CP/M Primer

a most sophisticated operating system

CYBERNETILECES

N
<
8041 NEWMAN AVE. — SUITE 208
Dr. John F. Stewart HUNTINGTON BEACH, CA 92647
University of Miami (714) 848-1922
Box 248237

Coral Gables FL 33156 Reprinted from April 1978 Kilobaud Magazine.



Dr. John F. Stewart
University of Miami
Box 248237

Coral Cables FL 33156

CP/M Primer

a most sophisticated operating system

7

The author works on an Imsai 8080 in the University of Miami’s Hertz

Computer Lab.

Many fine articles have
appeared in Kilobaud
describing the principles of
operating systems, but, as
yet, no one has taken it on
himself to present a detailed
description of one of the sev-
eral commercially available
operating systems. In this ar-
ticle, we will take a look at
the disk-based CP/M system
written by Digital Research.
In particular, we will look at
the version of CP/M that is
currently available on the
Imsai 8080 microcomputer
system. There are only minor
differences between the Imsai
version and the original, so
most of the following will
apply to both.

The CP/M operating sys-

tem is currently available
from Digital Research for
$70, including documenta-

tion and system diskette. |
estimate it would take three
to six man-months for a so-
phisticated programmer to
produce an operating system
with CP/M capabilities. Thus,
one of the original problems
inherent in the micro-
computer field — a lack of
inexpensive software — has
apparently been alleviated.

Environment of CP/M

The essential structure of
the CP/M operating system is
shown in Fig. 1. The CCP is
the Console Command Pro-

cessor — the part of the oper-
ating system with which a
user converses. A wide variety
of commands is available, and
these commands will be dis-
cussed below.

Basic Input/Output Sys-
tem (BIOS) is the section of
CP/M that deals with input/
output commands to all pe-
ripheral devices except the
floppy disks. This includes
1/0 to Teletype, CRT,
printer, etc. A nice feature of
BIOS is that the system 1/O
routines are available to the
user through appropriate sub-
routine calls in assembly-
language programs. This capa-
bility constitutes a powerful
addition to the assembly-
language arsenal.

Basic Disk Operating
System (BDOS) interfaces the
system with the floppy-disk
peripherals. Again, these rou-
tines are available to the user,
eliminating what is typically
one of the trickiest aspects of
assembly-language pro-
gramming — that of 1/0 pro-
gramming.

The first 1001 (25610)

File Type
BAS
ASM
sus
INT
PRN
HEX
COoM

bytes of memory are used
primarily as a scratchpad by
the system. Various system
parameters, such as where to
jump on a restart, are con-
tained in this area. In addi-
tion, a fair amout of it is
available to the user. In par-
ticular, the default location
of the top of the stack is
location FFqg (25510).

Finally, the Transient Pro-
gram Area (TPA) is the area
of memory available for user
programs. It comprises the
bulk of memory, even in the
16K system where it is
26FF1g (998310 or 9.75K)
bytes in fength. In addition to
user programs, all CCP tran-
sient commands are executed
in the TPA. Thus, all user and
most service programs origi-
nate at location 1001g6.

The CP/M system is a
disk-based system, so that an
important part of the envi-
ronment confronting the user
has to do with the way the
diskettes are structured. The
diskettes are composed
logically of 77 concentric
tracks numbered from out-
side to inside as track 0O
through track 76. The first
two tracks (0 and 1) are used
to hold the CP/M system,
which is bootstrapped into
memory as indicated in Fig.
1, when a cold-start proce-
dure is initiated. Tracks 2
through 76 are available for
the directory (usually on
track 2) and user or system
disk files {(programs or data
files). Each track contains 26
sectors, each of which is capa-
ble of holding 128 bytes of

information. Total disk ca-
pacity, then, is a little in
excess of 250K bytes, of

which just over 240K is avail-
able for user files.

There are several im-
portant points to make about
the disk environment. First, it

Meaning
BASIC program.
Assembly program.
Submit file.
Intermediate BASIC,
Assembly results,
Assembly output.
Command file,

Fig. 2. File types.

p—



is not necessary for the user
to specify where on a diskette
a particular file will go. The
(BDOS) system automatically
finds the necessary space and
keeps a record of the name
and location of each file in
the diskette directory. This
saves the user the trouble of
remembering where a particu-
lar file is located. Names of
disk files are made up of
three parts:

1. The first letter is used to
indicate which drive (A or B}
the diskette is on. This letter
is optional if the operating
system is told to assume that
all files are on a particular
drive.

2. The second part of the
name is called the file name.
It consists of from one to
eight letters and/or numbers.
3. The last part is the file
type. File type is used to
indicate whether a file is a
BASIC program (BAS), an
assembly-language program
(ASM), etc. A list of file
types is given in Fig. 2.

Valid disk file names are

, shown in Example 1.

A file name as defined
above constitutes an unam-
biguous file reference. In
many cases, it is desirable to
refer to a whole set of files
with similar characteristics.
This is done through the use
of an ambiguous file refer-
ence. File references can be

A:MYPROG.BAS
B:F12 ASM
PIP.COM (uses default drive)

Example 1.
BIOS/BDOS

31004 — 31FF46
cce

28009 — 30FF 5
TPA

10046 — 27FF4¢

Systemn Area
0~ FFqg

Fig. 1. Structure of CP/M 16K

system.

ambiguous in one of two
ways:

1. An asterisk can be used in
place of either file name or
file type to indicate any file
name or file type. Thus,
*.BAS refers to all BASIC
language source files while
MYPROG." refers to all files
named MYPROG, no matter
what type they are.

2. One or more question
marks can be used in place of
characters in either file name
or file type to indicate that
any character in that position
is acceptable. Thus, files
TEST1.BAS, TEST2.BAS and
TEST3.BAS could be referred
to as TEST?.BAS.

Console Command Processor

As stated above, the CCP
is the part of CP/M with
which a user communicates.
CCP prompts the user with a
letter that indicates from
which disk drive the system
has been taken (also the de-
fault disk drive for file refer-
ences) followed by a greater-
than character (i.e., A> or
B>).

Two types of commands
are possible in CCP. There are
built-in  commands such as
DIR (list directory of default
disk), ERA (erase a file),
REN (rename a file), TYPE
(list a file) and SAVE. These
commands are referred to as
built in since the code for
them is in the CCP area. The
DIR and ERA commands
allow the use of the full range
of file references. For
example:

DIR *.BAS

would list the names of all
directory entries on the de-
fault drive that have file type
BAS.

Transient commands exe-
cute in the TPA just as user
programs do. A nice feature
of CP/M is that, in order to
execute any program (system
or user), the user merely
types its name in response to
a CCP prompt. Thus, the
runnable version of a program
has a file type COM (for
command).

There are five important
areas addressed by CCP tran-

Command Action
B Moves pointer 1o
beginning of file.
-B Moves pointer to end
of file.
*nC Moves pointer In characters.
nFxxx Places pointer after nth
recurrence of string xxx.
L Moves pointer up or down n

lines, OL places the pointer
at the beginning of a line.

Fig. 3a. Pointer positioning commands.

Command
InD

Action

Delete *n characters.

1 . Insert text.

Kill {delete) Zn lines.
Type *n lines on console.

OT types line up to pointer.
1T (or T) types line from
pointer to end.

Fig. 3b. Basic edits.

sient commands:

1. Program entry and editing.
2. Utilities such as copying a
file from one disk to another.
3. Generating and saving vari-
ous versions of the operating
system.

4. Debugging aids.

5. Language processing.

We will discuss these areas
one at a time.

Entry and Editing (ED)

A powerful editor (ED) is
included in the CP/M operat-
ing system. This is a character
editor as opposed to a line
editor, meaning that a file is
considered to consist of one
long string of characters with
CR (carriage return) and LF
(line feed) characters separat-
ing each logical line. This
string is held in a buffer area
in memory. A pointer must
be properly positioned in the
text to indicate the location
of each edit. Some of the
basic pointer manipulation
commands are shown in Fig.
3a. As an example of the use
of these editing commands,
the command

*B2FXYzt2-3C

accomplishes the following:
® Moves pointer to beginning
of buffer.

® Positions the pointer
immediately after the second
occurrence of the string XYZ.

Note, tZ (control-Z) is used
to delimit the string.

® Moves the pointer back
three characters, i.e., it is now
positioned before the X in
the second occurrence
(XYZ).

Once the pointer is posi-
tioned, a number of edits can
be performed. These are
listed in Fig. 3b. As an exam-
ple of the use of these com-
mands, consider the following
two edit lines that are equiva-
lent:

*B2FXYZ]Z-3DOTT
*B2FXYZ12-3C3DOTT

The first line positions the
pointer immediately after the
second occurrence of the
string XYZ; deletes the three
characters _preceding the
pointer, i.e., the XYZ; and
finally prints out the resulting
line. The second example first
positions the pointer follow
ing the second occurrence of
XYZ, then moves the pointer
back three spaces, finally de-
letes the XYZ and prints out
the resulting line.

Since programs are line
oriented, it is useful to be
able to perform the basic
functions of a line-oriented
editor: inserting a line be-
tween two existing lines, de-
leting a line and replacing a
line. While these functions are
not entirely obvious, they can
be accomplished. Assume for




A 2> ED BIG.BAS (CR)

X(edit first 100 lines)

&E (CR) (end edit)

£100A (CR) (bring first 100 lines into buffer)
£100W (CR) (write edited lines to temporary area)

£100A (CR) (bring second 100 lines in)
X(edit second 100 lines)

Example 2.

A>>PIP X.ASM = MAIN.ASM,SUB1.ASM,SUB2.ASM,SUB3.ASM

Example 3.

A > PIP TEST.BAS = CON:, X.BAS, Y .BAS

Example 4a.

AZ>PIP LST: = ONE.ASM, TWO.ASM, THR.ASM.

Example 4b.

demonstration purposes that
the BASIC program shown in
Fig. 4 is to be edited. We wish
to insert the following line:

30 INPUT X

and also to replace line 50 by
the line

50 NEXT I

These edit lines accomplish
these functions:
*BF4012-2C130 INPUT X
¥BFX2YPTZOLKI50 NEXT I
The first edit line positions
the pointer after the 40 and
then moves it back two char-
acters so that it is before 40.
Then the INPUT statement is
inserted. The second example
positions the pointer after the
erroneous string X2YP, then
moves it to the beginning of
the line, kills the line and
inserts 50 NEXT I. Thus, line
replacement is done by first
deleting, then inserting the
new line. Actually, using this
editor does grow on you after
some practice, even though it
seems complicated at first.
As the icing on the cake,

108 =0
20FOR1=1TO 10
408 =8+ X

50 X2YP

60 PRINT S/10

70 END

Fig. 4. Sample text.

additional
For in-

ED has several

editing commands.
stance, the edit line
*BMSFIRST! ZSECONDTZOTT

does a search for all occur-
rences of the string FIRST,
replaces each occurrence with
the string SECOND and
prints out each altered line.
The only new editing charac-
ters in this line are the S,
which is the search command,
and the M, which indicates
that the next commands are
to be repeated as many times
as possible, i.e., until the end
of the file. If a user is careful,
he can perform most desired
edits with the Search (S)
command.

The above discussion as-
sumes that the file to be
edited is located in a memory
buffer. The designers. of ED
were aware, however, that a
particular user might not have
enough memory to hold an
entire program at once. Thus,
the editor contains com-
mands that have to do with
bringing parts of the file into
memory and writing already
edited sections to a tem-
porary disk file to make room
for another segment of the
unedited source. Fig. 5 gives a
list of some of these com-
mands. A user with enough
memory to hold only 100
lines of BASIC might perform
the sequence in Example 2 to

edit a 200-line program.

Note that the end edit (E)
command does several things.
First, it appends any remain-
ing lines in the memory
buffer to the temporary file,
then it appends any remain-
ing source file lines to the
temporary file. Next, it re-
names the original file, giving
it file type BAK (BIG.BAK)
for backup purposes. Finally,
it creates a file under the
original name (BIG.BAS)
from the edited temporary
file. So part of every editing
run is a backup of the original
file.

Peripheral Interface Program
(PIP)

A second major transient
command is the PIP program.
PIP consists of a number of
parts that perform utility
functions for the user. One of
the basic utility functions
available allows the user to
make a copy of an existing
file. The PIP statement

A >PIP NEW.BAS = OLD.BAS

will copy the file OLD.BAS
on the default disk to a new
file called NEW.BAS. A
rather interesting extension
of this basic idea is to copy
several files back to back to a
newly created file. The state-
ment in Example 3 could be
used to create a program file
from a main program
(MAIN.ASM) and append
three subroutines
(SUB1.ASM, SUB2.ASM,
SUB3.ASM) called by the
main program. This makes a
modular approach to pro-
gramming easy to implement.
Just save commonly used
subroutines as separate files
and, when needed, append
them to the main program
with PIP.

In order to understand the
final application of PIP, we
must recall the difference
between logical and physical
devices. A physical device is
just what you would think —
a TTY, a CRT, a printer, etc.
Logical devices are devices
defined in the BIOS, such as
CON (console) and LST (list).
Logical devices must be as-
signed to specific physical de-

vices before communication
between them is possible.
Consequently, the cold-start
procedure would be to assign
CON to your TTY or CRT
and to assign LST to your
TTY (normally you would
want hard-copy output). This
assignment is accomplished
by the use of a set of eight

front-panel switches called
the IOBYTE switches. For
example, the switch settings

00000001

j o— -

LST CON

accomplish this assignment.
The switches not used in this
example are for assigning a
tape reader and punch; so
unless you have such devices,
these would always be left in
the zero position.

PIP allows the user to refer
to these logical devices, and
therefore to the corre-
sponding physical devices. If
we decided to write a pro-
gram called TEST.BAS, con-
sisting of a main program to
be typed in at the console
that calls two subroutines
X.BAS and Y.BAS already
located on the default disk,
we could use Example 4a.

If we simply wanted a
listing of ONE.ASM,
TWO.ASM and THR.ASM,
we could use Example 4b.
The colon is necessary to
distinguish the logical device
name from a disk file.

System Creation
and Maintenance

CP/M contains the soft-

ware necessary for pro-
creating itself in various
forms. A system can be

created to accommodate any
amount of memory from 16K
to 64K bytes in increments of
8K. The transient commands
CPM and SYSGEN are neces-
sary to accomplish a change
of system size, while
SYSGEN alone will make a
copy of an existing system.
Typically, a user who has just
installed a third 8K memory
board would use the com-
mand CPM 24 * to generate a
24K system. The SYSGEN
command is then used to
write the newly generated

-



Command Action

nA Append next n lines of
source to memory buffer area,
n= #implies whole program.

E End edit run. Create edited file.

Q Quit edit run. Make no
changes to file.

nW Write n lines from memory

buffer to temporary work file.

Fig. 5. Text movement editor commands.

Option

Meaning

A Enter assembly-language mnemonics.

X40vzroo

Display memory.

Execute with breakpoints.
Disassemble

Move a segment of memory.
‘Change memory values.
Trace program execution.
Examine CPU state.

Fig. 6. DDT command types.

system onto the first two
tracks of the disk in drive B.
This system can be given con-
trol by placing it in drive A
and doing a restart. Thus, it is
relatively easy to change
system size. Even if the user
has only one disk drive, this
can be accomplished by
modifying the SYSGEN com-
mand to write its output to
drive A instead of drive B.
Exactly how this is done is
part of the next subject.

Dynamic Debugging Tool
(DDT)

One of the more surprising

transient commands to be

found in the CP/M system is
DDT. This command has a
variety of options that enable
the user to interactively exe-
cute an assembly-language
program. Included in the
package is the ability to set
breakpoints, single or
multiple step through the
program, alter the command
(runnable) version of a pro-
gram, disassemble the com-
mand version of a program,
insert assembly-language
statements, examine status
flags and more. These capa-
bilities make DDT a useful
and powerful part of CP/M.
Fig. 6 gives a partial listing of
NDT command types.

/ The customary process for
using DDT is first to write
and assembie a program so
that the command version
(file type COM) is available to

DDT. The debugging package
is then invoked as follows:

A>DDT TEST.COM (CR)

This command loads DDT
into memory instead of CCP,
and DDT in turn loads TEST.
COM at location 10016. Now
any of the command types
can be executed. For
example, suppose we desire
to test the code shown in Fig.
7a, which writes a 2 out to
the front-panel programmed
output lights. The assembied
version is shown in Fig. 7b.
Given that we have invoked
DDT, we can illustrate its
capabilities with a few ex-

JFS ORG 100H
MVI

A2
OUT OFFH
JMP 0
END JFS

Fig. 7a. Sample assembly-
language program.

L 1 Machine Li:
0100 3E02
0102 D3FF
0104 C30000

Fig. 7b. Machine-language ver-
sion of TEST program.

amples. First, let’s check to
see if the program is in
memory beginning at location
10016. This is done in Ex-
ample 5a and this agrees with
the machine-language version
in Fig. 7b.

Now let's single step
through the program to see if
it performs its intended func-
tion (See Example 5b). The
Trace command gives the
state of the CPU, as indicated
by the carry (C), zero (2),
minus (M), even parity (E)
and auxiliary carry flags (1),

~the contents of the registers

(A, B-C, D-E, H-L); the con-
tents of the stack pointer (S),
the program counter (P); the
mnemonics of the instruction
at the location pointed to by
P (i.e., the instruction to be
executed next); and, finally,
the location from which the
following instruction will be
taken (01021g). Let's take
another step in Example 5c.

Here, the MVI A,2 instruc-
tion has been executed so the
A register is changed ac-
cordingly. None of the status

flags have changed. The in-
struction about to be exe-
cuted is the OUT, OFFH, and
the next instruction will
come from 010416. To finish
the program, one more step
(Example 5d) is required.
Here, the program returns
control to the operating
system via JMP 0. The pro-
gram seems to work properly.

Two examples of the other
command types are as
follows:

- L100, 106 (CR)
0100 MVI A 02

0104 JMP 0000

The disassemble command re-
creates the assembly-language
mnemonics.

- A100 (CR)
0100 MVI A,01 (CR)
0102 (CR)

This sequence replaces the
MV instruction by MV1 A, 1.
Assembly-language state-
ments can thus be entered at
any location in the program.
DDT takes care of assembling
such statements. Finally, the

-D100,106

Example 5a.

=T (CR) (trace one ste;
COZOMOEOIO A=00

)
B=0000 D=0000 H=0000 S=0100 P=0100 MVI A,02 *0102

Example 5b.

=T (CR

CR)
COZOMOEOQIO A=02 B=0000 D=0000 H=0000 $=0100 P=0102 OUT FF*0104

Example 5¢.

Example 5d.

=T (CR)
COZOMOEOQ10 A=00 B=0000 D=0000 H=0000 $=0100 P=0]108 JMP 0000*0000 .




C

following sequence changes
back to the original MVI in-
struction by changing the
0116 in location 10116 to an
0216.

-.5100
0101 01 02 (CR)
0102D3 *(CR)

Note that the period ends the
substitute mode.

As is readily apparent,
DDT offers an invaluable tool
for debugging assembly-
language programs.

The Language Processors

The two main languages
supported by CP/M are 8080
assembly language and
BASIC. The assembler (ASM)
interacts with CP/M as
follows. Utilizing the editor,
the user creates an assembly
source file, say TEST.ASM,
on disk. This file is assembled
via the transient command
ASM TEST. There are two
important outputs of the as-
sembly process. The results of
the assembly, including error
messages, are placed into a
file named TEST.PRN. These
results can be viewed via the
TYPE TEST.PRN command.
The other output is a disk file
named TEST.HEX, which
contains the machine-lan-
guage output of the assembly.
The LOAD TEST command
now is invoked to create a
new file named TEST.COM,
which contains the binary

ED $1.ASM
ERA $1 BAK
ASM $1
TYPE $1.PRN
ERA $1.PRN
LOAD $1

$1

Fig. 8. SUBMIT file for
editing, assembly and tests.

(runnable) version of the pro-
gram. This version of the pro-
gram can be tested simply by
typing its name as a CCP
command or via DDT as de-
scribed above.
This  whole
editing, assembling, loading
and running is such a
common sequence that it
would be helpful to be able
to teach CP/M to do the
whole sequence by itself. In
fact, this can be accomplished
using the concept of SUBMIT
files. A SUBMIT file is a disk
file of CCP commands, ex-
cept that the specific names
(or name) of the parameters
are left unspecified. Instead,
they are represented by $1,
$2, etc. Fig. 8 shows a listing
of a SUBMIT file named
AS.SUB that is useful for the
above editing, assembly and
test process. To instruct
CP/M to execute this
SUBMIT file, the user simply
types the transient command

process of

_A>SUBMIT AS TEST

Ali occurrences of $1 are

replaced by the first para-
meter in the parameter list
(TEST), and CPM executes
the list of commands as
though they had been typed
individually. SUBMIT files
give CP/M a capability similar
in nature to the job-stream
concept in larger machines.

The CP/M BASIC is a full
version of BASIC with
floating-point arithmetic and
the full complement of built-
in numeric and character-
handling functions. It takes
20K to run the BASIC lan-
guage processors.

The procedure for running
a BASIC program is to first
create a disk file of BASIC
source statements, say TEST.
BAS. The BASIC-E TEST
transient command does a
partial compilation of the
source file, producing an
intermediate file called
TEST.INT. The RUN-E TEST
command is used to load and
run the program.

Conclusion

The intention of this
article has been to present
enough details of the CP/M
operating system to give the
reader a flavor for the degree
of sophistication of currently
available software.

It is an interesting intel-
lectual exercise to think
about writing one’s own op-
erating system, but it seems
clear that with such sophisti-

cated software available at a
reasonable price, the time and
cost of writing an operating
system is prohibitive.

No comparison has been
attempted between CP/M and
similar software products on
the market. It's difficult
enough to keep track of the
names of all the companies
dealing in various aspects of
the microcomputer market. It
would take a great deal of
time to evaluate all the soft-
ware competitive with CP/M.
| hope this article will offer a
friendly challenge to others
knowledgeable in particular
micro operating systems.
Let’s see an article or two on
these other systems. Let's
bring micro-systems software
out in the open. The personal

effort is worthwhile and
would be instructive to us
all. =

References:

Imsai CP/M Floppy Disk Opera-
tion System Version 1.31, Rev. 0,
1976, Imsai Manufacturing Cor-
poration, San Leandro CA 94577.
An Introduction To CP/M Fea-
tures and Facilities, 1976 (this
and all following refs. by Digital
Research, Pacific Grove CA
93950.

ED - a Context Editor for the
CP/M Disk System, User’s Man-
val, 1976.

CP/M Assembler (ASM) User's
Guide, 1976.

CP/M Interface Guide, 1976.
CP/M System Alteration Guide,
1976.



“Turn-Key” CP/M Systems

System power-up and loading pro-
cedures are almost too simple after
implementing this technique. Per-
fect for small business (and home)
applications.

The marriage of BASIC and Digital
Research’s CP/M has provided a
powerful software team to the de-
velopers of business software. The
hobbyist and the home computer
game lover can also enjoy the result of
this popular team. But, as the
development of business systems
reaches out to more and more users;
ease of aperation becomes more
important.

As the development of
business systems reaches
out to more and more
users, ease of operation
becomes more important.

To bring a system up under CP/M
after power-on is a multi-phased
process and is not always easily per-
formed by someone not accustomed
to computer systems. As currently
implemented, CP/M must first be
loaded into memory from the disk-
ette. This is normally very simple and
involves inserting the diskette into

‘thedrive and depressing the “RESET”

button. Once CP/M gets control, it
responds with the “A>" prompt. The
user must then type in the proper
command. For most versions of
BASIC the user must type a multi-
word command in order to cause
CP/Mto load the BASIC which in turn
will load and execute the desired
program. In contrast to this elaborate
procedure, most “big” systems im-
mediately display a menu from which
the user can select the desired
program by entering the menu num-
ber. This minimizes, if not eliminates,

James J. Frantz

the chance of typing errors. Why can’t
this be done with CP/M?

Well, it can. This article will de-
scribe how to make version 1.4 of
CP/M start executing a program im-
mediately after “RESET"” is pressed.
A menu program will also be provided
that shows how this feature can be
implemented with a game diskette.
This technique was developed to
allow my young daughter and her
friends to select and run their choice
of game from my collection of BASIC
and machine language games without
adult intervention. This same tech-
nique is even more suitable to busi-
ness applications, especially dedi-
cated systems.

CP/M Fundamentals

To understand how this works, the
organization and operation of CP/M
must be considered. CP/M is loaded
into the top of existing memory from
the diskette. There are various
schemes used by vendors of disk
systems which offer CP/M to accom-
plish this, but in every case CP/M
begins execution after being loaded

by entering at it's base. The base of
CP/M is 2900H + b, where b is the
bias determined by the amount of
memory in the system. In a 16K
system this bias is zero and a 32K
system has a bias of 4000H. Starting
at the base, CP/M is arranged as
shown in Figure 1. The location of the
input, or command buffer, and the
storage location for the pointer to the
command string are important in
implementing automatic startup of a
program.

Notice the zero byte at location
seven. This zero tells CP/M that the
command buffer is empty, i.e., there
are zero characters in the buffer. The
copyright notice which appears after
the zero byte is over-written by what-
ever the user types after the “A>"
appears on the screen. If this location
contained something other than zero,
CP/M would think that a command
had already been typed, skip printing
the prompt and begin processing the
contents of the command buffer. By
modifying the contents of the com-
mand buffer to contain a program
name and changing the buffer length

Laocation Contents Descrirtion Remarks
2980H+b+x {Hex 2
X
ated 03 85 zzw JHP Instruction Noirmal Entry Foint
Jta§ €3 51 zz* JHFP Instruction Alternate Entey
& iF Max. Leneth of Max. number of input
conmand buffer characters allowed
7 ag Lensth of command  Normally zero
string in buffer
8 to 23 28 ASCIT blanks
24 to 61 various Corvricht Notice
62 to 135 a9 Remainder of the Initially Empty
conmand buffer
136 & 137 a8 (base) Scan rointer Foints location 8
Storace .
#zz = 2P00H + b + 0306H

James Frantz, 94-285 Hiwahiwa Pl., Waipahn,
H196797.

Figure1

104

CREATIVE COMPUTING




Turn-Key, corv'i...

byte to non-zero, CP/M can be made
to execute that program every time
CP/M is loaded just as if the user had
typedit.

Also notice the storage location of
the scan pointer. Initially this location
contains the address of the beginning
of the command buffer (base + 8).

This technique was devel-
oped to allow my young
daughter and her friends
to select and run their
choice of game from my
collection of BASIC and
machine language games
without adult intervention.

This pointer is updated as CP/M
scans the command buffer during
processing. After processing the
command, the pointer is again stored
at this location for possible continua-
tion. This will become important
when the need to start processing
from the beginning of the command
buffer is desired. Use of this storage
location will be demonstrated in the
MENU program described later.

Modifying CP/M

The procedure to modify CP/M is
straightforward and can be easily ac-
complished with either SID or DDT.
DDT is normally provided with CP/M
when purchased, so this program will
be used to make the modifications.
First, be sure that a spare diskette is
available to receive the modified
CP/M. Next, a copy of CP/M must be
made so DDT can bring it into
memory. This is accomplished using
SYSGEN, a program that is also dis-
tributed with CP/M. Run the SYSGEN
program as follows:

SYSGEN start the SYSGEN program
SYSGEN VERSION 1.4 SYSGEN

sign on message
SOURCE DRIVE NAME (OR RETURN
TOSKIP) A Type “A”
SOURCEON A, THEN TYPE RETURN

At this point, be sure the diskette in
drive A contains the CP/M to be used,
then type a “RETURN."” The program
should respond with:

FUNCTION COMPLETE CP/Mis

now in memory
DESTINATION DRIVE NAME (OR
RETURN TO REBOOQT)

The system will reboot at this point
leaving a complete copy of CP/M in
memory starting at 0980H and ending
at 207FH. This copy of CP/M must be
saved on the diskette. The save oper-
ation can be accomplished by typing:

SAVE 32CPM.COM Save 32 pages

of memory

command of DDT. Type “SOQB?[cr]"‘
and DDT will respond with:

0987 00 - DDT waits for userentry
“MENU” is four characters in length, :
so enter “04” at location 0987H. DDT .
will respond with the next address. |
Enter the hexadecimal value for the
each letter of the command name :
followed by a “RETURN.” Repeat the |
process until the complete name is | :
entered. Finally, and this is very i
important, enter a “00” immediately -
after the program name. After com-
pleting these entries, exit the “S” '
command ofDDTbytyping“.[cr]" and
then perform another *“D0980[cr).”
The data displayed should now :
appearas shown in Figure 3.

U9RB 54 28 28 43 29 28 3| 39 3
8988 54 41 40 28 52 45 S3 45 41 52
a8Co o8 60 (B @8 o on Ge PO 09 Ba
4sDpg B 8a aw a3 @0 0o g8 @e aa gn
G9ED 0B 0/ 00 6@ 0 o8 08 BB P8 o8
G9F0 80 @Y VG BY @0 @G @0 oU Pe 6e
GROE @8 60 g4 68 06 @8 08 08 e &9
BAI@ 85 @9 €5 CD 8C 69 C) €9 JE @D

BRIG CX A7 69 BE @D L3 85 AY SF AE

8986 (3 55 6C C3 5/ .60 7F 04 4D 45 4
6999 2@ 20 20 20 20 20 28 20 43 4F

BR2A 8C €9 C5 LD 98 69 E{ TE 67 U8 2
aE L.

B2 26 28 U1.Q1. MENU. {
43 47 48 COPYRIGH |

43 47 48 T (C) 1978, DIGI |

G 20 00 80 TAL RESERRCH ..

i 6a o C]

q 8a

a e

h8 aa

: GE o

9 IE @R C

S0 &

aa

Figure3

Now that acopy of CP/M exists as
a disk file, DDT can load this file for
modification by typing:

DDTCPM.COM Load DDT which
: loads CPM.COM

DDT should respond with:

NEXT PC

2100 0100

CP/M is now back in'memory starting
at 0980H. Using the “D” command,
type D0980[cr]. The display should
look like Figure 2. Notice the two JMP
instructions, followed by a 7F, then
the zero byte. The zero byte will be
replaced by the length of the program
name, although any non-zero byte
will work. After this length byte, enter
the name of the program that is to
automatically get control. This must
be a disk file of type “.COM” in order
to be executable. In the example, the
program name is “MENU.COM,” so
“MENU” is entered beginning at loca-
tion 0988H. The easiest way to enter
these modifications is with the “S”

898@ C2 55 6C (3 SI 6C 7F a8 20 20
09950 20 28 20 20 20 20 20 20 43 4F
0916 54 20 28 43 29 20 31 39 37 38
@963 54 4| 4C 2@ 52 45 53 45 41 52
avCe e 6a 89 ve VY VO QY @8 o Pa
@spo @g 8e 60 Uo AP GO GO @8 AR B8
O9EY Q0 @8 00 @a DO ea 8Y g9 0e 0o
asFa @y o0 0B 88 08 0 Y @9 B3 B4
ORAA 4@ 6O @0 U0 BO BY AA 89 83 €3
BRIB @5 98 C5 CD 8¢ 69 CI C9 3E 8D
A8 8C 69 €5 D 98 &9 EI 7E B7 €8
OA3A C3 A7 69 BE D (3 @5 0@ 5F OF

28 20 20 28 20 20 .UL.01..

58 59 52 49 47 48 COPYRIGH
2C 28 44 49 47 49 T (C) 1978, DIGI
43 48 2 "U &8 68 TAL RESEARCH .
ag aa aa {
a e
ag aa
ag 80 an
ag a4
D 8C 6
23 ES €D
OE €3

Figure2

DECEMBER 1979

105

When the copy of CP/M in
memory has been correctly modified
as described, exit DDT by typing:
“GO[cr).” Without doing any interven-
ing operation which might destroy the
memory image of the modified CP/M,
save this copy by typing:

SAVE 32 AUTOCPM.COM save 32
pages of memory

Then, using SYSGEN again, con-
struct a diskette with the new system
as follows:
SYSGEN startthe SYSGEN program
SYSGEN VERSION 1.4 SYSGEN
sign on message |
SQURCE DRIVE NAME (OR RETURN
TO SKIP) type “RETURN”
DESTINATION DRIVE NAME (OR ;.
RETURN TO REBOOT)A
DESTINATION ON A, THEN TYPE
RETURN

Remove the diskette from drive A and
insert the spare diskette which was
previously prepared to receive the |
copy of the newly modified CP/M, !
When ready, type “RETURN.” SYS-
GEN responds:

FUNCTION COMPLETE CP/Mis |
now ondiskette -

DESTINATION DRIVE NAME (OR

RETURN TO REBOOT)

Remove the new diskette and replace
theoriginal diskette. Type “RETURN”
to reboot the system. The new
diskette should be labeled and safely
set aside until the MENU program has !
been prepared.



PO

- machine

Turn-Key, con't...

Menu Program In BASIC

- At this point it should be pointed
out that some versions of BASIC
which operate under CP/M allow
entering acommand in the form:

A BASICMENU.BAA

where BASIC is a disk file of type
“.COM." Entering a command in this
form causes CP/M to load and exe-
cute BASIC.COM, which in turn will
load and execute MENU.BAA. (Note

-Conditional assembly was

used to . allow both
language pro-
grams (.COM files) and

BASIC programs to be

. “menu-ized.”

that the filetype “.BAA” is optional in
some versions - check your User's
Manual.) CBASIC and a version of
MICROSOFT BASIC distributed by
.TEI, Inc. are known to perform in this
way. If the menu scheme is to be
implemented in a BASIC of this type,

cor if it is desired to have a specific

BASIC program begin execution im-
mediately after power-up, this can be
done by entering the entire command
string, exactly as it would be typed, in
the command buffer. Be sure to enter
anon-zero character count in location
0987H. Most importantly, the com-
mand string must be followed by a 00.
If the command string is so long as to
overwrite the copyright notice, move
the copyright notice to after the 00
byte following the command string.
All the space up to and including
0AQ7H can be used, but be absolutely
sure that no modifications occur
above this location.

. For those readers who use BASIC
exclusively, the only work remaining
is to transfer BASIC.COM and the de-
sired startup program to the diskette
with the CP/M which has been modi-
fied for automatic execution. If, how-
ever, the use of machine language
programs is desired, or the version of
BASIC doesn’t have the facilities to
foad programs under the controi of
another BASIC program, the MENU
program to be described might be the
‘soluticn. In my case, new games wer
frequently being added to the game
diskette, and many of the games were
written in" machine language. This
program was developed to allow
menu-ization of either BASIC games
or machine language programs.

Assembly-Language Menu

The menu program in Listing A is
written in 8080 machine language and
is fully compatible with the Z-80. A
fully commented listing is provided.
The program has six major parts: 1)
search and sort; 2) assign menu
numbers; 3) compute column off-
sets; 4) display the menu in four
columns; 5) input the user's menu
selection; and 6) load and execute the
selected program.

The search and sort loop uses the
built-in capability of CP/M to search
the diskette directory for files which
match a specified pattern name. The
pattern is selected so only the desired
“type” of files are found. This is done
by using the “?” which forces any
character in the corresponding posi-
tion to be a match. For example, if all
files of type “.BAS” are wanted, a

specified. The desired pattern is set
up in what is called a “File Cantrol
Block” or FCB for short. The standard
convention for “calling” CP/M rou-
tines is to put the memory address of
the FCB in the [DE] register pair, and
the command number in register [C].
A call is made to the standard CP/M
entry point which is memory location
0005. CP/M returns the directory
“address” in the accumulator. Since
64 file. names are aliowed, this
address - is- simply the sequential
position in the diskette directory
(0-63). If no file name matches the
specified pattern, a FFH is returned.
The “Search First” command is used
to find the first occurrence of a match,
and the "“Search Next” command is
used to find all subsequent file names
which match the pattern.

As each file name is found, the
directory address is converted to a
memory address. Since all disk reads
are performed .in 128 byte blocks
starting at the -default address of
0080H, four directory entries are
loaded into memory. Thus, the file
names will be 32 bytes apart and only
the two least significant bits of the
directory address are needed. The file
name is then.alphabetically compared
to the previous file names and
inserted into its proper place in the
“Directory '~ ' Table” (labeled
DIRSTABLE in the tisting).

The 'second major part of the pro-
gram assigns the menu numbers to
each file name in the Directory Table.
Notice that space was allocated in the
Table for the menu number. This
arrangement greatly facilitates the
display of the menu in column form.
The CP/M “print buffer” command
requires a "“$" as a termination
character, so this is also inserted in
the directory table to make printing

106

the table entries easier. ]
The third major part of the

program figures out the column |

arrangement based on the number of |
fites to be displayed. The files are

listed alphabetically from top to

bottom in four columns. The algor-
ithm seems complicated, but was
devised so that each column would

have the same number of file names |
with the extras being added from left |

toright.

The fourth part of the program
displays the Directory Table on the
user's console using the offsets
computed in part three. Extra line
feeds are added to completely fill a 16
line video display terminal. This is
easily changed to accommodate 24

fine displays, or can be deleted as |

desired.
The fifth part of the program

displays instructions to the user and !

waits for the menu number to be
entered. Incorrect entries force a re-

display of the menu. This portion of |
the' program makes use of still :

2nother CP/M capability - buffered

input. The [DE] register pairs are !

setup to point to a section of memory
to be used to receive the input text.
The first byte of this memory must
contain the maximum length of the

buffer area, and the second byte will |
be set by CP/M to the actual count of |

characters entered.
The last part of the program con-

verts the menu number entered by the |

wser into the program name. The

ASCIl representation which was en-
tered from the console keyboard is
converted to binary. This is then con-

The
operator would be reduced

{o explaining how to turn |

on the computer, how to
properly insert the disk-

ette, and the procedure for |

pressing the RESET but-
ton.

verted to the memory address of the
corresponding file name within the
Directory Table. Once the correct file
name is pointed, the proper command
string is positioned in the CP/M
command buffer. Notice how condi-
tional assembly was used to allow
both machine language programs
{.COM files) and BASIC programs to
be “menu-ized.” In the first case, only

the file name followed by a zero byte |

is placed in the command buffer. In

the case of BASIC, the name of the |
BASIC as a .COM file is followed by |
the selected program name. Some |

CREATIVE COMPUTING

instructions to the




he
mn

are
to
or-
as
uid

eft

gts

Turn-Key, con’t...

versions of BASIC, such as CBASIC,
assume a file type, while other
versions require that the file type be
specified in the command line. The
program atlows either case to be
handled.

After the menu number is con-
verted to the correct address within
the Directory Table, the location of
the CP/M command buffer must be
found. The buffer is known to start at
the base + 7 (refer to Figure 1). The
base is a known distance below the
address stored at lccation 0006H. The
base is needed since this is the entry
point which will cause CP/M to pro-
cess the command line which the
program has constructed. So, by
doing some simple arithmetic, the
base of CP/M and the location of the
command buffer can be found. The
program does these calculations and
the desired command string is
properly positioned. There is one
remaining problem which the pro-
gram must solve. When first executed
after initial load, CP/M detected the
prepositioned command which was
installed by the modification to
CP/M. During the processing of this
command, the scan pointer was
moved to the end of this command
and is no longer in the correct posi-
tion to scan the new command line
built by the program. Fortunately, the
scan pointer is stored in a known
location immediately after the end of
the command buffer. Since the
command buffer location is known,
sc is the storage location of the scan
pointer. The program resets the scan
pointer to the beginning of the com-
mand buffer and CP/M is ready to
process the command.

Summary

This article has explained how to
make CP/M execute a program upon
power up by prepositioning the
command in the command buffer.
The requirement to reset the scan
pointer to force CP/M to again pro-
cess the command buffer was also
explained. The producers of dedi-
cated system software can take
advantage of this capability and offer
asystem which is simpler to operate.
The instructions to the operator
would be reduced to explaining how
to turn on the computer, how to
properly insert the diskette, and the
procedure for pressing the RESET
button. Any additional instructions
could be displayed by the program
automatically executed. A true “turn-
key" system? Perhaps not, but how
much closer can you get without Read
Only Memory? Happy Computing! I

DECEMBER 1979

VISIT THE
VROLT
OF THE

pgaIpy

The Vault of the Dead is
but one of the many
dark and fearsome
mysteries within the
ruined Temple of Ap-
shai. The Temple of Ap-
shai is your first adven-
ture in the DUNJON-

o Take your favorite character - or let the con
puter create one for you!
QUEST™ series of fan- e Let the Book of Lore guide you through §
tasy role playing DUNJONQUEST™ within the Temple.
games. o Decide to fight the monsters or grab th
. treasure and run - but don't think oo lon
DUNJONQUEST™ is a they'll come after you!
complete game sys-

tem and The Temple of The Temple of Apshai-for the TRS-80 (Level I}

?;:{';;;Sa%vc:m,'gm 16K) and PET (32K} microcomputers.

game for you and your
microcomputer.

Ask yourlocal dealer or send us your check foj
$24.95 to: .
Automated Simulations-Department R, P.O.
OVER 30 Honsrers/ Box 4232, Mountain View, CA 94040

OVER 70 7REASURES _/ California residents please add 6% sales tax.

OVER 200 RooMs /

CIRCLE 115 ON READER SERVICE CARD

i, ¥ iR
RELEER TS LTI I

.
Ry

CIRCLE 156 OX READER SERVICE CARD







