— r— r— r-

r—

-

| SR S SnnEE Sa T S T S €Y - r—

'8 0 8 0' MONITOR ROUTINES

AUTHOR: ROBERT FINDLEY

COPYRIGHT 1975
SCELBI1 COMPUTER CONSULTING, INC.
1322 REAR - BOSTON POST ROAD
MILFORD, CTe 06460

= ALL RIGHTS RESERVED -

IMPORTANT NOTICE

OTHER THAN USING THE PROGRAM DETAILED HEREIN ON THE PURCHASER'S
INDIVIDUAL COMPUTER SYSTEM, NO PART OF THIS PUBLICATION MAY BE RE-
PRODUCED, TRANSMITTED, STORED IN A RETRIEVAL SYSTEM, OR OTHERWISE
DUPLICATED IN ANY FORM OR BY ANY MEANS ELECTRONIC, MECHANICAL.
PHOTOCOPYING, RECORDING, OR OTHERWISE, WITHOUT THE PRIOR EXPRESS
WRITTEN CONSENT OF THE COPYRIGHT OWNER.

THE INFORMATION IN THIS MANUAL HAS BEEN CAREFULLY REVIEWED AND IS
BELIEVED TO BE ENTIRELY RELIABLE. HOVEVER, NO RESPONSIBILITY 1S
ASSUMED FOR INACCURACIES OR FOR ~'THE SUCCESS OR FAILURE OF VARIOUS
APPLICATIONS TO WHICH THE INFORMATION CONTAINED HEREIN MIGHT BE
APPLIED. ’

— o o

—

SN

co> > r° o

| G —

INTROCUCTION

THE MONITOR PROGRAM IS A PROGRAM WHICH ENABLES THE COMPUTER OPERA-
TOR TO UTILIZE A COMPUTER SYSTEM WITH GREATER EFFICLENCY AND EFFECTIVE~
NESS, BY TAKING ADVANTAGE OF THE INHERENT POVER OF THE COMPUTER. BAS-
ICALLY, THE MONITOR PROGRAM ALLOWS THE OPERATOR TO CONTROL THE COMPUTER
BY DIRECTING IT TO EXECUTE PROGRAMS STORED IN MEMORY, OPERATE PERIPHER-
AL DEVICES FOR STORING AND RETRIEVING PROGRAMS AND DATA, AND EXAMINE
AND/QR MODIFY MEMORY LOCATIONS, EITHER ONE AT A TIME OR IN BLOCKS. THE
PROGRAMMER WILL FIND ITS ABILITY T0 INTERRUPT A PROGRAM BEING DEBUGGED
AT VARIOUS POINTS AND EXAMINE THE CONTENTS OF MEMORY LOCATIONS AND "CPU
REGISTERS AND STATUS FLAGS" AT THAT POINT IN THE PROGRAM IS A FUNCTION
THAT 1S AS POWERFUL A DEBUGGING TOOL AS A GOOD OSCILLOSCOPE 1S FOR THE
HARDWARE TROUBLESHOOTER. ’)

THERE ARE SEVERAL FACTORS WHICH DETERMINE THE ABILITY TO OPERATE A
COMPUTER SYSTEM ' EFFECTIVELY .' ONE OF THESE FACTORS IS TO BE ABLE TO
CONTROL ITS OPERATION FROM A SINGLE LOCATION. THE MOST COMMON METHOD 1S
TO CONTROL THE COMPUTER FROM ITS 'FRONT PANEL'. THIS IS NORMALLY A MYR-
IAD OF SWITCHES AND LAMPS WHICH ENABLE THE OPERATOR TO LOAD AND EXAMINE
MEMORY LOCATIONS, EXECUTE PROGRAMS STORED IN MEMORY AND, IN SOME OF THE
MORE SOPHISTICATED FRONT PANELS., PERFORM SEVERAL PROGRAM DEBUGGING FUNC~-
TIONS. USING THE FRONT PANEL TO OPERATE THE COMPUTER 1S AN EXCELLENT
WAY TO INTRODUCE THE BEGINNER TO THE BASICS OF THE COMPUTER'S OPERATION.
BECAUSE IT GIVES HIM FIRST~-HAND EXPERI ENCE IN THE CONCEPTS OF LOADING
MEMORY WITH A PROGRAM, STEPPING THROUGH THE PROGRAM AND SEEING HOW THE
COMPUTER PROGRESSES FROM ONE INSTRUCTION TO ANOTHERe. THAT'S FINE, FOR
THE BEGINNER! BUT ONCE THE °'THRILL' OF WATCHING THE COMPUTER STEP THRO-
UGH ONE OR TWO PROGRAMS IS GONE (ESPECIALLY SINCE THEY HAD TO BE LOADED
SEVERAL TIMES TO GET THEM IN CORRECTLY). EVEN THE BEGINNER FINDS OPER-
ATING THROUGH THE FRONT PANEL SLOW, CUMBERSOME AND OFTEN ANNOYING.

AN ALTERNATIVE METHOD IS TO HAVE THE COMPUTER AID IN THESE BASIC
FUNCTIONS BY PROGRAMMING IT TO UTILIZE a MORE CONVENIENT °‘CONTROL' DE-
VICE, NAMELY A KEYBOARD AND DISPLAY DEVICE. THE KEYBOARD ENTRY IS BY
FAR A FASTER AND MORE ACCURATE MEANS OF ENTERING MEMORY ADDRESSES AND
DATA THAN THAT OF TOGGLING THEM IN THROUGH THE FRONT PANEL SWITCHES.

AND DISPLAYING THE INFORMATION AS OCTAL DIGITS ON AN ALPHANUMERIC DIS-
PLAY, WHETHER IT BE A TTY PRINTER OR VIDEQ DISPLAY, 1S MUCH EASIER TO
READ THAN DECODING THE BINARY PRESENTATION OF MEMORY ADDRESS AND CON-
TENTS ON THE FRONT PANEL INDICATORS. MAKING USE OF THESE DEVICES IMPRO-
VES THE SYSTEM FROM THE °'HUMAN ENGINEERING® STANDPOINT, SINCE THEY GIVE
THE OPERATOR A FORM OF COMMUNICATION WITH THE COMPUTER THAT 15 MORE CON~-
VENTIONAL THAN FLIPPING SWITCHES AND WATCHING LIGHTS. THIS BRINGS UP
THE SECOND FACTOR IN OPERATING AN EFFECTIVE COMPUTER 'SYSTEM. THAT FACTOR
1S USING A COMPUTER PROGRAM TO PERFORM AS MANY OF THE TASKS AS POSSIBLE
WHICH THE COMPUTER IS CAPABLE OF PERFORMING FASTER AND MORE ACCURATELY
THAN THE OPERATOR COULD EVER DREAM OF PERFORMING.)

SINCE THE PROGRAM WILL BE OCCUPYING SPACE IN MEMORY, IT IS NECESS-
ARY TO EVALUATE THE TYPE OF FUNCTIONS IT 1S TO PERFORM AND CHOOSE THE
ONES WHICH WILL BE OF GREATEST IMPORTANCE TO THE OPERATOR. FIRST., THE
FUNCTIONS OF THE FRONT PANEL SHOULD BE REPLACED. ONE OF THESE FUNCTIONS
1S THE EXAMINATION AND MODIFICATION OF MEMORY CONTENTS., FOR LOADING AND
REVISING PROGRAMS AND DATA IN MEMORY. AN EXPANSION OF THIS WILL ALSO BE
PROGRAMMED, THAT OF DISPLAYING A LARGE BLOCK OF MEMORY AT ONE TIME.
THIS 1S QUITE VALUABLE FOR CHECKING THAT A PROGRAM HAS BEEN LOADED 'COR-
RECTLY AND, IN DEBUGGING, TO EXAMINE LARGE DATA STORAGE AREAS.

— o

THE NEXT FUNCTION THAT WOULD GENERALLY FOLLOW WOULD BE TO DIRECT
THE OPERATION OF A STORAGE DEVICE TO STORE AND RETRIEVE THE CONTENTS OF
A BLOCK OF MEMORY FOR SAVING PROGRAMS OR DATA. THIS WILL SAVE A LOT OI'_“
TIME IN THAT A LARGE PROGRAM WOULD NOT HAVE TO BE ENTERED THROUGH THE
KEYBOARD EVERY TIME IT IS DESIRED TO USE IT. INSTEAD, IT CAN BE READ
FROM THE BULK STORAGE DEVICE DIRECTLY INTO MEMORY TAKING ADVANTAGE OF
ITS SPEED AND ACCURACY, AS OPPOSED TO KEYBOARD ENTRY. TH1S PORTION OF
THE PROGRAM WILL HAVE TO BE CUSTOMIZED TO THE USER'S SPECIFIC STORAGE
DEVICE, AS WILL BE DESCRIBED LATER. - c

NOV THAT THE ABILITY TO ENTER, MODIFY AND STORE A PROGRAM HAS BEEN !
ESTABLISHED, THE NEXT LOGICAL PROGRESSION WOULD BE TO ENABLE THE OPERA- :
TOR TO START EXECUTION OF A PROGRAM FROM THE KEYBOARD. AT THIS POINT, A
REQUIREMENT FOR DEBUGGING PROGRAMS MUST BE CONSIDERED. ')

IN THE PROCESS OF DEBUGGING A PROGRAM, IT MAY BE DESIRED TO SET THE
INITIAL VALUES OF SPECIFIC CPU REGISTERS BEFORE JUMPING TO THE START OF
A ROUTINE BEING WORKED ON. THIS CAN BE ACCOMPLISHED BY USING A SEPARATE
FUNCTION TO SET UP THE VALUES TO BE PLACED IN THE CPU REGISTERS AT THE
TIME THE PROGRAM IS ENTERED, VIA THE 'GO TO' FUNCTION. ’) o

AS A COMPLIMENTARY FUNCTION OF GO TO, THE MONITOR SHOULD BE ABLE TO
SET A "BREAKPOINT.' A BREAKPOINT IS A POINT IN A PROGRAM AT WHICH THE
PROGRAMMER DESIRES TO STOP EXECUTION AND CHECK THE PROGRESS OF THE PRO~
GRAMS OPERATION. THE BREAKPOINT FUNCTION REPLACES THE INSTRUCTION AT
THE POINT IN QUESTION WITH A JUMP TO THE BREAKPGINT ROUTINE. WHEN THE
BREAKPOINT 1S REACHED, THE COMPUTER RETURNS CONTROL TO THE MONITOR WHERE
THE BREAKPOINT ROUTINE WILL SAVE THE CONTENTS OF THE CPU REGISTERS AND
THE STATUS FLAGS IN A TABLE IN MEMORY WHICH THE PROGRAMMER MAY REFER TO
IN CHECKING THE OPERATION OF THE PROGRAM. '

THESE FUNCTIONS ARE A GOOD BASE FOR SETTING UP A MONITOR PRO GRAM.,
SINCE THEY PROVIDE THE OPERATOR WITH AN ASSORTMENT OF FUNCTIONS WHICH
ARE COMMON TO THE OPERATION OF ANY COMPUTER SYSTEM. FROM THIS BASE, THE
MONITOR CAN BE EXPANDED TO INCLUDE OPERATIONS OF SPECIFIC APPLICATION T0
ONES OWN SET UP. SEVERAL POSSIBILITIES ARE PRESENTED AS PART O0F THIS
MONITOR PROGRAM. THESE FUNCTIONS INCLUDE FILLING A BLOCK OF MEMORY WITH
A SPECIFIC DATA ' VALUE, SEARCHING MEMORY FOR A DATA PATTERN AND SHIFTIRNG
BLOCKS OF DATA FROM ONE SECTION OF MEMORY TO ANOTHER. ’ ot

THE PURPOSE OF THE MANUAL IS TO PRESENT THE READER WITH A MONITOR
PROGRAM WHICH CAN BE USED AS IS, OR MODIFIED OR EXPANDED TO CREATE A
REAL “OPERATING SYSTEM"™ FOR ONE'S OWN COMPUTER SYSTEM. THE MONI!TOR PRO~-
GRAM CAN BE AN INVALUABLE ASSET TO ANY COMPUTER SYSTEM. ITS ABILITY TO
PERFORM MANY OF THE REQUIRED 'CONVENIENCE® FUNCTIONS NEEDED TO CONTROL A
COMPUTER SYSTEM ALONG WITH THE POWER IT AFFORDS THE PROGRAMMER IN DEBUG-
GING PROGRAMS MAKES IT A °'MUST' FOR THE SERIOUS COMPUTER OWNER.

THE MNEMONICS USED IN THIS MANUAL ARE A COMBINATION OF THE ORIGINAL
MNEMONICS SUGGESTED WHEN THE 8008 wAS FIRST MARKETED, AUGMENTED WITH
ADDITIONAL MNEMONICS TO REPRESENT THE EXPANDED INSTRUCTION CAPABILITY OF
THE 8080 CPU. THE MNEMONICS THAT RELATE EXCLUSIVELY TO THE 8080 UNIT
HAVE BEEN CAREFULLY CHOSEN TO CLOSELY APPROXIMATE THOSE SUGGESTED BY
INTEL CORPORATION. FOR THOSE READERS THAT ARE NOT FAMILIAR WITH THE
MNEMONICS PRESENTED HEREIN, THE APPENDIX AT THE END OF THIS MANUAL WILL
SERVE AS A CROSS REFERENCE BETWEEN THE MNEMONICS USED HERE TO THE MNE-
MONICS IN POPULAR USE AMONG 8080 USERS.

'

o

THE BASIC FUNCTIONS AND CAPABILITIES OF A "MONITOR" PROGRAM

GENERALLY, A MONITOR PROGRAM CONSISTS OF A VARIETY OF COMMANDS WHICH
ENABLE THE COMPUTER OPERATOR TO CONTROL THE OPERATION OF THE COMPUTER
AND ITS RELATED PERIPHERAL DEVICES. THIS 1S ACHIEVED BY ENTERING COM-
MANDS ON A KEYBOARD DEVICE WHICH DIRECT THE COMPUTER TO DISPLAY AND/OR
MODIFY THE CONTENTS OF MEMORY LOCATIONS, PERFORM DATA STORAGE AND RE-
TRIEVAL ON AVAILABLE 'BULK' STORAGE PERIPHERALS AND EXECUTE OTHER PRO-
GRAMS WHICH ARE STORED IN THE COMPUTER'S MEMORY. THE MEMORY ADDRESS., OR
ADDRESSES, AFFECTED BY THE COMMAND 1S GENERALLY SPECIFIED IN THE COMMAND
INPUT. THE NUMBER OF DIFFERENT COMMANDS ONE SETS UP IN A MONITOR PRO-
GRAM WILL DEPEND ON THE AMOUNT OF MEMORY DESIRED TO DEDICATE TO THE
MONITOR PROGRAM, SINCE IT MUST RESIDE IN MEMORY, AND ON THE NUMBER OF
PERIPHERALS IT IS DESIRED TO CONTROL WITH THE MONITOR.

THE SPECIFIC 1/0 C(INPUT/OUTPUT) DEVICES USED TO OPERATE THE MONITOUR
PROGRAM WILL NATURALLY VARY FROM ONE SYSTEM TO ANOTHER. FOR THIS REASON
THE 1/0 PORTION OF THE MONITOR 1S SET UP TO CALL 'USER PROVIDED' 1/0
DRIVER ROUTINES TO PERFORM THE ACTUAL INPUTTING AND OUTPUTTING OF COM~-
MANDS AND DATA IN RESPONSE TO THE COMMANDS. THE REQUIREMENTS OF THE 1/0
DRIVERS WILL BE DESCRIBED IN THE NEXT SECTION. THIS APPROACH ENABLES
THE READER TO "CUSTOMIZE" THE MONITOR PROGRAM TO THE SPECIFIC DEVICES A~
VAILABLE ON ONE'S COMPUTER SYSTEM WITHOUT CHANGING THE INSTRUCTIONS OF
THE MONITOR PROGRAM PRESENTED HEREIN. ’

THE MONITOR PROGRAM PRESENTED IN THIS MANUAL 1S CAPABLE OF PERFORM-
ING THE FUNCTIONS MENTIONED WHILE OPERATING IN AN °'8080°' BASED MINICOM-
PUTER SYSTEM WITH AT LEAST 1.5K BYTES OF MEMORY. IF A SHORTER VERSION
1s DESIRED, THE FUNCTIONS DEEMED LESS VALUABLE TO THE USER CAN BE DE-
LETED. EACH FUNCTION AND ITS ASSOCIATED ROUTINECS) 1S EXPLAINED IN DE-
TAIL TO ENABLE THE READER TO UNDERSTAND THE OPERATION OF THE PROGRAM.
MANY OF THE ROUTINES DESCRIBED MAY BE APPLICABLE TO OTHER TYPES OF FUNC-
TIONS WHICH ONE MAY DESIRE TO INCLUDE IN ONE'S MONITUR PROGRAM. OR.
THEY MAY BE UTILIZED IN DEVELOPING OTHER PROGRAMS. AS EACH ROUTINE IS
PRESENTED A DETAILED, HIGHLY COMMENTED LISTING 1S PROVIDED. A COMPLETE
ASSEMBLED LISTING OF THE MONITOR PROGRAM IS THEN PRESENTED, TO WHICH THE
READER MAY ADD THE CUSTOM 1/0 DRIVER ROUTINES AND IMPLEMENT THE MONITOR
PROGRAM ON AN ' 8080 ' BASED SYSTEM. (READERS THAT DESIRE TO IMPLEMENT
THIS PROGRAM ON OTHER TYPES OF SYSTEMS SHOULD FIND THE INFORMATION CON-
TAINED IN THIS MANUAL OF CONSIDERABLE VALUE. THAT IS, BY CAREFULLY EXA-
MINING THE ROUTINE DESCRIPTIONS, FLOWCHARTS AND LISTING COMMENTS, EQUI-
VALENT ROUTINES CAN BE WRITTEN FOR OTHER TYPES OF CPU'S.) i

1/0 CINPUT/0UTPUT) CONSIDERATIONS FOR THE MONITOR PROGRAM

BEFORE DISCUSSING THE ACTUAL ROUTINES WHICH MAKE UP THE MONITOR
PROGRAM, IT IS NECESSARY TO MENTION SEVERAL POINTS ABOUT THE CHARACTER
SET USED AND DESCRIBE THE REQUIREMENTS FOR THE 1/0 PROGRAMMING.

. THE CHARACTER CODE USED BY THE MONITOR PROGRAM FOR ENTERING COM-
MANDS AND OUTPUTTING CHARACTERS TO THE DISPLAY DEVICE IS ASSUMED TO BE
“ASCI1"™ ENCODED CHARACTERS. THE "ASCII'" CHARACTER SET CONSIST UF A 7-
BIT CODE WHICH 1S CAPABLE OF DEFINING UP TO 128 "CHARACTERS." THE MON-
ITOR PROGRAM DESCRIBED HEREIN UTILIZES A SUBSET OF THIS CODE CONSISTING
OF 31 DIFFERENT CHARACTERS - 15 “UPPER CASE" LETTERS OF THE ALPHABET,

-3 -

— — —

L GEEDEE G

THE NUMERALS 0 - 9, AND SEVERAL SYMBOLS AND PUNCTUATION MARKS. OFTEN,
WHEN COMMUNICATING WITH AN ASCI1 ENCODED 1/0 DEVICE, AN 8'TH BIT IS ADD-
ED TO THE SEVEN BIT ASCI1 CODE. THIS 8°TH BIT IS OFTEN REFERRED 10 AS
THE "PARITY" BIT BECAUSE IT CAN BE USED TO SERVE AS AN ERROR DETECTING
BIT. MANY 1/0 DEVICES ARE DESIGNED TO OPERATE WITH EIGHT BITS OF INFOR~-
MATION, REGARDLESS OF WHETHER OR NOT "PARITY"™ ERROR CHECKING METHODS
ARE BEING UTILIZED. THE MONITOR PROGRAM DESCRIBED HEREIN ASSUMES THAT
THE "PARITY" POSITYON 1S ALWAYS IN A LOGIC ONE STATE. fTHE “ASCII" CHAR~-
ACTER CODES™ USED BY THE MONITOR ARE PRESENTED BELOW ALONG WITH THE CODES
FOR OTHER “ASCII"™ CHARACTERS GENERALLY PROVIDED BY "ASCI11" ENCODED DE-
VICES. FOR I/0 DEVICES WHICH DO NOT OPERATE WITH THE "ASCI11" CHARACTER
SET, YHE PROBLEM OF CODE CONVERSION IS EASILY TAKEN CARE OF BY PROGRAM-
MING THE 1/0 DRIVER TO MAKE THE NECESSARY CONVERSION BETWEEN THE ASCII

‘CODE DEFINED HERE TO THE CODE UTILIZED BY THE DEVICE.

CHARACTERS BINARY 0CTAL CHARACTERS BINARY 0CTAL

SYMBOLIZED CODE REP SYMBOLIZED CODE REP
11 000 001 301 ! 10 100 o001 241
11 000 o10 302 " 10 100 0Ol0 242
11 000 011 303 # 10 100 011 243
11 000 100 304 $ 10 100 100 244
11 000 10t 305 2 10 100 101 245
11 000 110 306 & 10 100 110 246
11 000 111 307 ' 10 100 111 247
11 001 000 310 4 10 101 o000 250
11 001! o0l 311) 10 10! o0! 251
11 001 oO1l10 312 * 10 101 010 252
11 001 O11 313 + 10 101 011 253
11 00! 100 314 s 10 10t 100 254

10 101 101 255
10 101 110 256

11 001 101 315
11 001 110 316

T -0u/ﬂN*XﬂCC-—IU‘:ﬂD'ﬂOzzr‘:c.umm-qmgnmp

11 00t 111 317 7 10 101 111 257

11 010 oo0O 320 0 10 110 000 260

11 010 ool 321 1 10 110 001 261

11 010 olo0 322 2 10 110 010 262

11 010 011 323 3 10 110 011 263

11 010 100 324 4 10 110 100 264

11 010 101 325 5 10 110 101 265

11 010 110 326 6 10 110 110 266

11 010 111 327 7 10 110 111 267

11 011 000 330 8 10 111 000 270

11 011 ool 331 9 10 111 oo1 271

i1 011 o10 332 H 10 111 o010 272

11 011 o11 333 ; 10 111 011 273

11 011 100 334 < 10 111 100 274

11 011 101 335 = 10 111 101 275

11 011 110 336 > 10 111 110 276

11 011 111 337 ? 10 111 111 277

SPACE 11 100 000 240 e 11 000 000 300
CTRL D 10 000 100 204 CTRL N 10 001 110 216
CTRL 1 10 001 o001 211 CTRL S 10 010 011 223
LINE FEED 10 001 010 212 CTRL T 10 010 100 224
CTRL L 10 001 100 214 CTRL U 10 010 101 225
CAR-RET 10 001 101 218 RUB 0UT 11 111 111 377

74 CHARACTER ASCII1 SUBSET

THE 1/0 PORTION OF THE MONITOR PROGRAM HAS BEEN CAREFULLY STRUC-
TURED TO REMAIN SEPARATE FROM THE ACTUAL OUPERATING ROUTINES OF THE MON-
ITOR PROGRAM. THIS ALLOWS THE USER TO INCORPORATE WHATEVER 1/0 DRIVER
ROUTINES. MAY BE REQUIRED FOR THE SPECIFIC DEVICES AVAILABLE WITHOUT DIS-
TURBING THE LOGIC OF THE OPERATING PROGRAM. THE USER MUST SIMPLY FOLLOW
THE RULES TO BE PRESENTED NEXT WHEN FORMING THE 1/0 ROUTINES TO GUARAN-
TEE THAT THE 1/0 DRIVER WILL PROVIDE THE NECESSARY FUNCTION WHILE MAIN-
TAINING THE INTEGRETY OF THE OPERATING PROGRAM. IF, FOR EXAMPLE, THE
PRINTER DEVICE TO BE USED IS ONE'S SYSTEM REQUIRES BAUDOT CODE, RATHER
THAN ASCIl, THE PRINTER OUTPUT ROUTINE MUST MAKE THE CONVERSION FROM THE
ASCII CODE SENT BY THE PROGRAM TO THE EQUIVALENT BAUDOT CODE EXPECTED BY
THE PRINTER.

THERE ARE FOUR SEPARATE 1/0 DRIVER ROUTINES REQUIRED BY THE MONITOR
PROGRAM AS PRESENTED. THESE ROUTINES SHOULD BE PREPARED AS SUBRUOUTINES
WHICH WILL BE CALLED BY THE OPERATING PROGRAM. TWO OF THE ROUTINES ARE
USED TO COMMUNICATE BETWEEN COMPUTER AND OPERATOR FOR ENTERING COMMANDS
AND DATA AND DISPLAYING THE COMMANDS AS ENTERED AND ALSO THE RESULTANT
OUTPUT AS REQUESTED BY THE COMMAND. THE OTHER TW0 ROUTINES WILL CONTROL
THE STORAGE AND RETRIEVAL OF DATA ON THE SYSTEM 'BULK' STORAGE DEVICE.
THE REQUIREMENTS FOR THESE 1/0 ROUTINES, AS FAR AS THIS MONITOR PROGRAM
IS CONCERNED, ARE PRESENTED BELOW.)

OPERATOR INPUT

THE OPERATOR INPUT ROUTINE WHEN CALLED MUST INPUT A SINGLE CHARAC-
TER FROM A DEVICE, SUCH AS A KEYBOARD, AND RETURN TO THE OPERATING PRO-
GRAM WITH THE ASCII1 CODE FOR THE INPUTTED CHARACTER IN THE ACCUMULATOR
REGISTER OF THE CPU. THIS ROUTINE, CREATED BY THE USER, SHOULD BE WRIT-
TEN TO SAVE REGISTER'S B, C» D, E, H AND L AT THE START OF THE ROUTINE
BY "PUSHING" THEM ONTO THE STACK AND THEN RETRIEVING THEM., USING THE
"POP" INSTRUCTIONS, BEFORE RETURNING TO THE CALLING PROGRAM. THIS PRAC-
TICE PROVIDES A GOOD, GENERAL PURPUSE INPUT ROUTINE FOR USE BY ANY PRO~-
GRAM THAT REQUIRES OPERATOR INPUT. THE OPERATOR INPUT ROUTINE 1S REFER-
RED TO IN THE MONITOR PROGRAM BY THE LABEL *"RCV." THERE ARE TWO POINTS
IN THIS MONITOR PROGRAM WHERE "CAL RCVY"™ IS USED TO SIGNIFY A CALL T0 THE
“"OPERATOR INPUT" SUBROUTINE. ONE IS AT THE INSTRUCTION LABELED "IN2" IN
THE "INPUT" ROUTINE (TO BE PRESENTED LATER). THE OTHER LOCATION WHICH
CALLS THIS ROUTINE IS THE LOCATION LABELED “LPIN" IN THE "INSPCL" SUB-<
ROUTINE. WHEN THIS ROUTINE 1S CALLED THE STACK POINTER IS, AT MOST,
DOWN TWO CALL LEVELS, ALLOWING UP TO 27 STACK LEVELS FOR USE BY THE US-
ER'S ROUTINE, WHICH SHOULD BE "MORE" THAN SUFFICIENT.

AN ADDITIONAL FUNCTION WHICH THE USER SHOULD PROVIDE IN THE “OPER-
ATOR INPUT" SUBROUTINE IS THE CAPABILITY TO "ECHO"™ THE CHARACTER RECEI-
VED FROM THE INPUT DEVICE TO THE DISPLAY DEVICE. THAT IS, WHEN A CHAR-
ACTER IS ENTERED ON THE KEYBOARD IT IS GENERALLY DESIRED TO HAVE THAT
CHARACTER DISPLAYED FOR THE OPERATOR TO VARIFY THE ENTRY. FOR EXAMPLE,
1F THE OPERATOR INPUT IS COMING FROM AN ELECTRONIC KEYBOARD WHICH IS
COMPLETELY SEPARATE FROM THE DISPLAY DEVIGCE, IT WOULD BE REQUIRED 10O
HAVE THE "RCV™ ROUTINE OUTPUT THE CHARACTER CODE TO THE DISPLAY DEVICE
AS EACH CHARACTER IS RECEIVED. OR, ONE MIGHT HAVE A SYSTEM INWHICH THE
INPUT DEVICE 1S COORDINATED WITH THE DISPLAY DEVICE, SUCH AS A TELETYPE
MACHINE OR TELEVISION-TYPE-WRITER, WHICH MAY BE COUPLED WITH A HARDWARE
INTERFACE TO AUTOMATICALLY ECHO THE KEYBOARD INPUT TO THE DISPLAY DE-
VICE. 1IN THIS CASE, THE "RCV" SUBROUTINE WOULD HAVE TO B‘JABLE THE IN-
TERFACE TO ECHO THE CHARACTERS WHEN ENTERED.

-5 -

—

DISPLAY OUTPUT

THE DISPLAY OUTPUT ROUTINE IS DISTINCT FROM THE “ECHO" ROUTINE DES-
CRIBED IN THE OPERATOR INPUT ROUTINE ABOVE (ALTHOUGH, IN MANY CASES, THE
“ECHO" FUNCTION OF THE "RCV" SUBROUTINE MAY SIMPLY BE OBTAINED BY CALL-
ING THIS DISPLAY OUTPUT ROUTINE AS IT IS DEFINED HERE!) THE DISPLAY
OUTPUT ROUTINE WHEN CALLED BY THE MONITOR PROGRAM MUST OUTPUT THE ASCII
ENCODED CHARACTER CONTAINED IN THE ACCUMULATOR, AT THE TIME THE ROUTINE
1S CALLED, TO THE DISPLAY DEVICE. THE ROUTINE SHOULD SAVE THE CONTENTS
OF THE CPU REGISTER'S A THRU E, H AND L BY "PUSHING" THEM ONTO THE STACK
AND THEN "POPPING'" THEM BACK UPON RETURNING TO THE CALLING PROGRAM. AS
VITH THE OPERATOR INPUT ROUTINE, THIS ALLOWS THE DISPLAY OUTPUT ROUTINE
TO SERVE AS A GENERAL PURPOSE ROUTINE FOR OTHER PROGRAMS. THE DISPLAY
OUTPUT SUBROUTINE 1S REFERENCEDIN THE MONITOR PROGRAM BY A "CAL PRINT"
INSTRUCTION. THERE ARE FIVE ROUTINES WHICH USE THE "CAL PRINT" COMMAND.
THE "ERR" ROUTINE USES THE "PRINT" SUBROUTINE TO OUTPUT ERROR MESSAGES TO
THE OPERATOR. THE DISPLAY QUTPUT ROUTINE 1S ALSO CALLED BY THE SUBROU-
TINES LABELED "MSG" (TO PRINT VARIOUS MESSAGES), "OCTOUT" (FOR PRINTING
3 DIGIT OCTAL NUMBERS)» *COLON'" (TO PRINT A :) AND "SPAC" (TO PRINT A
SPACE). VWHEN THIS ROUTINE IS CALLED THE STACK POINTER IS, AT MOST, DOWN
3 CALL LEVELS, ALLOWING UP TO 26 LEVELS FOR USE BY THIS ROUTINE.

BULK STORAGE INPUT

THE BULK STORAGE INPUT ROUTINE WHEN CALLED MUST INPUT DATA FROM THE
BULK STORAGE DEVICE. THE FORMAT FOR READING THE DATA AND DETERMINING
WHERE THE DATA IS TO BE STORED IS ENTIRELY LEFT UP TO THE USER PROVIDED
BULK INPUT ROUTINE. THE ONLY FUNCTION OF THE MONITOR PROGRAM FOR THIS
COMMAND IS TO ALLOW THE INITIATION OF A BULK INPUT VIA THE KEYBOARD AND
TO RETURN TO THE MONITOR PROGRAM UPON COMPLETION OF THE INPUT SEQUENCE.
THEREFORE, THE BULK STORAGE INPUT ROUTINE IS FREE TO USE ALL THE CPU RE-
GISTERS WHILE PERFORMING ITS DATA INPUT. THE BULK STORAGE INPUT ROUTINE
IS REFERENCED BY THE INSTRUCTION *"CAL READ™ WHICH IS LOCATED IN THE BULK
READ ROUTINE OF THE MONITOR PROGRAM. '

BULK STORAGE OUTPUT

THE BULK STORAGE QUTPUT ROUTINE WHEN CALLED MUST OUTPUT THE DATA
INDICATED TO THE BULK STORAGE DEVICE. THE DATA TO BE STORED IS DELINE-
ATED BY REGISTERS "L" AND "H" FOR THE LOW AND PAGE ADDRESS, RESPECTIVE-
LY, FOR THE START ADDRESS AND REGISTERS "E" AND "D" FOR THE LOW AND PAGE
ADDRESS, RESPECTIVELY, FOR THE ENDING ADDRESS OF THE BLOCK OF DATA TO BE
OUTRUT. AS WITH THE BULK INPUT ROUTINE, THE ACTUAL FORMAT AND PROCEDURE
FOR OUTPUTTINGTHE DATAILS EwTIRLLY CONTROLLED BY THIS ROUTINE. THE MON-
ITOR PROGRAM SIMPLY SETS UP THE REGISTERS DESIGNATING THE LIMITS OF THE
BLOCK TO BE OUTPUT. THIS BULK STORAGE OUTPUT ROUTINE 1§ CALLED BY THE
BULK WRITE ROUTINE BY THE INSTRUCTION *"CAL PUNCH.'"

170 INTEGRITY CONSIDERATIONS

THE OPTION OF PERFORMING ERROR CHECKS ON THE TRANSMISSION OF DATA
TO AND FROM THE PERIPHERAL DEVICES IS LEFT TO THE USER. "THIS IS DONE’
BECAUSE THERE ARE A VARITY OF ERROR CHECKING TECHNIQUES POSSIBLE, DEPEN-

-6 -

DING ON THE TYPE OF DEVICE BEING USED IN THE SYSTEM. FOR EXAMPLE. A
USER WITH A PAPER TAPE READER SYSTEM MAY ELECT TO PROVIDE FOR PARITY
CHECKING TECHNIQUES. SUCH TECHNIQUES MAY BE INPLEMENTED USING "EVEN" OR
""ODD" PARITY CONVENTIONS DEPENDING ON THE TYPE OF DEVICE, OR EVEN THE
USER'S PREFERENCE. ANOTHER TYPE OF 1/0 DEVICE, SUCH AS A COMMERICAL
MAGNETIC TAPE, OR DISC UNIT, MAY HAVE AUTOMATIC "BLOCK" ERROR CHECKING
CAPABILITIES, IN WHICH CASE THE USER WOULD WANT TO HAVE THE APPROPRIATE
170 ROUTINE TEST FOR ERROR CONDITIONS AND TAKE APPROPROATE ACTION. THE
USER MAY ELECT, IF ERROR CHECKING CAPABILITIES ARE IMPLEMENTED, TO ADD
ADDITIONAL ROUTINES THAT PRESENT ERROR MESSAGES TO THE OPERATOR, OR THAT
DIRECT THE OPERATION OF "ERROR CORRECTING" TECHNIQUES. IN ANY EVENT.
SUCH TECHNIQUES ARE OUTSIDE THE SCOPE IF THIS PARTICULAR PUBLICATION AND
WILL BE LEFT TO THE USER TO IMPLEMENT AS DESIRED.

MEMORY UTILIZATION OF THE MONITOR PROGRAM

THE MONITOR PROGRAM PRESENTED IN THIS MANUAL MAKES OPTIMUM USE OF
THE MEMORY BY UTILIZING EFFECTIVE PROGRAMMING TECHNIQUES WHICH TAKE AD-
VANTAGE OF THE '8080°' INSTRUCTION SET. THE ACTUAL AMOUNT OF MEMORY USED
BY THE MONITOR WILL VARY DEPENDING ON THE NUMBER OF COMMANDS ONE INCLU-
DES IN ONE'S VERSION AND ON THE AMOUNT OF PROGRAMMING REQUIRED TO CON-
TROL THE PERIPHERAL DEVICES. THE MEMORY USAGE FOR THE VERSION PRESENTED
IN THIS MANUAL IS AS FOLLOWS.

THE OPERATING PORTION OF THE PROGRAM RESIDES IN PAGES 14 THROUGH
PART OF PAGE 17. THE USER PROVIDED 1/0 ROUTINES MAY BE PLACED ON THE
REMAINDER OF PAGE 17, OR, IF MORE ROOM 1S REQUIRED, THE USER MAY PUT
THE 1/0 ROUTINES WHEREVER THEY WILL BE MOST CONVENIENT (FOR EXAMPLE,
THE BULK STORAGE 1/0 ROUTINES MAY ALREADY RESIDE IN MEMORY ON A "PROM").
PORTIONS OF PAGE 000 ARE USED AS A "SCRATCH PAD" AREA FOR THE STORAGE OF
POINTERS, COUNTERS AND TEMPORARY DATA BY THE MONITOR PROGRAM. THERE IS
ALSO A SECTION ON PAGE 000 WHICH CONTAINS '""CANNED" MESSAGES AND THE LAST
40 OCTAL LOCATIONS ARE USED AS THE INPUT BUFFER FOR STORING THE COM- =
MANDS AND DATA ENTERED ON THE KEYBOARD INPUT DEVICE. ONE OF THE RESTART
LOCATIONS (LOCATION 070> IS USED BY THE BREAKPOINT ROUTINE TO ALLOW A
SINGLE RESTART INSTRUCTION TO BE USED TO SET A BREAKPOINT IN A PRUGRAM
BEING DEBUGGED. THE LOOK-UP TABLE FOR THE COMMAND ROUTINE HAS BEEN $ET
UP ON PAGE 000 TO ALLOW ROOM FOR EXPANSION, AS WILL BE EXPLAINED LATER.
THE PROGRAM'S "STACK" STARTS AT LOCATION 337 ON PAGE 000 AND WORKS DOWN
FROM THAT POINT, ALLOWING UP TO 29 CALL LEVELS WITH THE CURRENT NUMBER
OF COMMANDS DEFINED.

THE LOCATION OF THE OPERATING PORTION OF THE MONITOR PROGRAM FOR A
SPECIFIC USER'S SYSTEM SHOULD BE IN THE UPPER PORTION OF THE AVAILABLE’
MEMORY. THIS ARRANGEMENT HAS BEEN FOUND TO BE MOST ADVANTAGEOUS FOR A
MONITOR PROGRAM, AS IT LEAVES THE LOWER PORTION OF THE MEMORY OPEN TO BE
USED FOR PROGRAM DEVELOPMENT. THE MEMORY MAP FOR THIS MONITOR PROGRAM
AS ORIGINED IN THIS MANUAL 15 PRESENTED ON THE FOLLOWING PAGE. THE EX-
ACT LOCATIONS USED FOR THE TEMPORARY STORAGE ON PAGE 000 WILL BE DETAIL-
ED IN THE ASSEMBLED LISTING.

MONITOR COMMANDS

THE MONITOR PROGRAM IS ESSENTIALLY A COLLECTION OF FUNCTIONS WHICH
ENABLE THE OPERATOR OR PROGRAMMER TO CONTROL THE OVER-ALL OPERATION OF
THE COMPUTER‘. THESE FUNCTIONS ARE INITIATED BY THE OPERATOR ENTERING

i

—

PAGE
00

AVAILABLE SPACE

RESTART " 7" FOR
BREAKPOINT

AVAILABLE SPACE

POINTER, COUNTER
AND TEMPURARY
STORAGE AREA

COMMAND
LOOK UP
TABLLE

STACK AREA

INPUT BUFFER

AVAILABLE SPACE
PAGES 01
THRU
13

PAGE
14 COMMAND INPUT
ROUTINE

INPUT ROUTINE

"COMMANDS™ ON THE "OPERATOR INPUT DEVICE."

MONITOR UTILITY
SUBROUTINES

MODIFY

‘DUMP
WRITE
READ

BREAKPOINT

G0 TO

EXAMINE REGISTERS

FILL

SEARCH

TRANS FER

USER PROVIDED
170 DRIVER
ROUTINES

EACH COMMAND DIRECTS THE

MONITOR PROGRAM TO THE APPROPRIATE ROUTINE TO PERFORM THE FUNCTION IN-

DICATED . THE FORMAT FOR ENTERING EACH COMMAND MAY VARY FROM ONE TO AN-
OTHER, DEPENDING ON WHETHER THE COMMAND REQUIRES MEMORY ADDRESSES OR DA-
TA TO BE SPECIFIED. THE FOLLOWING IS A SUMMARY OF THE VARIOUS COMMANDS
PRESENTED IN THIS MONITOR PROGRAM ALONG WITH A BRIEF DESCRIPTION OF THE

OPERATION EACH PERFORMS.

"BREAKPOINT" (B) - USED TO EXAMINE THE OPERATION OF A PROGRAM
IN MEMORY AT THE LOCATION SPECIFIED IN THE
COMMAND. WHEN THE PROGRAM REACHES THE
“BREAKPDINT,* CONTROL RETURNS TO THE MONI-
TOR PROGRAM AND THE CONTENTS OF THE CPU ~
REGISTERS AND FLAG STATUS ARE SAVED.’

“"MEMORY DUMP"™ (D) - OUTPUTS THE CONTENTS OF THE MEMORY LOCA-
TIONS SPECIFIED TO THE D;SPLAY DEVICEZ’

"“MEMORY FILL" (F) - FILLS THE MEMORY LOCATIONS SPECIFIED VITH
THE DATA INDICATED IN THE COMMAND.

—

r

e

‘o TN cun N cun BN aun B o B g

—

"GO TO" (G

"MEMORY MODIFY"™ (M)

“"BULK READ" (R)
“SEARCH" s
"TRANSFER" T
"BULK WRITE" W

"“EXAMINE REG'S"™ (X

- STARTS EXECUTION OF A PROGRAM BY JUMPING

TO THE ADDRESS SPECIFIED IN THE COMMAND.
THE CPU REGISTERS, INCLUDING THE STACK ~
POINTER, AND THE FLAG STATUS WILL BE SET .
TO THE VALUES STORED IN THE "VIRTUAL" CPU
CPU REGISTER STORAGE. THESE VALUES ARE
ENTERED BY EITHER THE "EXAMINE REGISTER"
COMMAND OR BY THE LAST "BREAKPOINT"™ EN-
COUNTERED. ’

DISPLAYS THE CONTENTS OF THE MEMORY LOCA-
TION SPECIFIED. THE OPERATOR MAY THEN ~
CHANGE THE CONTENTS BY ENTERING THE DESIR~-
ED VALUE, AFTER WHICH THE NEXT LOCATION
WILL BE DISPLAYED, OR CONTINUE ON TO DIS-
PLAY THE NEXT LOCATION WITHOUT CHANGING
THE PREVIOUS ONE, OR RETURN TO THE COMMAND
MODE.

CALLS THE USER PROVIDED BULK STORAGE INPUT
ROUTINE TO READ DATA IN FROM THE BULK STO-
AGE DEVICE. =

SEARCHES THE MEMORY LOCATIONS SPECIFIED
FOR THE 8 BIT DATA PATTERN ENTERED IN THE
COMMAND AND PRINTS THE MEMORY ADDRESSES OF
EACH LOCATION THAT MATCHES. ’

TRANSFERS THE CONTENTS OF THE SECTION OF
MEMORY SPECIFIED TO THE SECTION OF MEMORY
INDICATED BY THE THIRD ADDRESS SPECIFIED
IN THE COMMAND. o

CALLS THE USER PROVIDED BULK STORAGE OUT-
PUT ROUTINE TO WRITE A SPECIFIED BLOCK OF
MEMORY OUT TO THE BULK STORAGE DEV!QE. '

DISPLAYS THE CONTENTS OF THE SPECIFIED
"“VIRTUAL" CPU REGISTER OR FLAG STATUS.

THE "VIRTUAL"™ CPU REGISTERS AND FLAG S5TA-
TUS 1S THEIR ACTUAL CONTENTS AT THE TIME A
"BREAKPOINT" IS ENCOUNTERED, OR, AT THE
TIME A "GO TO"™ IS ISSUED. THE VALUE OF
THE "UIRTUAL" CPU REGISTERS AND THE FLAG
STATUS MAY BE ALTERED BY THIS COMMAND.’

EACH OF THE COMMANDS ARE ENTERED BY THE OPERATOR ENTERING THE LET-
TER ILLUSTRATED IN THE PARENTHESIS FOLLOWED BY WHATEVER DATA IS REQUIRED
70 DEFINE THE ACTION TO BE TAKEN. MOST OF THE COMMANDS REQUIRE THE SPE-~
CIFICATION IF EITHER COMMAND TYPE, MEMORY ADDRESS (OR ADDRESSES), OR DA-
TA, OR A COMBINATION OF THESE TO DEFINE THE EXACT OPERATION OF THE COM-

MAND. THE FORMAT FOR ENTERI

ING PAGE.

NG EACH COMMAND IS SUMMARIZED ON THE FOLLOW-

- Q -

—

COMMAND COMMAND FORMAT
BREAKPOINT B HHH LLL

MEMORY DUMP D HHH LLL,MMM NNN
MEMORY FILL F HHH LLL,MMM NNN,DDD
GO TO G HHH LLL

MEMORY MODIFY M HHH LLL

BULK READ R

SEARCH S HHH LLL,MMM NNN,DDD
TRANSFER T HHH LLL,MMM NNN,YYY Z2ZZ
BULK WRITE W HHH LLL,MMM NNN
EXAMINE REGISTER XP

WHERE *“HHH LLL", "“MMM NNN", AND "YYY ZZZ" INDICATE MEMORY ADDRESS'S AF-
FECTED BY THE COMMANDS, "DDD* 1S THE DATA VALUE USED IN THE COMMAND AND
p 1S THE REGISTER DESIGNATION IN THE EXAMINE REGISTER COMMAND. "P"

IS REPLACED BY THE LETTERS "A" THRU "E," "H," "L" OR "S" TO INDICATE THE
“YIRTUAL'" CPU REGISTER TO BE EXAMINED OR THE LETTER "F" TO INDICATE THE
FLAG STATUS IS TO BE DISPLAYED.

THE MEMORY ADDRESS AND DATA INFORMATION SHOWN ABOVE USES GROUPS OF
THREE OCTAL DIGITS TO SPECIFY THE COMMAND'S OPERATION. EACH GROUP HAS
A POSSIBLE RANGE OF VALUES FROM 000 TO 377. MEMORY ADDRESSES ARE SPEC-
IFIED BY TW0 GROUPS, THE FIRST GROUP BEING THE HIGH, OR PAGE, ADDRESS,
WHILE THE SECOND GROUP DEFINES THE LOW PORTION OF THE ADDRESS. THE DATA
VALUE 1S SPECIFIED BY A SINGLE THREE DIGIT GROUPING. THIS NOTATION WAS’
CHOSEN BECAUSE IT IS A GENERALLY ACCEPTED FORMAT FOR REPRESENTING 8-BIT
BINARY INFORMATION, WHICH SHOULD BE FAMILIAR TO MOST MICROCOMPUTER US-
ER'S. IT SHOULD BE NOTED THAT WHEN ENTERING A COMMAND, LEADING ZEROS
MAY BE DELETED, HOWEVER, EACH GROUP MUST BE REPRESENTED BY AT LEAST ONE
DIGIT. THAT 1S, IF THE MEMORY LOCATION 000 000 IS TO BE MODIFIED, THE
COMMAND MAY BE ENTERED USING ONE OF THE FOLLOWING FORMS. ’)

M 000 00O
OR
MO0O

THE MONITOR PROGRAM
GENERAL UTILITY SUBROUTINES

THERE ARE. A GROUP OF SUBROUTINES USED BY THE MAJOR ROUTINES OF THE
MONITOR PROGRAM WHICH PERFORM MANY OF THE COMMON TASKS REQUIRED BY THESE

- ROUTINES. SUCH SMALL SEQUENCES OF INSTRUCTIONS ARE REFERRED TO AS "UTI-

ITY*" SUBROUTINES BECAUSE OF THEIR BROAD, GENERAL USAGE THROUGH-OUT

THIS PROGRAM. THESE SUBROUTINES ARE PRESENTED IN THIS SECTION TO POINT
OUT IMPORTANT FACTORS RELATING TO THEIR OPERATION SO THAT THE READER MAY
HAVE A GOOD UNDERSTANDING OF THE SUBROUTINES WHICH FORM THE BASE OF THE
MONITOR PROGRAM« ALTHOUGH THESE SUBROUTINES WERE WRITTEN FOR THE MONI-
TOR PROGRAM, THE READER MAY FIND MANY OF THEM USEFUL IN APPLYING THEM
TO OTHER PROGRAMS ONE MAY DEVELOP. ’) '

THIS FIRST "UTILITY" SUBROUTINE PERFORMS THE TYPE OF OPERATION FOUND

IN MOST PROGRAMS WHICH STORE DOUBLE PRECISION MEMORY POINTERS IN A TABLE
IN MEMORY. THIS SUBROUTINE INCREMENTS A DOUBLE PRE(}{.S:ION VALUE STORED

- 10 -

!

IN CONSECUTIVE MEMORY LOCATIONS. THE LISTING FOR THIS SUBROUTINE IS
PRESENTED BELOW. ’

MNEMONIC COMMENTS
INCR, INM /INCR CONTENTS OF MEM LOC
RFZ /1F NOT ZERO, RET
INL /PNT TO NXT LOC
INM /INCR 2ND HALF
RET /RET TO CALLING PGM

THE NEXT GROUP OF SUBROUTINES PRESENTED BELOW ARE USED TO OUTPUT
VARIOUS MESSAGES TO THE DISPLAY OUTPUT DEVICE. THREE OF THESE MESSAGE
PRINTOUT ROUTINES OUTPUT A FIXED MESSAGE TO THE PRINTER. THE ROUTINE
LABELED "SPAC" OUTPUTS A SPACE CHARACTER (ASCII CODE '240') AND THE ROU-
TINE "COLON" OUTPUTS A COLON CASCII CODE '272') BY LOADING THE RESPEC-
TIVE CODES IN THE ACCUMULATOR AND CALLING THE DISPLAY OUTPUT ROUTINE.
"HDLN" SETS UP A POINTER TO THE "CANNED" MESSAGE "CARRIAGE-RETURN/LINE-
FEED" AND THEN FALLS THROUGH TO THE SUBROUTINE "MSG" TO PRINT THE "CR-
LF" COMBINATION. THE "MSG" SUBROUTINE OUTPUTS A STRING OF GCHARACTERS
STORED IN MEMORY TO THE DISPLAY DEVICE UNTIL A “ZERO"™ BYTE IS ENCOUNTER~
ED. THE PROGRAM CALLING "MSG" SIMPLY SETS REGISTERS “H" AND "L" TO THE
START ADDRESS OF THE MESSAGE TO BE PRINTED AND CALLS "MSG." THIS SUB-
ROUTINE MAY BE OF USE TO THE READER IN DEVELOPING PROGRAMS WHICH REQUIRE
THE PRINTOUT OF '"CANNED MESSAGES." THE SUBROUTINE LABELED "MCONT" OUT-
PUTS A "CR/LF" FOLLOWED BY THE MEMORY ADDRESS CONTAINED IN LOCATIONS 166
AND 167 ON PAGE 000. LOCATION 167, WHiICH CONTAINS THE PAGE PORTION OF
THE ADDRESS, IS PRINTED FOLLOWED BY A $PACE AND THEN THE LOW PORTION,
CONTAINED IN LOCATION 166. .THIS IS USED BY SEVERAL ROUTINES, SUCH AS
THE "MODIFY," “DUMP" AND “SEARCH" ROUTINES, TO PRINT THE AFFECTIVE MEM~-
ORY ADDRESSES. THE MEMORY ADDRESS 1S PRINTED BY CALLING THE SUBROUTINE
*PRT166" WHICH SETS UP EACH HALF OF THE ADDRESS AND CALLS "O0CTOUT" TO
PRINT THEM. "OCTOUT" SEPARATES EACH DIGIT FROM THE 8-BIT BYTE, FORMS
THE ASCII UODE FOR THE DIGIT AND CALLS THE DISPLAY OUTPUT ROUTINE TO
PRINT IT. THE SUBROUTINE LABELED "MEMPRT® PRINTS THE CONTENTS OF THE
MEMORY LUOCATION INDICATED BY THE POINTER AT LOCATION 166 AND 167 ON PAGE
000. THIS ROUTINE FETCHES THE MEMORY CONTENTS AND THEN CALLS "OCTOUT"
PRINT IT. ') o Co -

MNEMONIC COMMENTS
SPAC, LAI 240 /SET ASCII CODE FOR SPACE
JMP PRINT /PRINT SPACE AND RET
/
COLON, LAI 272 " /SET ASCII CODE FOR s
JMP PRINT /PRINT COLON AND RET
p A
HDLN, LXH 134 000 /SET PNTR TO C/R,L/F MSG
7 . ol A
MSG, LaM /FETCH CHAR TO PRINT
NDA Z/7END OF MS$G CHAR?
RTZ /YES, RET T0 CALLING PGM
GAL PRINT /NO, PRINT CHAR
INXH /INCR MEM PNTR
JMP MSG /CONTINUE PRINT OUT
’ i :

- 11 =-

—

[|

MNEMONIC COMMENTS
/
MCONT, CAL HDLN /PRINT C/R.» L/F
JMP PRTI166 /PRINT ADDR TO MODIFY AND RET
/
0CTOUT, LLA /SAVE OCTAL NUMBER TO PRINT
RLC /POSITION HUNDRED'S DIGIT
RLC ' - ’
NDI 003 /MASK OFF OTHER BITS
ORI 260 /FORM ASCII CODE
CAL PRINT /PRINT DIGIT
LAL) /FETCH OCTAL NUMBER
RRC /POSITION TEN'S DIGIT
RRC :
RRC
NDI 007 /MASK OFF OTHER DIGITS
ORI 260 /FORM ASCII CODE =
CAL PRINT /PRINT DIGIT
LAL k /FETCH OCTAL NUMBER
NDI 007 /7MASK OFF OTHER DIGITS
ORI 260 /FORM ASCII CODE ~
JMP PRINT /PRINT DIGIT AND RET
/
PRT166, LXH 167 000 /SET PNTR TO LO ADDR
LAM /FETCH PG ADDR
NDI 077
CAL ocTtouT /PRINT PAGE ADDR
CAL SPAC /PRINT A SPACE
LLI 166 /SET PNTR TO LO ADDR
LAM /FETCH LO ADDR
CAL OCTOUT /PRINT LO ADDR
RET
/
MEMPRT, LHLD 166 000 /SET PNTR TO MEM LOC
LAM /FETCH CURRENT MEM CONTENTS
JMP OCTOUT /PRINT CONTENTS AND RET

THE READER SHOULD NOW UNDERSTAND THAT THE MONITOR PROGRAM IS CON-
TROLLED BY THE OPERATOR ENTERING COMMANDS ON THE OPERATOR INPUT DEVICE.
ONCE THE COMMAND IS ENTERED AND RECOGNIZED, THE COMPUTER JUMPS TO THE ~
MAJOR ROUTINE TO PERFORM THE DESIGNATED FUNCTION. WHEN THE MAJOR ROU~-
TINE IS ENTERED, IT MAY BE NECESSARY TO RETRIEVE MORE INFORMATION FROM
THE INPUT BUFFER IN ORDER TO PROCESS THE COMMAND. THE ADDITIONAL DATA
1S ALMOST ALWAYS IN THE FORM OF OCTAL DIGITS WHIUH SPECIFY MEMORY AD-"
DRESSES OR DATA. THIS INFORMATION 1S STORED IN THE INPUT BUFFER A$ A
STRING OF ASCI! CHARACTERS AND MUST BE TRANSLATED INTO ITS EQUIVALENT
BINARY VALUE(S) BEFORE THE MAJOR ROUTINE CAN USE IT. SINCE THlS FUNC-
TION IS A COMMON PROCESS, THE FOLLOWING ASCII TO OCTAL AND OCTAL TO Bl-
NARY CONVERSION SUBROUTINES ARE USED TO PERFORM THE TRANSLATION. THE
SUBROUTINE "OCTNM" READS IN A MEMORY ADDRESS, CONVERTS IT TO THE BINARY
VALUE AND STORES IT IN LOCATIONS 166 AND 167 ON PAGE 000. IF A SECOND
ADDRESS FOLLOWS THE FIRST IN THE INPUT BUFFER, THE SECOND ADDRESS WILL
BE CONVERTED TO BINARY AND STORED IN LOCATIONS 170 AND 171 ON PAGE 000.
IF THERE IS NO SECOND ADDRESS, THE FIRST ADDRESS WILL BE STORED AGAINTIN
LOCATIONS 170 AND 171+ THE TWO ADDRESSES THUS STORED ARE THEN CHECRED"
AGAINST EACH OTHER TO 'DETERMINE THAT THE FIRST 1S LESS THAN OR EQUAL TO
THE SECOND. IF NOT, AN ERROR MESSAGE IS PRINTED AND CONTROL RETURNS TO
THE COMMAND MODE. ALSO, AS THE CONVERSION 1S BEING PERFORMED, THE INPUT

- 19 -

c

—

IS CHECKED FOR POSSIBLE ERRORS, SUCH AS INVALID OCTAL NUMBERS (I.E. 8;9)
OR INVALID ENTRIES (l.E. ONLY ONE THREE DIGIT GROUP DEFINING AN AD<
DRESS). IF SUCH ERRORS ARE FOUND, AN ERROR MESSAGE IS PRINTED AND CON-
TROL RETURNS TO THE COMMAND MODE. THE ACTUAL ASCII 10 OCTAL (“DCDNM*)
AND OCTAL TO BINARY ("OCT") ROUTINES ARE IN THE FORM OF SUBROUTINES TO
ALLOW THEM TO BE CALLED SEPARATELY WHEN REQUIRED.

MNEMONIC COMMENTS

/

OCTNM, LAE

STA 165 000 /SAVE INP BFR PNTR

CAL OCTPR /CONVERT 1ST OCTAL PAIR
LI 166 /SET PNTR TO LO ADDR 5TRAGE
LMB /SAVE LO HALF OF LO ADDR’
INL . . ‘ :

LMC /SAVE PG HALF OF LO ADDR
LDAD /FETCH NXT CHAR

CPIl 254 ' /CHAR = COMMA?

JFZ SGL /N0, ONLY ONE ENTRY

INE /YES, INCR INP BFR PNTR
LAE) ’)

STA 165 000 /SAVE INP BFR PNTR

CAL OCTPR /CONVERT 2ND OCTAL PAIR
SeL, LL1 170 /SET PNTR TO H! ADDR STRAGE
LMB) /SAVE LO HALF OF HI ADDR
INL

LMC /SAVE PG HALF OF HI ADDR
LAC o

LLt 167 /1S HI ADDR < LO ADDR?

CPM : ’)

JTC ERR /YES, PRINT ERROR

RFZ /1F PG HALF NOT =, RET

INL /ELSE, CHECK LO HALF

LAM)

LLI 166 /1S HI ADDR < LO ADDR?

CPM ’

JTC ERR /YES, PRINT ERROR MSG

RET /NO, RET TO CALLING PGM

/

OCTPR, CAL DCDNM /DECODE 1ST OCTAL NUMBER
LCB /SAVE OCTAL NUMBER

INE /1INCR INP BFR PNTR

/ FALL THRU TO DECODE 2ND NMBR
/

DCDNM, LXH 150 000 /SET PNTR TO DIGIT TABLE
LMH /CLEAR TBL BY STORING 000.
INL : v
LMH

INL

LMH

LOOP., CAL FNUM /CHECK FOR VALID NUMBER
JTS CKLNH /1F ROT, CHECK CHAR CNT = 0
LDAD /FETCH CHAR)

NDI 007 /MASK OFF 260

LXH 150 000 /SET PNTR TO DIGIT TABLE
LBM /TABLE AT LOC 150 PG 00

- 13 -

—

MNEMONIC COMMENTS
LMA /AND SHIFT OTHER NUMBERS
INL /UP THRU THE TABLE
Lam
LMB
INL
MA
INE /INCR INP BFR PNTR
JMP LOOP /FETCH NXT NUMBER
/
CKLNH, LTA 165 000 /FETCH ORIG INP BFR PNTR
CPE /1S CHAR CNT = 07
JTZ ERR /YES, PRINT ERROR MSG
caL ocTt /FETCH FINAL O0CTAL NUMBER
JFS ERR /1F INVALID, PRINT ERR MSG
RET /ELSE, RET TO CALLING PGM
/ it
FNUM, LDAD /FETCH ASCII DIGIT
CPI 260 /VALID NUMBER?
RTS /N0, RET VWITH S FLAG SET
sul 270 /CHECK UPPER LIMIT BY
ADI 200 /SETTING S FLAG 10 PROPER
RET /STATE AND RETURN
/ 4 A
0CT, LLI 152 /SET PNTR TO 3RD DIGIT
LaM)
CPl 004 /1S 3RD DIGIT > 32
RFS /YES, RET WITH S FLAG RESET
NDI 003 /CLEAR CARRY
RRC /POSITION DIGIT
RRC . :
LBA /SAVE IN REG B
DCL /DECR PNTR
LaM /FETCH NEXT DIGIT
RLC /POSITION DIGIT”
RLC . e s
RLC
ADB /ADD TO REG B
oL /DECR PNTR
ADM
LBA /SAVE FINAL NUMBER
LAI 200 /SET S FLAG TO INDICATE
NDA /THAT THE NUMBER 1§ VALID
RET /RET TO CALLING PGM)

THE NEXT SUBROUTINE TO BE PRESENTED IS LABELED "CKEND." THIS SUB-
ROUTINE IS UTILIZED BY A NUMBER OF MAJOR ROUTINES WHICH OPEHATE ON A
GROUP OF MEMORY LOCATIONS, SUCH AS THE "DUMP,"™ “FILL*" AND "SEARCH" ROU-
TINES. THE BASIC FUNCTION OF THIS ROUTINE IS TO COMPARE THE VALUES OF
THE POINTERS STORED IN THE DATA AREA ON PAGE 000 AT LOCATIONS 166 THRU
171 WHICH WERE INITIALLY SET UP BY INPUTTING THE COMMAND. AS EACH LOCA-
TION IS OPERATED ON, THE TWO POINTERS ARE CHECKED TO DETERMINE ! F THEY'
ARE EQUAL., INDICATING THE OPERATION IS COMPLETE. IF THEY ARE NOT EQUAL.
THE POINTER AT LOCATION 166 AND 167 1S INGCREMENTED AND THE PROCESSING 1S
CONTINUED. VWHEN THEY BECOME EQUAL, THE PROGRAM RETURNS T0 THE COMMAND"
MODE. ’

- 14 =

'anTE el el e

~

-

MNEMONIC COMMENTS
/
CKEND, LXH 171 000 /SET PNTR HI ADDR
LAM /FETCH 2ND HALF
LLI 167 /SET PNTR TO 2ND HALF LO ADDR
CcrPM /2ND HALFS EQUAL?)
JFZ CONT /NO, CONTINUE PROCESS
INL
LAM /FETCH 1ST HALF HI ADDR
LLI 166 /SET PNTR TO 1ST HALF LO ADDR
CPM /1S 1ST HALFS EQUAL?
JTZ INCMD /YES, RET TO CMND MODE
CONT», LLI 166 /NO, SET PNTR TO LO ADDR
JMP INCR

4

THERE ARE SEVERAL ROUTINES IN THE MONITOR PRUGRAM WHICH REQUIRE THE
INPUT OF ADDITIONAL INFORMATION BY THE OPERATOR AFTER THE COMMAND HAS
BEEN ENTERED. FOR EXAMPLE, THE MEMORY "MODIFY" ROUTINE DISPLAYS THE
CONTENTS OF A MEMORY LOCATION AND THEN WAITS FOR THE OPERATOR TO IWPUT
EITHER A MODIFICATION TO THE MEMORY CONTENTS OR A COMMAND TO DISPLAY THE
NEXT LOCATION OR RETURN TO THE COMMAND MODE. THE FORMAT FOR THIS En-
TRY», AS WILL BE DETAILED LATER, 1S TERMINATED BY EITHER A SPACE OR A
CARRIAGE RETURN. SINCE THE SPACE 1S WOT DEFINED AS A TERMINATING CHAR-
ACTER IN THE INPUT ROUTINE, WHICH WILL BE PRESENTED SHORTLY, THE FOLLOW-
ING INPUT ROUTINE IS USED TO ENTER THE MODIFICATIONS FOR THE "MODIFY"
AND ALSO THE "EXAMINE REGISTER" COMMAND. THIS SUBROUTINE 1S LABELED
“INSPCL." THIS ROUTINE CALLS THE OPERATOR INPUT ROUTINE TQ FETCH THE
CHARACTERS ENTERED AT THE KEYBOARD. WHEN A SPACE 1S ENTERED, THE SUBROU-
TINE RETURNS TO THE CALLING PROGRAM WITH THE MODIFICATION STORED IN THE
INPUT BUFFER ON PAGE 000. IF NO MODIFICATION HAS BEEN ENTERED, THE
MEMORY POINTER (REG'S H & L) WILL INDICATE THE START ADDRESS OF THE IN-
PUT BUFFER. OTHERWISE, 1T WILL INDICATE THE LOCATION IN THE INPUT BUFF-
ER WHICH CONTAINS THE TERMINATING '"SPACE"™ CHARACTER. WHEN A CARRIAGE
RETURN IS RECEIVED, THE "INSPCL" SUBROUTINE RETURNS TO THE COMMAND MODE.
THIS SUBROUTINE IS USED TO ENTER AT MOST 4 CHARACTERS INTO THE INPUT BUF-
FER. THEREFORE, IF THE INPUT BUFFER SHOULD BECOME FULL, INDICATING UP
TO 32 CHARACTERS ENTERED, AN ERROR CONDITION IS ASSUMED AND THE PROGRAM
JUMPE TO THE ILLEGAL ENTRY MESSAGE ROUTINE.

MNEMONIC COMMENTS

- - - - -

INSPCLs» CAL COLON /PRINT COLON

LXD 340 000 /SET PNTR TO S.A. OF INP BFR
LAE

STA 165 000 /SAVE S+Ae OF INP BFR

LPIN, CAL RCV " /INP CHAR

STAD /STORE CHAR IN INP BFR

CPI 240 /CHAR = SPACE?

JTZ LPO /YES,

CPl 215 /N0, CHAR = C/R?

JTZ INCMD /YES, RET TO COMMAND MODE
INE /NO, INCR INP BFR PNTR

JTZ ERR /1INP BFR FULL? YES, ERROR
JMP LPIN /N0, INP NXT CHAR

LPO, LAl 340 /SET UP TEST FOR CHAR COUNT
CPE ’

RET /RET TO CALLING PGM

_ls-

—

— — —

—

THE SUBROUTINE LABELED "ADRDTA" 1S USED BY SEVERAL OF THE ROUTINES
WHICH REQUIRE THE SPECIFICATION OF A PAIR OF MEMORY ADDRESSES FOLLOWED
BY A DATA BYTE, SUCH AS THE "FILL' AND "SEARCH" ROUTINES. THIS SUBROU-
TINE CALLS *“OCTNM" TO FETCH THE ADDRESSES FROM THE INPUT BUFFER AND
STORES THEM IN BINARY FORM IN THE DATA STORAGE AREA ON PAGE 000 AND
THEN CALLS "DCDNM" TO FETCH THE DATA BYTE, WHICH IS RETURNED IN REGIS~
TER B.

MNEMONIC COMMENTS
ADRDTA, LEI 342 /SET PNTR TO ADDR INP
CAL OCTNM /INP START AND END ADDR
INE /INCR TO DATA POSITION
JMP DCDNM /FETCH DATA FM INP BFR

MAJOR ROUTINES FOR THE MONITOR PROGRAM
*COMMAND" INPUT ROUTINE

TH1S SECTION DESCRIBES THE MAJOR OPERATING ROUTINES USED IN THE MON-
ITOR PROGRAM PRESENTED HEREIN. THE FIRST SUCH ROUTINE IN THIS CATEGORY
1S DESIGNATED THE 'COMMAND INPUT ROUTINE." THE COMMAND INPUT ROUTINE
1S SET UP VWITH A VERY GENERAL FORMAT WHICH MAY BE APPLIED TO OTHER PRO-
GRAMS THAT REQUIRE A COMMAND "LOOK UP" OPERATION. ESSENTIALLY, THE COM-
MAND INPUT ROUTINE ACCEPTS A COMMAND INPUT FROM THE OPERATOR INPUT DE-
VICE AND DIRECTS THE COMPUTER TO THE START ADDRESS OF THE ROUTINE WHICH
PERFORMS THE ASSOCIATED OPERATION. THE COMMAND INPUT ROUTINE IS EASILY
EXPANDABLE TO ACCOMODATE THE ADDITION OF OTHER FUNCTIONS THE USER MAY
DESIRE TO INCLUDE IN THE MONITOR PROGRAM. THE BASIC OPERATING PORTION
OF THIS ROUTINE 1S THE SAME REGARDLESS OF THE NUMBER OF COMMANDS THERE
ARE IN THE PROGRAM. TO CHANGE THE NUMBER OF COMMANDS AVAILABLE, ONE
MERELY ADDS THE INFORMATION REQUIRED TO THE COMMAND "LOOK UP TABLE" AND
INCREASES THE COMMAND COUNTER TO INDICATE THE TOTAL NUMBER OF COMMANDS.

THE FLOW CHART FOR THE COMMAND INPUT ROUTINE IS ILLUSTRATED ON THE
FOLLOWING PAGE. AS THE FLOW CHART INDICATES, THE BASIC CONGEPT OF THIS
ROUTINE 1S QUITE SIMPLE AND STRAIGHT-FORWARD. i

THE COMMAND INPUT ROUTINE STARTS BY DISPLAYING A "COMMAND MODE"
SYMBOL ON THE DISPLAY DEVICE. THIS SYMBOL (DEFINED AS A ">" MARK) INDI~-
CATES TO TRE OPERATOR THAT THE MONITOR PROGRAM 1S CURRENTLY IN THE COM-
MAND- MODE. THE OPERATOR INPUT ROUTINE (TO BE DESCRIBED NEXT) 1S THEN
CALLED TO INPUT THE COMMAND FROM THE OPERATOR INPUT DEVICE. AFTER THE
OPERATOR ENTERS THE COMMAND, THE COMMAND LOOK UP TABLE I5 SEARCHED FOR
A MATCH WITH THE FIRST CHARACTER IN THE COMMAND NOW STORED IN THE INPUT
BUFFER. THIS CHARACTER IS ASSUMED TO BE ONE OF THE COMMAND IDENTIFICA~-
TION LETTERS, AS DESCRIBED PREVIOUSLY. THE LOOK UP TABLE 1S SEARCHED BY
COMPARING THE CHARACTER ENTERED TO EVERY THIRD BYTE OF THE COMMAND "LOOK
UP" TABLE. IF A MATCH IS FOUND BETWEEN THE CHARACTER ENTERED AND AN EN-
TRY IN THE COMMAND LOOK UP TABLE, THE ADDRESS IN THE SUCCEEDING TWO BY-
TES OF THE COMMAND LOOK UP TABLE ARE OBTAINED AND TRANSFERRED TO THE
PROGRAM COUNTER, THUS CAUSING THE PROGRAM T(O "JUMP" TO THE DESIRED ROU-
TINE, AS INDICATED BY THE COMMAND. IF NO MATCH IS FOUND IN THE TABLE,
AN ILLEGAL ENTRY MESSAGE IS OUTPUT TO THE DISPLAY DEVICE AND THE PROGRAM

- 16 =

| g

|

INPUT
COMMAND

YES

PRINT JUMP TO
< ERROR gggxg”f COMMAND
MSG ? ROUTINE

THEN RETURNS TO THE START OF THE COMMAND INPUT ROUTINE TO RECEIVE A NEW
COMMAND ENTRY. THE FORMAT FOR THE COMMAND “LOOK UP" TABLE IS ILLUSTRA-
TED BELOW. ' '

BYTE N XXX
BYTE N+1 YYY
BYTE N+2 2zZZ
BYTE N+3 MMM
BYTE N+4 NNN
BYTE N+5 000
BYTE N+6 AAA

ASCII CODE FOR A COMMAND CHARACTER
LOW ADDR OF ASSOC COMMAND ROUTINE
PAGE ADDR OF ASSOC COMMAND ROUTINE
ASCII CODE FOR A COMMAND CHARACTER
LOW ADDR OF ASSOC COMMAND ROUTINE
PAGE ADDR OF ASSOC COMMAND ROUTINE
ASCII CODE FOR A COMMAND CHARACTER

WU e

REPEAT SEQUENCE TO END OF COMMAND LOOK UP TABLE

THE "“STACK POINTER"™ IN THIS MONITOR IS SET UP AT LOCATION 340 ON
PAGE 000 INITIALLY. THE STACK CAN THUS ACCEPT UP TO 29 CALLS WITH THE
CURRENT SIZE OF THE COMMAND LOOK UP TABLE, SINCE IT MAY GO FROM LOCATION
337 DOWN TO LOCATION 246, WHICH IS THE CURRENT END OF THE COMMAND LOOK
UP TABLE. THE MONITOR PROGRAM ACTUALLY ONLY USES AT MOST FIVE CALL LE-
VELS, NOT COUNTING THOSE THAT THE USER SUPPLIED 1/0 ROUTINES MAY RE-
QUIRE. ’)

THE LISTING FOR THE COMMAND "LOOK UP" TABLE FOLLOWED BY THE COMMAND
INPUT ROUTINE FOR THIS MONITOR PROGRAM IS PRESENTED BELOW. THE COMMAND
"LOOK UP"™ TABLE RESIDES ON PAGE 00 STARTING AT LOCATION 210. THIS LOCA-
TION ALLOWS EXPANSION OF THE LOOK UP TABLE BY SIMPLY ADDING THE ASCII
CODE FOR THE IDENTIFYING CHARACTER FOR THE COMMAND TO BE ADDED, FOLLOWED
BY THE LOW AND PAGE PORTION OF THE START ADDRESS OF THE NEW COMMAND, AS
EXPLAINED ABOVE. THEN SIMPLY INCREMENT THE "IMMEDIATE" PORTION OF THE
6'TH INSTRUCTION (LDI 012) IN THE COMMAND INPUT ROUTINE. THE ACTUAL OP-

- 17 -

r— ™M

ERATING PORTION OF THE COMMAND INPUT ROUTINE AND, THUS.

GRAM ITSELF,

MNEMONIC

- - -

318
107
015
304
235
01s
327
301

015
k2
323
015
o2
331

01§
307
041

016
330
062
016
306
005
o017
323
022
017
324
o6l

017
/

STARTS AT THE INSTRUCTION LABELED “INCMD."

COMMENTS

- -

/MODI FY

/DUMP

/BULK WRITE

/BULK READ
/BREAKPOINT

/G0 TO

/EXAMINE REGISTERS
/FILL MEM

/SEARCH

/TRANSFER

/COMMMAND INPUT ROUTINE

/
ORG 014 000

INCMD, LXS 340 000

LXH 130 000
CAL MSG

CAL CDIN
LTA 340 000
LDl o012

L1 2io
CKCMD, CPM
JTZ FOUND
INL

INL

INL

2. 03]

JFZ CKCMD
ERR» CAL HDLN
LAI 311

CAL PRINT
JMP INCMD
/

/SET STACK POINTER

/SET PNTR TO HEADING MSG
/PRINT C/R, L/F, >

/INPUT COMMAND FM KYBD
/FETCH COMMAND CHAR

/SET CMND NMBR CNTR

/SET CMND TABLE PNTR

/1S CMND CHAR FOUND IN TBL?
/YES, PROCESS COMMAND
/N0,ADVANCE CMND TBL PNTR

/15 LAST CMND CHECKED?
/N0, CHECK NEXT

/YES, PRINT C/R, L/F
/ILLEGAL ENTRY CODE’
/PRINT ERROR MSG

/INP NEXT COMMAND

- 18 -

THE MONITOR PRO-

- cccc

| o TN o B G

' e Y Sun TR Gue AN ga

MNEMONIC COMMENTS
FOUND, INL /ADV CMND TBL PNTR
LEM ‘ /FETCH CMND LO ADDR
INL ’

LDM /FETCH CMND PAGE ADDR
XCHG /SET UP JUMP ADDR
PCHL /JUMP TO COMMAND RTN

A FLOW CHART OF THE ENTIRE MONITOR PROGRAM IN THIS MANUAL IS PRE-
SENTED ON THE FOLLOWING PAGE. IT CAN ACTUALLY BE THOUGHT OF AS A MORE
DETAILED VERSION OF THE COMMAND INPUT ROUTINE FLOW CHART, SINCE IT DE-
FINES EACH COMMAND THAT 1S SEARCHED FOR IN THE COMMAND INPUT ROUTINE.
THE READER MAY DESIRE TO REFER TO THIS FLOW CHART FROM TIME~-TO-TIME TO
SEE HOW VARIOUS FUNCTIONS OF THE PROGRAM RELATE TO EACH OTHER.

INPUT ROUTINE

THE INPUT ROUTINE IN THIS MONITOR PROGRAM IS USED TO INPUT COMMANDS
FROM THE OPERATOR INPUT DEVICE. THE ROUTINE ACCEPTS INPUTS FROM AN EX-
TERNAL DEVICE BY CALLING THE "“RCV" SUBROUTINE AND STORES THE CHARACTERS
IN THE INPUT BUFFER RESIDING ON PAGE 00 UNTIL A TERMINATING CHARACTER IS
RECEIVEDs. THE ROUTINE ALLOWS THE CORRECTION OF INDIVIDUAL CHARACTERS
ENTERED AND THE CAPABILITY TO ABORT THE CURRENT INPUT AND RETURN TO THE
COMMAND MODE.

THE FLOW CHART FOR THE INPUT ROUTINE 1S PRESENTED ON PAGE 21. THE
READER MAY REFER TO THIS DURING THE FOLLOWING DISCUSSION.

THE FIRST OPERATION PERFORMED BY THIS ROUTINE IS TO “CLEAR OUT"
THE INPUT BUFFER AREA. THIS IS ACCOMPLISHED BY FILLING THE INPUT BUFFER
AREA WITH THE ASCI1 CODE FOR A SPACE, '240' OCTAL. THE START ADDRESS
OF THE INPUT BUFFER 1S THEN SET UP TO BEGIN STORING CHARACTERS AS THEY
ARE ENTERED VIA THE “RCV" ROUTINE. AS EACH CHARACTER IS ENTERED, IT IS
RETURNED TO THE INPUT ROUTINE IN THE ACCUMULATOR. THE CHARACTER IS THEN
TESTED TO DETERMINE IF IT IS ONE OF THE “CONTROL" CHARACTERS-

THE FIRST CONTROL CHARACTER TESTED FOR IS THE “CONTROL/D,"™ ASCLI
CODE 204 OCTAL. THIS 1S GENERALLY ENTERED BY SIMULTANEOUSLY DEPRESSING
THE "CONTROL" KEY AND THE D" ON AN ASCII ENCODED KEYBOARD. RECEIPT OF
“CONTROL D" INDICATES THE OPERATOR WISHES TO ABORT THE CURKENT INPUT AND
START A NEW COMMAND INPUT.

IF THE CHARACTER IS NOT A "CONTROL/D.," THE ROUTINE TESTS FOR ONE
OF TWO POSSIBLE "TERMINATING" CHARACTERS. THESE CHARACTERS ARE A CARRI-
AGE RETURN», ASCII CODE 215 OCTAL, AND A “CONTROL/L.,"™ ASCI1 CODE 214 OCT-
AL. THE REASON FOR PROVIDING TWO TERMINATING CHARACTERS 1S TO ALLOW THE
OPTION OF EITHER CAUSING THE DISPLAY DEVICE TO PERFORM A CARRIAGE RE-’
TURN WHEN THE TERMINATING CHARACTER 1S ENTERED, OR» TO MAINTAIN THE POS-
ITION OF THE DISPLAY DEVICE AT THE END OF THE CURRENT LINE OF INPUT. AS
IS THE CASE WITH THE FIRST COMMAND INPUT FOR THE "MODIFY" ROUTINE AND
AFTER ENTERING THE "EXAMINE REGISTER" COMMAND.

THE FINAL CONTROL CHARACTER TESTED FOR BY THE INPUT ROUTINE 1S THE

- 19 -

—

> anl <
INPUT
COMMAND
YES
PRINT MEM
MODI FY? CONTENTS
SPECIFIED
NO
YES
PRINT MEMORY PPINT ADDR OF
CONTENTS buMp? NXT MEM LOC
NO
YES
CALL USER'S ROUTINE STORE NEV
TO STORE SPECIFIED WRITE? MEM CONTENT
DATA ON BULK DEVICE !
NO
YES
CALL USER'S ROUTINE
TO READ DATA FROM READ?
BULK DEVICE
NO
SAVE REG'S
vES AND FLAGS
BREAK~
POINT?
. SET BRKPT AT RESTORE
LOCATION MEM
YES SPECIFLED
I CONTENTS
ADDRESS | SET cPU 0 102
SPECIFIED REG'S ? i J
NO
YES|
EXAMINE DISPLAY VIRTUAL
REG ? REGISTER VALUE
NO
YES
FILL BLOCK OF FILL? STORE NEW VALUE
MEM WITH DATA ? FOR VIRTUAL PEG
SPECIFIED
NO
YES
SEARCH MEM FOR PRINT ADDR'S
SEARCH? vATA vALUE | THAT MATCH
NG
TRANSFER BLOCK | YES NO PRINT
OF MEMORY TO TRANSFER? ERROR
NEW LOC IN MEM MSG 2

—

FILL INPUT BUFFER
WITH SPACES

INPUT
CHAR

RETURN TO
COMMAND MODE

TERMINATOR
CHAR ?

RETURN TO
CALLING PGM

BACK UP INPUT
BUFFER PNTR AND -ﬁ\
STORE A SPACE

RUBOUT?

STORE CHAR IN __»\
INPUT BUFFER

INPUT ROUTINE FLOW CHART

- 2] -

- — - /-

e Y oYy Y O

—

ASCII CODE 377 OCTAL, WHICH IS ASSIGNED TO THE "RUBOUT" OR "DELETE"
FUNCTION. RECEIPT OF THIS CHARACTER INDICATES TO THE INPUT ROUTINE THAT
THE PREVIOUS CHARACTER ENTERED BY THE OPERATOR 1S TO BE DELETED FROM THE
INPUT BUFFER. THIS IS ACCOMPLISHED BY BACKING UP THE INPUT BUFFER POIN-
TER ONE LOCATION AND INSERTING THE CODE FOR A "SPACE" T0 EFFECTIVELY
ERASE ONE CHARACTER ENTRY FROM THE INPUT BUFFER. AN OPERATOR MAY ERASE
MORE THAN ONE CHARACTER BY USING THE "RUBOUT" FUNCTION SEVERAL TIMES IN
SUCCESSION.

IF NONE OF THE PREVIOUSLY MENTIONED "CONTROL' CHARACTERS ARE FOUND
BY THE INPUT ROUTINE, THE CODE FOR THE CHARACTER ENTERED WILL BE STORED
IN THE INPUT BUFFER AND THE INPUT BUFFER POINTER WILL BE ADVANCED. THIS
PROCESS WILL CONTINUE AS LONG AS CHARACTERS ARE ENTERED FROM THE UPERA-
TOR INPUT DEVICE. HOWEVER, ONCE THE INPUT BUFFER 1S FILLED, NO FURTHER
STORAGE WILL TAKE PLACE, PREVENTING THE OPERATOR FROM INADVERTANTLY EN~
TERING TOO MANY CHARACTERS AND OVERFLOWING ONTO PAGE Ole. THE INPUT BUF-
FER IS CAPABLE OF HOLDING 32 CHARACTERS WHICH IS LONGER “THAN ANY OF THL
INPUTS REQUIRED BY THIS MONITOR PROGRAN.

THE LISTING FOR THE INPUT ROUTINE 1S SHOWN BELOW. THE START OF
THIS ROUTINE 1S AT THE INSTRUCTION LABELED "CDIN.'

MNEMONIC

CDIN, LLI 340
SP1, LMI 240
INL

COMMENTS

/SET PNTR TO START OF INP BFR
/FILL INP BFR WITH SPACES
/INCR INP BFR PNTR)

JFZ SP1 /DONE? NO, STORE MORE SPACES
LLI 340 /SET INP BFR PNTR

IN2, CAL RCV /INP CHAR FM INP DEVIGE

CrPl 204 /CHAR = CNT'L D?

JTZ INCMD /YES, RET TO COMMAND MODE
CcrPI 215 /CHAR = CAR RET?

RTZ /YES, RET TO CALLING PGM

CPI 214 /CHAR = CNT'L L?

RTZ /YES, RET TO CALLING PGM

CP1 377 /CHAR = RUBOUT?

JTZ BDCR /YES, DELETE CHAR FM INP BFR
INL /1S INP BFR FULL?

DCL

JTZ IN2 /YES, DON'T STORE CHAR

LMA /N0, STORE CHARACTER’

INL /INCR INP BFR PNTR

JMP IN2 /INP NEXT CHAR

7 > i

BDCR, LAI 340
CPL

/SET ACC TO INP BFR S.A.
/ANY CHARACTERS YET?

JTZ IN2 /NO, CONTINUE INPUT

L /YES, BACK UP INP BFR PNTR
LMI 240 /STORE SPACE OVER LAST CHAR
JMP IN2 /CONTINUE INPUT

Vs

IT SHOULD BE EASY TO SEE THAT THE READER MAY ELECT TO ASSIGN DIFFER-
ENT CHARACTERS TO OPERATE AS "CONTROL"™ CHARACTERS IN THE INPUT ROUTINE.
THIS 1S READILY ACCOMPLISHED BY CHANGING THE IMMEDIATE PORTION OF THE ~
“CP1" INSTRUCTIONS IN THE INPUT ROUTINE. FOR EXAMPLE, IF THE USER DE-

- 22 -

—

SIRES TO HAVE THE CODE FOR “CONTROL 0" (217 OCTAL) SERVE AS THE CONTROL
CHARACTER FOR THE "RUBOUT" FUNCTION INSTEAD OF 377 OCTAL, THE USER SIMP-
LY SUBSTITUTES "217" FOR "377" IN THE "CPI" INSTRUCTION USED TO TEST FOR
THE “RUBOUT." ’

ADDITIONALLY, IF THE USER DESIRES TO ADD OTHER TYPES OF "CONTROL"
FUNCTIONS TO THE INPUT ROUTINE, IT COULD BE READILY DONE BY ADDING "CPIL"
INSTRUCTIONS FOLLOWED BY APPROPRIATE CONDITIONAL "JUMPS™ TO USER PROVID-
ED ROUTINES TO PERFORM THE DESIRED OPERATION. .

THE "MODIFY" ROUTINE

THE "MODIFY'" ROUTINE IS USED TO DISPLAY AND, IF DESIRED, MODIFY THE
CONTENTS OF MEMORY LOCATIONS FOR THE PURPOSE OF LOADING PROGRAMS USING
THE KEYBOARD AS THE ENTRY DEVICE, OR CHANGING THE INSTRUCTIONS IN A PRO-
GRAM OR EXAMINING AND REVISING DATA STORED IN MEMORY. THIS ROUTINE
DISPLAYS ONE LOCATION AT A TIME, ALLOWING THE OPERATOR TO ENTER CHANGES
OR CONTINUE TO DISPLAY THE NEXT LOCATION OR TERMINATE THE OPERATION.

THE "MODIFY'" ROUTINE PERFORMS IN THE FOLLOWING MANNER. T

FIRST» THE ADDRESS ENTERED IN THE COMMAND IS CONVERTED AND STORED
IN THE DATA AREA AT LOCATION 166 AND 167 ON PAGE 000. THE "MODIFY" ROU~-
TINE THEN PRINTS THE CONTENTS OF THE DESIGNATED MEMORY LOCATION AND
CALLS THE “INSPCL"™ SUBROUTINE TO ALLOW THE OPERATOR TO ENTER THE MODIFI-
CATION. IF A "MOD" IS ENTERED, THE "DCDNM" SUBROUTINE IS CALLED TO DE-
CODE THE NUMBER FROM THE INPUT BUFFER WHICH IS THEN STORED AS THE NEW
CONTENTS OF THE SPECIFIED MEMORY LOCATION. WHEN THIS IS COMPLETE, OR IF
NO MODIFICATION WAS ENTERED, THE ADDRESS STORED FOR THIS COMMAND WILL BE
INCREMENTED AND THIS NEV ADDRESS WILL BE PRINTED ON A NEW LINE ON THE
DISPLAY DEVICE. THE PROGRAM THEN LOOPS BACK TO PRINT AND MODIFY THE
CONTENTS OF THIS LOCATION. THE LOOP IS TERMINATED BY THE OPERATOR EN-
TERING A CARRIAGE RETURN DR AN INVALID OCTAL NUMBER FOR THE MODIFICA~
TION. ‘ ') t

THE LISTING FOR THIS "MODIFY' ROUTINE IS PRESENTED BELOW AND THE
FLOV CHART OF ITS OPERATION FOLLOWS ON THE NEXT PAGE.

MNEMONIC COMMENTS
/
MODIFY, LEI 342 /SET INP BFR PNTR
CAL OCTNM /FETCH ADDR TO MODIFY
CAL SPAC /PRINT SPACE
MODi, CAL MEMPRT /PRINT CONTENTS OF MEM LOC
CAL INSPCL /INP MODIFICATION '
JTZ NXLOC /NO, SET UP NXT LOC
LEA /YES, SAVE INP PNTR
CAaL DCDNM /CONVERT TO OCTAL NUMBER
LAB /SAVE OCTAL NUMBER
LHLD 166 000 /SET PNTR TO MEM LOC
LMA /LOAD MEM WITH NEV VALUE
NXLOC, LXH 166 000 /SET PNTR TO MEM ADDR STRAGE
CAL INCR /INCR MEM ADDR
CAL MCONT /PRINT NXT ADDR TO MODIFY
JMP MOD!

- 23 -

ol onll ol ol ol sl e o o ool aan R an

Y

— s

—

COMMAND N\ _NO

VALID ?

PRINT MEMORY
CONTENTS

|

INP CHANGE
™ KYBD

PRINT ADDR OF
NXT MEM LOC

CHANGE

PRINT
ERROR
MSG

RETURN TO
COMMAND MODE

VAL1D?

STORE NEV
MEM CONTENTS

|

3

" MEMORY "MODIFY™ ROUTINE FLOV CHART

i

-24-

— r— — —

— ™

THE “DUMP'" ROUTINE

THE MEMORY "DUMP'" ROUTINE ENABLES THE OPERATOR TO EXAMINE A LARGE
BLOCK OF MEMORY LOCATIONS WITH A SINGLE COMMAND ENTRY, AS OPPOSED TO
HAVING TO ENTER A CHARACTER IN BETWEEN THE COMPUTER DISPLAYING EACH LO-
CATION, AS REQUIRED BY THE "MODIFY'" ROUTINE. THIS ROUTINE WILL DISPLAY
AS MANY LOCATIONS AS DEFINED BY THE START AND END ADDRESSES SPECIFIED IN
THE COMMAND.

AFTER CONVERTING AND STORING THE ADDRESSES SPECIFIED IN THE COMMAND
BY CALLING THE “OCTNM" SUBROUTINE, THE "DUMP" ROUTINE PRINTS THE ADDRESS
OF THE FIRST LOCATION TO BE DISPLAYED. A COUNTER IS THEN SET UP WHICH
INDICATES THE NUMBER OF LOCATIONS TO BE PRINTED ON THE CURRENT LINE.
THIS COUNTER IS SET FOR 20 OCTAL LOCATIONS PER LINE IN THIS PROGRAM AND
15 TEMPORARILY STORED ON PAGE 000. THE CONTENTS OF THE MEMORY LOCATIONS
ARE THEN PRINTED UNTIL EITHER THE LOCATION PER LINE COUNTER REACHES ZERO
OR THE LAST LOCATION SPECIFIED HAS BEEN PRINTED. WHEN THE L/L COUNTER
REACHES ZERO, THE L/L COUNTER IS SET TO 20 AGAIN AND A NEW LINE IS
STARTED WITH THE ADDRESS OF THE NEXT LOCATION PRINTED FIRST FOLLOWED.BY
THE CONTENTS OF THE NEXT 20 OCTAL LOCATIONS. THIS ROUTINE RETURNS TO
THE COMMAND MODE WHEN THE LAST LOCATION SPECIFIED IN THE COMMAND HAS
BEEN PRINTED.

THE DETAILED LISTING FOR THE "DUMP' ROUTINE IS GIVEN BELOW WITH THE
FLOW CHART PRESENTED ON THE FOLLOWING PAGE.

MNEMONIC COMMENTS
MDUMP, LEI 342 /SET PNTR TO INP BFR
CAL OCTNM /FETCH MEM DUMP LIMITS
CAL HDLN /PRINT C/Rs L/F
MDMP1, CAL MCONT /PRINT ADDR OF 1ST LOC
"CAL SPAC /PRINT SPACE
MDMP2, LLI 164 /SET PNTR TO TEMP STRAGE
LMI 020 /SAVE LOC PER LINE CNTR
OUTAGN, CAL MEMPRT /PRINT MEM CONTENTS
CAL CKEND /CHECK FOR LAST LOC PRTD
CAL SPAC /PRINT SPACE
LLI 164 /SET PNTR TO L/L CNTR
CcM /DECR CNTR. CNTR = 07
JTZ MDMPI1 /YESs START NEW LINE
JMP QUTAGN /N0, PRINT MORE CONTENTS

THE "BULK WRITE" ROUTINE

THE "BULK WRITE" ROUTINE PRESENTED IN THIS MONITOR PROGRAM SIMPLY
PROVIDES A SET UP FUNCTION FOR THE USER PROVIDED BULK WRITE OUTPUT ROU-
TINE. THE PURPOSE OF THIS FUNCTION IS TO PROVIDE A MEANS OF STORING THE
CONTENTS OF MEMORY (PROGRAMS OR BLOCKS OF DATA) ON A BULK STURAGE DEVICE
VIA A COMMAND FROM THE MONITOR PROGRAM. THE USER'S BULK WRITE ROUTINE
IS CALLED BY THIS ROUTINE WITH THE START AND END ADDRESSES OF THE MEMORY
LOCATIONS, AS SPECIFIED IN THE GOMMAND, STORED IN REGISTERS H AND L FOR
THE START LOCATION AND REGISTERS D AND E FOR THE ENDING LOCATION. THIS
1S DONE TO MAKE THE INFORMATION READILY AVAILABLE TO THE USER'S BULK

- OR -

[aun TN eun TN G

—

COMMAND
VALID ?

FETCH START
& END ADDR

PRINT
ERROR
MSG

X

71

PRINT ADDR
OF 1ST LOC
OF LINE

SET LOC/LINE
COUNTER

X

~1

PRINT MEM
CONTENTS

LAST LOC
PRINTED?

w

RETURN TO
COMMAND MODE

MEMORY '"DUMP" ROUTINE FLOW CHART

- 26 =

— oy O

—

—

WRITE ROUTINE. THE ADDRESSES ARE ALSO CONTAINED IN THE DATA AREA ON
PAGE 000, LOCATIONS 166 THRU 171. THE SHORT LISTING FOR THIS ROUTINE IS
GIVEN NEXT FOLLOWED BY SOME SUGGESTIONS FOR THE USER'S BULK WRITE OUT-
PUT ROUTINE. -

MNEMONIC COMMENTS
/
WRITE, LEI 342 /SET PNTR TO INP BFR
CAL OCTNM /FETCH START AND END ADDR
LHLD 170 000
XCHG /SET END ADDR
LHLD 166 000 /SET START ADDR
CAL. PUNCH /G0 TO USER BULK WRITE RTN
JMP INCMD /RET TO COMMAND MODE

NOTES AND SUGGESTIONS FOR THE USER PROVIDED BULK STORAGE ROUTINES

WHEN CREATING A BULK STORAGE OUTPUT ROUTINE, ONE SHOULD KEEP SEVER-
AL FACTORS IN MIND. FIRST, THE DEVICE BEING USED TO STORL THE DATA WILL
HAVE TO BE CONSIDERED WHEN DEFINING THE FORMAT FOR STORING THE DATA.
FOR EXAMPLE, IF A PAPER TAPE SYSTEM IS USED, THE OUTPUT ROUTINE SHOULD
PRECEED THE DATA WITH A SEQUENCE OF "LEADER/TRAILER" CODE, TO GIVE THE
READER A PLACE TO START WHEN READING THE TAPE BACK, FOLLOWED BY ADDRESS-
ING INFORMATION AND THEN THE DATA FROM THE SPECIFIED MEMORY LOCATIONS.
THE SEQUENCE CAN BE TERMINATED BY EITHER LEADER/TRAILER OR AN "END=-OQF-
DATA'" CODE AND THEN LEADER/TRAILER. THE LEADER/TRAILER CODE SHOULD BE
A CODE WHICH IS UNIQUE TO THE OTHER DATA CODES TRANSMITTED AND SHOULD
PROVIDE ENOUGH LEADER AND TRAILER TO ALLOW EASE OF HANDLING. THE AD-
DRESSING INFORMATION CAN BE BOTH THE START AND END ADDRESSES UR UNLY THE

-START ADDRESS WITH THE "END-OF-DATA"™ CODE OR TRAILER SIGNALING THE END

OF THE DATA ON THE TAPE. A SIMILAR FORMAT MAY BE USED FOR A MAGNETIC
TAPE SYSTEM.

ANOTHER FACTOR TO CONSIDER IS WHETHER ADDITIONAL INFORMATIUN IS
NEEDED TO EFFECTIVELY USE THE STUORAGE DEVICE. FOR EXAMPLE, A DISC UNIT
MAY REQUIRE THE SPECIFICATION OF TRACK AND/OR SECTOR WUMBER TO STORE THE
DATA. OR, THERE MAY BE SEVERAL DEVICES ON THE SYSTEM WHICH CAN BE USED

‘FOR STORING THE DATA. THIS INFORMATION CAN EASILY BE DEFINED AT THE

TIME THE COMMAND IS ENTERED, SINCE THE COMMAND IN STILL AVAILABLE IN THE
INPUT BUFFER AREA WHEN THE BULK STORAGE ROUTINES ARE CALLED. SUPPOSE
THERE ARE TWO0 TAPE UNITS ASSOCIATED WITH THE COMPUTER SYSTEM. OWNE WILL
BE REFERRED TO AS UNIT "A"™ AND THE OTHER AS UNIT "B." ONE COULD SELECT
EITHER TAPE UNIT "A™ OR '"B' AT THE TIME THE READ OR WRITE COMMAND IS EN-
TERED BY INCLUDING A LETTER AT THE END OF THE COMMAND WHICH DESIGNATES
THE TAPE UNIT TO BE USED. THE FORMAT FOR THE COMMAND MIGHT LOOK LIKE
THE FOLLOVWING: '

W HHH LLL,XXX YYY,A OR R.B

FOR THESE COMMANDS, THE BULK WRITE ROUTINE WOULD WRITE TO TAPE UNIT “AY
AND THE BULKX READ WOULD CALL UPON TAPE UNIT "B" TO RECEIVE THE DATA.

THE USER PROVIDED BULK STORAGE ROUTINES WOULD SIMPLY HAVE TO LOOK IN THE

INPUT BUFFER AREA FOR THE UNIT DESIGNATION TO DETERMINE WHICH IS TO0 BE

‘USED.

27

ANOTHER POSSIBILITY WOULD BE TO INCLUDE A "DISPLACEMENT"™ ADDRESS IN
THE BULK READ COMMAND. THAT IS, WHEN THE ADDRESS INFORMATION 1S READ IN
FROM THE STORAGE DEVICE, THE "DISPLACEMENT" ADDRESS WOULD BE "ADDED" TO
THE ADDRESS RECEIVED. THIS NEW ADDRESS WOULD BE USED AS THE POINTER IN-
DICATING WHERE TO STORE THE DATA AS IT IS RECEIVED. THUS, DATA THAT WAS
WRITTEN TO THE BULK STORAGE FROM PAGE 01 COULD BE READ BACK AND STORED
IN PAGE 03, FOR EXAMPLE, BY SPECIFYING A “DISPLACEMENT" ADDRESS OF 002
000 .

ABOVE ALL, THE IMPORTANT FACTOR IN WRITING THE BULK STORAGE ROUTINES
IS THAT THE DATA WRITTEN BY THE BULK WRITE ROUTINE MUST BE IN A FORMAT
THAT CAN BE READ IN BY THE ROUTINE CALLED BY THE BULK READ ROUTINE, DIS-
CUSSED NEXT.

THE "BULK READ" ROUTINE

THE "BULK READ" ROUTINE PRESENTED HERE SIMPLY CALLS THE USER PROVI=~-
DED BULK STORAGE READ ROUTINE TO READ IN THE DATA AVAILABLE AT THE SY~-
STEM BULK STORAGE DEVICE. THE ONLY REAL FUNCTION IT PERFURMS 1S THAT OF
PROVIDING A MEANS OF ACCESSING THE BULK INPUT DEVICE BY A COMMAND FROM
THE KEYBOARD AND ALLOWING A RETURN TO THE MONITOR WHEN THE OPERATION IS
COMPLETE.

MNEMONIC COMMENTS
JoTTTmmmmmmeees mmmeemeeooeeo
RDBULK, CAL READ /G0 TO USER BULK READ RTN
JMP INCMD /RET TO COMMAND MODE

THE ROUTINES PRESENTED TO THIS POINT REQUIRE ONLY 1/2 K OF MEMORY
FOR THE OPERATING PORTION., NOT INCLUDING THE USER'S 1/0 ROUTINES AND
OMITTING THE "ADRDTA" SUBROUTINE WHICH HAS NOT BEEN CALLED AS YET. THE
USER WITH A LIMITED AMOUNT OF MEMORY MAY DESIRE TO END THE MONITOR PRO~-
GRAM HERE, SINCE THE ROUTINES INCLUDED ARE SUFFICIENT TO BE USED AS A
SMALL SYSTEM MONITOR. FOR THOSE WITH AN ABUNDANCE OF MEMORY, THE FOL-
LOWING ROUTINES WILL BE FOUND TO BE VERY HELPFUL IN PROGRAM DEVELOPMENT
AND GENERAL SYSTEM OPERATION.

THE “BREAKPOINT" ROUTINE

ONE OF THE MOST DIFFICULT TASKS IN OPERATING A CUMPUTER SYSTEM IS
THAT OF DEBUGGING PROGRAMS. FINDING OUT EXACTLY WHAT IS HAPPENING TO
THIS REGISTER OR THAT MEMORY LOCATION WHEN A NEW PROGRAM IS BEING TRIED
OUT CAN BE VERY TIME CONSUMING IF ONE DOES NOT HAVE THE PROPER TOGLS TO
AID IN THE PROCESS. ONE "TOOL" THAT CAN BE VERY EFFECTIVE IS A "BREAK-
POINT" PROGRAM. A '"BREAKPOINT'" CAN BE SET AT A PARTICULAR POINT IN A
PROGRAM WHICH, WHEN ENCOUNTERED, WILL STOP EXECUTION OF THE PROGRAM,
RETURN TO THE MONITOR AND SAVE THE CONTENTS OF THE CPU REGISTERS AND
FLAG STATUS AT THE TIME THE BREAKPOINT WAS REACHED. THE PROGRAMMER MAY
THEN EXAMINE THE CPU REGISTER'S CONTENTS AND THE CPU FLAG STATUS AND
ALSQO THE CONTENTS OF MEMORY LOCATIONS, WHICH WILL CONTAIN THEIR VALUES
AT THE TIME THE BREAKPOINT WAS ENCOUNTERED. THE BREAKPOINT ROUTINE PRE-
SENTED HERE PERFORMS THIS FUNCTION.)

- 28 -

o

o

— ™

AS NOTED IN THE FLOW CHART ON THE FOLLOWING PAGE, THE BREAKPOINT
ROUTINE IS ACTUALLY MADE UP OF TWO SEPARATE ROUTINES. THE FIRST ROU-
TINE SETS UP THE BREAKPOINT BY STORING A "RESTART 7 INSTRUCTION AT THE
LOCATION SPECIFIED IN THE COMMAND AND SAVING THE CONTENTS Of THAT LOCA-
TION SO THAT IT WILL BE RESTORED BACK TO 1TS ORIGINAL VALUE AFTER THE
BREAKPOINT 1S PERFORMED. THE START ADDRESS OF THE SECOND ROUTINE ''BRK"
IS STORED AS THE SECOND AND THIRD BYTES OF A JUMP INSTRUCTION AT THE
"RESTART 7" LOCATION, PAGE 00 LOCATION 070. IT IS IMPORTANT TO NOTE
THAT SHOULD THE BREAKPOINT ROUTINE BE ORIGINED IN A DIFFERENT LOCATION
THAN THE ASSEMBLED VERSION PRESENTED IN THIS MANUAL, THE TWO INSTRUC-
TIONS WHICH HAVE THE COMMENTS STARTING WITH FOUR ASTERISK'S (**%*x) MUST
HAVE THE IMMEDIATE PORTION OF THE INSTRUCTION CHANGED TO INDICATE THE
NEV LOW ADDRESS AND PAGE ADDRESS OF THE INSTRUCT!ON LABELED "BRK." THIS
FIRST BOUTINE 1S LABELED "BREAK.' '

THE SUBROUTINE LABELED "ANLYZ"™ IS USED BY BOTH THE BREAKPOINT ROU-
TINE AND THE "GO TO'" ROUTINE. FOR THE BREAKPOINT ROUTINE, IT SIMPLY
FETCHES THE ADDRESS AT WHICH THE BREAKPOINT IS TO BE LOCATED. HOWEVER,
FOR THE "GO TO" ROUTINE IT ALSO SETS UP THE JUMP INSTRUCTION USED TO
JUMP TO THE DESIGNATED ADDRESS. SETTING UP THIS JUMP INSTRUCTION WILL
NOT HAVE ANY ADVERSE AFFECT ON THE BREAKPOINT ROUTINE, ~ EVEN THOUGH IT IS
NOT REQUIRED. i ’

THE SECOND ROUTINE SHOWN ON THE FLOW CHART IS THE ROUTINE WHICH IS
INTERED AT THE TIME THE BREAKPOINT IS REACHED. THE CPU REGISTERS, STACK
POINTER AND FLAG STATUS ARE STORED IN THE "VIETUAL" CPU REGISTER STURAGE
TABLE ON PAGE 000. THE READER WILL NOTE THAT IN ORDER TO SAVE THE STACK
POINTER IT 1S NECESSARY TO FIRST "PUSH" THE CURRENT FLAG STATUS ONTO THE
STACK USED BY THE PROGRAM BEING EXECUTED AND THEN "ADD" THE STACK POINT-
ER TO THE H AND L REGISTERS WHERE IT MAY BE LOADED DIRECTLY INTO THE
STACK POINTER STORAGE LOCATION. THE CONSTANT WHICH IS ADDED TO THE
STACK POINTER ADJUSTS IT TO ITS VALUE AT THE TIME THE BREAKPOINT WAS EN-
COUNTERED. THE FLAG STATUS IS THEN "POPPED" BACK TO ITS ORIGINAL CON~-
TENTS FOR STORAGE IN THE TABLE ON PAGE 000. AFTER THE REGISTERS ARE
STORED, THE BREAKPOINT ROUTINE THEN RESTORES THE ORIGINAL INSTRUCTION AT
THE BREAKPOINT LOCATION TO ITS ORIGINAL CONTENTS AND RETURNS TO THE cOM-
MAND INPUT ROUTINE.

THE LISTINGS FOR THE BREAKPOINT ROUTINES ARE PRESENTED NEXT.

MNEMONIC COMMENTS

BREAK, CAL ANLYZ /SET UP ADDRESS OF BP

LAM /SAVE ORIG CONTENTS OF BP
LMI 377 /INSERT BP RESTART INSTR.
XCHG /SAVE BP ADDR

LXH 070 000 /SET PNTR TO RST 7 LOC
LMI 303 /STORE JUMP INSTR

INL

LMI 005 /%%*%% STORE BRK LO ADDR
INL

I 016 /**x%% STORE BRK PG ADDR
INL

LME /STORE BP ORIG LOW ADDR
INL

LMD /STORE BP ORIG PG ADDR
INL

LMA /STORE ORIG BP INSTRUCTION
JMP INCMD

| - %0 -

—

[N eun BN cun BN sun!

—

COMMAND
VALID ?

FETCH MEM ADDR
FM COMMAND

PRINT
ERROPR
MSG

SET UP
BRKPT

\ 78

I~

RETURN TO
COMMAND MODE

BRKPT
RECEIVED

SAVE SP.,
REG'S & FLAGS

RESTORE
MEM
CONTENTS

l

RETURN TO
COMMAND MODE

THE "BREAKPOINT"™ ROUTINES

-30_

FLOW CHART

- r— r—. r— r— M/ -

o B e N g

m

— /M e m

MNEMONIC COMMENTS
/
ANLYZ, LEI 342 /SET PNTR TO BUFF SA
CAL OCTNM /FETCH ADDR INTO 166, 167
LAI 303 /SET JUMP INSTR FOR GOTO
STA 155 000

LHLD 166 000
SHLD 156 000

/GET BP ADDR
/STORE BP ADDR IN JUMP INSTR

RET

/

BRK» SHLD 206 000 /SAVE H & L

PUSS /SAVE STATUS & REG A

LXH 004 000 /SET UP TO SAVE SP

DADS /MOVE SP TO REG'S H & L
SHLD 176 000 /SAVE ORIG SP

POPS /RESTORE STATUS

LXs 206 000 /SET SP TO REG STRAGE
PUSD /SAVE REG'S D & E

PUSB /SAVE REG'S B & C

PUSS /SAVE STATUS WORD & REG A
LHLD 073 000 /SET BP PNTR

LTA 075 000 /FETCH ORIG INSTR

LMA /RESTORE ORIG BKPNT INSTR
JMP INCMD /BACK TO MONITOR

THE "GO TO" ROUTINE

THE "GO TO"™ ROUTINE PROVIDES A MEANS OF INITIATING EXECUTION OF A

PROGRAM IN MEMORY BY DIRECTING THE MONITOR TO JUMP TO A SPECIFIED AD-’
DRESS. THE "ANLYZ'" SUBROUTINE., DESCRIBED IN THE "BREAKPOINT" ROUTINE,
1S CALLED TO FETCH THE ADDRESS FROM THE COMMAND ENTERED AND SET UP THE
JUMP INSTRUCTION WHICH WILL BE EXECUTED AT THE END OF TH!S ROUTINE. BE~
FORE JUMPING TO THE ADDRESS INDICATED, THE "GO TO'" ROUTINE WILL SET THE
CPU REGISTERS, STACK POINTER AND FLAG STATUS TO THE VALUES STORED IN THE
"UIRTUAL" CPU REGISTER TABLE ON PAGE 000. THE VALUES STORED IN THIS
TABLE ARE SET BY EITHER THE "EXAMINE REGISTER"™ ROUTINE, TO BE PRESENTED
NEXT, OR BY THE LAST BREAKPOINT ENCOUNTERED. THUS, THE "GO TO" ROUTINE
CAN BE USED TO CONTINUE EXECUTING A PROGRAM BEING DEBUGGED AT THE POINT

OF THE LAST BREAKPOINT.
THE PROGRAM CAN BE ENTERED AT THE LAST BREAKPOINT AS

ISTERS AND FLAGS,

THOUGH IT WAS NEVER INTERRUPTED BY THE BREAKPOINT.

SINCE THE "GO TO"™ ROUTINE RESTORES THE CPU REG-

THE "GO TO" ROUTINE

STARTS AT THE LOCATION LABELED "GOTO."

THE LISTING AND FLOW CHART FOR THE "GO TO" ROUTINE ARE PRESENTED

NEXTe.

MNEMONIC COMMENTS
/
GOTO0, CAL ANLYZ /SET UP ADDR OF GOTO
LXS 176 000 /SET SP TO REG STRAGE
POPH /FETCH SP IN H & L
POPS /SET UP STATUS AND REG A
POPB /SET UP REG'S B & C
POPD /SET UP REG'S D ¢ E
SPHL /SET UP SP
LHLD 206 000 /SET UP REG H & L
JMP 155 000 /START PROGRAM

- 31 -

—

NO

COMMAND
VALID ?

PRINT
ERROR
MSG
SET UP JUMP
INSTRUCTION
] RETURN TO

COMMAND MODE
SET UP REG'S
SP & FLAGS

l

JUMP TO
ADDR IN
COMMAND

THE "GO TO" ROUTINE FLOW CHART

THE "EXAMINE REGISTER" ROUTINE

THE “EXAMINE REGISTER" ROUTINE ALLOWS ONE TO EXAMINE THE CONTENTS
OF THE "“VIRTUAL" CPU REGISTERS AND THE FLAG STATUS WHICH ARE STORED IN A
TABLE ON PAGE 000 AT LOCATIONS 176 THRU 207. THE "VIRTUAL" CPU REGIS-
TERS AND FLAG STATUS ARE ASSIGNED THE FOLLOWING LOCATIONS IN THE CPU RE-
GISTER TABLE. ’

LOCATION REGISTER
000 176 STACK POINTER LO ADDR
000 177 STACK POINTER PG ADDR
000 200 FLAG STATUS BYTE
000 201 REGISTER A
000 202 REGISTER €
0060 203 REGISTER B
000 204 REGISTER E
000 205 REGISTER D
' 000 206 REGISTER L
Q00 207 REGISTER H

THE CONTENTS OF THE "VIRTUAL" CPU REGISTERS AND THE SETTING OF THE

- 32 =

— — o

FLAG STATUS MAY BE MODIFIED BY ENTERING THE REVISION AFTER THE CURRENT
VALUE IS DISPLAYED, IN A MANNER SIMILAR TO THE "MODIFY" ROUTINE. THE
REGISTERS ARE MODIFIED BY ENTERING A THREE DIGIT OCTAL NUMBER. ~'THE
STACK POINTER REQUIRES AN ADDRESS ENTRY AND THE FLAG STATUS 13 DISPLAYED
AND ITS MODIFICATIONS ARE ENTERED BY INPUTTING THE FIRST LETTER OF THE
FLAG NAME. THE DEFINITION OF THE BIT POSITIONS IN THE FLAG STATUS BYTE
ARE GIVEN 'IN THE FOLLOWING TABLE. THE LETTER IN PARENTHESIS INDICATES
THE DESIGNATION USED TO DISPLAY AND MODIFY THE FLAG STATUS.

B7 = SIGN FLAG (5

B6 = ZERO FLAG (2)

BS = ALWAYS "O"

B4 = AUXILIARY CARRY FLAG (A)
B3 = ALWAYS 0"

B2 = PARITY FLAG (P)

Bl = ALWAYS "1"

BO = CARRY FLAG (O

THE ROUTINE STARTS BY FETCHING THE REGISTER DESIGNATION FROM THE
INPUT BUFFER AND, USING THE SUBROUTINE "TBLCK," SEARCHES THE TABLE LA-
BELED "RGTBL' FOR A MATCH VITH THE REGISTER DESIGNATION. THIS SUBROU~
TINE OPERATES IN THE SAME MANNER AS THE COMMAND INPUT ROUTINE, CHECK-
ING EVERY OTHER LOCATION IN THE “RGTBL" FOR A MATCH. THE ONLY REAL DIF~-
FERENCE BEING THAT THE END OF THE TABLE IS DETERMINED BY AN ALL ZERO
BYTE. IF A MATCH IS FOUND, ONE OF THREE ROUTINES ARE ENTERED TO DISPLAY
AND MODIFY THE REGISTER. IF NO MATCH IS FOUND, AN ILLEGAL ENTRY ERROR
MESSAGE IS DISPLAYED AND THE ROUTINE RETURNS TO THE COMMAND MODE.

IF THE REGISTER DESIGNATED IS ONE OF THE CPU GENERAL REGISTERS OR
THE ACCUMULATOR, THE NEXT LOCATION IN THE "RGTBL" IS USED TO INDICATE
THE LOCATION AT WHICH THE DESIGNATED REGISTER 1S STORED IN THE "VIRTUAL"
CPU REGISTER TABLE. THE CURRENT VALUE OF THE REGISTER IS PRINTED, AND
THE "INSPCL" SUBROUTINE 1S CALLED TO ENTER ANY MODIFICATION THAT MAY BE
DESIRED. IF A MODIFICATION IS ENTERED, THE 'DCDNM" SUBROUTINE DECODES
THE OCTAL NUMBER FROM THE ENTRY AND THIS VALUE IS STORED IN THE PROPER
LOCATION IN THE “VIRTUAL" CPU REGISTER TABLE.

IF THE STACK POINTER IS DESIGNATED IN THE COMMAND, THE PROGRAM
JUMPS TO A ROUTINE SIMPLY LABELED "S'" WHICH DISPLAYS THE ADDRESS STORED
FOR THE STACK POINTER, IN THE STANDARD FORMAT OF THE PAGE PORTION FOL-

‘LOWED BY THE LOW ADDRESS PORTION. AND THEN CALLS THE "INSPCL"™ SUBROUTINE

TO ENTER THE MODIFICATION. IF A MODIFICATION 1S ENTERED, THE PAGE AND
LOW ADDRESS PORTIONS MUST BE SEPARATED BY A CHARACTER OTHER THAN A SPACE
SINCE "INSPCL"™ ACCEPTS A SPACE AS A TERMINATOR CHARACTER. THEREFORE. A
COMMA 1S SPECIFIED AS THE CHARACTER WHICH MUST SEPARATE THE PAGE AND LOW
ADDRESS ENTRY FOR THE STACK POINTER MODIFICATION, ALTHOUGH ANY CHARACTER
OTHER THAN A SPACE OR CARRIAGE RETURN WILL WORK. THE MODIFICATION IS

'CONVERTED TO TWO OCTAL NUMBERS AND STORED IN THE "VIRTUAL" 'CPU REGISTER

TABLE AT LOCATIONS 176 AND 177-

IF THE FLAG STATUS 1S DESIGNATED, THE ROUTINE LABELED “F" 1S ENTER-
ED AND THE FLAG DESIGNATION CHARACTERS (INDICATED IN PARENTHESIS ABOVE)

‘ARE DISPLAYED FOR EACH FLAG BIT WHICH IS SET TO A *1" IN THE FLAG BYTE.

THE "INSPCL" SUBROUTINE IS THEN CALLED TO INPUT ANY MODIFICATION TO THE
FLAG STATUS. THE MODIFICATIONS ARE MADE BY ENTERING THE FLAG DESIGNA-
TION CHARACTERS FOR THE FLAGS WHICH ARE TO BE SET TO A "l1." THE FLAGS

‘WHICH ARE NOT ENTERED IN THE MODIFICATION ENTRY WILL BE SET T0 A "0."

WHEN A MODIFICATION IS ENTERED, THE “FTBL" IS SEARCHED BY THE "TBLCK"
SUBROUTINE TO DETERMINE WHICH FLAG DESIGNATIONS HAVE BEEN ENTERED AND A

- 33 =~

| SRR B

— r—

— —

G B quue BN oun SN e

. Y €T O

NEW FLAG STATUS BYTE IS FORMED.

ONCE FORMED.,

THE FLAG STATUS BYTE IS

CHECKED FOR AN ILLEGAL SET UP. THAT 1S, IF THE ZERO FLAG IS A "1," THE
PARITY FLAG MUST ALSO BE A "1™ AND THE SIGN FLAG MUST BE A "“0." THIS
CONDITION IS TESTED AND IF FOUND TO BE IN ERROR, THE ILLEGAL ENTRY ERROR

MESSAGE IS DISPLAYED.

IF THE ENTRY 1S VALID.,

THE NEW FLAG STATUS BYTE

1S STORED AT LOCATION 200 IN THE "VIRTUAL" CPU REGISTER TABLE.

THE DETAILED LISTING FOR THE "EXAMINE REGISTER" ROUTINE IS PRESENT-
ED BELOW AND THE FLOW CHART IS ON THE FOLLOW_ING PAGE.

MNEMONIC

XREG,» LXH 341 000

LXD RGTBL
CAL TBLCK
CP1 306
JTZ F

CPI 323
JTZ S

LLI 164
INXD

LDAD

LMA

LLa

CAL SPAC
LaM

CAL oCTOUT
CAL INSPCL
JTZ INCMD
LEA

CAL DCDNM
LLI 164
LM

LMB

JMP INCMD
/

F» CAL SPAC
LLI 200
LaM

LXD FTBL
INXD

LBA
PRTBIT, LDAD
NDA

JTZ INFLG
NDB

JTZ TRYNX
DCXD

LDAD

CAL PRINT
INXD
TRYNX, INXD
INXD

JMP PRTBIT

INFLG, CAL INSPCL

JTZ INCMD
LLA

LBI 002
LAM

COMMENTS

/SET INP BFR PNTR
/SET REG TABLE PNTR

/SEARCH FOR REG DESIGNATED

/FLAG STATUS?

/YES, PRINT FLAGS
/STACK POINTER?

/YES, PRINT ADDRESS
/SET PNTR TO TEMP STRAGE
/INCR REG TBL PNTR
/FETCH REG STRAGE PNTR
/SAVE REG STRAGE PNTR
/SET PNTR TO REG VALUE
/PRINT SPACE

/FETCH CURRENT REG VALUE
/PRINT CURRENT REG VALUE
/INP MODIFICATION

/NO ENTRY, RET TO CMND
/SAVE INP BFR PNTR

/YES, DECODE OCTAL NUMBER
/SET PNTR TO TEMP STRAGE
/FETCH REG TBL PNTR
/STORE NEW REG VALUE
/RET TO COMMAND MODE

/PRINT SPACE

/SET REG TBL PNTR
/FETCH FLAG BYTE

/SET PNTR TO FLAG TBL
/ADV PNTR TO BIT WORDS

/FETCH FLAG BIT

/END OF TABLE?

/YES, INP FLAG CHANGES
/1S BIT SET?

/NO, TRY NEXT BIT

/FETCH CHAR FOR FLAG
/PRINT CHAR FOR FLAG
/RESET TBL PNTR
/ADV REG TBL PNTR

/INPUT CHANGES

"/NO ENTRY, RET TO CMND

/SET INP BFR PNTR
/SET BASIC FLAG BYTE
/FETCH FLAG CHAR FM INP

—

lonl anl !

—

— 7 M

NO
COMMAND

VALID ?

YES

Y

DISPLAY VIRTUAL
STACK POINTER

INP CHANGE
FM KYBD

NO

DISPLAY VIRTUAL
REGISTER VALUE

INP CHANGE
FM KYBD

WAS
CHANGE

ENTERED
?

NO

DI SPLAY FLAG:
STATUS BYTE

|

INP CHANGE
FM KYBD

CHANGE
VALID?

STORE NEW FLAG

¥ | sTaTus BYTE
NO '
V. I /
YES

. STORE NEV VALUE PRINT
FOR STACK PNTR STORE NEW VALUE ERROR
FOR VIRTUAL REG MSG

< S 7* ¥

I -

RETURN TO |
COMMANLD MODE

THE "EXAMINE REGISTER®™ ROUTINE FLOW CHART

-35-

MNEMONIC

FLAG, LXD FTBL
CAL TBLCK

INXD

LDAD

ORB

LBA

INL

CP1 240
JFZ FLAG

NDI 100
JTZ 0K

NDI 204

XRI 004

JFZ ERR

OK, LLI 200
LMB

JMP INCMD

/

S» CAL SPAC
LXH 177 000
LaM

CAL oCcTOouUT
CAL SPAC
LI 176

LAM

CAL oCToOUT
CAL INSPCL
JTZ INCMD
LEA

STA 165 000
CAL OCTPR
LXH 176 000
LMB

INL

LMC

JMP INCMD

/

TBLCK, LDAD
NDA

JTZ ERR

CPM

RTZ

INXD

INXD

JMP TBLCK

/

RGTBL., 301
201

802

203

803

ce02

304
205

COMMENTS

/SET PNTR TO FLAG TBL
/SEARCH TBL FOR FLAG CHAR
/FETCH BIT WORD

/ADD BIT TO BASIC BYTE
/SAVE FLAG BYTE

/FETCH NEXT CHAR FM INP
/CHAR = SPACE?

/N0, MORE STATUS INP
/FETCH NEW STATUS WORD
/15 ZERO SET?

/NOs WORD 1S O.K.

/YES, CK S AND P’ FLAGS
/SEPARATE S AND P FM OTHERS
/5 = 0? P = 1?7

/N0, ILLEGAL SET UP

/SET PNTR TO STATUS BYTE
/SAVE NEW BYTE

/RET TO COMMAND MODE

/PRINT A SPACE
/SET PNTR TO SP PG ADDR

/PRINT SP PG ADDR
/PRINT A SPACE
/SET PNTR TO SP LO ADDR

/PRINT SP LO ADDR
/INP MODIFICATION
/NO ENTRY, RET TO CMND

/SAVE INP PNTR
/CONVERT ADDR INP
/SET SP STRAGE
/STORE SP LO ADDR

/STORE SP PG ADDR
/RET TO CMND MODE

/FETCH CHAR

/END OF TABLE?

/YES, INVALID INPUT
/CHAR MATCH?

/YES, RET TO CALLING PGM
/N0, ADV TBL PNTR

/CONT. SEARCH

/REG A CHAR
/REG A STRAGE
/REG B CHAR
/REG B STRAGE
/REG C CHAR

" /REG C STRAGE
/REG D CHAR
/REG D STRAGE

ne

MNEMONIC COMMENTS
305 /REG E CHAR
204 " /REG E STRAGE
310 /REG H CHAR
207 /REG H STRAGE
314 /REG L CHAR
206 /REG L STRAGE
306 /FLAG STATUS CHAR
200 /FLAG STATUS STRAGE
323 /STACK PNTR CHAR
176 /STACK PNTR STRAGE
000
/
FTBL, 323 /S1GN CHAR
200 /SIGN BIT
332 /ZERO CHAR
100 /ZERO BIT
301 /AUXILIARY CARRY CHAR
020 /AUXILIARY CARRY BIT
320 /PARITY CHAR'
004 /PARITY BIT
303 /CARRY CHAR
001 /CARRY BIT
000
000

THE THREE ROUTINES JUST PRESENTED ARE ALL INTER-RELATED IN ONE WAY
OR ANOTHER. THE "EXAMINE REGISTER' ROUTINE SETS UP THE VALUES TO BE
LOADED IN THE CPU REGISTERS AT THE TIME THE ' GO TO" OPERATION IS PER~-
FORMED. THE GO TO" ROUTINE MAY START THE EXECUTION OF A PROGRAM WHICH
WILL EVENTUALLY REACH A "BREAKPOINT'" WHICH RETURNS TO THE “BREAKPOINT"
ROUTINE TO STORE THE CPU REGISTER VALUES AND THE FLAG STATUS, WHICH, IN
TURN MAY BE EXAMINED BY THE "EXAMINE REGISTER" ROUTINE«. THIS COORDINA-
TION BETWEEN THESE ROUTINES MAKES THE INCLUSION OF THESE ROUTIWES, AS A
GROUP, A CONVENIENT POINT TO COMPLETE ONE'S MONITOR PROGRAM. THE OPERA-
TING PORTION OF THE MONITOR PRUOGRAM PRESENTED TO THIS POINT OCCUPIES
SLIGHTLY MORE THAN 3/4 K BYTES OF MEMORY. SO, IF ONE FEELS THAT THE
ROUTINES PRESENTED THUS FAR WILL BE SUFFIGIENT FOR ONE'S MONITOR PRO-
GRAM, THE PROGRAM CAN BE ENDED HERE AND USED TO GIVE THE OPERATOR THE
NECESSARY BASICS FOR A GOOD "OPERATING SYSTEM' AND "PROGRAM DEBUGGING"
MONITOR PROGRAM. THE FOLLOWING ROUTINES ARE PRESENTED TO GIVE THE READ-
ER AN IDEA FOR OTHER TYPLS OF "CONVENIENCE" ROUTINES THAT MAY BE ADDED.

THE “FILLY" ROUTINE

THE MEMORY "FILL'" ROUTINE IS USED TO FILL A BLOCK OF MEMORY WITH
A SPECIFIC & BIT DATA VALUE. THIS ROUTINE IS USEFUL IN "“ZEROING" A
B.OCK OF MEMORY BEFORE EXECUTING A PROGRAM TU DETERMINE WHETHER THAT
PROGRAM 1S WRITING INTO THE SECTION OF MEMORY "ZEROED'" OUT OR NOT. AS
THE READER WILL SEE FROM THE LISTING, THIS PROGRAM MAKES VERY EFFECTIVE
USE OF SUBROUTINES TO PERFORM I1TS FUNCTION. THE "ADRDTA" SUBROUTINE
FETCHES THE PERTAINENT INFORMATION FROM THE INPUT BUFFER. THE “SETUP"
SUBROUTINE SETS THE MEMORY POINTER TO THE MEMORY LOCATION TO RECEIVE THE

- 37 -

DATA BYTE, AND THE "“CKEND" SUBROUTINE DETERMINES WHEN THE FINAL LOCATION

HAS BEEN LOADED.

THE PROGRAM LISTING AND FLOW CHART FOR THE "FILL'" ROUTINE IS PREL-

SENTED BELOV.

MNEMONIC

FILL, CAL ADRDTA
FL1, LHLD 166 000
LMB

CAL CKEND

JMP FLI

COMMENTS

/INP ADDR AND DATA FM BFK
/SET UP MEM PNTR

/FILL MEM LOC WITH DATA
/DONE? YES, RET TO CMND MODE
/NO, CONTINUE WITH FILL

COMMAND
VALID ?

FETCH START PRINT
AND END ADDR ERROR
AND DATA MSG

~Y

71 .

INCR MEM
PNTR

LOAD MEMORY
WITH DATA

NO

YES

RETURN TO
COMMAND MODE

THE MEMORY "FILL'" ROUTINE FLOW CHART

- 38 -

M

— ™ ™M

THE "SEARCH'" ROUTINE

THE MEMORY "SEARCH" ROUTINE IS USED TO SEARCH THE CONTENTS OF A
SPECIFIED BLOCK OF MEMORY FOR AN 8 BIT DATA PATTERN ENTERED IN THE COM-
MAND. EACH TIME IT FINDS A BYTE WHICH MATCHES THE PATTERN, THE ADDRESS
OF THE MATCHING BYTE IS PRINTED ON THE DISPLAY DEVICE. THE ROUTINE FET-
CHES THE ADDRESS BLOCK AND SEARCH DATA FROM THE INPUT BUFFER BY CALLING
THE "ADRDTA" SUBROUTINE.” THE BLOCK OF DATA IS SEARCHED BY CUMPARING
EACH LOCATION IN THE BLOCK TO THE DATA PATTERN ENTERED AND, 1F A MATCH
1S FOUND, THE "MCONT" SUBROUTINE, WHICH PRINTS A CARRIAGE RETURN, LINE
FEED FOLLOWED BY THE MEMORY ADDRESS STORED AT LOCATION 166 UN PAGE 000,
IS CALLED TO PRINT THE MEMORY ADDRESS WHICH CONTAINS THE MATCHe THE
PROCESS CONTINUES UNTIL THE LAST LOCATION SPECIFIED IN THE COMMAND IS
SEARCHED. ONCE AGAIN THE EFFECTIVENESS OF GUOD GENERAL SUBROUTINES IS
EVIDENCED BY THE BREVITY OF THIS ROUTINE. THE DETAILED LISTING IS
SHOWN BELOW AND THE FLOW CHART ON THE NEXT PAGE.

MNEMONIC COMMENTS

SEARCH, CAL ADRDTA /INP ADDR AND DATA M BFR

LLI 165 /SET PNTR TO SAVE DATA

LMB /SAVE SEARCH DATA IN MM
SHl1, LLI 168 /SET PNTR TO SRCH DATA

LAM /FETCH SEARCH DATA

LHLD 166 000 /SET PNTR TO MEM

CPM /DATA EQUAL SRCH DATA

CTZ MCONT /YES, PRINT ADDR

CAL CKEND /DONE? YES, RET TO CMND MODE
JMP SH! /NO, CONTINUE SEARCH

/

THE "TRANSFER" ROUTINE

THE "TRANSFER" ROUTINE ALLOWS THE OPERATOR TO TRANSFER A BLOCK OF
MEMORY FROM ONE SECTION OF MEMORY TO ANOTHER, BY SIMPLY SPECIFYING THE
START AND END ADDRESS OF THE BLOCK TO BE MOVED, FOLLOWED BY THE START
ADDRESS OF THE SECTION TO RECEIVE THE MEMORY CONTENTS IN THE COMMAND.
THE "“TRANSFER" ROUTINE THEN SETS UP A "FROM"™ POINTER AND A "TO" POINTER
WHICH ARE USED TO TRANSFER THE THE DATA “FROM" THE ORIGINAL LOCATION
"TO" THE NEW LOCATION. THIS ROUTINE USES A SUBROUTINE CALLED "“SWAP" NOT
ONLY DURING THE ACTUAL TRANSFER OF THE DATA BUT ALSO TO TEMPORARILY SAVE
THE ADDRESSES AS THEY ARE READ IN FROM THE INPUT BUFFER. THIS COMMAND
CAN BE USEFUL IN SAVING A BLOCK OF DATA IN ONE SECTION OF MEMORY BEFORE
USING THE ORIGINAL DATA AREA AGAIN. AFTER THE SECOND USAGE, THE TWO
BLOCKS WILL BE AVAILABLE FOR EXAMINATION AND/OR COMPARISION. ANOTHER
POSSIBLE APPLICATION 1S TO RE-ORIGIN A PROGRAM FROM ONE AREA OF M EMORY
TO ANOTHER. OF COURSE, THE JUMP AND CALL INSTRUCTIONS WOULD HAVE TO BE
CHANGED TO INDICATE THE NEW ADDRESSES, BUT THIS CAN BE ASSISTED BY USING
THE “SEARCH" ROUTINE TO LOCATE THE JUMP AND CALL INSTRUCTIONS WITHIN THE
PROGRAM. THIS METHOD OF MOVING PROGRAMS CAN BE EFFECTIVE FOR PRO GRAMS
WHICH ARE NOT TOO LONG, AS OPPOSED TO RE-ASSEMBLING THE PROGRAM. '

THE FLOW CHART AND LISTING FOR THE "TRANSFER" ROUTINE ARE PRESENTED
FOLLOWING THE "“SEARCH" ROUTINE FLOW CHART.

-39-

— 0

NO
COMMAND

VALID ?

PRINT
MEM ADDR

INCR MEM
PNTR

FINISHED?

YES

PRINT
ERROR
FETCH START MSG
ADDR AND
DATA
F?““_”““"7\
SEARCH MEM FOR
DATA PATTERN
SPECIFIED
A2

RETURN TO
COMMAND MODE

THE "SEARCH" ROUTINE FLOW CHART

- 40 -

el ol e B el el e s R eanlil e

—

COMMAND
VALID ?

PRINT
ERROR
MSG

SET UP 'TO' AND
'FROM' PNTRS

o

MOVE DATA
'FROM® °'TO*

'*FROM*

INCR 'TO' AND

PNTRS

MNEMONIC

TRNSFR, LEl 342
CAL OCTNM

LLI 166

LBE

LXD 172 000
SVSA, CAL SwaP
LAL 172

CPL

JFZ SVSA

INB

TRANSFER
COMPLETE?

YES

RETURN TO
COMMAND MODE

THE MEMORY “TRANSFER" ROUTINE FLOW CHART

COMMENTS

/SET PNTR TO ADDR INP
/FETCH 'FROM' ADDR

/SET PNTR TO ADDR INP

/SAVE INP BFR PNT

/SAVE °'FROM' IN THMP STRAGE
/MOVE ADDR 10 TEMP STRGE
/15 XFR COMPLETE?

/NO» CONTINUE MOVE

— M

MN EMONIC COMMENTS
LEB /RESTORE INP BFR PNTR
CAL OCTNM /INP °*TO' ADDR
LLI 172 /SET PNTR TO TEMP STRGE
LXD 166 000 /SET PNTR TO TEMP STRAGE
TF1, CAL SWAP /XFR 'FROM' PNTR ’
LAl 176 . ’
CPL /XFR COMPLETE?
JFZ TF1 /NO, CONTINUE
LEB /FETCH 'TO' PNTR
LDC -
TF2, LHLD 166 000 /SET 'FROM' PNTR
CAL SWAP /SWAP MEM CONTENTS
CAL CKEND /DONE? YES, RET TO CMND MODE
JMP TF2 /NO, CONTINUE XFR
/
SWAP, LAM /FETCH BYTE TO XFR
INXH /INCR 'FROM' PNTR
STAD ' /STORE BYTE IN NEW LOC
INXD /INCR 'TO® PNTR '
RET o

PUTTING IT ALL TOGETHER - THE ASSEMBLED MONITOR PROGRAM

AND AFTER ALL IS SAID AND DONE, HERE IT IS! THE MONITOR PROGRAM
PRESENTED IN ITS FINAL ASSEMBLED FORM. THE ROUTINES DISCUSSED ARE NOV
LISTED WITH THEIR ADDRESSES AND MACHINE CODE TO PROVIDE THE READER WITH
A MONITOR PROGRAM THAT SIMPLY REQUIRES THE ADLITION OF THE 1/0 DRIVERS
(DETAILED PREVIOUSLY) TO TURN ONE'S COMPUTER SYSTEM INTO A HIGHLY FUNC-
TIONAL "OPERATING SYSTEM!"™ i)

THE FIRST PART OF THE LISTING SHOWS THE LOCATIONS ON PAGE 000 WHICH
ARE USED BY THE MONITOR FOR STORING POINTERS, COUNTERS, TEMPURARY DATA,
THE COMMAND LOOK UP TABLE AND THE INPUT BUFFER. THE READER WILL NOTE
THAT SEVEN OF THE EIGHT RESTART LOCATIONS ARE AVAILABLE FOR THE USER'S
PROGRAMS . h

THE OPERATING PORTION OF THE MONITOR PROGRAM HAS BEEN ORIGINED ON
PAGES 14 THROUGH THE FIRST HALF OF PAGE 17, WITH THE EXPECTED STARTING
LOCATIONS OF THE USER PROVIDED 1/0 DRIVERS ON THE SECOND HALF OF PAGE
17 THE READER MAY DESIRE TO RE-ORIGIN THE OPERATING PORTION TO THE
UPPER SECTION OF THE MEMORY AVAILABLE IN ONE'S SYSTEM.

THE START OF EXECUTION ADDRESS FOR THE MONITOR PROGRAM, AS LISTED,
IS AT PAGE 14 LOCATION 000.)

-“2-.

000

000
000
000
000
000
000
000
000
0oo
000
000
000
000
000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

000
000
000
000
060
000
000
000
000
000

Qoo
000
000
000
000
000
000
000
000
000
000

000
070
070
073
074
075
076
076
076
076
076
076
130
131

132
133
134
135
136
137
137
137
137
150
150
151

152
153
154
155
155
155
155
160
160
161

162
163
164

166
167
170
171
172
173
174
175
176
177
200
201
202
203
204
205
206
207
210

303 000 00O

000
000
000

215
212
276
coo
215

000

000
000
000
000
000

303

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
coo
000
000

000 000

ORG 000 070
/

JMP 000 000
000

000

000

/

/JUMP INSTRUCTION FOR BRKPT
/BRKPT LOCATIUN - LOUW ADDR
/BRKPT LOCATION - PG ADDR
/0RIG. BRKPT INSTRUCTION

/LOC. 076 THRU 127 AVAILABLE FOR USER

/

/MONITOR MESSAGE TABLE

/

ORG 000 130
215

212

276

000

215

212

000

/

/CARe« RET.
/LINE FEED
/>

/CARe. RET.
/LINE FEED

/L0C. 137 THRU 147 AVAILABLE FOR USER

/

ORG 000 150
/

000

000

000

000

000

/

/DIGIT STURAGE
/FOR OCTAL NUMBER
/SUBROUTINE
/AVAILABLE
/AVAILABLL

/G0 TO JUMP INSTRUCTION

/
JMP 000 000
/
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
/

- A -

/G0 TO ROUTINE FILLS IN ADDR

/AVAILABLE

/AVAILABLE

/AVAILABLE

/AVAILABLE

/TEMP STORAGE

/TEMP STORAGE

/LOV ADDRESS - LOW PORTION
/LOW ADDRESS - PAGE PORTION
/HIGH ADDRESS - LOW PORTION
/H1GH ADDRESS - PAGE PORTION
/TEMP STORAGE

/TEMP STURAGE

/TEMP STORAGE

/TEMP STORAGE
/"VIRTUAL" STK PNTR LO ADDR
/"VIRTUAL" STK PNTR PG ADDR
/FLAG STATUS BYTE

/VIRTUAL CPU REG "A"
/VIRTUAL CPU REG "C"
/VIRTUAL CPU REG "B"
/VIRTUAL CPU REG "E"
/VIRTUAL CPU REG "D"
/VIRTUAL CPU REG "L"
/VIRTUAL CPU REG “H"

—

000

0l4

014
014
014
Ol4
ol4
014
Ol4
014
Ola
014
Ol4
014
014
014
Ol4
014

210
210
210
211
212
213

215
216
217
220
221
222
223
224
225
226
227
230
231
232
233
234
235
236
237
240
241
242
243
244
245

000
003
006
o1l
014
017
021
023
024
027
030
031
032
033
036
041
043
046

315
150
015
304
275
015
327
343
01S
322
371
01s
302
377
0ls
307
220
016
330
257
olé
306
005
ot7
323
022
017
324
061
017

061
041
315
315
072
026
056
276
312
054
054
054
02s
302
315
076
315
303

340
130
145
0s7
340
012
210

0s1

023
142
311
300
000

000
000
014
0l4
000

0la

014
014

017
014

/COMMAND LOOK UP TABLE

315 /MODIFY

304 / DUMP

327 /BULK WRITE

322 /BULK READ

302 /BREAKPOINT

307 /G0 TO

330 /EXAMINE REGISTERS

306 /FILL MEM
00S

017

323 /SEARCH

022

017

324 /TRANSFER

o6l

017

/

/L0OC. 246 THRU 337 RESERVED FOR
/MONITOR "PUSH-POP'" STACK

/

/LOC. 340 THRU 377 ~ INPUT BUFFER
7 A

/PAGES Ol THRU 13 AVAILABLE

/FOR USER'S PROGRAMS

/

ORG 014 000

INCMD, LXS 340 000 /SET STACK POINTER

LxH 130 000 /SET PNTR TO HEADING MSG
CAL MSG /PRINT C/R, L/Fs 3

CAL CDIN 7INPUT COMMAND 'FM KYBD
LTA 340 000 /FETCH COMMAND CHAR

LDI 012 /SET CMND NMBR CNTR

LLiI 210 /SET CMND TABLE PNTR
CKCMD, CPM 71S CMND CHAR FOUND IN TBL?
JTZ FOUND /YES, PROCESS COMMAND
INL 7/NO,ADVANCE CMND TBL PNTR
INL d A UVANL

INL

pcp /1S LAST CMND CHECKED?
JFZ CKCMD /N0, CHECK NEXT

ERR, CAL HDLN /YES, PRINT C/R, L/F

LAI 311 7ILLEGAL ENTRY CODE’

CAL PRINT /PRINT ERROR MSG&

JMP INCMD 71NP NEXT COMMAND

- 44 ~

— 3 7

0l4
014
0l4
o14
014
014
014
014
0la
ol4
Ola
014
3%

Ol4
Ol4
0l4
0ola

Ol4
Ol4
014
0l4
014
Cla

014
0l4
0l4
0l4
014
0l4
014
014
o114
014
Ot 4
0l4
014
0l4
014
014
014
0ia
014
014
ol4
Ola
014
Ol4
014
014
014
oL4
014
0l4
ot4
o14
Ola
Ot4

051

051

052
053
0S4
0SS
056
057
0s7
061

063
o064
067
071

074
076
101

103

106
107
111

114
115
116
121

122
123
126
126
130
131

134
135
137
142
142
145
145
146
147
150
153
154
157
157
160
163
166
170
171

172
173
174
176
201

202
203
206
211

054
136
054
126
353
351

056
066
054
302
056
315
376
312
376
310
376
310
376
312
054
055
312
167
054
303

076
275
312
0ss
066
303

041

176
247
310
315
043
303

173
062
315
056
160
054
161
032
376
302
034
173
062
315
056

340
240

061
340
200
204
215
214
377
126
071

071
340
071

240
071

134

300

145

165
237
166

254
211

165
237
170

014

017

014

014

0l4

0l4

014

014

000

017

014

000
014

014

000
014

/

FOUND, INL
LEM

INL

LDM

XCHG

PCHL

/

CDIN, LLI 340
SPi, LMI 240
INL '

JFZ SP1

LLI 340

IN2, CAL RCV
CPI 204

JTZ INCMD
CPI 215

RTZ

CPl 214

RTZ

CP1 377

JTZ BDCR

INL

bCcL

JTZ IN2

LMA

INL

JMP INZ2

/

BDCR, LAl 340
CPL '

JTZ IN2

DCL

LMI 240

JMP IN2

p z

HDLN, LXH 134 000

/

MSG, LAM
NDA ’

RTZ

CAL PRINT
INXH

JMP MSG

/

OCTNM, LAE
STA 165 000
CAL OCTPR
LLI 166
LMB

INL

LMC

LDAD

CPt 254
JFZ SGL
INE

LAE

STA 165 000
CAL OCTPR
SGL», LLI 170

- 48 -

/ADV CMND TBL PNTR
7/FETCH CMND LO ADDR

/FETCH CMND PAGE ADDR
7SET UP JUMP ADDR’
7JUMP T0 COMMAND RTN

/SET PNTR TO START OF INP BFR
/FILL INP BFR WITH SPACES
/INCR INP BFR PANTR ’
/DONE? NO, STORE MORE SPAGCES
/SET INP BFR PNTR

/INP CHAR FM INP DEVICE
/CHAR = CNT'L D?)

/YES, RET TO COMMAND MODE
/CHAR = CAR RET?

/YES, RET TO CALLING PGM
7CHAR = CNT'L L? ~

/YES» RET TO CALLING PGM
/CHAR = RUBOUT?

/YES, DELETE CHAR FM INP BFR
/1S INP BFR FULL? =~ ~ '

/YES, DON'T STORE CHAR
/NO, STORE CHARACTER’
/INCR INP BFR PNTR
/INP NEXT CHAR

/SET ACC TO INP BFR S.A.
/ANY CHARACTERS YET? ~ 7
/NO, CONTINUE INPUT

/YES, BACK UP INP BFR PNTR
7STORE SPACE OVER LAST CHAR
/CONTINUE INPUT o

/SET PNTR TO C/R,L/F MSG

/FETCH CHAR TO PRINT
/END OF MS5G CHAR?

/YES, RET TO CALLING PGM
/NO, PRINT CHAR

7INCR MEM PNTR
/CONTINUE PRINT OUT

/SAVE INP BFR PNTR

/CONVERT 1ST OCTAL PAIR
/S5ET PNTR TO LO ADDR STRAGE
/SAVE LO HALF OF LO ADDR’

/SAVE PG HALF OF LO ADDR
/FETCH NXT CHAR ’
/CHAR = COMMA?

/NO, ONLY ONE ENTRY
/YES», INCR INP BFR PNTR

/SAVE INP BFR PNTR
/CONVERT 2ND OCTAL PAIR
/SET PNTR TO HI ADDR 3TRAGE

—

014
014
Ol4
014
014
014
Ol4
014
014
0l4
Ol4
014
Ooia
014
ota
014
014
Ol4
014
0l4
0la
0l4
ol4
Ol4
014
014
014
014
014
0l4
014
014
0l4
Ol4

014

014

213
214
2185
216
217
221

222
225
226
227
230
232
233
236
237
237
242
243
244
244
244
247
250
251
252
253
254
257
262
263
265
2170
271

272
273
274
275
276
277
300
303
303
306
307
312
315
320
321

321

322
324
325
327
331

332
332
333
334
335
336

160
054
161

171

0seé
276
332
300
054
176
056
276
332
311

315
110
034

041
164
054
164
054
164
315
372
032
346
041
106
167
054
176
160
054
167
034
303

072
273
312
315
362
311

032
376
370
326
306
311

064
300
054
064
311

167

036

166

036

244

150

321
303

007
150

254
165
036

337
036

260

270
200

014

014

0t4

000

014
014

000

Ol4
000
ol4

0l4
Ola

LMB
INL
LMC
LAC
LLI
CcPM
JTC
RFZ
INL
LAM
LLI
CPM
JTC
RET
/

167

ERR

166

ERR

OCTPR, CAL DCDNM

LCB
INE
/
/

DCDNM, LXH 150 000

LMH

INL

LMH

INL

LMH

LOOP, CAL FNUM
JTS CKLNH
LDAD

ND1 007

LXH 150 000
LBM

LMA

INL

LaM

LMB

INL

LMA

INE

JMP LOOP

/
CKLNH,
CPE
JTZ ERR
CAL OCT
JFS ERR
RET

/

FNUM, LDAD
CPI 260
RTS

Sul 270
ADl 200
RET

/

INCR, INM
RFZ *
INL

InM

RET

- 4R =

LTA 165 000

/SAVE LO HALF OF HI ADDR
/SAVE PG HALF OF HI ADDR
/1S HI ADDR < LO ADDR?
/YES, PRINT ERROR

/1F PG HALF NOT =,
/ELSE, CHECK LO HALF

RET

/1S HI ADDR < LO ADDR?

ERROR MSG
CALL!NG PGM

/YES, PRINT
_/NO: RET TO

/DECODE 1ST OCTAL NUMBER
/SAVE OCTAL NUMBER

/INCR INP BFR PNTR

"FALL THRU TO DECODE 2ND NMBR

/SET PNTR TO DIGIT TABLE
ZQLEAR TBL BY STDR;ING 000.

/CHECK FOR VALID NUMBER
/1F NOT, CHECK CHAR CNT = 0
/FETCH CHAR =~ =~ =~
/MASK OFF 260

7SET PNTR TO DIGIT TABLE
/TABLE AT LOC 150 PG 00
/AND SHIFT OTHER NUMBERS
/7UP THRU THE TABLE

/INCR INP BFR PNTR
7FETCH NXT NUMBER

/FETCH ORIG INP BFR PNTR
/15 CHAR CNT = 0?

/YES, PRINT ERROR MSG
/FETCH FINAL OCTAL NUMBER
/IF INVALID, PRINT ERR MSG
7ELSE. RET TO CALLING PGM

/FETCH ASCI1 DIGIT
/VALID NUMBER? = ~

/NO, RET WITH S FLAG SET
/CHECK UPPER LIMIT BY
/SETTING S FLAG TO PROPER
/STATE AND RETURN

/INCR CONTENTS OF MEM LOC
/1F'NOT ZERO, RET :
7PNT TO NXT LOC

7INCR 2ND HALF~

/RET TO CALLING PGM

-rr— . — o o o

e B o BN g BN S

—/ ™M

—

%]
ola
014
014
014
0l4
o14
014
014
014
014
0l4
0ta
014
0la
014
014
014
014
014
014
014
0l4
014
014
014
0la
014
015
01s
01s
015
015
018
018
01s
015
018
015
015
01s
015
01s
015
015
015
015
o1s
015
0is
015
015
015
01s
015
015
018
015
ots
o1s

337
337
341

342
344
345
347
350

351

352
383
354
355
356
357
360
361

362
363
365
366
367
367
370
371

372
374
376
001

002
003
004
005
007
o1t

014
01s
017
021

024
024
026
031

031

034
035
037
042
045
047
0S0
083

053

053

0S5
060

060

063

Q64
066

056
176
376
360
346
017
017
107
055
176
007
007
007
200
055
206
107
076
2417
311

157
007
007
346
366
315
175
017
017
017
346
366
315
175
346
366
303

076
303

o4l
176
346
315
315
056
176
318

076
303

041
176
Q56
276

152
004

003

200

003
260
300

007
260
300

007
260
300

272
300

167
077
367
053
166
367
240
300
171

167

017

017

017

017

000

014
0158

014

017
000

/

0CT, LLI 152
LAM

CPl 004

RFS

NDI 003

RRC

RRC

LBA

DCL

LAM

RLC

RLC

RLC

ADB

beCL

ADM

LBA

LAl 200

NDA

RET

/

0CTOUT, LLA
RLC)
RLC

NDI 003

ORl 260

CAL PRINT
LAL

RRC

RRC

RRC

NDI 007

OR!l 260

CAL PRINT
LAL i

NDI 007

ORl 260

JMP PRINT

/

COLON, LAl 272
JMP PRINT’
/

PRT166, LXH 167 000
LAM

NDI 077

CAL oCTOUT
CAL SPAC
LLI 166

LAM

CAL 0CTOUT
pe

/

SPAC, LAl 240
JMP PRINT

y, ,
CKEND, LXH 171 000
LaM ’
LLI 167

CPM

- 47 =

/SET PNTR TO 3RD DIGIT

/1S 3RD DIGIT > 3?

/YES, RET WITH S FLAG RESET
/7CLEAR CARRY c
/POSITION DIGIT

/SAVE IN REG B
/DECR PNTR

/FETCH NEXT DIGIT
/POSITION DIGIT"

/ADD TO REG B
(DE@R PNTR

/SAVE FINAL NUMBER

7SET S FLAG TO INDICATE
7THAT THE NUMBER I3 VALID
/7RET TO CALLING PG&GM -

/SAVE OCTAL NUMBER TO PRINT
7POSITION HUNDRED'S DIGIT

/MASK OFF OTHER BITS
/FORM ASCIl CODE ~
Z7PRINT DIGIT’

/FETCH OCTAL NUMBER
7POSITION TEN'S DIGIT

/MASK OFF OTHER DIGITS
7FORM ASCI1 CODE ~ ~
/PRINT DIGIT
7FETCH OCTAL NUMBER
7MASK OFF OTHER DIGITS
/FORM ASCI1 CODE ~ ~
/PRINT DIGIT AND RET

/SET ASCII1 CODE FOR
7PRINT COLON AND RET

/SET PNTR TO LO ADDR
7FETCH PG ADDR

/PRINT PAGE ADDR

/PRINT A SPACE

/SET PNTR TO LO ADDR
/FETCH LO ADDR

/PRINT LO ADDR

7FALL THRU TO PRINT SPACE

/SET ASCII CODE FOR SPACE
7PRINT SPACE AND RET

/SET PNTR HI ADDR

7/FETCH 2ND BALF

/SET PNTR TO 2ND HALF LO ADDR
72ND HALFS EQUAL? = C

§

r - r— — — — —

r— Mmoo e 6y M

uls.

015
01s
015
015
015
015
0l1s
015
015
015
015
018
01s
01s
015
01s
015
015
015
015
o1s
01s
015
015
o1s
01s
015
015
015
015
015
015
01s
015
015
015
015
015
015
015
015
01s
015
01s
015
01s
015
015
015
015
015
018
015
015
01s
015
015
015

067
072
073
074
076
077
102
104
107
107
111

114
117
122
125
130
131

134
135
140
141

144
147
152
1585
155
160
163
163
166
171

172
175
200
201
203
206
210
213
214
217
222
224
225
226
226
231

232
235
235
235
235
237
242
245
250
253
255
257

302
054
176
0sé
276
312
056
303

036
315
315
318
3185

- 312

137
315
170
052
167
041
315
315
303

315
303

315
021
173
062
315
022
376
312
376
312
034
312
303
076
273
311

0s2
176
303

036
315
315
315
315
0S6
066
315

102

166

000
166
332

342
157
053
226
163
141

244
166

166
332
1585
117

142
031

024
340

165
200

240
222
215
000

036
175
340

166

367

342
157
142
155
053
164
020
226

018

014

014

014
015
015
ols
015

0l4
000
000
014
01s
o1s

014
01s

015
000

000
017
015
Ol4

014
01§

000

0l4

0la
014
015
015

015

JFZ CONT

INL

LAM

LLI 166

CPM

JTZ INCMD
CONT» LLI 166
JMP INCR™

/

MODIFY, LEI 342
CAL OCTNM

CAL SPAC

MOD1, CAL MEMPRT
CAL INSPCL

JTZ NXLOC

LEA
CAL
LAB
LHLD 166 000

LMA

NXLOC, LXH 166 000
CAL INCR

CAL MCONT

JMP MOD1

/

MCONT, CAL HDLN
JMP PRTI166

/

INSPCL, CAL COLON
LXD 340 000

LAE

STA 165 000

LPIN, CAL RCV
STAD ’

CP1l 240

JTZ LPO

CPI 215

JTZ INCMD

INE ~

JTZ ERR

JMP LPIN

LPO, LAI 340

CPE o

RET

/

DCDNM

/N0, CONTINUE PROCESS

/FETCH 1ST HALF HI ADDR

7SET PNTR TO 1ST HALF LO ADDR
/1S 1ST HALFS EQUAL? '
/YES, RET TO CMND MODE

/NO, SET PNTR TO LO ADDR

/SET INP BFR PNTR

/FETCH ADDR TO MODIFY
/PRINT SPACE T

/7PRINT CONTENTS OF MEM LOC
7INP MODIFICATION)
/N0, SET UP NXT LOC

/YES, SAVE INP PNTR
/CONVERT TO OCTAL NUMBER
/SAVE OCTAL NUMBER

7SET PNTR TO MEM LOC

/LOAD MEM WITH NEW VALUE
/SET PNTR T0O MEM ADDR STRAGE
/INCR MEM ADDR ’ C
/7PRINT NXT ADDR TO MODIFY

/PRINT C/R, L/F
ZPR;NT ADDR T0 'MODEP"Y AND RET

/PRINT COLON
?SET PNTR TO SeA. OF INP BFR

/SAVE S<A. OF INP BFR
ZINP CHER™ =~ ~ :
7STORE CHAR IN INP BFR
/CHAR ="SPACE? ~

/YES, o

/N0, CHAR = C/R?

/YES, RET TO COMMAND MODE
/NO, INCR INP BFR PNTR
/INP BFR FULL? YES,
/N0, INP NXT CHAR
/SET UP TEST FOR CHAR COUNT

ERROR

/RET TO CALLING PGM

MEMPRT, LHLD 166 000 /SET PNTR TO MEM LOC

LAM

JMP O0CTOUT

/

/MEA - MEMORY DUMP
7

MDUMP, LEI 342
CAL OCTNM

CAL HDLN

MDMP1, CAL MCONT
CAL SPAC’ .
MDMP2, 'LLI 164
LMI 020

QUTAGN, CAL MEMPRT

- 48 =

/FETCH CURRENT MEM CONTENTS
JPRINT CONTENTS AND RET

/SET PNTR TO INP BFR
/FETCH MEM DUMP LIMITS
/PRINT C/Rs L/F =~ ~
/PRINT ADDR OF I1ST LOC
/PRINT SPACE) i
7SET PNTR ' TO TEMP STRAGE
/SAVE LOC PER LINE CNTR
7PRINT MEM CONTINTS®

—

015
015
015
015
015
015
015
01s
015
015
018
015
01s
015
015
015
015
015
018
015
01s

‘015

015
015
015
0ls
015
01s
015
018
015
015
018
015
015
015
018
015
015
0ls
0ls
0leé
ole
olé
0le
oleée
0leé
016
0lé6
0leé
016
ol1é
ole
oleé
oleé
o016
016
olé
o016

262
265
270
2172
273
276
301
301
303
306
311
312
318
320
323
323
326
331
331
334
335
337
340
343
345
346
350
351
353
354
355
356
357
360
361
364
364
366
371
373
376
001
004
005
005
ol0
0l1
0l4
015
020
021
024
025
026
027
032
035
036
041

315
315
056
065
312
303

036
315
gs2
353
0s2
315
303

3168
303

315
176
066
353
04l
0¢6
054
066
0S4
066
054
163
054
162
054
167
303

036
315
076
062
052
042
311

042
365
041
071
042
361
06l
325
305
365
052
072
167
303

060
053
164

245
257

342
157
170
166
340
000

240
000

364
377

070
303

005

016

000
342
157
303
155
166
156
206
004
176

206

073
075

000

015
015

015
018

014
000
000
oL7
014

017
014

015

000

Ol4

0l4
000
000
000
000
000
000

000

000
000

0l4

CAL CKEND

CAL SPAC

LLI 164’

DCM

JTZ MDMP1

JMP OUTAGN

/

WRITE, LEI 342
CAL OCTNM™
LHLD {70 000
XCHG

LHLD 166 000
CAL PUNCH

JMP INCMD

) 2

RDBULK, CAL READ
JMP INCMD’ '
/

BREAK, CAL ANLYZ
LAM

LMI 377

XCHG

LXH 070 000
LMI 303

INL

LMI 005

INL

LMI Qlé6

INL

LME

INL

LMD

INL

LMA

JMP INCMD

/

ANLYZ, LEI 342
CAL OCTuwM

LAI 303

STA 155 000
LHLD 166 000
SHLD 156 000
RET

/

BRK, SHLD 206 000
"PUSS

LXH 004- 000
DADS .
SHLD 176 000
POPS

LXS 206 000
PUSD

PUSB

PUSS

LHLD 073 000
LTA 075 000
LMA

JMP INCMD

/

- 4HQ o

/CHECK FOR LAST LOC PRTD
/PRINT SPACE’ ’

/SET PNTR TO L/L CNTR
/DECR CNTR. CNTR = 07
/YES, START NEW LINE
/NO, PRINT MORE CONTENTS

/SET PNTR TO INP BFR
/FETCH START AND END ADDR

/SET END ADDR

/SET START ADDR

/G0 TO USER BULK WRITE RTN
/RET TO COMMAND MODE

/G0 TO USER BULK READ RTN
/RET TO COMMAND MODE

/SET UP ADLRLESS UF BP
/SAVE URIG CUNTENTS OF BP
/INSERT BP RESTART INSTR.
/SAVE BP ADDR

/SET PNTR Tu RST 7 LOC
/STORE JUMP INSTR

/*%%%* STORE BRK LU ADLDR
/xxx% STORL BRK PG ADDR
/STORE BP URIG .OW ALDR
/STORE BP ORIG PG ADDR

/STORE URIG BP INSTRUCTIOw

/SET PNTR TO BUFF SA
/FETCH ADLR IWTU 166, 167
/SET JUMP IWSTR FOR GOTO

/GET BP ADDR
/STORL BP ADDR li JUMP INSTR

/SAVE R & L

/SAVE STATUS & REG A
/SET UP TO SAVE SP

/MOVE SP TO REG'S R & L
/SAVE URIG SP

/RESTURE STATUS

/SET SP TU REG STRAGE
/SAVE REG'S D & L

/SAVE REG'S B & C

/SAVE STATUS WORD & REG A
/SET BP PWNTR

/FETCH ORIG INSTR
/RESTORE URIG BKPNT INSTR
/BACK TO MONITOR

- - — — /o

m

co Mmoo OO

016
ot1e
ole
016
oleé
016
0le
olé
13 9)
ol6
olé
ol6
ol6
ole
ol16
ole
ole6
aleé
oleé
016
ole
ol6
ole
ole
oleé
o016
ole
oleé
(29
ole
olé6
olé
016
0lé
oleé
ole6
0lé
016
olé
016
016
oleé
o016
Oleé
016
016
ole
0le
oleé
0l6
ole
oleé
oleé
0lé
016
olé
0lé
0lé
016

041
044
047
050
051
0s2
053
054
057
062
062
065
070
073
075
100
102
105
107
110
111
112
113
116
117
122
125
130
131
134
136
137
140
143
143
146
150
151
154
155
156
157
160
163
164
167
170
171
174
175
176
177
202
208
210
211
213
214
217

315
06l
341
361
301
321
371
0s2
303

041

021

315
376
312
376
312
0se6
023
032
167
187
315
176
315
315
312
137
318
0sé
156
160
303

315
056
176
o021

o023
107
032
247
312
240
312
033
032
315
023
023
023
303
315
312
157
006
176
021

315

364
176

206
185

341
346
332
306
143
323
261
164

053
367
163
000
244
164
000

053
200

371

202

175

300

156
163
000

002

371
332

01s
000

000
000

000
016
otleé
016

016

015
014
015
0l4

Ol4

0l4

015

oleé

olé

oleé

017

oleé
015
0l4

016
016

GOTO, CAL ANLYZ
LXS 176 000

POPH

POPS

POPB

POPD

SPHL

LHLD 206 000

JMP 155 000

/

XREG, LXH 341 000
LXD RGTBL

CAL TBLCK

CP1 306

JTZ F

CPI 323

JTZ S

LLI 164

INXD
LDAD
LMA
LLA
CAL
LAM
CAL
CAL
JTZ
LEA
CAL
LLI
LLM
LMB
JMP

SPAC

0CTOUT
INSPCL
INCMD

DCDNM
164

INCMD

;
F» CAL SPAC
LLI 200
LAM

LXD FTBL
INXD
LBA
PRTBIT,
NDA

JTZ INFLG
NDB

JTZ TRYNX
DCXD
LDAD

CAL PRINT
INXD
TRYNX,
INXD
JMP PRTBIT

INFLG» CAL INSPCL
JTZ INCMD

LLA

LBI 002

LAM

FLAG, LXD FTBL
CAL TBLCK

LDAD

INXD

- 50 ~

/SET UP ADDR OF GOTO
/SET SP TU REG STRAGE
/FETCH SP IN H & L

/SET UP STATUS AND REG A
/SET UP REG'S B & C

/SET UP REG'S D & E
/SET UP SP

/SET UP REG H & L

/START PRUGRAM

/SET INP BFR PNTR

/SET REG TABLE PNTR
/SEARCH FUR REG DESIGNATED
/FLAG STATUS?

/YES, PRINT FLAGS

/STACK POINTER?

/YES, PRINT ADDRESS

/SET PNTR TO TEMP STRAGE
/INCR REG TBL PNTR
/FETCH REG STRAGE PNTR
/SAVE REG STRAGE PNTR
/SET PNTR TO REG VALUE
/PRINT SPACE

/FETCH CURRENT REG VALUE
/PRINT CURRENT REG VALUE
/INP MODIFICATION

/N0 ENTRY, RET TO CMND
/SAVE INP BFR PNTR

/YES, DECODL OCTAL NUMBER
/SET PNTR TO TEMP STRAGE
/FETCH REG TBL PNTR
/STORE NEW REG VALUL
/RET TO COMMAND MODE

/PRINT SPACE

/SET REG TBL PNTR
/FETCH FLAG WORD

/SET PNTR TO FLAG TBL
/ADV PNTR TO BIT WORDS

/FETCH FLAG BIT
/END OF TABLE?

/YES, INP FLAG CHANGES
/1S BIT SET?
/N0, TRY NEXT BIT

/FETCH CHAR FOR FLAG
/PRINT CHAR FOR FLAG
/RESET TBL PNTR
/ADV REG TBL PNTR

/INPUT CHANGES

/NO ENTRY, RET TO CMND
/SET INP BFR PNTR

/SET BASIC FLAG BYTE
/FETCH FLAG CHAR FM INP
/SET PNTR TO FLAG TBL
/SEARCH TBL FOR FLAG CHAR

— M

ocleé
016
3
3%
ole
016
016
016
016
olé
o1e6
016
oleé
016
ole6

016
016
ole6
0lé
[3%)
016
016
olé
o016
o016
ole
olé
o016
ole
016
olé
016
o016
ote
016
olé
ote
0leé
016
¢} ¥
ole6
oleé
oleé
0leé
ole
oleé
o016
Oleé
ote
0leé
016
oleé
oleé
ole
016
aieé
o016
016

222
223
224
225
226
227
230
232
235
236
240
243
244
246
250
253
2585
256
261

26!

264
267
270
273
276
300
301

304
307
312
313
316
321

324
325
326
327
332
332
333
334
337
340
341

342
343
346
346
347
350
351

352
353
354
3585
356
357
360
361

023
032
260
107
054
176
376
302
170
346
312
170
346
356
302
056
160
303

315
041
176
315
315
056
176
315
315
312
137
062
315
041
160
054
161
303

032
247
312
276
310
023
023
303

301
201
302
203
303
202
304
205
308
204
310
207

240
214

100
253

204
004
036
200

000

053
177

367
053
176
367
163
goo
165

237
176

000

036

332

0lé

0leé

014

014

018
000

0l4
015

0l4
015
014
000

0l4
000

Ol4

014

o016

INXD
LDAD

ORB
LBA
INL
LAM
CP1
JFZ
LAB
NDI
JTZ
LAB
NDI
XRI1
JFZ
0K,
LMB
JMP
/
S, C.
LXH
LAM
CAL

JMP

TBLC,
NDA
JTZ
crM
RTZ
INXD
INXD
JMP
/

240
FLAG

100
0K

204
004

ERR

LLI 200
INCMD

AL SPAC
177 000

0cTOUT
SPAC
176
0oCTOUT
INSPCL
INCMD
165 000

OCTPR
176 000

INCMD

K, LDAD

ERR

TBLCK

RGTBL, 301

201
302
203
303
202
304
205
305
204
310
207

Sl

/FETCH BIT WORD

/ADD BIT TO BASIC BYTE
/SAVE FLAG BYTE

/FETCH NEXT CHAR FM INP
/CHAR = SPACE?

/N0, MOURE STATUS INnP
/FETCH NEW STATUS WURD
/15 ZERO SET?

/NO» WORD IS U«Ke.

/YES, CK S AND P FLAGS
/SEPARATE S AND P FM OUTHERS
/8 = 0?2 P = 1?7

/NO, ILLEGAL SET UP

/SET PNTR TO STATUS BYTE
/SAVE NEW BYTE

/RET TO COMMAND MODE

/PRINT A SPACE
/SET PNTR TO SP PG ADDR

/PRINT SP PG ADDR
/PRINT A SPACE
/SET PNTR TO SP LO ADDR

/PRINT SP LU ADDR
/INP MODIFICATIUN
/NO ENTRY, RET TO CMND

/SAVE INP PNTR
/CONVERT ADDR INP
/SET SP STRAGE
/STORE SP LO ADDR

/STORE SP PG ADDR
/RET TO CMND MODE

/FETCH CHAR

/END OF TABLE?

/YES, INVALID INPUT
/CHAR MATCH?

/YES, RET TO CALLING PGM
/N0, ADV TBL PNTR

/CONT. SEARCH

/REG A CHAR
/REG A STRAGE
/REG B CHAR
/REG B STRAGE
/REG C CHAR
/REG C STRAGE
/REG D CHAR
/REG D STRAGE
/REG E CHAR
/REG E STRAGE
/REG H CHAR
/REG H STRAGE

oo r— o r— o

| gy

r— /

o0lé
0le
o16
ole
ole6
016
ole
016
016
o016
o016
oleé
ole
ol6
ole
017
017
017
017
017
o017
017
017
017
o117
017
017
017
o017

o117
o7
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
o017
017
017
017
017
017
017
017
017
017

362
363
364
365
366
367
370
371
371
372
373
374
375
376
377
000
001

003
004
005
005
o010
013
0la
oL7
022
022
022
022
025
027
030
032
033
036
037
042
045
050
050
052
055
056
06l
06l
061
061
063
066
070
071
074
077
101
102
105
106
107
112

314
206
306
200
323
176
000

323
200
332
100
301
020
320
004
303
001
000
000

315
052
160
315
303

315

160
056
176
052
276
314
315
303

036
315
034
303

036
315
056
103
021

315
076
275
302
004
130
315
056

050
166

060
010

050
165

165
166
155
060
030

342
157

244

342
157
166

172
146
172
074

157
172

017
000

018
017

017

000

015
015
017

Ol4

014

014

coo
017

017

014

314
206
306
200
323
176
000
/
FTBL,
200
332
100
301
020
320
004
303
001
000
[o1e]¢]
/
FILL,
FL1,
LMB
CAL CKEND
JMP' FL1

/

323

CAL ADRDTA
LHLD 166 000

/SEARCH ROUTINE

/

SEARCH, CAL ADRDTA
LLI 165

LMB
SH1,
LAM
LHLD 166 000

CcPM

CTZ MCONT

CAL CKEND

JMP SH1

/

ADRDTA, LEIl 342
CAL OCTNM

INE

JMP DCDNM

/

/TRANSFER ROUTINE
/

TRNSFR, LEI 342
CAL OCTNM

LLI 166

LBE

LXD 172 000

SVSA, CAL SWAP
LALI 172

CPL
JFZ
INB
LEB
CAL OCTNM
LLI 172

LLI 165

SVSA

-52-

/REG L CHAR

/REG L STRAGE

/FLAG STATUS CHAR
/FLAG STATUS STRAGE
/STACK PNTR CHAR
/STACK PNTR STRAGE

/S1GN CHAR

/SIGN BIT

/ZERO CHAR

/ZERO BIT

/AUXILIARY CARRY CHAR
/AUXILIARY CARRY BIT
/PARITY CHAR

/PARITY BIT

/CARRY CHAR

/CARRY BIT

/INP ADDR AND DATA FM BFR
/SET UP MEM PNTR

/FILL MEM LOC WITH DATA
/DONE? YES, RET TO CMND MODE
/NO, CONTINUE WITH FILL

/INP ADDR AND DATA FM BFR
/SET PNTR TO SAVE DATA
/SAVE SEARCH DATA IN MEM
/SET PNTR TO SRCH DATA
/FETCH SEARCH DATA

/SET PNTR TO MEM '

/DATA EQUAL SRCH DATA

/YES, PRINT ADDR

/DONE? YES, RET TO CMND MODE
/NO, CONTINUE SEARCH

/SET PNTR TO ADDR INP

/INP START AND END ADDR
/INCR TO DATA POSITION
/FETCH DATA FM INP BFR

/SET PNTR TO ADDR INP
/FETCH 'FROM' ADDR

/SET PNTR TO ADDR INP

/SAVE INP BFR PNT

/SAVE 'FROM' IN TEMP STRAGE
/MOVE ADDR TO0 TEMP STRGE’
/1S XFR COMPLETE?

/N0, CONTINUE MOVE
/RESTORE INP BFR PNTR
/INP 'TO' ADDR

/SET PNTR TO TEMP STRGE

- r— - r—

|

017 114 021 166 000 LXD 166 000 /SET PNTR TO TEMP STRAGE
017 117 315 146 017 TFl, CAL SWAP /XFR 'FROM' PNTR
017 122 076 176 LALI 176 B)
017 124 275 : CPL /XFR COMPLETE?
017 125 302 117 017 JFZ TFI /NO, CONTINUE
0i7 130 130 LEB /FETCH 'TO' PNTR
017 131 121 LDC o7
017 132 0S2 166 000 TF2, LHLD 166 000 /SET 'FROM® PNTR
017 135 315 146 017 CAL SVWAP /SWAP 'MEM CONTENTS
017 140 315 060 015 CAL CKEND /DONE? YES, RET TO CMND MODE
017 143 303 132 017 JMP TF2 /NO, CONTINUE XFR
017 146 /
017 146 176 SWAP, LAM /FETCH BYTE TO XFR
017 147 043 INXH /INCR 'FROM' PNTR
017 150 o022 STAD i /STORE™BYTE IN NEW LOC
017 1s1 o023 INXD /INCR 'TO' PNTR
017 1s2 311 RET
017 183 /
017 200 RCV, /USER DEFINED INPUT ROUTINE
/FOR OPERATOR INPUT DEVICE
/
017 240 READ, /USER DEFINED INPUT ROUTINE
/FOR BULK STURAGE DEVICE
/
017 300 PRINT, /USER DEFINED OUTPUT ROUTINE
/FOR DISPLAY DEVICE
/
017 340 PUNCH, /USER DEFINED OUTPUT ROUTINE

/FOR BULK STORAGE DEVICE

OPERATING THE MONITOR PROGRAM

AS A REVIEV OF THE MONITOR PROGRAM FUNCTIONS AND, ALSO, TO SERVE AS
AN OPERATOR'S GUIDE, THE OPERATION OF EACH OF THE MONITOR COMMANDS WILL
NOWV BE DESCRIBED.)

THE "MODIFY" COMMAND

THE "MODIFY"™ COMMAND IS INITIATED BY TYPING IN THE "M" COMMAND FOL-
LOWED BY THE ADDRESS TO BE MODIFIED, IN THE FOLLOWING FORMAT:

M HHH LLL (CTRL/L)

WHERE "HHH" IS THE PAGE ADDRESS AND "“LLL" IS THE LOW ADDRESS (IN OCTAL)
OF THE RAM MEMORY ADDRESS WHERE ONE DESIRES TO BEGIN EXAMINING AND/OR
MODIFYING THE CONTENTS OF MEMORU LOCATIONS. THE OPERATOR SHOULD NOTE
THAT A SPACE SHOULD BE INSERTED BETWEEN THE "M" AND THE PAGE ADDRESS AS
VELL AS BETWEEN THE PAGE ADDRESS AND THE LOW ADDRESS WHEN ENTERING THE
COMMAND STRING.

WHEN THE OPERATOR DEPRESSES THE "CTRL/L"™ COMBINATION TO EXECUTE THE
"M COMMAND, THE FOLLOWING WILL OCCUR. THE OUTPUT DEVICE WILL DISPLAY
THE FOLLOWING INFORMATION:)

HHH LLL XXX

- 83 -

— -

— r— r— [— [r— ™

—

THE “XXX" 1S THE CURRENT CONTENTS OF THE MEMORY LOCATION SPECIFIED. THE
PROGRAM WILL THEN WAIT FOR THE OPERATOR TO SELECT EITHER A "MODIFY" OP-
TION, OR TAKE THE OPTION OF NOT MODIFYING THE CURRENT LOCATION BEING
DISPLAYED BUT CONTINUE TO DISPLAY THE NEXT LOCATION, OR TERMINATE THE
"M" SEQUENCE. TO ELECT TO MODIFY THE CONTENTS OF THE MEMORY LOCATION
BEING DISPLAYED, THE OPERATOR SIMPLY TYPES IN THE DESIRED OCTAL CONTENTS
IMMEDIATELY FOLLOWING THE ":" SIGN AND THEN DEPRESSES THE “SPACE"™ BAR.
THE NUMBER ENTERED WILL BECOME THE NEW VALUE FOR THE MEMORY LOCATION AND
THE PROGRAM WILL PROCEED TO DISPLAY THE ADDRESS AND CONTENTS OF THE NEXT
SEQUENTIAL MEMORY LOCATION.

1F THE OPERATOR DOES NOT WISH TO MODIFY THE CONTENTS OF A LOCATION.,
BUT DOES DESIRE TO EXAMINE THE CONTENTS OF THE NEXT MEMORY LOCATION.
THEN IT IS ONLY NECESSARY TO DEPRESS THE “SPACE"™ BAR. THE PROGRAM WILL
PROCEED TO DISPLAY THE MEMORY ADDRESS AND CONTENTS OF THE NEXT MEMORY
LOCATION. ’

1F THE OPERATOR DESIRES TO TERMINATE THE “MODILFY" PROCESS, THEN THE
“CARRIAGE RETURN" 1S ENTERED AND THE PROGRAM WILL RETURN TO THE MONITOR
COMMAND MODE AND DISPLAY THE ">" MONITOR "READY" CHARACTER.

IT IS IMPORTANT TO NOTE THAT WHEN ELECTING TO MODIFY A MEMORY LOCA-
TION, THE "SPACE"™ CHARACTER MUST BE ENTERED AFTER ENTERING THE OCTAL
NUMBER THAT IS TO BE THE NEW VALUE IN THE MEMORY LOCATION! THIS WILL
CAUSE THE NEW VALUE TO BE PLACED IN THE MEMORY LOCATION AND AUTOMATICAL-
LY CAUSE THE NEXT LOCATION IN MEMORY TO BE DISPLAYED. HITTING THE
"“C/R" IMMEDIATELY AFTER ENTERING A NEW VALUE FOR A MEMORY LOCATION VILL
CAUSE THE PROGRAM TO RETURN TO THE MONITOR AND WILL N O T RESULT IN
THE VALUE BEING PLACED IN MEMORY! THIS FORMAT ALLOWS THE OPERATOR TO E-
LECT NOT TO CHANGE A MEMORY LOCATION EVEN AFTER HAVING TYPED IN A VALUE.
1F, HOVEVER, THE RULE 1S NOT REMEMBERED, THE OPERATOR MAY INADVERTENTLY
FAIL TO INSERT THE DESIRED CHANGES. '

CORRECTING ERRORS WHEN IN THE MONITOR COMMAND MODE

IF THE OPERATOR MAKES A TYPING MISTAKE WHILE ENTERING A COMMAND
SEQUENCE TO THE MONITOR, THE CURRENT COMMAND CAN BE ERASED BY ENTERING
THE CHARACTER "CONTROL/D." THIS WILL CAUSE THE PROGRAM TO GO BACK TO
THE INITIAL "READY" CONDITION ("> DISPLAYED) TO AWAIT A NEW ENTRY. IF
ONLY ONE OR TWO CHARACTERS ARE ENTERED IN ERROR, THE "“RUBOUT" CHARACTER
MAY BE ENTERED TO DELETE ONE CHARACTER TO THE LEFT FOR EACH RUBOUT EN-
TERED.

SHOULD THE OPERATOR INADVERTENTLY ENTER AN INVALID COMMAND OR COM-

MAND SEQUENCE, THE PROGRAM WILL CAUSE THE LETTER "I (ILLEGAL COMMAND)
TO BE PRINTED.) '

THE MEMORY "DUMP'" COMMAND

THE MONITOR MEMORY "LDUMP"™ COMMAND IS INITIATED BY TYPING IN THE "D"
COMMAND IN THE FOLLOWING FORMAT:
D HHH LLL,MMM NNN ¢CTRL/L)

WHERE "HHH" AND "LLL" SIGNIFIES THE STARTING ADCRESS (OCTAL) AND "MMM"
AND "NNN" INDICATE THE ENDING ADDRESS OF THE BLOCK OF MEMORY THAT ONE

-54-

mrm O e e o o

M

ol s BN an B o BN o B o BN aun |

DESIRES TO HAVE DISPLAYED. VWHEN THE “CTRL/L"™ (OR, “C/R" MAY BE USED) IS
BNTERED, THE PROGRAM VILL PROCEED TO DISPLAY THE CONTENTS OF TME MENORY
LOCATIONS SPECIFIED. THE OUTPUT FORMAT VILL BE THE FOLLOVING:

HHM LLL XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
HMH+020 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
HHH+040 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX

EACH LINE PRINTED STARTS WITH THE ADDRESS OF THE FIRST LOCATION DISPLAY-
ED FOLLOVED BY THE CONTENTS OF THE NEXT 20 (OCTAL) LOCATIONS 1N MEMORY.
THE PROCESS CONTINUES UNTIL THE LAST LOCATION SPECIFIED IN THE COMMAND
HAS BEEN PRINTED.

THE "WRITE" COMMAND

THE “WRITE" COMMAND IS INITIATED BY THE OPERATOR ENTERING THE "w"
COMMAND IN THE FOLLOWING FORMAT:

W HHH LLL,MMM NNN (CTRL/L)

WHERE "HHH" AND "LLL" INDICATE THE START ADDRESS AND "MMM" AND “NNN*" IN-
D CATE THE ENDING ADDRESS OF THE BLOCK TO BE WRITTEN TO THE BULK STORAGE
DEVICE. NATURALLY, THE OPERATOR MUST MAKE WHATEVER PREPARATIONS ARE NE-
CESSARY FOR THE BULK STORAGE DEVICE TO RECEIVE THE DATA BEFORE THE COM-

MAND 1S ISSUED (BY ENTERING THE "CTRL/L™ (OR "C/R™)). AT THE CONCLUSION
OF THE DATA TRANSFER, IT IS5 ASSUMED THAT THE BULK STDRAGE OUTPUT ROUTINE
WILL RETURN TO THE MONITOR COMMAND MODE. .

THE "READ" COMMAND

THE "READ™ COMMAND IS INITIATED BY THE OPERATOR ENTERING THE "R"

COMMAND IN THE FOLLOWING FORMAT:
R (CTRL/L)

THE ISSUANCE QF THIS COMMAND CALLS THE BULK STORAGE INPUT ROUTINE TO BE-
GIN READING IN THE DATA FROM THE BULK STORAGE DEVICE. ADDRESSING INFOR-
MATION 1S ASSUMED TO BE EITHER SET UP BY THE BULK STURAGE INPUT ROUTINE
OR RECEIVED FROM THE DATA AS IT IS READ IN. THE OPERATOR MUST SET UP

THE BULK STORAGE DEVICE PRIOR TO ENTERING THIS COMMAND OR AS IS REQUIRED
BY THE BULK INPUT ROUTINE.

THE “BREAKPOINT™ COMMAND

THE MONITOR “BREAKPOINT™ COMMAND 1S ENTERED BY TYPING IN THE FOL~-
LOVING COMMAND:
B HHH LLL (CTRL/L)

WERE "HHH LLL" DESIGNATES THE MEMORY ADDRESS AT WHICH THE BREAKPOINT 1S
TO BE INSERTED.

- 85 =

NOTICE

IN CASES WHERE A BREAKPOINT IS TO BE INSERTED IN A MULTI-BYTE
INSTRUCTION, SUCH AS "IMMEDIATE." "JUMP" OR "CALL" INSTRUC-
TIONS, THE ADDRESS INDICATED MUST BE THE ADDRESS OF THE FIRST
BYTE IN THE INSTRUCTIONI!) o ')

THE BREAKPOINT COMMAND SETS A POINT IN A PROGRAM BEING TESTED AT
WHICH THE CONTENTS OF THE CPU REGISTERS, THE STACK POINTER AND THE FLAG

STATUS ARE TO BE STORED FOR EXAMINATION BY THE PROGRAMMER. THUS, THE
OPERATOR MAY INSERT A BREAKPOINT IN A PROGRAM BEING TESTED TO ASCERTAIN

WHETHER PROGRAM OPERATION 1S ACTUALLY REACHING A CERTAIN POINT, OR TO~
VALIDATE THE STATUS OF THE CPU REGISTERS AT GIVEN POINTS WITHIN A PRO-
GRAM UNDER DEVELOPMENT. WHEN THE PROGRAM BEING TESTED REACHES THE
ADDRESS AT WHICH A BREAKPOINT HAS BEEN INSERTED, CONTROL WILL REVERT TO
THE MONITOR A N D THE ORIGINAL INSTRUCTION IN THE PROGRAM WILL BE RE-
STORED AT THE BREAKPOINT ADDRESS!

CAUTION

WHEN UTILIZING THE BREAKPOINT FACILITY THERE ARE SEVERAL CON-
SIDERATIONS THAT THE OPERATOR MUST KEEP iN M!ND:))

1. THE PROGRAM BEING TESTED MAY NEVER REACH THE SELECTED
BREAKPOINT ADDRESS IN WHICH CASE THE OPERATOR MAY HAVE TO MAN-
UALLY STOP THE PROGRAM AND RESTART THE MONITOR PROGRAM. IF’
THIS OCCURS, THE OPERATOR SHOULD USE THE “MODIFY"™ FUNCTION TO
REMOVE THE "BREAKPOINT" INSTRUCTION FROM THE LOCATION THAT IT
WAS INSERTED (WHICH WILL APPEAR AS AN "377" CODE) AND RESTORE
THE ORIGINAL INSTRUCTION CODE TO THE PROGRAM UNDER TEST. THE
OPERATOR WOULD MOST LIKELY THEN CONTINUE TO "DEBUG" THE PRO-
GRAM BY SELECTING A BREAKPOINT AT SOME OTHER LOCATION.

2. ONLY ONE BREAKPOINT SHOULD BE ESTABLISHED AT ONE TIME.
ATTEMPTING TO ESTABLISH MORE THAN ONE BREAKPOINT WILL RESULT

IN THE FIRST BREAKPOINT ENCOUNTERED BEING RESTORED WITH THE IN-
STRUCTION CODE CONTAINED IN THE ORIGINAL PROGRAM AT THE LAST’
POINT AT WHICH A BREAKPOINT WAS ESTABLISHED. THIS MIGHT NOT BE

APPROPRIATE.

THE "GO TO" COMMAND

THE "GO TO™ COMMAND IS INITIATED BY TYPING IN THE FOLLOWING COMMAND
ENTRY: B : -) ’ B ’ ’

G HHH LLL (CTRL/L)

WHERE "HHH LLL" REPRESENTS THE MEMORY ADDRESS AT WHICH PROGRAM OPERATION
1S TO COMMENCE. THE CONTENTS OF THE CPU REGISTERS, STACK POINTER AND
THE FLAG STATUS ARE SET UP WITH THE VALUES ENTERED BY THE OPERATOR’
USING THE "X"™ COMMAND OR WITH THE VALUES STORED AT THE TIME THE LAST
EREAKPOINT WAS ENCOUNTERED BEFORE ACTUALLY JUMPING TO THE ADDRESS DESIG-
NATED IN THE COMMAND. o . o)

-56-

—

THE “EXAMINE REGISTER" COMMAND

THE "“EXAMINE REGISTER" COMMANDS ARE INITIATED BY TYPING IN ONE OF
THE FOLLOWING COMMANDS:

XA (CTRL/L)
XB (CTRL/L)
XC (CTRL/L)
XD (CTRL/L)
XE (CTRL/L)
XH (CTRL/L)
XL (CTRL/L)
XS (CTRL/L)
XF (CTRL/L)

WHERE THE LETTER FOLLOWING THE "X" INDICATES THE "VIRTUAL" CPU REGISTER
T0 BE DISPLAYED, OR THE STACK POINTER (S) OR THE FLAG STATUS (F). THE
"“CTRL/L™ MUST BE USED IN THIS COMMAND AS THE TERMINATING CHARACTER TO
MAINTAIN THE DISPLAY DEVICE AT THE POSITION FOLLOWING THE “XR" COMMAND.
FOR THE CPU REGISTERS, THE CONTENTS WILL BE DISPLAYED IN THE FOLLOWING™
FORMAT: . ') ' B

XR DDD:

SHERE “DDD" 1S THE CURRENT VALUE STORED FOR THE CPU REGISTER INDICATED.
IF IT IS NOT DESIRED TO MODIFY THE CONTENTS AS DISPLAYED, THE OPERATOR
SIMPLY DEPRESSES THE SPACE BAR AND THE PROGRAM RETURNS TO THE MONITOR
COMMAND MODE.

IF IT IS DESIRED TO MODIFY THE CONTENTS OF A VIRTUAL REGISTERs, THE
OPERATOR TYPES IN THE DESIRED OCTAL VALUE AND DE‘PRESSES'T}}E SPACE Bl;\RQ

FOR ANY OF THE COMMANDS LISTED ABOVE, IF THE OPERATOR SHOULD TYPE
IN A MODIFICATION AND THEN DECIDE THAT IT 18 NOT DESIRABLE TO MAKE THE
CHANGE, THE OPERATOR MAY ENTER A “C/R" TO RETURN TO THE COMMAND MODE; iN
WHICH CASE THE ORIGINAL VALUE WILL RMAIN UNCHANGED. ’

THE "XS" COMMAND CAUSES THE CURRENT CONTENTS STORED FOR THE STACK
POINTER TO BE DISPLAYED IN THE FOLLOWING FORMAT:

XS HHH LLL:

WHERE “HHH LLL" INDICATE THE PAGE AND LOW ADDRESS PORTIONS, RESPECTIVE~
LY, OF THE VIRTUAL STACK POINTER. 'IF IT I§ NOT DESIRED TO CHANGE THIS
VALUE, THE OPERATOR DEPRESSES THE SPACE BAR AND THE PROGRAM RETURNS TO
THE COMMAND MODE.

1F THE OPERATOR DESIRES TO CHANGE THE CONTENTS OF THE VIRTUAL STACK
POINTER, THE MODIFICATION MUST BE ENTERED IN THE FOLLOWING FORMAT AND
TERMINATE IT BY ENTERING A SPACE.

XS HHH LLL:MMM,NNN

VHERE "MMM" 1S THE PAGE PORTION AND "NNN" IS THE LOW ADDRESS PORTION OF
THE ADDRESS. THE PAGE AND LOV ADDRESS MUST BE SEPARATED BY A COMMA WHEN
ENTERING THIS MODIFICATION. 1IF A SPACE IS US ED., THE VALUE STORED FOR
THE STACK POINTER WILL MOST LIKELY NOT BE THE VALUE. DE.SIRED.

THE "XF" COMMAND CAUSES THE STATUS OF THE CPU FLAGS, AS THEY VHERE

_57-

L
L
L
L
L
L
L
L
L
L

WHEN THE LAST BREAKPOINT WAS ENCOUNTERED, TO BE DISPLAYED IN THE FOLLOW-
ING MANNER. ’

EACH FLAG IS ASSIGNED AN IDENTIFICATION LETTER, WHICH IS THE FIRST
LETTER OF THE FLAG NAME. THIS.ASSIGNKENT‘_IS AS FOLLOVS:

SIGN FLAG

ZERO FLAG

AUXILIARY CARRY FLAG
PARITY FLAG

CARRY FLAG

QU N0

[O

WHEN THE COMMAND "XF" IS ENTERED, EACH FLAG WHICH HAS A VALUE OF "i"
STORED IN THE VIRTUAL STORAGE AREA WILL BE INDICATED BY THE CORRESPOND-
ING LETTER BEING PRINTED ON THE DISPLAY DEVICE. FOR EXAMPLE: IF AT THE
TIME THE LAST BREAKPOINT WAS ENCOUNTERED THE SIGN, PARITY AND CARRY
FLAGS WERE "1™ AND THE ZERO AND AUXILIARY CARRY FLAGS WERE "0" THE PRO~
GRAM WOULD OUTPUT THE FOLLOWING:

XF SPC:

1F THE OPERATOR DESIRES TO SPECIFY CERTAIN FLAGS TO BE SET THE NEXT

TIME A "GO TO™ 15 PERFORMED, THE LETTERS INDICATING WHICH FLAGS ARE TO
HAVE A VALUE OF "1" SHOULD BE ENTERED AND THE INPUT TERMINATED BY A
"SPACE" CHARACTER. ANY FLAG WHICH IS NOT ENTERED AT THI® TIME VWILL BE
SET TO A VALUE OF "0," REGARDLESS OF THE SETTING INDICATED BY THE PRO-
GRAM. 1IN THE ABOVE EXAMPLE, IF IT IS DESIREDATO CHANGE THE SETTING TO
HAVE THE ZERO, PARITY AND CARRY FLAGS SET TO "1" AND THE $IGN AND AUX-
ILIARY CARRY SET TO "O"™ THE FOLLOWING ENTRY SHOULD BE MADE: ’

XF SPC:ZPC (SPACE)

THERE IS ONE RESTRICTION ON THE SETTING OF THE FLAG STATUS. IF THE
ZERO FLAG 1S5 "1,™ THE SIGN FLAG MUST BE "0" AND THE PARITY FLAG MUST BE
“l." IF THE ENTRY DOES NOT FOLLOW THIS RESTRICTION, THE ENTRY WILL BE
IGNORED AND THE ILLEGAL ENTRY ERROR MESSAGE VILL BE DISPLAYED.

IF IT 15 NOT DESIRED TO CHANGE THE SETTING OF THE FLAGS, THE OPER-
ATOR MAY SIMPLY ENTER A SPACE AND THE PROGRAM WILL RETURN TO 'l‘HE com-
MAND MODE.~

THE "FILL" COMMAND

THE "FILL" COMMAND IS INITIATED BY TYPING IN THE "“F" COMMAND IN THE
FOLLOWING FORMAT:

F HHH LLL,MMM NNN,DDD (CTRL/L)

WHERE "HHH LLL" IS THE START ADDRESS AND "MMM NNN" 1S THE END ADDRESS OF
THE SECTION OF MEMORY THAT IS TO BE FILLED WITH THE DATA BYTE "DDD."
WHEN THE CTRL/L (OR C/R) 1S ENTERED, THE PROGRAM WILL PROCEED TO LUAD
THE MEMORY LOCATIONS SPECIFIED WITH THE 8§ BIT DATA BYTE ENTERED IN THE
COMMAND. AT THE CONCLUSION, THE PROGRAM RETURNS TO THE MONITOR COMMAND
MODE.) ’

THE “SEARCH' COMMAND

THE SEARCH COMMAND IS INITIATED BY TYPING IN THE '"S* COMMAND IN THE
FOLLOWING FORMAT:

S HHH LLL,MMM NNN,DDD (CTRL/L)

WHERE "HHH LLL" SIGNIFIES THE START ADDRESS AND "MMM NNN" INDICATE THE
INDING ADDRESS OF THE BLOCK OF MEMORY TO BE SEARCHED FOR THE DATA PAT-
TERN "DDD." WHEN THE OPERATOR ENTERS THE CTRL/L (OR C/R), THE PROGRAM
BEGINS SEARCHING THE DESIGNATED MEMORY LOCATIONS FOR THE DATA PATTERN
SPECIFIED IN THE COMMAND AND EACH TIME A MATCH IS FOUND, THE ASSOCIATED
MEMORY ADDRESS IS OUTPUT TO THE DISPLAY DEVICE, PRECEEDED BY A C/R,

L/F COMBINATION TO START EACH ADDRESS OUTPUT ON A NEW LINE. THE PROGRAM
RETURNS TO THE COMMAND MODE WHEN THE ENTIRE BLOCK HAS BEEN SEARCHAED.

THE "TRANSFER"™ COMMAND

THE “TRANSFER" COMMAND 1S INITIATED BY TYPING IN THE “T* COMMAND IN
THE FOLLOWING FORMAT: ’

T HHH LLL,MMM NNN,YYY 222 (CTRL/L)

WHERE *"HHH LLL'" SPECIFIES THE START ADDRESS AND MMM NNN" THE END AD-
DRESS OF THE BLOCK OF MEMORY THAT IS TO BE TRANSFERED TO THE SECTION OF
MEMORY WHICH STARTS AT LOCATION "YYY ZZZ." WHEN THE CTRL/L (OR C/R) 1S
ENTERED, THE PROGRAM BEGINS THE TRANSFER 'BY FETCHING THE CONTENTS OF THE
MEMORY LOCATION “HHH LLL*" AND STORES THAT VALUE IN THE LOCATION "YYY
ZZZ+" THE CONTENTS OF "HHH LLL+1" IS THEN TRANSFERRED TO "YYY ZZZ+1"
AND SO ON, UNTIL THE CONTENTS OF THE LAST LOCATION "MMM NNN" HAS BEER
TRANSFERRED. THE PROGRAM THEN RETURNS TO THE COMMAND MODE. ’

PUTTING THE MONITOR PROGRAM ON "PROMS"

ONCE THE MONITOR PROGRAM PRESENTED IN THIS MANUAL HAS BEEN "CUS-
TOMIZED" TO THE READER'S PARTICULAR SYSTEM, BY MODIFYING OR EXPANDING
THE PROGRAM TO MEET THE REQUIREMENTS OF ONE'S SYSTEM., IT CAN BE EASILY
ADAPTED FOR PERMANENT STORAGE ON *“PROMS™ TO ALLOW THE COMPUTER TO BE
“ON~-LINE™ ONCE THE POWER IS TURNED ON BY SIMPLY JUMPING TO THE START AD-
DRESS OF THE MONITOR PROGRAM. THIS IS MADE POSSIBLE BY HAVING ALL TEM-
PORARY DATA STORED IN THE FIRST 256 LOCATIONS OF RAM MEMORY. IFf ONE IS
TO PUT THE MONITOR PROGRAM ON "PROMS" THERE ARE SEVERAL FACTS THAT MU3T
BE BROUGHT OUT. FIRST, THE PROGRAM SHOULD BE LOCATED IN THE UPPER-MOST
SECTION OF MEMORY THAT THE SYSTEM IS CAPABLE OF ADDRES3ING. NEXT, THE
COMMAND LOOK UP TABLE AND CANNED MESSAGES SHOULD BE MOVED T0 BE INCLUDED
IN THE PROM SECTION OF THE PROGRAM. THIS REQUIRES THAT THE POINTERS TO
THESE TWO AREAS, IN THE "COMMAND INPUT" ROUTINE AND THE "HDLN" SUBROU~-
TINE, BE CHANGED TO INDICATE THE NEW START ADDRESSES. FINALLY, BEFURL
PUTTING THE PROGRAM IN "PROMS,' MAKE SURE THAT LACH FUNCTIOWN IS8 CHECKED
OUT THOROUGHL Y, THEREBY DECREASING THE LIKELYHUUD THAT Thk
PROMS WILL HAVE TO BE RE-PROGRAMMED TO CORRECT SOMETHING THAT WAS OVER-
LOOKED IN THE INITIAL PROGRAMMING.

...59-

—

THERE ARE SEVERAL IMPORTANT ADVANTAGES TU HAVING A PROGRAM SUCH AS
THE MONITOR PROGRAM ON PROMS. FIRST, AS MENTIUNED ABOVE, IT ALLUWS Oin-
LINE CAPABILITY SECONDS AFTER THE SYSTEM IS TURWED ONe IT ALSO PREVENTS
A PROGRAM BEING DEBUGGED FROM "WIPING OUT" THE MONITOR PROGRAM, SHOULD
THE NEV PROGRAM HAVE A NEVER-ENDING LOOP IN IT WHICH TRIES TO STURE SOME
DATA IN EVERY MEMORY LOCATION THE COMPUTER CAN ACCESS. FINALLY, THE
SUBROUTINES OF THE MONITOR PROGRAM WILL ALWAYS BE AVAILABLE FOR OTHER
PROGRAMS TO CALL AS THEY REQUIRE. '

THE MONITOR PROGRAM IS AN EXTREMELY USLFUL TOOL, AS ANYONE WILL AT-
TEST TO THAT HAS WORKED ON A COMPUTER WITH AND WITHOUT A MUNITOR. IT IS
HOPED THAT THIS MONITOR PROGRAM WILL GET THE READER OFF ON THE RIGHT
FOOT TOWARDS TRANSFORMING ONE'S COMPUTER SYSTEM FROM A BOX THAT MERELY
BLINKS ITS LIGHTS TO A FULLY FUNCTIONAL OPERATING SYSTEM THAT WILL PER-
FORM MANY OF THE TASKS EXPECTED OF IT.

- AN =

—

MNEMONIC FOR
TH1S ASSEMBLER

LAA
LBA
LCA
LMA

LAM
ADA

ADM
ACA
ACM
SUA
SBA
NDA
XRA
ORA
CPA
CPB

cPM
INA
roiy]
ADI
ACI
sur
sBI
NDI1

ORI
CP1
LAI
INP
ouT

HLT
NOP
DIN
EIN

RLC
RRC
RAL
RAR

LXB
LXD
LXH
LXS

STA
LTA

DDD
DDD
DDD
DDD
DDD
DDD
DDD
DDD
DDD
PPP
PPP

ADDR
ADDR
ADDR
ADDR

ADDR
ADDR

POPULAR
EQUIVALENTS

LR R A

MOV A,A
MOV B,A
MOV C,A

MOV M,A

MOV A,M
ADD A
ADD M
ADC A
ADC M
SUB A
SBB A
ANA A
XRA A
ORA A
CMP A
CMP B

CMP M
INR A
DCR M
ADI DDD

ACI DDD
Sul DppD
Sul! DDD
ANI DDD
XR1 DDD
ORI DDD
CP!l DDD
MVI A,DDD
IN PPP
0UT PPP

HLT
NOP
DI
El

RLC
RRC
RAL
RAR

LXI B,ADDR
LX! D,ADDR
LX1 H,ADDR
LXI SP,ADDR

STA ADDR
LDA ADDR

APPENDIX

COMMENTS

LOAD REG A TO A (MOVE REG A TO A)

LOAD REG A TO MEMORY (MOVE A TO MEMOP®Y)

THE "LOAD" CLASS 1S EQUIVALENT TO THE
"MOVE" CLASS FOR THE ENTIRE GROUP OF

SIMILAR TYPE “LOAD"/"MOVE" INSTRUCTIONS
ADD REG A TO THE ACCUMULATOR

ADD MEMORY LOCATION TO THE ACCUMULATOR
ADD (W/CARRY) REG A TO ACCUMULATOPR

ADD (W/CARRY) MEMORY LOC. TO ACC.
SUBTRACT REG A FPOM THE ACCUMULATOR
SUBTRACT (W/BOPROW) REG A FROM THE ACC.
LOGICAL "AND" OPERATION PEG A WITH ACC.
LOGICAL "EXCLUSIVE OR" REG A WITH ACC.
LOGICAL "OR" REG A WITH ACCUMULATOP
COMPARE REGISTER A VITH ACCUMULATOR
COMPARE REGISTEP B WITH ACCUMILATOP

THE ENTIRE GROUP OF ARITHMETIC AND LOCICAL
INSTRUCTIONS BETWEEN THE ACCUMULATOR AND
OTHER CPU REGISTERS OR MEMORY LOCATIONS
HAS THE SAME MNEMONIC FO®MAT.

INCREMENT THE ACCUMULATOR

DECREMENT THE MEMORY LOCATION
ADD IMMEDIATE (NOTHING NEV HERE!)

ADD (W/CARRY) IMMEDIATE

SUBTRACT IMMEDIATE

SUBTRACT (W/BORROV)

LOGICAL '"AND" IMMEDIATE

LOGICAL "EXCLUSIVE OR" IMMEDIATE

LOGICAL "OR" IMMEDIATE

COMPARE IMMEDIATE

LOAD RECISTER IMMEDIATE

INPUT PORT # “PPP" (RANGE @ - 377 OCTAL)
OUTPUT PORT # "PPP'" (RANGE @ - 377 OCTAL)

CPU HALT INSTRUCTION

CPU "NO OPERATION" INSTRUGCTION
DISABLE INTERRUPT

ENABLE INTERRUPT

ROTATE LEFT
ROTATE RIGHT
ROTATE LEFT (THROUGH CARRY)
ROTATE RIGHT (THROUGH CARRY)

LOAD REG PAIR B&C IMMEDIATE
LOAD REG PAI!R D&E IMMEDIATE
LOAD REG PAIR HeL IMMEDIATE
LOAD STACKX POINTER IMMEDIATE

STORE ACCUMULATOR DIRECT
LOAD ACC DIRECT (NOTE THE DIFFERENCE!)

— M

— /M O M

MNEMONIC FOR

POPULAR

THIS ASSEMBLER EQUIVALENTS

L)

DAA
CMA
STC
cMC

RST X

POPB
POPD
POPH
POPS
PUSB
PUSD
PUSH
PUSS
XCHG
XTHL
SPHL
PCHL
DADB
DADD
DADH
DADS
STAB
STAD
LDAB
LDAD
INXB
INXD
INXH
INXS
DCXB
DCXD
DCXH
DCXS

SHLD ADDR
LHLD ADDR

RTZ
RFZ
RTC
RFC
RTP
RFP
RTS
RFS

RET
CAL ADDR
JMP ADDR

cTZ
CFZ

JT2
JFZ

DAA
CMA
STC
CMC

RST

=

POP B
POP D
POP H
POP PSV
PUSH B
PUSH D
PUSH H
PUSH PSV
XCHG
XTHL
SPHL
PCHL

DAD B
DAD D
DAD H
DAD SP
STAX B
STAX D
LDAX B
LDAX D
INX
INX
INX
INX
DCX
DCX
DCx
DCX

MIUU:ZUU’

‘0

SHLD ADDR
LHLD ADDR

RZ
RNZ
RC
RNC
RPE
RPO
RM
RP

RET
CALL ADDR
JMP ADDR

cz
CNZ

JZ
JNZ

COMMENTS

DECIMAL ADJUST ACC'™ULATOR
COMPLEMENT THE ACCUMULATOR

SET THE CARRY

COMPLEMENT THE CARPY

RESTART INSTRUCTION,

POP PAIR FRPOM STACK TO PEG PAIR B&C
POP PAIR FROM STACK TO REG PAIR D&E
POP PAIR FROM STACK TO REG PAIR He&L

RESTORE CONDITION
PUSH REG PAIR B&C
PUSH REG PAIR D&E
PUSH REG PAIP H&L
PUSH CONDITION OF

FLAGS

TO STACK

TO STACK

TO STACK

FLAGS TO STACK

¥ = RESTART VECTOP

EXCHANGE REG PAIRS H&L WITH D&E
EXCHANGE REG PAIR H&L WITH STACK

LOAD THE STACK POINTER FROM H&L

LOAD THE PROGRAM COUNTER FROM H&L

DOUBLE ADD BETVEEN REG PAIRS B&C AND HeL
DOUBLE ADD BETWEEN REG PAIRS D&E AND HaL
DOUBLE ADD HeL WITH ITSELF

DOUBLE ADD BETWEEN H&L AND STACK

STORE ACC AT ADDRESS IN B&C

STORE ACC AT ADDRESS IN D&E

LOAD ACC FROM ADDRESS IN B&C

LOAD ACC FROM ADDRESS IN D&E

INCREMENT THE B&C REGISTER PAIR
INCREMENT THE D&E REGISTER PAIR
INCREMENT THE H&L REGISTER PAIR
INCREMENT THE STACK. POINTER

DECREMENT THE B&C REGISTER PAIR
DECREMENT THE D&E REGISTER PAIR
DECREMENT THE H&lL REGISTER PAIR
DECREMENT THE STACK POINTER

STORE H&L AT THE INDICATED ADDRESS
LOAD H&L FROM THE INDICATED ADDRESS

RETURN IF ZERO FLAG 1S TRUE

RETURN IF ZERO FLAG 1S FALSE

RETURN IF CARRY FLAG IS TRUE

RETURN IF CARRY FLAC 1S FALSE

RETURN IF PARITY FLAG IS TRUE (EVEN PARITY)
RETURN IF PARITY FLAG IS FALSE (ODD PARITY)
RETURN IF SIGN FLAG IS TRUE (MINUS VALUE)
RETURN IF SIGN FLAG IS FALSE (PLUS VALUE)

UNCONDITIONAL RETURN
CALL SUBROUTINE AT ADDRESS
JUMP TO ROUTINE AT ADDRESS

CONDITIONAL CALLS SAME FORMAT AS CONDI-
TIONAL RETURN COMMANDS SHOWN ABOVE

CONDITIONAL JUMPS SAME FORMAT AS CONDI-
TIONAL RETURN COMMANDS SHOWN ABOVE

PUBLICATIONS FROM SCELBI COMPUTER CONSULTING» INC.

MACHINE LANGUAGE PROGRAMMING FOR THE '80@8°

(AND SIMILAR MICROCOMPUTERS) L R R
ASSEMBLER PROGRAMS FOR THE '8@@8' secvccccccrrsoctccenccrccccnns
AN '8@028' EDITOR PROGRAM R LR R F R
'8@008°' MONITOR ROUTINES R R R R R TR R
AN '8080°' ASSEMBLER PROGRAM ccccscsossrcvcreccscccveccvasccccnnse
AN '8080' EDITOR PROGRAM R R R R R

'6080°' MONITOR ROUTINES R R R AR

THE ABOVE PUBLICATIONS MAY BE ORDERED DIRECTLY FROM:

SCELBI COMPUTER CONSULTING., INCe.
1322 REAR - BOSTON POST ROAD
MILFORD, CT. Q6460

$19.95
$17.95
$14.95
$11.95
$17.95
$14.95

$11.95

