RUN

Fourier Transform Package for North Star
Copyright 1979 by National Microcomputer Associates

RETURN to continue after reading each part.

INTRODUCTION

This documentation describes the use of the North
Star Fourier Transform Package. It is absolutely essential
that the single density DOS is used and that a working
North Star Floating Point Board (FPB) is installed at
locations EFFO-EFFF hex. For double density operation
or the FPB at a different address, please contact
National Microcomputer Associates for a special, custom
version of this package.

WHY NOT USE THE 'FAST FOURIER TRANSFORM'?

Since you are interested in this package, we presume
that you are familiar with what the Fourier transform is
designed to do: convert a function of time to a function
of frequency and vice versa. It is a common and erroneous
notion in the data processing world that the so-called
'fast Fourier transform' algorithm is the last word on
numerical Fourier transformation. While it certainly has
its place, it has many limitations which, in our opinion,
disqualifies it from consideration for most applications.

In the first place, the fast Fourier transform requires
the data to be in a very special form: equally spaced time
or frequency increments and a number of data points equal
to an integral power of two. On many occasions, the data
will instead be spaced at unequal intervals (perhaps
smaller intervals where the variation is fastest) and
have any number of points. Of course, interpolation can
be used to force the data into the necessary form, but
then one is removing oneself a further step from the
original data, generally an undesirable direction to go
in terms of preserving accuracy.

The next problem is that, believe it or not, the
fast Fourier transform assumes that the function it is
transforming is periodic, i.e. that it repeats itself
indefinitely and never dies down. This can cause a lot
of trouble numerically if one is trying to do anything
fancy with the function and not just look at its
transform.

Finally, the fast Fourier transform algorithm
fixes the frequency range transformed to, once the time
range of the data is given (and vice versa). In most
cases, the resulting range contains too much high-frequency
'garbage' (i.e. is it really data or just round-off?) and
not enough resolution in the low frequency region.




WHAT WE DO INSTEAD

A very viable alternative to the fast Fourier
transform is what we like to call the speedy Fourier
integral transform, or FIT, which transforms data from
the time domain to the frequency domain, and the speedy
inverse Fourier transform, or IFT, which goes the other
way. This transformation assumes that the function is
zero outside of the data range and that between any
two data points, the function is a straight line.

This definition of numerical transform is very close to
the rigorous mathematical definition. In fact, if the
function to be transformed is actually made up of
straight lines, the FIT method will give the EXACT answer
within the limits of computer accuracy.

The motivation behind this method is the nature of
the data that are to be transformed. In most cases, it
is known that the function to be transformed is zero
outside of a given range. Furthermore, if the data have
been digitized from a photograph using a digitization
board, it is very likely that the person doing the
digitization has chosen his points in such a way that
the function isn't doing anything 'funny' (i.e. is a
straight line) between the points he picks. This is the
same criterion which would be used to make a digital plot
of the function. The rule of thumb, then, is that if the
digitized points make a good-looking digital plot, then
they will make a good FIT.

THE METHOD IN DETAIL

The FIT method is actually conceptually quite
simple. The first step is to pre-process the input
data and divide it into groups of equally-spaced
points. The algorithm then simply adds the contributions )
from each resulting trapezoid (known analytical functions)
to the total at each frequency (or time). The grouping
into segments of equally-spaced points is done to
minimize the number of evaluations of sine and cosine
which must be done. For each group, two sine and two
cosine evaluations are done. Thus, the program will
run faster if the number of different equally-spaced
groups is kept to a minimum, although every point can
have a different spacing if desired.

DATA FILE STRUCTURE

The data file structure required by FIT and IFT
was very carefully chosen to allow flexible use in
North Star BASIC programs. This is very important
since it is usually desirable to do most of the
data manipulation in BASIC (like putting in a digital
filter function) except for the actual Fourier
transformations. The data file format consists of
a header containing identification and other information
that will be useful for plotting, for instance, followed
by the data proper. To be more specific:




TIME DOMAIN DATA

HEADER: TITLE (string, >0 and <200 characters)
NUMBER OF POINTS (number)
FIRST TIME (number)
LAST TIME (number)
MINIMUM VALUE (number)
MAXIMUM VALUE (number)

DATA: TIME (number)
VALUE (number)
(repeat for each point)

The following short BASIC program will generate
a valid FIT time file:

10A$="Title"
20CREATE"FITFILE", 1
300PEN#0,"FITFILE"
LOWRITE#0,A$,4,0,3,-1,1
5OWRITE#0,0,0
6OWRITE#0,1,1
TOWRITE#0,2,-1
BOWRITE#0,3,0

9OCLOSE#0

FREQUENCY DOMAIN DATA

HEADER: TITLE (string, >0 and <200 characters)
NUMBER OF POINTS (number)
LOW FREQUENCY (number)
HIGH FREQUENCY (number)
0 {number)
MAXIMUM MAGNITUDE (number)

DATA: FREQUENCY (number)
REAL VALUE (number)
IMAGINARY VALUE (number)
(repeat for each point)

The following sheort BASIC program will generate
a valid IFT frequency file:

10A$="Title"
20CREATE"IFTFILE", 1
300PEN#0, "IFTFILE"
4OWRITE#0,A$,4,0,3,0,1
50WRITE#0,0,0,0
60WRITE#0,1,.5,.5
TOWRITE#0,2,.8,.6
80WRITE#0,3,0,.9
90CLOSE#0




MISCELLANEOUS DETAILS

This section of the documentation will print
miscellaneous information about the transforms
No particular logical order will be used.

The data file formats used above are preserved
through the transformations. Thus, a file which had
just been created by the FIT transformation could
immediately be transformed by IFT. The FIT program
automatically adds the string " FIT" to the
title, while IFT adds the string " IFT". This
is useful for keeping track of what has been done to
the data. Note that the original data file is not usually
removed or overwritten by any of these programs.

The programs hold in memory all data needed to
calculate the new function. The amount of memory needed
depends on the size of the file being transformed (the
output file can be any size). To calculate the amount
of memory used, add the size of the DOS plus the size
of the transform program (4K) plus the size of the file
to be transformed in bytes, plus 512 bytes to be safe.

If the file to be transformed has many different step
sizes, add a maximum extra 50% of ‘the file size in bytes.
When this is the case (expected to be a rare condition),
the programs will print the message "Expanding the data
area'" many times during the pre-processing. A 24K

memory area starting at 2000 hex should be plenty for most
applications.




HOW TO RUN THE PROGRAMS

There are four transform programs, two of them
for FIT (time to frequency) and two for IFT (frequency
to time). The fundamental programs are FIT and IFT (oddly
enough!). To run either, simply load the disk containing
the programs and use the GO command from DOS. The
programs will prompt for all needed information. Note
that the usual file name convention with the unit number
following a comma is NOT used. Instead, the unit number
will be separately requested. All information needed will
be input after a prompt.

An important feature of the programs is that the
destination file will be created with the proper size
if it doesn't already exist. If it does exist and is
too small, a message will be printed and a new file
name will be requested. If the remaining space on the
disk is too small, a message will be printed and the
program will wait for a keypress to give the user time
to put in ‘a new (initialized) diskette.

At any time during the running of the program, the
user can type control-C to interrupt. The program will
print the current frequency point being calculated (FIT)
or time point (IFT) and wait for another keypress. If
another control-C is pressed, the DOS is reentered and
all calculations are lost (the new file is invalid).
Otherwise, the program goes back to where it was and
resumes. Every now and then (time depending on how many
points are being transformed), the disk drive will turn
on as another buffer of output is stored.

|




DISK-TO-DISK TRANSFORMS

In many cases, a whole disk of data files needs
to be transformed. In this case, two disk drives are
used, one for the input data and one for the output.
The diskette with the input data should have no other
files on it and the diskette to hold the output data
should be initially blank. The programs to run are
FITDISK (time to frequency) and IFTDISK (frequency to
‘time). The new files will all have the same number
of points and the same range. The new file names will
be the same as the old except with an extra "F" (FITDISK)
or "T" (IFTDISK) if there is room.

These programs are convenient to use overnight
or at other times when the computer will be unattended.
The control-C interrupt still works the same way. If
the diskette becomes full, the program will stop and
wait (indefinitely) for a new diskette.

CONCLUSION

The programs above will take about 2 minutes on
an 8080 machine (2 MHz) to transform 100 points to
100 points. The exact time depends on the number of
groups of equally-spaced points and other factors.
The majority .of the processor time is spent waiting
for the FPB to finish a calculation. The time also
varies roughly as the product of the time and frequency
point counts.

Please contact us if you would like to obtain the
source code or have custom modifications made.
If any other questions remain, please write
National Microcomputer Associates
P.0.Box 5245
Albay, New York 12205
READY







