Cc B A S I C

A commercially oriented,
compiler/interpreter BASIC
language facility for
CP/M systems.

February 17, 1978

Copyright (c¢) 1977 by Software Systems.
All rights reserved.

No part of this publication may be reproduced,
transmitted, transcribed, stored 1in a retrieval
system, or translated into any language or
computer 1language, in any form or by any means,
electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without the prior
written permission of Software Systems, Post
Office Box 1705, Vallejo, California, 94590.

Disclaimer:

Software Systems makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties or
merchantability or fitness for any particular
purpose. Further, Software Systems reserves the
right to revise this publication and to make
changes from time to time in the content hereof
without obligation of Software Systems to notify
any person of such revision or changes.

NN NN
N =N =

wwwwww
(o230 RR—J VS \O Ry

2 oWV EWN =

ErrEEEEEEEEEE

TABLE OF CONTENTS

CBASIC . v v « ¢ & o« o v o o o« o o
Introduction + < . .
GENERAL INFORMATION. « « . .
Statements o+ . . .
Notation « « « « <« « + .
Line Numbers « « « + « « &
REM Statement. < + .« .
Executing a CBASIC Program
FORMING EXPRESSIONS.
Strings. .« « o« o« o e e e e e e e e
Numbers. . . « « « « + « « o+
Identifiers. .
Variables and Subscrlpted Varlables
Expressions. . . e e e e e e s
Assignment Statements. e e e .
CONTROL STATEMENTS . . . « « « « « « .
GOSUB Statement.« . . « .+
RETURN Statement+ .
GOTO Statement . . e e e .
IF...THEN...ELSE Statement e e .
WHILE Statement.« .
WEND Statement « .« . .
FOR Statement. « « « « « &
NEXT Statement e e e e .
.GOSUB, .GOTO Statements .
0 STOP Statement e e .
1 RANDOMIZE Statement e e e e e e

[Y

s e e e o e s e

W

[ooNo Rl Ro le)l [o}

10
10
11
11
13
14

15

15
15
16
16
17
18
19
20
20
21
21

5.

10.

INPUT/OUTPUT STATEMENTS AND FUNCTIONS.

.

5.1 General Information. e e e e .
5.2 PRINT Statement. « ¢ « « « « « o o « =
5.3 LPRINTER Statement . . e e e e e e e e e
5.4 CONSOLE Statement. e e e s e e e e e e
5.5 POS Predefined Functlon. e e e e e e e e e
5.6 TAB Predefined Function.
5.7 READ Statement e e .
5.8 DATA Statement . . . ¢« + ¢ ¢« « « ¢ « o o o o
5.9 RESTORE Statement. « .« « « « « « & + &
5.10 INPUT Statement.+ « « « ¢« « « o « « &
5.11 QUT Statement. . . + + « « « v « o o ¢« o o o
5.12 INP Predefined Function. « « . .
MACHINE LANGUAGE LINKAGE STATEMENTS AND FUNCTIONS.
6.1 PEEK Predefined Function
6.2 POKE Statement e e . . .
6.3 CALL Statement
PREDEFINED FUNCTIONS
7.1 Numeric Functions. e e e e e e
7.2 String Functions e e e e e e
7.3 Disk Functions e e e e .
USER DEFINED FUNCTIONS e e
8.1 Function Names . . « « + v « o o o o o o o «
8.2 Function Definition. « « « ¢ o o « &
8.3 Function Reference « « « « .« . ..
FORMATTED PRINTING « « « « . Coe e
9.1 General. . . . e . C e e e e e
9.2 String Character Fleld . . e e e e e e
9.3 Fixed Length String Fields . e e e e e e
9.4 Variable Length String Fields. . . e e .
9.5 Numeric Data Fields. . . . e e e e e .
9.6 Escape Characters. « . . .
FILES . v v v v v v & o o o o o o . . .
10.1 How CP/M Maintains Files. . . . e e e e
10.2 OPEN Statement. e e e e
10.3 CLOSE Statement « + « ¢« « « « o o &
10.4 CREATE Statement. « « & « « « « o « &
10.5 DELETE Statement.+« +« « ¢« ¢« ¢ ¢« « & « &
10.6 IF END Statement. . . . « « « « « ¢« « ¢« o o &

R T S

o e e e e

« s e o o @

22

22
22
23

24
24
25
25

26
27
27

29
29
29
30
31
31
36

39
39
150

41

41
42
42
42
43
46

47

47
47
48
49
50
50

11.

12.

13.

10.
10.
10.
10.
10.

12.
12.
12.
12.

-2 ea
wwww

e s e 4 e o o o
OO0V E=WhN =

FILE Statement.

READ Statement.

PRINT Statement .

Appending to a File . .
Re-Initializing the Dlsk System

- =0 oo
- O

PROGRAMMING WITH FILES.

File Facilities .
File Organization . . .
Stream Organization
Fixed Organization. .
File Accessing Methods.
Sequential Access
Random Access .
Special Features.

COMPILER DIRECTIVES

1 Directive Format.

2 ZNOLIST and %LIST .

3 %4INCLUDE. . . . e e e
4 END Statement . .

OPERATIONAL CONSIDERATIONS.

System Requirements . .
CBASIC Compile-Time Toggles

Compiler Output .
TRACE . . . « « « « « « o« o« &

s =

APPENDICES

COMPILER ERRORS.
RUN-TIME ERRORS.
RESERVED WORDS

SAMPLE PROGRAMS

51
51
53
55
55

6U
64
64
64
65
66
66
66

68
68

70
73
77
78

2.2

2.3

Notation

All of the CBASIC statements are described in this
manual. Each description is preceded by a synopsis which
presents the general form of the statement. The following
notation is used for the synopsis:

Keywords and Symbols
All special characters and capitalized words
represent symbols which have special meaning in the
language. For instance READ, REM and : are Kkeywords
in CBASIC.

Angle Brackets < >
These terms denote an item which 1is defined in
greater detail in the text.

Brackets []
Brackets denote an optional feature.

Braces { 1}
Braces indicate that the enclosed section may be
repeated zero or more times.

Line Numbers

Line numbers are optional on all statements and are
ignored except when they appear in a GOTO, GOSUB, ON, or
IF statement. In these cases, the line number must appear
as the label of one and only one statement in the program.
For example:

10 X =3
20 Y = 2
30 GOTO 10

In the preceding program segment the 20 and 30 are not
required. They are ignored during compilation. Line
numbers may contain any number of digits but only the
first 31 are considered significant by the compiler.

An additional feature of CBASIC line numbering is that
any number, except O or 1, is a valid line number. This
allows the use of non-integer 1line numbers. It 1is
possible to write an entire program or subprogram with
line numbers that are all decimal fractions and range
between two consecutive integers. Line numbers can even
be in exponential (E) format. This is a convenient
feature when writing canned procedures that will be
included in different mainline programs.

GENERAL INFORMATION

Statements

A program consists of one or more properly formed
CBASIC statements. An END statement, if present,
terminates the program, and additional statements are
ignored. The entire ASCII character set is accepted, but
all statements may be written wusing the common 64
character subset. Lower case letters are converted by the
compiler to wupper case execpt in strings and remarks. A
compiler toggle, described in Chapter 13, will prevent
this conversion.

CBASIC statements are free-form with the following
requirements:

(1) When a statement is not completed on a single
line, a continuation character (\) must be used.
The statement can then be continued on the next
line.

(2) All characters which follow the continuation
character on the same 1line are ignored by the
compiler.

(3) Multiple statements are allowed on one line but
they must be separated by a colon (:). DATA, DEF,
DIM and END must be the only statement on a line; IF
must be the first statement on a line.

Spaces may precede statements; any number of spaces
may appear wherever one space 1is permitted. Using
identifiers 1longer than two characters and indenting
statements to enhance readability does not affect the size
of the intermediate file created by the compiler.

separated by a character other than a number or letter.
In general, spaces will be used to delimit identifiers.

The CBASIC compiler is invoked as follows:
CBASIC <filename> [$<toggle> {<toggle>}]

where filename is the name of the source file. A file
type of BAS is assumed by the compiler. Compiler toggles
are discussed in Chapter 13.

The compiler produces an intermediate file in the
CBASIC machine 1language with the same name as the source
program but of type INT. The source program may be listed
on the output device with any error messages following
each 1line of the program. If errors are detected during
compilation the source file must be corrected wusing the
text editor. The program 1is then recompiled. If no
errors occur during compilation, the intermediate file may
be executed by typing the command:

CRUN <filename>

If errors are found during execution, the program must be
corrected and recompiled.

2.4

2.5

The following are examples of CBASIC line numbers:

100
100.2
100E21

REM Statement
[<line number>] REM [<string terminated with CR>]
[<line number>] REMARK [<comment string>]

A REM statement is ignored by the compiler and
compilation continues with the statement following the
next carriage return. The REM statement may be wused to
document a program. REM statements do not affect the size
of the program that may be compiled or executed. An
unlabeled REM statement may follow any statement on the
same line. The 1line number of a remark may occur in a
GOTO, GOSUB, IF, or ON statement.

Examples of REM statements follow:

REM THIS IS A REMARK
remark This is also a remark
tax = 0.15 * income rem lowest tax rate

The final example shows a REM statement on the same line
with another statement. When using the REM statement in
this manner a colon 1is not required between the two
statements. In all other cases involving multiple
statements on a line the colon must be present. In
addition the REM must be the last statement on the line.

Executing a CBASIC Program

Execution of a CBASIC program consists of three
steps. First the source program must be created on disk.
Next the program is compiled by executing the CBASIC
compiler with the name of the source program provided as a
parameter. Finally the intermediate (INT) file created by
the compiler may be interpreted by executing the run-time
program, again wusing the source program name as a
parameter.

Creation of the source program will normally be
accomplished wusing CP/M's text editor, and must have a
file type BAS. Each 1line of a source program is
terminated by a carriage return. The line may be any
length, however, the compiler listing will only print the
first 80 characters of each 1line. When typing source
programs, identifiers (variable names, reserved words, and
user-defined functions) must be spelled exactly and

Examples of valid numbers are:
1, 1.0, -99, 123456.789
1.993, .01, 4E12, 1.77E-9
1.5E+3 is equivalent to 1500

1.5E-3 is equivalent to .0015

3.3 Identifiers

An identifier begins with an alphabetic character
followed by any number of alphanumeric characters or
periods. Only the first 31 characters are considered

unique. If the 1last character is a dollar sign the
associated variable is of type string otherwise it is
numeric. All lower case letters appearing in an

identifier are converted to upper case unless compiler
toggle D is set. The period is useful for making variable
names more meaningful by building them from several words
separated by periods.

Examples of valid identifiers are:
A, B, c1, cl1234
Payroll.Record, NEW.SUM.AMT
Answer$, file.name$, X$
Each variable has a value associated with it at all
times during execution of a program. Initially numbers
are zero and strings are null. A string variable does
not have a fixed length associated with it. Rather, as
different strings are assigned to the variable, the

storage 1is dynamically allocated. The maximum length
assigned to a string variable is 255 characters.

3.4 Variables and Subscripted Variables
The general form of a variable is:

<identifier> [(<subscript list>)]

The subscript 1ist indicates that the variable is a
subscripted variable and indicates which element of the
array is being referenced.

A variable in CBASIC may represent either a number or
a string depending on the type of the identifier. A
variable which is an element of an array is a subscripted

FORMING EXPRESSIONS

Strings

A string is defined to be 2zero or more valid
alphanumeric characters surrounded by quotation marks M.
Since a continuation character is treated as part of the
string, strings defined as constants in the source program
must be contained on one line. A carriage return may not
be part of a string. Embedded quotation marks may be
entered as two adjacent quotes.

The following examples demonstrate valid strings:
ma3n
"May 24, 944"
"Enter your name please"
"Mook, look"", said Tom"
In the final example the string is:

"Look, look", said Tom

Numbers

A number may be in fixed format or exponential
notation. In either case it may contain 1 to 14 digits, a
sign, and a decimal point. In exponential notation the
exponent is of the form Esdd, where 's', if present, is a
valid sign (+, -, or blank) and where 'dd' is one or two
valid digits. The sign is the sign of the exponent and
should not be confused with the optional sign of the
mantissa. The numbers range from 1.0E-64 to
9.9999999999999E62.

Although only 14 significant digits are maintained
more digits may be included in a number used with CBASIC.
If necessary the value is rounded to 14 digits.

3.5

Expressions

Expressions consist of algebraic combinations of
function references, variables, constants, and operators.
They evaluate to either a numeric or string value. The
hierarchy of operators is:

1) 0

2) °

3) %,/

4) +,=-,concatenation (+), unary +, unary -

5) relational operators <, <=, >, >z, =, <
LT, LE, GT, GE, EQ, NE

6) NOT

7) AND

8) OR, XOR

String variables may only be operated on by relational
operators and the concatenation operator. Mixed string
and numeric operations are not permitted. The mnemonic
relational operators (LT, LE, etc.) are interchangable
with the symbolic operators (<, <=, ete.).

Examples of expressions:
amount * tax
cost + overhead * percent
a¥b/c(1.2+xyz)
last.name$ + ", " + first.name$
Relational operators result in a 0 if false and a -1
if true. NOT, AND, OR, and XOR are performed on a signed
16-bit binary representation of the rounded integer
portion of the variable. The result is then converted to
a floating point number.
If the integer is greater than 32,768 it cannot be
represented by a 16-bit binary number. Logical operations

on such a number will give unpredictable results.

Examples of logical operations:

12 AND 3 = 0 12 AND 5 = 4
NOT -1 =0 NOT 3 = -4
12 OR 3 = 15 12 OR 5 = 13

12 XOR 3 = 15 12 XOR 5 = 9

variable. Subscripted variables must appear in a DIM
statement before being used as a variable.

Examples of variables are:

X$
PAYMENT
date.of.deposit$

The following examples show subscripted variables:
y$(i,j)
INCOME (AMT(CLIENT),CURRENT.MONTH)

When subscripts are calculated a check 1is made to
insure that the element resides in the referenced array.

A DIM statement is an executable statement and each
execution will allocate a new array. The general form
is:

[<line number>] DIM <identifier> (<subscript list>)
{,<identifier> (<subscript list>)}

The dimension statement dynamically allocates space
for number or string arrays. Elements of string arrays
may be any length up to 255 bytes and change in length as
they assume different values. Initially numeric arrays
are set to zero and string array elements are null
strings. An array must be dimensioned explicitly; no
default options are provided. Arrays are stored in
row-major order.

The subscript list is used to specify the number of
dimensions and the extent of each dimension of the array
being declared. The subscript 1list may not contain a
reference to the array being dimensioned.

Expressions in subscript 1lists are evaluated as
numbers and rounded to the nearest integer when
determining the size of the array. All subscripts have an
implied lower bound of zero.

Examples of DIM statements:
DIM A(10)
DIM ACCOUNT$(100),ADDRESS$(100),NAME$(100)
DIM B$(2,5,10)

DIM X(A(I),M,N)

12

CONTROL S

GOSUB

[<1line nu

[<line nu

The a
saved. C

TATEMENTS

Statement
mber>] GOSUB <line number>
mber>] GO SUB <line number>

ddress of the next sequential instruction is
ontrol is then transferred to the statement

labeled with the line number following the GOSUB.

Examples:
GOSU

PRIN
GOSU
PRIN
STOP
200

RETURN

B 700

T "BEFORE TABLE"
B 200 REM PRINT THE TABLE
T "AFTER TABLE"

REM PRINT THE TABLE
FOR INDEX = 1 TO 100
PRINT INDEX
NEXT INDEX

RETURN

Statement

[<line number>] RETURN

The R
program
followed

If a
GOSUB or

Examples:
500
IF V

ETURN statement causes the execution of the
to return to the statement that immediately
the most recently executed GOSUB.

return is executed without previously executing a
ON...GOSUB an error occurs.

RETURN

ALID THEN RETURN

15

3.6

14

Assignment Statements
<line number> [LET] <variable> = <expression>

The expression 1is evaluated and assigned to the
variable appearing on the left side of the equal sign.
The type of the expression, either a number or a string,
must match the type of the variable.

Examples:
TIME=0
100 LET A =B + C
X(3,A) 7.32 * Y + X(2,3)

SALARY = (HOURS.WORKED * RATE) - DEDUCTIONS

date$ = month$ + " " + day$ + ", " + year$

IF VALID THEN \
PRINT MSG$(CURRENT.MSG) :\

GOSUB 200 :\ UPDATE RECORD
GOSUB 210 :\ WRITE RECORD
NO.OF .RECORDS=NO.OF .RECORDS+1 :\
RETURN

IF X >3 THEN X =0 : Y =0:2 =0

IF YES=TRUE THEN PRINT MS3G$(1
ELSE PRINT M3G$(2

) A\

)

IF TIME>LIMIT THEN \
PRINT TIME.OUT.MSG$:\
BAD.RESPONSES=BAD. RESPONSES+1 :\
QUESTION=QUESTION+1 \

ELSE \
PRINT THANKS.MSG$:\
GOSUB 1000 :\ ANALYSE RESPONSE
ON RESPONSE GOSUB \

2000, 2010, 2020, 2030, 2040 :\

RETURN

4.5 WHILE Statement

[<line number>] WHILE <expression>

Execution of all statements between the WHILE
statement and its corresponding WEND is repeated until the
value of the expression 1is zero. If the value is zero
initially the statements between the WHILE and WEND will
not be executed. Variables in the WHILE expression may
change during execution of the loop.

Examples:

WHILE -1
PRINT "X"
WEND

WHILE X > Z
X = X-1
PRINT X

WEND

17

16

4.3

GOTO Statement
[<line number>] GOTO <line number>

[<line number>] GO TO <line number>

Execution continues at the statement labeled with the
line number following the GOTO or GO TO.

Examples:
80 GO TO 35
GOTO 100.5

IF Statement
[<1ine number>] IF <expression> THEN <line number>

[<line number>] IF <expression> THEN <statement list>
[ELSE <statement list>]

If the value of the expression 1is not =zero the
statements which make up the statement list are executed.
Otherwise the statement 1list following the ELSE is
executed, 1if present, or the next sequential statement is
executed. In the first form of the statement, when the
expression 1is not equal to zero, an unconditional branch
to the line number occurs.

A statement 1list is composed of one or more
statements in which each pair of statements is separated
by a colon (:) or a colon/backslash combination (:\). The
colon is not required after the THEN nor 1is it required
before or after the ELSE. It is only used to separate
statements. An IF statement must be the first statement
on a line; it may not follow a colon.

Examples:
IF ANSWER$="YES" THEN GOSUB 500
IF DIMENSIONS.WANTED THEN PRINT LENGTH, HEIGHT

4.7

FOR Statement

[<line number>] FOR <index> = <expression> TO
<expression> [STEP <expression>]

Execution of all statements between the FOR statement
and its corresponding NEXT statement is repeated until the
indexing variable, which is incremented by the STEP
expression after each iteration, reaches the exit
criteria. If the step is positive, the loop exit criteria
is met when the index exceeds the value of the TO
expression. If the step is negative, the index must be
less than the value of the TO expression for the exit
criteria to be satisfied.

The index must be an unsubscripted variable. It 1is
initially set to the value of the first expression. Both
the TO and STEP expressions are evaluated on each 1loop;
all variables associated with these expressions may change
within the 1loop. Additionally the index may be changed
during execution of the 1loop. If the STEP clause 1is
omitted, a default value of one is assumed. A FOR loop is
always executed at least once.

Examples:

FOR X=1 TO 10
SUM=SUM+VECTOR (X)
NEXT X

FOR POSITION=MARGIN+TABS TO PAPER.WIDTH STEP TABS
PRINT TAB(POSITION);SET.TABS;
NEXT POSITION

If a step of one is desired, the STEP clause should be
omitted. The execution will be substantially faster since
fewer run-time checks must be made.

19

TIME = 0
TIME.EXPIRED = FALSE
WHILE TIME < LIMIT
TIME = TIME + 1
IF INP(CONSOLE.STATUS.PORT) \
AND STATUS.MASK THEN RETURN
WEND
TIME.EXPIRED = TRUE
RETURN

WHILE ACCOUNT.IS.ACTIVE
GOSUB 100 REM ACCUMULATE INTEREST

WEND

WHILE FILE.EXISTS
WHILE TRUE
IF ARG$ = ACCT$ THEN N\
ACTIVITY = TRUE :\
RETURN
IF ARG$ < ACCT$ THEN \
ACTIVITY = FALSE :\
RETURN
GOSUB 3000 REM READ ACCT REC
WEND
WEND
ACTIVITY = FALSE
RETURN

WHILE TRUE

INPUT LINE STRING$
IF STRING$ = CONTINUE$ THEN RETURN

WEND

4.6 WEND Statement

[<line number>] WEND

A WEND statement denotes the end of the
unmatched WHILE statement.

18

closest

Examples:

WHILE TRUE
GOSUB 100 REM ENTER PROCESS DESIRED
GosuB 110 REM TRANSLATE PROCESS TO NUMBER

IF PROCESS.DESIRED=0 THEN RETURN
IF PROCESS.DESIRED>6 THEN \

GOTO 400 REM ERROR
ON PROCESS.DESIRED GOSUB \

1000, \ ADD A RECORD

1010, \ ALTER NAME

1020, \ UPDATE QUANTITY
1030, \ DELETE A RECORD
1040, \ CHANGE COMPANY CODE

1050 REM GET PRINTOUT
WEND

4.10 STOP Statement
[<1line number>] STOP
When a STOP statement is encountered program execution
terminates. All open files are closed, the print buffer
is emptied and control returns to the host system. Any

number of STOP statements may appear in a program.

A STOP statement is appended to all programs by the
compiler.

Examples:
400 STOP

IF STOP.REQUESTED THEN STOP

4.11 RANDOMIZE Statement

[<line number>] RANDOMIZE

A RANDOMIZE statement initializes the random number
generator. It must be issued after an INPUT statement to
have any effect on the sequence of random numbers.
Examples:

450 RANDOMIZE

21

20

4.8

4.9

NEXT Statement

[<1line number>] NEXT [<identifier> {,<identifier>}]

A NEXT statement denotes the end of the closest
unmatched FOR statement. If the optional identifier is
present it must match the 1index variable of the FOR
statement being terminated. The 1list of identifiers
allows matching multiple FOR statements. The line number
of a NEXT statement may appear in an ON or GOTO statement,
in which case execution of the FOR loop continues with the
loop variables assuming their current values.

The following example of nested FOR 1loops shows the
use of a list of identifiers:

FOR I =1 TO 10
FOR J = 1 TO 20
X(I,d) =1 +4J
NEXT J, I

ON Statement

[<line number>] ON <expression> GOTO
<line number> {, <line number>}

[<line number>] ON <expression> GOSUB
<line number> {, <line number>}

The expression, rounded to the nearest integer value,
is used to select the line number at which execution will
continue. If the expression evaluates to 1 the first line
number is selected, and so forth. In the case of an
ON...GOSUB statement the address of the next statement
becomes the return address. An error occurs 1if the
expression, after rounding, 1is less than one or greater
than the number of line numbers in the list.

The keywords GOTO and GOSUB may alternately be coded
as GO TO and GO SUB.

Examples:
PRINT
PRINT AMOUNT.PAID
PRINT TAB(MARGIN+OFFSET);QUANTITY,PRICE,QUANTITY¥*PRICE

PRINT "TODAY'S DATE IS: ";MONTH$;" ";DAY;", ";YEAR

5.3 LPRINTER Statement
[<line number>] LPRINTER [WIDTH <expression>]

After execution of the LPRINTER statement all PRINT
statement output normally directed to the console will be
output on the list device. The expression following the
optional WIDTH must be numeric and will be used to set the
line width of the list device.

If the width option is not present the previously set

width is used. Initially the width is set to 132. An
error occurs if the width is less than 1 or greater than
133.

Examples:

500 LPRINTER
IF HARDCOPY.WANTED THEN LPRINTER WIDTH 120

LPRINTER WIDTH REQUESTED.WIDTH
5.4 CONSOLE Statement
[<line number>] CONSOLE
Execution of the CONSOLE statement restores printed
output to the console.

Examples:

490 CONSOLE

23

22

5.2

INPUT/OUTPUT STATEMENTS AND FUNCTIONS

General Information

This chapter discusses input and output statements and
functions. File accessing statements are discussed in
chapter 10; formatted printing is explained in chapter 9.

CBASIC buffers output and only prints an output 1line
when it has been completely formed. The output from print
statements 1is collected in the "print buffer". The print
buffer has a pointer associated with it which locates the
next available position in the buffer.

Input from the console is read a 1line at a time
instead of a character at a time. This allows the user to
take advantage of the CP/M line editing functions.

PRINT Statement
{<line number>] PRINT <expression> <delim>

The PRINT statement outputs the value of each
expression on the console unless an LPRINTER statement
(described below) is in effect. In the latter case output
is directed to the line printer. If the 1length of a
numeric item would cause the right margin of the print
buffer to be exceeded the buffer 1is printed and the
current number begins a new line. Strings are output
until the buffer is full and then the remainder of the
string, if any, is output on the next line.

The <delim> between expressions may be either a comma
or a semicolon. The comma causes automatic spacing to the
next column that 1is a multiple of 20. If this spacing
results in a print position greater than the currently
specified width, the print buffer is output and the print
position is set to one. A semicolon causes one blank to
be output after a number and no spacing to occur after a
string.

Partial lines resulting from a PRINT whose 1list ends
in a comma or semicolon are not output until another PRINT
whose 1list does not end in a <delim> is executed, or the
line width 1is exceeded, an LPRINTER or CONSOLE is
executed, or the program terminates. A PRINT with no
expression will dump the print buffer; a blank 1line is
printed if the buffer is empty.

5.7

5.8

5.9

READ Statement

[<line number>] READ <variable> {, <variable>}

A READ statement assigns values from DATA statements
to the variables following the READ. DATA statements are
processed sequentially as they appear in the program. An
attempt to read past the end of the last DATA statement
produces an error.

Examples:
READ NAMES$,AGE,EMPLOYER$, SSN

FOR PROD.NO = 1 TO NO.OF.PRODUCTS
READ PRODUCT.NAME$(PROD.NO)
NEXT PROD.NO

DATA Statement
[<line number>] DATA <constant> {, <constant>}

DATA statements define string and floating point
constants which are assigned to variables using a READ
statement. Any number of DATA statements may occur in a
program. The constants are stored consecutively in a data
area as they appear 1in the program and are not syntax
checked by the compiler. Strings may be enclosed in
quotation marks or optionally delimited by commas. A DATA
statement must be the only statement on a line and it must
not be continued with a continuation character.

Examples:
400 DATA 332.33, 43.0089E5, "ALGORITHM"

DATA ONE, TWO, THREE, 4, 5, 6

RESTORE Statement

[<1line number>] RESTORE

A RESTORE statement repositions the pointer into the
data area so that the next value read with a READ
statement will be the first item in the first DATA
statement. The effect of a RESTORE statement is to allow
rereading the constants contained in DATA statements.

25

IF END.OF.PAGE THEN \
CONSOLE :\

PRINT USING "##,### WORDS ON THAT PAGE";WORDS :\
INPUT "INSERT NEW PAGE, THEN RETURN";LINE TRASH$

LPRINTER

The width of the console device may be
the POKE statement (Chapter 6). The console
byte at location 272 (110H). The new console
become effective at the next execution o
statement. The console line width is normall

5.5 POS Predefined Function
POS
POS returns the current position of the
buffer pointer. This value will range from

width currently in effect.

Examples:

changed with
width is one

width will
f the CONSOLE
y 80.

output 1line
1 to the line

PRINT "THE PRINT HEAD IS AT COLUMN: ";POS

IF WIDTH.LINE-POS < 15 THEN PRINT

5.6 TAB Predefined Function

TAB (<expression>)

TAB positions the output buffer pointer to the
position specified by the value of the expression rounded
to the nearest integer. If the value of the expression is

less than or equal to the current print
print buffer is dumped and the buffer pointer

position the
is set as

described above. The TAB function may only be used in

PRINT statements.

If the expression, rounded to an integer,
than the current line width an error occurs.

Examples:

PRINT TAB(15);"X"

is greater

PRINT "THIS IS COL. 1";TAB(50);"THIS IS COL. 50"

PRINT TAB(X+Y/Z);"!";TAB(POS+OFFSET);
PRINT TAB(LEN(STR$(NUMBER)));NUMBER

24

Examples:
INPUT "ENTER ADDRESS";LINE ADDR$
INPUT "TYPE RETURN TO CONTINUE";LINE X$

Prompt strings are directed to the console even when
an LPRINTER statement is in effect.

If a null prompt string is used the question mark can
be suppressed but one blank will still be printed.

5.11 OUT Statement
[<line number>] OUT <expression> , <expression>
The low-order eight bits of the integer portion of the
second expression is sent to the 8080 machine output port

selected by the integer portion of the first expression.

Both arguments must be numeric and in the range 0 to
255 for the results to be meaningful.

Examples:
ouT 1,58
OUT FRONT.PANEL,RESULT
IF X>5 THEN OUT 9, ((X*X)-1)/2
OUT TAPE.DRIVE.CONTROL.PORT,REWIND

OUT PORT(SELECTED),ASC("$")

5.12 INP Predefined Function
INP (<expression>)

INP returns the wvalue 1input from the 8080 I/0 port
specified by the expression. This function is useful for
accessing peripheral devices directly from the CBASIC
program.

The argument is rounded to the nearest integer and for
the results to be meaningful it must be in the range of 0
to 255.

27

26

5.

10

Examples:
500 RESTORE

IF END.OF.DATA THEN RESTORE

INPUT Statement

[<line number>] INPUT [<prompt string> ;]
<variable> {, <variabled}

If the prompt string is present it is printed on the
console otherwise a question mark is output. In both
cases a blank is then printed and a line of input data is
read from the console and assigned to the variables as
they appear in the variable list. The data items entered
at the console must be separated by commas and are
terminated by a carriage return. Strings may be enclosed
in quotation marks in which case commas and leading blanks
may be included in the string.

If too many or too few data items are entered, a
warning is printed on the console and the entire line must
be reentered.

Examples:
INPUT RESPONSES$
INPUT "WHAT FILE, PLEASE?";FILE.NAME$
INPUT "ENTER YOUR NAME AND NUMBER";NAME$,NUMBER
INPUT "",ZIP.CODE

A special type of INPUT statement is the LINE INPUT.
The general form of this statement is:

[<line number>] INPUT [<prompt string> ;]
LINE <variable>

This statement functions as described above with the
following exceptions. Only one variable is permitted and

it must be of type string. Any data entered from the
console 1is accepted and assigned to the variable. The
data is terminated only by a carriage return. A null

string may be entered by responding to the prompt with a
carriage return.

.1

.2

MACHINE LANGUAGE LINKAGE STATEMENTS AND FUNCTIONS

PEEK Predefined Function

PEEK (<expression>)

The PEEK function returns the contents of the memory
location given by the expression. The value returned
ranges from 0 to 255. The memory location must be within
the address space of the computer being used for the

results to be meaningful.

The expression must be numeric and is rounded to the

nearest integer.
Examples:
100 MEMORY=PEEK(1)
FOR INDEX = 1 TO PEEK(BUFFER)

IN.BUFFER$ (INDEX)=CHR$ (PEEK (BUFFER+INDEX))
NEXT INDEX

POKE Statement

[<line number>] POKE <expression> , <expression>

The low-order eight bits of the the second expression
is stored at the memory address selected by the first
expression. The first expression must evaluate to a valid

address for the computer being used.

Both expressions must be numeric; they are rounded
the nearest integer.

Examples:
750 POKE 1700,ASC("$")
FOR POSIT=1 TO LEN(OUT.MSG$)

POKE MSG.LOC+POSIT,ASC(MID$(OUT.MSG$,POSIT,1))
NEXT POSIT

to

29

Examples:
PRINT INP(ADDR)
IF INP(255) > O THEN PRINT CHR$(T)

ON INP(INPUT.DEVICE.PORT) GOSUB \
100, 200, 300, 400, 400, 400, 500

28

.1

PREDEFINED FUNCTIONS

Numeric Functions

The following functions return numeric values.
Arguments, when required, must be expressions that
evaluate to valid floating point numbers.

FRE
FRE returns the number of bytes of unused space
in the free storage area.
X=FRE
IF FRE < 1500 THEN GOSUB 10
ABS(arg)

ABS returns a value that is the absolute value of
the argument, represented by arg. If arg is greater
than or equal to zero the returned value is arg,
otherwise the returned value is -arg.

DISTANCE=ABS (START-FINISH)
IF ABS(DELTA.X) <= LIM THEN STOP
INT(arg)
INT returns the integer part of the variable. The
fractional part is truncated.
TIME=INT(MINUTES)+INT(SECONDS)
IF (X/2)-INT(X/2)=0 THEN PRINT \
"EVEN" ELSE PRINT "ODD"
RND

RND generates a uniformly distributed random
number between O and 1.

When using RND a seed is necessary to avoid
identical sequences of numbers each time the program
is executed. The RANDOMIZE statement is used to seed
the random number generator in CBASIC. The time
taken by an operator to respond to an INPUT
statement is used to set the seed. This time will

31

30

6.3

CALL Statement

[<1line number>] CALL <expression>

The CALL statement 1is wused to 1link to a machine
language subroutine. The expression is the address of
the subroutine being referenced. This value must be
within the address space of the computer being used.
Control is returned to the CBASIC program by executing a
8080 RET 1instruction. The hardware registers may be
altered by the subroutine and need not be restored prior
to returning.

The expression must be numeric and is rounded to the
nearest integer.

Examples:
CALL 5
2000 CALL ANALOG.INPUT

WHILE PEEK(PARAMETER) <> 1
CALL GET.RESPONSE

WEND

RETURN

Arguments may be passed to machine language
subroutines with the POKE and PEEK instructions.

User-written assembly language programs may be used
with CBASIC by generating a CP/M system smaller than the
available memory and loading the machine code in the area
which is now available above CP/M. Load the programs
using CP/M's DDT program prior to executing CRUN. All the
memory below (lower address than) CP/M is used by CBASIC
and is not available to store subroutines.

LOG(arg)

The natural logarithm of the argument is returned
by LOG.

BASE.TEN.LOG=LOG(X)/L0OG(10)
PRINT "LOG OF X IS ";LOG(X)
SIN(arg)

SIN returns the sine of the arg. The argument is
expressed in radians.

FACTOR(Z)=SIN(A - B/C)
IF SIN(ANGLE)=0 THEN PRINT "HORIZONTAL"
SQR(arg)

SQR returns the square root of the arg. If arg
is negative, a warning message is printed and the
square root of the absolute value of arg is
returned.

HYPOT=SQR((SIDE172)+(SIDE2"2))
PRINT USING \
"THE SQUARE ROOT OF X IS: #####.#4#4"; \
SQR (X)
TAN(arg)

TAN returns the tangent of arg. The argument is
expressed in radians.

TANGENT=TAN(X)
Q=TAN(X - 3%COS(Y))

7.2 String Functions
ASC(arg$)
ASC returns the ASCII numeric value (in decimal)
of the first character of the string argument. If the

length of the string is zero (null string) an error
will occur.

IF ASC(DIGIT$)>47 AND ASC(DIGIT$)<58 THEN \
PRINT "VALID DIGIT"

OUT PORT,ASC("*")

33

32

vary with each execution of a program. Therefore,
for RANDOMIZE to work correctly, it must be preceded
by an INPUT statement.

DIE=INT(RND¥6)+1

IF RND > .5 THEN PRINT \
"HEADS" ELSE PRINT "TAILS"

SGN (arg)

SGN returns a numeric value that represents the
algebraic sign of the argument. It will return -1 if
arg 1is negative, 0 if arg is zero, and +1 if arg is
greater than zero.

IF SGN(X) THEN PRINT "X=0"
IF SGN(BALANCE)=-1 THEN PRINT "OVERDRAWN"
ATN(arg)

ATN returns the arctangent of arg. Other inverse
trigonometric functions may be computed from the
arctangent. The argument is expressed in radians.

X=ATN (RADIANS)
TEMPERATURE=K+N (L) /ATN(X)
COS(arg)

COS returns the cosine of arg. The argument is
expressed in radians.

IF COS(ANGLE)=0 THEN PRINT "VERTICAL"
PRINT CONSTANT*COS(X)
EXP(arg)

EXP returns the value of the constant "e" raised
to the power given by arg.

Y=A*EXP (BX)

E=EXP(1)

4) The above characters will match only
themselves if immediately preceded by a
backslash (\).

Examples:
match("is","Now is the",1) returns 5
match(" ##","August 9, 1974" 1) returns 10
match("a?","character",4) returns 5
match("\#" "123#45" 1) returns U4

The following program may be used to experiment
with the match function.

TRUE=-1

FALSE=0

edit$=" The number of occurrences is ###"

while TRUE
input "enter object string";line object$
input "enter argument string";line arg$
gosub 620
print using edit$;occurrence

[N s Y G N Y
OQWVWONOVMIEWN =20WENOUTZWN =

¢ wend
. 620 rem----- count occurrences----------
: location=1
occurrence=0
while TRUE
location= match (arg$,object$,location)
if location=0 then RETURN
occurrence=occurrence+1
location=location+1
wend
END

MID$(object$,start,len)

MID$ returns a string consisting of the n
characters of object$ starting at the mth character.
The value of m is equal to start rounded to the
nearest integer while n is len rounded to the nearest
integer. Object$ must evaluate to a string. If start
is greater than the length of object$ a null string
is returned. If len is greater than the 1length of
object$ all the characters from start to the end of
object$ are returned. An error occurs if start or
len is negative.

DIGIT$=MID$ (OBJECTS$,X, 1)
PRINT MID$("MONTUEWEDTHUFRISATSUN",DAY, 3)

35

34

CHR$ (arg)

CHR$ returns a one character string consisting of
the character whose ASCII equivalent is the integer
part of arg. CHR$ can be used to send control
characters to an output device. For instance the
statement "PRINT CHR$(10)" will output a line feed to
the console.

IF CHR$(INP(IN.PORT)) = "A" THEN GOSUB 100
PRINT CHR$(BELL)+CHR$(FORM.FEED)

LEFT$(object$,len)

LEFT$ returns a string consisting of the first
len characters of object$. If len is greater than
the length of object$, the entire string will be
returned. If len is =zero a null string will be
returned, if len is negative an error will occur.

PRINT LEFT$(INPUT.DATAS$,25)
IF LEFT$(IN$,1)="Y" THEN GOSUB 400

LEN(arg$)

LEN returns the length of arg$. Zero is returned
if arg$ is a null string.

IF LEN(TEMPORARY$)>25 THEN PRINT "TOO LONG"

FOR X=1 TO LEN(OBJECT$)
PRINT X
NEXT X

MATCH(pattern$,object$,start)

MATCH returns the position of the first
occurrence of pattern$ in object$ starting with the
character position given by start. A zero will be
returned if no match is found. The following pattern
matching features are available:

1) A pound sign (#) will match any digit
(0-9).

2) An exclamation mark (!) will match any
upper or lower case letter.

3) A question mark (?) will match any
character.

exist in the CP/M file directory. The RENAME facility
will allow a CBASIC program to use the following
backup convention:

1. The output file is opened with a filetype
of '$$$' indicating that it is temporary.

2. Any file with the same name as the output
file but with a type 'BAK' is deleted.

3. Data is written to the temporary file as
the program does its processing.

4, At the end of processing, the program
renames any file with the same filename and
filetype as the output file to the same
filename but with the filetype 'BAK'.

5. The program renames the temporary output
file to the proper name and type.

SIZE(filename$)

SIZE returns the size in blocks of the file
specified by filename$. If the file is empty or
does not exist zero is returned. Filename$ may be
any CP/M ambiguous filename.

Examples:
size("NAMES.BAK"™)
SIZE(COMPANY$+DEPT$+" . NEW")
size("B:ST?RTR?K.#*")
SIZE("¥ %n)
size("* ,BAS")

The SIZE function returns the number of blocks of
diskette space consumed by the file or files
referred to by the argument. When the operating
system allocates diskette space to a file it does so
in one Dblock increments., A file of 1 character (1
byte) will consume a full block of space. This means
the SIZE function returns the amount of space that
has been reserved by the file rather than the size of
the data that is in the file.

This function is useful in a program that must
duplicate or construct a file on disk. If the
program knows that it will create a file of a given
size, possibly dependent on the size of its input
file, it can first determine whether or not there is

37

7.3

36

RIGHT$(object$,len)

RIGHT$ returns the n rightmost characters of
object$. The value of n is equal to len rounded to
the nearest integer. If len 1is negative an error
occurs; if n is greater than the length of object$
the entire string is returned. Object$ must evaluate
to a string.

IF RIGHT$(ACCOUNT.NO$,1)="0" THEN PRINT \
"TITLE ACCT"

NAME$=RIGHT$ (NAME$,LEN(NAME$)-LEN(FIRST.NAMES))

STR$(arg)

STR$ returns the character string which
represents the value of the number arg.

PRINT STR$(NUMBER)
IF LEN(STR$(VALUE))>5 THEN ED$="######4"

VAL(arg$)

VAL converts arg$ into a floating point number.
Conversion continues until a character is
encountered that is not part of a valid number or
until the end of the string is encountered.

If arg$ is a null string or the first character
of arg$ is not a +, -, or digit zero is returned.

PRINT ARRAY$(VAL(IN.STRINGS$))
ON VAL(ACCOUNT$) GOSUB 10, 20, 30, 40, 50

Disk Functions
RENAME (newname$,oldname$)

RENAME changes the name of the file selected by
oldname$ to the name given by newname$. Renaming a
file to a name that already exists produces an
error.

The RENAME facility of CBASIC is implemented as a
function <call although at the present time the
returned value 1is always a 255. A file must be
closed before it is renamed otherwise, when CBASIC
automatically closes files at the end of processing,
it will attempt to close the renamed file wunder the
name with which it was opened. This will cause an
error because the original file name will no longer

.1

.2

USER DEFINED FUNCTIONS

Function Names

The name of a user defined function must begin with
'FN' followed by any combination of numbers, letters or
periods. A function name may be up to 31 characters

long. No spaces are allowed between the FN and the
remainder of the name however a period 1is allowed. If
the function returns a string value the name must end with
a dollar sign. The name 1is wused in defining and

referencing the function.
Examples:
FN.THIS.IS.A.VALID.FUNCTION
FN3.1416
FNFUNCTION$
FN.TIMES

FN.TRUNCATES$

Function Definition

A function must be defined before it 1is referenced.
Functions are defined with the DEF statement whose general
form is:

{<line number>] DEF <function name>
[(<dummy arg 1list>)] = <expression>

The type of the expression must match the type of the
function name. There may be none or any number of dummy
arguments specified and they may be used freely within the
expression. A dummy argument is either a string or
numeric variable. When there is more than one argument
they are separated by commas. The type of the .dummy
arguments 1is independent of the function type. The dummy
variables are local to the function definition. Variables
of the same name in other portions of the program remain
unaffected by the wuse of the function. Variables,
constants and other functions may also be referenced in
the expression. Recursive calls are not permitted.

39

38

sufficient free space on the disk before building the
new file. For example, consider a program which
reads a file named 'INPUT' from drive A, processes
the data, and then writes a file named 'OUTPUT' to
drive B. The size of 'QUTPUT' will be 125% of
'INPUT'. The following program segment will insure
that space is available on disk B prior to
processing.

70 rem--—--- test for enough room-=-----
size.of.input=size("A:INPUT")

size.of.output = int((size.of.input®1.25)+.5)

free.space = 240 - size("B:¥ ¥m)

if free.space < size.of.output then \
enough.room = FALSE \
else enough.room = TRUE

return

CP/M supports 240 user accessible blocks on
single density systems. The number of blocks in use
subtracted from 240 gives the remaining space on the
disk.

FORMATTED PRINTING

General

This chapter describes the PRINT USING statement.
PRINT USING allows specification of printed output using a
format string. A format string is composed of data fields
and 1literal data. Data fields may be numeric or string;
any character in the format string that is not part of a
data field is a literal character. The general form of a
PRINT USING statement is:

[<line number>] PRINT USING <format string> ;
[<file reference>] <expression list>

The format string is any string expression. This allows
the format to be determined dynamically during program
execution. The expression list consists of expressions
separated by commas or semicolons. The comma does not
cause spacing as it does with the unformatted print. Each
expression in the list is matched with a data field in the
format string. If there are more expressions than fields
in the format string, the format string is reused.

while searching the format string for a data field,
the type of the next expression in the list, either string
or numeric, determines what data field 1is used. For
instance, when outputting a string and a numeric data
field 1is encountered, the characters that make up the
numeric data field will be treated as 1literal data. If
there 1s no data field within the format string of the
type required an error will occur.

A PRINT USING statement without the file reference
causes an output line to be written to either the console
or the line printer. The console is selected wunless an
LPRINTER statement is in effect. 1If the file reference is
present the line is composed as it would be if the output
was being printed on a list device. The entire 1line 1is
written as a record 1in the selected file. Chapter 10
discusses the use of PRINT USING with disk files in more
detail.

41

Examples:
DEF FN25 = RND¥*25
DEF FNLEFT.JUSTIFY(A$,LENGTH)=LEFT$(A$+" " LENGTH)

DEF FN.HYPOT(SIDE1,SIDE2)= \
SQR((SIDE1¥3SIDE1) + (SIDE2¥3SIDE2))

DEF FN.FUEL.USE(MILES)=SPEED*FN.CONSTANT*MILES+OVERHEAD
DEF FN.EOJ=FLAG1 OR FLAG2 OR FLAG3 OR FLAGH

DEF FNINPUT(PORT)=INP(PORT) AND STATUS.MASK(PORT)

8.3 Function Reference

The user defined function call may be wused in any
expression. The same number of parameters must be
specified in the call as are defined in the DEF statement.
Parameters may be any valid expression but they must match
the type of those specified in the definition. During
evaluation, the current value of each expression is
substituted for the dummy variable in the definition.

Examples:
PRINT FN.A(FN.A(X))
IF LEN(FNS("INPUT DATA",X$,Q)) < LIMIT THEN GOSUB 100
WHILE FN.ALTITUDE > MINIMUM.SAFE

CURRENT.ALTITUDE=INP(ALTIMETER)
WEND

40

COMPANY$ = "SMITH INC."
PRINT USING "& &"; "THIS REPORT IS FOR",COMPANYS$

will output:
THIS REPORT IS FOR SMITH INC.

A string may be right justified within a fixed field
using the variable string field. The following program
segment shows how this would be done:

FIELD.SIZE = 20

BLANKS$ = " "

PHONE$ = "707-642-4824"

PRINT USING "#&"; RIGHT$(BLANK$ + PHONES$, FIELD.SIZE)

which would output:
707-642-4824

In the above example the pound sign is used as a literal
character since the print 1list contains only a string
expression. A pound sign may also indicate a numeric data
field as will be shown in the next section.

Numeric Data Fields

A numeric data field is specified by a pound sign (#)
to indicate each digit required in the resulting number.
One decimal point may also be included in the field.
Values are rounded to fit the data field. Leading zeros
are replaced with blanks. If the number is negative a
minus sign is printed to the left of the most significant
digit. A single zero 1is printed on the 1left of the
decimal point if the number is less than 1 and a position
is provided in the data field. The following example
illustrates the use of numeric data fields.

X = 123.7546
Y = -21.0

FORS$ = "#i##. #### ###.# ##4"
PRINT USING FOR$; X, X, X

PRINT USING FOR$; Y, Y, Y

Execution of the above program produces the following
printout:

123.7546 123.8 124
-21.0000 -21.0 =21

43

42

9.2

9.3

String Character Field
A one character string data field 1is specified with
an exclamation point. The first character of the next
expression in the print statement 1list 1s output. For
example:

F.NAME$ = "JOHN" : M.NAME$ = "SMITH"
PRINT USING "!., "; F.NAME$,M.NAMES$

would output:
J. S.

In the example the period 1is treated as 1literal data.
Since there are two expressions in the list the format
string is reused to output the second expression.

Fixed Length String Fields

A fixed length string data field of more than one
position is specified by a pair of slashes (/) separated
by zero or more characters. The width of the field is
equal to the number of characters between the slashes plus
two. Any character may be placed between the slashes;
these fill characters are ignored.

A string expression from the print 1list 1is left
justified in the fixed field and if necessary padded on
the right with blanks. A string which is longer than the
data field is truncated on the right. For example:

FOR1$ = "THE PART REQUIRED IS /...5....0....5/"
PART.DESCRP$ = "GLOBE VALVE, ANGLE"
PRINT USING FOR1$; PART.DESCRP$

will output:
THE PART REQUIRED IS GLOBE VALVE, ANG
The use of the periods and numbers between the slashes
makes it easy to verify that the data field 1is 16
characters long.
Variable Length String Fields
A variable length string field is specified with an

ampersand (&). This results in a string being output
exactly as it is defined. For example:

Asterisk fill of a numeric data field is accomplished
by appending two asterisks to the beginning of the data
field. A floating dollar sign may be obtained by
appending two dollar signs to the field in a similar
manner. Exponential format may not be wused with either
asterisk fill or the floating dollar sign. The pair of
asterisks or dollar signs are included in the count of
digit positions available for the field and they appear in
the output only if there is sufficient space for the
number and the asterisk or dollar sign. The dollar sign
is suppressed if the value printed is negative. For
example:

COST = 8T42937.56

PRINT USING "*¥j# HF###44.#4# ", COST, -COST
PRINT USING "$$##, ######. #4 ", COST, -COST
prints:

*%8,742,937.56 *-8,742,937.56
$8,742,937.56 -8,742,937.56

A number may be output with a trailing sign instead of
the leading sign if the last character in the data field

is a minus sign. If the number 1is positive a blank
replaces the minus sign in the printed result. For
example:

PRINT USING "###- ###~~""- "; 10, 10, =10, =10

will output:
10 100E-01 10- 100E-01-

If a minus sign is the first character in a numeric
data field the sign position is fixed as the next output
position. If the number being printed is positive a blank
is output otherwise a minus sign is printed. The
following example demonstrates this feature.

PRINT USING "-##### " 10, -10
which outputs:
10 - 10
Any time a number will not fit within a numeric data
field without truncating digits before the decimal point a

percent sign 1is printed followed by the number in the
standard format.

45

yy

Numbers may be printed in exponential format by
appending one or more uparrows (") to the end of the
numeric data field. For example the following program
segment:

X = 12.345
PRINT USING "#.###°~ "; X, -X

would output:
1.235E 01 -.123E 02

The exponent is adjusted so that all positions represented
by the pound signs are used. For instance:

PRINT USING "###.##°°""; 17.987
results in:
179.87E-01

Four positions are reserved for the éxponent regardless
of the number of uparrows used in the field.

If one or more commas appear embedded within a numeric
data field the number is printed with commas between
groups of three digits before the decimal point. For
example:

PRINT USING "f##,### "s 100, 1000, 10000
prints:
100 1,000 10,000

Each comma which appears in the data field is included
in the width of the field. Thus, even though only one
comma is required to obtain embedded commas in the output,
it is clearer to place commas in the data field in the
positions they will appear on the output. For instance
the following data fields will produce the same results
except that the width of the first allows only 9 digits to
be output. With the second 10 digits may be output.

f#, #E#FHEEES
#y HH, FEE R

If the exponent option is wused commas are not
printed.

10.

10.

1

10.2

FILES

CP/M Files

CBASIC uses the CP/M file accessing routines to store
and retrieve data from soft sectored IBM compatible
diskette files. This section will provide a brief
introduction to the file organization employed by CP/M.
More detailed information is available in the CP/M
manuals.

CP/M maintains a directory of File Control Blocks
(FCB's) on each diskette. The FCB contains the file name,
number of records in the file, and references to physical
locations occupied by the data on the diskette. CP/M
interfaces with the disk hardware through primitives that
are used by transient programs, including CBASIC, to
access files on disk. The primitives allow a file to be
created, opened, closed, read or written. A1l data 1is
processed in 128 byte segments. However, CBASIC maintains
all necessary pointers and buffers data so the user is not
restricted to 128 byte records.

Fach CBASIC statement used to access files will now be
discussed. Chapter 11 provides additional information on
programming with files.

OPEN Statement

The OPEN statement activates an existing file for
reading or updating. The general form of an OPEN
statement is:

[<line number>] OPEN <expression> [RECL <expression>]
AS <expression>
{, <expression> [RECL <expression>]
AS <expression>}

The first expression represents the name of a file on

diskette. The name may contain an optional drive
reference; if the drive reference 1is not present the
currently logged drive is used. The file name must

conform to the CP/M format for unambiguous file names.
Lower case letters used in file names are converted to
upper case. The following examples show valid file
names:

47

46

9.6

Escape Characters

At times it may be desired to include a character as
literal data which, following the above rules, would be
part of a data field. This can be accomplished by
"escaping" the <character. A backslash (\) preceding any
character causes the next character after the backslash to
be treated as a 1literal character. This allows, for
instance, a pound sign to precede a number as shown in the
following example.

ITEM.NUMBER = 31
PRINT USING "THE ITEM NUMBER IS \# ##"; ITEM.NUMBER

which outputs:
THE ITEM NUMBER IS # 31

An escape character following an escape character causes a
backslash to be output as a literal character.

All active files are automatically closed when a STOP
statement is executed or a control-Z 1is entered in
response to an INPUT statement. Files are not closed if a
control-C is entered from the console or 1if an error
ocecurs.

Each expression must be numeric and, after rounding to
the nearest integer, be in the range 1 to 20.

Examples:
800 CLOSE FILE.NO
CLOSE NEW.MASTER.FILE,OLD.MASTER.FILE,UPDATE.812
FOR X = 1 TO NO.OF.WORK.FILES
CLOSE X
NEXT X
10. 4 CREATE Statement
The CREATE statement 1is identical to an OPEN
statement except that a new file is created on the
selected drive. The general form of a CREATE statement
is:
[<line number>] CREATE <expression> [RECL <expression>]
AS <expression>
{, <expression> [RECL <expression>]

AS <expression>}

If a file with the same name is present the existing
file will be erased and a new file created.

Examples:
1200 CREATE "NEW.FIL"™ AS 19
CREATE ACC.MASTER$ RECL MASTER.REC.LEN AS ACC.FILE.NO

CREATE "B:"+NAME$+LEFT$(STR$(CURRENT.WORK)+" "3\
AS CURRENT.WORK

49

48

ACCOUNT.MST
CBASIC.COM
B:INVENTOR.BAK

The third example shows a reference to drive B.

The directory on the selected drive 1is searched and
the named file is opened. If the file is not found in the
directory it 1is treated as if an end of file had been
encountered during a read. See the IF END statement for
information on end of file processing.

The AS expression assigns an identification number to
the file being opened. This value is wused in future
references to the file. Each active file must have a
unique number assigned to it. If the expression rounded
to the nearest integer in not between 1 and 20 an error
occurs.

If the optional RECL expression is present the file
consists of fixed 1length records. The record length is
rounded to the nearest integer and it must be greater than
zero. A file may be accessed randomly or sequentially
when a record length 1is specified, otherwise only
sequential is allowed.

Twenty files may be active at one time. Buffer space
for files 1is allocated dynamically. Therefore storage
space may be conserved by opening files as they are
required.

Examples:
555 OPEN "TRANS.FIL" AS 9
OPEN FILE.NAME$ AS FILE.NO

OPEN WORK.FILE.NAME$(CURRENT.FILE) \
RECL WORK.LENGTH AS CURRENT.FILE

.3 CLOSE Statement

The CLOSE statement deactivates an OPEN file; the file
is no longer available for input or output operations.
The general form of a CLOSE statement is:

[<line number>] CLOSE <expression> {, <expressiond>}

Each expression references an active file. The file
is closed, the file number is released, and all buffer
space used by the file is deallocated. Before the file
may be referenced again it must be reopened. An error

will occur if the specified file has not previously been
opened with a CREATE, OPEN or FILE statement.

that does not exist will cause execution to continue as if
an end of file had been encountered.

In the following example if the file MASTER.DAT does
not exist on drive B control will be transferred to
statement 500.5. After a successful OPEN an end of file
during a read will <cause execution to continue with
statement 500.

IF END #MASTER.FILE.NO THEN 500.5
OPEN "B:MASTER.DAT" AS MASTER.FILE.NO
IF END #MASTER.FILE.NO THEN 500

10.7 FILE Statement

[<line number>] FILE <variable> [(<expression>)]
{, <variable> [(<expression>)]}

A FILE statement opens a file 1if it is present on the
referenced disk otherwise a file with the specified name
is created. The variable contains the name of the file to
be accessed. As each file is activated it is assigned the
next unused file number starting with 1. If all 20
numbers are already assigned then an error occurs. If the
expression enclosed in parentheses is present the value of
the expression is rounded to the nearest integer and
becomes the record length.

The variable must not be subscripted and it must be of
type string. It may not be a literal or an expression
using any operators.

Examples:
FILE NAMES$

FILE FILE.NAME$(REC.LEN)

10.8 READ Statement

There are four forms of the READ statement which
access data from disk files. Each of the four statements
will be discussed in turn and then some general comments
about reading from disk files will be made. The first two
types of the READ statement access files in a manner
analogous to using the READ to access data from DATA
statements. The 1last two forms are similar to the INPUT
LINE statement.

The general form of the sequential read is:

[<line number>] READ # <expression> ; <variable>
{, <variable>}

51

50

10.5

10.6

DELETE Statement

The DELETE statement erases the active file or files
referenced by each expression. The general form of a
DELETE statement is:

[<line number>] DELETE <expression> {, <expression>}

Each expression, rounded to the nearest integer, must
be in the range of 1 to 20. If the number is not
currently assigned to an active file an error occurs.

Examples:
DELETE 1
DELETE FILE.NO, OUTPUT.FILE.NO

I=0

WHILE I < NO.OF.WORKFILES
I =1+ 1
DELETE I

WEND

IF END Statement

The IF END statement allows the programmer to process
an end of file condition on an active file. The general
form of the IF END statement is:

[<line number>] IF END # <expression> THEN <line number>

When an end of file is detected on a file, one of two
actions will take place. If an IF END statement has been
executed for the file, control is transferred to the
statement labeled with the line number following the THEN.
If no IF END statement has been executed an error occurs.

Any number of IF END statements may appear in a
program for a given file. The most recently executed IF
END is the one that will be in effect.

The expression must be numeric and after rounding to
the nearest integer be in the range 1 to 20.

Examples:
IF END # 7 THEN 500
IF END # FILE.NO THEN 100.1

An IF END statement may be executed prior to assigning
the file number to a file. A subsequent OPEN on a file

The READ LINE statement permits CBASIC to access
records containing ASCII data in any format on a
line-by-line basis. For instance any file created with
the CP/M text editor could be read a line at a time. 1In
the following example:

READ # 12; LINE in.string$

all characters in the next record will be read until a
carriage return followed by a line feed is encountered.

Additional examples follow:

READ # 12 ; LINE LINE.OF.TEXT$
READ # INPUT.FILE, RECORD; LINE NEXT.ONE$

In all READ statements to files the first expression
rounded to the nearest integer must be in the range of 1
to 20 and represent an active file. The second
expression, if present, is rounded to the nearest integer;
it must be greater than zero.

PRINT Statement

There are four variations of the PRINT statement which
output data onto disk files. Each of these will be
discussed in this section. Both sequential and random
files may be written using the following forms of the
PRINT statement:

[<line number>] PRINT # <expression> ;
<expression> {, <expression>}

[<line number>] PRINT # <expression> ,
<expression> ;<expression> {, <expression>}

The first form of the PRINT statement outputs the
next sequential record to the file specified by the first
expression. Each of the expressions in the expression
list will be written as a separate field separated by
commas. String fields will be surrounded by quotation
marks and the 1last field will be followed by a carriage
return and a line feed.

The second form of the PRINT statement outputs a
random record specified by the second expression to the
disk file specified by the first expression. The same
format as described above is used. The file must have
been opened with a fixed record length. An error occurs
if there 1is insufficient space in the record for all the
data.

53

52

The above READ statement reads sequentially from the
file specified by the first expression. The file will be
read field by field into the wvariables wuntil every
variable has been assigned a value. Fields may be
floating point or string values and are delimited by a
comma.

Examples:
READ # 7; STRING$, NUMBER
READ # FILE.MASTER; NAME$, ADDRESS$,CITY$,STATES

The general form of the next variation of the READ
statement is:

{<line number>] READ # <expression> , <expression> ;
[<variable>] {, <variable>}]

A random record specified by the second expression is
read from the disk file specified by the first
expression. The fields in the record are assigned to the
variables in the variable list. An error occurs if there
are more variables than fields in the record. The file
must have been opened with the RECL option.

Examples:

READ # RANDOM.FILE,RELATIVE.REC.NO; NAME$, PAY, HOURS,\

TERM.OF .EMPLOY, SSN$

The following two forms of the READ statement treat
files as lines of text. The general form of the
sequential variant is:

[<line number>] READ # <expression> ; LINE <variable>

This statement reads sequentially all data from the
specified file until a carriage return followed by a line
feed is encountered. All the data read up to but not
including the carriage return and line feed is assigned to
the single string variable specified in the READ LINE
statement.

The random variant of the READ LINE has the following
general form:

[<line number>] READ # <expression> , <expression> ;
LINE <variable>

The final variation of the READ statement reads the
record specified by the second expression off of the file
specified by the first expression. The data is assigned to
the string variable as described for the previous form of
the READ.

If this procedure is executed, the result on file will
be:

The "X-RAY MACHINE" is worth $91,327.44crlf

The use of two adjacent double-quotes results in a
single double-quote being printed.

10.10 Appending to a File

A file may be appended to by reading sequentially
until the end-of-file 1is detected with IF END, then
printing additional records.

An example of appending to a file is shown below:

true = -1
if end # 3 then 200
open "master" as 3
if end # 3 then 100
while true
read # 3; dummy
wend
100 print # 3; "this added to end"
stop
200 print "file not found"

Except for this case, sequential reading and printing
should not be intermixed.

10. 11 Re-Initializing the Disk System

If it becomes necessary to change diskettes during
execution of a CBASIC program, CP/M must be given an
opportunity to reallocate its internal diskette usage maps
for the new diskette. If this is not done valid data may
be overwritten. It is implemented in CBASIC as a machine
language subroutine call to the decimal address 264, The
following statement will re-initialize all disks:

call 264

The user program must close ALL files before this
statement is executed.

55

54

Examples:
PRINT # 3; "JONES, BILL"
PRINT #FILE.NO; NAME$, ADDR$, SALARY
PRINT #PAY,EMPL.NO; EMPL.NAME(EMPL.NO),HOURS(EMPL.NO)

PRINT # 10, 55; DATE

Both forms of the PRINT statement discussed above
produce files which may be read using the READ statement
discussed in section 10.8. All values output to the file
are delimited with commas or a carriage return line feed
pair. In addition all strings are enclosed 1in quotation
marks. If the data must be output in a specific format,
such as when a report 1is being produced for later
printing, the PRINT USING statement may be used with disk
files. This type of the PRINT statement takes on the
following general forms:

[<line number>] PRINT USING <expressiond> ;
<expression> ; <expression> { , <expression> 1}

[<line number>] PRINT USING <expression> ;
<expression> , <expression> ;
<expression> { , <expression> }

These statements write data to files wusing the
formatted printing options specified in the expression
following the USING. Formatting options are described in
Chapter 9 and are the same as those for console output.
The first form is for sequential access and the second is
used with random access. Records are delimited with a
carriage return followed by a line feed.

The PRINT USING statement with disk files gives the
programmer the same extensive facilities for formatting
data that the USING clause permits when printing to the
console or system list device; numbers can be formatted
with commas and decimal points, asterisks and
dollar-signs can be floated. Records can also be written
to disk that contain embedded quotes and commas.

For example:

cents.wanted=TRUE

edit 1$="$$##, #iH#. #4#"

edit2$="$$##, ###"

if cents.wanted then \
edit$=edit1$ \
else edit$=edit2$

print using "The ""&"" is worth "+edit$; \
#file.no;product$,price

Because CBASIC reads each record on a field by field
basis it 1is recommended that each record on a given file
contain the same number of fields. If there 1is no
information to fill any field of one record, either a zero
or null string should be written. This will allow, for
example, the fifth field of a sales transaction file to
represent the amount of the sale, even if some or all of
the first four fields are not wused in a particular
transaction.

Sometimes it is necessary to insure that a given field
starts at the same relative position within a record.
Usually, there will be some fields of fixed length and

some fields of variable 1length. Numeric fields will
always fall 1into the latter category unless the range of
numbers 1is restricted. String fields, however, can

always be made to be of fixed length by padding them with
blanks.

For example:
string$ = left$(string$ + " ",20)

This will always produce a field that is 20 characters in
length. By use of the STR$ function numbers can also be
converted to strings and then padded. This will allow
unrestricted numeric data to be of fixed length.

.5 File Accessing Methods

An access method describes the order in which data 1is
read from or written to a file. CBASIC supports two
access methods, sequential and random. Either access
method may be used on files that are organized as fixed.
Only sequential may be used on a stream organized file.

.6 Sequential Access
In sequentially accessed files there is one field of
concern, the '"next" field. The program cannot backtrack
or skip ahead, it must proceed one field at a time.
A procedure to sequentially access a file and write it
to the console is shown below. The file contains the

following records:

"first field","second field","third"ecrlf
nn y"5" ’"xxx‘]23yyy|lcr1f

59

11. PROGRAMMING WITH FILES

1.1 File Facilities

The facilities available to the CBASIC wuser for
accessing diskette files are extremely versatile,
providing different file organizations and accessing
methods. The emphasis of this chapter will be on the
practical organization of files and the way in which they
are accessed.

11.2 File Organization

The organization of a file describes the way 1t is
represented on the diskette. All data written to files by
CBASIC is in character format using the ASCII code. The
contents of both string and numeric variables are written
as their representative ASCII characters, not as binary
data. This permits the use of both resident and transient
CP/M commands with CBASIC data files.

Characters within CBASIC data files are organized into
distinect groupings. The 1lowest 1level of grouping is
called a field. A field can contain either string or
numeric data. A string field is surrounded by- quotation
marks ("). A numeric field is never surrounded by quotes
and may contain any valid number as described in Chapter
3. Fields are separated from one another by either commas
or a carriage return line feed pair.

CBASIC offers two file organizations, stream and
fixed. These techniques are compatible to provide more
flexibility for the programmer.

1.3 Stream Organization

When it is desired to store data sequentially, item by
item, stream organization is used. Accessing is done on a
striect field by field basis. There is no restriction on
the values or lengths of data that may be written; each
item of data takes only as much room as needed for data
and delimiters. In other words there is no padding.

56

ED‘I$="&“

ED2$=" $3, ###. 44"

PRINT USING ED1$+ED2$+ED1$+ED2$; #17, TRANSACTION.NO;
"PRINCIPAL:",PRIN,"INTEREST:",INTEREST

PRINT USING "&";#PRINTER.FILE;" " REM BLANK LINE

PRINT USING "/234567/";#WORK.FILE,REL.REC.NO;SORT.KEY$

IN$=I|X||
WHILE IN$<OM"M
INPUT "ENTER DATA";LINE IN$
PRINT USING "/...5....0....5....0../";#TEMP.FILE;IN$
WEND
CLOSE #TEMP.FILE

The READ LINE statement allows a file to be accessed
as though there was one field per record. Any commas or
quotes will be read as part of the data. Only a carriage
return and 1line feed will be treated as the delimiter.
In effect there is no field structure in a file accessed
with the READ LINE. For example, if the following file
exists:

"field one","two","3" """ four"crlf
"five","six"crlf

and the following procedure is executed:

read #file.noj;line string$
print string$

the data printed on the console would be:
" field One" ,lltwoll ,|l3" ’" 1" ’ll four"
This should be compared with the following statements:

read # file.no; string$
print string$

which would output:

field one
All quotes and commas are considered part of the data; the
data does not include either the carriage return or the
line feed. In effect the READ LINE redefines the field

delimiter of a file from a comma to a carriage return and
line feed pair.

63

58

For example:

create file.name$ recl 25 as file.no

a$="one"
b$="record two"
c$="3n

dg="n

e$="five"

f$="abc123def"

print #file.noj;a$,b$
print #file.noj;c$,ds$,e$
print #file.no;f$

produces the following file:

"one","record two" crlf
Il3ll’"l""f‘ive" crlf‘
"abc123def" crlf

The record delimiter (crlf) always occupies the 1last two
bytes of the record and must be included in the specified
record length. The space between the record delimiter and
the last valid field is padded with blanks.

A fixed file READ statement will always access a new
record each time it is used.

while TRUE
read #file.no;field$
print field$

wend

will print on the console (using the data from the
previous example):

one

3
abc123def

The fixed organization of files implies a well
defined structure to the accessed data. The processing
program can then decide the meaning of a given field by
its relative position in a record rather than by the value
of the data itself. This provides savings in processing
time and programming effort.

Files that are organized as fixed provide fast and
easy access to the individual fields within each record
because all fields can be read in at one time. Fixed files
may be reorganized by sorting on a key within each record.
In addition, fixed files permit random access as described
below.

easier to debug large programs if they are composed of
numerous, small, individually tested routines.

The include directive allows the programmer to build a
library of common routines which reduces programming time.
System standards, such as I/0 port assignments, can be
put in included routines. If the programs are moved from
one system to another the include routine must be changed
and the programs recompiled.

Commonly used procedures, such as searches, validation
routines, or input routines are candidates for include
files. If many programs in a system access the same file,
all file access commands, such as READ, PRINT or OPEN can
be set up as separate include files. If the file
definition needs a change it can be made in one common
file instead of several application programs.

LU END statement
[<line number>] END
An END statement indicates the end of the source
program. It is optional and, if present, it terminates
reading of the source program. Any statements following
the END statement are ignored.
Examples:

500 END

END

65

while TRUE
read #file.no;field$
print field$

wend

The output on the console would be:

first field
second field
third

5
xxx123yyy

While reading data from a file sequentially, the READ
statement will consider a field completed when it
encounters either a comma or a carriage return. Within
the double quotes of a string field it is permissable to
have embedded commas.

When accessing a stream file, every field on the file
will be read once and none will be skipped. It is
possible to read in more than one field with a single read
statement.

For example:

while TRUE
read #file.no;fielda$,fieldb$
print fielda$,fieldb$

wend

would print the following on the console (using the file
from the previous example):

first field second field
third
5 xxx123yyy

The same field organization is used when writing a stream
file. Each variable specified 1in the PRINT statement
produces a single field in the file. When more than one
variable 1is output in a single PRINT statement, the
corresponding fields will be delimited by commas. The
last (or only) field written by each PRINT statement will
be delimited by a carriage return and line feed.

60

Toggle C suppresses the generation of an INT file.
Since the first compilation of a large program is likely
to have errors, this toggle will provide an initial
syntax check without the overhead of writing the
intermediate file.

Toggle C is initially off.

Toggle D suppresses translation of lower case letters
to upper case. For example, if toggle D is on, 'AMOUNT'
will not refer to the same variable as 'amount'.

Initially toggle D is off.

Toggle E is useful when debugging programs. If this
toggle is set, it will cause the run-time program to
accompany any error messages with the CBASIC 1line number
in which the error occurred. This will determine the
exact line where the program has "blown-up". Toggle E will
increase the size of the resultant INT file and therefore
should not be used with debugged programs. Toggle E must
be set in order for the TRACE option (section 13.4) to
work.

Initially toggle E is off.

TOGGLE F will cause the compiled output listing to be
printed on the system 1list device 1in addition to the
system console. This provides a hardcopy of the compiled
program. Even if the B toggle is set a complete listing is
provided if toggle F is set.

Initially toggle F is off.

Toggle G will cause the compiled output listing to be
written to diskette. The file containing the compiled
listing has the same name as the BAS file with a type of
LST. If toggles G and B are specified only errors will be
output at the console but a disk file of the complete
program will be made.

Initially toggle G is off.

67

fields containing their name, social security number, and
rate of pay. The twenty records would be placed on the
diskette file in -employee number order using the
sequential access method with a fixed organization. Then,
when an application program needed the data on employee
number 12, a random read would be issued for relative
record number 12 and the proper data would be retrieved.
The following program would access the file described
above:

true = -1
open "employee.mst" recl 50 as 3
if end # 3 then 500.1
while true rem loop until eof
input "enter employee number"; employ.no
read # 3, employ.no; name$,ssn$,pay
print using "&'s pay rate is ###.##"; name$,pay
wend
500.1 stop

To recap, the READ statement wused on a stream
organized file will always access the next available field
on the file regardless of the field 1length or which

delimiter is used. 1In a fixed organization file each READ
statement will access the next record, delimited by a
carriage return and a line feed. PRINT statements

function in a similar manner.

11.8 Special Features

The PRINT USING statement can be used to write data to
files as well as to the console or printer. 1Its use and
the format of its output 1is the same when writing to
diskette as it is when writing to the console or printer.
If the file is fixed, the single unquoted field written by
each execution of the PRINT USING statement will be padded
to the specified record length as with normal fixed files.
The PRINT USING 1is well suited to text processing
applications.

The following examples demonstrate the PRINT USING
statement with files:

PRINT USING "&"; #TEXT.FILE.NO;LINE.OF.TEXTS$

PRINT USING "VELOCITY=#####.### KPH"; #OUTPUT.FILE, TIME;
VELOCITY(TIME)

62

\

AMOUNT = 12.13
TIME = 45
PRINT TIME * AMOUNT

If the above program was compiled wusing the following
command :

CBASIC TEST $E

and then executed with the trace option:
CRUN TEST TRACE 1,3

the following output would be produced:

AT LINE 0001

AT LINE 0002

AT LINE 0003
545.85

The TRACE option functions only if the toggle E has been
set on during compilation of the program.

The first number is used to specify the statement
number where the trace 1is to begin. The second number
specifies where the trace is to stop. If no statement
numbers are given the entire program is traced; if only
the first statement number is present, tracing starts at
this point and continues to the end of the program.

69

12.

64

COMPILER DIRECTIVES

.1 Directive Format

Directives are used to control the action of the
compiler. Except for the END statement, all directives
begin with a percent sign (%). The percent sign must be
in column one. Characters on the same line following the
directive are ignored by the compiler.

.2 %LIST and #NOLIST

FLIST
SNOLIST

These directives allow listing only selected portions
of a program while it 1is being compiled. The listing
control directives may be placed anywhere in a source
program and may be used as many times as desired.

FLIST sets toggle B (chapter 13) on while %NOLIST
resets toggle B.

The %LIST / %NOLIST options do not affect the
diskette or printer listings.

12.3 %INCLUDE

%INCLUDE <filename>

The %ZINCLUDE directive causes the compiler to insert
the file specified in the include statement in the source
listing immediately following the %$INCLUDE. The file name
may contain a drive reference and must be of type BAS.
Included statements will be indicated in listings with a
equal sign (=) following the CBASIC assigned statement
number. Includes may be nested four deep but they may not
include themselves. For example:

%include b:readin
will include the file READIN.BAS from drive B.

Since the files incorporated with include directives
are of type BAS they may be compiled separately. It is

EF

FD

FI

FN

FP

FU

IE

IF

IP

IS

IU

MF

MM

NI

A number in exponential format was input with no
digits following the E.

A function name that has been previously defined is
being redefined in a DEF statement.

An expression which is not an unsubscripted numeric
variable is being used as a FOR loop index.

A function reference contains an incorrect number of
parameters.

A function reference parameter type does not match the
parameter type used in the function's DEF statement.

A function has been referenced before it has been
defined.

An expression used immediately following an IF
evaluates to type string. Only type numeric is permitted.

A variable used in a FILE statement is of type numeric
where type string is required.

An input prompt string was not surrounded by quotes.

A subscripted variable was referenced before it was
dimensioned.

A variable defined as an array 1is wused with no
subscripts.

An expression evaluates to type string when type
numeric is required.

Variables of type string and type numeric are combined
in the same expression.

A variable referenced by a NEXT statement does not
match the variable referenced by the associated FOR
statement.

71

13.

13.1

13.2

66

OPERATIONAL CONSIDERATIONS

System Requirements

CBASIC may be executed on any floppy disk based CP/M
operating system having at least 20K bytes of memory. In
order to make the best use of the power and flexibility of
CBASIC, a dual floppy disk system and at least 32K of
memory 1is recommended. If CBASIC is executed in a system
smaller than 20K a CP/M LOAD ERROR may occur.

CBASIC Compile-Time Toggles

Compiler toggles are a series of switches that can be
set when the compiler is executed. The toggles are set by
typing a dollar-sign ($) followed by the letter
designations of the desired toggles starting one space or
more after the program name on the command line. Toggles
may only be set for the compiler.

Examples of the use of compiler toggles are:
CBASIC INVENTRY $BGF
B:CBASIC A:COMPARE $GEC
CBASIC PAYROLL $B
CBASIC B:VALIDATE $E

Toggle B suppresses the listing of the program on the
console during compilation. When wusing a slow CRT or
teletype, this toggle will reduce compilation time.

If an error is detected the source line with the error
and the error message will be printed even if toggle B 1is
set. Toggle B does not affect listing to the printer
(toggle F) or disk file (toggle G).

Initially toggle B is off.

APPENDIX B

Run-Time Errors

NO INTERMEDIATE FILE

A file name was not specified with the CRUN command,
or no file of type INT and the specified file name was
found on the disk.

IMPROPER INPUT.- REENTER

This message occurs when the fields entered from the
console do not matech the fields specified in the INPUT
statement. This can occur when field types do not match
or the number of fields entered is different from the
number of fields specified. Following this message all
fields specified by the input statement must be
reentered.

Other errors detected during run time cause a 2 letter
code to be printed. If the code is preceded by the word
WARNING, execution continues. If the code is preceded by
the word ERROR, execution terminates. The possible codes
are:

Warning Codes

Dz

FL

LN

NE

A number was divided by zero. The result 1is set to
the largest valid CBASIC number.

A field length greater than 255 bytes was encountered
during a READ LINE. The first 255 characters of the record
are retained; the other characters are ignored.

The argument given in the LOG function was zero or
negative. The value of the argument is returned.

A negative number was specified following the raise to
a power operator ("). The absolute value is wused in the
calculation.

73

68

13.3 Compiler Output
CBASIC does not
program be

control passed to
statements. During
number to each
number which may be

assigned
that must be given a

source

each statement of a
The only statements

line number are those that have
them by the GOTO, GOSUB, ON or IF
compilation CBASIC assigns a wunique
statement regardless of the line
used by the programmer. The CBASIC
number is the one referred to in error

require that
a line number.

assigned statement
messages (If toggle E is specified) and
TRACE option. The statement number
forms:

when using the
takes one of three

n: or n¥ or ns=

where n is the number assigned. In most cases the colon
(:) will follow the number. The equal sign (=) is printed
when the statement has been read in from a disk file with
an %include directive. The asterisk (*) is used when the
statement contains a user assigned line number that is not
referenced anywhere in the program. For example:

1: print "start"

2: name$="FRED"

3% 10 gosub 40 rem print name
4 stop

5:

6:%include printrtn rem rtn to print
7= 40 rem-—--—-- rtn to print-----------

8= print name$

9= return

In the example, statement 3 has an asterisk because
the '10' 1is not referenced at any place in the program.
This can be useful in debugging or understanding 1large
programs written in other dialects of BASIC. When all
unreferenced line numbers are removed, it is easier to
see the logic of the program.

L4 TRACE

CRUN <filename> [TRACE [<number> [,<number>]]]

The TRACE option is used for run-time debugging. It
will print on the console the statement number of each
statement as it is executed. The statement number printed
is the number assigned to each statement by the compiler,
Consider the following program:

LW

ME

MP

NF

NM

NN

NS

oD

OE

0I

oM

QE

RE

A line width less than 1 or greater than 133 was
specified in an LPRINTER WIDTH statement.

An error occurred while creating or extending a file
because the disk directory was full.

The third parameter in a MATCH function was zero or
negative.

The file number specified was less than 1 or greater
than 20.

There was insufficient memory to load the program.

An attempt was made to print a number with a PRINT
USING statement but there was not a numeric data field in
the USING string.

An attempt was made to print a string with a PRINT
USING statement but there was not a string field in the
USING string.

A READ statement was executed with no DATA statement,
or all data statements having already been read.

An attempt was made to OPEN a file that didn't exist
and for which no IF END statement had been previously
executed.

The expression specified in an ON...GOSUB or an
ON...GOTO statement evaluated to a number less that 1 or
greater than the number of line numbers contained in the
statement.

The program ran out of memory during execution.

An attempt was made to PRINT to a file a string
containing a quotation mark.

An attempt was made to read past the end of a record
in a fixed file.

75

APPENDIX A

Compiler Errors
NO SOURCE FILE: <filename>.BAS

The compiler could not locate a source file wused in
either a CBASIC command or an INCLUDE directive.

PROGRAM CONTAINS n UNMATCHED FOR STATEMENT(S)

There are n FOR statements for which a NEXT could not
be found.

PROGRAM CONTAINS n UNMATCHED WHILE STATEMENT(S)

There are n WHILE statements for which a WEND could
not be found.

WARNING INVALID CHARACTER IGNORED

The previous 1line contained an invalid ASCII
character. The character is ignored by the compiler. A
question mark is printed in its place.

Other errors detected during compilation cause a 2
letter error code to be printed, and a © (up-arrow or
circumflex) under the position of the error in the line in
the listing. The possible error codes are:

CE
The intermediate (INT) file could not be closed.
DE
A disk error occurred while trying to read the BAS
file.
DF

There was no space on the disk or the disk directory
was full. The intermediate file was not created.

DL
The same line number was used on two different lines.
Other compiler errors may cause a DL error message to be
printed even if duplicate line numbers do not exist.
DP

A variable in a DIM statement was previously defined.

70

APPENDIX C

RESERVED WORDS

ABS
AND

AS

ASC
ATN
CALL
CHR$
CLOSE
CONSOLE
Ccos
CREATE
DATA
DEF
DELETE
DIM
ELSE
END

LEN
LET
LINE
LOG
LPRINTER
LT
MATCH
MID$
NE
NEXT
NOT
ON
OPEN
OR
ouT
PEEK
POKE

POS
PRINT
RANDOMIZE
READ
RECL
REM
REMARK
RENAME
RESTORE
RETURN
RIGHT$
RND

SGN

SIN
SIZE
SQR
STEP

STOP
STR$
SUB
TAB
TAN
THEN
TO
USING
VAL
WEND
WHILE
WIDTH
XOR

77

NU

00

SE

SN

SO

TO

UL

us

Vo

WE

WU

72

A NEXT statement occurs without an associated FOR
statement.

More than 25 ON statements were used in the program.
The source line contained a syntax error.

A subscripted variable contains an incorrect number of
subscripts.

The expression is too complex and should be simplified
and placed on more than one line.

The program is too large for the system. The program
must be simplified or the system size increased.

A line number that does not exist has been
referenced.

A string has been terminated by a carriage return
rather than by quotes.

Variable names are too long for one statement. This
should not occur. If it does please send a copy of this
statement to Software Systems.

The expression immediately following a WHILE statement
is not numeric.

A WEND statement occurs without an associated WHILE
statement.

This program demonstrates a method by which the MATCH
function can be used to verify input data.

CBASIC COMPILER VER 1.00

1:

22:
23: END

true=-1

print "Enter your address, please."

print

print "Use as many lines as you like."

print "When you are done, type an extra carriage return."
in.addr$=" "

gosub 100

print using "your address is: &";in.addr$
stop .
rem----- enter addr-----—--cccecena----

while true
addr$="not return"”
while addr$<O"”
input "";line addr$
in.addr$=in.addr$+" "+addr$+" "
wend
if match(" ##### ",in.addr$,1) then \
return
print "I believe you forgot to give me your zip
print "code. Please enter it now."

"o
’

wend

NO ERRORS DETECTED

79

T4

OF
A calculation produced a number too large. The result

is set to the largest valid CBASIC number.
SQ

A negative number was specified in the SQR function.
The absolute value is used.

Error Codes

AC
The string used as the argument in an ASC function
evaluated to a null string.
CE
An error occurred upon closing a file.
Cu
A close statement specified a file number that was not
active.
DF
An OPEN or CREATE was specified with a file number
that was already active.
DU
A DELETE statement specified a file number that was
not active.
DW
An error occurred while writing to a file. This
occurs when either the directory or the disk is full.
EF
A read past the end of file occurred on a file for
which no IF END statement had been executed.
ER
An attempt was made to write a record of length
greater than the maximum record size specified in the
associated OPEN, CREATE or FILE statement.
FR
An attempt was made to rename a file to an existing
file name.
FU
An attempt was made to read or write to a file that
was not active.
IR

A record number less than one was specified.

90:

9

100

: END

rem sort
flag=true
while flag=true
flag=false
x=1

while x<no.recs

if element$(x)>element$(x+1) then \

temp$=element$ (x) :\
element$(x)=element$ (x+1)
element$ (x+1)=temp$:\
flag=true
x=x+1
wend
wend
return

rem print the sorted output

if disk.wanted then \
gosub 160 :\ rem print to disk
return

if printer.wanted then \
lprinter

x=1

while x<no.recs
print using edit$;element$(x)
x=x+1

wend

if printer.wanted then \
console

return

rem print to disk

x=1

while x<no.recs
print using edit$;#2;element$ (x)
x=x+1

wend

return

rem input file not there

print "the input file is not there"
print "program stopped"

stop

NO ERRORS DETECTED

:\

81

RG

RU

SB

SL

SS

TF

TL

UN

WR

76

A RETURN occurred for which there was no GOSUB.

A random read or print was attempted to other than a
fixed file.

An array subscript was used which exceeded the
boundaries for which the array was defined.

A concatenation operation resulted in a string of more
than 255 bytes.

The second parameter of a MID$ function was zero or
negative.

An attempt was made to have more than 20 active files
simultaneously.

A TAB statement contained a parameter less than 1 or
greater than the current line width.

A PRINT USING statement was executed with a null edit
string.

An attempt was made to write to a file after it had
been read, but before it had been read to the end of the
file.

The following example of the include is a routine that
requests the month from the console and verifies it. It
assumes the following files are on disk drive A:

350.BAS inputs the month number
360.BAS checks the month number
370.BAS check for numeric data
1: =) (| DT ittt
2: rem mainline code to request and verify month
3: FeMemm—m e e e e e ———————
[
5: FALSE=0
6: TRUE=-1
7:
8: gosub 350 rem enter and verify month
9: print using "the month number is ##";month
10: stop
11:
12: %include 350 rem enter and verify month
13= 350 rem----- get the month number---------
14z valid=FALSE
15= while not valid
16= input "enter number of month ";line check$
17= gosub 360 rem check month number
18= wend
19= return
20=
21= %include 360 rem check month number
22= 360 reMe—-—m—-— check month number-------
23= gosub 370 rem is it all numeric?
24= valid=TRUE
25= if not numeric then valid=FALSE
26= month=val(check$)
27= if month<1 or month>12 then valid=FALSE
28= return
29=
30= %include 370 rem is it all numeric?
31= 370 reme—-——- is it all numeric?=-------
32= numeric=FALSE
33= while len(check$)>0
34= for x=1 to len(check$)
35= if mid$ (check$,x,1)<"1" or \
36= mid$ (check$,x,1)>"9" then \
37= return
38= next x
39= numeric=TRUE
40= return
41= wend
42= return
43: END

NO ERRORS DETECTED

83

APPENDIX D

SAMPLE PROGRAMS

This program allows an editing string to be specified for

a print

using statement. Sample data may be repeatedly

input and the edited data is printed.

CBASIC COMPILER VER 1.00

1: true=-1

2: while true

30:
31: END

input "do you want alpha or numeric (A/N)?";line ans$
if ans$="stop" or ans$="STOP" then stop
gosub 5 rem enter edit$

rem enter edit$
while true
input "enter edit$";line edit$
if edit$="stop" or edit$="STOP" then return
if ans$="a" or ans$="A" then \
gosub 20 \ rem enter alpha
else \
gosub 10 rem enter numbers
wend

rem enter numbers

while true
input "enter number";line num$
if num$="stop" or num$="STOP" then return
print using edit$;val(num$)

wend

rem enter alpha

while true
input "enter alpha";line alpha$
if alpha$="stop" or alpha$="STOP" then return
print using edit$;alpha$

wend

NO ERRORS DETECTED

78

Software Systems invites your comments regarding the CBASIC language
and the contents of this manual. Your views, favorable or
unfavorable, aid us in improving our products. Remove this page from
the manual and use the backside for your comments. Fold it along the
dotted 1lines, stamp, seal and mail it to Software Systems. We
appreciate your consideration. All comments and suggestions become
the property of Software Systems.

fold
: stamp
To:
SOFTWARE SYSTEMS
Post Office Box 1705
Vallejo, California
94590
fold
From:

85

This program does a bubble-sort on data read from a disk
file. Output can be to another file or to the console or
a printer.

CBASIC COMPILER VER 1.00

VOOV WN —

10:

80

true=-1

input "what file to sort";name$

input "what is record length";length

max.recs=50

dim element$ (max.recs)

gosub 10 rem ask where to put output file
if end #1 then 200 rem error

open name$ recl length as 1

if end #1 then 50.1

editg="4&"

print "reading"

gosub 50 rem read in file

print "sorting"

gosub 100 rem sort word array

print "writing"

gosub 150 rem write sorted output

print

print using "Number of records sorted was ###";no.recs

print

stop

10 rem ask where to put sorted file
ans$="XxXxn

while ans$<>"P" and ans$<>"p" and ans$<d"ce" and ans$<OMCY
and ans$<>"D" and ans$<>n"d"
input "printer, console or disk (p,c,d)?";line ans$
wend
if ans$="D" or ans$="d" then \
disk.wanted=true :\
input "what is name of output file?";out.name$:\
create out.name$ recl length as 2 :\
return
if ans$="P" or ans$="p" then \
printer.wanted=true :\
return
return

50 rem read in the file
no.recs=0
while true
read #1;in$
no.recs=no.recs+1
element$(no.recs)=in$
wend
50.1 rem here at eof
return

This program dem

CBASIC COMPILER VER

1: true=-1

2: array.size=100

3: dim array(arra

4: gosub 110

5: while true

6: arg=0

7: while a

8:

9: wend
10: gosub 1
11: if foun
12:

13: else \
14:

15: wend

16:

17: 110 rem ini
18: for x=1
19:

20: next x
21: return
22:

23: %include inclb
24= 100 rem bin
25= lower=0
26= upper=a
27= while t
28=

29=

30=

31=

32=

33=

4=

35=

36=

37=

38= wend
39= return
40: END

NO ERRORS DETECTED

82

onstrates a binary search routine.

1.00

y.size)
rem init array

rg<1 or argd>array.size
input "enter argument ";arg

00
d=0 then \

print "not there" :\

print array(found)
t array

to array.size
array(x)=x

in rem binary search rtn
ary search

rray.size+1

rue

if upper-lower=1 then \
found=0 :\
return

found=int(((upper-lower)/2)+.5)+lower
if array(found)=arg then \
return
if arg>array(found) then \
lower=found :\
else \
upper=found

84

The mainline procedure has one include statement for
paragraph 350. Procedure 350 in turn has an include for
procedure 360; 360 then includes 370. Each of these
routines with the exception of the mainline, are modular,
use a well-defined method of communication, and may be
called by other portions of code. 'Canned' procedures can
result in saving coding and debugging time.

Osborne 1 Reference Guide ERROR MESSAGES Page R-216

OM Current program exceeded available memory. Close unneeded
opened files, nulify unused strings, and read data from a disk
file.

QE A PRINT string contained a quotation mark and could not be
written to the specified file.

RB Attempted random access to a file activated with BUFF where
more than one buffer was specified.

RE Attempted read past the end of a record in a fixed file.

RG A RETURN was issued for which there was no associated GOSUB
statement.

RU A random read or print was attempted to a file that was not
fixed.

SB An ARRAY subscript exceeded the defined boundries.

SL A string longer than 255 bytes resulted from a concatenation
operation.

S0 The file specified in SAVEMEM was not on the indicated disk.

§S The second parameter in the MID$ function, or the last
parameter in the LEFT$, or RIGHTS$, was negative or zero.

TL The TAB statement parameter was less than 1 or greater than
the current line width,

UN A PRINT USING statement contained a null edit string, or an
escape character (\) was the last in an edit string.

WR An attempt was made to write to a file after it had been read,
but before it had been read to the end of the file.

REV: 2/28/82

R————— L

Osborne 1 Reference Guide ERROR MESSAGES

CS The CHAINed program reserved a different amount of memory with
a SAVEMEM statement than the calling program.
CU An inactive file number was specified in the CLOSE statement.

DF An already active file number was specified in an OPEN or
CREATE statement.

DU An inactive file number was specified by a DELETE statement.

DW Indicates a write to a file for which no IF END statement has
been executed; may occur if the director of disk is full.

EF Indicates a read past an end of file for which no IF END
statement has been executed.

ER A write to a record whose length exceeds the maximum record
length specified by an OPEN, CREATE, or FILE statement was
attempted.

FR The renamed filename already exists.

FU A read or write operation was attempted to an inactive file.
IF An invalid file name was specified.

IR A record number of zero was specified.

IV Execution of and INT file created by a version 1 compiler was
attempted. Recompile using version 2 compiler.

IX A FEND statement was encountered before execution of a RETURN
statement.

ME A full directory resulted in an error while creating or
extending a file.

MP A third MATCH function parameter was zero or negative.

NF A file number less than 1 or greater than 20 was specified, or
a file statement was executed when 20 files were already active.

NM Not enough memory was available to load the program.

NN A PRINT USING statement could not print a number because no
numeric data field could be found in the USING string.

OD A READ statement was executed with no corresponding data.

OE Invalid execution of an OPEN statement for a nonexistent file
when no prior IF END statement has been executed.

OI An ON GO SUB expression, or an ON GOTO statement evaluated to

a number less than 1, or greater than the number of line numbers
in the statement.

REV: 2/28/82

Page R-215

= Wl U, . .

'

T T "N on

e o A M

r

osborne 1 Reference Guide ERROR MESSAGES page R-214

IMPROPER INPUT-REENTER The fields entered at the keyboard do not
match those specified in the INPUT statement.

WARNING CODES

he word "WARNING", jndicate errors

Two letter codes preceded by t
put should be

that do not prevent execution of the program,
attended to. These codes are:

DZ A number divided by zero resulted in the largest CBASIC

number.

FLA field length greater than 255 bytes was encountered during a
READ LINE; the remainder is ignored.

LN A LOG function argument was zero or negative; the value of the

argument 1s returned.

per before the raise to a power operator (") was

NE A negative num
1ting in the absolute value of the parameter

encountered, resu
being calculated.

OF A real variable calculation produced an overflow. The result
is set to the largest valid CBASIC real number. overflow is not
detected with integer arithmetic.

sQ A negative number was specified in the SQR function. The

absolute value is used.

RUN-TIME ERROR CODES

The following two letter codes are preceded by the word "ERROR"

and cause execution to terminates

AC An ASC function string argument evaluated to 2 null string.

BN The BUFF value in either the OPEN or CREATE statement is less
than 1 or greater than 52.

cC The CHAINed program code area is greater than the calling
program's code area. Use $CHAIN for adjustment.

cp The CHAINed program data area is greater than the calling
program's data area. Use 3CHAIN for adjustment.

CE The file being closed could not be found in the directory.

CF The CHAINed program constant area is greater than the calling
program's constant area. Use %CHAIN for adjustment.

e area is greater than the

cP The CHAINed program yvariable storag
use %CHAIN.

calling program's variable storage area.

REV: 2/28/82

h
i
i

Osborne 1 Reference Guide ERROR MESSAGES Page R+

ND A DEF statement could not be found for a corresponding FEND
statement.

NI A NEXT variable reference did not match that referenced by the
associated FOR statement.

NU A NEXT statement occurred without an associated FOR statement
OF An illegal branch from within a line function was attempted.
00 The ON statement limit of 40 was exceeded.

PM A DEF statement was encountered within a multiple line
function. Functions cannot be nested.

SE A syntax error occurred in the source line, usually as the
result of an improperly formed statement or misspelled keyword.

SF A numeric instead of a string expression was used in a SAVEMEM
statement. Check for quotes around string constants.

SN An incorrect number of subscripts were found in a subscripted
variable, or a DIM variable was previously used with a different]|
number of dimensions.

SO A too complex statement should be simplified in order to be
compiled.

TO Indicates a symbol table overflow; meaning the program is tog
large for the current OSBORNE 1 memory configuration.

UL Reference to a non-existent line number has been made.

US A string was terminated with a carriage return, rather than|
quotes.

VO Variable names are too long for one statement.
WE The expression following the WHILE statement is not numeric.
WN The nesting level of WHILE statements (12) has been exceeded.

WU A WEND without an associated WHILE statement was encountered.

RUNTIME ERRORS
The following run-time error messages are displayed below the
most recent screen line, to indicate conditions which usually|
terminate program execution.

NO INTERMEDIATE FILE A filename of type .INT could not be located
on the specified drive.

REV: 2/28/82

osborne 1 Reference Guide ERROR MESSAGES Page R-216

OM Current program exceeded available memory. Close unneeded
opened files, nulify unused strings, and read data from a disk
file.

QB A PRINT string contained a quotation mark and could not be
written to the specified file.

RB Attempted random access to a file activated with BUFF where
more than one buffer was specified.

RE Attempted read past the end of a record in a fixed file.

RG A RETURN was issued for which there was no associated GOSUB
statement.

RU A random read or print was attempted to a file that was not
fixed.

SB An ARRAY subscript exceeded the defined boundries.

SL A string longer than 255 bytes resulted from a concatenation
operation.

S0 The file specified in SAVEMEM was not on the indicated disk.

$S The second parameter in the MID$ function, or the last
parameter in the LEFTS$, or RIGHT$, was negative or zero.

TL The TAB statement parameter was less than 1 or greater than
the current line width.

UN A PRINT USING statement contained a null edit string, or an
escape character (\) was the last in an edit string.

WR An attempt was made to write to a file after it had been read,
but before it had been read to the end of the file.

REV: 2/28/82

Osborne 1 Reference Guide ERROR MESSAGES Page R-212

CV A subscripted variable in a COMMON statement was not properly
defined.

DL Duplication of the same line number, an undefined function, or
a DIM statement which does not precede all referenced arrays, was
detected.

DP A DIM variable was previously defined in another DIM statement
or was used as a simple variable,

PA A function name not used in the function was encountered to
the left of the equal sign in an assignment statement.

FD A function name is the same in two DEF statements.

FE An incorrect mixed mode expression exists in a FOR statement,
usually the expression following TO is involved.

FI The FOR loop index is not an unsubscripted numeric variable
expression.

PN An incorrect number of parameters are used in the function
reference.

FP The function reference parameter type does not match that in
the DEF statement.

FU An undefined function has been referenced.

IE The IF statement expression erroneously evaluates to type
string.

IF The FILE statement variable is type numeric instead of type
string.

IP An input prompt string was not enclosed in quotes.

IS A subscripted variable was not dimensioned before it was
referenced.

IT Indicates that an invalid compiler directive was issued.
IU A DEF statement defined array was not subscripted.
MC A variable was defined more than once in a COMMON statement.

MF The expression evaluates to type string instead of type
numeric,

MM An invalid mixed mode was encountered, usually caused by a
mixture of string and numeric types in an expression.

MS A numeric instead of a string expression was used.

REV: 2/28/82

T A f

CS The CHAINed program reserved a different amount of memory with
a SAVEMEM statement than the calling program.

CU An inactive file number was specified in the CLOSE statement.

DF An already active file number was specified in an OPEN or
CREATE statement.

DU An inactive file number was specified by a DELETE statement.

DW Indicates a write to a file for which no IP END statement has
been executed; may occur if the director of disk is full.

EFP Indicates a read past an end of file for which no IF END
statement has been executed.

ER A write to a record whose length exceeds the maximum record
length specified by an OPEN, CREATE, or FILE statement was
attempted.

FR The renamed filename already exists.

FU A read or write operation was attempted to an inactive file.
IF An invalid file name was specified.

IR A record number of zero was specified.

IV Execution of and INT file created by a version 1 compiler was
attempted. Recompile using version 2 compiler.

IX A FEND statement was encountered before execution of a RETURN
statement.

ME A full directory resulted in an error while creating or
extending a file.

MP A third MATCH function parameter was zero or negative.

NF A file number less than 1 or greater than 20 was specified, or
a file statement was executed when 20 files were already active.

NM Not enough memory was available to lcad the program.

NN A PRINT USING statement could not print a number because no
numeric data field could be found in the USING string.

OD A READ statement was executed with no corresponding data.

OE Invalid execution of an OPEN statement for a nonexistent file
when no prior IF END statement has been executed.

OI An ON GO SUB expression, or an ON GOTO statement evaluated to

a number less than 1, or greater than the number of line numbers
in the statement.

REV: 2/28/82

Osborne 1 Reference Guide ERROR MESSAGES Page R-215

osborne 1 Reference Guide ERROR MESSAGES

CBASIC ERROR MESSAGES

CBASIC COMPILER ERRORS:

The following compiler error messages appear during compilation
of a source file:

NO SOURCE FILE: <filename>.BAS- The source file could not be
found on the indicated drive.

OUT OF DISK SPACE Insufficient disk space was encountered by the
compiler while writing the .INT or .LST file.

OUT OF DIRECTORY SPACE The compiler ran out of directory entries
while attempting to create or extend an .INT or .LST file.

BDOS ERROR ONM (A,B) CP/M error message indicates that an error
occurred while reading from, or writing to, a disk file.

PROGRAM CONTAINS n UNMATCHES FOR STATEMENT(S) n FOR statements
have no associated NEXT statements,

PROGRAM CONTAINS n UNMATCHES WHILE STATEMENT(S) n WHILE
statements have no associated WEND statements.

PROGRAM CONTAINS 1 UNMATCHED DEF STATEMENT A multiple line
function was not terminated with a FEND statement, possibly

causing further errors.

WARNING INVALID CHARACTER IGNORED An invalid character was
detected in the last line, which was replaced by a gquestion mark

and ignored.

INCLUDE NESTING TOO DEEP NEAR LINE n An INCLUDE statement
exceeded the maximum nesting level near line n.

COMPILER ERROR CODES

The following two letter error codes display with the line number
and position of the error:

BF Invalid branch into a multiple line from outside of the
function.

BN Invalid numeric constant was encountered.
CI Improper filename used in an $INCLUDE directive.

.CS The COMMON statement was not the first program statement
preceded only by a directive, remark, or blank line.

REV: 2/28/82

Page R-211

osborne 1 Reference Guide ERROR MESSAGES page R-214

IMPROPER INPUT-REENTER The fields entered at the keyboard do not
match those specified in the INPUT statement.

WARNING CODES

he word "WARNING", indicate errors

Two letter codes preceded by t!
n of the program, but should be

that do not prevent executio
attended to. These codes are:
pzZ A number divided by zero resulted in the largest CBASIC
number.

FL A field length greater than 255 bytes was encountered during a

READ LINE; the remainder is ignored.

LN A LOG function argument was zero or negative; the value of the

argument is returned.

NE A negative number before the raise to a power operator (") was
encountered, resulting in the absolute value of the parameter
being calculated.

oduced an overflow. The result

OF A real variable calculation pr
verflow is not

is set to the largest valid CBASIC real number. O

detected with integer arithmetic.

SQ A negative number was specified in the SQR function. The

absolute value is used.

RUN-TIME ERROR CODES

two letter codes are preceded b
tion to terminate:

The following y the word "ERROR"
and cause execu
AC An ASC function string argument evaluated to a null string.
BN The BUFF value in either the OPEN or CREATE statement is less
than 1 or greater than 52.

area is greater than the calling

CC The CHAINed program code
N for adjustment.

program's code area. Use $CHAI

cp The CHAINed program data area is greater than the calling
program's data area. Use 3CHAIN for adjustment.

CE The file being closed could not pe found in the directory.

m constant area is greater than the calling

CF The CHAINed progra
program's constant area. Use $CHAIN for adjustment.
CP The CHAINed program variable storage area is greater than the

Use $CHAIN.

calling program's gariable storage area.

REV: 2/28/82

Osborne 1 Reference Guide CBASIC Page R-]

SAMPLE PROGRAMS:

REM TRANSFERS CONTROL TO A PROGRAM OF THE USER'S
REM CHOICE DIRECT COMPILER TO RESERVE EXTRA SPACE
REM FOR PROGRAM'S CONSTANT, CODE, DATA, AND VARIABLE
REM AREAS (32, 1000, 32, AND 32 BYTES RESPECTIVELY)
REM (TO PREVENT OVERWRITING BY THE CHAINED PROGRAM)

% CHAIN 32, 1000, 32, 32
INPUT "WOULD YOU LIKE TO RUN A PROGRAM (Y/N)2";RUNS
IF RUN$ = "Y" THEN \
INPUT "WHICH ONE?"; PROG.NAMES$:\
CHAIN PROG.NAME$

sTOP

REM PROGRAM CHECKCHAIN -- WHEN MAIN PROGRAM

REM CHAINS HERE A MESSAGE IS PRINTED TO SHOW THE
REM CHAIN WAS SUCCESSFUL AND THEN CONTROL IS
REM TRANSFERRED BACK TO THE MAIN PROGRAM

PRINT "YOU HAVE SUCCESSFULLY CHAINED TO PROGRAM CHECKCHAIN®"
CHAIN "MAIN"
STOP

CLOSE—- Close specified files

OVERVIEW:
The CLOSE statement closes open files,
FORMAT: CLOSE integer expression {,integer expression}

Each integer expression denotes an open file that is to be
closed. Reference to a file that has not been opened will
cause an error. When a file is closed, the file number is

released and the associated buffer space is returned to the
system.

NOTE: CLOSE will terminate any IF END statement that
references the file being closed.

EXAMPLES:

CLOSE 1
CLOSE input.file.ids, temp.file.lg

SAMPLE PROGRAM

REM CREATE TWO NEW FILES, WRITE DATA TO THEM,
REM AND CLOSE THE FILES

REV: 2/28/82

i A= = AP N N MM PR PWM e s e sem

Osborne 1 Reference Guide ERROR MESSAGES Page R~

ND A DEF statement could not be found for a corresponding FEND
statement.

NI A NEXT variable reference did not match that referenced by the
associated FOR statement.

NU A NEXT statement occurred without an associated FOR statement
OF An illegal branch from within a line function was attempted.
00 The ON statement limit of 40 was exceeded.

PM A DEF statement was encountered within a multiple line
function. Functions cannot be nested.

SE A syntax error occurred in the source line, usually as the
result of an improperly formed statement or misspelled keyword.

SF A numeric instead of a string expression was used in a SAVEMEM
statement. Check for quotes around string constants.

SN An incorrect number of subscripts were found in a subscripted
variable, or a DIM variable was previously used with a different
number of dimensions.

S0 A too complex statement should be simplified in order to be
compiled.

TO Indicates a symbol table overflow; meaning the program is too
large for the current OSBORNE 1 memory configuration.

UL Reference to a non-existent line number has been made.

US A string was terminated with a carriage return, rather than
quotes.

VO Variable names are too long for one statement.
WE The expression following the WHILE statement is not numeric.
WN The nesting level of WHILE statements (12) has been exceeded.

WU A WEND without an associated WHILE statement was encountered.

RUNTIME ERRORS

The following run-time error messages are displayed below the
most recent screen line, to indicate conditions which usually
terminate program execution.

NO INTERMEDIATE FPILE A filename of type .INT could not be located
on the specified drive.

2/28/82

. ™R ME O N OSE IR M MEN O PEN 0 MR OEE TRGL reER rems o e e

