLES IN THIS MANUAL

This manual was written on a PolyMorphic Systems System 88
computer and printed on a Diablo HyType II 1620 printer
linked to a System 88. The examples of computer printouts
resemble the characters put out by a printer or on the
video screen. As you read the manual, sit down with the

Page 18 BASIC Manual PolyMorphic Systems

system and try the examples given in each section; many
aspects of BASIC which are not <clear in the text will
become clear.

In most of the examples, the word "enter" appears opposite
the first line of the example. Type 1in the information

located on the line across from "enter" just as it appears
in the example.

The part of the example marked "output" indicates the
computer's response to the "enter" section. When you have
typed the "enter" section of the example correctly, hit the
carriage return key at the end of the "enter" section of
the example, and the T"output" will appear on the video
screen, I1f you make a mistake entering the example, refer
to Section 2.1.4.

REM

You will often see the word REM appear in a program line in
the examples. This word indicates to the computer that a
remark is to follow, not an instruction. BASIC ignores
everything on a program line after the word REM. The
remark is simply reproduced when the program is displayed.
The comments after the REMs appearing in the examples are
designed to help clarify the examples for you.

PolyMorphic Systems BASIC Manual Page 19
Section 2
GETTING INTO BASIC

The System 88 disk-based microcomputer 1includes BASIC as
part of the system disk, so you do not have to load BASIC
as a separate step; just type BASIC while in Exec (i.e.
when you see the system prompt § or $$).

After BASIC is properly loaded into your machine, a message
appears on the screen telling you which version of BASIC
has been loaded. Also, a prompt symbol > appears at the
left side of your monitor screen, telling you that BASIC is
ready to receive your input. The exact point of input is
indicated by the cursor (lighted rectangle).

In order to use the examples provided with this manual, you
must be acquainted with the keyboard and display.

2.1 THE KEYBOARD AND DISPLAY

The computer keyboard works much like a standard
typewriter. The shift key on the keybocard functions like a
typewriter shift key. Some keyboards have only upper-case
letters and use the shift key only for the symbols that
appear above the numbers and for other special symbols.
System 88 keyboards are full upper and lower-case
keyboards, so the shift key affects the full keyboard,
letters and other keys alike. Note that on the System 88
keyboard, the CAPS LOCK key affects the letter keys only.
As you strike the keys, the character for each key appears
on the video display.

2.1.1 Giving Instructions to BASIC

You <can give BASIC some simple instructions in two major
ways, by means of a direct statement or by means of a
program.

BASIC will execute some instructions immediately; this is
the case with direct statements. Some examples of 1legal,
acceptable forms of these instructions are provided in
Section 3.

Page 20 BASIC Manual PolyMorphic Systems

An example of a direct statement:

>
>
enter >PRINT 3+6
output 9
>
>

Another way of giving BASIC instructions is to give BASIC a
program, A BASIC program consists of a series of
statements treated as a unit. BASIC does not execute these
instructions immediately and individually. 1Instead, the
instructions in a program are executed sequentially when
the program "runs."

To signal BASIC that an instruction is not to be performed
immediately, but as a part of a program, the instruction
must be preceded by a program line number. Section 3,
Inputting Your Program, also provides details regarding
construction of a program.

Example:

>
>

enter >16 PRINT 3+6
>20 PRINT 34-16
>RUN

output 9
18
>
>

2.1.2 Carriage Return

To end an instruction to BASIC, type a carriage return
(RETURN or RET on most keyboards). This tells BASIC it may
go ahead and execute your instruction or (in the case of a
program line) store it for later execution. BASIC then
returns with a prompt, indicating that it 1is ready for
another instruction.

2.1.3 Interrupting BASIC

To interrupt any process in BASIC, wuse the Control-Y
command: hold down the Control key (CTRL) and type Y. If
you were typing a line when you used Control-Y, BASIC will
ignore that line and return with a prompt. If BASIC was in
the process of executing an instruction, it will £finish
execution of that instruction and return with a prompt.
(Some 1input/output instructions are interrupted during

O

PolyMorphic Systems BASIC Manual Page 21

execution.)
2.1.4 what To Do If You Make A Mistake
If you type in something wrong, BASIC provides several ways

of taking it out again. The table below summarizes the
deletion commands available in BASIC:

To delete

Individual characters: Use the DELETE or RUBOUT key
to

back-space over the characters
you wish to delete. Then retype.

Entire words: Hold down the Control key (CTRL)
and type W. This deletes one
word at a time from the current
line., Then retype.

Entire lines: Hold down the Control key (CTRL)
and type X. This deletes the
entire line that you are typing.
A Control-Y command may also be
used. Control-Y will cause BASIC

to ignore everything on the current
line, although it will not disappear
from the screen until the program is

relisted. After either of these

commands, the correct line may then

be retyped.
2.2 PRIMARY ELEMENTS OF A BASIC INSTRUCTICN

The primary elements of a BASIC instruction consist of
operators and operands. Operators are symbols that cause
operations to occur; operands are the entities operated
upon. Other elements of BASIC instructions and program
lines are discussed in other sections of this manual.

2.2.1 Operators

Operators consist of symbols used to perform certain
operations. These operations fall into three broad
categories: 1) arithmetic, 2) relational, and 3) logical
(or Boolean).

2.2.1.1 Arithmetic Operators
BASIC executes arithmetic operations in response to the

following symbols. If several are used in the same
expression, BASIC executes them in the order listed:

Page 22 BASIC Manual PolyMorphic Systems

Example Symbol Operation
>
>PRINT 972 - Exponentiation. On

keyboard without
this symbol, A
Shift-N is used.

>PRINT 7*9 * Multiplication

PRINT 6/4 / Division

>PRINT 23 + 67 + Addition

>PRINT 567 - 56 - Subtraction

Multiplication and ‘division are -equal in ©precedence;
addition and subtraction are also equal in precedence. The
order of execution of multiplication and division or of
addition and subtraction within the same expression is from
left to right. Parentheses may be used to alter the order
of execution. When parentheses are used, operations are
executed from the innermost parenthesis outward.

PolyMorphic Systems BASIC Manual Page

Example:

>

>REM Show order of expression evaluation and
>REM effect of parentheses. Note: Order of
>REM operation execution given in table above.
>PRINT 3+4/7

3.5714286 -
>REM Note that division was done first as if
>REM we had said:
>PRINT 3+(4/7)

3.5714286

>REM So we would need parentheses to get the

>REM expression to be:

>PRINT (3+4)/7

1

>REM The same thing happens with the expression:

>PRINT 5-372

-4

>REM It was executed as:
>PRINT 5-(372)

-4

>REM The exponentiation (") was done first, instead of :
>PRINT (5-3) "2

4

>REM This forces the subtraction to be done first.

>REM Try some examples of your own to see how this works.

2.2.1.2 Relational Operators

23

BASIC evaluates relational operations in response to the

following symbols:

Symbol Operation
= equals
< is less than
> is greater than
<> " 1s not equal to
>= or => is greater than or equal
<= or =< is less than or equal to

to

BASIC will evaluate relational operations and respond with

a l (if true) or a @ (if false).

Page 24 BASIC Manual PolyMorphic Systems
>)
Example: enter >PRINT 10>0
output 1
>
>
enter >PRINT 7>7
output]
>
>
enter >PRINT 144=12"2
output 1
>
>
Relational operations may also be used in statements in

which the command executed depends upon

test operation.

>1IF X>=¢ THEN PRINT X ELSE PRINT "Input positive number"

the result of a

*fa

Example:
>
enter >X=-1
output Input positive number

2,2.1.3 Logical Operators

BASIC can
following

solve problems
operators: AND,
operands (see below) of

integer, and returns the 16
mathematics text if you are

Examples:

>19
>20
>309
>40
>RUN

enter

output 2
6
65533
>

In evaluating relational or

A=2 \ B=
PRINT A AND B
PRINT A OR B
PRINT NOT A

in Boolean 1logic wusing the
OR, NOT. BASIC treats the
a Boolean operator as a 16 bit
bit Boolean result. (Consult a
unfamiliar with Boolean logic.)

4

operational expressions, the

PolyMorphic Systems BASIC Manual ‘Page 25

(:) following priorities are observed in determining the order
of execution:

1) NOT
2) all arithmetic operations
3) relational operations
4) AND
5) OR
2.2.2 Operands

The data upon which BASIC performs operations are called
operands. These operands are given to BASIC either
directly, through on-line input, or indirectly, through
program statements. Operands may consist of 1) constants,
2) strings, 3) variables, 4) -expressions, or 5) special
characters.

NOTE: When BASIC stores a number in memory, it
. represents it with a maximum of eight digits plus
?19 an exponent (or from six to 26 digits, with the
' use of the DIGIT statement). BASIC rounds off
all numbers larger than eight digits. This means
that when BASIC adds the two numbers 5000680 +
B89, it will return the incorrect answer of
5000008. 1In order to represent numbers 1larger
than 99,999,999, BASIC uses the exponential
notation (or scientific notation) form, in which
a power of ten 1is wused to give the order of
magnitude of the number.

Examples:

3.76E+02 means +3.76 X 10702 (+3.76 X 190), or +376
-3.76E+02 means -3.76 X 18702 (-3.76 X 188), or +376
3.76E-P2 means +3.65 X 10°-02 (+3.76 X .@61), or +.9376
-3.76E-02 means -3.76 X 10°-82 (-3.76 X .81l), or -.8376
2.2.2.1 Constants
A constant 1is an unvarying quantity. Since the quantity

does not vary, it can be represented by a symbol other than
a number, such as K.

2.2.2.2 Strings

Page 26 BASIC Manual PolyMorphic Systems

A string 1is a dgroup of text characters (blanks may be
inciluded) enclosed by quotation marks. All characters
within the guotation marks will be reproduced literally by
BASIC without being processed. A string may be represented
by a string variable which must take the form of an upper
case letter of the alphabet optionally followed by a single
digit, followed by a dollar sign symbol, For example: AlS
= "This 1is a string: als is its name"; "This
(1+1*(3+SQRT(16))) is a string too" .

2.2.2.3 Variables

A variable 1is a user-defined name which stands for a
constant, an expression, another variable, a string, an
array, or a function. All numerical variable names consist
of one or two characters: an upper case letter of the
alphabet optionally followed by a single digit. A string
variable name <consists of an upper case letter of the
alphabet (optionally followed by a single digit) followed
by a dollar sign symbol $. The same name may be used to
identify different wvalues as 1long as the values they
identify are of different types. For example, it is
possible to have a numeric variable Al, a string named AlS,
and functions named FNAl AND FNAlS. These entities have no
relationship to one another.

2.2.2.,4 Expressions

An expression is a variable, constant, or function which
may stand alone or in combination when separated by the
symbols for arithmetic operators.

Example:

>

enter >REM LEGAL EXPRESSIONS
>X=A+1
>Y=COS (3)
>Z=A*5+ (R+COS (4)/19)
>81=105
>

enter >REM ILLEGAL EXPRESSIONS
>L=A4+XX

output Syntax error

enter >Y2=3C0S (X)
output Syntax error

enter >N=A*5+(COS (3)+2)-3)
output Syntax error

PolyMorphic Systems BASIC Manual Page 27

2.2.3 Special characters

BASIC recognizes certain special characters and strings
that do not fit in any of the above groups. They are:

PI This is the constant "pi" which BASIC recognizes as the
constant 3.1415926. (at 8 digits precision) '
ERR An error code "variable" that is discussed in Section
11.

A special "variable" used in conjunction with certain

array functions. See Section 7.

LINE This term 1is always returned as the number of the
line in which the most recent error occurred.

2.3 DIRECT STATEMENTS
Certain direct statements are acceptable to BASIC for

immediate execution. These statements are not a part of a
BASIC program but may be included in a program as program

statements if desired (see Section 5 =-- Program
Statements). Usually, direct statements are either PRINT
statements or are used in combination with PRINT

statements.

Direct statements may be used to: 1) print a text string,
2) evaluate and print an expression, 3) assign a value to a
variable, or 4) directly examine the value of a variable
during program execution.

A, BASIC will directly print a string given to it in the
following form: PRINT string

"Example:

> .
>PRINT "THIS IS A STRING"
enter >PRINT "THIS IS A STRING"
output THIS IS A STRING

>

B. BASIC may be wused to directly evaluate and print

expressions, 1f the statement takes the form PRINT
expression,

Page 28

Example:

enter
output

BASIC Manual

PolyMorphic Systems

>

>PRINT 2*PI
6.2831852

>

C. A value may be assigned to a variable, and that value
used in a further direct statement. These statements take

the form

variable=variable, expression, or string
PRINT variable, expression or string

Example:
enter .

output

D. A direct statement

>

>P=1+3

>PRINT P+2
6

>

is often used to directly examine

the values of certain variables during program excution to
diagnose a programming error. It may take the form PRINT
variable, or the form IF test condition, THEN PRINT string

or variable.

Example:

enter

output
enter
output

enter
output

> .

>10 REM SAMPLE PROGRAM

>20 Y=7\X=5\Z2=X+Y\STOP

>30 PRINT "7 AFTER "STOP"=",Z7+20
> RUN

Stop in line 20

>>IF 2=12 THEN PRINT "Z IS OK"
ELSE PRINT "OQOPS!"
2 IS OK

>>CON
Z AFTER "STOP" = 32
>

PolyMorphic Systems BASIC Manual Page 29

Section 3

INPUTTING YOUR PROGRAM

Every BASIC program consists of a series of program lines
containing program statements. (BASIC will not accept a
line of more than 86 characters.) Each program line starts
with a program line number, so that BASIC will not try to
execute it immediately, but will wait until execution of
the entire program is requested by the programmer. Then
BASIC will execute the program lines in numerical order.
(REM statements need not have line numbers and do not load
when they have no line numbers.)

This section deals with the actual typing in of your BASIC
pPro gram. It contains information about line numbers and
program lines. For information on loading an existing
BASIC program from a disk, see Appendix B. That appendix
will also tell you how to save a BASIC program as a disk
file.

A BASIC program can be created while you are "in BASIC"
(i.e. when you see the BASIC prompt > or >>), or it can be
created while you are using the system Editor. If you
create a BASIC program using the Editor, the program file
will automatically be tagged with the .TX text filename
suffix, and therefore BASIC will not be automatically
called in to run the program when that file is loaded from
disk into machine memory. Therefore you will probably want
to change the .TX suffix to the .BS suffix with the RENAME
command (see the System 88 User's Manual).

To use the Editor, from the Executive prompt $ or $$ type
EDIT and the program filename:

EDIT <2>Basic-Program

To write a program while in BASIC, again starting from the
Executive prompt $ or $$ type BASIC. You will assign vyour
BASIC program a name when you "save" it (store it on disk;
see appendix B).

Throughout this manual, we assume that you are in BASIC,
not 1in the Editor nor at the Executive level, unless
Ootherwise stated.

3.1 PROGRAM LINE NUMBERS
Every program line begins with a line number, which must be

an integer from 4 to 65535 inclusive. Any line of text
typed to BASIC which begins with a number is processed by

Page 390 BASIC Manual PolyMorphic Systems

the editor as a program line. BASIC ignores blanks or tabs
before the line number, and the blank or nondigit that
follows a line number terminates that number. Lines do not
have to be typed in sequence-—- they will be performed in
ascending numerical order when the program 1is executed.
When they are listed, they will be listed in numerical
order. An error is generated if the 1line number 1is not
between # and 65535, if the program line is too long, or if

memory would overflow if BASIC accepted the new line.

Error messages are then generated, and BASIC takes no other
action on that line.

The techniques for adding, deleting, and replacing program
lines are listed below:

Adding a new line to a program: Type in a new
programline number, followed by your instructions
to BASIC. Remember that lines do not have to be
typed in numerical sequence. The new line will
be accepted if the line number is a legal one and
at least one character follows the line number in
the program line.

Replacing an existing program line: Type in the
program line number of the program line you wish
to replace. Then type the program statements you
want on that program line. BASIC will replace
the original program line with your new program
line of the same number.

Deleting an existing program 1line: Type ' the
program line number of the program line you wish
to delete. Then hit the carriage return key. If
a new program line contains only a program line
number, BASIC will delete any preexisting program
line beginning with that same program 1line
number.,

Alternate method of deleting lines: To delete a
number of sequential 1lines 1in a program, type
DEL, followed by the number of the first line to
be deleted, a comma, and then the number of the
last line to be deleted.

PolyMorphic Systems BASIC Manual Page 31

Example:
>
enter >10 X=1
>20 Z=2\¥=3
>30 PRINT X+Y+Z
>40 PRINT X+Y
> RUN

output 6
4

enter >40
>LIST

output 19 X=1
20 7Z=2\Y¥=3
30 PRINT X+Y+2

enter >DEL 10,29
>LIST

30 PRINT X+Y+2Z
>RUN

output]
>
>

3.2 MULTIPLE STATEMENTS PER LINE

Multiple program statements may appear on a single line if
they are separated by a back-slash \ (SHIFT-L on some
keyboards) . A line number must appear only at the
beginning of the 1line. If one program line calls for a
jump to another program line, BASIC will be able to return
to the proper point in that branching program line, even if
that branch statement is on a multiple statement line.
("Branching" takes place when you transfer programn
execution to another program line. Branches can depend
upon a test condition, or they can be unconditional. Go to
Section 5 for examples of branching statements.)

Example:
>
enter >
>11¢ X=1\A=X+1\GCSUB 200@\PRINT A
>

After calling the subroutine at line 2000 in response to
the GO-SUB statement, BASIC, after finishing the
subroutine, will return to the proper point in 1line 11§;
that is, to the PRINT A statement.

Page 32 BASIC Manual PolyMorphic Systems
Section 4
RUNNING YOUR PROGRAM: CONTROL COMMANDS

Now that you have learned how to set up a program, you need
to know how to run it. This section discusses the control
commands you can use to run your program.

These commands also directly affect the execution of the
BASIC program or its representation in memory. The control
commands which enable the programmer to save and load the
BASIC program differ depending on the method of loading and
saving a program; see Appendix B: Loading BASIC and Loading
and Saving a Program.

4.1 LIST

Use the LIST command when you want to see a BASIC program
listed on the screen. The LIST command may be typed in the
following form:

LIST optional line number,optional line number

If you don't give any line numbers, the entire program is
displayed. 1If you provide one line number, only that 1line
is listed. If you 1list one 1line number followed by a
comma, the program is listed from that line number to the
end of the program. If two line numbers are supplied, the
program is displayed from the first line number given to
the second line number, inclusive.

PolyMorphic Systems BASIC Manual Page 33

Examples:
>
enter >16 REM SAMPLE PROGRAM
>15 X=1
>20 Y=2
>25 PRINT X+Y
>
> >
> >
enter >LIST enter >LIST 15,25
output 14 REM SAMPLE PROGRAM output 15 X=1
15 x=1 20 ¥=2
29 Y=2 25 PRINT X+Y
25 PRINT X+Y >
>
> >
enter D>LIST 20 enter >LIST 20,
output 20 ¥Y=2 output 20 Y¥Y=2
> 25 PRINT X+Y
It is also possible to LIST to devices other than the video
‘monitor screen (such as a printer or disk file) using the
syntax
LIST:n

where n is the channel number of the file or printer. More
on this in Section 15.

4.2 REN (RENUMBER)

After you have made many insertions in a program, the 1line
numbers may become very unevenly spaced. To renumber your
program lines and even out the differences between 1line
numbers, type REN followed by the optional beginning value,
then the - optional increment value. The command takes the
form

REN optional beginning value,optional increment value.

All of the program 1lines will be renumbered by that
command., If you do not give the first optional value,
BASIC will begin the program with line number 16. If you
do not give the second optional value, the program will be
renumbered by an increment of 14. To give the second
optional wvalue, you MUST give a first value. Both of the
values supplied must be positive integers.

Page 34 BASIC Manual PolyMorphic Systems

Examples:
>
> >REN
> >LIST ~
>19 REM SAMPLE PROGRAM 19 REM SAMPLE PROGRAM
>12 INPUT X 29 INPUT X
>79 PRINT X+1 30 PRINT X+1
> >
> >
>REN 54 >REN 100,100
>LIST >LIST
56 REM SAMPLE PROGRAM 196 REM SAMPLE PROGRAM
66 INPUT X 200 INPUT X
79 PRINT X+1 360 PRINT X+1

When you renumber a program, BASIC will automatically
change the line numbers referenced within program lines to
their new values.

Example:

enter >10 REM SAMPLE PROGRAM
>20 INPUT %
>30 IF Z>=0 THEN GOTO 58
>40 PRINT "GIVE A POSITIVE #"\GOTO 20
>5@¢ PRINT "z=",Z

enter >REN 58,50
>LIST
output 50 REM SAMPLE PROGRAM
168 INPUT 2
150 IF Z>=0 THEN GOTO 250
200 PRINT "GIVE A POSITIVE #"\GOTO 100
2596 PRINT "Z=",%

Caution: If a line number referenced within a program 1is
not a valid 1line number, it will not be renumbered.
However, if you renumber the program, it might become a
valid line number-- with unpredictable results.

PolyMorphic Systems BASIC Manual Page 35

Example:
>19 INPUT 2Z
>20 IF Z>=¢ THEN GOSUB 3000
>389 PRINT "TRY AGAIN WITH POSITIVE #"\GOTO 10
>REN 1060 ,1000
>LIST
1066 INPUT 2
2009 IF Z>=0 THEN GOSUB 3404
3000 PRINT "TRY AGAIN WITH POSITIVE #"\GOTO 10040
4.3 RUN

To begin execution of your program, type RUN followed by a
carriage return, and BASIC will begin execution at the
first 1line in your program. If you follow RUN with a line
number, BASIC will attempt to begin execution at that 1line
number in the program, and will generate an error message
if that line number does not exist.

Example:
>
enter >RUN 5£80
output I can't find that line
>

If no line number is supplied, BASIC will begin program
execution at the beginning of the program.

NOTE: If vyou are just learning BASIC, it is not
important that you understand Sections 4.3.1 and
4.3.2 right away. After you have read the entire
manual and written a few programs, re-read this
section. ‘

When you give BASIC the RUN command, a number of things
happen before program execution actually starts, depending
on whether or not the RUN command has been supplied with a
line number.

4.3.1 When RUN is Given a Line Number

Provided that the line number is not the first line of the
program, BASIC will begin execution at that line, with no
changes in the status or values of the variables etc. This
is known as ©preserving the "Run-Time-Environment", and
allows for better debugging of programs.

4.3.2 When RUN is Not Given the Optional Line Number

The first thing that is done is to clear the variable and
string areas. This means:

All numeric variables, the first time they are

Page 36 BASIC Manual PolyMorphic Systems

referenced, will have the value zero (although it
is not good programming practice to assume this).

No array may be referenced without first
dimensioning it with a DIM statement (see Section
7 for a discussion of arrays).

The random number generator is reinitialized.
This means that unless the random number
generator is given a new seed (see Section 6.1 on
the RND function for details), the same sequence
of random numbers will be generated every time
that program is executed.

The pointer used to access DATA statements for
READ (see Section 5.2.2 on the DATA and READ
statements) is set to the beginning of the
program. BASIC then checks user—-defined
functions (see Section 6.2) to see that each
function 1is ©properly defined, and that each
multi-line function has an end. Error messages
may be generated 1if there are errors in any of
the user-defined functions.

All file channels are forced closed.

Then BASIC begins executing the program at the first 1line.

4.4 CONTROL-Y

To interrupt the execution of your program, hold down the
Control (CTRL) key on the keyboard and type Y. The
Control-Y command interrupts any process in BASIC. To
continue execution of the program, use the continue command
CON.

4.5 CON (continue)

The continue command CON enables the programmer to continue
execution of a program after an interruption due to a STOP
statement in the program or a Control-Y command used during
program execution. Type CON after a double prompt to
continue. An attempt to use CON when there are no program
lines, when the program has been modified after the
interruption, or when CLEAR has been used to clear variable
and strings, will result in an error message.

O

PolyMorphic Systems BASIC Manual Page 37

Example:
>
enter >10 REM SAMPLE PROGRAM
>20 X=1\INPUT "Y?--",Y\STOP
>30 PRINT "Y+1=",X+Y
>4¢ PRINT "y=",Y
>RUN

output - ¥Y?--589.45
Stop in line 20
>>CON
Y+1= 590.45
Y= 589.45
>

When the CON command is used to continue after a STOP,
program execution begins at the statement after the STOP
statement. When the CON command is used to continue after
an interruption caused by a Control-Y command, program
execution is continued after the statement interrupted
unless that statement was an INPUT command. In that case,
exXxecution resumes at. that INPUT command.

Example:
>
enter >1% REM SAMPLE PROGRAM
>28 X=1\INPUT "Y?--",Y\PRINT "Y+1l=",6X+Y
>30 PRINT "Y=",Y
>RUN

output Y?--345.6Y (Control-Y command used here)
' Interrupted in line 20
>>CON
¥?--345.67
Y+1= 346.67
Y= 345.67
>

Note that in the above examples a double prompt >> appears
after an interruption. This indicates that BASIC can
continue execution of the program. The double prompt will
continue to appear until BASIC can no longer continue
execution after modification in the program, use of CLEAR,
etc., at which time it will be replaced with a single
prompt >.

4.6 CLEAR
Use of the CLEAR command sets all input variables to § and

all input strings to a null value. It also closes all file
channels.

Page 38 BASIC Manual PolyMorphic Systems

4.7 SCR (SCRATCH)

The command SCR, typed after a prompt, erases all
information in working memory: your program and its data.
It also closes all file channels.

4.8 DEL (DELETE)

The command DEL 1is wused to delete selected lines from a
user program. The correct syntax is:

DEL line number, optional line number

DEL will start with the first line number and delete all
lines up to and including the second line number. If no
second line number is given, BASIC will delete only the
first 1line. Note that this differs from the way in which
LIST works.

4.9 XREF (CROSS REFERENCE)
The XREF command is a debugging tool that 1lets you
cross-reference the variables in your program with the line
numbers in which they appear. It will Dbe more fully
explained in Section 11 on the debugging features of BASIC.
4.10 WALK (SINGLE STEP)
The WALK command allows a user to execute his program one
line at a time. It will also be discussed in Section 1l.
4,11 SUMMARY OF CONTROL COMMANDS

CLEAR

Resets all input variable values to @
and input strings to null value.

CON
Resumes execution of a program after a
STOP or an interruption.

Control-Y¥
Interrupts any process in BASIC,
including program execution.

DEL
Deletes selected program lines.

DIGITS

Sets digits of ©precision to number
given: DIGITS n. Precision can vary

O

PolyMorphic Systems

LIST

REN

RUN

SCR

WALK

XREF

BASIC Manual
from six to 26; eight is standard.
Lists program.

Renumbers program lines.

Begins execution of a program either at
the beginning of the program or at the
optionally supplied line number.

Erases the program and anything else
typed from the terminal, along with any
data calculated by the program.

Single steps through a program.

Cross references variables with line
numbers.

Page

39

-Page 40

BASIC Manual

PolyMorphic Systems

PolyMorphic Systems BASIC Manual Page 41
Section 5
PROGRAM STATEMENTS

Program statements are by far the most important part of
BASIC. Program statements make up the instructions which
BASIC will follow when it executes a program.

This section of your manual covers the statements in BASIC
underseveral different headings:

1) General program statements.

2) Program statements used to input data.

3) Program statements used to output data.

4) Program statements involved in FOR-NEXT loops.

5) Program statements used to alter program execution.

For sample demonstrations of program statements, sSee
Appendix C: Sample Programs.

5.1 GENERAL PROGRAM STATEMENTS

The three program statements used very commonly throughout
any program are discussed below: 1) REM (remark), 2) STOP,
and 3) Assignment Statement (LET).

5.1.1 REM (Remark)

The remark statement allows the programmer to add comments
to the program without those comments being processed by
BASIC. A REM statement may be placed anywhere on a program
line, since BASIC ignores everything to the right of it (up
to a \-backslash), 1including the 1letters "REM." BASIC
will, however, print the REM statement when the program is
listed. (You may insert REM statements without 1line
numbers into a disk file; without numbers, they are not
actually part of the program, and therefore will not load
and will not be listed.) The REM statement, unless it 1is
the first statement on the program line, must be preceded
by a back=-slash \ .

5.1.2 STOP

Insert the STOP statement in a program whenever you want a
permanent or recoverable halt. To continue execution from

a STOP, use the continue command CON, described in Section
4.5.

Page 42 BASIC Manual PolyMorphic Systems

5.1.3 Assignment Statement (LET)

Use an assignment statement to set a variable to a given
value or expression. The usual form is variable=constant,
variable, or expression; for example: A=19. This example
sets the variable A equal to 19. The expression on the
right of the egquals sign can be quite complex; in any case,
the expression on the right is evaluated and assigned to
the variable on the left.

Example:
>
enter >10 A=1320
>20 B=12
>380 C= A/B+10.2
>40 PRINT C
>RUN

output 126.2
>

There are two major types of assignment statements: one for
numerical variables, as in the examples above, and a second
type for string variables.

Example:

>LIST

enter 16 A$="HOT FUDGE"
2¢ PRINT AS
390 B$=" SUNDAE "
40 PRINT BS
50 PRINT AS$+BS
60 PRINT BS+AS
>RUN

output HOT FUDGE
SUNDAE
HOT FUDGE SUNDAE
SUNDAE HOT FUDGE
>

The optional keyword LET may be used to indicate an
assignment statement. 1Its use is not encouraged, since it
is only a mnemonic device and wastes space on a line. The
following examples are identical in meaning.

Example:
>
enter >A=X+1
>LET A=X+1
>

®

PolyMorphic Systems BASIC Manual Page 43

Multiple assignments:

Polymorphic's System 88 BASIC lets you assign a number of
vari ables to the same value at the same time. For
instance, you may want to reset some variables to f. You
can do this by putting all the variables to left of the =
and separating them with commas, thus:

A,B,C,D,E,F=ﬂ
is equivalent to:

A= C=4 E=0
B=0 D=0 F=0

The order of assignment 1is right to left. Thus, in the
example

I=4
J,K,I,B(I)=3

B(4) is set equal to 3; then I is set equal to 3, and so
forth.

Just as in normal assignment statements, the right hand
expression may be arbitrarily complex. Multiple
assignments also work with string variables.

A$,BS$,CS$="HELLO!!"

If you mix string variables with numeric variables in the
list to the left of the =, BASIC will display a syntax
error message.

5.2 INPUTTING DATA

The following section discusses the various program
statements used to make data available to the program.
Data may be made accessible either through direct input
from the user terminal (INPUT AND INPUT1l) or indirectly
from the program itself (DATA, READ, RESTORE).

5.2.1 INPUT and INPUT1

The INPUT and 1INPUT1 statements are used to ask for data
from the user terminal. A question mark is printed by
BASIC to prompt the user.

Page 44 BASIC Manual PolyMorphic Systems

Example:
>
enter >1@ INPUT X§
>28 PRINT "The word is: ",X$
>RUN

output ?me
The word is: me
>

An optional input string may be used as a prompt to the
user, in which case BASIC does not print a gquestion mark.
If more than one variable 1is asked for 1in one input
statement, they must be separated by commas, blanks, or
tabs.

Example:
>

enter >18 INPUT "Give me two numbers-",X,Y

>20 PRINT "Their sum is: ",X+Y
>RUN

output Give me two numbers-2.5,5.89
Their sum is: 8.39
>
2

The INPUT1 statement acts in the same way as an INPUT
statement, except that the usual carriage return echo 1is
eliminated. This has the effect of leaving BASIC on the
same line as the input, so that the next input prompt or
message printed by aPRINT statement will appear on the same
line as the first INPUT1l statement.

Example:

>

enter >LIST
19 INPUT "Your name? ",NS
20 INPUT1 "Give two numbers--",S,S1
39 PRINT " Hi, ",NS
40 PRINT " The sum is : ",S+Sl
>RUN

output Your name? Robin
Give two numbers--345.78,896.51 Hi,
The sum is: 1242.29
5.2,2 Inputting From Disk Files

It 1s possible to input data into BASIC programs from a
disk file. This capability is discussed in Section 13.

Robin

0

PolyMorphic Systems BASIC Manual Page 45

5.2.3 DATA and READ

The DATA and READ statements are used to ask for data from
within the program itself. The DATA statement contains
within it the actual data that the program uses during
execution. The DATA statement may contain either string or
numerical data. The data must be separated by commas, and
strings must be enclosed by quotation marks. The data in
the DATA statement are read by the READ statement and must
be consistent with the type of variables (numerical or
string) used 1in the READ statement, or an error message
will be generated.

When the first READ statement in a program is encountered,
a pointer 1is set to the first piece of data in the first
DATA statement in the program. Every time a READ variable
reads one piece of data, the pointer advances to the next
piece of data. As all data from the first DATA are read,
the pointer advances to the first piece of data in the next
DATA statement, and so on, until all READ variables have
been matched with data. If there are more data than
needed, the remaining unread data are ignored. If,
however, there are fewer data than there are READ variables
(that is, the pointer is out of data), an error message
will be generated.

Examples:
>

enter >13@ READ

A \PRINT "A,B,C
>289 READ X

1

2

B,C :
Y,Z\PRINT "X,Y,%: ",X,Y,%Z
>300 DATA 2,3
>408 DATA 4,3
>RUN
output A,B,C: 1 2 3
X,Y,2: 160 2060 300
>

(100

7
[
’

g 20

>
enter >19 READ AS$,B$,CS$S\PRINT AS$,BS$,CS
: >20 PRINT C$,A$,BS
>30 DATA " WE "," ARE "," HERE "
>RUN

output WE ARE HERE

HERE WE ARE
>

>
5.2.4 RESTORE
A RESTORE statement allows the programmer to change the

order in which READ statements access DATA statements. Use
of the RESTORE statement enables the programmer to direct a

",A,B,C

Page 46 BASIC Manual PolyMorphic Systems

particular READ statement to a particular DATA statement.
The RESTORE statement takes the form RESTORE optional 1line
number. If you omit the optional 1line number, the READ
statements begin reading data from the first DATA
statements in the program. With the line number included,
the READ statements are directed to a DATA statement on
that or a following line.

Example:

enter >19 READ A,B,C\PRINT "A,B,C: ",A,B,C
>28 RESTORE
>30 READ X,Y,Z\PRINT "X,Y,Z: ",X,Y,Z
>46 DATA 1,2,3
>50 DATA 160,200,300
>60 DATA 5,6,7
>RUN

output

enter >10 RESTORE 54
>20 READ A,B,C\PRINT "A,B,C: ",A,B,C
>360 READ X,Y,Z\PRINT "X,Y,Z2: ",X,Y,Z
>4 paTAa 1,2,3
>50 REM READ DIRECTED TO THIS LINE
>60 DATA 106,200,300
>79 DATA 5,6,7

output A,B,C: 108 200 300
X,¥,2: 5 6 7
>

5.2.5 Single Character Input Functions INP (@) and INP (1)

The functions INP (@) and INP(l) allow the user to test for
characters in the input buffer and input single characters
from the keyboard. The function INP (@) returns @ if there
are no characters waiting in the input buffer to be read.
INP(l) returns the integer value of the next character from
the keyboard buffer, without echoing it to the screen.
(See Appendix D for the values assigned by the ASCII code
to the full set of characters.)

PolyMorphic Systems BASIC Manual Page 47

Example:

enter 196 REM DEMONSTRATE INP(#) TESTING FOR INPUT
110 PRINT "You have 1§ seconds to type cow"
12 PRINT "2",
138 Z=TIME(8) \ REM RESET CLOCK
140 IF INP(9)>@¢ THEN 190 \ REM SOMETHING TYPED
150 IF TIME(l1)<10*60 THEN 144
166 REM TOO LONG. COMPLAIN
178 PRINT "...Too late, you didn't type cow"
18¢ GOTO 114
194 INPUT "",AS\ IF AS$="COW" THEN 210
208 PRINT "You didn't type cow"\ GOTO 114
219 PRINT "Thank you."
>RUN

output You have 19 seconds to type cow
?...Too late, you didn't type cow
You have 1§ seconds to type cow
?2frog
You didn't type cow
You have 1§ seconds to type cow
?Ccow
Thank you.
>

5.3 OUTPUTTING DATA

There are several ways you can change the format of data
output by a program. All of these involve the use of PRINT
statements. This section will briefly outline the use of
the free-format PRINT statement, the use of the TAB
function in formatting data, and the use of format strings
to set up data formats.

5.3.1 PRINT

The PRINT statement prints out the one or more elements in
its print list. The elements must be separated by commas.
If there are no elements in a print list, that is, 1if the
word PRINT 1is alone on a line, BASIC will print an empty
line. PRINT statements will evaluate and print expressions
(including intrinsic functions) and variables. A string in
the print 1list is printed as given, but without the
surrounding gquotation marks.

Page 48 BASIC Manual PolyMorphic Systems

Example:
>

enter >1p PRINT "RUBBER CHICKEN", SQRT (108@),2+2

>15 PRINT "SECOND LINE"
>RUN

output RUBBER CHICKEN 16 4
SECOND LINE
>

If the 1last element in the print list is followed by a
comma, a carriage return is not printed, and the output of
the next PRINT statement or INPUT statement will appear on
the same. line as the original PRINT statement output. I1f
the output of a PRINT statement is too long to f£it on the
current monitor outputline, it will be continued on the
next 1line with no carriage return being generated. The
PRINT statement may take the form PRINT print 1list. The
print 1list may contain strings, variables, or expressions,
all separated by commas, with strings being surrounded by
quotation marks.

5.3.2 Formatting the PRINT Statement

If you do not specify any formatting in a PRINT statement,
the data is printed in the default free-format style. In
free format, all data in the print 1list are printed
left-justified with the prompt symbol, and all numerical
elements are printed and separated by a blank. Unless a
specific format is given by the programmer, BASIC prints
all numerical data in the default format given below.

The Default Format

(For a discussion of exponential form or scientific
notation, see note following Section 2.2.5.)

l. Numbers eight digits 1long or 1less and in
non-exponential form will be printed as given.

Example:
. >
enter >PRINT 12.34567
output 12.34567
>

2. _Numbers 1longer than eight digits and in
non-exponential form will be rounded off to eight
significant digits and printed 1in standard
exponential form.

PolyMorphic Systems BASIC Manual Page 49

Example:
>
enter >PRINT .96123456789
output 1.2345679E-03

3. Numbers in exponential form eight digits 1long
or less will be printed in non-exponential form
if doing so would result in a number of eight
digits or 1less. Otherwise, the number 1is
printed in standard exponential form.

Example:

>
enter >PRINT 123.45E+05
output 12345000

>
enter >PRINT 123.45E+9d6
output 1.2345E+08

>

>
enter >PRINT 123.456E-05
output .00123456

>

4. Numbers in exponential form longer than eight
digits are rounded off and printed in
non-exponential form if doing so would result in
a number of eight digits or less. CQOtherwise the
number is printed in standard exponential form.

Example:
>
enter >PRINT 123.4567891E+06
output 1.2345673E+88
>
>
enter >PRINT 123.4567891E+85
output 12345679
>

TAB

The TAB function provides a way to space output across the
screen, The TAB statement takes the form PRINT
TAB (expression), print list. TAB evaluates the expression
within 1its parentheses and moves over that number of
character positions from the left screen margin before
printing the elements 1in the print list. The TAB value
must be less than 256 and positive.

Page 50 BASIC Manual PolyMorphic Systems

Example:
>

enter >19 PRINT TAB(15),"UNIT ONE",TAB(25),"UNIT TWO",

>20 PRINT TAB(35),"UNIT THREE"

>30 PRINT TAB(19),"A",TAB(29),"B",TAB(39),"C"

>RUN

output UNIT ONE UNIT TWO UNIT THREE

A ' B C

Format Strings

- Format strings specify the way numerical data is outputted
by a print statement. A format string may appear anywhere
in a PRINT statement after the PRINT command, and must
begin with a percent symbol (%). An empty format string
allows data to be printed in free format. The form of a
PRINT statement with a format string is

PRINT optional unformatted print list, % optional
format characters optional format specification,
print list to be printed in specified format.

More than one format string may appear in a PRINT
statement. Anexample of a PRINT statement containing the
format string C$331 is the following:

PRINT "ME," %CS$3I, "345"
A. Format Characters

C Places commas to the left of the decimal
point as needed.

$ Places dollar sign symbol to the left of
the valueprinted.

Z Eliminates trailing zeros.

Sets the format string of which it is an
element to the new default format for
printing numerical data.

o

PolyMorphic Systems BASIC Manual Page 51

Example:
>
enter >PRINT %CS$%,45678987.5900808
output $45,678,988

The format character # sets a new default format. This
means that if the format string %CS$# is encountered in a
PRINT statement, all unformatted numbers in the program
after that statement will be printed in that format. To
restore the default format to the original, free-format
style, the null format string %# is used, either with or
without a print 1list. After the null format string is
encountered in a program, the default format reverts to
free format.

Example:

enter 19 PRINT\PRINT"In new default format--"

28 PRINT %$C#,9999

30 FOR I=2000 TO 5009 STEP 10040

40 PRINT TAB(39),I,

50 NEXT

60 PRINT\PRINT"Reset to old default format--"
70 PRINT %#,9999

80 FOR 1I= 20ﬁﬁ TO 5000 STEP 1000

99 PRINT TAB(39),I,
100 NEXT

>RUN

output In new default format--
$9,999

$2,000 $3,000 $4,000 $5,000

Reset to old default format--
9999
2000 3000 49000 5000

B. Format Specifications (for numerical data
only) : .

The format specifications (similar to those
in FORTRAN) specify the format in which
numbers will be printed on the screen. In
the specifications below: n = the size
(number of spaces) of the field in which the
data are to be printed. The left margin of
the field is even with the prompt symbol. n

must be less than or equal to 25.
"Right-justified" means the right-most digit
in a number will occupy the right-most

character space in the field.

m = number of digits to be placed to the
right of the decimal point. (However, if m

Page 52 BASIC Manual PolyMorphic Systems

>8, all digits past the eighth will be zeros,
at eight digits of precision.)

l. F-Format The F-format prints numbers right-justified
1in a field n characters wide, with m digits to the right of
the decimal point. This specification takes the form nFm.

Example:
>
enter >PRINT %$15F5,3798.6788992
output ' 3798.67890
>

2. I-Format The I-format specification prints only
integers (if a non-integer 1is entered, an error message
will be generated). The numbers are printed
right-justified in a field n characters wide. This
specification takes the form nI.

Example:
>
enter >PRINT $101,2345
output 2345
>

3. E-Format The E-format specification prints numbers
right-justified in an n-character wide field in scientific
notation with m digits to the right of the decimal point.

Example:
>
enter >PRINT %18E3,3798.678892
output 3.799E+03
>

Note: The number 3.799E+@3 represents 3.799 X
18°3. (For further discussion of scientific
notation or exponential form, see the note in
Section 2.2.5.)

Example:
>
enter >PRINT 3.799E+03
output 3779
>

In order to avoid format specification errors, it
is important to remember to reserve enough space
in the print field by using a large enough n so
that the number given to the format specification

PolyMorphic Systems BASIC Manual Page 53

can be printed. For instance, in the example
below, 11 spaces must be reserved in the print
field if m = 5 (significant digit, decimal point
m, and the four characters E,+,06,2 = 11 spaces);
otherwise an error message is generated.

Example:
>
enter >PRINT %10E5,234.56
output Format error
enter >PRINT %11E5,234.56
output 2.34560E+082

5.3.3 Outputting to the Disks and the Printer

These capabilities are discussed in Appendix B.

5.4 ITERATION: THE FOR-NEXT LOOP

Often in writing a computer program to solve some problem,
we find that we would like to perform a certain set of
statements a number of times for a <certain set of
arguments.

Let's say that we wanted to print the integers from 1 to 19
inclusive and their squares. We would write a BASIC
program that would execute this process, like this:

Example:
>
enter >100 REM This program 1is a loop
>118 J=1
>12¢0 IF J>10 THEN GOTO 164
>13¢ PRINT "The square of ",J," = ",J72

>146 J=J+1

>158 GOTO 120
160 PRINT "End!"
>RUN

When we run this program, the variable J is set to 1 by
line 118. We then see if J is greater than 10. The first
time through, J has the wvalue of 1, so0 we continue
execution with line 130, where we print the value of J, and
J squared(J"2). Then we add 1 to the current value of J,
and go back to the IF statement on line 128. We "loop"
through lines 128, 136, 148, and 156 until J is incremented
by line 146 to the value 11. Then, when we perform the IF
statement on 1line 120, J is greater than 184, so we go to
line 160, thus terminating the loop.

This "loop" can be thought of as the combination of a

Page 54 BASIC Manual PolyMorphic Systems

number of elements:

1) the ™"loop variable” J, in the example above,

which takes on the values 1 through 18 in the
loop.

2) The starting value for the loop variable. 1In
the example, the starting value for J 1is 1, as
set on line 110.

3) A terminating condition; in the example, the
loop will terminate, or stop, when J 1is greater
than 16, as detected by the IF statement in line
129.

4) An increment (or decrement) to apply to the
loop variable: In the example on line 1486, we add
1 to the value of J each time through the "loop",
so that during the process of the computation, J
takes on the wvalues 1, 2, 3, 4, 5, 6, 7, 8, 9,

and 10.
5) A set of statements that is executed
repeatedly, also called the loop body. In the

example, the loop body consists of the single
PRINT statement on line 130.

6) An indicator marking the end of the loop. In
the example, the GOTO 12§ statement on line 150
denotes the end of the loop. When the variable J
exceeds the terminating condition, 10, as
specified by the IF test on line 120, program
execution will resume past the end of the loop,
at line 166. We could write out this set of
statements each time we wanted to execute a
statement or set of statements repeatedly, but
this would be time-consuming and give us more
chances to make programming mistakes. However,
this process of "looping" or iteration is done so
often that BASIC has a shorthand way of
specifying this procedure, with more flexibility,
using two statements: FOR and NEXT.

A program equivalent to the one given at the start of this
section but using FOR and NEXT looks like this:

>

>1006 REM FOR-NEXT LOGCP

>110 FOR J=1 TO 19 STEP 1

>128 PRINT "The square of ",J," = ",J"2
>130 NEXT J

>RUN

PolyMorphic Systems BASIC Manual Page 55

;i) We'll go through this new program and identify the same six
= elements we did in the previous program:

1) The "loop variable." 1In this case, the loop
variable is still J, which appears just after the
word FOR on 1line 116. In general, the loop
variable immediately follows the word FOR 1in a
FOR statement, and cannot be a string variable
(such as J$; that would be illegal), or have a
subscript (such as D(3); that too would be
illegal).

2) The starting value. ‘Above, in the FOR
statement, we see "J=1," which gives the starting
value for the loop, 1, just as in line 1108 of the
previous program, This starting value can be any
expression, and is evaluated only once, at the
beginning of the 1loop.

?3) The terminating condition. We see in the
program above, using FOR and NEXT, on 1line 114,
the characters "TO 1g." This gives the

terminating value to test the loop variable (J in
this case) as 14, djust as it did in the 'IF
statement on line 1280 of the other program. The
terminating value, in this case the number 14,

;%9 can be any arbitrary numeric expression. It 1is

: important to remember, however, that this
expression is only evaluated ONCE, at the start
of the loop, and not every time through.

4) An increment (or decrement) to apply to the
loop variable. In the other program, this was
specified in line 146, where we said J=J+1,
incrementing J by 1 each time. In the FOR
statement the increment is specified by the part
of the line that says "STEP 1," defining the
increment to be 1. This number also may be any
numeric expression, and is only evaluated once,
at the start of the loop.

5) A set of statements to be executed
repeatedly. In the example using FOR and NEXT,
the "loop body" is the single statement on line
129, the PRINT statement.

6) An indicator marking the end of the loop. 1In
the first example, the "loop body" was the single
PRINT statement on line 136. In the case of the
FOR NEXT 1loop, the FOR and NEXT statements
clearly show what statement or statements will be
repeated; that 1is, any statements that come
between the FOR and the NEXT.

Page 56 BASIC Manual PolyMorphic Systems

The FOR-NEXT statements, then, define the same process and
set of elements that we identified in the first case. Yet
they provide a quicker, more concise way of specifying a
sequence of statements to be repeatedly executed. The
FOR-NEXT loop also allows more flexibility, and "hides" the
"housekeeping" functions required by the 1loop we had to
specify in the initial program which used the IF statement.
Some of the things the FOR-NEXT loop allows us to do are:

1) If we do not give an expression "STEP(exp)"
where (exp) is an arbitrary numeric expression, a
default step of 1 will be used.

?22) The values for the initial value,
terminating value, and step size do not have to
be an integer or positive. For example, t he
statement

160 FOR W=-1 TO -280 STEP -1

would perform some set of statements 20 times,
with the variable W taking the values -1, -2, -3,
-4... to -28. '

3) The statements in the 1loop body may be
performed =zero times, once, or indefinitely,
depending on the conditions and step size chosen.

4) We do not have to specify the variable name
on the NEXT statement, although this is quite
helpful for debugging (in fact, specifying the
variable name slows things down!).

5.4.1 Nesting of FOR-NEXT Loops

Often we like to have an iterative (looping) process going
on inside of another iterative process. It is perfectly
valid to have one FOR-NEXT loop inside another-- with the
following restriction: the 1inside 1loop must be totally
contained within the outer loop (and have a different 1loop
variable).

PolyMorphic Systems BASIC Manual Page 57

Example:

>
enter >LIST

19 REM NESTED LOOPS
20 FOR J=1 TO 10
36 FOR K=1 TO 1@
49 PRINT K+(J-1)*1g¢,",",
50 NEXT K
60 PRINT
79 NEXT J
>RUN

output 1, 2, 3, 4, 5, 6, 7, 8, 9, 18,

i1, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 34,
31, 32, 33, 34, 35, 36, 37, 38, 39, 449,
41, 42, 43, 44, 45, 46, 47, 48, 49, 58,
51, 52, 53, 54, 55, 56, 57, 58, 59, 6@,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70
71, 72, 73, 74, 75, 76, 77, 78, 79, 84,
81, 82, 83, 84, 85, 86, 87, 88, 89, 94
91, 92, 93, 94, 95, 96, 97, 98, 99, 199,
>

This program prints a list of numbers from 1 to 198. The
inner loop, as shown above, consists of lines 36, 48§, and
50, while the outer loop consists of lines 26 and 78. The
number of nested loops is restricted only by the amount of
available memory. To see how many FOR-NEXT loops you may
nest on your machine, refer to the Sample Program NEST in
Appendix B.

The following examples show some of the possibilities with
FCR-NEXT loops. Some of these examples show correct
usages; others show errors and what BASIC's response will
be.

Examples:
>
enter >106 REM Normal loop
>116 FOR I=1 TO 10 STEP 1
>126 PRINT I,",",
>130 NEXT I :
> RUN

output 1, 2, 3, 4, 5, 6, 7, 8, 9, 18,
>

Page 58

enter

BASIC Manual PolyMorphic Systems

enter 100 REM We don't need to specify step
195 REM or next variable.
119 FOR w=1 TO 14\PRINT W,",",
115 NEXT
> RUN

output i, 2, 3, 4, 5,6, 7, 8, 9, 19,
>

>
>196 REM Initial value, step, final nonintegral
>110 FOR E=.2 TO 1.2 STEP .3
>128 PRINT E,
>138 NEXT E
>126 PRINT E,",",

>RUN

output .2, .5, .8, 1.1,
>
>

enter >100 REM Using negative step value
>120 FOR E=10 TO 1 STEP -1

>140 NEXT
> RUN
output ¢, 9, 8, 7, 6, 5, 4, 3, 2, 1,
>
> _
enter >10 REM Negative numbers

>15 FOR W=-1 TO -11 STEP -1
>20 PRINT WwW,",",

>25 NEXT
>RUN
output -1, -2, -3, -4, -5, -6, -7, -8, -9, -18,
>
>

enter >198 REM FOR NEXT loop all on one line
>119 FOR I=1 TO 1@ \ PRINT I,",", \ NEXT
>RUN

output 1, 2, 3, 4, 5, 6, 7, 8, 9, 160,
>

-ll’

PolyMorphic Systems BASIC Manual Page 59

>

enter >148 REM Error-no NEXT statement
>116 FOR I=1 TO 100
>RUN

output 118 FOR I=1 TO 1640

FOR-NEXT error

enter >100 REM Error-wrong variable on NEXT
>114 FOR J=1 TO 1090 '
>120 NEXT Q
>RUN

output 120 NEXT Q
FOR-NEXT error
>

>
enter >1080 REM Error-string variables
>119 FOR I$="ONE" TO “THREE"
>120 NEXT
— >RUN

output 114 FOR I$="ONE" TO "THREE"

Type error
>

5.5 BRANCHING STATEMENTS

It is often desirable to alter the usual order of program
line execution. Branching statements are those statements
which enable BASIC to Jjump to program lines out of
numerical sequence. This jump may be based on the result
of a test condition (conditional branching) or simply be a
direct branch (unconditional branching). Most of these
statements are frequently used in combination with one
another.

5.5.1 GOTO
The GOTO statement lets you transfer execution to another

program line. The GOTO statement takes the form

GOTO line number.

Page 60 BASIC Manual PolyMorphic Systems

Example:

enter >
>10 REM Prints square root of X
>28 INPUT1 "A number?--",X
>30 PRINT " Square root of ",X," is: ",SQRT (X)
>40 GOTO 14
>RUN

output A number?——34 Square root of 34 is: 5.83069519
A number?--56 Square root of 56 is: 7.4833148

A number?-- (Control-Y command used here)
Interrupted in line 20
>>

Note that the program above is an infinite loop, and must
be interrupted by the user.

5.5.2 ON...GOTO

GOTO jumps execution to some line in the program other than
the succeeding 1line. ON...GOTO sends execution off when
some value has been arrived at; if it has not been arrived
at, execution continues with the succeeding statement as
usual. The ON...GOTO statement allows multiple branching
from one program line to many others, depending upon the
value of the variable specified. The ON...GOTO statement
takes the form

ON variable or expression GOTO program line number(s).

If the expression or variable after ON evaluates to a 1,
BASIC will jump to the first line number listed after the
GOTO. If the expression evaluates to a 2, the second 1line
number listed will be taken, and so on. Expressions are
truncated to an integer; 1.1 evaluates to a 1.

L

PolyMorphic Systems

Note
jump
jump
made

(See

Example:

enter

that in

>

>10
>20
>30
>40
>50
>60

>70
>80

>RUN
X eq
X eq
X eq
>

the

BASIC Manual Page 61

FOR X=1 TO 3

ON X GOTO 39, 50, 70
PRINT "X equals one"
GOTO 89

PRINT "X equals two"
GOTO 80

PRINT "X equals three"
NEXT

uals one
uals two
uals three

following example, when X is negative a

is made into program line number 28, when X equals @ a
is made to line 46, and when X is positive a Jjump is

to line 680.

Example:

enter

Section

>
>10
>28
>30
>40
>50
>60
>70
>RUN

?2-56
Line
>RUN

20
Line
>RUN

2456
Line
>

6,

INPUT X\ON SGN (X)+2 GOTO 20,40,60
PRINT "Line 20: X is negative"
GOTO 790

PRINT "Line 46: X is zero"

GOTO 79

PRINT "Line 6f: X is positive"
STOP

20: X is negative

4: X is zero

60: X 1is positive

Functions and Subroutines, for an

explanation of the SGN function.)

If the expression after ON is less than 1 or greater than
number of program line numbers listed after the GOTO,
BASIC will generate an error message.

the

Page 62 BASIC Manual PolyMorphic Systems

Example:

>

enter >LIST
16 FOR X=1 TO 4
280 ON X GOTO 30,40,50
30 PRINT "You're close"\GOTO 649
49 PRINT "You're warmer"\GOTO 60
580 PRINT "You're hot!"
60 NEXT
>RUN

You're close

You're warmer

You're hot!

20 ON X GOTO 30,40,580
Out of bounds error

5.5.3 ON...GOSUB

The ON...GOSUB statement works Jjust 1like the ON...GOTO

statement, except that instead of branching to the
indicated line, it executes the subroutine (see Section 6
for a discussion of subroutines) at that line number.

After the subroutine has executed, execution continues with
the statement following the ON...GOSUB statement.

5.5.4 IF-THEN

The IF-THEN statement is used to set up a test condition
which must be met before further instructions within the
IF-THEN statement can be executed. The IF-THEN statement
takes the form

IF test condition THEN legal IF-THEN clause.

The test condition may compare variable to variable,
variable to expression, string to string, etc. Legal
IF-THEN clauses include:

GOSUB subroutine line number,

RETURN,

GOTO line number,

PRINT print list,

ON variable or expression GOTO line number,
sTOP, or

variable= variable, expression, or string.

~NOYUT W N
e e e

PolyMorphic Systems BASIC Manual Page 63

Example:

enter >1¢ INPUT "wWant to play? ",AS
>2¢ IF AS$="no" THEN GOTO 5§
>30 REM Assumes all input other than "no" is "yes"
>4 PRINT "Here are instructions..."\GOTO 60
>58 PRINT " O.K. Catch you later"
>60 REM End of program
>RUN
output Want to play? vyes
Here are instructions...
>RUN

Want to play? no
O.K. Catch you later
>

>

>

The IF-THEN statement may perform multiple commands as a
result of the test condition. The multiple commands must
be written onthe IF-THEN statement program 1line, and
separated by back-slashes \ .

Example:

>
>SCR
>12 INPUT "Give me a number--",X
>20 IF X=1 THEN PRINT "Right answer"”
>25 PRINT "Go on!"\GOTO 280
>34 PRINT "X not equal to one"
>20@ PRINT "This is the end!"
>RUN
Give me a number--3
X not equal to one
This is the end!
>RUN
Give me a number--1
Right answer
Go on!
This is the end!
>

5.5.5 ELSE

An IF-THEN statement may also optionally include an ELSE
statement. The ELSE statement includes a legal IF-THEN
clause, and may also include another IF-THEN statement. If
either the THEN clause or the ELSE clause is a simple GOTO,
then the word GOTO may be omitted.

Page 64

Example:

enter
enter

enter
output

enter

BASIC Manual PolyMorphic Systems
>
>19 IF X>3 THEN PRINT "X>3" ELSE GOTO 209
>18 IF X>3 THEN PRINT "X>3" ELSE 2090
>
>IF 1=1 THEN PRINT "ONE" ELSE PRINT "COPS!"
ONE
>
>
>18 AS="YES"\X=0

>28 IP AS="YES"THEN IF X=0 THEN PRINT"GO!"ELSE PRINT"WRONG"
>RUN

GO!

5.5.6 EXIT

The EXIT statement is identical to a GOTO except that it
should be used when branching out of a FOR-NEXT loop. This
is because it terminates the active FOR 1loop(s) and
reclaims the associated internal stack memory. If an EXIT

is not

used when branching out of a FOR-NEXT loop, the

internal stack could become full and result in a control
stack error message.

Example:

enter >18 X=3

>20 FCR I=1 TO 1904

>36 FOR J=1 TO 1000

>4 PRINT I,J

>50 IF X=3 THEN EXIT 200
>60 NEXT\NEXT

>2@00 PRINT "END"

>RUN

11
END

5.6 STATEMENTS MODIFYING PROGRAM EXECUTION

5.6.1 CHAIN

The CHAIN statement in a BASIC program allows users to

"chain"
another

BASIC programs, that 1is to run them one after
automatically. The Run- Time~Environment is

preserved during chaining. One can think of the chaining
procedure as a super-GOTO statement, which branches to

another

BASIC program not in memory.

PolyMorphic Systems BASIC Manual ' Page 65

CHAIN string or expression
CHAIN "Program-Name"
CHAIN AS

The program to be "chained in" must have been saved in
token format (SAVEF or SAVEP).

5.6.2 LINK

LINK is the same as CHAIN, except that the

Run-Time-Environment is not saved. Equivalent to SCRATCH,

CLEAR, and LOAD.

5.6.3 DUMP

This command dumps the defined scalar variables (outputs

them to the video screen). See Section 11 on debugging for

a detailed description.

5.6.4 WAIT

This commands halts program execution, prints the message:
Waiting...

on the monitor, and waits until ANY key 1is struck before

continuing program execution.

5.6.5 PAUSE n

This command will halt program execution for n clock cycies

(one cycle is 1/68 sec.) before continuing execution.
Thus PAUSE 686 will cause the program to pause in 1its
execution for one second. n may be any expression that

evaluates to a number between # and 65535. You can end a
pause (and return to BASIC) by hitting Control-Y.
5.6.6 ON ERROR

This command provides user control over program errors. A
detailed description is in the debugging section.

5.6./ ON ESCAPE
This command provides user control over panic stops

(Control~Y). See the debugging section for a complete
discussion.

5.7 SUMMARY OF PROGRAM STATEMENTS

Page 66 BASIC Manual PolyMorphic Systems

CHAIN Chains or links BASIC programs.

DATA: Contains data for program execution accessed by
READ. Data must be separated by commas and may be either
numerical or string in type. Strings must be enclosed in
quotation marks.

DUMP Dumps defined variables to video screen.
ELSE Used in conjunction with IF-THEN statement. IF test

condition THEN legal IF-THEN clause ELSE 1legal IF-THEN
clause or additional IF-THEN statement.

EXIT Similar to GOTO statement, but should be used when
branching out of a FOR-NEXT loop to aveoid stack-full error.

FOR-NEXT Sets up loop within program. Loop is repeatedly
executed until specified terminal value 1is passed by
variable given in FOR statement. Unless specified,
variable is incremented by +1. FOR loop variable=initial
value TO terminal value STEP optional step value.

GOTO Unconditional branching statement, transferring
program execution to specified 1line number. GOTO line
number.

IF-THEN 1IF test condition THEN 1legal IF-THEN clause or
additional IF-THEN statement. Execution of statement after
THEN depends upon fulfillment of test condition.

INPUT Inputs data from user of program. May include
optional input string as a prompt. Otherwise, INPUT
prompts program user with a question mark. INPUT optional
prompt string, string or numerical variable.

INPUT1 1Identical to INPUT except that carriage return echo
(after user input) is eliminated, so that the next PRINT or
INPUT statement appears on the same line as original input.

LET Optional assignment statement, LET variable=
variable, expression, or string.

LINK Like CHAIN except the Run-~Time Environment is not
saved. Equivalent to SCRATCH, CLEAR, and LOAD.

ON ERROR User-defined error control.
ON ESCAPE User-defined control of control-Y.

ON...GOSUBConditional selection of subroutines. Analagous
to ON...GOTO.

ON...GOTO A conditional statement allowing a branch toa
specified line number if a test condition is met. If the

PolyMorphic Systems BASIC Manual Page 67

variable or expression equals 1, a branch to the first line
number listed 1is taken; 'if the wvariable or expression
equals 2, a branch to the second 1line number 1listed is
taken, and so on. ON variable or expression GOTO line
number.

PAUSE n Pause in program execution for n clock cycles.

PRINT Prints data specified in the print list. The print
list may contain elements which are variables, strings, or
expressions, all separated by commas. PRINT will evaluate
and print expressions and variables, and print literally
(not evaluate) strings. A format string (Section 5.3.2) or
a TAB (Section 5.3.2) may be included with a PRINT
statement to format output. PRINT optional format string
or TAB (expression), print list.

READ Used in combination with a DATA statement to access
the data contained in & DATA statement. READ variable
list.

RESET Restores ON ERROR and ON ESCAPE to their original
inactive state.

REM Used to place comments within the program. Must be
the last statement on a program line, preceded by a
back-slash unless it 1is the only statement on the 1line.
REM comment.

RESTORE Used to change the order in which a READ statement
accesses data from a DATA statement. May optionally
include a 1line number of a particular DATA statement.
Otherwise, the READ statement following RESTORE is directed
to begin reading data from the first DATA statement in the
program.

STOP BASIC halts execution of a program when it reaches a
STOP statement.

WAIT Wait until the keyboard is struck before continuing
program execution.

Page 68

BASIC Manual

PolyMorphic Systems

PolyMorphic Systems BASIC Manual Page 69

Section 6

FUNCTIONS AND SUBROUTINES

It 1is often desirable to perform one section of a program
more than once during the execution of a program. Rather
than type this section over and over at various points
throughout the program, BASIC has some rather ingenious
ways of repeating program sections: functions and
subroutines.

6.1 INTRINSIC FUNCTIONS

Some commonly used functions have been incorporated into
BASIC as intrinsic functions,. Each of these functions
replaces many lines of program statements. An intrinsic
function may be used as part of an expression (for example,
Z=COS (SQRT (X)*75/108)) or may stand alone (for example,
PRINT SIN(X)). The intrinsic functions of BASIC are listed
below.

6.1.1 Regular Intrinsic Functions

SQORT (expression) Returns the positive square root ofa
positive expression. An expression whose value is less
than # will result in an error message.

EXP (expression) Returns the value of e (2.71828...) raised
to the specified power.

LOG (expression) Returns the natural logarithm (base e) of
the expression.

LOGT (expression) Returns the 1logarithm to the base 180 of
the expression.

COS (expression) Returns the cosine of the expression in
radians.

SIN(expression) Returns the sine of the expression in
radians.

TAN (expression) Returns the tangent of the expression in
radians.

ABS (expression) Returns the absolute value of the
expression.

INT (expression) Returns the nearest integer which is 1less
than the expression. ’

Page 70 BASIC Manual PolyMorphic Systems

SGN (expression) Returns 1, @, or =1 if the sign of the
expression 1s +, 4, or -.

RND (expression) Returns a random number greater than ¢ and
less than 1. BASIC generates a sequence of numbers that
are randomly distributed, based on a given "seed" value.
Where one enters this sequence when using the RND function
depends upon the expression (seed value) given to the RND
function. The seed value must be greater than or equal to
6 but less than 1. If the seed value is @, a point in the
sequence of random numbers is chosen depending upon the
last random number produced, and a random number 1is
produced. The next time that RND(#) is called within the
same program, the next number in the sequence is produced,
and so on., If the seed values are the same the next time
the program is run, an identical sequence of random numbers
will be produced. This is important if the programmer
wishes to repeat exactly a simulation of a random process.
A non-zero seed value will always produce the same random
numbers. For example, RND(.l) always gives .1640625.

The RND function also accepts arguments greater than 1. 1In
this case, it returns a random integer between 1 and INT(N)
inclusive.

Example:
>SCR
>18 FOR I=1 TO 190
>20 PRINT RND(19),
>386 NEXT
>RUN

Compare this with the normal values returned:

>SCR

>@ PRINT %#8F5

>1f FOR I=1 TO 180
>28 PRINT RND (@),
>38 NEXT

>RUN

RANDOMIZE To completely randomize the RND function for
every use of the program, use RANDOMIZE. This provides
seed values based upon the current value of the real time
clock.

TIME (expression) The TIME function returns as 1its value
the 16 bits of the System 88 real time clock, which is
incremented every 1/60th of a second. The expression 1in
the TIME function must evaluate to a value greater than or
equal to @ and less than 65536. If the expression does not
evaluate to @, the current value of the real time clock 1is
returned. If the expression 1is @, the TIME function
returns the current value of the real time clock and sets

®

PolyMorphic Systems BASIC Manual Page 71

the timer to @; this is useful for recording elapsed times.
Since only 16 bits of the timer are returned, the value
returned by the TIME function will cycle every (2716)/60
seconds (1092 seconds = 18.2 minutes). Longer timing
periods may be measured using the PEEK and POKE features
(see below) to manipulate the most significant bytes of the
real time clock. See programs in Appendix C: Sample
Programs for examples.

Example:
>
enter > PRINT TIME (1)
output 924
>

COSH (expression) Returns the hyperbolic cosine of the
expression.

SINH (expression) Returns the hyperbolic sine of the
expression.

TANH (expression) Returns the hyperbolic tangent of the
expression.

ATAN (expression) Returns the arctangent of the expression.
The range is +PI/2 to =-PI/2 radians.

ASIN (expression) Returns the arcsine of the expression,
The range is +PI/2 to -PI1I/2 radians.

FREE (@) PRINT FREE(8) prints the number of wunused bytes
available in memory.

MEM (variable name) Returns the address in memory of the
variable given as an argument. This is useful in assembly
language CALLS.

6.1.2 Intrinsic Functions Directly Accessing Memory and the
8080 System

(See Appendix E, Interfacing with the Assembler and Memory,
for a full explanation of the use of these functions.)
Numbers in intrinsic functions must be decimal. Therefore,
all hexadecimal numbers must be converted to decimal
numbers before using them as arguments in intrinsic
functions.

INP (8080 port) This function allows the programmer ¢to
perform an 8@80 IN instruction from the specified port.
The statement PRINT INP(8@) tells you what value is in the
88th port of the System 88.

Page 72 BASIC Manual PolyMorphic Systems

QUT 8080 port,expression This instruction allows the
programmer to perform an 8¢8f OUT instruction to a
specified port. For example, OUT 40,3 performs an OUT 49
instruction with 3 in the 8086 accumulator.

POKE memory byte,expression This function allows the
programmer to £ill the specified byte in memory with given
expression value., For example, POKE 3060,J+3 will £ill
memory byte 3080 (decimal) with the wvalue J+3. This
function should be used with caution, since improper wuse
may destroy portions of the contents of memory.

PEEK (memory byte) This function allows the programmer to
examine the wvalue being held in the specified memory
location. For example, PRINT PEEK(3606) will tell you what
value is in memory byte 3000 (decimal).

6.1.3 Intrinsic String Functions

{See Section 7, Strings and Arrays, for a discussion of
strings.)

LEN (string variable) Returns the number of <characters in
the specified string.

Example:
>

enter >16 A3$="PICKLE"\PRINT LEN (A3S)
>RUN

output 6
>

VAL (string variable) Returns the numeric value of a
numeric string if the string doesn't contain blanks.

Example:
>
enter >PRINT VAL ("123")
output 123 '
>

STRS (expression) Returns a string with the specified
numeric value.

Example:
>
enter >PRINT STRS (234)
output 234
>

Within the STR$ function it is possible to define the
format of the resulting string by using the syntax:

o

PolyMorphic Systems BASIC Manual Page 73

STRS (expression,%#format specifiers)
For example:

>A=1234

>PRINT STRS (A,%#S61)
output $1234

>

ASC(string variable) Returns the decimal representation of
the ASCII code for the first <character in the string
specified. See Appendix C, The BASIC Character Set, to
find the ASCII code in BASIC.

Example:
>
enter >ss="8"
>PRINT ASC(58)
output 83
>

To find the ASCII value of a character other than the first

character, give the "serial number" of the character. For

the third character in the string AS$, for instance, say:
PRINT ASC(AS$,3)

Note the mandatory comma.

CHRS (expression) Returns a string of one character

specified by the expression. The expression is a decimal
representation of the ASCII code.

Example:
>
enter >PRINT CHRS (83)
output S
>

LEFTS (string name,n) Returns the left-most n characters of
the string expression. n may also be an expression.

Example:
>
enter >AS="HELLO"
>PRINT LEFTS (AS,2)
output HE
>
¢
When n is less than @, a null string is returned. When n
is greater than the length of the string, the entire string
is returned.

RIGHTS (string name,n) Returns the right-most n characters
of the string expression. See LEFTS$ above.n may also be an
expression.

Page 74 BASIC Manual PolyMorphic Systems

Example:
>
enter >AS$="HELLO"

>PRINT RIGHTS (AS,2)
output LO

>

MIDS$ (string name,n,m) Returns the nth through the mth
characters of the string expression, inclusively. Both n
and m may be expressions,

Example:
>
enter >AS="HELLO"
>PRINT MIDS (AS$,3,4)
output LL
>

6.2 USER-DEFINED FUNCTIONS

BASIC allows programmers to define their own single or
multi-line functions or one-line functions within a
program. The function name begins with the letters FN,
followed by a legal string or numeric variable name. If
the function 1is a one line function, the definition takes
the form DEF FN legal variable name (argu ments)=function.
This is a one-line function.,. For example: DEF
FNAl (A,B)=A+B. The arguments of the function (A and B) are
local to the function definition. That is, their values
are not affected outside of the execution of the function.
Therefore, when the function is called upon during program

execution, the arguments of the function call are
substituted in for the dummy statement of the function
definition. For this reason, the num ber of arguments in

the function definition must always equal the number of
arguments in the function call, or an error message will be
generated,

Example:

enter >LIST _
16 PRINT "Use control-Y to exit"
20 DEF FNS1(A,B)=A+B
30 INPUT1 "Give 2 numbers--",X,Y
46 PRINT " Their sum is: ",FNS1(X,Y)

5 PRINT " The absolute value of their sum is: ",ABS(FNS1(X,Y)

60 GOTO 39
>RUN

Poinorphic Systems BASIC Manual Page 75

output Use control-Y to exit
Give 2 numbers-- 4,-56 Their sum is: =52
The absolute value of their sum is: 52
Give 2 numbers-- 34.78,-567 Their sum is: -532.22
The absolute value of their sum is: 532.22

Give 2 numbers-- (Control-Y command used here)
Interruped in line 30
>>

If the user-defined function is a multi-line function, the
first line of the function takes the form DEF FN legal

variable name (arguments). The 1lines following that
statement form the definition of the function. The 1last
line of the function definition must be the statement
FNEND, to indicate the end of the defini tion. A

multi-line definition must return a value. This is done by
using a RETURN statement with the variable or constant to
be returned. The RETURN statement informs BASIC when
executing the function that computation is over.

Example:

enter >10 DEF FNA (X,Y,7Z)
>28 IF Z=1 THEN RETURN X
>30 X=Y*Z+X*3
>49 RETURN X
>56 FNEND
>60 A=1\B=2\C=A+B
>78 PRINT FNA (A,B,C)
>RUN

output 9
>

In the example above, note again that the variable names in
the function definition are local to that definition; when
the definition is called later, the variable names used in
the call are completely different from those in the
function definition. The function definition and call must
only <contain the same number and type of variables.
Functions must be defined within the program only once, and
a definition must exist for each user-defined function
called in a program.

6.3 SUBROUTINES

Subroutines are used in much the same way as user~defined
functions. Their purpose 1is to allow the programmer to
define a section of the program which may be used again and
again during program execution to perform a desired

function. The GOSUB statement is wused to call the
subroutine. Execution of the program is transferred to the
program line specified in the GOSUB statement. This line

is the Dbeginning of the subroutine. The end of the

Page 76 BASIC Manual PolyMorphic Systems

subroutine is indicated by a RETURN statement. When BASIC
encounters a RETURN statement, it returns to the program
statement after the GOSUB statement. BASIC then goes on
with the rest of the progranm.

Example:

>
enter >18 INPUT1 "Give positive #: ",X

>20 IF X>0 THEN GOSUB 200 ELSE 10
>30 REM REST OF PROGRAM
>40 STOP
>50 REM Subroutine next
>200 PRINT " Square root of your"”
>219 PRINT "number is: ",SQRT(X)
>220 RETURN
>RUN

output Give positive #: 356 Square root of your
number is: 18.867963
Stop in line 40
>>

Take care not to 1let program execution "fall into" the
subrout ine. For example, in the above program, 1if you
remove the STOP statement at line 40, the subroutine will
execute twice-- once when called in the GOSUB statement,
and once when BASIC moves on to line 200 from line 306.
This situation results in an error message being generated
by BASIC, since BASIC finds two RETURN statements but only
one GOSUB statement in the program.

Example:
>40
enter >LIST
19 INPUT1 "Give positive #: ",X
20 IF X>@ THEN GOSUB 200 ELSE 10
39 REM Rest of program
50 REM Subroutine next

200 PRINT " Square root of your"
219 PRINT "number is: ",SQRT(X)
229 RETURN

>RUN

output Give positive #: 569.234 Square root of your
number is: 23.858625
Square root of your
number is: 23.858625

228 RETURN

RETURN without GOSUB error
>

PolyMorphic Systems BASIC Manual Page 77
Section 7
STRINGS AND ARRAYS

Two of the more advanced elements of a BASIC program are
strings and arrays. They are incorporated into one section
in this manual because, in many ways, a string «can be
treated in the same way as an array.

7.1 ARRAYS

An array 1is a list of items which may be represented by a
legal variable name and indexed by a subscript of that
variable. For example, the 1list (1,2,3,4,5) may be
represented by the variable X. The first item in the 1list
would be referenced by subscript 1, written X(1). (Note
that subscripts denoting a position in an array begin with
1.) The second 1item 1is referenced by the subscript 2,
thus: X(2), and so on. The subscripts may, 1in turn, be
represented by a variable: X(I).

In wusing arrays, the user must first dimension the array
(give it a maximum size) wusing the DIM statement.
Ctherwise there will be an error.

Example:
>
>LIST

enter 18 REM Print out array in reverse order

15 DIM X({5)
20 X(1)=10\X(2)=20\X(3)=30\X(4)=40\X(5)=50
34 FOR I=5 TO 1 STEP -1
49 PRINT X(I)
560 NEXT
> RUN

output 540
40
30
29
19
>
7.1.1 The DIM statement.
The DIM statement takes the form:
DIM variable array name (number of items).

For example: DIM X(500).

An array can be dimensioned only once in a program. Our

Page 78 BASIC Manual PolyMorphic Systems

sample array above 1is a 1list, and so has only one
dimension, but an array may have more than one dimension.
For example, the following table is a representation of a
2-dimensional array.

Array X(I,Jd): J= 1 2 3 4
I=1 10 11 12 13

2 14 15 16 17

3 i8 19 20 21

4 22 23 24 25

The position X(4,3) contains the number 24. A sample
program toprint this array would be:

>

enter >16 DIM X(4,4)

>20 FOR I=1 TO 4\FOR J=1 TO 4

>30 READ X(I,J)\PRINT X(I,J),

>4¢ NEXT\PRINT

>58 NEXT

>60 DATA 19,11,12,13,14,15,16,17,18

>76 DATA 19,28,21,22,23,24,25

>RUN

output 1 11 12 13
14 15 16 17
18 19 29 21
22 23 24 25
>

Although we cannot represent more than two dimensions in
this matrix form, more than two dimensions may be assigned
to an array. The number of dimensions and elements in an
array is 1limited only by available memory space. Each
element in an array takes up five bytes of memory space (at
eight digits of precision; in general n/2 + 1 bytes from n
digits of precision).

7.1.2 Optional Array Origins.

The user may, 1if desired, set his or her arrays to start
indexing from f#. To do this, use the statement DIM@ before
dimensioning arrays with other DIM statements. (There 1is
also a DIM1 statement, which restores the default condition
that BASIC automatically assumes.)

7.2 STRINGS

A string is a list of characters (which may include blanks)
surrounded by quotation marks. If you put anything in
quotation marks, BASIC will think it's a string. Quotation
marks tell the computer to simply reproduce whatever
information is contained within the marks. A string is
represented by a string variable, which 1is any 1legal
variable name, followed by a dollar sign ($) symbol: "AlS."

PolyMorphic Systems BASIC Manual Page 79

System 88 BASIC also has true string arrays. They are just
1ike numeric arrays éxcept that each element, instead of
being a number, is a string.

An example of the correct way to dimension a string array
is:

DIM A$(5,5:15)

Here we have a two-dimensional array (5 x 5), each element
of which is a string that has a MAXIMUM of 15 characters.
Note the use of the colon-- it tells BASIC that we are done
with the dimensioning and now want to set an upper limit on
the length of the string elements of the array.

Example:

SCR
13 DIM AS$(3:6)

28 AS(l)="red" \ A$(2)="yellow" \ A$(3)="green"

30 PRINT "What color is the traffic light?"
49 PRINT AS$ (RND(3))

5¢ PAUSE 124
68 GOTO 30
RUN

Notice that we do the calculation of the subscript directly
inside the parentheses.

You may use string variable "scalars," without subscripts,

but they are 1limited to twelve characters. In fact,
because strings themselves are 1like arrays, BASIC will
treat a string variable "scalar" as an array with
dimensions (1) . Thus, it is possible to make the string

variables longer than twelve characters by dimensioning
them that way.

Example:
>
enter >SCR
>10 DIM AS$(1:25)
>20 AS$="abcdefghijklmnopgrstuvwxy"”
>38 PRINT AS
>RUN

output abcdefghijklmnopgrstuvwxy

Strings and string variables may be used in combination
with LET, READ, DATA, PRINT, IF and INPUT statements. The
IF statement does produce alphabetic comparisons when the
relational operators are used.

Page 80 BASIC Manual PolyMorphic Systems

Example:
> _
enter >100 IF ZS$S+BS<"Smith" THEN 54
>

When string variables are used in an INPUT statement, the
input must not be surrounded by quotation marks. When
strings occur in DATA statements, they must be surrounded
by quotation marks.

You cannot have a string scalar and a string array with the
same name., For instance:

AS$="Hello"
DIM AS (N:M)
is an error if N>1.

PolyMorphic Systems BASIC Manual Page 81

Section 8

THE MAT STATEMENT

The PolyMorphic disk BASIC MAT statement differs
considerably from MAT statements in other BASICs used 1in
many other computers. Readers who are already familiar
with other BASICs and other MAT statements will probably be
pleasantly surprised.

8.1 MAT

The MAT statement is a general array operator. It may be
used with ANY array, numeric, or string, not just matrixes
(despite the name).

First, a very simple example. Enter the following program:

>SCR

>10 DIM A(190)
>280 MAT A=5

>30 MAT PRINT A,
>RUN

This short example shows the two correct syntaxes for the
MAT statement. In line 20 we set every element of the
array A to the constant 5. However, just as in assignment
statements for single variables, the right-hand expression
can be extremely complex. In line 38 we printed the array
A by combining the MAT statement with a PRINT statement. A
number of BASIC state ments can be combined with MAT.

8.2 ASSIGNMENTS USING THE MAT STATEMENT
Now we'll try something a bit more complex.

>SCR

>10 DIM A(5,5),B(25)

>28 MAT A,B=RND (9)

>389 FOR I=1 TO 5 \ FOR J=1 TO 5

>49 PRINT A(I,J), \ NEXT

>5@ PRINT \ NEXT

>68 FOR I=1 TO 25 \ PRINT B(I), \ NEXT
>RUN

Here we see four important aspects of the MAT statement.
First we notice that it does, 1in fact, work with
multi-dimensioned arrays. Second, we see that each element
of the array was set to a DIFFERENT random number. This
means that, in effect, the MAT statement was executed once
for each element of the array. Thus we can say that the
MAT statement is an implied FOR...NEXT loop over all the

Page 82 BASIC Manual PolyMorphic Systems

elements of the specified array (which in this case was A4).
This is an extremely important point, and we will emphasize
it repeatedly. Third, we notice that the multiple
assignment capability also applies to MAT statements. And
fourth, we notice that MAT works on a row major basis, as
can be seen by the fact that A(l,2)=B(2) etc.

8.2.1 Multi-Dimensioned Arrays Using MAT
The MAT statement will accept any array-- of any dimension.
As mentioned above, the MAT statement can be considered an

im plied FOR...NEXT loop. For example, consider what
happens when BASIC is given the following:

>SCR

>19 DIM A(16),B(18),C(19)

>20 MAT B=RND (@) \ MAT C=RND(14)
>386 MAT A=B+C

>40 MAT PRINT A,

>RUN

We can consider this as producing the same results as the
FOR...NEXT loop:

® o o @

>3¢ FOR I=1 TO N
>40 A(I)=B(I)+C(I)
>58 NEXT

>60 MAT PRINT A,
>RUN

where N is the number of elements in the array A. But the
MAT statement is not only more concise than FOR...NEXT,

saving memory space because it makes programs smaller, but
it runs much faster-- in the example above, nearly three
times faster.

Suppose, however, that you have a scalar variable that you
would like to add to an array. It would be nice to be able
to write your program like this example:

>SCR

>19 DIM A(3,3) .
>280 B=RND(10)

>39 MAT A=RND (8)+B
>48 MAT PRINT A
>RUN

Fortunately, PolyMorphic disk BASIC will let you.
How does BASIC know whether a variable in a MAT statement

is an array or not? Like this: If BASIC "sees" a variable
in a MAT statement, and you have dimensioned an array with

PolyMorphic Systems BASIC Manual Page 83

that name, BASIC will use the array. If there is no array
by that name, BASIC will get the scalar variable with that
name, If there is neither an array nor a scalar with that
name, BASIC gets a #. We can see this by inserting the
following line into the program above:s

>15 DIM B(9) \ MAT B=99
>RUN

Remember that you can make the expression as complex as you
wish. For instance, this program

>SCR

>10 DIM A(3,3)
>2% MAT A=RND (0)
>30 MAT A=ASIN(A)
>49 MAT PRINT A
>RUN

calculates the ARCSIN of every element of A. Of course,
the program would be smaller if we wrote:

>20 MAT A=ASIN(RND(@))
>DEL 30
>RUN

Or suppose that we have arrays of X and Y <coordinates of
points and would like to know the distances to the origin:

>SCR
>10 DIM X(19) ,Y(106),D(19)

>REM All the points lie within the unit circle

>28 MAT X=1-2*RND (@) \ MAT Y=1-2*RND (@)
>30 MAT D=SQRT (X*X+Y*Y)

>4¢ MAT PRINT X,Y,D

>RUN

8.2.2 Multiple Assignments Using MAT.

In the same way that you use multiple assignments with
scalar variables, you can write BASIC statements using MAT
for multiple assignments. (Note: If you are going to
assign values to several arrays by wusing one multiple
assignment MAT statement, make sure that you dimension all
of those arrays to the same length. Not doing so may
result in unpredictable behavior on the part of BASIC.)
For example, suppose we want to reset a number of arrays to
@:

Page 84 BASIC Manual PolyMorphic Systems

>18¢ DIM A(140),B(100),C(190),D(100)
>REM Here we have some random program

>95¢ MAT A,B,C,D=9
Line 950 is thus equivalent to the FOR...NEXT loop:

>950 FOR I=1 TO 180
>951 A(I1),B(I),C(I),D(I)=0
>952 NEXT

8.2.3 Order of Assignment in MAT Statements

Here it will help to remember the implied FOR...NEXT loop.
Consider this program:

>SCR

>18 DIM A(2,2)
>28 MAT A=RND (8)

It is clear that the first element of A to be assigned a
random number is A(1l,1). But is the next random number
assigned to A(l1,2) or to A(2,1)? As we saw in an earlier
example, the next random number goes to A(l,2). This is a
row-major procedure. The right-most dimension varies most
rapidly.

The implied FOR...NEXT will also help in the next example:

>16 DIM A(19),B(19)
>20 MAT A,B=RND(9)

The first variable assigned 1is B(1l). (Remember that
multiple assignments proceed right-to-left.) Using the
idea of an im plied FOR...NEXT, we <can see that the
subsequent assignments go to A(l), B(2), A{(2), B(3), A(3)

8.3 MAT IN COMBINATION WITH OTHER BASIC STATEMENTS

As we saw in the first example, MAT can be combined with
other BASIC statements. Below is a list of the statements
that can be combined with MAT:

LET

PRINT

READ

INPUT

PLOT
IF..THEN..ELSE

We have already seen how to make assignments with the MAT
state ment. Also, from the examples above using MAT PRINT

PolyMorphic Systems BASIC Manual Page 85

one can see that they are straightforward examples of the
principle of an implied FOR...NEXT loop. In exactly the
same way, one can use MAT READ, MAT INPUT, and MAT PLOT.

>SCR

>10 DIM A(19),B(18)

>20 MAT READ A

>3¢0 MAT PRINT A, \ PRINT

>4 MAT INPUT B

>5@ MAT PRINT B, \ PRINT

>60 PAUSE 60

>70 PRINT CHRS$ (12) \ PLOT 0,44,0
>89 MAT PLOT A,B,1

>90 DATA 1¢,20,30,40,50,60,79,80,96,100
>RUN '

8.3.1 MAT IF Statements

This is one of the most powerful uses of the MAT statement.
Remembering the principle of implied FOR...NEXT, we see
that:

>SCR

>10 DIM A(14)

>20 MAT A=RND(14)

>30 MAT IF A=0 THEN 50

>4% PRINT "No element of A equals #" \ STOP
>50 PRINT "Some element of A equals @"

>RUN

is essentially the same as:

>SCR

>106 DIM A(1l9)

>26 FOR I=1 TO 14 \ A(I)=RND(1l@) \ NEXT

>3 FOR I=1 TO 14

>4¢ IF A(I)=0 THEN EXIT 70

>50 NEXT

>68 PRINT "No element of A equals 6" \ STOP
>79 PRINT "Some element of A equals g"

> RUN

Notice that the MAT statement simulates the EXIT feature.
Thus when we jump out of the MAT IF we do so in the best
way—— BASIC doesn't blow up on us! The example above
illustrates perhaps the most useful feature of MAT IF. It
allows one to test an entire array for a certain condition
and branch if it is met. We also can do this:

Page 86 BASIC Manual PolyMorphic Systems

>SCR

>10 DIM A(100)

>20 MAT A=RND (10) ,

>3¢0 MAT IF A=2*INT(A/2) THEN PRINT A," is even"
>RUN

which prints every even element of the array A.

8.4 THE # FEATURE IN MAT STATEMENTS Sometimes when using an
IF...THEN inside a FOR...NEXT loop we are interested in
knowing which element of the array met the condition that
caused us to branch out. How, one should ask, can we do
that with a MAT IF? PolyMorphic disk BASIC has a variable
that is used as the index of the implied FOR...NEXT loop
that a MAT statement is simulating. For example:

>SCR

>19 DIM A(180)
>20 MAT A=#

>3@ MAT PRINT A,
>RUN

We see that the array is now all the integers from 1 to
106. The # variable may be freely used in the right-hand
expression:

>SCR

>18 DIM A(909)

>20 K=PI/180 \ REM convert degrees to radians

>30 MAT A=SIN (#*K)

>40 MAT PRINT A," is the sine of ",%31#," degrees"”
>RUN

Here we print out a table of the sines of the angles from 1
de dgree through 38 degrees. How does this pertain to MAT
IF? Well, when we leave the MAT IF, the variable # will
be set to the index ot the array element that met the
condition. For example:

>SCR

>10 DIM A(100)

>20 MAT A=RND(9)

>30 MAT IF A>.95 THEN 50

>4 PRINT "no luck this time" \ STOP
>580 PRINT A(#%)," is greater than £.95"
>RUN

If we wanted to print every element of A greater than 9.95,
along with their indexes, we would change the program:

>38 MAT IF A>.95 THEN PRINT A,#
>DEL46,50

>RUN

PolyMorphic Systems BASIC Manual Page 87

What happens with multi-dimensioned arrays? Well, since
the "4 1s a single variable, it can't tell us the indices
for each dimension. 1Instead, it treats the array as a
vector:

>SCR

>10 DIM A(10,102)

>20 MAT A=%

>389 FOR I=1 TO 18 \ FOR J=1 TO 10
>40 PRINT A(I,J), \ NEXT

>58 PRINT \ NEXT

>RUN

What happens when the arrays have been set to a base of 0
by the DIM# statement? BASIC will start the # "index" from
@ instead of from 1.

>SCR

>16 DIMG

>20 DIM A(19)
>30 MAT A=#

>49 MAT PRINT A4,
>RUN

8.5 MAT WITH STRING ARRAYS

As we mentioned earlier, the MAT statement will accept
string arrays. Let's re-write an earlier program to see
how it works. '

>SCR

>1% DIM AS (98:25)

>206 MAT AS$="The sine of "+STRS(#)+" degrees
>30 K=PI/1880

>49 MAT PRINT AS,SIN (#7*K)

>RUN

This example shows that MAT statement handles string
functions for string arrays in the same way it handles
numeric functions for numeric arrays. Note that the #
feature is used! We leave as an exercise to the reader the
task of writing the above program without MAT (just to
convince yourself how useful MAT is).

8.6 SPECIAL ARRAY FUNCTIONS There are six intrinsic array
functions in PolyMorphic disk BASIC. Like the MAT
statement, they can be considered implied FOR...NEXT loops.
But they are very, very much faster than the corresponding
loop, a fact you can test for yourself.

Unlike the other BASIC functions that take expressions as
arguments, these functions take the NAME OF AN ARRAY as the
argument,

iS"

Page 88 - BASIC Manual PolyMorphic Systems

8.6.1 SUM

This function returns the arithmetic sum of the elements of
the array given as an argument:

>SCR

>10 DIM A(1l09)
>20 MAT A=#

>30 PRINT SUM(A)
>RUN

8.6.2 PROD

This function returns the product of the elements of the
array given as the argument:

>SCR

>19 DIM A(19)

>2@0 MAT A=RND (4)
>30 PRINT PROD (A)
>RUN

8.6.3 MAX and MIN

These functions return the maximum and minimum,
repectively, of the array given as the argument:

>SCR

>19 DIM A(100)

>28 MAT A=RND(8)

>30 PRINT MAX(A) ,MIN(A)
>RUN

Both the MAX and MIN functions modify the indexing variable
#. They set # equal to the index of the element of the
array which is the maximum (or minimum).

Example:
>SCR
>19 DIM A(1l8)
>29 MAT A=RND (190)
>30 PRINT MAX(A) \ PRINT §# \ PRINT A(#)
>4@ PRINT MIN(A) \ PRINT # \ PRINT A(#)
>RUN
8.6.4 MEAN
This function returns the mean (the average, in usual

parlance) of the elements of the argument array.

PolyMorphic Systems BASIC Manuél Page 89

>SCR

>19 DIM A(149)
>20 MAT A=RND (9)
>30 PRINT MEAN (A)
>RUN

8.6.5 STD

This function returns the Standard Deviation of the
elements of the argument array.

>SCR

>18 DIM A(180)
>2@ MAT A=RND (9)
>38 PRINT STD(A)
>RUN

Compare these functions with the FOR..NEXT loops you would
otherwise have to use, and see how much faster these
function. For the SUM function, the loop would be:

>SCR

>19 DIM A(1lG9)

>20 MAT A=#

>3@ FOR I=1 TO 148 \ X=X+A(I) \ NEXT
>4@ PRINT X

>RUN

Page 90

BASIC Manual

PolyMorphic Systems

PolyMorphic Systems BASIC Manual Page 91
Section 9
THE PLOT AND DRAW FEATURES

The PLOT statement allows the BASIC programmer to use
graphics characters to display data. The statement plots
data on the video screen on a 128 by 48 grid. The "origin"
of the display grid is the lower left hand corner of the
screen, addressed as point (8,0). The X-axis of the grid
runs horizontally across the display (left to right) from @
to 127, and the Y-axis of the grid runs vertically up the
display (bottom to top) from 8 to 47.

To plot data using the PLOT statement, wuse the following
form:

PLOT X,Y,Z

The X is any user-selected variable or expression chosen as
the X-coordinate of the plot and Y is the Y-coordinate of
the plot. Z is an arbitrary expression-- it will plot the
point as a bright spot if Z is odd, and as a dark spot if Z
is even. The X-coordinate and Y-coordinate must reference
points which are actually on the display grid; for this
reason, they must be greater than #. In addition, X must
be less than or equal to 127, and Y must be less than or
equal to 47.

After a point is plotted, the cursor position moves to that
point of the screen. The next PRINT or INPUT statement
will then appear at that spot. This 1is useful for
arranging 1input prompts on the screen and for formatting
output text.

DRAW draws a line originating from the screen position last
computed (current cursor location) to a point indicated as
with PLOT above: a pair of co-ordinates stated as the
arguments of the DRAW statement.

DRAW (X ,Y,2Z)

Z, as with PLOT, is any value or expression determining
whether the line drawn 1is "on" (lighted) or “"off"
{unlighted). An odd number, or an expression evaluating to
an odd number, produces a line that is on, an even number
one that 1is off. (A line that is "off" is used to draw
through a lighted field.)

Page 92

BASIC Manual

PolyMorphic Systems

PolyMorphic Systems BASIC Manual Page 93
Section 19
OPTIMIZING YOUR BASIC PROGRAM

This section gives you some techniques for optimizing BASIC
programs: making programs run faster and reducing the
amount of memory they require. Many of the techniques
described here reduce execution time as well as the amount
of memory used by a program. The sample program at the end
of this section also shows you how to time program
execution using the real~time clock and how to develop
these techniques further,

The first technique is to eliminate extraneous program
material. Remove the keyword LET from all assignment
statements, since it 1is not needed. Once the program is
running correctly, remove all REM statements; they take up
memory space and must be skipped over during program
execution, thus increasing execution time. Remove variable
names from NEXT statements, since they 1increase 1loop
processing overhead.

The second technique is to pack as much on a program line
as possible. Placing two statements on the same 1line,
rather than on two separate lines, saves three bytes of
memory; each line in memory is composed of a count byte,
two bytes for the 1line number, the actual program
information, and a carriage return (one byte). Four bytes
making up the count, line number, and carriage return are
"traded" for the statement separator \ (one byte) when two
lines are combined.

Redundant or trivial computation should be removed from
FOR-NEXT loops and from statements that are repeatedly
executed, For example, the expression 63488+5*64 contains
all constants, and may be reduced to the single <constant
63808, eliminating the addition and multiplication as well
as the overhead of converting the string of characters
63488, 5, and 64 to numeric form for performing the
operation. If a program repeatedly uses a constant such as
63488, it is wise to assign that constant to a variable for
two reasons: it is faster for BASIC to look up the value of
a variable than to convert the string of characters to a
number each time; if a commonly used number in the program
must be changed, it need only be changed in a single place.

In general, when trying to reduce the amount of memory a
program uses, eliminate everything that is not essential--
comments, unneeded blanks, etc. In PolyMorphic Systems
Disk BASIC, all blanks can be eliminated.

When trying to reduce the execution time of a program,

Page 94 BASIC Manual PolyMorphic Systems

first find out where the program spends most of its time--
rewriting a section of a program to make it ten times
faster will not yield noticeable results if that section of

the program is used only 3% of the time. When you have
identified the heavily used sections, you can be confident
that optimization will make an important difference. It

should be noted that an undebugged, untested, or incomplete
program 1is not a good candidate for optimization, since
most of the steps outlined above reduce the ease of
comprehension of a program and increase the difficulty of
finding bugs.

PolyMorphic Systems BASIC Manual Page 95

Example (this example is similar to the sample program
TIMER in Appendix C):

enter

>100 REM Generate timing information for BASIC programs
>119 REM Calculate average timing over 198 samples

>120 REM First calculate loop overhead for 199 iterations
>130 T=TIME(9)

>149 FOR I=1 TO 190

>150 NEXT

>160 T=TIME(l) \ REM Time for 140 iterations

>178 PRINT "Loop overhead is about",T/(100%*68),"sec per
iteration”

>188 T1=T\ REM Save the overhead time

>190 REM Now time overhead when we use "NEXT 1"

>206 T=TIME (1)

>219 FOR I=1 TO 100

>220 NEXT I

>230 T=TIME (1)

>24% PRINT "versus",T/(1400%60),"sec per iteration for NEXT I."
>25¢0 REM Now time A=300

>268 T=TIME (0)

>27@ FOR I=1 TO 1649

>2880 A=304

>298 NEXT

>3890 T=TIME(1)-T1 \ Rem subtract overhead to get stmt time
>31% PRINT "A=300 takes about",T/(100*68),"seconds to do."
>320 REM Now set B=30¢, do A=B 140 times

>338 B=300

>340 T=TIME (9)

>350 FOR I=1 TO 140

>360 A=B

>378 NEXT

>389 T=TIME(1)-T1 \ REM Again, subtract loop overhead

>390 PRINT "A=B, for B=30g@, takes about",T/(100*68)," seconds.
>RUN

output

Loop overhead 1is about .082 sec per iteration
versus 2.8333333e-03 sec per iteration for NEXT I.
A=300 takes about 3.1666667E-03 seconds to do.
A=B, for B=30@, takes about 2.8333333E-03 seconds.
>

Page 96

BASIC Manual

PolyMorphic Systems

PolyMorphic Systems BASIC Manual Page 97
Section 11

DEBUGGING BASIC PROGRAMS

System 88 BASIC has a number of useful features that help a
programmer debug his or her programs quickly. This chapter
describes these features and illustrates them with sample
programs.

11.1 RUN-TIME-ENVIRONMENT

First it is necessary to understand the concept of a
run-time-environment. When you are writing a program in
BASIC, the variables and arrays that are part of your
program do not exist 1in the computer's memory; they are
merely symbols in your program. When you RUN your program,
BASIC generates a run~time-environment that includes all
the arrays, variables, and user-defined functions in your
program. This run-time-environment (RTE) 1is constantly
being changed by BASIC as your program runs.

When for any reason (an error, a STOP statement, or a
Control-Y) program execution stops, the RTE 1is usually
preserved. This is why it is possible to continue (CON)
after a STOP or Control-Y. PolyMorphic's Disk BASIC has
the added feature that the RTE is preserved during line
editing. It is not destroyed unless you re-RUN the program
from the beginning. Note, however, that a newly created
user—-defined function will not be recognized unless the
program is re-run from the start.

Let's look at an example:

>SCR

>1060 PRINT "Show RTE SAVE feature"
>208 A=RND(141)

>300 A=A/B

>400 B=100

>500 PRINT A

>RUN

As you would expect, BASIC points out the division-by=-zero
in line 300. What we would LIKE to do to fix this is
change the program by...

>3090 B=180
>400 A=A/B

Page 98 BASIC Manual PolyMorphic Systems

and then RUN from line 300:
>RUN 360

You notice that the program now works correctly. One might
ask at this point, "Why bother to run from line 300°? Just
RUN from the beginning." This will, of course, work too.
But suppose that between line 206 and 1line 368 there 1is
more of the program that takes ten minutes to execute. Do
you really want to wait for those ten minutes to make sure
that the changes you have made will work?

There are a few cautions to observe when trying to re-RUN
using the saved RTE.

l) You can't RUN from the middle of a FOR...NEXT
loop.

2) If the error occurred in a MAT statement that
uses the target array in the right-hand
expression (for instance: MAT A=SQRT(A)), you
must go back to where the array was previously
calculated.

3) Be careful that the program doesn't try to
re-dimension any of its arrays by exXecuting the
same DIM statement.

11.2 THE DUMP COMMAND/STATEMENT

Sometimes the changes you must make are extensive, and it
will not always be clear where you need to re-RUN from. 1In
that case, the DUMP command can be used to study the state
of the RTE.

DUMP may be used in direct mode to study the RTE, or it may
be invoked by a program to display the RTE during program
execution.

11.2.1 DUMP in Direct Mode

Whenever BASIC is given the command to DUMP, it displays on
the video monitor the values of all the scalar variables
currently defined in the RTE. All of the variables are
printed in format 12E4, so as to provide a columnar
display.

NOTE: it is also possible to DUMP to BASIC files
using the syntax DUMP:N. If the file N |is
defined as the printer channel, BASIC will DUMP
to a printer. We will comment on this again (see
Part II, Section).

PolyMorphic Systems BASIC Manual Page 99

If there are more than 59 variables in the RTE, BASIC will
put a series of decimal points on the screen and wait for
the wuser to strike the keyboard before displaying the next
59 variables. (When DUMPing to a printer or disk file,
this waiting mode is ignored.)

11.2.2 DUMP as a program statement

In addition to the direct mode, DUMP may be used as a
program statement. This is particulary useful when
debugging programs with numerous FOR...NEXT loops. The
example below shows in general how this can be used.

enter:
>SCR
>19 FOR I=1 TO 25
>28 A=RND (0)
>30 S=SIN(A) \ C=COS(A) \ T=TAN (A)
>4¢ S1=SINH(A) \ C1=COSH(A) \ T1=TANH(A)

>59 REM .. lots of other calculations
>60 REM .. that we won't detail here
>10% DUMP

>119 NEXT

>RUN

Since this is a working program, it merely illustrates the
way in which the DUMP statement presents the RTE. TIf you
find that the display does not last long enough, you have
two options. To illustrate:

>106 DUMP \ WAIT
>RUN

Now the display hangs around until you strike a key.
Alternately:

>100 DUMP \ PAUSE 68
>RUN

This time the display stays for one second before the
program continues execution. Frequently the FOR...NEXT
loop will take enough time by itself for you to study the
displayed RTE. Simply putting the DUMP statement at
strategic points and watching the monitor can give an
excellent idea of how a program is working.

The reader 1is strongly advised to take a few moments now
and experiment with the DUMP statement. Once you are
familiar with it, you will find that debugging time can be
decreased by as much as ten times (we have had that
experience at PolyMorphic), especially when combined with
XREF.

Page 100 BASIC Manual PolyMorphic Systems

Note that DUMPing to a printer or to a disk £file during
program execution can give you a permanent (and complete)
history of the RTE. For complex programs this can be very
helpful. (See Part II, Section 15.)

11.3 CROSS REFERENCE (XREF)

System 88 BASIC provides the user with the option of cross
referencing his variables with the 1line numbers of his
program in which they appear. XREF 1is NOT a program
statement!

Just as in the DUMP command/statement, it is possible to
XREF to disk files or a printer. In fact, this is what we
recommend. We suggest that you enter & program, one of
your own or one provided with the system disks, and then do
a XREF. At least once, XREF to the video monitor, and
judge for yourself the speed of this utility.

11.3.1 Limited XREF

In addition to the global cross-reference provided by XREF,
it is possible to limit the <cross-reference to specified
variables. This 1is particularly useful in debugging when
one discovers that a certain variable (say F7) is
incorrectly calculated. By typing

XREF F7

and then 1listing the indicated lines, you can easily find
the problem area and makes appropriate corrections. The
user may specify any number of variables in the list after
XREF, separating them with commas.

XREF does not provide <c¢ross-referencing for user-defined
functions.

11.4 SINGLE-STEPPING IN BASIC

System 88 BASIC lets you single-step through your programs
one line at a time. You do this with the WALK command.
Starting from the BASIC prompt >, WALK has a syntax exactly
like that of RUN (it resets or preserves the RTE in the
same way). If program execution has been interrupted, and
you are starting from the double prompt >>, you must first
get the single prompt > before wusing WALK (probably by
using CLEAR).

PolyMorphic Systems BASIC Manual Page 101

When single-stepping through a program, BASIC will, before
executing a line of the program, list the line about to
executed. After displaying that 1line, BASIC waits for
input from the key board. You have three options:

1. Type X. This continues the single-step mode.

2. Type G. Go: This terminates the single-step
mode and RUNs from the current 1line 1in the
program.

3. Type D. This executes a DUMP command and
then single steps.

Any other keystrike will be ignored.

11.5 ON ERROR

BASIC provides you with optional control over
error-recovery with the ON ERROR statement. The syntax 1is:

ON ERROR statement

where the statement line may be any combination of BASIC
state ments.

You may have any number of ON ERROR statements in the
program that you wish. When an error occurs, BASIC will go
to the ON ERROR statement that was last executed and
execute the instructions found after the ON ERROR
statement.

Example:
>SCR
>1% ON ERROR GOTO 49
>20 A=18 \ B=5
>384 A=A-1 \ PRINT B/A \ GOTO 30
>4@ PRINT " OOPS!™
>RUN
ON ERROR if 1like "if": 1if there is an error, execution

continues with the statement following ON ERROR (usually a
branch to an other part of the program); if there is not,
BASIC will continue with the next sequential line after the
ON ERROR. Thus if we change the above program:

>10 ON ERROR PRINT " OOPS!"
>RUN

we are in an endless loop (hit Control-Y!).

Page 182 BASIC Manual PolyMorphic Systems

Whenever an error occurs, the variable ERR is set equal to
the error code corresponding to that kind of error, and the
variable LINE to the number of the line in which the error
occurred. ERR allows the user to check for the occurrence
of particular errors. For example, we can change the
previous example:

>19 ON ERROR PRINT ERR,\GOTO 40

and the error code for division~by-zero will be displayed.
(See Appendix A for the BASIC error message codes.)
Knowing the error message codes can be useful. For
example:

IF ERR=1§36 THEN PRINT "I can't divide by zero; change A."
11.6 ON ESCAPE

BASIC also gives the user program control over the escape
sequence with Control-Y. The syntax 1is similar to ON
ERROR: :

ON ESCAPE statement

Its use is similar to that of sense switches on older
computers. To illustrate its use:

>SCR

>19 ON ESCAPE GOTO 148

>286 PRINT "User-controlled escape sequence”
>30 PAUSE 640

>490 REM UNLESS CTL-Y IS HIT WITHIN TEN

>45 REM SECONDS WE CONTINUE WITH

>5¢0 REM "You didn't try to escape!"

>66 PRINT\GOTO 20

>80 REM BUT IF YOU HIT CTL-Y...

>168 PRINT "You tried to get away, but I gotcha!"”
>119 ON ESCAPE GOTO 158

>128 PRINT \ GOTO 20

>15@6 PRINT "You got away!" \ STOP

11.7 RESET

RESET inactivates previous ON ERROR and ON ESCAPE
statements; it also ends WALK.

PolyMorphic Systems BASIC Manual Page 183
PART 1II
BASIC AND THE DISK SYSTEM

The first part of this manual introduced you to the BASIC
language. With the information in Part I and in Appendix
B, Running BASIC and Loading and Saving BASIC Programs, you
can create and save complete BASIC programs. However, that
information is only a part of the information that you need
to make full use of your disk system.

At this point you can transfer data between your BASIC
programs and the monitor screen or the keyboard. Part II
explains how you connect BASIC to the other parts of the
disk system: the printer, disk files, and special devices.
You will learn about file channels, the pathways through
which information passes between BASIC programs and disk
files, the printer, and the video screen. You will learn
how to create BASIC data files and how to pass information
in and out of them wusing file channels. If you are
unfamiliar with the idea of disk files, see the System 88
User's Manual for more information.

Using disk files and a printer from within BASIC greatly
expands the range and versatility of your programs. You
will now be able to save and print the data generated by
your programs, and to access that data file from any BASIC
program. The kinds of things you might have 1in a BASIC
data file 1include a mailing list of customer addresses, a
list of invoice numbers, a series of square roots, a list
of part numbers in your inventory, a list of points to be
plotted, etc.

Page 104 BASIC Manual PolyMorphic Systems

o

PolyMorphic Systems BASIC Manual Page 195
Section 12

FILE CHANNELS

File <channels are pathways used by the system to transfer
data between different parts of the system. You can think
of a file channel as a wire that you hook up between a disk
file and vyour BASIC program. Data flows from the file to
the program or from the program to the file. You "hook up"
or assign these file channels to a disk file, a printer,
the video board, the keyboard, or a special device by way
of a FILE statement (Section 14), which we'll discuss
later. Once you attach a file channel to a device or disk
file, you can output information from that file or put
information into that file from within your BASIC program.
To do that you use the BASIC file-handling commands
(Section 14). We will discuss how to send information to a
printer in Section 15.

12.1 THE BASIC FILE CHANNELS

In BASIC there are eight file channels, numbered ¢ through
7. Some of these eight channels are permanently allocated
for particular system use. Channel @ is for inputting data
from the system keyboard; Channel 1 is for outputting data
to the video screen. Channels 2 and 3 are reserved for
outputting data to a printer or to a special device. These
four channels (0-3) cannot Dbe used for disk files.
Channels 4-7 may be used for disk files or for a printer or
a special device.

Up to four channels may be assigned at one time for disk
file data transfer, plus one channel for printer access and
one channel for a special device. Because you can use file
channels 4 through 7 for transferring data between a BASIC
program and data files, you can use up to four data files
at a time within a BASIC program. Each data file can have
only one file channel assigned to it at a time. If you are
writing information into data files, you cannot have more
than one of those files in use on the same disk at the same
time; they must be on separate disks. If you are reading
information from data files, all of the four possible files
may be on the same disk.

12.2 FILE CHANNEL MEMORY USE

We will be discussing how to use file channels in a later
section. However, it is important to note before you begin
to use file channels that assigning a file channel to a
disk file USES UP MEMORY. This may or may not be
important, depending on how much memory you have on your

Page 106 BASIC Manual PolyMorphic Systems

system and how long your BASIC programs are. However, to
avoid memory-full errors, it 1is wise to use as few file

channels as you can.

Each active disk file uses a 30@0-byte buffer in memory. (A
buffer is a working space set aside in memory.) The first
time a file <channel 1is opened to a disk file in a BASIC
program, this buffer area 1is allocated from the space

available in BASIC. Even if you close that channel by
using a. CLOSE statement, that buffer area is not assigned
to another channel. The buffer area remains assigned to

that file channel unless you use a CLEAR or SCRATCH command
or leave BASIC using the BYE command. This means that once
you assign a file channel in a BASIC program, 308 bytes (a
byte 1is a small unit of memory equal to eight "bits") is
effectively gone from the area of memory that you can use.
Since there is a maximum of four disk files in use in BASIC
at one time, up to. 1200 bytes may be used up by these disk
file buffers. If there is not enough memory to allocate a
buffer for a file channel, a memory-full error message is
generated.

To save memory, use only as many file channels within a
BASIC program as you really need. After you CLOSE a file,
re-use the file channel buffer by assigning that file
channel to a different file instead of using a new file
channel. To see how many bytes of memory are free, use the
BASIC direct statement:

PRINT FREE (9)

PolyMorphic Systems BASIC Manual Page 107
Section 13

BASIC DATA FILES: OVERVIEW

Until now we have talked about BASIC programs that
calculate values and display words and plot graphs on the
screen. But we have not seen a method for PRESERVING the
data calculated or displayed by a BASIC program. You might
want to calculate the first twenty prime numbers. How do
you keep a permanent record of those numbers? You can do
so by having your BASIC program send that data out either
to a printer or to a file on the disk-—- a BASIC data file.
Both of these methods require that you use file channels,.
The following section discusses BASIC data files. Section
15 tells you how to use a printer from within BASIC. '

A BASIC data file is a disk file that you build from within
a BASIC program. A BASIC program can read from, as well as
write into, a BASIC data file. The data file holds
information that your BASIC program generates or uses,.
When we talk about data in this context, we are talking
about any information that BASIC can read or write. This
means words or numbers. Using the BASIC file handling
commands, you can place lines of text into a data file as
well as lists of numbers.

Using the various file handling commands, you can create a
data file, open it, place data into it, and close it again.
Then at a later time you can - open the file and read
information from it. This entire process is handled by
BASIC file handling commands which appear as program
Statements in your BASIC program. You are already
practiced at inputting data from the keyboard (by using
INPUT or INPUT1l) and displaying data on the screen (by
using PRINT or PRINT,). The only difference in using a
data file is that you are inputting from a file instead of
a keyboard and outputting to a file instead of to the
screen.

Section 14 tells you about the various BASIC file-handling
commands to use when creating and using data files. The
next few paragraphs give an overview of what occurs when
you create a BASIC data file and when you open it for use.
This 1is a very dgeneral explanation; for the details see
Section 14.

Before your BASIC program uses a data file, you must tell
BASIC that vyou are going to use that file. If the file
does not already exist, you must create the file. You must
also tell BASIC which file channel you want to assign to
that data file for data transfer to and from the file. 1In

Page 108 BASIC Manual PolyMorphic Systems

addition, you must tell BASIC whether you want to read from
the file or write to it. When you are done transferring
data, you must close the file. 2All of the above functions
are performed using the FILE statement (Section 14.1).
After you are ready to use the file, you use various file
input and output statements to transfer the actual data
over the assigned file channel (see Section 14.4). When
you are completely finished writing data to a file, vyou
close that file (Section 14.5). :

An important point to remember when using data files is
that at some point in the future you are going to want to
retrieve the information that you have placed in that file.
Make sure that you know whether the type of data you are
writing into a file is numerical or string, so that when
you access that data again you will know whether to input a
string or numerical variable. You can see that trying to
input a string like "WORD" from a data file by inputting a
numerical variable would result in an error since BASIC is
looking for a number.

13.1 DATA RECORDS

The data that you write into a file is arranged in groups
called data records. A data record 1is simply the
characters between two carriage return symbols. As you
write data into a data file, BASIC forms data records in
that file. Each data record has a number; the first data
record 1is record #1l, the second data record is record #2,
and so on. Section 14.4 tells you how to place data into
data files and how to read data from them. You will also
learn more about how those procedures form data records.

PolyMorphic Systems BASIC Manual Page 149
Section 14
CREATING AND USING BASIC DATA FILES

In Section 13 we discussed the idea of a BASIC data file.
Section 14 tells you how to actually build and use a BASIC
data file. Remember that all of the statements we discuss
below are actual program statements and as such appear on
program lines along with the rest of the statements in your
BASIC program. For examples of programs that wuse the
file-handling commands, see Section 16.

14,1 FILE STATEMENT ELEMENTS

The most important part of the BASIC file-handling process
is the use of the FILE statement. When vyou use a FILE
statement you tell BASIC that you are going to use a data
file. Whenever you use a data file in BASIC, you MUST use
a FILE statement in your program first to tell BASIC which
data file you want to use (or if the file does not yet
exist, to tell BASIC that you want to create a data file).

A FILE statement always begins with the word FILE followed
by a colon and a number (a file channel number). Then

follows a list of FILE statement elements (the particular
elements depend upon the function of that particular FILE
statement). The form of a FILE statement depends upon 1its

use, but a typical FILE statement follows this form:
FILE n,keyword,file specification,file mode

EXAMPLE:
FILE 6,0PEN,"<2>Real~-Estate, INPUT

The various elements of the FILE statement tell BASIC: 1)
which file channel the system is going to use to transfer
data to or from the disk file~- channel 6 in the example
above; 2) the action we are going to perform on the data
file (open, <close, rewind, etc.); 3) the name of the data
file to use or create; and, 4) whether we are reading from
(input) or writing to (output) the data file. Note that
the terms input and output are used from the point of view
of the central processor: input moves from the file to the
processor, output from the processor to the file.

Page 1140 BASIC Manual PolyMorphic Systems

Before we talk in more detail about the elements of a FILE
statment, take a look at what some typical FILE statements
look like:

FILE 6,0PEN,"<2>DATA.F2",0UT

FILE 5,CLOSE

FILE 7,P0S,23

FILE U,POS,I-4

FILE 4,REW

FPILE 5,0PEN,FS$,INOUT
Let's take a brief look at the possible elements of a FILE
statement. When we list examples of the element, we also
tell you where to find a description of that item in the
manual.
14.1.1 The File Channel
We've already discussed file channels (S5ection 12), the
data transfer pathways that 1link data files (and other
things, such as a printer) to a BASIC program. You'll
recall that there are eight such channels, numbered @

through 7.

Every BASIC file-handling command (including the FILE
statement) includes a file channel number as part of the

command . This tells the system which channel to use for
transferring data. Whenever you open a data £file, vyou
assign a file channel number to it. From then on within

the program, every time you transfer data over that
channel, the data goes between your BASIC program and the
data file assigned to that channel.

The file channel (represented by the symbol n in the rest
of this section) may be any variable (a symbol representing
a number) or expression evaluating to a correct file
channel number. (An expression is a mathematical term or
terms separated by arithmetic operator symbols--e.g.,
2+(45.6/SIN(A)).) BASIC always evaluates an expression
(that 1is, reduces it to its most basic value). You might
begin a FILE statement thus:

FILE 4,file statement elements

You could select the same file channel number by saying:

O

PolyMorphic Systems BASIC Manual Page 111

FILE SQRT(16),file statement elements
14.1.2 The Keyword

The keyword in the FILE statement tells BASIC what action
is going to be performed on the data file. Using the
keyword, we can create a new data file, open an old one for
input, or position to the beginning (or to any particular
data record) of an existing file. We can also close a data
file to output.

(Remember that when we talk about using a data file for
input we are talking about bringing information IN from
that file; when we talk about using a data file for output,
we are talking about writing information OUT to that file.)

Keyword: For Information See:

OPEN Section 14.2, Creating a Data File
Section 14.3, Opening a Data File
for Input

POS Section 14.6, Selecting a
Particular Data Record

REW Section 14.6, Selecting a
Particular Data Record

CLOSE Section 14.5, Closing a File to
Qutput

We'll discuss a special keyword, DEF, in Section 15. That
keyword allows you to hook up special devices to BASIC
using vyour own machine 1language file-handling routines.
LIST lets you send data to a printer; see Section 15 for
information.

14,1.3 File Specification

A file specification is the name of a disk file, plus the
number of the drive containing the disk the file is on (if
it is not in the System Drive, usually drive 1l). For our
present purposes, a file specification is a string or
string variable that tells BASIC the name of the data file
to create or use. The file specification must be a legal
file specification and include a disk specifier unless the
file is on the System Drive. (See the System 88 User's
Manual for information on file specifications.)

Only FILE statements opening or creating a file use file
specifications (that is, only FILE statements with the
keyword OPEN). 1In all other cases, a data file has already

been assigned to the file <channel given in the FILE
statement, and so it need not be named.

Page 112 BASIC Manuai PolyMorphic Systems

Remember that a string is a group of characters enclosed by
quotation marks. A string variable 1is a wvariable which

represents a string. (A string variable takes the form of
a legal BASIC numerical variable followed by a dollar
sign-~ e.g., AS$, F1l$, etc.) The string variable must

represent a legal file name.
EXAMPLES :
16 FILE 6,0PEN,"<2>DATA-FILE",OUT
19 FP$="<K3>LIST/1"

20 FILE 2+4,0PEN,FS$S,INPUT
Note: BASIC automatically dimensions a string to only ten

characters wunless a DIM (dimension) statement 1is used
within your program to reserve more room in memory for the
string. Make sure that you dimension your string to the

proper length. If your string is longer than the length
reserved for it, BASIC will shorten your string to fit.

14.1.4 The File Mode

The file mode tells BASIC in which direction we want to
transfer data: from the program to the file, or vice versa.
We can even do both, using the INOUT mode. In INOUT mode

we read data, update that data, and write it back out again
to the data file.

File Mode For Information See:

ouT Section 14.2, Creating a Data File

INPUT Section 14.3, Opening a Data File for Input
INOUT Section 14.7, Updating Data Records

14.2 CREATING A DATA FILE: OPEN Keyword and OUT File Mode

You cannot output data to a file that already exists. 1If
you try to do so, the system will tell you: That channel
not open for output. (The one exception to this is when
you are using a file in INOUT mode, which allows vyou to
update data records. See Section 14.7, Updating Data
Records.) If you are going to write into a file, you must
create that file from within your BASIC program by using a
FILE statement. Construct your FILE statement in the
following way:

Choose a file channel to assign to the file you
are creating. Make sure that the file channel is
not assigned to any other open file. Use only
file channels 4-~7.

Use the OPEN keyword. This tells BASIC that vyou

PolyMorphic Systems BASIC Manual Page 113

are assigning the file channel you have chosen to
the data file you are creating. This keyword
also tell BASIC that you are "opening" the file;
that is, that you will be transferring data
between it and the BASIC program.

Choose a 1legal file specification, enclosing it
within quotation marks to make it a string.
Either place the file specification in the FILE
statement directly, or use a string variable in
the FILE statement which represents that string.
If you have already created a data file and it
will be open at the same time as your new file,
make sure that the two files are not on the same
disk.

If you do not specify a disk extension, BASIC
will automatically affix the data file extension
.DT when it creates your data file.

Use the OUT file mode. This tells BASIC that you
are going to be writing data out from the BASIC
program into the data file, and therefore that
you are creating the file,

From this point on, output data to the file using
the PRINT:n or OUT commands (Section 14.4).

Close the file using the CLOSE command (Section
14.5).

A short example of a BASIC program that creates two data
files follows. Remember to dimension any strings to their
proper length; BASIC automatically dimensions strings to
only ten characters.

19 DIM AlS$(1:28)

20 FILE 5,0PEN,"<2>Inventory",0UT
30 Al1S$="<3>Mailing-List"

4 FILE 4,0PEN,Al1$,0U0T

For information on the file-handling commands that actually
transfer data between a BASIC program and data files, see
Section 14.4. Any time you open a file for output, BASIC
is pointing to the beginning of the data file; when you
print information to the file, you form the first data
record, record #1.

Marking the End of the File:

Later, when you input data from the file that you are
creating, you will want to be able to tell when you are at

the end of the data file. Otherwise you might try to keep

Page 114 BASIC Manual PolyMorphic Systems

on inputting data that does not exist. One way to do this
is to remember to put a special character or number at the
end of your file when you create it. ' Then when you read
the data in from the file, simply look for your special
symbol. If you are inputting string data, you can easily
check to see if you have reached the end of the file by
checking to see if the length of the string is zero:

IF LEN(AS$)<>0 THEN GOSUB 36@0@\REM If Len<>@ keep inputting
data

A zero-length string in a data record means that nothing is
in that data record and that you are at the end of the
file.

14.3 OPENING A DATA FILE FOR INPUT: OPEN Keyword and INPUT
File Mode

At the time that you create it, you can only output data to
(not input from) the file opened in OUT file mode. If you
try to input data from the file opened in OUT mode, the
system will tell you: That channel not open for input. You
can, of course, read from that file if you close the file
and then re-open it in INPUT mode.

Only when a data file already exists can you input data
from it to your BASIC program. Follow the procedure
outlined above, except:

Your file specification must select a data file
that already exists and that already has data in
it. If the extension of your data file is NOT
.DT, you must specify the extension in your file
specification; if you do not specify one, BASIC
assumes a .DT extension.

When reading from a file, more than one open file
may be on the same disk.

Use the INPUT file mode to tell BASIC that you
are going to read from the file.

Use the INPUT and INP commands to read data from
the file (Section 14.4).
EXAMPLE:
FILE 4,0PEN,"<2>Prime-~Numbers", INPUT

When you open the file, BASIC is pointing to the first data
record in the file-- you begin reading data from record #1.

For information on the file-handling commands that actually

PolyMorphic Systems BASIC Manual Page 115

£

do the data transferring between BASIC and data files, see
Section 14.4

14.4 DATA TRANSFER: PRINT, INPUT, INP, OUT, READ, WRITE
Commands

You already know how to ask for input from the user of your
program (INPUT and INPUT1). You also know how to display
data on the video screen (PRINT and PRINT,). You may not
have realized that in doing so you were using file channels
all along. When you say INPUT on a program line, BASIC
uses the default file channel of & (for communicating with
the keyboard), and the PRINT statement uses the default
file <channel of 1 (for communicating with the video

screen) . Now, 1instead of communicating with the keyboard
and the screen, you can communicate with a disk file. The
methods for doing this are very simple. You use the

familiar commands INPUT, PRINT, INP, and OUT, but you tell
BASIC that you want to talk to a disk data file. You do
this by including a colon followed by a legal file channel
number after the command. This file channel number is one
that you have already assigned to the data file that vyou
want to communicate with. You have done this by previously
using a FILE statement with the OPEN keyword.

14.4.1 Writing Data to a Data File: PRINT and OUT

To output data to a disk data file, you must create the
file using a FILE statement. That statement includes the
OPEN keyword and the OUT file mode. Once you open the file
using the FILE statement, you have a file channel assigned
to the created data file. From that point on until you
close the data file, you output data from your program into
that file wusing the output file-handling commands, PRINT
and OUT. BASIC knows that you are outputting data to a
disk file because you follow PRINT and OUT with a disk file
channel number (4-7).

14.4.1.1 PRINT
The form of the PRINT statement is:

PRINT n,print 1list
where n 1is the file channel number, and the print list is
the one or more elements that you wish to write to the data
file. The print list may contain expressions, numerical

variables, or constants. PRINT outputs the wvalues of
expressions and variables to the file.

Page 116 BASIC Manual PolyMorphic Systems

EXAMPLE:

1) PRINT 4,3+B,7.5,Cl

2) PRINT 5,A$,"This is a string"
3) PRINT 7,SQRT(18),3*SIN(A)

Formatting Data

When you use PRINT, BASIC automatically places a carriage
return symbol after the print 1list ‘data that you have
written to the file using that PRINT statement. Remember
that BASIC groups the information in data files into data
records. A data record is the series of characters between
two carriage return symbols. Example #1 above forms one
data record <containing 3 elements: the value of A+B, the
number 7.5, and the value of the variable Cl. PRINT places
a carriage return symbol after those items; the next time
something 1is PRINTed to the file assigned to channel #4,
BASIC starts a new data record.

You will remember from your previous experience with PRINT
that a comma at the end of the print list will keep PRINT
from generating a carriage return. When you are
communicating with the video screen this means that the
next PRINT statement will display its print 1list on the
same line. When you are communicating with a disk file, a
comma at the end of a print list means that PRINT will not
put a carriage return symbol after that print list (and so
will not end that data record). The next print list placed
in the file will continue in that data record.

BASIC groups your data into data records so that 1t can
tell where it is within the data file: it keeps track of
its position by noting the data record number. How you
group your data will become important later when you use
the keywords POS and REW to move about within the data file
to a particular data record. If you are going to be
writing string and numerical data within the same file, See
Section 14.4.2, INPUT, for advice on arranging your data in
data records. /

You can format the data in your print lists by including
the BASIC TAB(x) command, where x 1s an expression,
variable, or constant evaluating to a positive integer.
This value tells BASIC how many tab stops to "tab over"
before printing the next item in the print list. The TAB
command allows you to print your data in a file in tabular
form.

EXAMPLE:

PRINT 5,TAB(INT(I/2)),32,TAB(J),5.23
PRINT 6,TAB(K*5) ,AS

PolyMorphic Systems BASIC Manual Page 117

You can also format the numerical data in your data file
using the BASIC format strings. The I-format, for example,
prints integer numbers right-justified in a field of a
specified width. (See Sample Program 1l4.1 for an example
of its use.)

EXAMPLE:
PRINT 4,%16I,A,B,C

14.4.1.2 OUT

The OUT command transfers one byte or a string of bytes
into a data file. One byte is eight bits of data, or one
character. The OUT statement takes the form:

OUT n,element list

where n is the file channel number assigned to the open
data file you want to write into. Separate all items in

the element list with plus symbols.

EXAMPLE:

OUT 5,"a string"+CHR$(13)+"and a carriage return"

OUT #: An OUT @ will place <characters into the keyboard
buffer. The keyboard buffer is the area of memory that the
system uses to store input from the keyboard. The system
has no way of knowing whether the characters in the
keyboard buffer were typed in by you or whether you used
OUT 9 to put them there. The buffer can hold 64
characters. Once the Dbuffer is full, BASIC will not put
more characters into it. Be careful when putting
characters into the keyboard buffer; it may already have
characters in it that were inputted from the keyboard, so
you might not have room for the full 64 characters! An
example of the use of OUT @:

100 IF N$="NO" THEN OUT g,"BYE"+CHRS (13)\ STOP

The above example places the BASIC exit command BYE into
the keyboard buffer followed by a carriage return. When
the program reaches line 146, it evaluates N$. If N$="NO",
the program performs the OUT command and then stops. BASIC
then looks in the keyboard buffer. In response to the BYE
command, BASIC returns the user to the system Exec.

14.4.2 Reading Data From a File: INPUT and INP

If a file already exists and has data in it, you can read

that data from it. Open the file in INPUT file mode
(Section 14.3). Then you can use INPUT and INP to read
data from it.

Page 118 - BASIC Manual PolyMorphic Systems

14.4.2.1 INPUT

Now instead of getting a value or a string from the user of
your program, you can input these things from a data file.
The INPUT statement takes the form:

INPUT n,input 1list

where n 1is the file channel assigned to the file you have
opened to input. The input list may consist of numerical
or string variables.

EXAMPLE :
INPUT 5,A,B,C

The above statement will input three values from the data
file assigned to file channel #5. If you try to input more
items than are actually in the data file, you will receive
an error message: Input error. If you try to input more
things than are in the data record, you will input data
from the next data record.

Inputting string data is a little different. INPUT knows
where one numerical value ends and the other begins because
PRINT places a space between numerical values. When you
say:

INPUT 5,A,B,C

BASIC 1looks for three numbers in the data file (that is,
three numerical items separated by spaces). However, BASIC
has no way of separating strings except by carriage return
symbols. (After all, since spaces <can be a part of
strings, there is no way of telling whether a space is part
of a string or is separating strings.) Therefore, when you
say:

INPUT 5,AS$

BASIC reads from the front of the current data record until it

finds a carriage return-- that data is assigned to the value AS.

When BASIC stores data in a data file, it stores the numerical
data 3 in the same form as the string data "3". Therefore,
when you read data in from a data file, BASIC can't tell if
numbers are numerical data or string data. Let's say that the
first data record in your file is: 1 2 3. 1If you say:

INPUT 5,A
PRINT A

You will get the answer 1. 1If, however, you had said:

PolyMorphic Systems BASIC Manual Page 119

INPUT 5,AS
PRINT AS

you would have got the answer 1 2 3.

Note: After every INPUT in your program, BASIC points to
the next data record:

FILE 6,0PEN,"<2>NEW-DATA", INPUT
INPUT 6,A,B,C
INPUT 6,A,B,C
INPUT 6,A,B,C

will input the first three values from the first three data
records in the file. Make sure that there are actually
three numbers in each data record; . otherwise you will
probably be trying to input the wrong number of items and
may run out. This would cause an input error message.

14.4.2.2, 1INP

The INP command transfers one byte (one character) from the
data file. This byte will beé in the coded form in which
data is stored within the system; that is, in ASCII code.
(See Appendix D, Character Set.) Let's say that the first
data record in your data file consists of a 1. If you INP
the first three bytes of the data file, you will get the
following: a 32, a 49, and a 13. The 32 is the decimal
ASCII code for a space (the PRINT statement always
separates numerical values with a space so that INPUT can
tell where one number begins and another leaves off). The
49 is the decimal ASCII code for a 1, and the 13 is the
decimal ASCII code for a carriage return symbol (the end of
a data record).

The form of the INP statment is:

INP (n)
where n is the file channel assigned to the data file you
have opened for input. If you wish to see the byte
displayed, use the command:

PRINT INP (n)

If you use the INP command but there is no more data in the
file (that is, you have reached the end of the file), BASIC
will give you back a zero, and will continue to do so from
then on; it will not let you go beyond the end of the file.

14.4.2.2 READ

Page 129 BASIC Manual PolyMorphic Systems

READ inputs data from a file. 1Its format is:
READ:n,variable-list

n being a channel number and the variable list being the
variables whose values are changed to correspond to the
data that is input.

READ resembles INPUT except that it always looks for a
carriage return at the end of each data item in the data
file. If READ fails to find as many carriage returns as
variables in the 1list, it will proceed to the next record
to find the remaining data items. Keep this in mind when
you create a data file that will later be used with READ,
because you may otherwise wind up getting unanticipated
data items coming in from the following record. When
creating a file, WRITE into each record as many data items
as will eventually be used-- don't use PRINT, since it puts
only one carriage return into each record.

14.4.2.3 WRITE

WRITE is designed to be used with READ. Like PRINT, you
use it when sending out data through a file channel. It
differs from PRINT in that it automatically outputs a
carriage return after each wvariable is output as a data
item. '

When data files are created with WRITE ; the carriage
return data item terminator is always output, and therefore
data items will apear on separate lines when displayed.

14.5 CLOSING A DATA FILE: CLOSE keywords and BYE and EXEC

After vyou have completely finished writing data to a file,
you must "close" that file. Until you close a file, the
data that you send to a data file may not be physically in
the file; it could still be in the data-transfer path to
the file, the file channel. To close a file, type:

FILE:n,CLOSE

where n is the file channel assigned to the file opened in
OUT or INGUT mode.

You already know from looking at the System 88 User's
Manual that to leave BASIC and return to the system you use
the BYE or EXEC commands. When you use the EXEC command,
your data files are NOT closed; this is because you can
reenter BASIC from the system. When you use the BYE
command, BASIC closes all of your file channels, since
having wused BYE, you cannot reenter BASIC and continue
writing to those files. '

O

.PolyMorphic Systems BASIC Manual Page 121

The BASIC commands RUN, SCR, SAVE, and LOAD all force BASIC
to close any open file channels.

If you open a new file on a file channel already in use by
another file, BASIC will close the o0ld file to allow the
new file to use the channel.

14.6 SELECTING A PARTICULAR DATA RECORD: POS and REW
Keywords

Remember that every time you read from a data file, BASIC
advances within the file. The next time you read data you
will not read the same data you read the last time. A new
INPUT statement will advance to the next record. It is
often necessary to direct BASIC to a particular data
record, or to thebeginning of the data file. You will wuse
the POS and REW keywords in a FILE statement to tell BASIC
which data record to read from next. You can ONLY use REW
and POS on files opened in INPUT or INOUT mode. If you try
to use REW and POS on files which you are creating, you

will receive the error message: I can't do that to an OUT
file.

14.6.1 Rewinding a Data File (REW)

The REW keyword is used to "rewind" a data file; that is,
to tell BASIC to begin reading from the first data record
in the file. The statement takes the form:

FILE:n,REW

where n 1s the file channel assigned to the data file you
are reading from. The next time your program reads data
from the file, it will read from the first data record.

14.6.2 Positioning a Read to a Particular Data Record (POS)

Use the POS keyword to position BASIC to a particular data
record. Remember that the first data record in the file is
record #1, the second is record #2, and so on. The POS
statement takes the form:

FILE:n,POS,record #

where n 1is the file channel assigned to the data file you
have opened in INPUT mode. The record 4 <can be any
variable, expression or constant evaluating to a positive
numpber less than or equal to ©65535.

EXAMPLE:
FILE:6,P0S,5*5

After the statement above is read by BASIC, the next time
your program reads data from the input file assigned to

Page 122 BASIC Manual PolyMorphic Systems

channel #6, BASIC will begin reading from data record #25.
If you give POS an invalid record number, the next time you
try to input data BASIC will display an input error
message.

You may position BASIC to any data record within your file,
regardless of your present position in the file. This
means that you can go forward or backward in the file.

The statement:
FILE:6,P0S,1

is the same as a statement using the REW keyword; both
statements will direct BASIC to begin reading at the first
data record.

14.6.3 Fast Read Positioning (Fast POS)

Sometimes the data records in a data file will be all of
the same length, and sometimes they will be of different
lengths. A data file whose data records are of different
lengths is called a variable-length record file. When it
advances through this kind of file, BASIC finds the end of
a data record by looking for a carriage return symbol.

The other kind of data file is called a fixed-length record
file. You do not have to tell BASIC that a file 1is a
fixed-length record file; BASIC <can figure it out by
itself. [You can see for yourself whether BASIC thinks
that a data file has fixed 1length records. While in
enabled mode (See the System 88 User's Manual for an
explanation of enabled and disabled mode), 1list the
directory of the disk containing the data file. All data
files have 1load and start addresses of zero except for
fixed-length files; they have a non-zero start address.
This start address is where BASIC stores the number
representing the length of the file's fixed-length data
records.]

BASIC treats a =~ fixed-length record file a 1little
differently than it does a variable-length record file.
Ordinarily BASIC has no idea how long data records are.
Using the POS command on a variable~length record file
causes BASIC to search through each data record looking for

the start of the next record. If you wuse POS on a
fixed-length record file, however, BASIC now knows exactly
how far to advance to reach the next record. Instead of

searching through all of the previous data records, BASIC
simply calculates the proper number of record lengths to
jump to reach the record that you want.

To make sure that all of your data records are the same

O

PolyMorphic Systems BASIC Manual Page 123

length, you can use the format strings for numerical data,
and for string data you can <check the 1length of the
strings, possibly "padding" them with spaces.

14.7 UPDATING DATA RECORDS: INOUT File Mode

We have mentioned before that you cannot read data from a
file you have opened in OUT mode. Neither <can you write
data into a file you have opened in INPUT mode. 1In only
one case can you both read from and write into a file at
the same time; that 1is, after you have opened a file in
INOUT mode.

If you open a file in INOUT mode, you can read from that
file, <change the data, and write it back out again to the
file. You can only open an EXISTING file in INOUT mode.
After you open the file in INOUT mode, you can use POS and
REW to selectively read and re-write data records.

You use the familiar INPUT and PRINT statements to transfer
data between your program and the INOUT file. When you
write a data record back into a file, the record must be
equal or shorter in length to the original data record in

that position in the file. If you try to make the new
record longer than the original one, BASIC will not place
the extra «characters in the file; they will be ignored.
Nor can you add additional data records to the file. If
your new record is smaller than the original, BASIC will
simply pad the rest of the record with Dbinary =zeroes,
characters invisible to the INPUT statements,

BASIC maintains two different "pointers" (think of them as
bookmarkers) into an INOUT data file: one for reading data
(INPUT) and one for writing data (PRINT). Reading
information changes the input pointer; writing data changes
the output pointer. Only the POS and REW statements change

BOTH of the pointers. Every time vyou INPUT data you
advance the input pointer so that the next read will take
in data from the beginning of the next data record. 1In the

same way, every time you PRINT data, you cause the next
write operation to begin a new data record.

When you are using a file in INOUT mode you may want to
read a record, and then write over that record. You can do
so a record at a time, beginning with record #1, by
executing pairs of INPUTS and PRINTS. This will read in
data and then write over that data. You can also wuse POS
and REW to position yourself exactly in the file before you

read and write data. This has an advantage in that it
keeps both input and output pointers exactly "in sync” with
one another. Since both pointers are maintained

separately, you can see that if you do five INPUTS from the
beginning of the file, and then do a PRINT, the data will
go, not in the sixth data record, but in the first.

Page 124 BASIC Manual PolyMorphic Systems

However, if you use POS to get to the sixth data record,
both input and output pointers are set to record #6.

To use a file in INOUT mode, do the following:
1) Open an existing file in INOUT mode:
FILE:5,0PEN,"<2>Invoices"™, INOUT

2) Position to the record you want to change

(or, if you want to change every record, skip to
step #3). Use the POS command:

FILE:5,P0OS, 64

3) If you want to read the data you are going to
change, use an INPUT command:

INPUT:5,A$

If you don't need to see the data, skip to step
#4.

4) TRewrite the data by using the PRINT command:
PRINT:5,BS

5) Both input and output pointers are now
pointing to the next data record in the file if
you have done both an INPUT and a PRINT, You may
now position to another data file (POS) or rewind
the file to its beginning (REW).

6) When you've finished with the file, close it
using the CLOSE statement (Section 14.5).

Important Note: Be very careful when you input and print
data!

You MUST be sure that you know what kind of data is in a
data record, and how much. For example: let's say that you
have three numbers in a data record. You rewrite that
record so that it contains only one number. What happens
if you position to the front of that record and INPUT A&, B,
and C? You will get the number in the first data record,
but you will also get the first two numbers in the second
data record (if there are two numbers in that record, that
is). The next 'time you INPUT you will move to the next
data record, and you will skip the 1last number in the
second record.

Make sure that your inputs match the type and amount of
data that is in the data file. Note that you cannot write
data that 1is 1longer than the data in the original data
record; BASIC will simply cut down the new data to fit the

PolyMorphic Systems BASIC Manual Page 125

0ld record. The way that BASIC determines the length of a
record is not by how many items are in it, but by the total
length of those items. A data record containing three
one-digit numbers 1is NOT the same length as a data record
containing three two-digit numbers. To allow room for
later updating, make sure that your original data records

are large enough. You can do this by formatting the
records properly. (See Sample Program 1l4.1 below.) You
can also "pad" original string data with string blanks," ".

To make these ideas clearer, let's look at Sample Program
14.1. It demonstrates how to use a file in INOUT mode.
When we refer to a particular program 1line in this
discussion, we'll give the 1line number, surrounded with
square bprackets [].

The program sets up a data file F$ [48] containing ™
records [60]. It uses the format string $#5I {116, 290,
4147, which says print the following integers
right~justified in a field five spaces wide. This makes
sure that enough room is left in each data record for later
updating.

We then open the file in INOUT mode and update records,
either randomly or by request [150]. After the POS
statements {278, 394], both input and output pointers are
pointing at the same data record, R. We update the record
[298, 418]. Note that when we update a record we increment
the update counter, B.

The contents of each data record are: 1) the data record
number; 2) the number of times you have updated the record;
and, 3) a string giving the name of the data file.

REM * Sample Program 14.1

REM ¥ e e
REM * Demonstrate Use of INOUT Mode and POS Keyword

REM * to Update Data Records

REM ¥ — oo e e
REM

19 DIM F$(1:50) ,A$(1:60)\REM * F$ is data file name
REM

29 PRINT "Demonstrate updating records in a file opened in "
30 PRINT "INOUT mode, using PCS. Give me the name of the. "
49 INPUT "file you want me to build: ",FS$

REM

5¢ FILE:5,0PEN,F$,0UT

60 PRINT\INPUT "How many records in the file (18-5¢8)2 ",M
73 IF (M<18) OR (M>5600) THEN 60

REM

REM * -—— Build the Data file ---

REM * Note use of format string (%#5I) to set up data

REM * records; allows room for later updates.

¥ o * %

%

Page 126

REM

99 PRINT\PRINT "

199
REM
110
129
13¢
149
1540
160
REM
179
180
196
208
216
220
239
249
250
REM
REM
REM
REM
260
270
289
290
300
3149
320
339
349
359
360
3740
380
399
490
419
429
430
449
459
460
RUN

FOR X=1 TO M

* Write record #

PRINT:5,%#51I
NEXT
FILE:5,CLOSE

BASIC Manual

PolyMorphic Systems

... Writing file

,X,@," file ",Fs

ON ESCAPE GOTO 154
PRINT\PRINT "Enter 1 for updating at random,
t, and 3 to exit the program:
--- Open the File INOUT ---
FILE:5,0PEN,FS$, INOUT\ON ESCAPE GOTO 140

INPUT "selec
*

IF (K<1l) OR
ON K GOTO 20

(K>3) THEN 1490
0,330,440

REM * Random updates
PRINT\PRINT "5 updates selected at random.

INPUT "record as it is updated;

PRINT
IF (F<8) OR
REM * Selec

* Format St

FOR I=1 TO 5

(F>1) THEN 219

",K

II’F$

(and update counter #) for each record *

2 for record

Enter 1 to see each
otherwise enter zero:

t records at random, and update them.

ring (%#I) keeps data same length as
* original data record

]

R=RND (M)\FILE:5,P0S,R\ REM * Choose random record #
INPUT:5,A,B,AS

PRINT:5,%#5I

,A,B+l," "+A$

IF P=1 THEN PRINT R,":",%#5I,A,B+1," "+AS$

NEXT

PRINT\PRINT
REM * User-
PRINT\PRINT

PRINT\INPUT
IF R=0 THEN
IF (R<1l) OR
FILE:5,POS,R

" 50 updates completed...."\GOTO. 140

selected updates.

"Select record number between 1 and ",M
PRINT "or input zero to stop."

149
(R>M) THEN 349

Record number:

INPUT:5,A,B,AS

PRINT:5,%#51
PRINT\PRINT
GOTO 3640

REM * Exit
FILE:5,CLOSE
PRINT "Bye..

,A,B+l," I|+A$
R,":",%#5I,A,B+1," "+AS

the program.

."\OUT g,"BYE"+CHRS (13)

",R

'F

PolyMorphic Systems BASIC Manual Page 127
Section 15

CONNECTING BASIC TO A PRINTER OR SPECIAL DEVICES

Most of Part II discusses how you can transfer data between
a BASIC program and a data file cn a disk. However, the
system looks upon a disk as just another device hooked up
to its file channels. We have already mentioned that you
can use OUT @ to communicate with the keyboard buffer. You
can also use INP(#) to 1input a byte from the keyboard
buffer. In this section we will talk about how you can
assign a file channel to a printer and special devices of
your own.

15.1 SENDING DATA TO THE SYSTEM PRINTER

The System 88 User's Manual gives you a full explanation of
the System Printer Driver. Using that information you can
connect your printer to your System 88. . The following
discussion assumes that you have already "taught" the
printer driver about your ©printer, and that you have
"loaded" your printer. That just means that the system is
hooked up to your printer and knows how to send data to it.

The first step in using the printer from inside BASIC is to

assign the printer a file channel number. Use this
sStatement:

FILE:n,LIST

(where n is the file channel number) either as a direct or
as a program statement. You may use any file channel from
2 through 7. Make sure that you aren't assigning that
channel to a data file if you want to use the printer at
the same time as you are reading from or writing to files.
The following statements all connect the printer to file

channel #3:

FILE:3,LIST

FILE:1+1+1,LIST

Q(P)=3\FILE:Q(P) ,LIST
Now we can send data to the printer over the channel we
have assigned to it. To send data to the printer, use

PRINT:n or OQUT n. These may be direct statements or
program statements.

Page 128 BASIC Manual PolyMorphic Systems

EXAMPLE:

108 REM Demonstrate use of Printer
119 FILE:3,LIST

120 PRINT: SQRT(Q),"Integers and their squares"

13¢ FOR I=1 TO 10 i
149 PRINT:3,I,TAB(8),1 2
159 NEXT

Use the PRINT statement to send-numbers or strings to the
printer; use the OUT statement to send single-byte
guantities or a string of one-byte values.

Besides sending data from the keyboard or a data file, vyou
can also use the printer 1in developing, debugging, and
documenting programs:

>FILE:3,LIST Assigns channel #3 to printer
>LIST:3 Lists program to printer
>DUMP:3 Dumps values of variables in

your program to the printer

>XREF: 3 Cross-references the locations
of the variables in your
program. Sends this to printer.

15.2 USING SPECIAL DEVICES (DEF)

We mentioned briefly in Section 14 that a special keyword
in the FILE statement allows you to connect your own
special devices to BASIC. This is the DEF keyword. The
kinds of special device that you might connect to BASIC
might include a special disk drive, a modem (a device for
communicating over phone lines), etc.

Use the DEF keyword ONLY if you are an experienced machine
language programmer adept at writing your own
machine-language file-management routines. The following
paragraphs are intended for those programmers. If you are
interested in 1learning what is meant by terms such as
"accumulator," "register,” etc., consult one of the many
books on the market on 8080 assembly language programming.

The form of a FILE statement containing the DEP keyword is:
FILE:n,DEF, addressl,address?2,address3

where n is the file channel you wish to assign to your
device.

The three addresses (in decimal) following the DEF keyword
refer toc three different memory 1locations. These memory

PolyMorphic Systems BASIC Manual Page 129

locations are the starting addresses of three different
machine language programs that you have written and loaded
into memory. These three programs perform the following
functions: Addressl GETCHAR: Input a character from the
channel presently 1in use. You enter the program with the
channel number in the Accumulator. You will return from
the program with the input character in the Accumulator,
with the Zero flag set if the character is a binary zero,
and with the Carry flag set if you are at the end of the
file. Do not change the contents o©f any register other
than the Accumulator.

Address2 PUTCHAR Output a <character to the channel in
use. Enter the program with the character 1in the B
register and the channel number in the Accumulator. Do not
change the contents of any registers other than B and the
Accumulator.

Address3 CLOSE Close the device. Enter the program with
the channel number in the Accumulator. Do not change the
contents of any other register.

For more information on interfacing machine language
routines to your system, see Appendix F of this manual, and
see the System Programmer's Guide.

Page 130

BASIC Manual

PolyMorphic Systems

PolyMorphic Systems BASIC Manual Page 131

Section 16

SAMPLE PROGRAMS AND SUMMARY OF BASIC FILE-HANDLING COMMANDS

16.9

Now that we have discussed the various ways to connect
BASIC to the disk system, you may want to see how these
commands are actually used in building and updating files.
The sample programs below are extremely simple and not very
useful in themselves. They will, however, demonstrate how
the commands are used in combination with one another. Try
typing in these short programs. Once you see them working
you will have a clearer idea of how these commands work.

16.1 SAMPLE PROGRAMS

16.1.1 Building a Small Data File with Fixed-Length Records

This program builds a small data file consisting of names
and 1I.D. numbers. If you display the file you will see
the contents in this form:

ROGERS ***
54676543 %
SMITH***%
67893213*%
EDWARDS **
45629482*

To allow for fast positioning later we have constructed
this file so that the data records are of fixed length.
(See next page.)

Page 132 BASIC Manual PolyMorphic Systems

Sample Program #1

19 REM Demonstrates building of fixed-length record file
15 PRINT "Pick a 1 or 2 digit number as a suffix to your”,
28 INPUT " data file name: ",F$

25 DIM N$(1:100) ,W$(1:168) ,F$(1:2)

30 FILE:5,0PEN,"<3>DATA"+F$,0UT

35 PRINT "Enter END when done."

43 PRINT "Keep your entries to below 11 characters."

45 INPUT "Employee's Name?: ",N$

56 IF N$S="END" THEN GOTO 80

55 GOSUB 204

60 INPUT "I.D Number?: ",NS$

65 IF NS="END" THEN GOTO 84

79 GOSUB 2040

75 GOTO 45

80 FILE:5,CLOSE

85 PRINT " Finished..... "

90 REM Exit program

149 sTOP

REM Gosub prints fixed length data records

200 REM Pad strings out to length of 16 for later fast POS
REM

219 IF LEN(NS$)<10 THEN NS=NS+"*"\GOTO 2140

229 PRINT:5,NS

230 RETURN

16.1.2 Opening a Fixed-Length Record file in INOUT mode

This program takes advantage of the fast-positioning
feature of BASIC. The file we constructed above is a
fixed-length record file. BASIC positions to each record
within that file extremely quickly. Once we update that
file it may not still be a fixed-length file.

D

PolyMorphic Systems BASIC Manual Page 133

Sample Program #2

10 REM Demonstrates Fast Postioning with Fixed-length records
20 DIM F$(1l:2) ,A$(1:20),NS(1:20)

39 PRINT "Which data file would you like to update?"”

49 INPUT " -=DATA",FS

54 FILE:6,0PEN,"<3>DATA"+F$, INOUT ,

60 PRINT "Which data record do you want to update?"

78 INPUT " (Enter a zero if you're finished): ",N

80 IF N=g THEN GOTO 190

99 FILE:6,POS,N

129 INPUT:6,AS

113 IF LEN(AS$)<>0 THEN GOTO 144

129 PRINT "That data record doesn't exist...Try again."

136 GOTO 64

149 PRINT "Data record contents: ",AS

150 PRINT "Warning: Don't make new record bigger than o©ld onel”
166 INPUT "New data record: ",N$

170 PRINT:6,N$

180 GOTO 64

190 PRINT "We're done...."
208 STOP

16.1.3 Updating a File Without Using POS
Yet another example of the use of INOUT files.
Sample Program #3

100 REM Demonstrates INOUT mode

119 I=1 \REM record counter

129 DIM F$(1:2),AS$(1:20)

130 DIM NS (1:20)

149 PRINT "Which data file do you want to update?"
15¢ INPUT "--DATA",FS

160 FILE:4,0PEN,"<3>DATA"+FS$,INOUT

176 PRINT "Record #",I," : ",

180 INPUT:4,A$\IF LEN (A$)=0 THEN GOTO 264
19¢ I=I+1\ REM update record counter

209 PRINT AS

219 INPUT "want to change it (1 for yes, 8 if not)?: ",N
220 IF N=f THEN PRINT:4,AS$\GOTC 174

238 INPUT "O.K. New record?: ",NS

243 PRINT:4,NS

250 GOTO 170

260 PRINT "Done....No more data."

279 FILE:4,CLOSE

2380 STOP

16.1.4 Outputting Calculations to a Data File

This program does not ask for input from the keyboard.

Page 134 BASIC Manual PolyMorphic Systems

Sample Program #4

13 REM Calculates first 25 powers of 16

28 FILE:5,0PEN,"<2>POWERS",OUT

30 PRINT:5,"The first 25 powers of 16 are:"
40 X=1I\PRINT:5,TAB(20),1

5¢ FOR I=1 TO 25

60 X=X*16

70 PRINT:5,TAB(20) ,X

80 NEXT

98 PRINT:5,"End of file."\FILE:5,CLOSE\STOP

16.2 SUMMARY OF BASIC FILE-HANDLING COMMANDS

The following is a list of all of the BASIC file-handling
commands available to you.

NOTE: In the command syntaxes given below, the
symbol n refers to the number of the information
channel to which the data file is assigned. When
we speak of "syntax" we are referring to the
proper, acceptable form of a statement.

KEYWORDS

CLOSE (see page 120)
Close a data file. Command syntax: FILE:n,CLOSE

DEF (see page 128)

Use the wuser-written machine language programs designated
in the DEF command for file-handling routines. Three
hexadecimal addresses are given. Command syntax:
FILE:n,DEF, addrsl,addrs2,addrs3

LIST (see page 127)
Assign printer to a file channel. Syntax: FILE:n,LIST

OPEN (see page 111)
Open a data file. May be wused to <create a data file.
Command syntax: FILE:n,OPEN,file mode

POS (see page 121)

Position the reading of data from a data file to a given
data record number. Command syntax: FILE:n,POS,record
number

REW (see page 121)
Position a file read operation to data record #4. Command
syntax: FILE:n,REW

FILE MODES

O

PolyMorphic Systems BASIC Manual Page 135

INOUT (see page 123)

Read data records in from the data file, allow them to be
updated, and write them, back out to the file. Command
syntax: FILE:n,OPEN, INOUT

INPUT (see page 118)
Read data records in from the data file. Command syntax:
FILE:n,OPEN, INPUT

OUT (see page 112)
Write data records into the data file. Command syntax:
FILE:n,OPEN,OUT

DATA TRANSFER STATEMENTS/COMMANDS
DUMP:n (see page 128)

Send scalar variable values to a pinter or file (n=channel
#).

INP(n) (see page 119)
Input one byte of data (one character) from the data file.
Command syntax: INP(n)

INPUT:n (see page 118)

Input one data record (one line of characters between
carriage returns) from the data file. Command syntax:
INPUT:n,string and/or numerical variable (s)

OUT:n (see page 117)

Write one byte of data (one character) or a string of bytes
out to a data file. Command syntax: OUT n,string or
numerical variable(s)+string+expression...

LIST:n (see page 128)
List program to printer

PRINT:n (see page 115) ,

Write one data record {one 1line of characters between
carriage returns) out to a data file. Command syntax:
PRINT:n,string or numerical variable(s) ,expressions,
strings...

READ (see page 120)

Input data items from a data file into a list of variables
that follows READ : READ:n,variable-list. n 1is the file
channel number. READ assumes that each data item ends with
a carriage return.

WRITE (see page 120)

Cutput data items to a data file from a list of variables
following WRITE: WRITE:n,variable-list. n 1is the file
channel number. WRITE ends each data item with a carriage
return.

- Page 136 BASIC Manual PolyMorphic Systems

XREF:n (see page 128)
Send variable cross-reference to a printer or a data file.

EXIT COMMANDS
BYE (see page 120)
Exit BASIC and return to the system level (Exec). All data
files are closed.

EXEC (see page 120)

Recoverable exit from BASIC-- after communicating with
Exec, you may resume your operations in BASIC by typing the
command CON after a system prompt. Data files are not
closed.

PolyMorphic Systems BASIC Manual Page 137
Appendix A
THE BASIC AND SYSTEM ERROR MESSAGES

The System 88 BASIC error messades were designed to be
clear and to help in suggesting solutions to problems that
may occur when you run a program, If BASIC finds an error
in a direct statement, it will refuse to perform that
statement and instead will respond with an appropriate
error message.

Example:)
>
enter >FOR I=1 TO 3
output I can't do that directly.

If an error occurs within a program line, BASIC will find
the error when you attempt to run the program. In this
case, BASIC prints the program 1line that c¢ontains the
error. Underneath that line, BASIC prints the appropriate
error message with an arrow pointing at or near the part of
the line that is in error.

Example:
enter >10 Y¥=3*(SQRT (16)+YCLEPT)

Syntax error
>

A1l of the BASIC error messages are listed below, and after
the list each error message is discussed with suggestions
about what you can do to remedy the situation that caused
the error message to appear.

We also list the BASIC error <code next to each error
message. This is the number which BASIC associates with
the message. You will want to know these codes if you use
the ERR special variable to check for particular errors.
(See Section 11, Debugging BASIC Programs.)

In section 2.0 of this appendix we list the system error
messages, which may also be handled by the error control
features of BASIC.

1.1 ERROR MESSAGES

Decimal ,
Error Code Message
10845 Arg mismatch error

1827 Bad argument error

Page

1050
1279
1658
1928
1036
1032
1034
1829
1060
1044
1633
1642
1088
1638
1952
1040
1647
1943
1930
1639
1335
1926
1924
1053
1854
1055
1046
1857
1063
1651
1931
1062

138

1641

1825

BASIC Manual PolyMorphic Systems

Can't continue!

Can't do that to an OUT file
CHAIN programs must be saved with SAVEF
Dimension error

Division by zero

Format error

FOR~-NEXT error

Function definition error

I can only do that to a disk file
I can't do that directly

I can't find that 1line

Input error

...LOAD interrupted

Missing matching NEXT

Nothing to save!

Qops...BASIC goofed!

Overflow error

Out of memory

Out of bounds error

Read error

RETURN without GOSUB

Subscript error

Syntax error

That channel no open!

That channel not open for input
That channel not open for output
That line was too long!

That program is for a different version
That's not a BASIC data file
That's not a BASIC file!

Type error

Type error on READ

1.2 piscussion of error messages

Error code 1945:

Arg mismatch error

The number of arguments in user-defined function definition
is not equal to the number of arguments listed in function

call

O

PolyMorphic Systems BASIC Manual Page 139

Example:

enter >18 DEF FNX(X)=X/100
>29 PRINT FNX(1,2,3)
>RUN

output 20 PRINT FNX(l,g,3)

Arg mismatch error
>

Error code 1927:

Bad argument error
This error may occur if a parameter given to the PLOT
function is out of bounds (for example, if X>127 or Y¥>47).
Check to see that your values are within the limits
accepted by the function you are using.

Exror code 1056:
Can't continue!

You have asked BASIC to continue execution of a program,
but it can't. Perhaps there is no longer a program there,
or you have already reached the end of the program, You
will wuse the CON command if vyou have interrupted the
program with a Control-Y or a STOP statement. If you can
continue program execution, you will see a double prompt
>>; 1if you cannot, you will see a single prompt >.

Error code 1279:
Can't do that to an OUT file

You have tried to do something illegal to a BASIC data file
which your program has opened in OUT mode. Perhaps you
have tried to use a POS command on the file; that won't
work because you cannot position a file that 1is in the
process of being created. If you want to input from an OUT
file, close the file and reopen it in INPUT mode.

Error code 1858:
CHAIN programs must be saved with SAVEF

When you try to CHAIN a program into memory (see Appendix
B), you must make sure that that program is in token form;
that 1is, that it has been saved with SAVEF. Otherwise,
BASIC will not allow you to CHAIN the program in.

Error code 16G28:
Dimension error

You have tried to dimension an array or string array twice

Page 1490 BASIC Manual PolyMorphic Systems

within one program. Or you have tried to dimension an
array as a direct statement, but in the
Run-Time-Environment that array has already been

dimensioned. You can also see this error message 1if you
include a variable as an argument in a DIM statement: e.g.,
DIM X(A).

Error code 1936:
Division by zero

You tried to divide a variable, expression, or number by
zero. BASIC doesn't know how to do that. If you are not
sure whether or not you will be dividing by zero, check for

that possibility before dividing. For example:

55 IF A=g THEN PRINT "Oops!"\STOP
60 PRINT "Answer is: ",B/A

Error code 1032:
Format error

The usual cause is that you have tried to print data in an
incorrect format. For example, BASIC can't print a number
in F-format in a field of greater than 25. If you try to
do so, you'll get a format error message. In almost every
case, a format error occurs because of an incorrect format
string. .

Error code 1334:
FOR-NEXT error

If you do not next FOR-NEXT loops correctly, you are likely
to see this error message. Make sure that the wvalues for
your loop variable, index, and step values are correct.
Make sure that your 1loop variable 1is the same as the
variable you specify in your NEXT statement.

Error code 1829:
Function definition error

You called a user-defined function, but you never defined
that function-- so BASIC can't find it! Look at vyour
program again, and make sure that you have your function
name right.

Error code 1068:
I can only do that to a disk file

You will see this message if you try to use a file-handling
command on a non-disk device hooked up to a file channel.
For example, 1f vyou assign file channel #6 to a printer,
and then say: FILE:6,REW, BASIC knows that it cannot rewind
a printer.

1

PolyMorphic Systems BASIC Manual Page 141

Error code 1944:
I can't do that directly

You tried to do something directly that BASIC can't do
directly. For example, if you say: GOSUB 109 outside of a
program, you will get this error message. You can do many
things directly. FPor example, after you run a program, you
can change some values of the program variables directly.

Example:

>19 A=5
>2% PRINT A"2
>RUN

25
>A=6
>RUN 20

36

Error code 1033:
I can't find that line

You tried to perform some function on a nonexistent program
line. For example, if you <try to delete a 1line that
doesn't exist, or try to list a line that doesn't exist,
BASIC will give you this error message.

Error code 1942:
Input error

When you write an INPUT statement (either for input from a
data file or from the keyboard), you specify whether you
want a string or a number. If the item you receive back is
not of the correct type, you'll receive the Input error
message. The reason that you get an Input error message
when you try to input from an empty data file data record
is that BASIC tries to input binary zeroces, which it does
not recognize as either string or numeric data.

Example:

>16 INPUT "Give me a number: ",A
>RUN

Give me a number: HELLO THERE
Input error

Error code 1d88:
«+..LOAD interrupted

You interrupted the LOAD command while it was loading a
BASIC program. Try again.

Pége 142 BASIC Manual PolyMorphic Systems

Erxror code 1438:
' Missing matching NEXT

There are not enough NEXT statements in your progdram to
match the FOR statements. For example:

16 FOR I=1 TO 19
20 FOR J=3 TO 1949
39 PRINT I,J

40 NEXT J

580 STOP

will not work because there is no NEXT I. Check your FOR and
NEXT statements to see if they agree.

Error code 1052:
Nothing to save!

You tried to save a BASIC program, but BASIC decided that
there was no program in memory. Try to use the LIST
command to see if there is really nothing to save. If you
do not see a program listed after using LIST, then you're
out of luck. Remember next time to save any program 1in
memory before you leave BASIC or do anything which might
endanger the contents of memory.

Error codes 1949,1041:
Cops...BASIC goofed!

You should never see this message; it occurs only if some
pointers and parameters inside BASIC become scrambled. If
you do get this message, you might want to save your
program (to keep it from harm) and try to do again whatever
you were doing.

- BError code 1047:

Overflow error

You tried to evaluate an expression with a value too large
for BASIC to represent. For example: PRINT 3*10768

Error code 1043:
Out of memory

You managed to fill memory. Revise your program to be more
frugal of memory space. Look at Section 19, Optimizing
your BASIC Program, for advice on saving memory space. An
example of the kind of thing that can fill memory is the
following endless loop:

PolyMorpnic Systems BASIC Manual Page 143

10 GOSUB 198

Error code 1930: ,
Out of bounds error

One possible cause for this error message 1is using a
program line greater than the maximum number of 65536. You
might see this error if you try to dimension an array to a
size greater than memory will hold: DIM X(500089000060).

Error code 1839:
Read error

You tried to read data from a DATA statement, but BASIC
became confused. Perhaps there was not enough data in the
DATA statement. Then again, the data may not have been in
proper form: strings when they should have been numbers,
etc, Look at your DATA and READ statements and see if they
agree as to type and amount of data needed.

Error code 18635:
RETURN without GOSUB

You must always end a subroutine with a RETURN statement.
If BASIC finds an extra RETURN statement, it does not know
which subroutine call to return to. You might see this
error if you have allowed your program to "fall into" a
subroutine.

For example:

16 IF A=1 THEN GOSUB 2040
29 PRINT A

200 REM Subroutine
219 PRINT A*B

220 RETURN
The program above causes the subroutine to be executed if
A=1., Then when we return to the subroutine call, 1line 20
is executed. At that point, however, we "fall into" the

subroutine. We will then reach the RETURN without a GOSUB
having been executed. To avoid this problem, put a STOP at
line- 30.

Error code 1026:
Subscript error

You tried to wuse a non-existent subscript or a subscript
larger than allowed by the DIM statement. For example, 1if
you've previously said that A=5§, the following will
generate a subscript error:

Page 144 BASIC Manual PolyMorphic Systems

19 DIM N(20)\PRINT N(A)

Error codes 1824,1025:
Syntax error

Syntax means "arrangement." In the case of BASIC, syntax
means the correct form of a command that BASIC can
understand.

"Syntax error" is the most common error message that you
will see. In general, all of the other error messages
occur because BASIC understands what you want (or what you
say you want), but can't do it. A syntax error message is
BASIC's suggestion to you that your command was not in <the
proper form: either you mispelled a command or you did not
write the command in the correct way. For example, BASIC
will respond with a syntax error if you say:

PRIMPT A (you meant PRINT)
IF X=§ GOTO 280 (THEN keyword missing)

Error code 1053:
That channel not open!

You tried to use a file channel that your program has not
previously assigned to a data file or printer. Use the
FILE statement (see Section 14) to attach a file or printer
to the channel or change the channel number in your program

to reflect the file channel you HAVE assigned to those
devices.

Error code 1054:
That channel not open for input

You did an INPUT or INP command, but the file channel you
specified 1is not assigned to a file opened in INPUT or
INOUT mode. Check your FILE statements to see if you are
using the <correct file channel number and to see if you
used the correct file mode

Error code 1455:
That channel not open for output

You did an OUT or a PRINT command, but the file channel you
specified is not assigned to a file opened in OUT mode.
Check your FILE statements to see if you are using the
correct file channel number and to see if you used the
correct file mode.

Error code 1046:

That line was too long!
BASIC 1limits the 1length of a line to 128 characters. If
you try to make a line longer than that, you're going to
see the above error message. Try to split your program

PolyMorphic Systems BASIC Manual Page 145

lines up so that the commands appear on separate lines.
You <can split up an input prompt, for example, by using a
PRINT statement.

Example:

16 PRINT "This input prompt was tco long for one ",
28 INPUT "line, so now it's on two lines: ",N

Error code 1857:
That program is for a different version of BASIC!

The program you loaded into BASIC was written in another
version of BASIC. It won't run with this BASIC. If it is
in non-token, ASCII form, you can edit it using the System
88 text editor so that it will run with this version of
BASIC.

Error code 1063:
That's not a BASIC data file

You tried to use a file as a BASIC data file, but BASIC
didn't recognize it as a data file. 1If the extension of
the data file is not .DT, you must specify the extension in
your FILE statement. Try again, but this time explicitly
state the data file's extension.

Error code 1851:
That's not a BASIC file!

You tried to LOAD a non-~BASIC file. Make sure that the
file you tried to load in is indeed a BASIC program. Make
sure that you specified the file's extension if that
extension was not the default extension .BS.

Error code 1831:
Type error

You tried to use a string function on a numerical variable
or vice versa. For example, PRINT SQRT(AS$) or PRINT LEN (N)
are both incorrect uses of the numeric and string
functions.

Error code 1862:
Type error on READ

You will see this error message if you try to READ string
data from a DATA statement containing numerical data or

vice versa. Check your DATA and READ statements for type
and amount of data.

2.0 SYSTEM 88 ERROR MESSAGES

Sometimes Exec cannot respond to a command or file

Page 146 BASIC Manual PolyMorphic Systems

invocation. This may be because the input was incorrect
(e.g., INAGE, instead of IMAGE), impossible or illegal to
perform (e.g., DELETE Exec.OV), or confusing (<2>FILE,
where <K2>FILE does not exist). At these times, the system
displays error messages whose purpose is to inform you that
a problem exists, and to give you some idea o©of what that
problem might be and what to do.

All of the error messages that you might receive from the
system are listed below, along with their possible causes.

ERROR MESSAGES GENERATED BY THE SYSTEM

The error codes associated with the error messages are
given for the benefit of the machine language programmer
writing software using the section of the system software
that generates error messages (see System Programmer's
Guide for information on interfacing your programs with the
system software).

Hexadecimal Decimal
Error Code Equivalent MESSAGE
2101 257 DIO says: Bad parameters!’

91492 258 - DIO says: Hard error! Preamble bad!a;)
2103 259 DIO says: Checksum error! |
0104 260 DIO says: Verify error!

8185 261 DIO says: Write protected!

9196 262 DIO says: ©No disk or door open!
0201 513 I can't run that file

9202 514 Nothing to run!

8283 515 Dont what?

0204 516 What?

0390 768 I can't find that file

9302 770 Disk directory unreadable!

9383 771 Disk directory unreadable!

5306 774 I can't read the directory-no

disk or door open
(Error 03@6)

g3FF 1923 Disk directory destroyed!

O

PolyMorphic Systems

B509
85081
8502
8593
p504
9505
B5086
95087
6588
5600
P691
8701
8782
8703
0785

1289
1281
1282
1283
1284
1285
1286
1287
1288
1536
1537
1793
1794
1795

1797

BASIC Manual Page 147

Gfid says: Bad disk identifier
Gfid says: Name too long

Gfid says: Extension too long
Gfid says: Name null or weird

I can't: the directory is full
I can't: the disk is full

I can't rename across drives: use cop:
No new extension given

I can't do that to a system file
That file already exists

That file does not exist

Output file not specified

Output file already exists

Input file not specified

Input file does not exist

(Cmdf abort)

Page 148 BASIC Manual PolyMorphic Systems

EXPLANATION OF ERROR MESSAGES

DIO ERROR MESSAGES

When you see an error message beginning "DIO says:...,"
that message is emanating from a particular area of the
system. DIO (DISK 1I/0) 1is the area of the system that
performs disk read and write operations, It will report
any errors resulting from problems in writing and reading
information to and from a disk.

"DIO says: Bad parameters!"

This usually indicates an internal system error, caused by
the system giving bad arguments to DIO.

"DIO says: Hard error! Bad preamblel!"

DIO thinks that your disk is bad. It wasn't able to read
information off of it, and thinks that the fault lies with
the disk, rather than with the system. Try again, perhaps
with the disk in another drive. If you keep getting this
message, you had Dbetter check the status of your disk,
perhaps by erasing the disk using the INIT command. This
will perform a simple surface test of the disk, since a
zero is written in every location in every sector of the
disk. If INIT can't write a zero in a particular location,
you will get "Verify error," and you will know that your
disk is bad.

"DIO says: Checksum error!"

The data that has been read off of your disk does not 1look
valid to DIO. Try the operation again--chances are,
however, that your data is no longer accessible.

"DIO says: Verify error!"

An attempt has been made to verify a disk write operation.
The data written on to the disk does not match the original
data still in memory. This may be due to a faulty write
operation, or a change in the data in memory. Try again.
If vyou receive this error again, you may suspect that your
disk is bad.

"DIO says: Write protected!”

You are trying to write data on a disk that 1is ‘"write
protected" (the disk has a write-protect tab fixed over its
"write—-enable" notch). Such a disk is one on which a write
operation may not be performed. To write protect a disk,

PolyMorphic Systems BASIC Manual Page 149

place a write-protect tab over the disk's write-enable
notch (see Figure 1, Cutaway Drawing of a Disk). To make a
write

?protected disk available once again for write operations,
simplyremove the write-protect tab from the disk's
write-enable notch.

"DIO says: No disk or door open!"

You have attempted to access a disk, but the drive you have

selected 1is empty, or the drive door is open. No read or
write operation will be performed. If you have specified a

legal disk drive number, but your system does not contain
that many drives, DIO will respond with this message.
EXAMPLE:
SL 3 (no disk drive with that number)

GFID ERROR MESSAGES
The area of the system that deals with getting and
identifying disk files is GFID (Get-File-Identifier). If
the system has trouble with getting file names or in
identifying a file, GFID will generate one of the error
messages below:
"Gfid says: Bad disk identifier"
GFID does not understand the disk specifier you have given
to the system.

EXAMPLE:

SLIST @

"Gfid says: Name too long"

The file name you have entered is more than 31 characters
in length.

"Gfid says: Extension too long"

You have tried to save a file whose file name extension is
longer than the mandatory two characters in length.

"Gfid says: Name null or weird"

You have entered a bad file name to the system. This
message will also be generated if you enter NO file name to
the SAVE command. A "bad" file name 1is any name not
acceptable to the system.

EXAMPLE:

SRENAME <2>PHONE.DT <2>+.DT (The second file name,

Page 1590 BASIC Manual PolyMorphic Systems

+.DT is illegal.)

OTHER ERROR MESSAGES

"I can't run that file"

You have asked the system to run a system overlay file,
Only the system itself may invoke an overlay.

"Nothing to run!"

You have wused the START or REENTER command to begin
execution of a machine language program. The system,
however, believes that there is nothing in memory to
execute.

"Don't what?"

You may tell the system "DONT VERIFY." 1If you attempt to
tell it not to do something else (e.g., "DONT GET"), the
system will become confused and issue this error message.

"What?"

An all around, general purpose error message indicating
that the system does not understand what you are saying.
EXAMPLES:
$ (a line of spaces)

S<7>FILE
will result in the message, "What?"

"I can't find that file"
Whenever the system fails to identify an input as a command
or file invocation, this error message is issued. If the

system is confused by an input, it usually assumes that you
have asked for a file that it is not able to find.

"Disk directory unreadable!"

The system believes that the disk directory has become
destroyed. No file on a disk may be accessed if the disk

directory 1is invalid. Try again in another drive. You
have probably lost all access to the data on the disk,
however. Possible cause--interrupting disk I/0 while the

disk directory was being updated.
"I can't read the directory-no disk or door open”

No write or read operation will take place to or from a

PolyMorphic Systems BASIC Manual Page 151

disk while the door is open on the drive containing that
disk.

"(Error ©366)"

The same error as "I can't read the directory-no disk or
door open." However, in this case, the system cannot find
the System Disk. Make sure that the System Disk 1is in
drive #1, and that it is in the drive correctly.

"Disk directory destroyed!"

The system thinks that your disk directory is no good. Try
again in another drive. No files on a disk may be accessed
if the disk's directory is bad. Possible
cause—~—interrupting disk I/0 while the directory was being
updated.

"I can't: the diiectory is full"

You have tried to save a file on a disk whose directory is
full., The directory is of a fixed size, and has a finite
amount -of room for file names. Try saving the file on
another disk. Or, you may delete files from the full disk,
pack the disk, and try again.

"I can't: the disk is full™

You have tried to save a file on a full disk. Try to save
the file on another disk. ©Or, you may delete files from
the full disk, pack the disk, and try again to save the
file on the disk, . :

"I can't rename across drives: use copy”

You have tried to use the RENAME command on files on
different disks. ‘

EXAMPLE:

SRENAME <2>PRINTER.GO <3>TELETYPE.GO You must use
the COPY command when renaming files across disk drives.

"No new extension given"

You have made an attempt to rename or copy a file, but it
is not clear what the extension of the new file name will
be.

- "I can't do that to a system file"

You have tried to delete or rename a system file.

"That file already exists"

Page 152 BASIC Manual PolyMorphic Systems

You have tried to save a file under a name that already
exists on the specified disk.

EXAMPLE:

(You have a file on the disk in drive #2 named
"BOOK.")

>SAVE,<2>BO0OK The system will tell you "That file
already exists."

"That file does not exist”

Some areas of the system will issue this message if you try
to access a non-existent file.

"Output file not specified"

Some system software requires that you specify an out-put
file when using the program. If an output file is not
given, the system will not know where to put the data that
you are working with.

"Output file already exists”

You have given as an output file a file name that already
exists on the disk specified.

"Input file not specified"

Some system software requires that vyou specify an input
file when using the progranm. If an input file is not
given, the system will not know where to get the data that
you want to work with.

"Input file does not exist"”
You have asked for an input file which does not exist.

"(Cmdf abortf"

The system has tried to use a file as a command file, but
has been unable to do so. This may be due to an illegal
command, a bad file invocation, or an unrecognized entry in
the command file. 1If you try to invoke an unrunable file
from the system level (such as a text file or a BASIC
program whose file name does not contain the .BS
extension), the system will try to wuse the file as a
command file, but will not be able to do so, and the error
message will then be given. Use of a wvalid command file
will be terminated (and this error message displayed) when
a Control-Y is typed, or the commands PACK and INIT appear
in the command file.

®

PolyMorphic Systems BASIC Manual Page 153
Appendix B
RUNNING BASIC AND LOADING AND SAVING BASIC PROGRAMS

1. RUNNING BASIC OR BASIC PROGRAMS

To run BASIC on the System 88, just type the command:
BASIC after a single or double dollar sign
prompt. The Exec then loads BASIC into memory and runs it.

Most BASIC program files carry the extension .BS
(automatically appended to the file name by the system); to
run a BASIC program with the extension .BS, Jjust type the
file name while in Exec. This works only if the extension
on the file 1is .BS. For example, if you have the file
Loans.BS on the System Disk, you can run it by typing:

Loans after the single or double dollar sign
prompt. When the system goes out to get the file Loans, it
notes the .BS extension and automatically loads BASIC to
run the file.

But if the file Loans was created with some other
extension-- 1if vyou specified some other extension when
first creating the file—-—- then the system cannot tell that
the file is a BASIC program. Instead, you must explicitly
tell the system to have BASIC run the file. For example,
if you have the file Loans.GG on disk 2, the command:

$<2>Loans will generate an error message; the
system doesn't know what to do with an extension of .GG on
a file. The command

SBASIC <K2>Loans.GG will cause BASIC to load and
run your file.

2. LOADING PROGRAMS FROM BASIC

You can load a file from the disk while in BASIC by using
the LOAD command. The following example shows how to load
the file <3>Eigenvalues.BS:

>LOAD,<3>Eigenvalues (> or >> 1is the BASIC
prompt) .

Remember, the extension on the file does not have to be
specified if it is .BS, which is the default extension used
by BASIC when no extension is specified. If you wanted to
run a BASIC program saved as PROGRAM.WW, you would have to
type:

>LOAD,PROGRAM.WW to explicitly tell BASIC that

Page 154 BASIC Manual PolyMorphic Systems

although the file does not have a .BS extension, it is
indeed a BASIC program.

Note that when you invoke a BASIC file from the Exec level,
either by typing its name or by typing BASIC followed by
the file name, the program you want is loaded into memory
and automatically run; you don't have to give BASIC the RUN
command when you invoke files this way. If you load files
from within BASIC using the LOAD command, you have to give
BASIC the RUN command to start the program, unless the
program was saved in "auto-execute" mode (described below).

When you load files using the LOAD command in BASIC, any
program lines in memory at that time are NOT removed. This
provides us with a way of merging programs together; you
can develop parts of a larger program in small sections, or
load already debugged subroutines to the program in memory.
This also means that you must give the SCR command to
remove all program lines in memory if you do not want your
program merged with the program in memory.

When BASIC 1is 1loading a program from disk, some direct
commands are allowed in the file. These commands include:
REM, PRINT, iF, FILE, SCR, and CLEAR. If BASIC sees a
statement it does not wunderstand, it stops the 1loading
process and gives the Syntax error message.

Placing REM statements 1in the file as direct statements
offers the advantage that the comments are available in the
disk file but do not take up room in memory when the BASIC
program 1s being run. REM statements are placed in a file
this way is done using the text editor, rather than from
within BASIC.

3. SAVING BASIC PROGRAMS

Programs may be saved by using two similar commands: SAVE
and SAVEF. Both commands save all the program 1lines (but
not the data) in memory as a disk file. SAVE saves the
program on the disk in text form that may be changed using
the text editor, and printed using the system TYPE or PRINT

commands. (See the User's Manual for more information on
the Editor, TYPE, and PRINT.) SAVEF saves the program in
BASIC's internal format. This makes programs saved with

SAVEF faster to load (sometimes two or three times faster),
but these files may not be edited using the text editor or
run by other versions of BASIC (such as different
arithmetic precision versions). SAVEF must be used to save
- programs to be used with CHAIN in BASIC, described later.
When a SAVEF file 1is 1loaded, it automatically begins
execution. A program saved with the SAVE command will not
start execution automatically unless it was specifically
saved in "auto-execute" mode. This is done by separating
the file name from the BASIC command SAVE with a semicolon

PolyMorphic Systems BASIC Manual Page 155

: rather than a comma , . The following examples show
this: ' '
Using SAVEF

>SAVEF,Program—-1

Using SAVE
>SAVE,<3>Program-2

Using SAVE with auto-execute
>SAVE;Program-3

Using SAVE and specifying an extension
>SAVE ,Program-4.XX

These examples saved the BASIC program in three different
ways. If you don't specify an extension on the file name,
BASIC wuses .BS, which identifies the file as a BASIC
program. The examples above produced files Program-1.BS,
Program-2.BS, Program-3.BS, and Program—-4.XX. File
Program-1 can't be changed using the text editor, and 1if
you TYPE the file, it will not look like a BASIC progdgranm.
Files Program-2, Program-3, and Program—-4 can be TYPEd or
PRINTed and can be changed using the text editor. If you
examine these files, you will see that the auto-execute
feature Jjust puts the BASIC command RUN at the end of the
program file.

4. LOADING PROGRAMS SAVED BY POLY 88 BASIC

Programs saved on cassette are loaded onto disk wusing the
FILMS processor described in the User's Manual. Programs
written for POLY 88 BASIC will have to be edited before
they can be run on the System—-88 if they: 1) use strings
and string subscripting; 2) alter the video board by using
POKE and PEEK; or, 3) use the POLY-88 printer driver,.
Additionally, computational programs can be speeded up by
re~writing them to use the MAT statement.

5. CHAIN

The CHAIN capability in BASIC allows the programmer to
break up large programs and have only part of the program
in memory at a time. Other parts of the program are loaded
by name, using the CHAIN statement in BASIC. The programs
loaded by CHAIN must have been saved using SAVEF in BASIC.
Two examples of the CHAIN statement are:

230 CHAIN "Part-4"
250 CHAIN STRS$ (K)+"-B"

Page 156 BASIC Manual PolyMorphic Systems

Line 230 1loads into memory file "Part-4." If K has the
value 19, line 256 will load and run file "10-B." This
second example shows that the file name used by CHAIN may
be a string expression. The file name could also be an
element in a string array.

The important thing to remember in using CHAIN is that the
values of all variables and the status of all file channels
are preserved, but "control" information, such as FOR-NEXT
loops, GOSUB data, etc., 1is 1lost. Here is a detailed
description of how CHAIN works:

The string expression for the file name
of the program to CHAIN in is evaluated
and copied 1into a special area of
memory. The file specified is looked
up. If the file is not found, an error
is generated.

The file is checked to make sure it is
a SAVEF file built by this version of
BASIC. An error 1is generated if it is
not.

The BASIC control stacks are erased.
This means that FOR-NEXT loop
information, GOSUBS, and function calls
are lost. Practically, this means that
CHAIN cannot be done from within a
FOR-NEXT loop, a GOSUB-called routine,
or from within a function. The values
of all scalars and arrays are
preserved, as 1is the status of all the
file channels.

The first line number in the CHAIN file
is extracted and saved. Program lines
in the existing program are deleted
from this line number to the end of the
program. This means that if the first
line of a CHAIN program is line 1004,
lines 1060 through the end of the
program in memory will be deleted
before the CHAIN program is loaded.

The CHAIN program is loaded into
memory. When the end of the file is
reached, program execution is started
at the first line of the CHAIN file,
leaving all variables and files intact.
If the first line in the CHAIN program

PolyMorphic Systems BASIC Manual Page 157

was line 506, this would be the same as
giving BASIC the command RUN 564.

CHAIN loads in the new file program line by program line.
This means that for each line that is inserted, all the
variables and file information must be moved around. If
you have 1large arrays and other data, this process may be
slow.

6. BASIC PROGRAMS AS SYSTEM FILES

On the System 88, files marked "system files" may not be
typed, printed, renamed, or deleted. BASIC programs may be
protected by making them system files. BASIC programs
marked system files may not be saved or altered. In fact,
the only commands that are allowed in BASIC for system
files are SCRATCH, BYE, and RUN (without a line number).
Commands such as LIST, DUMP, XREF, and the altering of
program lines are not allowed. Additionally, BASIC
programs cannot access system files unless the extension of
the file being accessed is .DT, indicating it is a BASIC
data file. 1If the file with the extension .DT is a system
file, the program accessing it must also be a system file.
These features allow programmers to protect their programs
and data from the casual user. The System Programmer's
Guide (available separately) discusses how to make files
system files,

Page 158

BASIC Manual

PolyMorphic Systems

PolyMorphic Systems BASIC Manual Page 159

Appendix C

SAMPLE PROGRAMS

These programs of varying complexity are listed in this
manual so that the user can type them in and see various
BASIC features in execution. The programs in this section
were contributed either by R. T. Martin, W. W. Hogg, or
S. Tytonida.

The user will note that the REM statements in the programs
are given without line numbers,. These programs were
written with the aid of the System 88 Text Editor, which
allows one to carefully document BASIC programs without
cluttering machine memory with remarks.

The names of the eight sample programs are:

ROSES
ORBIT
PRIMES
RHIST
SORT
CLOCK
TIMER
GRAMMAR

Sample Program ROSES

This program is a "number c¢runcher.®” A number cruncher 1is
a program that does an extraordinary amount of computation.
For each point displayed on the screen, two sines and a
cosine must be calculated (line 1909). If 24K or more
memory is available, these values for sin(t) and cos(t) may
be precomputed and saved in an array, thus eliminating a
good portion of the computation, The number of sample
points computed 1s set as variable K on line 166. This
number may be increased, increasing the intricacy of the
pattern as well as the time required to "draw"” each curve.
Try values of N larger than 160 (or even 1080) and observe
the results. Try K = 508 and starting N = 83. If you are
mathematically inclined, examine the effect of sampling the
roseequation in closed form. Why is it that for N > 1900
we do not see a solid white screen (for K = 508), but
instead gsee some very interesting patterns?

Page 160 BASIC Manual PolyMorphic Systems

REM SAMPLE PROGRAM "ROSES" %;)
REM

REM This program plots roses on the video screen.

REM The general form of the rose, in polar form, is

REM R=A*SIN (N*T) where A is the maximal radius, and

REM T is the angle theta, which goes from 0 to 2%PI

REM radians to generate the rose. To plot this function
REM in the Cartesian coordinate system, we use the

REM transformations X=R*COS (T)+X1l and Y=R*SIN{T)+Y1,

REM where (X1,Y¥l) are the coordinates of the point we
REM wish to call the origin. This gives us the equations
REM X=63.5+44*SIN(N*T) *COS(T), ¥Y=23.5+22*SIN(N*T)*SIN(T)
REM To speed up the computation, we factor out the term
REM SIN(N*T) to give the equations shown below. Note
REM that we only computer K points along the curve; this
REM gives us an interesting sampling effect for large N.
REM We input a starting N, and generate roses for N

REM decrementing down to 2.

REM

REM

REM Change K for more or less points,.

REM

108 K=100

119 PRINT CHRS$ (12),"SAMPLE PROGRAM ROSES"

124 PRINT"I will plot the equation for a family of roses based"

138 PRINT "on the starting number you give me (>2, please!)." .
14¢ INPUT "STARTING N = ",L ef)
1580 IF L<2 THEN PRINT"...GREATER THAN 2, PLEASE!" \ GOTO 149

160 FOR N=L TO 2 STEP -1 '

176 PRINT CHRS$ (12),\ PRINT "N =",N \ PLOT #,44,90

180 FOR T=¢g TO 2*PI STEP 2*PI/K

196 S=SIN(N*T) \ X=63.5+44*S*COS(T) \ ¥=23.5+22*S*SIN(T)

209 PLOT X,Y,1 \ NEXT

210 NEXT \ GOTO 100

RUN

PolyMorphic Systems BASIC Manual Page 161

Sample Program ORBIT

The ORBIT program simulates the motion of two massless
particles in motion about a force center. Describing them
as "massless" particles is another way of saying that they
do not interact with one another. They interact only with
the force center.

This program was run with a POLY 88 driving an Advent
Corporation projection television system, producting an
image approximately five feet across, and was quite
entertaining.

Try changing the wvalue for D on line 136, which controls
the accuracy (step size) of the approximation. Also try
altering {slightly at first) the initial conditions for the
particles, such as the velocity components set by V1, V2
and V3, V4, ‘

This program was written during a visit to the Physics
Computer Development Project (PCDP) at the University of
California at 1Irvine. The idea for the program was
suggested by Dr. Richard Ballard, who was interested in
seeing what a PolyMorphic Systems microcompuuter would do
with another "number cruncher," such as a very simple model
of motion in a force field. Dr. Ballard described the
functions and they were turned into ORBIT,

ORBIT is dedicated to Isaac Newton, who was able to connect
the motion of the planets to an apple falling from a tree.

Page 162 BASIC Manual PolyMorphic Systems

REM SAMPLE PROGRAM “ORBIT"

REM

REM Demonstrates plot function in displaying the

REM orbits of two massless particles about a force center.
REM Simple 2 body orbital kinematics program.

REM Kinematics equations by R. Ballard, programming
REM by R. Martin, basic understanding and explanation
REM of motion by I. Newton.

REM

REM NOTE: ORGANIZED FCR SPEED, NOT EXECUTION!!!

REM

189 PRINT CHRS$(12), \ PLOT 0,47,0

119 PLOT 50,25,% \ PRINT CHRS$ (128+14) \ PLOT ¢,21,40

12¢ X1=3 \ X2,V1,T=g \ v2=.5 \ D=.1

136 D=.5 \ REM change D for more or less accuracy in orbits
140 X3=2 \X4,V3=08 \ V4=-.6

15¢ PLOT H,V,0 \ H=1g*(X1+5) \ V=5*(X2+5) \ PLOT H,V,1

168 PLOT H1,H2,8 \ H1l=1@*(X3+5) \ H2=5*(X4+5) \ PLOT H1l,6H2,1
179 X1=X1+V1*D \ X2=X2+4V2*D \ X3=X3+V3*D \ X4=X4+V4*D

180 S=X1*X1+X2*X2 \ R=SQRT(S) \ S=D/(R*S) \ V1=V1-S*X1 \ V2=v2-5*X2
199 S1=X3*X3+X4*X4 \ R1I=SQRT(S1l) \ S81=D/(R1*S1) \ V3=V3-S1#*X3
200 v4=V4-51*X4 \ T=T+D \ GOTO 150

RUN

PolyMorphic Systems BASIC Manual Page 163

Sample Program PRIMES

This program was originally written to fill the need for a
program that would compute continuously for system testing.
It simply computes prime numbers, displaying the last
computed number on the screen. In the calculation itself,
we keep in vector N; a list of up to the first 588 primes
to use as trial divisors 1in testing a number for being
prime. If a number does not have a prime divisor less than
or equal to the square root of the number, it is prime. 1In
the calculation we use L as a pointer into the 1list of
prime divisors in a way that alleviates the need to compute
the square root for each new number. This technique was
described by Ira Baxter to R. T. Martin in a conversation
in 1971. Those interested in prime numbers might 1look at
Volumes 1 and 2 of The Art of Computer Programming by
Donald E. Knuth, published by Addison-Wesley.

Page 164 BASIC Manual PolyMorphic Systems

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
1g0
119
12¢
130
149
154
160
170
186
199
RUN

SAMPLE PROGRAM "PRIMES"

Find and print prime numbers.
MARCH 1977, S. TYTONIDA

The list N is used to hold the first 580 primes

In testing to see if a number is prime, we only need
to look for factors that are less than or equal to
the number; in fact, we only need to check prime
factors less than or equal to the square root of the
number. Rather than calculate a square root every time
we instead keep a pointer, L, into the list of past
primes, and bump that up as needed. note that we only
test odd numbers. The number we display in the middle
of the screen is the latest prime, the number at the
bottom is the current test bound. The rather

baroque expression (INT{(M/N(P))*N(P)-M) gives the
remainder of dividing the number M by prime factor N(P).
If the remainder is zero, the number cannot be prime.
If non-zero, we must test prime factors thru N(L).

If none of those are divisors, we have a new prime,
and if K<500, we stuff it onto the list. My thanks

to Ira Baxter for explaining to me, many moons ago,
why you don't need to calculate sguare roots every
time, and to the ancient Greeks that discovered the
magic and madness of prime numbers.

REMEMBER: (2719937)-1 IS PRIME!

DIM N(508)

PRINT CHRS (12),\ PLOT @,47,0

N(1)=2 \ N(2)=3 \ N(3)=5

K=2 \ L=2 \ M=5

P=1 \ IF M>N(L)"2 THEN L=L+1 \ GOTO 148

IF (INT (M/N(P)) *N(P)~-M)=8g THEN M=M+2 \ GOTO 149

IF P=>L THEN 179 ELSE P=P+1 \ GOTO 154

K=K+1 \ IF K<5808 THEN N(K)=M

PLOT 55,23,9 \ PRINT M," IS PRIME!"™ \ PLOT 0,20,8 \ M=M+2
GOTO 149

PolyMorphic Systems BASIC Manual Page 165

Sample Program RHIST

This program was written to provide some analysis of the
random number generator used in BASIC. It also uses the
PLOT feature to produce the histograms and in positioning
the cursor for PRINT statements., We compute the
distribution of the random number generator cumulatively
into 160 "buckets": the array A. We then compute the area
under this curve, used in determining the 14% points, and
the maximum wvalue in a bucket over the set of buckets,
which is wused in scaling the histogram bars. This
computation is done in lines 156 to 196. We then find the
points, or bucket numbers, corresponding to 19% 1increases
in area under the curve.

Note the use of the PLOT statement in line 236 to position
the cursor for the PRINT statement producing a carriage
return at the end of the line. As an optimization, we do
not reprint one of these "decile points"™ unless it has
changed. The remainder of the program is responsible for
updating the histogram bars and the scaling of the display.
Line 370 computes the scaled height of the histogram bar,
and then we will shrink it, grow it, or leave it alone,
depending on what 1is needed. The long-term behavior of a
good random (pseudo-random) number generator should produce
a relatively flat histogram, and the decile points along
the right edge of the screen should be multiples of 16,
from 14 to 140.

For more analysis of random number generators, see Volume
IT of The Art of Computing Programming by Donald E. Knuth;
chapter three of this book is devoted entirely to random
numbers, psuedo-random numbers, and methods of testing and
generating them. The random number generator used in BASIC
was provided by Eric Rawson.

Page

REM
REM
REM
REM
REM
REM
REM
160
110
129
139
149
159
REM
REM
REM
160
REM
REM
REM
179
180
REM
REM
REM
199
280
219
REM
REM
REM
229
239
249
250
REM
REM
REM
REM
REM
REM
REM
REM
260
270
289
290
360
319
320
RUN

166 BASIC Manual PolyMorphic Systems

SAMPLE PROGRAM "RHIST"

Uses the plot function and produces a histogram
showing the distribution of the random number
generator and percentage distributions.

DIM A (109),Y(190),Q(10)

PRINT CHR$ (12), \ PLOT 4,47,9

S,N=100

FOR I=1 TO 180 \ Y(I)=7 \ NEXT

PLOT 121,43,8 \ PRINT "%%%" \ PLOT 0,44,0

FOR I=1 TO N \ K=RND(148) \ A(K)=A(K)+1 \ NEXT

H is highest number seen, M is sum.
H=-3 \ M=0
Compute sum (area under curve) and find high value.

FOR I=1 TO N \ M=M+A(I) \ IF A(I)>H THEN H=A(I)
NEXT

Put up decile (%%%) points.

=,1 \ G=¢ \ J=1
FOR I=1 TO N \ G=G+A(I) \ IF G<KF*M THEN 249
IF Q(J)=I THEN 234

Print point.

PLOT 118,3*J+14,6 \ PRINT I \ PLOT @,3+J+7,0
Q(J)=1I \ J=J+1 \ F=F+.1

NEXT

pPLOT 9,3, \ PRINT "N =",S," MAX =",H \ PLOT 0,0,0

Now plot bars. Note that we scale, so that the
largest bar is 39 high. X=2+I+INT((I-1)/10)
generates a blank spot every 1§ to aid in counting
the bars on the screen.

We see if a bar has changed, has grown, or what, and
do the right thing for each case to optimize.

FOR I=1 TO 1880 \ V=7+INT(39*A(I)/H) \ X=2+I+INT((I-1)/18)
IF V=Y (I) THEN 319

IF V<Y (I) THEN 300

FOR J=Y(I) TO V \ PLOT X,J,1 \ NEXT \ GOTO 319

FOR J=Y (1) TO V STEP -1 \ PLOT X,J,8 \ NEXT

Y(I)=V \ NEXT

S=S+N \ GOTO 159

®

PolyMorphic Systems BASIC Manual Page 167

Sample Program SORT

Sort was written to demonstrate two different methods of
sorting and their relative efficiency. Sort also
demonstrates the utility of a microcomputer with the right
balance of software features in computer science education.
One of the authors (Martin) feels he learned more about
sorting algorithmic analysis by sitting down with Vol. III
of Knuth and Poly BASIC and building sorting algorithms and
testing them than he did in a term of formal classes.

This program also demonstrates the use of PEEK and POKE for
examining and modifying memory locations, especially the
video card memory, and the use of the TIME function for
timing processes.

The interested user is directed to Volume III of The Art of
Computey Programming, by Donald Knuth, which 1is devoted
entirely to sorting and searching, rather than Volumes I or
IT1.

Page 168 BASIC Manual PolyMorphic Systems

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
120
REM
REM
REM
116
REM
REM
REM
128
REM
REM
REM
139
REM
REM
REM
140
REM
150
169
179
186
190
2040
2149
229
230
240
REM
REM
REM
250
REM
260
270
280
290
300
316
329
330
340
REM

REM

SAMPLE PROGRAM "SORT"

This program uses the peek and poke functions to
manipulate the contents of the video board, and
more important, demonstrates two techniques of
sorting information: the venerable bubble sort
and the simple but vastly superior "“shell" sort.

A good way to randomize..

Z=RND (TIME (1) /65536)

Holds stuff to sort
DIM P(256)

Holds increments for use by shell sort.
DIM H(18)

Calculate increments for shell sort algorithm
H=4 \ FOR I=1 TO 18 \ H(I)=H \ H=3*H+1 \ NEXT

Generate list of things to sort,
GOSUB 359
PRINT CHRS$ (12) ,\INPUT "How many things to sort (2-256)7?",N

IF N>256 OR N<2 THEN 154

PRINT "Which sort do you want to use:"

PRINT " 1 BUBBLE SORT"

PRINT * 2 SHELL SORT"

INPUT"1 for BUBBLE, 2 for SHELL : ",M

IF M<>1 AND M<>2 THEN 2040

INPUT "Do you want the same test pattern (Y or N)?",AS
IF A$="N" THEN GOSUB 350 \ GOTO 250

IF A$<>"Y" THEN 220

This is the screen origin (1808 hex) - 1
0=6143

PRINT CHRS (12), \ PLOT $,47,0

FOR I=1 TO N \ POKE I+0,P(I) \ NEXT

S=TIME(8) \ W=0

ON M GOTO 370,430

PLOT ©,12,8 \ PRINT "Sorted ",N," things in",W," swaps,”,
PRINT "and", TIME(l)/68," seconds."

INPUT "Try again (Y or N)?",A$ \ IF AS$S="Y" THEN 150

IF AS<>"N" THEN 320

STCP \ GOTO 154

Generate new pattern in P

PolyMorphic Systems BASIC Manual Page 169

REM
350
360
REM
REM
REM
REM
370
380
390
400
419
429
REM
REM
REM
430
4449
4590
460
479
489
490
560
5149
RUN

PRINT "Thinking...."
MAT P=127+RND(127) \ RETURN

Bubble sort. We wander down the list, looking for

two elements out of order, and swap 'em when we £ind 'em.
S=TIME (@)
K=N
F=¢g \ FOR I=0+1 TO O+K-1

L=PEEK(I) \ M=PEEK(I+1l) \ IF L<=M THEN 42§
F=1 \ POKE I+1,L \ POKE I,M \ W=W+l
NEXT \ K=K-1 \ IF F=¢ THEN 300 ELSE 398

Shell sort. This is from Knuth volume III, algorithm D.

S=TIME(®#) \ W=0

FOR Q=1 TO 9 \ IF H(Q+1l)>N THEN EXIT 460
NEXT

FOR J=Q TO 1 STEP -1

F=¢ \ H=H(J) \ FOR I=0+1 TO O+N-H
L=PEEK(I) \ M=PEEK(I+H) \ IF L<=M THEN 58¢
F=1 \ POKE I,M \ POKE I+H,L \ W=W+l

NEXT \ IF F>@ THEN 470

NEXT \ GOTO 386

Page 179 BASIC Manual PolyMorphic Systems

Sample Program CLOCK

This program demonstrates the real-~-time <clock function
available in BASIC. It also uses formatted print in
displaying the time (lines 196 and 33¢), PEEK, POKE, and
OUT. Without redevelopment, CLOCK turns the System 88 into
a very expensive and inaccurate clock. After the program
was written, we determined that it 1loses two or three
minutes an hour. Solve the problem of this inaccuracy, and
in so doing you will learn about use of the time function.
It is also a simple matter to modify the program to display
every second.

s
U

PolyMorphic Systems BASIC Manual Page 171

REM SAMPLE PROGRAM "CLOCK"

REM

REM This program demonstrates the use of the real time
REM clock available through the BASIC "TIME" function.
REM If you have an AI Cybernetics model 18908 speecn
REM synthesizer at output port 254, it will generate
REM "tick-tock" noises....

REM

REM Written March 1977 S. Tytonida

REM

1680 PRINT CHR$(12),"SAMPLE PROGRAM CLOCK"

119 PRINT "After you give me the current time in hours and"
128 PRINT "minutes, I will be a clock!"

13¢ INPUT "What hour is it (9-23)",H

14¢ H=INT(H) \ IF (H<9) OR (H>23) THEN 134

15¢ INPUT "wWhat minute do I start with (#-59)?2",M
160 M=INT (M) \ IF (M<®) OR (M>59) THEN 150

REM

REM Seconds counter

REM

170 s=0

188 PRINT " When you hit return, I will start being a clock at"
199 PRINT $%2I,B,":",M,":",0," o'clock ",

209 INPUT " (hit return to start)",AS

219 PRINT CHRS$(12), \ PLOT 9,47,9

REM

REM "TICK" for a Cybernetics board

REM

226 K=43

REM

REM The clock symbol

REM

230 W=220

REM

2400 0=6144+32+8%*64

250 A=TIME (%)

260 IF TIME(1)<68 THEN 260

276 IF K=43 THEN K=47 ELSE K=43

288 IF W=220 THEN W=175 ELSE W=220

290 OUT 254,K \ POKE C,W \ OUT 254,9

399 S=S+1 \ IF S<>60 THEN 330 ELSE S=0

319 M=M+1 \ IF M<>6@ THEN 339

3286 M=¢ \ H=H+1 \ IF H=24 THEN H=0

330 PLOT 4,47, \ PRINT %2I,H,":",M,":",S \ PLOT §,43,%
340 GOTO 258

RUN

Page 172 BASIC Manual PolyMorphic Systems

Sample Program TIMER

This program was included to allow the wuser to time
statements (as described in Section 10 of this manual), to
demonstrate the use of the TIME function, and to show that
saying NEXT I 1is indeed slower 1in resulting program
execution than simply saying NEXT. Because even the
relatively slow 8088 processor and BASIC can execute
statements much faster than 60 ticks per second will allow
us to time directly, we must time a known number of these
operations and calculate the individual times from that.
Any software timing process we can accomplish in BASIC
involves the introduction of overhead*, so we must measure
that overhead and factor it out of the timings we generate.
This is the reason we average over 1966, for the number of
operations to time. In the timer program shown, how
accurate and repeatable are the results? 1If averaging over
1009 samples is better than 106, wouldn't one million
samples be better? How much better?

The wuser is especially encouraged to compare the times for
various processes when using the MAT statement (see section
8) compared with similar FOR-NEXT loops.

*Qverhead time is time taken up doing things other than
what we want to do.

PolyMorphic Systems BASIC Manual Page 173

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
109
119
128
139
REM
149
REM
REM
REM
200
210
228
2340
REM
240
REM
REM
REM
3049
310
329
339
3449
REM
359
REM
REM
REM
400
419
429
4309
449
REM
450
REM
460
RUN

SAMPLE PROGRAM TIMER

(S. TYTONIDA, MARCH 18977)
(W.W. HOGG, MARCH 1978)

Generate timing information for BASIC programs.
Calculate average timing over 198 samples.

First calculate loop overhead for 108 iterations.
T=TIME (2)
FOR I=1 TO 1440
NEXT ,
T=TIME (1) \ T1=T

PRINT"Loop overhead is about",T/(100%*60)," sec per iteration”

Now time overhead when we use "NEXT I"
T=TIME (2)
FOR I=1 TO 160
NEXT I
T=TIME (1)
PRINT"versus",T/(1l00*60) ," sec per iteration for NEXT 1"

Now time A=30§

T=TIME (9)

FOR I=1 TO 1449
A=309

NEXT
T=TIME (1) -T1

PRINT"A=380 takes about",T/(100*60)," seconds to do."
Now set B=308 and time A=B

B=300

T=TIME (§)

FOR I=1 TO 149

A=B

NEXT

T=TIME (1)~-T1

PRINT"A=B, for B=30@, takes about",T/(190%*60)," seconds."

Page 174 BASIC Manual PolyMorphic Systems

Sample Program GRAMMAR

This program illustrates the use of string arrays. We also
make extensive use of the MAT feature of System 88 BASIC.
By changing the entries in the DATA statements or altering
the grammatical structure that the program uses, you can
generate text of your own. Have fun!

PolyMorphic Systems BASIC Manual Page 175

REM SAMPLE PROGRAM GRAMMAR

REM

REM (W. W. Hogg, April 1978)

REM

REM

REM Note that we leave space for blanks, etc. in AS
‘REM

19 DIM AS$(7:12) ,A25(4:6)

15 DIM Al$(5:6) ,NS(20:10) ,N1$(10:19),VS$S(20:10)

REM

REM this is the way we read the data, read the data....
REM

20 MAT READ Al$ \ MAT READ N$ \ MAT READ N1$ \ MAT READ VS$
25 MAT READ A2$

REM

REM Clear out the previous sentence

REM

38 MAT AS$=""

REM

REM and generate the new one.

REM

40 AS(1)=Al1S$(RND(5))

50 AS(2)=" "+N1S(RND(18))

60 AS$(3)=" "+NS (RND (20))

70 AS(4)=" "4+VS(RND(20))

80 AS$(5)=" "+A23 (RND(4))

98 AS(6)=" "+N1IS(RND(13))

100 AS(7)=" "+NS(RND(28))+"."

REM

REM Slight delay so you can read it..

REM

105 PAUSE 29

REM

REM print it to the video, and loop.

REM

11¢ MAT PRINT AS$, \ PRINT \ PRINT \ GOTO 34

REM

REM articles

REM

1000 DATA "The","A","Myu,"The","Fl’.’Og'S"

REM .

REM subjects and objects

REM

1019 pATA "fox","lizard","dragon","unicorn”,"oyster"
1928 DATA "dog","cat","canary","dodo bird","hyena"
19030 DATA "whale","shark","guppie","snake","virus"”
1049 DATA "little boy","o0ld man","triffid","griffin","widget"
REM

REM adjectives

REM

1358 DATA "green","spotted","tired","hungry","sleepy"
1068 DATA "angry","frightened","happy","righteous","evil"
REM .

REM verbs

Page 176 BASIC Manual PolyMorphic Systems

REM

1976 DATA "swallowed","devoured","attacked","struck"
1088 DATA "loved","wanted","fed","cleaned"
1996 DATA "kept","killed","heard","saw"

1108 DATA "found","fought","sheltered","was"
1119 DATA "became","worshiped","inspired","ate
REM

REM more articles

REM

20909 DATA "a","the","the","his"

REM

PolyMorphic Systems BASIC Manual Page 177
Appendix D

THE BASIC CHARACTER SET

All characters and symbols in BASIC are stored in the

machine as numbers (the numbers assigned by the ASCII

code) . The following lists contain all of the characters

in BASIC and their ASCII code 1in decimal representation.

To print any character, type PRINT CHRS (number), using the

decimal number as given next to the desired character
below.

Example:
enter >LIST

19 PRINT TAB(1l0),CHRS (66) ,CHRS$ (32) ,CHRS (65)

20 PRINT CHRS$ (32),CHRS$ (83),CHRS$(32) ,CHRS$ (73

)

)
36 PRINT CHR$ (32),CHRS$ (67),CHRS$ (13),TAB(11),
)

4% PRINT CHRS$ (33),CHR$(32),CHRS$(33) ,CHRS$ (32
>RUN
output BASTIC
L1
>

1. HOW TO DISPLAY CHARACTERS BY USING POKE

In addition to using the CHR$ function in a PRINT
statement, there is another way to display characters on
the screen; you can use the POKE function to directly
change the contents of memory. Characters to be displayed
on the screen are stored in a block of memory specially
allocated for that purpose. Every potential character
location on the screen has a memory address in that block
associated with it. 1If you place a character into a memory
address associated with a screen location, that character
will appear on the screen in that spot.

1.1 vVideo Screen Memory Addresses

The block of memory set aside to hold the characters being
displayed on the screen begins with adress 6144 (decimal).

The first screen 1location—- the upper left corner of the
screen-- is associated, therefore, with memory address
6144. The second screen location-- the location just to
the right of the first-- is associated with memory address
6145, And so on. Because the screen is 64 characters
wide, the last character location on the first line (upper

right corner) is associated with address 6207. The first
location on the SECOND line of the screen is 6144 + 64, or
6208. The screen contains 1924 locations, so the last
screen location (the lower right corner of the screen) is
associated with memory address 7167. When you use POKE,

,CHRS (33)

Page 178 BASIC Manual PolyMorphic Systems

make sure the memory address you give is equal to or
greater than 6144 and les than or equal to 7167. Otherwise
you will be putting your characters into another part of
memory, not the part associated with the video screen. The
results could be disastrous. 1.2 Using POKE

When you used the PRINT statement, you used the ASCII code
exactly as it 1is given 1in the table below (e.g. PRINT
CHRS$ (65)) . When you use the POKE statement, however, you
must add 128 to the ASCII code. For an explanation of why
this is necessary, see Appendix F, The System 88 Graphics
Characters, in the System 88 User's Manual.

Let's say that you want to display a capital A in the first
screen location. The POKE function takes the form POKE
address, expression. Type:

POKE 6144,65+128 You can also simply say:

POKE 6144,193. You can also use POKE to display
the System 88 graphics characters on the screen. For
information on the graphics <characters, see Appendix F,
System 88 Graphics Characters, in the System 88 User's
Manual.

2. CHART OF BASIC CHARACTERS

2.1 Control Characters
NUL -- § DC1 -- 17
SOH -- 1 DC2 —-- 18
STX -- 2 DC3 -- 19
ETX -- 3 DC4 -- 20
EQOT -- 4 NAK -- 21
ENQ -- 5 SYN -- 22
ACK -~ 6 ETB -—- 23
BEL - 7 CAN -- 24
BS -~ 8 EM -- 25
HT -~ 9 SUB -- 26
LF -~ 10 ESC -- 27
vr -- 11 FS -- 28
FF - 12 GsS -- 29
CR -~ 13 RS -- 34
sO -~ 14 Us -- 31
siI -~ 15 Sp -- 32
DLF -- 16 DEL -- 127

PolyMorphic Systems

BASIC Manual

i:) 2.2 Numbers and Letters of the Alphabet

CHNYWOHWOZEHMXROUHIO™MEOEUAWP OO WNDH®

48
49
50
51
52
53
54
55
56
57
65
66
67
68
69
79
71
72
73
74
75
76
77
78
79
80
31
82
83
84
85

NMXEICANRAQMWODHE HAURITQHMRO QO UL NKNXZS

1968
189
110
111
112
113

-114

115
116
117
118
119
120
121
122

Page 179

Page 188

2.3 Special Symbols

BASIC Manual

2.4 Greek Letters

v > 4 3 & A Do R

128
131
134
137
140
143
146
149
152

33
34
35
36
37
38
39
4p
41
42
43
44
45
46
47
58
59
69
61
62

< C O M > O M W

129
132
135
138
141
144

147

150

PolyMorphic Systems

6y 1 > 4+ ¥ ﬁ Q e 7 | > s e

-y <

E & Q O T

63
64
91
92
93
94
95
96
123
124
125
126
153
154
155
156
157
158
159

130
133
136
139
142
145
148
151

PolyMorphic Systems BASIC Manual Page 181
Appendix E
INTERFACING WITH ASSEMBLY-LANGUAGE PROGRAMS AND MEMORY

This section is written for those who want to interface
assembly language programs with PolyMorphic Systems BASIC.
It will also be of help to those who want to change the
defaults for certain features 1in Poly BASIC. This
discussion assumes an understanding of the front panel mode
of operation for examining and changing the contents of
memory locations. For information about the front panel
mode, see the User's Manual, Appendix E: The Monitor; Front
Panel Display.

1.1 ASSEMBLY LANGUAGE INTERFACE: CALL
The CALL function is wused to invoke assembly language

routines. The format is either CALL (addr,val) or CALL
(addr) where both addr and val are expressions that must

evaluate to @<=addr<= 65535. The expression shown as
"addr" is the address of the subroutine to be <called. If
"val" is present, it 1is ©passed to the subroutine in

register pair HL. When the subroutine exits by issuing a
RET, or conditional return instruction, the wvalue in
register pair HL will be converted to an integer and passed
to the BASIC program as the value of the call.

The CALL function may also be used to invoke an assembly

language overlay. (See the System 88 System Programmer's
Guide for a discussion of overlays.) The correct syntax
is:

CALL ("abed",A,B,D,H)

where abcd is the name of the overlay. A, B, D, and H are
expressions that BASIC will evaluate and pass to the
overlay in registers A, BC, DE, and HL respectively. ALL
parameters must be given to the CALL function when invoking
an overlay.

As with the normal CALL, the value in HL 1is returned to
BASIC as the value of the CALL.

1.2 MEMORY EXAMINATION AND MODIFICATION: PEEK AND POKE

Note: modification by use of the POKE statement of areas of
memory containing BASIC, BASIC programs or data, or the
system core may result in anomalous ©program behavior,
possibly resulting in the loss of the program and/or its
data.

1.2.1 PEEK

Page 182 BASIC Manual PolyMorphic Systems

The PEEK function takes the form PEEK addr, val where addr
is an expression evaluating to the range @<=addr<=65535 as
a memory address, and returnhs the integer contents of that
memory location.

Using PEEK on areas of the address space not populated with
memory may give anomalous, possibly non-repeatable results.
1.2.2 POKE

The POKE statement takes the form POKE addr, val where addr
is an expression evaluating to the range @<=addr<=65536 for
the memory address to modify, and 0<=val<=255 for the 8 bit
quantity to store at that address. As noted above,
exercise caution when using the POKE statement.

1.3 ACCESSING THE I/O0 PORTS: INP AND OUT

The 8086 processor IN and OUT functions can be performed
through BASIC using the INP function and the OUT statement
respectively. The format of the INP function is INP
{port), where port is the port address with a value
B<=port<=255. INP (port) returns as an Iinteger the
eight-bit status resulting from an IN instruction to the

desired port. Note that INP(#) through INP(31) are
reserved for system use, and that INP of an undefined port
may give anomalous results. The format of the cuT

statement is OUT port, val where port is the 8688 port
address with a value @<=port<=255 as in INP above, and val
is the eight-bit wvalue 0<=val <=225 that is sent to the
specified port. Note that ports #-31 (decimal) are
reserved for system wuse, and that 1issuing an OUT to a
system~controlled device or port may result in anomalous
behavior, possibly resulting in the loss of the program
and/or its data.

1.4 ACCESSING THE TYPE-AHEAD BUFFER: INP(8), INP (1),
INP(2), and OUT B '

Calls to INP with port addresses #-2 return data regarding
type~ ahead. INP (@) returns the status of the type-ahead
buffer; @ if the buffer is empty, and not @ if there is at
least one character in the input buffer. INP (1) returns
the next character as an integer (ASCII) value, without
echoing it to the screen, and 1INP(2) returns the next
character as an 1integer and echoes the character to the
screen., The statement OUT @, wval places the ASCII

character with integer value val into the input buffer. It
should be noted that an attempt to put characters into the
input buffer when it is full will be ignored. Printing a

Control-X character will flush the input type-ahead buffer.
1.5 RE-ENTERING BASIC FROM FRONT PANEL DISPLAY

To re-enter BASIC from the front panel display, type

PolyMorphic Systems BASIC Manual Page 183

SPJ3269 for "cold start" (BASIC assumes there is no program
in effect); type SPJ3203 for "warm start" (BASIC assumes
there 1is a program in the machine). Then type carriage
return and G. The above operations set the program counter
to the specified address.

Page 184

Example:

enter:100
1149
129
1349
149
150
160
1790
180
199
200
210
>RUN

BASIC Manual PolyMorphic Systems

REM This program uses QOUT # to list and scratch
REM itself....

REM also demonstrates use of multiline functions
REM and dummy arguments.

Z=FNI ("LIST")+FNI("SCR")

STOP

REM Function to stuff string into input buffer
REM followed by a carriage return.

DEF FNI (S8S)

FOR I=1 TO LEN(S$)\S1$=MID$(S$,I,I)C=ASC(S1$)\OUT @,C\NEXT
OUT O,13\RETURN 8

FNEND

Stop in line 1590

>>LI
100
119
120
130
149
159
160
178
189
190
200
219
>>8C
>LIS
>

>

ST
REM This program uses QOUT @ to list and scratch

REM itself....

REM also demonstrates use of multiline functions

REM and dummy arguments.

Z=FNI ("LIST")+FNI ("SCR")

STOP

REM Function to stuff string into input buffer

REM followed by a carriage return.

DEF FNI (S$) -
FOR I=1 TO LEN(S$)\S1$=MIDS$(S$,I,I)C=ASC(S1$)\OUT 4,C\NEXT
OUT O,13\RETURN ¢

FNEND

R

T

PolyMorpnic Systems BASIC Manual Page 185

APPENDIX-

COMMANDS , STATEMENTS, FUNCTIONS,
AND KEYWORDS RECOGNIZED BY BASIC

Next to each entry are the page numbers where you can turn for
information about that topic.

AND, 24

ASC, 73

ASIN, 71

ATAN 71

BYE, 120

CALL, 181

CHAIN, 5, 64, 155
CHRS, 73

CLEAR, 6, 36, 37
CLOSE, 128)

CON, 36, 38, 97

COS, 69

cosH, 71

DATA, 45, 79

DEF (define function), 74
DEF {keyword), 128
DEL, 33, 38

DIGITS, 38

DIM, 78

DIMG, 79

DRAW, 91

DUMP, 65, 98

DUMP:n, 128

ELSE, 63

ERR, 27, 182

ERRCR, 65, 101

EXEC, 120

EXIT, 64

EXP, 69

FILE, 109

FN (function name), 74
FOR-NEXT, 53, 93, 99
FREE, 71

GosuB, 31, 75

GOTO, 59

IF~THEN, 62,79
INOUT, 123

INP, 71, 119, 182
INPUT (data transfer), 43, 79, 91
INPUT (file mode), 118
INPUT:n, 118

INPUT1, 43

INT, 69

LEFTS, 5, 73

Page 186 BASIC Manual PolyMorphic Systems

LEN, 72

LET, 42, 79, 93
LINE, 27

LIST, 32

LIST (file keyword), 127
LIST:n, 33, 128
LOAD, 153

LOG, 69

LGGT, 69

MAT, 81, 98

MAT 1IF, 85

MAT PLOT, 6, 84
MAX, 88

MEAN, 88

MEM, 71

MIDS$, 5, 74

MIN, 88

NEXT, 93

ON ERROR, 65, 101
ON ESCAPE, 65, 182
ON-GOSUB, 62
ON-GOTO, 60

OPEN, 111

0UT, (data transfer), 72, 117, 182
OUT, (file mode), 112
PAUSE, 6, 65
PEEK, 72, 182
PLOT, 91

POKE, 72, 178, 182
POS, 121

PRINT, 47, 79, 91
PRINT:n, 115
PRCD, 86&
RANDCMIZE, 70
READ, 45, 79
READ:n, 120

REM, 18, 29, 41
REN, 33

RESET, 192
RESTORE, 45
RETURN, 75, 76
REW, 121

RIGHTS, 73

RND, 79

RUN, 35, 97

SAVE, 154

SAVEF, 154

SCR (scratch), 38
SGN, 70

SIN, 69

SINH, 71 -

SQRT, 69

STD, 89

STEP, 54

PolyMorphic Systems

STOP, 41, 76
STRS, 72
SUM, 88

TAB, 49, 116
TAN, 69
TANH, 71
THEN, 62, 79
TIME, 76, 95
VAL, 72
WAIT, 6, 65
WALK, 106
WRITE, 120
XREF, 38, 100
XREF:n, 128

BASIC Manual

Page 187

Page 188 BASIC Manual PolyMorphic Systems

PolyMorphic Systems BASIC Manual

INDEX

AND, 24
/, see Back-slash
*, 27, 50, 86
Arithmetic operators, 21
addition, 22
division, 22
exponentiation, 22
multiplication, 22
subtraction, 22
Arrays, 6, 77, 81
Array functions, 87
MAX, 88
"MEAN, 88
MIN, 88
PROD, 88
STD, 89
5UM, 88
ASC, 73
ASCII, 119
Assembly-language program interface, 181
ASIN, 71
Assignment statements, 42
with MAT, 8
ATAN 71
Auto-execute mode, 154
Back-slash, 31, 41, 93
BASIC character set, 177
BASIC data files, 1l@7
BASIC error codes’, 137
BASIC programs as system files, 157
BASIC prompt, 153
BASIC sample programs, 159
Blanks, 30, 93
Boolean Cperators, see Logical operators
Branching, 31, 59
BYE, 120

CALL, see Assembly-language program interface 181

CAPS LCCK key, 19

Carriage return, 20

CHAIN, 5, 64, 155

Character set, See BASIC character set
CHRS, 73

CLEAR, 6, 36, 37

CLOSE, 120

Closing a data file, 120

Closing file channels, See CLOSE
Command list, 185

Commenting, see REM
Concatenating, 5, see LGCAD, CHAIN
CON (Continue), 36, 38, 97
Constants, 25, 93

Control commands, 32

Page 189

Page 190 BASIC Manual PolyMorphic Systems

CLEAR, 37 \:)
CcoN, 36, 38, 97
Control-yY, 21, 36, 65
DEL, 38
LIsT, 32
LIST:n, 33, 128
REN, 33
RUN, 35
SCR, 38
WALK, 38, 100
XREF, 38, 1020
XREF:n, 128
Control cammands summary, 38-39
Correction technigues, 21
COs, 69
COSsH, 71
Creating a data fle, 112
Creating fixed-length records, see INOUT, Fast POS, and
Examples of file-handling programs
Cross reference, see XREF and XREF:n
DATA, 45, 79
Data files, 107
Data records, 6, 188, 116
Data transfer, also see PRINT:n, GUT (data transfer),
(INPUT:n, INP) 115
Debugging, 6, 97 . -
DEF (define function), 74 F-)
DEF (keyword), 128
Default data file extension, 113
Default FOR-NEXT step value, 56
Default PRINT format, 48
Default string dimensions, 112
Defining a function, see DEF (define function)
DEL, 30, 38
Deletion, 21
DIGITS, 38
Dimensioning arrays (DIM), 5, 78
Direct mode, 98
Direct statements, 19, 27
Direct Statements in a BASIC disk file, see LOAD
Disk file buffer, see file channels, 186
Display, 19, S1
Double prompt, 19
DRAW, 91
DUMP, 65, 98
DUMP, n also see Sending data to the system printer, 128
E-Format, 52
ELSE, 63 .
End of the file marker, see Marking end of file
Erasing, see Deletion techniquies
ERR See also, BASIC error codes, 27, 162
ERROR, 65, 101
Error messages, 137
EXEC, 120

PolyMorphic Systems

EXIT,
Exiti
EXP,

BASIC Manual

64
ng BASIC, see BYE and EXEC
69

Exponential notation, 25
Extensions, 15

F-For
Fast
Fast

FILE,
File
File-

File-

File-

FILE

Fixed
FN, 7
FOR-N

mat, 52
POS, 122
read positioning (Fast POS), 122
(also see Fixed-length record files)
189
channels, 105, 119
handling commands summary, 134
management system, 6, 155
mode, 112
INoUT, 123
INPUT, 118
ouTr, 112
statement, 109
File mode, 112
File specification, 111
RKeyword, 111
-length record files, 122
4
EXT loops 53, 93, 99

Format characters, 55
Format errors, 52
Format specifications, 6, 51

E~Format, 52
F~Format, 52
I-Format, 52

Format strings, 50, 117
Formatting, 43
Formatting data in a data file, 116

FREE,
Free

Funct
Gener
Getti

71
format, 48
ions, 69
al program statements, 41
ng BASIC, see loading BASIC

GosuB, 31, 75

GOTO,
Graph
I-For
IF-Th
Index

59
ics characters, see BASIC character set
mat, 52
en, 62, 79
ing, 5

Page 191

Inhibiting carriage returns in data records, see PRINT:n

INOUT
INP,

INP (0
INPUT
INPUT
INPUT
INPUT
Input
Input

, 123
71, 119, 182
y ,INP (1), 46, 182
(data transter), 43, 79, 91
:n (data transfer), 118
(file mocde), 118
1, 43 .
prompt, 44
ting, 20, 29, 43

Page 192 BASIC Manual PolyMorphic Systems

Inputting from a data file, 44 see Opening a data file for
input, Data transfer
Inputting numerical data from a data fle, see INPUT:n
Inputting string data from a data fle, see INPUT:n
Interfacing assembly-language programs to BASIC,
see Assembly-language program interface
INT, 69
Interrupting, see Control-Y
Intrinsic functions, 69
regular, 69
memory and 8680 system, 71, 181
string, 72
Iteration, 53
Keyboard input channel, (see File channels)
Keyboard port (see INP, OUT ¢) 6, 19
Keywords, 111
CLOSE, 129
DEF, 128
LIST, 127
OPEN, 112
POS, 121
REW, 121 .
Leaving BASIC, see BYE and EXEC
LEFTS, 5, 73
LEN, 72
LET, 42, 79, 93
Limited XREF, 38
LINE, 27
Line length, 29 (maximum 88 characters)
Line numbers, see program line numbers
LIST, 32
LIST, (keyword) 127
LIST:n, see Sending data to the system printer, 33, 128
LOAD, 153
Loading a disk~BASIC program, see LOAD
Loading a Poly-88 cassette-BASIC program, 155
Loading BASIC, 5, 19, 153
Loading yprograms, see LOAD
Log, 69
Logical (Boolean) operators, 24
And, 24
NOT, 24
OR, 24
LOGT, 69
Loops, 53
Loop variable, 54
Marking end of file, also see INP 113
MAT, 81, 98
MAT 1IF, 85
MAT PLOT, 6, 84 see MAT
MAX, &8
MEAN, 88
MEM, 71
Merging programs, see LOAD and CHAIN

PolyMorpnic Systems BASIC Manual Page 193

MIDS, 5, 74
MIN, 88
Modifying video screen memory addresses, see PEEK and POKE
Multi-dimenional arrays, 78, 81
Multi-line user-defined functions, 74
Multiple assignments, 5, 43, 83
Multiple IF~-THEN commands, 63
Multiple statement line, 31, 93
Nesting loops, 56
NEXT, see FOR-NEXT, 93
Null format string, 51
Null PRINT, 47
ON ERROR, 65, 101
ON ESCAPE, 65, 102
ON-GOSUB, 62
ON-GOTO, 60
Operands, 21, 25
Operators, 21
Optional array origin (DIM@, DIM1l), 78
Order of assignment, 43, 84
ouUT, (data transfer), 77, 117, 182
oUT, (file mode), 112
our %, 117, 182
Outputting data, 47
Qutputting data to a data file, see PRINT:n, OUT Data transfer
Outputting data into the keyboard buffer, see OUT ¥
OPEN, 111, 112, 114
Opening a data file for input, 112
PAUSE, 6, 65
PEEK, 72, 182
PLOT, 91
PCKE, 72, 178, 182
Positioning a read to a particular data record (P0OS), 121
Positioning a data fle read, see INPUT:n,P0S, and REW
Precision, see DIGITS
PRINT, 47, 79, 91
PRINT:n, 115
PRINT formatting, 48
Print 1list, 47, 115
Printer commands, see Sending data to the system printer
Printer driver, 127
Printer output channels, see File channels
PROD, 88
Program, 206
Program display, 32
Program execution, 35
Program line numbers, 20
Program line addition, 30
Program line deletion, 30
Program line replacement, 380
Program statements, 41
CHAIN, 5, 64, 155
DATA, 45
DIGITS, 38

Page 164 BASIC Manual PolyMorphic Systems

DUMP, 65, 98 ;:)
DUMP:n, 128

ELSE, 63

EXIT, 64

FOR-NEXT, 53, 93, 99
GOTO, 59 ‘
IF-THEN, 62

INPUT, 43

INPUT:n, 118

INPUT1, 43

LET, 42

LINK, 65

ON-GOTO, 66
ON-GOSUB, 62
CN-ERROR, 65, 101
ON-ESCAPE, 65, 162
PAUSE, 6, 65

PRINT, 47

PRINT:n 115
RANDOMIZE, 70

READ, 45

READ:n, 120

REM, 18, 29, 41
RESET, 162

RESTORE, 45

STOP, 41 -
WAIT, 6, 65 ﬁ
program statement summary 65

Prompt symbol, see BASIC prompt

Random number generator (RND), 78

RANDOMIZE, 70

READ, 45, 79

READ:n, 120

Reading data from a data file, 117, see INPUT:n, INP, POS,
and REW

Real~time clock (TIME), 76, 95

Relational operators, 23

REM (Remark), 18, 29, 41, 93

Renumber (REN), 33

RESET, 102

Resetting default PRINT format, 33

Resetting real-time clock, see Real-time clock

RESTORE, 45

RETURN,
subroutine, 76
user-defined function, 75

RETURN key, 20

Rewinding a data file (REW), 121

RIGHTS, 5, 73

RND, 79

Round-off precision, 25

RUN, 35, 97

Run-Time Environment, 6, 97

Sample programs, see BASIC sample programs

PolyMorphic Systems BASIC Manual Page 195

Sample programs (file-handling), see Examples of file-handling

programs
SAVE, 154
SAVEF, 154

Saving BASIC programs, see SAVE and SAVEF
Saving BASIC programs in auto-execute mode, see Auto-execute
Saving programs in internal format, see SAVEF
Scalars, 79

Scientific functions, 6, 69

‘Scientific notation, 25

SCR (scratch), 38

Screen output channel, see File channels
Selecting a particular data record, 121
Sending data to the system printer, 127

SGN, 70

SHIFT key, 19

SIN, 69

Single-stepping, 1649

SINH, 71

Special characters, 189

SQRT, 69

STD, 89

STEP, 54

Step value, (also see FOR-NEXT) 54

STOP, 41, 76

STRS, 72

String, 5, 6, 25, 26, 45, 77, 112

String arrays, 5, 79

String data in a data file, see INPUT:n
String indexing, (also see RIGHTS$, MID$, AND LEFTS) 5
Subroutine errors, 76

Subroutines, 69, 75

Subscripts, 5, 77

SUM, 88

Summary of all commands, functions and keywords, 185
Summary of BASIC file handling commands, 134
System files, see BASIC programs as system files
TAB, 49, 116

Tabs, 38

TAN, 69

TANH, 71

THEN, see IF-THEN

TIME, 78, 95

Type—-ahead buffer, 182, see INP(8) and QUT(9)
Typing mistakes, 21

Updating data records, see INOUT, 123

Upper and lower case, 19

User-defined functions, 74

Using special devices, see DEF (keyword)

VAL, 72

Variable-length record files, 122

Variables, 26, 27, 98

Video Screen memory addresses, 177

WAIT, 6, 65

Page 196 BASIC Manual PolyMorphic Systems

WALK, 196 ‘D

WRITE:n, 120

Writing data to a data file, see PRINT:n, OUT (data transfer)
XREF, 38, 140

XREF:n, 128 (also see Sending data to the system printer)

PART II: BASIC REFERENCE GUIDE

L

Reference Manual Polylorphic Systems BASIC C30 Page 1
REFERENCE MANUAL

This brief description of PolyMorphic Systems BASIC is
intended to provide an easy-to-use daily reference for the
BASIC programmer. The commands, etc. described here are
discussed at length in the manual System 88 Disk BASIC: A

Manual.

IN ALL CASES, SEE THE BASIC MANUAL FOR DETAILS.

See also thé System 88 User's Manual.

This reference applies to PolyMorphic Systems Disk BASIC
version Cd¢ and COUL.

Previous versions were (tape) 8vV27, 9v27, AGY, PEJ, PUl;
(disk) AGl, BY8, BGSA, BES8C.

Page Z

PolyMorphic Systems

BASIC C6d

Reference Manual

3

Reference Manual PolyMorphic Systems BASIC CGY Page 3
Section 1

ENTERING BASIC;
LOADING, RUNNING, AND SAVING;
LEAVING BASIC

1.1 ENTERING BASIC

When BASIC is part of the System Disk, it is always
instantly available. To use BASIC, start the system, then
when you see the Exec prompt $, type BASIC. You will then
see the BASIC version number and the BASIC prompt >. This
BASIC prompt indicates that you are communicating with
BASIC (i.e. that the BASIC interpreter 1is 1loaded and
awalting your keyboard input).

1.2 LOADING AND RUNNING PRCOGRAMS

You can run a BASIC program from the Exec prompt $ or $$
without typing BASIC. Just type the file specifier (the
file name, preceded by the drive number if necesary); the
system will note the .BS suffix and automatically bring in
BASIC. (This does not happen if you have tagged the file
with some suffix other than the .B3 suffix tagged to BASIC
files by default.)

To load & disk file while in BASIC, type LOAD and the file

specifier. If the file name uses some suffix other than
.BS, you must give the suffix.

From EBExec, you <can load BASIC and run a program with a
single statement: filename. The filename must have a
suffix of .BS3.

You <c¢an interrupt the'running of a BASIC program from the
Keyboard by typing CTRL-Y (hold down the CTRL key and type
y or Y).

An interruption in the running of a BASIC program will
cause the system to stop and display a line number and a
double BASIC prompt >>. This double prompt tells you that
a BASIC program has been interrupted while executing the

line with the number displayed. It also indicates that you
are communicating with BASIC.

To load POLY 88 tape BASIC programs, see FILMS in the
User's Manual.

1.3 SAVING PROGRAMS (SAVE, SAVEF,SAVEP)

Programs are saved (into disk files) by using the SAVE,
SAVEF, or SAVEP commands, plus a comma (or semi-coclon).

Page 4 PolyMorphic Systems BASIC C09 Reference Manual

Sample format:
SAVE,<2>Program-Name

SAVE,filename or SAVE;filename

saves the program in text form, so that it can be edited
using the system editor and printed using PRINT and TYPE.

Program files <created with SAVE do not auto-execute when
loaded unless the SAVE command 1is followed with a
semi-colon instead of a comma. ‘

SAVEF,filename

saves the program in “internal" or "token" format. The
program will load faster when saved 1in this format.
However, it cannot be edited using the System 88 Editor nor
listed using PRINT or TYPE.

SAVEP, filename

Like SAVEF above, but saves the program in encrypted form.

Once a program in SAVEP format has been loaded into BASIC,
BASIC will only execute the commands RUN, SCR, or BYE.
Thus, SAVEP is intended as a simple means for application
developers to protect the logic of BASIC programs.

Only programs saved with 3AVEF or SAVEP can be CHAINed or
LINKed to. Programs saved with SAVEF and SAVEP always
" auto-execute when loaded.

1.4 LEAVING BASIC

70 leave BASIC, type EXEC or BYE, You will be returned to
the operating system.

EXEC

leaves the BASIC interpreter in memory, the DBASIC program
loaded, the current state of all variables intact, all data
files open, and allows you to continue running your BASIC
“program by typing CONTINUE in Exec and then CONTINUE again
in BASIC.

BYE

does the same thing as a SCRATCH, which erases program and
variables and closes data files. Always use BYE when
finished with a program that involves data files, if the
program does not close then itself.

O

Reference HManual PolyMorpnic Systems BASIC C@J P

NOTE: EXEC requires a certain amount of 8¢84%
stack space and should not be used casually.
Always finish work in Exec after EXEC and get
back to BASIC with CONTINUE. Don't run another
program (EDIT, etc.) until BASIC has been left
via BYE. You may also use Exec RESET to throw
away the ability to CONTINUE and reclaim the 886809
stack space.)

(=

ge

Page o

PolyMorphic Systems

BASIC C39

Reference

Manual

Reference Manual PolyMorphic Systems BASIC C83 Page 7

Section 2

OPERATORS AND OPERANDS

2.1 Mathematical Operators

The following operators are recognized:
- Unary minus
- Exponentiation
Multiplication
Division
Addition
Subtraction

[NG

2.1.1 Priority of Mathematical Cperations

Unary minus 1is done first, then expcnentiation, then
multiplication and division, then addition and subtraction.
Unary minus 1is allowed before any variable or parenthetical
expression. Multiple unary minuses are considered
equivalent to a single unary minus. Chains of operations
of equal precedence (Ex: A+B+C+D-E+2) are ., done 1left to
rignec. Parentheses are allowed and may be nested to any
depth.

2.2 Relational Cperators

Symbol Cperation
= Equals
< Is less than
> Is greater tnan
<> Does not equal

>= or => 1Is greater than or equals
{= or =< 1Is less than or equals

BASIC will evaluate relational operations and return a 1 if
true or 9 if false. Strings or numerics may be compared,
but not arrays. String comparisons do alphabetic
comparison using the collating sequence of ASCII. This
means lower case letters are greater than upper case.

2.3 Logical COperators: AND, GR, NOT

Logical operators have this order of execution:

NOT Logical complement bitwise
arithmetic operations (As above)
relational operations (As above)
AND Logical conjunction bitwise

OR Logical disjunction bitwise

Page 3 PolyMorphic Systems BASIC C8% Reference Manual

The logical operations are done separately on the
corresponding bits in the 16 bit integer representation of
their arguments (bitwise.)

This should mean that:
108 IF NOT 1 THEN X

will not do X. However, the IF statement recognizes NOT 1
as false, so X is in fact executed. ©NOT expression, where
expression yields 1, is equivalent to NOT 1.

2.4 ARITHMETIC PRECISION

BASIC "rounds" numbers to a precision of 8 decimal digits.

This precision may modified to any precision from 6 to 25
decimal digits by the use of a DIGITS statement. Once &
DIGITS statement is executed, the precision will remain as
specified until another DIGITS statement 1is executed or
until BASIC 1is re-loaded. The DIGITS statement takes the
following form:

18 DIGITS 12

When DIGITS is used, all variables are CLEARed. Therefore,
the DIGITS statement shculd normally be the first statement
in a program.

BASIC will automatically discover a North Star floating
point board if one has been installed. Wwhen the floating
point board is present in the system, BASIC can only
compute 6 to 14 digits of precision,

2.4.1 NUMERIC REPRESENTATION

Whole numbers longer than the current precision are
represented in scientific notation, thus:

3.76E+82 means +3.76 18792 or 3.76

X x 169 or 376
-3.76E+0§2 means =-3.76 x 16792 or -3.,76 x 106 oxr =376
3.76E-62 means +3.76 x 16"-02 or 3.75 x .€1 or 9.0376
-3.76E-02 means -3.76 x 1807-02 or -3.76 x .01 or -9.0376
2.4.2 STRINGS
A string constant 1s represented as a seguence of
characters between double quotation marks: " string ".

Blanks and ASCII TAB may be included. ASCII CR may not.

2.5, VARIABLES

Variables may be either numeric or scring. Any variable

Reference Manual PolyMorphic Systems BASIC C83 Page 9

may be an array of unlimited dimensions, except function
variables or function parameters.

Numeric variable names consist of one or two characters: a
single upper-case letter, optionally followed by a single
digit.

String variable names are identical to numeric, but are
followed by a dollar sign $.

2.6. ARRAYS

Both numeric and string array names are the same as numeric
and string scalars except for a subscript list immediately
following the name. (A scalar 1s a non-array, ©or a
one-dimensional array of one element.) This has the form
of a list of expressions separated by commas and surrounded
by parenthesis: A(1l,3) or zZ8$(I+3).

In a MAT statement, an array doés not reguire a subscript
list.

A given upper case letter or upper case letter and digit
may be used in the name ¢f a numeric scalar, numeric array,
numeric function, string scelar, string array, and string
function all in the same program. Each use will designate
a different variable in each context.

The first element of aen array 1is given an index of 1,
unless a DIM# statement precedes the DIM: then the first
element of an array is number 9.-

2.7 SPECIAL VARIABLES

Tne following variables are recognized anywhere a normal
BASIC variable would be recognized, except that their
values may not be changed by the programmer.

Pl

Always has tie value 3.1415926535897932384626432. It 1is
truncated at the right two digits at a time when current
precision is less than 26.

ERR

The wvalue isg the error <code o0f the last error that
cccurred.

LINE

Page 1§

Returns
occurred.

PolyMorpnic Systems

the number of the

BASIC C6yd Reference Manual

line in which the last error

O

Reference

i

Manual PolylMorphic Systems BASIC C8%

1This special variable is set to the

glement

by certain

array functions.

changed in an assignment statement.

Page 11

index number of an

(See MAT)

It may be

PolyMorphic Systems

BASIC C@#d

Reference Manual

Reference Manual PolyMorphic Systems BASIC CiJd Page 13
Section 3
INPUDPTING A PROGRAM

To add or change a line, type a line number and the new
line, An old 1line having that number will be deleted
automatically.

To delete an existing line without replgc1ng it, type the
line number and hit RETURN.

TO delete two or more lines in sequence, use DEL (described
below) .

BASIC will accept a maximum of 83 characters per line.
Blanks count as characters. Blanks are never required in
the interpretation of a statement {except, of course,
inside string constants). Removal of blanks reduces the
amount of memory space a program requires.

Program lines must begin with a line number from 6 through
65535. Blanks or tabs BEFORE line numbers are ignored.

Multiple statements may be included on one line by using
one line number and separating statements with a back-slasn

\.

A GUSUB or function <call in the midst of a multiple
statement line will return to the proper statement even
though it is not the first statement in the line.

An IF =statement will not execute ANY of the remaining
statements on a line if the condition is false and there is
no ELSE clause.

If there 1s an ELSE clause, the statement works as one
might expect: a true <condition will only execute the
statement before the ELSE clause, and a false condition
will only execute <the part of the statement between the
ELSE clause and the next \.

Multiple IF statements may be used on one line.

Page 14

PolyMorphic Systems

BASIC CbJ

Reference Manual

Reference Manual PolyMorphic Systems BASIC C@3 Page 15
Section 4
COMMANDS

LIST.

displays a BASIC program on the screen.
To display a portion of a program, type the first and last

line numbers of the block of lines you wish to see, without
spaces:

>LIST number,number

To display the program from a particular line to the end of

the program, type the number of the first line you wish to
see followed by a comma:

>LIST number,

To display a single 1line, type 1its number (without a
comma) :

>LIST number

REN

Re-numbers all program lines, numbering them 16, 20, etc.
To re-number all program lines starting with a
number other than 16, type REN and the desired
first line number:

>REN 18¢

To use an increment other than 16, type REN and a
first line number, then the desired increment:

>REN 5,5

REN automatically changes all references to line
numbers within the program to correctly reflect
the new line numbers.

Programe using the special variable LINE
described in paragrapn 2.7 should not be

renumbered.
RUN

begins execution of a program from the first line and does
a CLEAR.

Page 16 PolyMorphic Systems BASIC C&3 Reference Manual

To begin execution at some other line, type RUN

and the 1line number. The existing run-time

environment is preserved (no CLEAR 1is done).
CTRL-Y

interrupts the running of a BASIC program (hold down CTRL
key and nit Y key).

CONTINUE

resumes execution. of a BASIC program after an interruption.
Use CON after the >> prompt only.

SCR_OrSCRATCH

"scratches" (erases) everything in user memory and closes
all open files. ‘

DEL
deletes blocks of 1lines. Give the first and last line
numbers of the block to be deleted: DEL number,number. If

only one number is given, only that line will be deleted.

XREF

cross-references program variables with the numbers of the
lines in which they appear.

WALK

allows you to single-step through a program. The program
RUNs but each statement executed 1is Jdisplayed on the
screen, and each statement waits for a single character
command to be typed by the operator. 2An X will execute one
statement. A D will execute one statement and DUMP the
scalar variables. A G will continue full speed RUN. in
WALK mode, CIRL-Y is disabled.

DuMp

will cause the current values of all scalar variables and
array dimensions to be printed on the screen.

O

Reference Manual PolyMorphic Systems BASIC Cdw Page 17

Section 5

PRCGRAM STATEMENTS

5.1 GENERAL STATEMENTS
REM

is for comments. BASIC ignores the statement REM and all
characters to its right on the same line. REWM lines in a
SAVE file without line numbers will not be loaded.

STOP

stops execution. To resume, type CON.

ASSIGNMENT STATEMENTS:

LET may precede assignment statements but needa not be used.

The usual form of an assignment statement is
variable=expression.

Values may be numeric or string:

166 A=1
110 AS$="Total:"

To assign several variables the same value at once, use a
multiple assignment:

169 A,B=8
Crder of assignment is rignt to left.

Both numeric and string variables cannot be on the left
side of a multiple assignment statement.

CLEAR

erases all variables and reclaims their memory space.

DIGITS

sets the precision of numeric calculations. BASIC defaults
to eignt digits of precision, but will operate at from six
to twenty-six digits. To changs precision, type DIGITS n.
Nortn Star Hardware math boards will ke &automatically
discovered by BASIC if plugged in, and will restrict DIGITS
to from 8 to 14.

Page 16 PolyiMorphic Systems BASIC C@% Reference Manual

5.2 INPUTTING DATA

5.2.1 FROM KEYBCARD

INPUT

prompts for data 1input from the keyboarad. INPUT is
followed by a numeric or string variable, which .is set

eqgual to tne data entered from the keyboard.

If immediately followed by a variable, INPUT displays a
guestion mark as a prompt.

INPUT can e immediately followed by a prompt string, e.g

lYo INPUT "Enter date:",XS$S

in which case no question mark appears. More than one
variable may follow INPUT, and each will be prompted for in
succession, The first prompt 1s a guestion mark or the

prompt string given. Further prompts are question marks.
One string value may Dbe 1input per line keyed in. Many
numeric values may be input per line by separating them by
commas, blanks, or ASCII TABs.

INPUTL

is the same as INPUT except that it does not print a
carriage return when the operator keys RETURN-- thus the
display cursor remains after the data. The next INPUT will
thus appear on the same line as the INPUTI..

5.2.2 Inputting Data from the BASIC Program

DATA

statements contain data used by the program. A
comma-separated list of numeric or string constants must
follow each DATA statement:

109 DATA 19,20,39,455
118 DATA "“Jan","Feb","Mar"

READ

statements read the data in the DATA statements starting at
the first data statement in the program or the data
statement at the RESTOREd 1line number. READ statements
contain lists of numeric or string variables to be read
corresponding to the aata in DATA statemeéents. Every time a
variable in a READ statement causes a data item in 2 DATA
statement to be read, a pointer is advanced to the next
READ variable and to the next DATA statement 1item. Data

o

Reference Manual PolyMorphic Systems BASIC Cig Page 1Y

items in excess of READ variables go unread. READ numeric
variables must correspond to DATA numeric data and READ
string variables tc DATA string data. :

RESTORE

sets the data pointer to the first ¢data item in the first
DATA statement in the program.,

A line number may be given:
RESTCRE linenumber.

The next data item read will be the first data item in line
n (or after line n if line n contains no DATA <cstatement).

If no number is given, the data pointer is set to the first
data i1tem in the first DATA statement in the program.

INP (n)

is a function which tests for characters in the input
buffer and accepts input of characters from the keyboard.

INP(V) returns U if there is nothing in the input buffer.

INP (1) returns the integer value corresponding to the ASCII
code of the next charaecter waiting in the input puffer.

NOTE: See 3Section 11 of this reference for
INPUTTING FROM DISK FILES

5.3 OUTPUTTING FROM THE BASIC PROGRAM

PRINT printlist

outputs text «corresponding to the values of a list of
numeric and string expressions following PRINT. The
eXpressions are separated by commas.

Numeric values are converted to decimal and printed.

String literals are denoted by double guote marks (").
Quotation marks are, of course, not printed.

PRINT followed by nothing produces a blank line.
If there is a comma after the last element in the 1list, no

carriage return will be printed after the last elemen;.
Otherwise, a carriage return (ASCII CR) 1is output

Page 25 PolyMorphic Systems BASIC Cd% Reference Manual

The default PRINT format is left-justified, with the cursor é:)
displayed, all numeric elements are separated by blanks,

and a carriage return automatically generated after a line

is output. This default format may be altered by the

programmer with TABs and "format strings.”

TAB

moves the cursor (i.e. the next output character position)
to the print position specified:

160 PRINT TAB(2d) ,AS

will cause the value of AS to be printed at position 23 on
the screen.

"Format Stings"

The printed format of numbers can be altered by using
"format strings" in PRINT statements. A format string
begins with a per cent sign (%), followed Dby another
character or characters indicating how the format is to be
changed. These other characters are:

C puts commas into numbers as required. (e.g. 1,000,320)
$ puts a dollar sign immediately preceding numbers. <)
Z eliminates trailing zeroes.

If & format string contains a pound sign (#) as the
character immediately following the % sign, the format as

defined in that format string will thereafter be the
default format.

Tne null format string %$# returns the default format to the
standard default format when used as illustrated:

209 PRINT %3,

Format strings must be seperated from elements of the print
list with commas.

BASIC includes some standard formats for numeric data other
than the detault format. The characters below are used in
combination with the % character to uses these other
standard formats. In all cases below, digits in excess of
m are rounded. If there are digits in the element to be
formatted 1in excess of n, asterisks are printed in the
field. No error is generated by the asterisk substitution.

Reference Manual PolyMorphic Systems BASIC CU¥ Page 21

Im

|4

it

Right-justified in a field n characters wide with m digits
to the right of tne decimal point: %nFm.

Integers only, right-justified in a field n characters
wide: %nl.

Right-justified in a field n characters wide in scientific
notation (regardless of length) with m digits to the rignt
of the decimal point: %nEm.

NOTE: Sce Sections 12 and 13 for CUTPUTTING TC
DISK AND/OR TO PRINTEER

INP (port)

——

returns an 8 bit value which is the result of doing an 833¢

INP

instruction from the specified port. The port number

may be from ¢ to 256.

OUT port,expression

is statement (not a function) which outputs the
expression to the specified port. System E8 uses 887
ports 9 through 32. The rest are free for user 1I/0
devices.

5.4 LOOPS3

FOR and NEXT

FOR and NEXT provide for program loops. FOR-NEXT loops may
be nested (Also sec EXIT.)

5.5 BRANCHING STATEMENTS

GOTO

continues executicn at a specified program line:

GOTO n

where n is the line number of the next line to be executed.

ON expr GOTO lineg,lines,lines...

moves

the program counter to one of several specified

program lines. The evaluated variable or expression
following ON indicates which of the line numbers following

GOTC

is to be selected; 1 selects the first number

following GOTO, 2 the sccond, and so forth.

Page 22 PolyMorphic Systems BASIC C@% Reference Manual

ON expr GOSUB line#,line¥#,line#%...

moves the program counter to the line whose number follows
GOSUB, which 1s assumed to be the first 1line of a
subroutine; after execution of tne subroutine, execution
returns to the line immediately following tne ON...GOSUB
statement. Otherwise, this statement resembles ON...GCTO.

IF expr THEN statement

conditionally executes a statement following THEN in the
same line. IF is followed by an expression which evaluates
to true: 1, or false: £ or NOT 1.

THEN can be followed by a GOTO statement or just the line
number to GOTC (G0TO 1is 1implied), GOSU3 1line number,
RETURN, PRINT print list, ON variable or expression GOTO
line number, CN variable or expression GOSUB line number,
any kind of assignment statement, or another IF statement,

If the IF condition is not met (expression avaluates to
false), execution passes to the next line (except see ELSE
below).

ELSE

When tihe condition in an IF...THEN statement 1is not met,
execution can continue with another statement preceded by
ELSE. '

ELSE must be tne next statement after THEN and must be on
the same line. ELSE can introduce another IF...THEN.

If ELSE 1is to be followed by GOTC, the GCTC statement 1is
assumed and need not appear; only the line number neced be
included.

EXIT linenumber

branches execution out of a FOR-NEXT loop. EXIT terminates
ALL active FCR-NEXT loops, reclaims the associated stack

memory, and passes execution to the 1line whose number
follows EXIT.

EXIT leaves ALL current loops.

CHAIN string-expression

brings 1in the next program and runs it automatically as in
CHAIN "Program-name" or CHAIN AS$. The CHAIN2d to program

must have been saved in tocken (SAVEF) or encrypted (SAVEP)
format.

If the CHAINed to pregram is on & drive other than the

O

Reference Manual Polyiorphic Systems BASIC C@d Page 23
System Drive (i.e. the default drive), give the drive
number (or <?>, or <%> if defined).

The "run-time environment" 1is preserved (no CLEAR 1is
implied).

LINK string-expression

operates in the same manner as CHAIN except that user
memory is CLEARED and SCRATCHed.

DUMP

outputs scalar numeric program variables to the output
device in human readable tabular form.

WALT

halts program execution, prints "wWaiting..." on the
screen, and awaits any keystrike before resuming execution.

PAUSE n

stops execution for n ticks (one tick is 1/6% second). n
must be between ¥ and 65535 inclusive. Expressions for n
are evaluated.

ON ERROR linenumber or ON ERROR THEN statement

provides a routine or statement to be executed whenever
there is an error. Any aerror that occurs after an ON ERRCR
statement has been executed causes the CN ERROR statement
to be executed.

CN ERROR THEN linenumber

does an implied GUSUB to the line number; when the routine
at the linenumber executes a RETURN, program execution will
resume after the point of error.

Without tne line number, THEN is ignored, and statement 1is
executed.

ON ESCAPE linenumber

Upon typing CTRL-Y, BASIC begins execution of the statement
number following ON ESCAPE. Otherwise identical to OU
ERROR.

NOTE: 1indiscriminate use of ON ESCAPE can result
in programs which are impossible to abort except
by pressing the Load button!

RESET

Page 24 PoclyMorphic Systems BASIC C¢0 Reference !lanual

inactivates all previously executed and active ON ERRCR or
ON ESCAPE statements. Subsequent errors are handled
exactly the same a3 if no ON ERROR or CN ESCAPE had been
executced,

Reference Manual PolyMorphic Systems BASIC C¥¥d Page 25
Section 6
FUNCTIONS AND SUBRCUTINES

6.1 INTRINSIC FUNCTIONS
6.1.1 Standard Intrinsic Functions

Functions are <called thus: function-name(argument-list).
The argument-list is separated by commas.

SORT
returns the square root of the argument.
EXP

returns the value of e (2.7182Z286...) raised to the power
specified by the argument.

LOG

returns the natural logarithm (base e) of the argument.
LOGT

returns the logarithm to the base 10 of the argument.

turns the cosine of the argument (presumed to Dbe 1in
i

returns the sine of the argument.

TAN

returns the tangent of the argument.

ABS

returns the absolute value of the argument.
INT

returns the nearcest integer less than the argument.

Page 26" PolyMorphic Systems BASIC C33 Reference Manual

SGN

returns 1 if the argument is negative, ¢ if it is zero, and
-1 if it 1is negative. ’

RND

returns a real random number greater than J and less than
1. The argument gives the ‘“seea value," which nmnust be
greater tnan 9 and less than 1: RND(n). If the seed is an
integer number greater than zero, RND returns an integer
number from 1 through the number given., RND(1l) always
returns 1. Using the same seed in the same program always
produces the same sequence of pseudo-random numbers.

RANDCMIZE

is a statement (not a function) which sets the random
number generator seed according to the current value of the
low order 16 bits of the real time clock, This 1insures
that eacn run of a program will produce a new, randomly
selected pseudo-random sequence,

TIME

returns the 16 low-order bits of the real-time clock. TIME
() returns the 16 bits; TIME with a non-zero argument
returns the 16 bits and sets the timer to J.

cosH

returns the hyperbolic cosine of tha argument.

SINH

returns the hyperbplic sine of the argument.

returns the hyperbolic tangent of the argument.

ATAN

returns the arctangent of the argument, from +PI/2 to -PI/2
radians.

ASIN

returns the arcsine of the argument, from +PI/2 to -P1/2
radians.

Reference Manual PolyMorpnic Systems BASIC Cu0 Page 27

FREE (U)

prints the number of unused bytes available for a u
BASIC program in RAM memory.

[0}
7]
"
n

MEM (variablename)

returns the address {in decimal) in memory of the stated
variable. Argument may not be an expression,

6.1.2 Intrinsic Functions Directly Accessing Memory and the
Processor.

Numbers used in these functions must be integers.

PCKE memory-address,expression

is a statement (not a function) which stores thne valua of
the expression in the 34986 address given by memory-address,

NOTE: POKE 1s very dangerous. Carecless use of
POKE may derange the operating system, the BASIC
interpreter, the BASIC program, and many types of
I1/0 devices in utterly unpredictable ways.

PEEK (memory-addrecss)

returns the contents of the specified 843Y address.
6.1.3 Intrinsic String Functions

LEN(string variable)

returns the number of characters of the string currently
stored. in the specified string variable.

VAL (string variable)

returns a numeric value given by regarding the string
argument as a number in scientific notation or integer
form.

STRS (expression)

returns the scientific notation or integer representation
of the value of the expression.

VAL (STR5 (expr) dces nothing. STRS may include the % format
declarators of the PRINT statement before the numeric
argument.

Page 238 PolyMorphic Systems BASIC CP8 Reference Manual

ASC(string variable)

returns an integer corresponding to the ASCII code for the
first character of the string specified.

CHRS (expression)

returns a one-character string which is the ASCII character
corresponding to the value of the integer argument.

LEFTS (string-variable,n)

returns the left-most n characters of the string. n may be
an expression. If n<dg, a null string 1is returned; 1if
n>LEN (string-variable), the entire string is returned.

RIGHTS (string-variable,n)

like the above, but returns the right-most n characters.

MIDS (string-variable,n,m)

returns tne nth through the mth characters of the specified
string. If n=m, one character is returned. If
n>LEN (string-variable) or m<l or n>m, the null string Iis
returned.

6.2 USER-DEFINED FUNCTIONS
Use FN to define your own functions.

Functions may be one-line or multi-line. The format for
one line functions is:

DEF FNvariable-name(argument-list)=function
Example:

100 DEF FNAl (A,B)=A+B
For multi-line functions, the format is:

DEF FNvariable-name{argument-list)

followed by lines defining the function. The last line 1in
the function definition must be FNEND.

Exanmple:

180 DEF FNA (X)

119 ...your statement...
120 ...your statement....
139 FNEND

O

O

Reference Manual PolyMorphic Systems BASIC C¢4 Page 29

Notice the DEF cannot have any addicional statements on the
same lins.

Arguments in function definitions are "dummies" or "formal
parameters" and are replaced by the "actual" arguments
given in each function call., If variables witn the same
names as the names of the arguments in the argument list
exist elsewhere in the program, their values are not
changed (the formal parameters are "lccal" to the function
definition). The number of arguments 1in the function
definition must equal the number o0f &arguments in the
functicn call.

6.3 SUBROUTINES
Execution of a subroutine begins with GOCSUB line-number
from outside a subroutine, and ends with RETURN in the

subroutine.

RETURN returns execution to the statement following the
most recent GOSUB: they may be nested.

Tne number of GOSUBs must equal the number of RETURNs.

Polyilorphic Systems

BASIC Cud

Reference Manual

Refterence Manual PolyMorphic Systems BASIC C(Y Page 31
Section 7
STRINGS, ARRAYS, AND HMATRIXES

7.1 ARRAYS

Elements within arrays are specified by & subscript to the
array variable giving the position of the element within
the array. For instance, the nth item of the array X 1is
cited thus:

X(n)

An array may have more than one dimension., An element is
then referenced by its position in each dimension, in the
order that the dimensions were given in the DIM statement,
e.g. X({(5,18).
DIM dimensions the array, thus:
DIM array-variable(number-of-elements).
Example:

160 DIM X(580).
Multi-dimensional arrays are dimensioned DIM X(n,m...).
Example:

189 DIM X(5,189)

Arrays must be dimensioned Dpefore any element can be
referenced.

An array <can be re-dimensioned in a program after & CLEAR
sStatement has been executed.

NOTE:CLEAR resets ALL variables to zero or null
and destroys the "run time environment®.

DIMb

The first element in an array (the array base) 1s number 1
by default. To number elements starting with 8, use DIMJ
before using DIHM. This 1s particularly useful when
converting programs written in another wversion of BASIC
where the array base defaults to 0.

DIM1

re-establisnes 1 as the array base,

Page 32 PolyMorphic Systems BEASIC CY9 Reference Manual

7.2 3TRINGS and 3TRING ARRAYS
Scalar strings are automatically created and dimensioned to

a maximum length of 18 <characters when first used in a
program.

However, strings may be dimensioned to any size:
169 DIM AS(1:169)
dimensions a scalar string of 1606 characters.

Strings arrays may be created with unlimited number of
dimensions:

165 DIM A$(5,5:15)

indicates that each item within the 5x5 array A$ is a
string consisting of a maximum of 15 characters.

7.3 MATRIX OPERATICONS

Given one dimensional arrays A, B, and C, of equal size,
the statement:

. 199 MAT A=B+C
sets A(l) equal to B(l)+C(l), A(2) egual to B(2)+C(2), etc.
Although A above must be an array, B, C... can be
expressions to be evaluated, etc.

169 MAT A=5QRT (B 2+C"2)

sets A(l) equal to the sgquare root of
A(2) equal to the square root of (B(2)

B

-

(B(1)"2 + c(l)" 2y,
2 + C({{(2) 2), etc.

MAT can be combined with these other statements: LET,
PRINT, READ, INPUT, PLOT, IF-THEN-ELSE. For instance, the

instruction
189 MAT IF A=) THEN STCP

results in a stop if ANY item in array A is §.
109 MAT PRINT A,

prints out all the elements 1in the array A, in order.
(Note the comma at the end of the line above. This will
cause the printing of each element sequentially across the
screen. Without the comma, each element will be printed on
a seperate line on the screen.)

O

Reference dManual Polyiorpnic SyStems BASIC C¢U Page 33

In general, HMAT takes the size of the first array it finds
to the right of MAT as the number of repetitions to make.
In IF statements, fewer than this number of repetitions may
be made because & true condition will stop the MAT
Statement's repetition. A nulti-dimensional array is
considered uni-dimensional, with the elements taken in
row-major order. Thus the effective dimension of any array
is the product of all the sizes of its dimensions. If any
effective dimension of an array in a MAT statement 1s 1less
than the e¢ffective dimension o¢f the first element, a
dimension error results. Ctherwise, only the required part
of each array 1is used.

During the execution of a MAT statement, the special
variable 4 1is incremented from 1 through the effective
dimension of the first array. Thus

109 MAT A=#

sets the array A to the identity sequence 1,2,3,4,5,6...
Alsc, # 1s set to the index of the array element which
caused terminatioa «f a MAT IF statement:

MAT IF A=1 THEN PRINT #

will print the index of the first element of - the array A
which is equal to 1.

7.4 SPECIAL ARRAY FUNCTIONS

All the functions below take the following form:
function-name(array-variable) as illustrated:

106 A=5UH4(B)

NOTE: arrays created with DIM3 in effect have
zeroecth elements which may not be evident to the
programmer, but which, nonetheless, are included
in the computation of these functions.

>

SUM

returns the sum of all the elements in an array.

PRCD

returns the product of all the elements in an array.

MIN and MAX

recurn the largest or smallest element in an array: F 1s
set to the number of that element.

returns

returns

Polydorphic Systems BASIC C@gg Reference

the mean of the elements in an array.

the

standard deviation of the elements in an

Manual

array.

Reference Manual PolyMorphic Systems BASIC CdJ Page 35

Secticn 9

DEBUGGING FEATURES

RUN (1line number)

runs tne program starting with the line indicated.
DUMP
prints a list of and the current value of all the scalar

numeric variables currently making up the run-time
environment.

XREF

prints a listing of variables with the numbers of the lines
in which they occur. Command only.

NOTE: Both DUMP and XREF may have their output
routed to the printer (if one 1is "attached" as
described in Secticn 11).

WALK

U

lets you run the program one line at time.

After bpeginning to WALK, to run the next line,
type X.

To execute a single statement and DUMP, type D.
To RUN from the current line, type G.
WALK may be followed by & line number.

CN ERRCR and ON ESCAPE

See ON ERROR and ON ESCAPE statements

ERR

is set to the error code of the most recent error. For
instance, O©ON ERROR PRINT ERR displays the error code of
each error when it occurs, then continues after the ON
ERROR statement.

LINE

returns tne line number of the 1line in wnilch th2 most
recent error occurred. :

Page 30 Polydorphic Systems BASIC C04d Reference HManual

RESET | i;)

clears previous ON ERROR and OWN ESCAPE statements; ends
WALK.,

Reference Manual PolyMorphic Systems BASIC CE0 Page 37

Section 148

DATA FILES

16.1 FILE CHANNELS

BASIC provides eight file channals, numbered % througn 7.

g for inputting data from the keyboard.
1 for outputting to the screen.
2, 3 for outputting to a printer or special device.

Cnannels 4, 5, 6, and 7 may be used for inputting from or
outputting to disk files, to a printer, or special devices.

A channel number may be given as an expression evaluating
to a number 9-7. In the following discussions, "n" refers
to a channel number.

1.2 DATA FILE FORMATS
There are twe formats of BASIC data files:

1, Fixed record lengtn
2. Variable record length.

When a data file is created, by writing the records of it
to & channel opened in the CUT mode, BASIC keeps track of
the length of each record. If all lengths are exactly
equal, when the file is closed it is given a fixed record
length which is one greater than the measured length. The
increment is for a carriage return at the end of every
record,

Fixed length record files are directly accessed in about

1/3 of a2 second for long files, faster for extremely snort
files.

Variable 1length record files may be directly accessed but
1t 1s not generally recommendad, as 1t may be extremely
time-consuming.

When tne records of a file are re-written using INCUT mode
(modes are described below), & shorter record may be
written 1in place of any record, but not a longer one. A
shorter record is padded with zero bytes between the 1last
data character and the terminating ASCII CR, whicn is not
moved.,

Page 38 PolyMorpnic Systems BASIC COY Reference iManual

If READ: and WRITE: (described below) are used in creating
and malntaining the file, the records will have & CR
between every data element, or field, in the record plus a
CR terminating the record.

The READ: and WRITE: statements allow more than one string
variable to e stored in a single record. There 1is no
necessity to ‘"pad" strings to fill out the record. Nor,
does the programmer have to read a record as a string the
size of the record and then, by programming, "break" the
recora into its logical data elements.

1y9.3 DATA FILE MODES COF OPERATION
There are three modes of operation of BASIC data files:
1. O0ur files
2. INPUT files
3. INOUT files
ouT files
are created by & BASIC program. Cnly one CUT file may be

open on & Disk Drive at one time. OUT files may not bc
read from.

INPUT files

provide data which may be read sequentially by a BASIC
program. INPUT files may not be written to.

INOUT files

are files which may be read from or written to by a BASIC
program. Records may be directly accessed, read, and
rewricten in place.

INOUT files may not have new records appended to them. It
is necessary to create the file, as an OUT file, with space

for the maximum number of records expected to be required
for the file.

1.4 FILE STATEMENTS

Reference Manual PolyMorpnic Systems BASIC Cud Page 39

FILE

is a statement which operates on a channel number specified
as an expression separated from FILE by a colon, with an
effect determined by the function keyword, whicih follows
the channel number, separated by a comma:
FILE:n,keyword,...

Example:
lvg FILE:6,0PEN,"<2>Real-estate",INPUT

Following are the allowable keywords:

OPEN

opens & data file

16y FPILE:4,0PEN,filename,mode

“filename"” 1is any string expression evaluating tc & valid
System 33 file name.

CLCSE
closes a channel.
Example:
168 FILE:4,CLOSE

Ho filename or mode is required. The channel may be the
LIST channel, a data file, or a user defined channel.

POS
("position") sets tne read and write pointers to a
particular data record. POS is ©preceded Dby a channel

number and followed by a record number expression, which
evaluates to an integer from 1 to 65535. Records are
automatically numbered starting with 1 in the order written

originally to the file.
Exanmple:

lvd PILE:4,P0S,A

would positicn the "read pointer"™ to the relative record
number as cxpressed by the value in the variable A.

Page 49 PolyMorphic Systems BASIC CUg Reference Manual
REW .
("rewind") positions to record 1.
Example:

19 FILE:4,REW
ly.5 FILE INPUT/OUTPUT STATEMEHNTS
WRITE:n,printlist ’

writes data to a file. Each element in the
printlist is delimited by a carriage return when 1t 1is
written, for compatability with READ:n.

Example:

163 FILE:4,POS,N
119 WRITE:4,A,AS$,B,C

The WRITE: statement MUST be immediately preceded by a POS
statement as illustrated above.

NOTE: It 1is good programming practice to
immediately follow the WRITE: or PRINT:
(described below) statements with a REWind
statement. This forces the data, which may have

been written only to the internal buffer, to be
written to the disk.

READ:n,readlist

inputs data from a file,. READ:n operates
identically to READ but obtains data from file n rather
than from data statements. The variables are separatea by
carriage returns (ASCII CR) in each record.
Example:

166 READ:4,A,AS,B,C

PRINT:n,printlist

writes data records <to the file from the printlist.
Records only, not elements from the printlist, are
delimited witn CRs. The format of the record may be
controlled identically to the manner the format of a PRINT
to the screen 1s controlled.

Example:

166 PRINT:4,%5I,A,%8F2,B,BS

Reference Manual PolyMorphic Systems BASIC C¢¥ Page 41

INPUT:c,readlist

Reads

Examp

INP(n

data

le:

Files
READ:
read

)

into the variables specified in the readlist.

199 INPUT:4,A,B,BS
- - -CAUTION- - -

written using WRITE: should be read using

and files written using PRINT: should be
using INPUT:.

transfers one byte from the data file when wused 1in the
following manner:

189 A=INP(c)

Page 42

PolyMorphic Systems

BASIC C3d

Reference Manual

Reference Manual PolyMorphic Systems BASIC CEJ Page 43
Section 11
USING A PRINTER FROM BASIC
A BASIC program can use the facilities provided by the

Universal Printer Driver of System 88.

First, the printer must be assigned a channel number.
Thus:

169 FILE:2,LIST
"attacnes" channel 2 to the printer.
Thereafter, PRINT statements of the form:
136 PRINT:n,printlist

will cause the contents of the printlist to be printed on
the printer which has pbeen initialized by System 88,

To "attacii" special devices, see the printer discussion in
the BASIC manual. '

Page 44

PolyMorphic Systems

BASIC C8d¢

Reference Manual

Reference Manual PolyMorphic Systems BASIC C93 Page 45
Section 12
ERROR HANDLING

If BASIC detects an error in a program or command, it will
normally stop execution o¢f the program and “display a
message briefly describing the error. This is gquite useful
for a programmer testing and debugging a program.

However, it may be disastrous to a non-programmer who is
executing an application program to have a program abort
with an error message and a BASIC "prompt."

BASIC C¢¥ incorporates several statements and functions to
alid programmers in developing "bomb proof"” application
programs. Each of these has been previously described.
Reviewing, they are:

ON ERROR statement

ON ERROR THEN statement
LINE special variable
ERR function

RESET statement

The following program illustrates the use of ON ERROR THEN
processing to "trap" errors ang execute error correction
procedures in an application program.

REM .

REH Illustration of the use of RESET in
REM restoring normal error processing,
REM and the implicit GOSUB in ON ERROR.
REM Also illustrates the LINE function.
REM

9409 ON ERROR THEN GOTO 10893 \ RETURN

991¢ X=RND(19)-1

9824 PRINT 1/X,

90349 X=RND(10)-1

9940 PRINT 1/X

94549 GOTO 9816

16989 E=E+1

REM Test for Division by Zero Error
16619 IF ERR=1836 THEN 16199

19925 RESET(ERR)\GOTOC 9407

14198 PRINT "DIVISION 3Y ZERO IN LINE",LINE
102¥9% RETURN

The decimal values returned by the ERR special variable

after an error occurs during esxecution of a BASIC program
are listed below: :

Page 45 PolyMorphic Systems BASIC Co&% Reference tlanual

1624 Syntax error

1¥25 Syntax error

1lY26 Subscript error

18627 Bad argument error

1628 Dimension error

1629 Function definition error

16396 Out of bounds error

1031 Type error

1432 Format error

1633 I can't find that line

1434 FOR-NEXT error

1435 RETURN without GOSUB

1936 Division by zero

1637 Function definition error

1638 Missing matching NEXT

10639 READ error

1640 Oops...BASIC goofed!

1041 Cops...BASIC goofed!

1642 1Input error

1943 Out of memory

1844 I can't do that directly

1645 Argument mismatch error

1l¥46 Length error '

1947 Overflow error

19589 Can't continue!

1951 That''s not-a BASIC file!

¥852 Nothing to savel

1853 That channel not open!

1854 That channel not open for INPUT

1655 That channel not open for OUTPUT

1056 End of file on that channel

1657 That program is for a different version of BASIC!
1958 CHAIN programs must be saved with SAVEF
1659 That record is past the end of the file
1662 I can only do that to a disk file
1861 End of file on that channel

1862 Type error on READ

1663 That's not a BASIC data file

1664 MAT subscript error

1Us5 I can't do that to a protected file!
1672 ‘Too many digits for hardware!

18673 Renumbering error

1474 The mininum allowable precision is 6.
1375 The maximum allowable precision is 26.
188LOAD interrupted

1279 I can't do that to an OUT file

