Interactive Microware, Inc.
P.O. Box 771

| m
l ' State College, Pa 16801
(814) 238-8294

*%% A GUIDE TO BASEX ***

BASEX 1s a new, easy-to-learn language for 8080-type
microcomputers. BASEX programs are almost as easy to write as
BASIC programs; in fact, it is possible to translate most
programs from BASIC into BASEX. The BASEX compiler is
interactive; it combines the functions of -entering, editing,
compiling and executing your programs. Since the compiler can
decompile its own code very rapidly, there is no need to have a
separate source program.

The greatest advantage of using BASEX is that programs run 5
to 20 times faster than similar BASIC programs. Most programs
that would normally have to be written in assembler language can
now be written much more easily in BASEX. As an added bonus, the
BASEX run-time routines are only 2K bytes long, so BASEX programs
typically require about 6K bytes less memory than similar
programs that are run with an 8K BASIC interpreter.

In spite of the speed and compactness of BASEX programs,
most of the powerful features of BASIC are available to BASEX
users. Array variables, text strings, arithmetic and logical
operations on signed 16-bit integers and versatile I/O functions
are available (see the instruction list on the reverse side). In
addition, BASEX allows variable names of any length, block memory
searches, block memory transfers and named subroutines that can
pass multiple arguments to and from the calling program. Although
BASEX does not support floating point number calculations or
trigonometric functions, it is easy for the BASEX user to add new
functions for custom applications.

The BASEX manual includes a detailed explanation of the
language and fully commented listings of the assembler language
run-time routines and the BASEX compiler, which is itself written
in BASEX! You also get sample programs and a well documented
LOADER program that is capable of relocating BASEX programs and
compressing them into the smallest possible amount of memory.

PRICES: Manual, "A Guide to BASEX" $ 8
Compiler and Loader Programs

On North Star diskette $25

On Meca tape $25

On other media (please ask) $35 (OVER...)

BASEX PROGRAM COMMANDS

X,Y and Z are variables or constants; A(is an array; S8$ is a string
"TEXT" is a string constant; variable names can be any length.

>> Pseudo-Operations <<
REM !BASEX! (comments) DIM A(10 SS 80 (dimension arrays & strings)
**%%* START (program labels) END (end of program)

>> Arithmetic Commands << (Results are in the Accumulator)
ADD X+Y (add) SBT X-Y (subtract) MLT X*Y (multiply) DIV X/Y (divide)
ABS X (absolute value) INC X (increment) DEC X (decrement)

>> Logical Commands << (Results are in the Accumulator)
AND X&Y (logical AND) NOT X (complement)
IOR X#Y (inclusive OR) XOR X%Y (exclusive OR)

>> Load and Store Commands <<

SET X=Y or SET A(1=X or DEF X=Y A(1=X ... {(eguate variables)
DAT A(X=Y Z ... (initialize an array)

BRD X (read byte at X) BRT X=Y 2 ... (write bytes from X onward)
WRD X (read word at X) WRT X=Y 2 ... (write words from X onward)

>> String Commands <<

STR X=85 ¥ or STR A(X=8$ Y (string to variable transfer)
5TR 8% X X=Y or STR S$ X X=A(Y (variable to string transfer)
STR §$ X ¥Y=8$ Z or STR S$ X Y="TEXT" (string to string transfer)
CMP S$ X Y-S$ Z or CMP S$ X Y-"TEXT" (compare strings)

LEN 35 X (length of string) VAL S$ X (numeric value of string)

>> Program Control Commands <<
JMP CC X (jump to X on condition CC = EQ, NE, LT, GT, LE, or GE)

FOR X=Yeeeees.TIL X+¥Y>Z (looOp) GTO Y (unconditional branch)
CAL X Y 2 ... (call subroutine X) GET Y (pass Y to subroutine)
PUT Z (return Z to caller) RET (return from subroutine)

>> Input/Output Commands <<

INP X A(¥ S$ Z ... (input) CHR X (print character)

PRT X A(Y 8% Z "TEXT"... (print) TAB Y (tab to column Y)

XIN X (read input port) WAT X Y (wait for condition Y on port X)
XOT X (write output port) DSI/ENI (disable/enable interrupts)

>> Memory Search and Move Commands <<

BSR X Y Z (search from X to Y for byte Z)
WSR X Y 7 (search from X to Y for word Z)

MOV X Y Z (move memory from X through Y to 2)

BASEX COMPILER COMMANDS

LST or LSM (list all or part of the program or symbol table)
DMP or NTR (dump or enter one or more memory values)

INS or DLT (insert or delete one or more program statements)
SIZ (print program size) LOC (set program pointer)

RUN (run the program) MON (exit to monitor)

. m- Interactive Microware, Inc.
P.O. Box 771

State College, Pa 16801
(814) 238-8294

%% A GUIDE TO BASEX ***

BASEX 1is a new, easy-to-learn language for 8080-type
microcomputers. BASEX programs are almost as easy to write as
BASIC programs; in fact, it 1is possible to translate most
programs from BASIC into BASEX. The BASEX compiler is
interactive; it combines the functions of entering, editing,
compiling and executing your programs. Since the compiler can
decompile its own code very rapidly, there is no need to have a
separate source program.

The greatest advantage of using BASEX is that programs run 5
to 20 times faster than similar BASIC programs. Most programs
that would normally have to be written in assembler language can
now be written much more easily in BASEX. As an added bonus, the
BASEX run-time routines are only 2K bytes long, so BASEX programs
typically require about 6K bytes less memory than similar
programs that are run with an 8K BASIC interpreter.

In spite of the speed and compactness of BASEX programs,
most of the powerful features of BASIC are available to BASEX
users. Array variables, text strings, arithmetic and logical
operations on signed 16-bit integers and versatile I/0 functions
are available (see the instruction list on the reverse side). 1In
addition, BASEX allows variable names of any length, block memory
searches, block memory transfers and named subroutines that can
pass multiple arguments to and from the calling program. Although
BASEX does not support floating point number calculations or
trigonometric functions, it is easy for the BASEX user to add new
functions for custom applications.

The BASEX manual includes a detailed explanation of the
language and fully commented listings of the assembler language
run-time routines and the BASEX compiler, which is itself written
in BASEX! You also get sample programs and a well documented
LOADER program that is capable of relocating BASEX programs and
compressing them into the smallest possible amount of memory.

PRICES: Manual, "A Guide to BASEX" $ 8
Compiler and Loader Programs

On North Star diskette $25

On Meca tape $25

On other media (please ask) $35 (OVER...)

BASEX PROGRAM COMMANDS

X,Y and Z are variables or constants; A(is an array; S$ is a string
"PEXT" is a string constant; variable names can be any length.

>> Pseudo-Operations <<
REM !BASEX! (comments) DIM A(10 S$ 80 (dimension arrays & strings)
**%* START (program labels) END (end of program)

>> Arithmetic Commands << (Results are in the Accumulator)
ADD X+Y (add) SBT X-Y (subtract) MLT X*Y (multiply) DIV X/Y (divide)
ABS X (absolute value) INC X (increment) DEC X (decrement)

>> Logical Commands << (Results are in the Accumulator)
AND X&Y (logical AND) NOT X (complement)
IOR X#Y (inclusive OR) XOR X%Y (exclusive OR)

>> Load and Store Commands <<

SET X=Y or SET A(1=X or DEF X=Y A(1=X ... (equate variables)
DAT A(X=Y 2 ... (initialize an array)

BRD X (read byte at X) BRT X=Y Z ... (write bytes from X onward)
WRD X (read word at X) WRT X=Y Z ... (write words from X onward)

>> String Commands <<

STR X=8% Y or STR A(X=S$ Y (string to variable transfer)
3TR S% X X=Y or STR S$ X X=A(Y (variable to string transfer)
STR S$ X ¥Y=S$ Z or STR S$ X Y="TEXT" (string to string transfer)
CMP S$ X Y-S$ Z or CMP S$ X Y-"TEXT" (compare strings)

LEN S5 X (length of string) VAL S$ X (numeric value of string)

>> Program Control Commands <<
JMP CC X (jump to X on condition CC = EQ, NE, LT, GT, LE, or GE)

FOR X=Y.eeees.TIL X+Y>Z (loOp) GTO Y (unconditional branch)
CAL X Y Z2 ... (call subroutine X) GET Y (pass Y to subroutine)
PUT Z (return Z to caller) RET (return from subroutine)

>> Input/Output Commands <<

INP X A(Y 8% Z ... {(input) CHR X (print character)

PRT X A(Y S% 2 "TEXT"... (print) TAB Y (tab to column Y)

XIN X (read input port) WAT X Y (wait for condition Y on port X)
XOT X (write output port) DSI/ENI (disable/enable interrupts)

>> Memory Search and Move Commands <<

BSR X Y Z (search from X to Y for byte 2)
WSR X Y 2 (search from X to Y for word Z)

MOV X Y Z (move memory from X through Y to Z)

BASEX COMPILER COMMANDS

L3T or LSM (list all or part of the program or symbol table)
DMP or NTR (dump or enter one or more memory values)

INS or DLT (insert or delete one or more program statements)
SIZ (print program size) LOC (set program pointer)

RUN (run the program) MON (exit to monitor)

Interactive Microware, Inc.
P.O. Box 771

| L
l l State College, Pa 16801
(814) 238-8294

%* The BASEX Tape and Disk Guide *

The North Star disk handler offers these features:

1. Up to four drives can be accessed and the directory of any
drive can be listed.

2. Named files can be created, deleted, loaded, saved or
checked for accuracy by comparison with memory.

3. As many as five files can be open simultaneously for read
and/or write operations.

4, Once a file has been opened, 256 byte records may be
written, read or verified in sequential or random order.

5. A BASEX program may load and execute a new program which
may or may not overlay the old program and data arrays.

6. The BASEX/North Star disk handler occupies only 512 bytes
of memory in addition to the normal disk operating system and the
user program.

7. A Basexerciser sample program demonstrates execution of all
disk operations from the keyboard.

The Meca tape drive handler provides these features:

1. Up to four tape drives can be accessed and the directory of
any drive can be listed.

2. The tape on any drive can be mounted, unloaded, rewound or
initialized to zero the directory.

3. Named files can be loaded, saved with automatic
verification or overlayed on the same region of the tape if space
permits.

4. A BASEX program may load and execute another program which
may or may not overlay the old program and data arrays.

5. The BASEX/Meca tape handler occupies only 278 bytes in
addition to the normal tape operating system and the user
program.

6. A Basexerciser sample program demonstrates execution of all
tape operations from the keyboard.

The fast random access capability of the North Star disk
drive together with the economy and large capacity of the Meca
tape drive provide a mass storage capability that is hard to
match at double the price. If you own both of these peripherals,
you can combine disk and tape operations in your BASEX programs,
as exemplified by a third Basexerciser routine which is included
with this package.

(OVER...)

BASEX Tape and Disk Guide
Table of Contents

IntroducCtion. ceeeeeceessesscessassssssssaasosscansssnsas

I. The BASEX/North
A. Descriptions of

Operation
Operation
Operation
Operation
Operation
Operation
Operation
Operation
Operation
Operation
Operation
Operation
B. Listing

Star Disk Handler.....oeeeeeceecess
Disk OperationS..eeeeeeeceasceacess

0 (WRT): WRiTe neXt SeCtOl...eeeeecccccsccces
1(RED): REaD NexXt SeCLOCl..eccecescacsassasansonanss
2(VFY): VeriFY next SeCtOl..cesececsescscscancasans
3(SFD): Save all remaining sectors on DisK.eeeeesss
4 (LFD): Load all remaining sectors on DisSKeeeeessoo
5(CKD): ChecK all remaining sectors on DiSK.ieeeeoos
6 (SEK): SEeK a given record of disk file..ieeesoses
7(LST): LiST disk directory...eeeceeceacseascnsas
8 (CHN) : CHaiN (load and execute) a new program.
9(DLD): DeLete file On DiSKeeeeversoeoooosoosons
19 (CRT): CReaTe file ONn AiSKeeeseoeoooooooasnonse

11(OPN): OPeN disk fil€.ceeesscooanees
of North Star Floppy Disk Handler....
C. BASEXerciser for Floppy Disk DrivesS...eseeees

II. The BASEX/Meca Tape Handler....eeeeececocs
A. Descriptions of Tape OperationS..eceeececss

Operation
Operation
Operation
Operation
Operation
Operation
Operation
Operation
Operation

Operations 9-13,15(ERR):
Operation 14 (OVR): OVeRlay tape file..ieeiveeaas
16(SIZ): Determine SIZe of tape file.
B. Listing of Meca Tape Handler....eeeeeeseseess

Operation

P (DIR): List tape DIRECLOIV.sssevas
1(REW): REWind tap€..ececessececes ..
2(LOD): LOaD tape file...veeeeoness
3(SAV): SAVe tape fil€..eeeeencaaas
4 (MNT): MOUNT taApP€.cecceocccencanns
5(ULD): UnLoaD tap€.seececessccessasns
6 (NEW) : NEW tape directOrY..eeeeees
7(DLT): DeLeTe tape file...eeeseeeas
8 (RUN) : RUN an executable program..

C. BASEXerciser for Meca Tape DriveS...eeeeess

III. Simultaneous Use of Disk and Tap€.seseses
A. Description of Disk/Tape OperationS........
B. BASEXerciser for Disk and Tape....... ceaeen

Undefined..ceeeasecass

R

eses s

e s s

ss e

e

e eccs e

e oo

e e e

IV. Modifying the BASEX Compiler to Allow Programs to be Saved

and Loaded from Disk or Tap€...see.. ssessesssesssscsvsscenense
PRICES: Manual $20

Programs on North Star disk S15

Programs on Meca tape $1s

[

HOds &R bhWWWWWNDND NN

NOTE: You will also need the BASEX compiler to run these programs.

- m- Interactive Microware, Inc.
P.O. Box 771

State College, Pa 16801
, (814) 238-8294

*** The BASEX Tape and Disk Guide ***

The North Star disk handler offers these features:

1. Up to four drives can be accessed and the directory of any
drive can be listed.

2. Named files can be created, deleted, loaded, saved or
checked for accuracy by comparison with memory.

3. As many as five files can be open simultaneously for read
and/or write operations.

4., Once a file has been opened, 256 byte records may be
written, read or verified in sequential or random order.

5. A BASEX program may load and execute a new program which
may or may not overlay the old program and data arrays.

6. The BASEX/North Star disk handler occupies only 512 bytes
of memory in addition to the normal disk operating system and the
user program.

7. A Basexerciser sample program demonstrates execution of all
disk operations from the keyboard.

The Meca tape drive handler provides these features:

1. Up to four tape drives can be accessed and the directory of
any drive can be listed.

2. The tape on any drive can be mounted, unloaded, rewound or
initialized to zero the directory. :

3. Named files can be loaded, saved with automatic
verification or overlayed on the same region of the tape if space
permits.

4. A BASEX program may load and execute another program which
may or may not overlay the old program and data arrays.

5. The BASEX/Meca tape handler occupies only 278 bytes in
addition to the normal tape operating system and the user
program.

6. A Basexerciser sample program demonstrates execution of all
tape operations from the keyboard.

The fast random access capability of the North Star disk
drive together with the economy and large capacity of the Meca
tape drive provide a mass storage capability that is hard to
match at double the price. If you own both of these peripherals,
you can combine disk and tape operations in your BASEX programs,
as exemplified by a third Basexerciser routine which is included
with this package.

(OVER...)

BASEX Tape and Disk Guide
Table of Contents

[

INtrodUCEiON. ceeveeosososcacansesossssscsesososeseasasosssccsnsase

I. The BASEX/North Star Disk Handler..eeeeeevsssooosnsscassnse
A. Descriptions of Disk OperationS.sseecceccccessccesoccccasncs
Operation @ (WRT): WRiTe next SeCtOCL..eceosescscssscscascnoses
Operation 1(RED): REaD next SeCtOr...cecessececscsossoscscscsascs
Operation 2(VFY): VeriFY next SeCtOl..eesesccscessseocsssscas
Operation 3(SFD): Save all remaining sectors on DiSK..sesoeses
Operation 4 (LFD): Load all remaining sectors on DiSK.sssesses
Operation 5(CKD): ChecK all remaining sectors on Diskeesseon..
Operation 6(SEK): SEeK a given record of disk file..eseveeeees
Operation 7(LST): LiST disk directory.eeeeceeececceeecseooens
Operation 8 (CHN): CHaiN (load and execute) a new program.....
Operation 9(DLD): DeLete file oOn DiSKeeeesosooseesceansasenes
Operation 10(CRT): CReaTe file ONn AiSKe.eeeooooocecononsoacoens
Operation 11 (OPN): OPeN diSK fil@.eeeeeeceeoecsoccocscoanscasns
B. Listing of North Star Floppy Disk Handler...eeeeeeesscacses
C. BASEXerciser for Floppy DiSk DrivesS...eceeseececescecccancns

HObbb_EBWWWWWANNDNDND

[

II. The BASEX/Meca Tape Handler....eeeeeessoesacssssocaccannns
A. Descriptions of Tape OperatiOnS...ccescecccsccsscosccsansss
Operation @ (DIR): List tape DIRECLOIY.eesesvscasasssssesoasses
Operation 1(REW): REWINAd taAP€.ceeseeevcsrscosaccsorsnsnsnncnses
Operation 2(LOD): LOaD tape fil€..eecoesosossacanscsosesosecses 18
Operation 3(SAV): SAVe tape file..ieeeeeosecscssasscsaasanses 19
Operation 4 (MNT): MOUNT taApP€.seessesacscesasscsassasscsassses 19
Operation 5(ULD): UnLoaD ta@PCicsecssccesosescasssccasecsnsoses 19
Operation 6 (NEW): NEW tape directOrYeeeeesescosososcceasesesss 19
Operation 7 (DLT): DeLeTe tape fil€..eeveceessssccscssccacnses 19
Operation 8 (RUN): RUN an executable program...ecesceccesessecss 19
Operations 9-13,15(ERR): Undefined.....ccieeeeccecsccoscsansaes 19
Operation 14(OVR): OVeRlay tape file..iseseososonsscscsssssss 19
Operation 16(SIZ): Determine SIZe of tape fileiieieeesenssess 20
B. Listing of Meca Tape Handler....eeeeeeessceossccssssansnaae 20
C. BASEXerciser for Meca Tape DrivVeS..eceeeescesscscsssccocsnsse 24

==
@ o ™

I1I. Simultaneous Use of Disk and Tap€.sececsessscenssesocacses 30
A. Description of Disk/Tape OperationS...esescscecsccscccseses 30
B. BASEXerciser for Disk and Tap€...ceececsscsceaaccasccsssases 30

IV. Modifying the BASEX Compiler to Allow Programs to be Saved
and Loaded from DisSk Or TAPEeeeecascesesasssscssssssossacassas 38

PRICES: Manual $20
Programs on North Star disk $15
Programs on Meca tape $15

NOTE: You will also need the BASEX compiler to run these programs.

W

BY PAUL K. WARME
423 Kemmerer Road
State College, PA 16801

BASEX is a new intermediate-level language for microcom-
puters that combines some of the best features of both BASIC
afid EXecutable machine language code. It is almost as easy to

" use as BASIC and yet, it is nearly as fast and versatile as assem-
bler language. The BASEX compiler is inferactive; that is, it
permits you to enter, list, edit and run your program without
the help of any auxiliary programs, such as editors or linkage
editors. In this respect, BASEX is mbre like BASIC than FOR-
TRAN, PASCAL and other compilers. Most BASEX com-
mands resemble their counterparts in BASIC language, and this
facilitates learning the language and translating programs from
BASIC into BASEX. :

The main advantages of BASEX are its speed (typically 7 to
20 times faster than BASIC) and the compact size of BASEX
programs (typically at least 6K bytes smaller than similar pro-
grams written in BASIC). This difference in size i$ due to the
fact that the BASEX compiler does not have to be resident
during execution and the run-time subroutines occupy only
2K bytes of memory. However, since the BASEX compiler and

. run-time routines together use only 8K of memory, it is gener-

ally more convenient to leave the compiler in memory while
debugging your BASEX programs. A microcomputer with 16K
bytes of memory is adequate to make full use of the power of
BASEX. Since the BASEX compiler is able to decompile its
own object code very rapidly, you only need to save one copy
of the program (the object code). This is a distinct advantage
over FORTRAN and other compilers, which save separate
source, object and executable versions of the same program.

The Origins of BASEX

About a year ago, I was having a lot of fun with my IMSAI
8080 microcomputer until I tried some BASIC programs to
draw pictures on my video terminal and play electronic music.
Unfortunately, BASIC was too slow to permit smooth motion
of video images and accurate timing of musical notes. After
buying a chess program written in BASIC, I found that it took
about ten minutes to make a move. The Bulls and Cows game
(similar to Mastermind) in 101 Basic Games often took 10 to
30 minutes to make a move, much to my consternation. In
short, I discovered that there is a rather large class of problems
that demand greater execution speed than BASIC can deliver.
Unfortunately, many of the things that I wanted to do, such as
interactive graphics, electronic music and word processing, fall
in this category.

. At the time, it seemed that programming in assembler lan-
guage was the logical alternative to BASIC, although I dreaded
the thought of writing large programs C>8K) in assembler lan-
guage. When I started translating one ‘of these large programs
into assembler language, it was quite discouraging. I had to re-

Dr. Dobb’s Journal of C: Cali

& Orthod

BASEX: A Fast, Compact Interactive
Compiler for Microcomputers

invent the wheel at every turn, writing routines to input and
output numbers and text, multiply, divide, etc. Then I noticed
that certain operations were done repeatedly in different parts
of the program and could be called as subroutines, thus avoid-
ing repetitious coding. After thinking about this, it occurred
to me that most of these same subroutines would be needed in
just about any large assembler language program.

_From this point, it was easy to conclude that assembler lan-
guage programming would be much easier and faster if all of
these useful subroutines could be made available in any pro-
gram. A method was needed to pass arguments to the subrou-
tines; the most straightforward way of doing this would be to
insert the addresses of the arguments immediately after the
subroutine call, This approach requires that a region of mem-
ory be set aside for a symbol table; that is, a table containing
the names of variables and their present values.

Pulling on the Bootstraps

The next step was to write a set of subroutines that would
be generally useful in almost any program and then wiite a
compiler in BASIC that would translate three-letter mnemonic
names of each subroutine into a CALL to the corresponding
subroutine. The compiler also had to copy each new variable
name included in the user program into the symbol table and
leave a two-byte space for the value associated with that
name. Once the compiler was working in BASIC, I used it to
translate the compiler into BASEX (in other words, a series of
CALL’s to BASEX subroutines). If this sounds circular, well,
it is. ‘

I now had a compiler written in BASEX which worked
about 20 times faster than the compiler written in BASIC. The
speed advantage of BASEX was already paying off! In order to
put some finishing touches on the BASEX compiler, the origi-
nal version was copied to a different part of memory and the
original compiler was used to modify the relocated copy. In-
cidentally, writing a compiler in a new language is a good test
of its versatility and power. In fact, I decided to add a few
more subroutines to the run-time package during the process
of translating the compiler into BASEX.

An Overview of BASEX Program Commands

Table I rizes the corr ds available to BASEX
users. Notice that all of the command mnemonics are three let-
ters long and the data types include 16-bit signed constants
and variables (-32,767 to 32, 767), one-dimensioned arrays of
up to 255 values, string variables of up to 255 characters and
string constants of any length. One unusual feature of BASEX
array names is that the “(” is treated as part of the name,
much like the “$”" at the end of a string name. Thus, the clos-
ing parenthesis,), is not needed after the element. For exam-
ple, DATA(1 means the first element of the array called
DATA(. Variable names may contain any number of charac-

Number 30

Page 26

ia, Box €, Menio Park, CA 94026

ters (or numbers), which makes BASEX érograms more de-

_scriptive than BASIC programs. Since variable names are saved

only once (in the symbol table), the memory cost of using
longer, more meaningful names is slight.:

Pseudo-Operations:

The BASEX pseudo-operations are used only by the com-
piler; they are skipped over during execution of the program.
The REM command is for comments, which are sét off by ex-
clamation marks. The DIM command tells the compiler how
much space to save in the symbol table for arrays and strings.

The *** command marks an entry point in the program which

can be addressed by the GTO, JMP and CAL commands. This .

feature of using names instead of numbers for entry points
adds to the readability of BASEX programs. The END com-
mand indicates the end of a procedure or program.

Arithmetic and Logical Commands:

All of the arithmetic and logical commands place their re-
sult in the accumulator, which is referred to by the letter A
(this is the only reserved variable name). The accumulator, A,
is a 16-bit variable that can be used just as any other BASEX
variable. The sign of the most recent arithmetic or logical op-
eration is retained for conditional branching via the JMP com-
mand. The arithmetic commands allow addition (ADD), sub-
traction (SBT), multiplication (MLT) or division (DIV) of
16-bit signed constants or variables. Commands are also avail-
able to determine the ABSolute value (ABS), INCrement a
value by one (INC) or DECrement by one (DEC). The logical
commands (AND, NOT, IOR, XOR) operate simultaneously
on all bits of a 16-bit constant or variable.

Load and Store Commands:

BASEX provides several ways to load and store values in
memory. The SET command is equivalent to the LET com-
mand in BASIC. The DEF (DEFine) command allows multiple
SETs to be combined in one command. However, it is more
convenient to use the DAT command to assign values to suc-
cessive elements of an array. The BRD (Byte ReaD) command

works like the 8-bit PEEK or EXAM functions in BASIC, .

while the WRD command gives the BASEX user the added
capability of reading 16-bit words anywhere in memory. The
complementary functions.of storing bytes or words in memory
are performed by the BRT (Byte wRiTe) and WRT commands.
These commands are analogous to the POKE or FILL com
mands in BASIC, but it is easier to store multiple bytes or
words using BASEX, since mumple values can be stored with
a single command.

String Commands:

Basex needs only one very powerful string command, STR,
to duplicate the ASC, CHRS, LEFT$, MID$ and RIGHTS
string functions used in some versions of BASIC. Characters
can be transferred back and forth between strings and variables
(or arrays). Substrings are specified in terms of their first and
last character positions in a given string. The CMP command
CoMPares the alphabetic order of two strings and allows con-
ditional branching via the JMP command, based on the out-
come of the comparison. Other useful string commands are the
LEN command to determine the LENgth of a string or sub-
string and the VAL command, which returns the numeric val-
ue of a string in the accumulator, ‘A.

Number 30 Dr. Dobb's Journal of C: Calisth

Program Control Commands:

One of the most useful program control commands is the
JMP command, which branches to a labelled (***) entry point
if a particular condition has resulted from the most recent
arithmetic, logical or compare command. The conditions that
can be tested for are EQual (EQ) to zero, Not Equal (NE),
Less Than (LT), Greater Than (GT), Less than or Equal (LE)
and Greatet than or Equal (GE) to zero. The GTO command
can be used for unconditional branching. Structured program-
ming buffs may choose not to use the GTO command, but
after all, if you know where you're going, the GTO is the
quickest way to get there. However, structured programming
techniques can be used with BASEX.

Instead of the FOR...NEXT loop structure of BASIC,
BASEX uses the FOR and TIL commands. The FOR com-
mand sets the initial value of the loop variable, while the TIL
command adds or subtracts any value from the loop variable
and then checks to see whether the terminating value has been
exceeded. If not, the program branches to the statement
following the corresponding FOR command. FOR...TIL
loops can be nested to any depth and there are no restrictions
on jumping into or out of loops.

BASEX has a much better facility for calling subroutines

than BASIC. For starters, subroutines are called by name,
rather than by statement number, so the subroutine name can

BASEX~PROGRAM COMMANDS

XY and Z are variables or constants; A(is an array; S$ is a string
“TEXT" is a string constant; variaple names can be any length.

>> pseudo-Operations <<
REM IBASEX] (comments)
#+% START (Program labels)

DIM A(18 S$ 88 (Dimension arrays & ‘strings)
END (End of program)

>> Arithmetic Commands << (Results are’ "in the Accumulator
ADD X+Y (add) SBT X-Y (subtract) MLT X*Y (multiply) DIV x/Y (divide)
ABS X (absolute value) INC X (increment) DEC X (decrement)

>> Logical Commands << (Results are ,n the Accumulator)
AND XsY (logical AND) NUT X {complement) 4
IOR X#Y (Inclusive OR) XOR X3Y (Exclusive OR)

>> Load and Store Commands <<
SET X=¥ or SkT A(l=X or DEF X=Y A(l=X ...
DAT A(X=Y 2 ... (initialize an array)
BRD X (read byte at X) BRT X=Y Z ...
WRD X (read word at X) WRT X=Y 2 ...

(equate variables)

(write bytes from X onward)
{write words from X onward)

>> String Commands <<
STR X=S$ Y ar STR A{ X=8$ Y (string to variable transfer)
STR S§ X X=Y or STR S$ X X=A(‘Y (variable to string transfer)
STR 8S X YsS$ £ or STR 5§ X Y="TEXT* (string to string transfer)
CMP. S$ X Y-5§ Z or CMP $5 X Y-"1EXT* (compare strings)

LEN S$ X (length of string) VAL 5§ X (numeric value of string)

>> Program Control Commands <<
JMP CC X (jump to X on condition CC = EQ, NE, LT, GT, LE, or GE)
FOR X®Y..i0aes! TIL X+Y>Z (loop) GTO ¥ (uncendn.lonal branch)
CAL X Y Z ... (call subroutine X} GET Y (pass Y to subroutine)
PUT Z (return 2 to caller) RET (return from subroutine)

> lnput/Output Commands <<
INP X A(Y S (mp t)

PRT X A{ Y ss z “TEXT*... (print) TAB Y (tab to column ¥)

XIN X (read input port) WAT X Y (wait for condition ¥ on port X)
XOT X (write output port) DSI/ENI (disable/enable interrupts)

CHR X (print character)

>> Memory Scnch and Move Commands <<

BSR X Y Z (search from X to Y for byte 2)
WSR X ¥ % (search from X to Y for word Z)
MOV X Y Z (move memory from X through Y to 2)

BASEX COMPILER COMMANDS
LST or LSM (list all or part of the program or symbol table)
DMP or NTR (dump or enter one or more memory values)
INS or DLT (insert or delete one or more program statements)

512 (print program size) LOC (set program pointer)
RUN (run the program) MON (exit to monitor)

reflect its purpose. The first argument after a CAL command
is the entry point name, defined elsewhere in your program by
a *** command. The optional second and subsequent ‘argu
ments specify variables to be passed to or returned from the
& Orthodonti

'Box E, Menlo Park, CA 94025 Page 27

J

J

subroutine. Within the subroutine, you can use the GET com-
mand to receive a value from the calling program or use the
PUT command to return a value. Since the variables named in
the GET and PUT commands may be different from the names

bused in the CAL command, you can reserve “local’” variable
names for use in subroutines. However, any subroutines that
are compiled at the same time and share the same symbol table
may access any variable without using the GET and PUT com-
mands. This allows “global” variables to be shared by subrou-
tines. The RET command is used to RETurn from a subrou-
tine.

Input/Ouput Commands:

The I/O commands in BASEX make it easy to communi-
cate with terminals and instruments of all types. To customize
BASEX for your terminal, you simply fill in the address of
your routines to input and output one character, as described
in the manual. The INP command INPuts one line of charac-
ters or numbers, ending with'a carriage return, and stores them
in the variables listed after the INP, The PRT command
PRinTs .a list of variables or constants, separated by spaces.
The PRN command does the same, but omits the space be-
tween items. You may space over to a particular column by
using the TAB command or print a smgle CHaRacter with the
CHR command.

If you wish to communicate directly with I/O ports, you
can INput from port X with the XIN command or OuTput
to port X with the XOT command. In both cases, the byte to
be communicated is placed in the accumulator, A. The WAT
command WAITs until the input port specified by its first ar-
gument gives a non-zero value when ANDed with its second

. argument. You can also ENable or DiSable Interrupts with the
L/ ENI and DSI commands. :

Memory Search and Move Commands:

Since the block memory search and move commands are
extremely fast, they are indispensible for-writing compilers,
editors and other programs where speed is important. The
BSR command SeaRches for a particular Byte (8 bits) within
a specified region of memory, while the WSR command
SeaRches for Words (16 bits). If the specified byte or word is
found, its address is placed in the accumulator, A, and the con-
dition flags are set to the Less Than (LT) condition so that
a JMP command can test whether the search was successful. If
the requested byte or word is not found, the Greater Than
(GT) condition is flagged. The MOV command MOVes a group
of bytes from one region of memory to another. It gives cor-
rect results even when the new regwn of memory overlaps the
old region.

Using the BASEX Compiler

The interactive BASEX compiler makes it easy to write and
debug programs. Each time BASEX is restarted, it prints
“RANGE?” and expects you to enter four numbers to desig-
nate the first and last addresses of your program and the first
and last addresses of its symbol table. Let’s call these addresses -
PRG1, PRG2, SYM1 and SYM2, respectively. BASEX works
with decimal numbers, since most people think most readily
in base 10. If your BASEX program is already loaded in mem-
ory and you have previously declared its memory space, you
L,» can type a O after the “RANGE?” prompt, and then a carriage

return (here denoted <CR>). In this case, BASEX will print

& Orth

the current values of PRG1, PRG2, SYM1 and SYM2, just as a
reminder.

If you want to write a new BASEX program, you should re-
spond to the “RANGE?” prompt by typing the starting ad-
dress of the program (PRG1), a space, and then type the same
value for PRG2, followed by a space. The space is the pre-:
ferred separator between numeric arguments, although any
non-numeric character will do. Now, you should type the ad-
dress of the last byte in memory that you want to set aside for
the new program, a space, and then type the same number
once more, followed by <CR>. This sets SYM1 and SYM2 to
the top of memory because the symbol table builds downward
from the top of memory. The BASEX comhpiler will now erase
any program that previously existed between PRG2 and
SYMI.

Whether you are starting a new program or revising an old
one, the value of PRG2 is next printed, followed by a question
mark, The “?” always signals that a BASEX program (the
compiler, in this case) is waiting for user input. You can now
type any three-letter BASEX command mnemonic, a list of

. argumerits and then <CR>. The BASEX compiler checks to

see whether your command line begins with a compiler com-
mand (discussed below) and. if so, performs the requested ac-
tion and then retypes the value of PRG2 and “?” once more,

If your command line contains a program command, the
appropriate CALL to a BASEX run-time subroutine is inserted
in your program, followed by the symbol table addresses of
any arguments specified in the command line. If any new vari-
able names occur in the argument list, they are copied into the
symbol table. Next, the compiler updates PRG2 to the address
of the next available program location, prints it and waits for
another command line after the “?”* prompt. Notice how the
automatic line number feature of BASEX faclhttntes program
entry.

BASEX Compiler Commands

The BASEX compiler commands allow the user to list and
modify programs. The SIZ' command prints the values of
PRG1,PRG2, SYM1 and SYM2 in the following format:

PROGRAM HHHHH RURRH SYMBOLS HUERHH#
#HH#E

The LOC command allows you to set PRG2 to any position in
your program, so that the next program command will be
inserted there. If you want to LiST your entire program, you
can type LST; if you type one number after LST, the single
command at that location will be listed or, if you type two
numbers after the LST command, all program commands be-
tween those limits will be listed. The LSM cominand is used to
LiSt the entire SyMbol table and one or two arguments may
follow, the LSM to list selected parts of the symbal table. As
each variable name is listed, its location in the symbol table
and the current value of that variable are also printed. One use-
ful debugging technique is to insert an END command at some
point in your program and then, when your program halts, list
all or part of the symbol table to determine the current values
of your variables. You can now alter the values of certain vari-
ables, list the program or modify the program. In most cases,
you can still resume your program after the END command
without harmful side-effects.

The INS and DLT compiler commands are used to INSert
or DeLeTe program lines. Both require two arguments, which
specify the first and last memory locations to be inserted or

Page 28 Dr. Dobb’s Journal of C: Calisth

ia, Box E, Menlb Park, CA 94026 Rumber 30

deleted. These locations can be determined from the program
listing. The INS command moves the last part of the program
to a higher place in memory, prints the range of the relocated
program segment, sets PRG2 to the first location to be insert-
ed, prints PRG2 and then waits after thé “?” prompt for one
or more new program commands to be entered. When you fin-
ish entering new commands, you sliould use the DLT com-
mand to delete the unused locations up. to the reloacted pro-
gram segment. In cases where the altered program will be the
same- size or shorter than the original one, you can use the

LOC command (instead of the INS comimand) to set PRG2 to

any location in your program, enter the changes, and then
delete any unwanted commands with the DLT command.

The DMP command is available for printing the decimal
values stored between any two memory addresses that you
specify. A carriage return and line feed are printed automat-
ically whenever the address is evenly divisible by ten: The NTR
command can be used to eNTeR one or more decimal values
into sequential memory bytes, starting at the memory address
specified by its first argument. When you want to RUN your
program, you merely type the RUN command, followed by
the desired starting address. Since your program has already
been compiled - as you entered it, there is no delay before your
program begins. The address given after RUN can point to the
first byte of any command in your program orany other pro-
gram. You can restart BASEX at any time by typing RUN 0

or just RUN. After your BASEX program finishes, it will jump

to location 0 and restart BASEX.

The MON command allows you to exit conveniently to
your system monitor. In view of the great diversity of mass
storage devices now available, BASEX contains no mass stor-
age handlers. However, you can use your system monitor to

" save and load BASEX programs or you can even use BASEX to
write a tape handler, as will be shown by one of the examples
coming up.

BASEX Error Messages

In order to maintain fast program execution and small pro-
gram size, BASEX is somewhat weak on error checking. Never-
theless, it is a rare thing for a BASEX program to run wild, be-
cause after each BASEX command is completed, a check is
made to be sure that the next byte in the program is a CALL
instruction. Any other instruction will cause the program to
halt, and error dump will be printed and then the BASEX
compiler will be restarted. Other run-time errors (of 18 differ-
ent types) will also halt and print and. error dump, consisting
of the values of all the registers, the program location where
the error was detected, the error type number and the top
three words on the stack. In addition, when the BASEX com-
piler detects any of nine different types of program errors, it
prints a two letter error code and ignores that command line.

Relocating LOADER for BASEX Programs

It is frequently desireable to be able to move a BASEX pro-
gram to a position different from that at which it was com-
piled. A special program called the LOADER (written in
BASEX) is provided for this purpose. Although the standard
version of the LOADER overlays the BASEX compiler, it can
be used to relocate the compiler or the LOADER itself. The
LOADER commands include MOV, to MOVe a program or its
symbol table to a new location, PRG to modify the PRoGram

Number 30 Dr. Dobb's Journal of Ci Calistheni

and SYM to modify the SYMbol table to take into account its

new location in memory. The DMP, NTR, RUN and MON

commands described above are also available in the LOADER.

The FIX command is the most powerful LOADER com-
mand; it moves the program to a new location, removes all
pseudo-operations (REM, DIM, and *** labels) and moves the
symbol table to directly follow the program. As each variable
name is moved, its new location is printed and the name is ab-
breviated to its last letter to conserve space. Comments are
also omitted to make the program smaller. After the FIX op-
eration, the*program can no longer be listed or changed by the
BASEX compiler, nor can it be relocated by the LOADER.
This provides a measure of protection for proprietary soft-
ware. :

EXAMPLE: Memory Test Program

Let’s write a simple BASEX program to write every possible
8-bit byte in every memory location within a selected region
of memory and then read it back to verify its correctness. Of
course; any errors should be reported by giving the erroneous
value, its location and the correct value. In order-to compare
BASEX with BASIC, we’ll do it first in Altair BASIC, version
3.2.

16 REM MEMORY TEST IN BASIC

188 INPUT "FIRST AND LAST BYTES";FIRST,LAST
116 FOR I=8 TO 255 R

128 FOR J=FIRST TO LAST

138 POKE J,I

148 IF PEEK(J)=I GOTO 168

158 PRINT "BYTE",J,"WAS",PEEK (J),

";SHOULD BE",I

NEXT J
NEXT I
PRINT

169
178
180
OK
RUN
FIRST AND LAST BYTES? 16501,16680
DONE : '

OK

In BASIC, this program took 250 seconds to test 100
memory bytes (25,600 write, read and compare operations).
Now, let’s translate this program into BASEX and observe how
similar the two programs are.

"DONE"

*GO BASEX .
- RANGE ? 11008 11080 11500 11508
11800 ? REM IMEMORY TEST IN BASEX!
11866 ? PRT "FIRST AND LAST BYTES"
11812 ? INP FIRST LAST
11628 ? FOR I=90"
11628 ? FOR J=FIRST
11636 ? BRT J=I
11644 ? BRD J
11058 ? SBT A-I
11858 ? JMP EQ OK
11866 ? BRD J
11672 ? PRT "BYTE" J "WAS" A ";SHOULD BE" I
11888 ? CHR 13
11894 2 *** 0K
11168 ? TIL J+1>LAST
11112 ? TIL I+1>255
11124 ? PRT “DONE"
11136 ? CHR 13
& Orthodontia, Box E, Menlo Park, CA 94026 Page 29

d

J

11136 ? SIiZ
PROGRAM 11608 11136
11136 ? LSM
11387 DONE" 11387
11395 ;SHOULD BB" 11395
{ 11409 wAsS" 11489
11416 BYTE" 11416
11424 OK 11108
11429 J 2
11433 1 8
11437 LAST @
11444 FIRST 0
11452 FIRST AND LAST BYTES" 11452
11476 MEMORY TEST IN BASEX! 11476
11136 ? RUN 11808
FIRST AND LAST BYTES ? 16501 16688
DONE :
RANGE ? 8
PROGRAM 11089 11136

SYMBOLS 11387 11500

SYMBOLS 11387 11580

The execution time in BASEX is 29 seconds for 100 bytes.
This is 8.6 times faster than BASIC, even though this version
of BASIC is the fastest one tested by Tom Rugg and Phil
Feldman in their article, “Basic Timing Comparisons . . . Infor-
mation for Speed Freaks,” published in Kilobaud (June, 1977,

‘ p. 66). When I coded their longest program, Benchmark Pro-
gram 7, in BASEX, it ran in 7.1 seconds, whereas Altair
BASIC took 51.8 seconds and other versions of BASIC took
up to 235.6 seconds. Apple’s 6K integer BASIC took 28.0
seconds; this may be a better comparison with BASEX, since
neither of these use floating point arithmetic. However, like all
benchmark programs, there is a certain amount of variation in
performance, depending on the nature of the program. In all

; of the cases that 1 have tested, BASEX runs 7 to 20 times

{_ faster than Altair BASIC, Version 3.2.

EXAMPLE: Intel Format Tape Routines with Check-
sum

The following program reads, writes and verifies tape files
in Intel format. It is fast enough to work with my National
Multiplex CC-7 data recorder running at 2400 baud (try that
with BASIC!). It will also work with paper tape or other fla-
vors of cassette tape. The use of descriptive names for entry
points and subroutines makes the program fairly easy to un-
derstand.

In Intel format, the first byte of a record is a colon and all
subsequent bytes are in ASCII hexadecimal form. Bytes 2 and
3 are the record length, bytes 4 through 7 are the Joad address
and bytes 8 and 9 are the record type (0 here). Next comes the
data, two ASCII digits per byte, and then the checksum, which
is the negated 8-bit sum of all the digits since the colon. At
the end of each record, there is a carriage return and line feed.

The verify operation is the same as the read operation, ex-
cept that the values read from the tape are just compared to
the contents of memory. Subroutine INCHAR reads one
ASCII digit and OUTCHAR writes one digit on the tape. Both
of these routines must be customized for the user’s I/O ports.
Subroutines READCHK and WRTCHK read and write mem-
ory bytes as two hex digits and update the checksum, while
READHEX and WRTHEX do the same thing without contrib-
uting to the checksum. Subroutine HEX converts ASCII hex-
adecimal digits to binary, whereas HEXOUT does the reverse
conversion and goes on to output the result.

Page 30 Dr. Dobb's Joumnal of C Ci

8 Orthod

The program and symbol table occupy 1,712 bytes and
they can be compressed to only 1,097 bytes by means of the
FIX command in the LOADER program. ’

PROGRAM 12288 13486
13486 ? LST
12288 REM !INTEL FORMAT TAPE ROUTINES!
12294 DIM ANSWERS 6 .

12382 DEF TAPE 2 STATUS 3
12314 *** BEGIN

12320 CHR 13

12326 PRT "READ/WRITE/VERIFY/STOP"
12332 INP ANSWERS 1

12340 CMP ANSWER$ 1 1 "“R"
12352 JMP EQ READ

12360 CMP ANSWERS 1 1 “w"
12372 JMP EQ WRITE

1238% CMP ANSWERS 1 1 "V"
12392 JMP EQ VERIFY

12480 GTO 9

12406 *** VERIFY

12412 SET VRFLAG=1

12420 GTO READ1

12426 *** READ

12432 SET VRFLAG=8

12440 REM IREAD NEXT BLOCK!
12446 *** READ]

12452 SET CHKSUM=8

12460 CAL INCHAR

12466 SBT A-58

12474 JMP NE READ1

12482 CAL READCHK

12488 SBT C-#

12496 JMP EQ BEGIN

12504 SET NBYTES=C

12512 CAL READCHK

12518 MLT C*256

12526 SET ADDRESS=A

12534 CAL READCHK

125408 ADD C+ADDRESS

12548 SET ADDRESS=A

12556 CAL READCHK

12562 FOR BYTE=l

12578 CAL READCHK

SYMBOLS 13453 14069

.12576 SBT VRFLAG-#@
© 12584 JMP EQ READ2

12592 BRD ADDRESS

12598 SBT C-A =

12606 JMP EQ READ3)
12614 PRT "V" "ERROR AT" ADDRESS
12624 GTO BEGIN

12638 *** READ2

12636 BRT ADDRESS=C

12644 *** READ3

12658 INC ADDRESS

12656 TIL BYTE+l NBYTES '
12668 CAL READHEX '
12674 ADD A+CHKSUM

12682 AND A&255

12699 JMP EQ READ)

12698 PRT “R" “ERROR AT" ADDRESS
12788 GTO BEGIN

12714 KEM IREAD WITH CHECKSUM!
12728 *** READCHK

12726 CAL READHEX

12732 SET C=A

12740 ADD C+CHKSUM

12748 SET CHKSUM=A

is, Box E, Menlo Park, CA 84025 _ Number 30

12756
12768
12766
12772
12778
12784
12792
12808
12806
12812
12826
12824
12838
12836
12844
12852
12860
12866
12874
12878
12884
12892
12898
12986
129180
12916
12922
12928
12936
12944
12952
12958
1297¢
12976
12982
12999
12998
13806
13012
13026
13826
13034

13040

13046
13852
13858
130866
13874
13082
13098
13096
131064
13112
13118
13126
13132
13148
13146
13154
13162
13170
13178

13180
13194
13208
13288
13214
13226
13234

CAL
DIV
CAL
CAL
CAL
FUR
BRD
CAL
INC
TIL
SBT
AND

Number 30

IREAD 2 HEX DIGITS!
READHEX

‘INCHAR

HEX

A*16

C=pA

INCHAR

HEX

A+C

{CONVERT ASCII TO HEX!

HEX
A-58
LT HEX1
aA-7
HEX1
A+l0

INCHAR
STATUS 2
‘TAPE
A&l27

IWRITE TAPE!
WRITE

*WRITE RANGE"
FIRST LAST
A=9

BYTE=1
OUTCHAR
BYTE+1 10
IWRITE NEXT BLOCK!
WRITEL
NBYTES=16
LAST-FIRST
GE WRITE2
ITERMINATOR
A=58
OQUTCHAR
A=48
OUTCHAR
OUTCHAR
BEGIN

WRITE2

A-15

GE WRITE3
A+l6
NBYTES=A
WRITE3
CHKSUM=@
A=13
OUTCHAR
A=10

OUTCHAR

A=58
OUTCHAR
WRTCHK NBYTES
FIRST/256
WRTCHK A
WRTCHK FIRST
WRTCHK 0
BYYLE=L

FIRST

WRTCHK A
FIRST

BYTE+l NBYTES
@-CHKSUM
A&255

Dr. Dobb's Journal of (

13242
13250
13256
13262
13268
13274
13280
13288
13296
13302
13308
13316
13322
13330
13336
13344
13352
13360
13368
13374
13382
13388
13396
13492
13406
13453
13461
13470
13492
13515
13524
13533
13542
13556
13565
13574
13594
13684
13611
13619
13634
13648
13655
13679
13685
13786
13728
13738
13750
13758
13766
13773
13783
13789

13798 C

13862
13812
13821
13838
13849
13857
13866
13875
13888
13888
13893
13980
13945
13931

& Orthod

SET C=A .
CAL WRTHEX
GTO WRITEl
REM IWRITE WITH CHECKSUM!
*%% WRTCHK
GET C
ADD C+CHKSUM
SET CHKSUM=A
REM !WRITE 2 HEX DIGITS!
**k WRTHEX :
DIV C/16
CAL HEXOUT
SET A=C
*%% HEXOUT
AND A&l5
SBT A-10
JMP LT ASCII
ADD A+7.
**% ASCII
ADD A+58
%% OUTCHAR
WAT STATUS 1 '
XOT TAPE
RET
END 13406 ?. LSM
ASCII 13374
HEXOUT 13336
WRITE 2 HEX DIGITS! 13478
WRITE WITH CHECKSUM! 13492
WRTHEX 13388
WRTCHK 13274
WRITE3 13896
TERMINATOR! 13542
WRITE2 13858
WRITEl 12982
WRITE NEXT BLOCK! 13574
OUTCHAR 13388
LAST 16184
FIRST 16161
WRITE RANGE" 13619
WRITE TAPE! 13634
HEX1 12866
CONVERT ASCII TO HEX! 13655
HEX 12836
READ 2 HEX DIGITS! 13685
READ WITH CHECKSUM! 13786
READHEX 12772
ERROR AT" 13738
READ3 12650
READ2 12636
BYTE 6
ADDRESS 16191
256 256
NBYTES §
L]

READCHK 12726

INCHAR 12884

CHKSUM 02

READ NEXT BLOCK! 13838 |
READ1 12452

VRFLAG 1 :

VERIFY 12412

‘v* 13875

WRITE 12922
wW" 13888
READ 12432
R" 13909
READ/WRITE/VERIFY/STOP" 13965

BEGIN 12320 (cont’d on page 39)

Box E, Menlo Park, CA 94026 Page 31
‘

13939 'STATUS 3 (cont’d from page 31)
13948 TAPE 2 '

13955 ANSWERS 6 S

13978 INTEL FORMAT TAPE ROUTINES! 13979
13486 ?

Other Applications of BASEX

The BASEX manual includes a very useful sample program
that allows you to convert numbers from any number base be-
tween 2 and 36 to any other base and do arithmetic (+, -, *,
or logical operations (&, #, %) in any number base. This 1K-
byte program will do everything the $60 TI Programmer cal-
culator will do and more! I have also converted that chess pro-
gram and the Bulls and Cows game into BASEX; both run
about 10 times faster than they did in BASIC. That factor of
10 is the difference between fun and boredom. BASEX was
also ideal for writing a powerful word processor that I call
PRO-TYPE, (see below). In order to use my North Star disk
and Meca tape drives with BASEX programs, I have written
some utility routines that permit random or sequential access
to disk or tape files, etc. These things have a way of eating up
time, so the interactive graphics and electronic music programs
haven’t yet been translated to BASEX, but someday . ..

.Hardware Requirements and Availability

The current version of BASEX was written for the 8080,
but it also runs on Z80 or 8085 microcomputers. However, it
is fairly straightforward to translate the 2K bytes of run-time
subroutines to run on other microcomputers. Since the
BASEX compiler and LOADER are written in BASEX, they
should work with minor modifications on any other micro-
processor, once the run-time subroutines are available. It
should also be very easy to translate any user application pro-
grams from one dialect of BASEX to another. The conversion
for the 6502 is already underway and if there is sufficient in-
terest, BASEX may be made available for other microproces-
sors, as well.. A second limitation of the current version of

" BASEX is that it resides in the lowest 8K of memory (loca-
tions 0 to 5 and 64 to 1FFF), which presently precludes its
use with some computers that have ROM down there (e.g., the
Radio Shack TRS-80, Heath H-8).

The BASEX manual is being published by Byte Publica-
tions, Inc. and will be available from them or from your local
microcomputer store. It includes a more detailed explanation
of each command, sample programs and fully commented list-
ings of the assembler language run-time subroutines, the com-
piler and the relocating LOADER program. A full explanation
of how the BASEX user can add his own customized com-
mands to BASEX is included .in the manual. It also contains
the object code for these programs in bar code format. For
those of you who want to be the first on your block to try

.BASEX, I have a limited number of copies of the preliminary,
unedited version of the manual available for $10. North Star
disks or Meca tapes containing all of the programs are available
for $25 from Interactive Microware, Inc., 116 South Pugh
Street, State College, PA 16801. Other disk and tape formats
will also be available as soon as possible. This company also

- markets the program that allows BASEX programs to access
North Star disk or Meca tape drives and the PRO-TYPE word
processor, which is written in BASEX. ’

& Orthodantia, Box E, Menio Park, CA 84026 Page 39

Dr. Dobb's Journat! of C:

r-

BASEX Tape and Disk Guide UPDATE #1

l. Page 5 For DOS version 3, location 2B@1 should be 50, not 51 as
indicated. In order‘to implement the new North Star DOS version 4,
make the following changes in the disk handler:

ZAFE=5D, 2BUl=A2, 2B@8=47, 2B1F=00, 2B20=0¢, 2B21=94@,

<BZF=7B, 2B3W=22, 2B32=12, 2B53=B3.

2. Page 11 Change the instructions for altering the BASEX compiler as
follows:
1. NTR 8179 68 83 75

2. NTR 2136 z 42

3. Page 2¥ In addition to the changes indicated for using a tape
operating system at a location other than 7000H, location 2C28 must be
set to XF, where X is the first digit of the origin of the relocated

tape operating system.

4. Page 39 Location 2545 (decimal) in the BASEX compiler must be
changed (NTR 2545 39) in order to recognize the DKL, DKR and DKW (or

IPL, TPR and TPW) commands.

Feel free to call me at 814-863-0874 or 814-238-8294 if you have

any questions or comments about these programs.

?"wv/ K7 (Jarme_

