

5800 ANDOVER AVE., T.M.R., QUE., H4T 1H4, CANADA TEL.: 514—735-1182 TELEX: 05-825651 ALT - 256 ** 2

MTX TV CRT CONTROLLER FAMILY

GRAPHIC DISPLAY

^{*} MATROX products covered by Canadian and foreign patent and/or patent pending.

INTRODUCTION:

The Matrox ALT-256**2 board is a fully tested, assembled and burned-in interface card which provides capability for a complete graphic system at a fraction of the cost of any other commercial graphic system. The card contains all interface electronics, a TV sync generator, and its own 65,536 X l bit refresh memory. It plugs directly into one slot of any S-100 bus compatible computer. The built in refresh memory allows much greater flexibility and speed since no CPU time is required to refresh the screen.

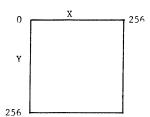
The output is a composite video signal which can be connected to any TV monitor or the video portion of a TV set. The unit produces a high resolution 256×256 dot raster. The complete screen can be cleared or preset by a single instruction.

The ALT-256**2 board occupies a single S-100 bus slot and requires 4 output ports and 1 input port (port address is selectable on the card with jumpers).

FUNCTIONAL DESCRIPTION:

Four output ports are used for loading of data into the display refresh memory. Assuming that output ports $\emptyset\emptyset$ to $\emptyset3$ are selected (which also gives $\emptyset\emptyset$ for the input port) the addressing is as follows:

The X coordinate of a given dot is loaded by outputting an 8 bit coordinate to the port H $^{\prime\prime}$ 01. (instruction: OUT $^{\prime\prime}$ 1). The Y coordinate is outputted by OUT $^{\prime\prime}$ 2. These two instructions will set the cursor at the desired dot address.


After the dot address is loaded, the dot intensity is loaded by outputting data to port H "ØØ". (OUT ØØ). Data H "ØØ" will result in a black dot; H "Ø1" will display a white dot. After the dot intensity is loaded, the ALT-256**2 will require 3.4 µsec to write the dot in the refresh memory. This is necessary to allow for internal synchronisation of the write operation, TV read scan and dynamic memory refresh. Since the CPU almost always requires more than 3.4 µsec to load the next dot address and data, the CPU can run at its full speed. Also note that regardless of the speed at which the CPU is accessing the ALT-256**2, there will be no flashes or streaks on the display, since access is internally synchronised. This results in a truly professional display. In other words, all the above three commands can be executed at full CPU speed with no image degradation.

Assuming port select bits are programmed as:

A7 A6 A5 A4 A3 A2 A1 A0 Ø Ø Ø Ø X X

X, Y Ports

OUT $\emptyset 1$ - X address OUT $\emptyset 2$ - Y address

DOT write port

OUT $\emptyset\emptyset$ - Dot intensity

 $D\emptyset = \emptyset$ black dot $D\emptyset = 1$ white dot D7-D1 don't care

ERASE port

OUT Ø3 - screen clear

 $D\emptyset = \emptyset$ all dots balck $D\emptyset = 1$ all dots white D7-D1 don't care

STATUS port

IN $\emptyset\emptyset$ - status

DØ = Ø display ready

DØ = 1 display being erased

D1 = Ø video portion

D1 = 1 vertical blank

D7-D2 don't care

TABLE 1: I/O PORT ADDRESSES AND FUNCTIONS OF THE ALT-256**2

The whole screen can be easily cleared by outputting H " $\emptyset\emptyset$ " to the output port H " $\emptyset3$ ". This will result in the entire screen being black. Outputting H " $\emptyset1$ " will result in all white since all 65,536 bits of the refresh memory will be simultaneously loaded with 1. This operation will require one TV frame time (33 msec max).

After the CPU outputs data to the port H " \emptyset 3", an internal flag is set for between 16 msec to 33 msec until the screen is cleared. The testing of the flag is accomplished by inputting data from the input port H " \emptyset 0". (IN \emptyset 0). If the data bit D \emptyset is high then the ALT-256**2 is busy: if D \emptyset is low the ALT-256**2 is ready to accept new data.

Input port H "00" provides additional information about the position of the electronic beam, (vertical blank) which is useful for dynamic motion display. (see table).

THEORY OF OPERATION:

The ALT-256**2 has four major blocks: the TV sync generator, scanning circuitry, cursor and interface electronics and 65,536 X 1 memory. (see Fig. 3 & 4) The sync generator is formed of x-tal oscillator (A 31) and a divider chain (A24, 16, 23, 6). This divider chain produces all timing signals for the memory scanning as well as horizontal and vertical sync. The TV sync generator can be programmed by jumpers for the European or American TV standard.

The scanning circuitry consists of multiplexers (A4, 12, 21, 20, 25, 26) which provide proper address and R/U signals for the RAM required.

The cursor consists of two 8 bit latches which are loaded by the CPU. $\Lambda10$ and All are X address register, A2 and $\Lambda3$, Y address register. Necessary interface address and timing decoding is accomplished by $\Lambda1$, $\Lambda9$ and $\Lambda51$ to $\Lambda55$.

The refresh memory has 16, 4K dynamic memories (4096, 16 pin) organised as a 65,536 X 1 bit memory (A32-A47).

Power supplies for 5V, 600 mA; 12V, 100 mA and -5V, 10 mA are generated by A56, A57 and CR1: on board voltage regulators.

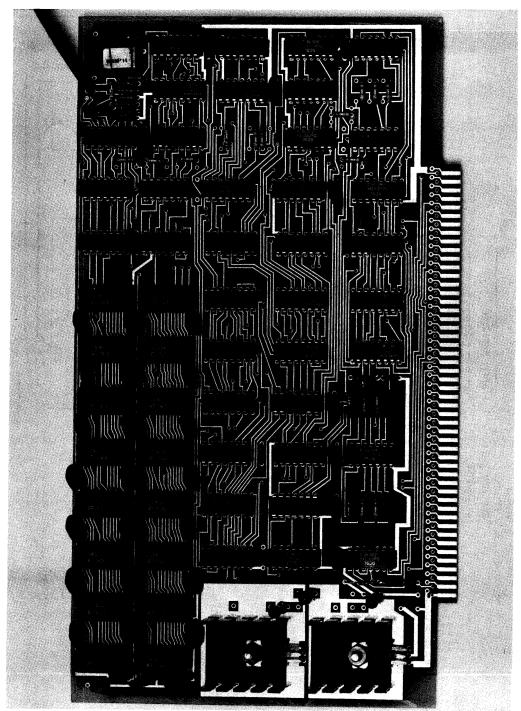
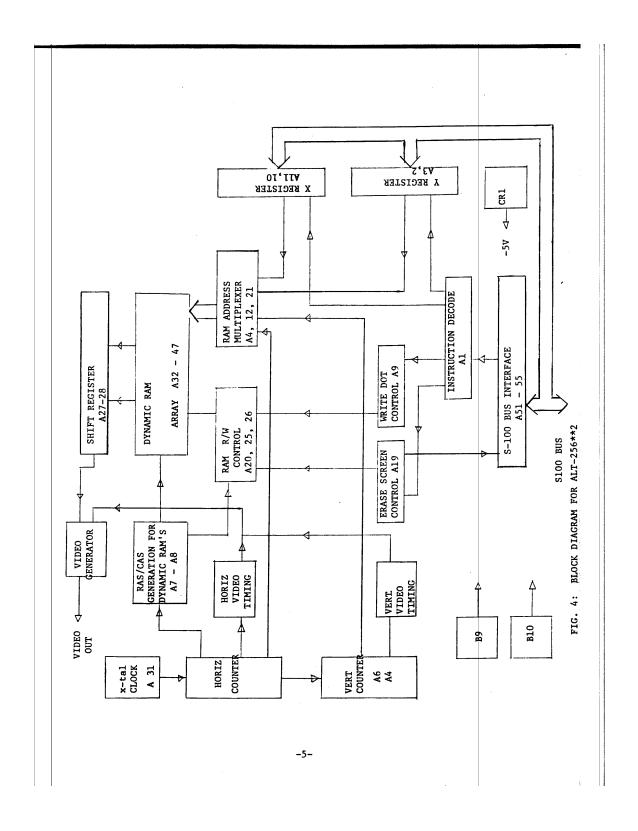



FIG. 1: PHOTOGRAPH OF THE ALT-256★★2

MAINTENANCE AND WARRANTY:

The ALT-256**2 is a fairly complex card and to understand its operation requires extensive knowledge of TV scanning, 4K dynamic memories and hardware. The complete circuit and assembly schematics are supplied to allow a competent user to troubleshoot the board if necessary. However, each board is fully tested, assembled and burned in for 24 hrs. before shipping to ensure reliability. In case of trouble, a warranty is provided.

Matrox products are warranted against defects in materials and workmanship for a period of 3 months from date of delivery. We will repair or replace products which prove to be defective during the warranty period, provided they are returned to Matrox Electronic Systems Ltd. No other warranty is expressed or implied. We are not liable for consequential damages.

Non-warranty repairs are billed at a minimum of \$50 and a maximum of \$100 according to time and materials required.

JUMPER OPTIONS:

The board is normally programmed for different options before shipping as specified in the purchase order. There are two things which can be programmed.

The TV sync generator can be programmed for one of 3 options. The American Standard option (60 Hz) has a 240 line X 256 dot raster (240 visible horizontal lines). The American Non-standard (60 Hz) version has a full 256 line X 256 dot raster with horizontal frequency of 16.8 KHz for a total of 280 lines. Some adjustment of the horizontal hold on the TV monitor may be necessary to allow the TV to lock. The European standard option has 312 lines (50 Hz).

JUMPERS IN: ANS W1 W4 W5

ANS W1 W4 W5 W9 W10 W12 W14 W17 W19 W21 W22

AS W2 W4 W6 W8 W11 W13 W15 W17 W18 W20 W23

ES W1 W3 W5 W7 W11 W12 W14 W16 W19 W20 W22

TABLE 2: TV STANDARD JUMPER OPTION

The four output ports and one input port can be located on any |4> location boundary in the 256 port address space. Address bits A2 to A7 can be selected as follows:

		JUMPER ACCROSS PINS					
ADDRESS	BIT =	Ø	1				
	A2	1 and 16	2 and 15				
A49	A3	3,14	4,13				
SOCKET	A4	5,12	6,11				
	A5	1,16	2,15				
A50	A6	3,14	4,13				
SOCKET	A7	5,12	6,11				

TABLE 3: I/O ADDRESSING JUMPER OPTIONS

x jumper can be any resistor between Ø to 51 Ohm

INSTALLATION AND TESTING:

To install the ALT-256**2, switch the Altair/Imsai 8080 type computer off and plug the card in. Connect the composite video output to the input of the TV monitor and switch the TV monitor and computer on. The display will be a random pattern of the content of the refresh memory.

To help in testing the card a short test program listing (see Table 4) is provided. The program makes the following assumptions: The ALT-256**2 is strapped to begin its output ports at location H " $\emptyset\emptyset$ ". The computer front panel has input port switch register at location H "FF". If the address strapping of the ALT-256**2 or front panel ports is different from that specified, the program can be easily modified.

To test the card, toggle into memory the short test program (see Table 4). The starting address is H $\ensuremath{\text{M}}\xspace 100\ensuremath{\text{m}}\xspace.$ The program will first clear the entire screen depending on the setting of the input port switch (SWO). A setting of H " $\emptyset\emptyset$ " will produce a black screen, H "01" will produce a white screen.

Following this, the program clears the X and Y register and writes SWO (up = 1; down = 0) into dot \emptyset 0. (Upper left corner). Then address X is incremented, SWO is written into the next dot etc, continuously. By changing the SWO position during the computer scan, a white or black dot is written. The speed of the computer scan can be varied by the position of the switches S7-S1 on the front panel.

VIDEO SIGNALS

Composite video signal. Output impedance 75 Ohms. Short circuit protection built in.

Horizontal and Vertical Sync signals.

SIGNAL	FR	EQ.	HIGH	LOW	STD.
SH	16.	8 k Hz	4.5	55	ANS
Horizontal	15.7kHz		5.8	57.8	AS
Sync	15.	6kHz	4.5	59.6	ES
SV	60	Ηz	238	16.43	ANS
Vertical	60	Ηz	254	16.42	AS
Sync	50	Ηz	256	19.74	ES
DTC		7.05	36 mHz	ANS	
Dot		5.533	34 mHz		AS
Clock		7.053	6 mHz		ES

ANS American nonstandard (280 lines, 60 Hz)
AS American standard (262 lines, 60 Hz)
ES European standard (312 lines, 50 Hz)

ADDRESS	CONTENT (Hex)	MNEMONIC	COMMENT
0100	DB	IN FF	/input front panel switch
0101	FF		
102	D3	OUT Ø3	/input SW to erase port
03	Ø3		
04	DB	LUP 1, IN ØØ	/input ALT-256**2 status
05	ØØ		
06	E6	ANI Ø1	/mask SWØ
07	Ø1		
08	C2	JN2 LUP1	/test for busy (Not \emptyset)
09	Ø4		
OA	Ø1		
ОВ	21	LXIH ØØ	/load H, L with Ø
OC	ØØ		
OD	ØØ		
O E	7 D	LUP 2, MOV A, L	/move L to A
OF	D3	OUT Ø1	/output X coordinate
10	Ø1		
11	7C	MOV A, H	/move H to A
12	D3	OUT Ø2	/output Y coordinate
13	Ø 2		
14	DB	IN FF	/input front panel switch
15	FF		
16	D3	OUT ØØ	/write dot to port $\emptyset\emptyset$
17	ØØ		
18	E6	SPEED, ANI FE	/mask switches S7-S1
19	FE		
1A	3C	LUP 3, INC A	/loop delay for speed
1B	C2	JN 2 LUP 3	/test for zero
1C	1A		
1D	Ø1		
1E	23	INX H	/next dot
1 F	С3	JMP LUP 2	/go back
20	ØЕ		
21	ø1		

TABLE 4 : TEST PROGRAM FOR ALT-256**2

COLOR/GREY SCALE*

Each ALT-256 card has a built-in crystal controlled sync generator. However, each card can also be synchronized to an external sync source. This feature is extremely useful for applications requiring more than one bit per pixel (grey scale or color). Multiple cards are required for this application (up to 24 cards can be synchronized).

VIDEO AND SYNC SIGNALS

All video and sync signals are available on a 16 pin plug-in socket at position S1. These signals can be used for a variety of applications:

PIN	NAME	COMMENT
12	VDO	Composite video output. Can be directly connected to a TV monitor video input via 75 ohm cable
4	ALPHA	Alphanumeric video input. (From MTX-1632SL for video mixing). Has to be low when not used. (Jumper W24 in).
13	sv	Vertical sync signal (Positive pulse). It can be used to drive a TV monitor vertical deflec- tion circuit or it can drive an MTX-1632SL alphanumeric VRAM.
10	SH	Horizontal sync signal (positive pulse).
11	BV	Vertical blank. This signal is low during vertical retrace (3 msec). It is available to a uP by reading I/O port \emptyset .
7	ВН	Horizontal blank (low during blank).
3	D OUT	Serial video signal (TTL level, high-white, low-black). It can drive directly a TTL compatible TV monitor video input or it can be used as one bit of video information in a color/grey scale system.
2	DOT CLOCK	Bidirectional dot clock input/output (depends on M/S control jumper W26). If W26 is in, ALT- 256 is a master card and DOT CLOCK is an output. If W26 is out, ALT-256 is a slave card and DOT CLOCK is an input.
15	RESET H	Bidirectioanl horizontal reset input/output. (80 nsec negative pulse which synchronizes horizontal counters).

^{*} For more information on color/grey scale applications consult Matrox's MTX-256 color/grey application note.

PIN NAME COMMENT

16 RESET V Bidirectional vertical reset input/output.
(80 nsec negative pulse) Synchronizes vertical counters.

1,8,9,16 GND Ground

The following jumpers determine the use of the ALT-256 in color/grey scale applications.

W26 Determines if card will be a master or slave card (generates its own sync signals or accepts external sync signal from a master card).

Sync signals are DOT CLOCK, Vertical reset and Horizontal reset.

W26 - in ALT-256 is a master card
W26 - out ALT-256 is a slave card

W25 Video data input bit connection.

W25 - in Video data input bit is connected to DØ.

W25 - out The user can connect video data bit to any

of the data bus bits DO-D7 with a wire.

W24 Alpha input

W24 - in The socket S1 pin 4 is grounded (no alpha)

W24 - out Alphanumeric input at pin 4 of S1 is added to

the graphic video.

NOTE: All ALT-256 are shipped with jumpers W24, W25, W26 in. (Standard configuration for a single level ALT-256 application).

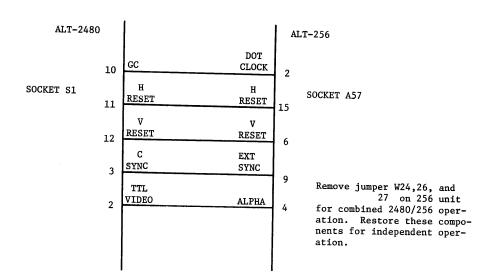


FIG. 5 _ COMBINING ALT-2480 and ALT-256

The ALT-2480 and -256 display cards are directly compatible with one another. This powerful feature permits generation of a combined alphanumeric/graphic display with no extra hardware. Multiple ALT-256 cards can also be slaved to a single ALT-2480 master for color/grey scale applications.

Figure 5 shows how the ALT-2480 and ALT-256 cards are connected together. The connection is accomplished via 16 pin DIP plugs on each card. Some jumpers must be altered on the ALT-256. The combined composite video output is taken from the ALT-256 output.

SUMMARY OF MTX-GRAPH SOFTWARE PACKAGE

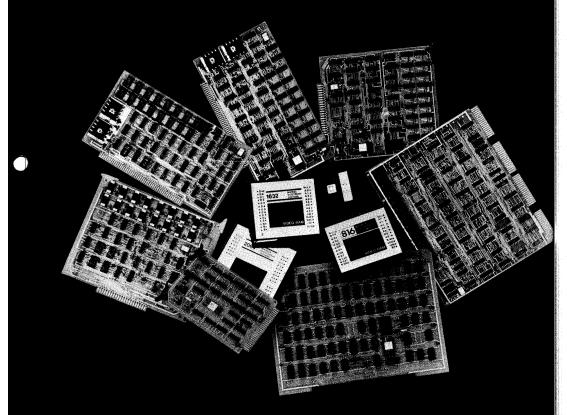
The MTX GRAPH software package is designed for use with the Matrox ALT-256 graphics display. The package is configured as a series of callable sub-routines. The MTX-GRAPH package occupies memory locations 0104 to (Hex). The package incorporates the following features:

- 1. Variable Resolution: The display resolution can be selected to be 256 x 256; 128 x 128; or 64 x 64; by software command.
- 2. Point Plot: Any arbitrary point can be displayed by specifying $\overline{X-Y}$ coordinates. Dot size depends on the resolution selected.
- Line Vector Graphics: Line can be drawn by specifying the two end points.
- 4. Alphanumeric Display: A full ASCII character generation routine is incorporated. Control characters are correctly interpreted. Characters can be positioned anywhere on the screen.
- 5. Animation Synchronization: This feature allows the user to generate animation synchronization at line rate.
- Color Option: The software package will support a 3 card color/grey scale system.

More detail on the above is contained in the MTX GRAPH user manual.

A second program supplied is intended for demonstration purposes. The program utilizes the MTX GRAPH sub-routines to create a continuous live action graphics display.

The paper tapes are supplied in Imsai binary loader compatible format. A listing of the loader and instructions for its use are provided with the manual.


The Imsai loader should be used to load first MTX GRAPH and then the demo program. Both must be co-resident to use the demonstration program. The ALT-256 should be jumpered for address 10-13 (hex) and data bit DØ. (jumpers A2, 3, 5, 6, 7 set to Ø, A4 set to 1. See manual P9.) Start the computer at location 0500 Hex. Sit back and watch the show. The demonstration program will pause whenever the data switches are set to 01 (hex).

NOTE: Old versions of the ALT-256 require the following hardware change to work with this software package: (units shipped prior to Aug. 1/77). Tie A3 and All pin 4 to ± 5 V with jumper wires soldered directly to the artwork.

PRICE: \$25.00 for MTX GRAPH manual plus binary paper tapes of MTX GRAPH and demo program.

CATALOGUE -- SF1

matrox microprocessor displays

APRIL 78

INTRODUCTION

Matrox Electronic Systems is a dynamic young electronics company. We have created a line of OEM display interface controllers that has grown along with the explosive microprocessor revolution. There are many companies specialized in data acquisition systems for microprocessors. Matrox is the only company specialized in display systems. We offer the most complete line of advanced CRT display controllers in the industry. The family of Matrox display controllers has been designed for maximum reliability, simplicity and lowest cost

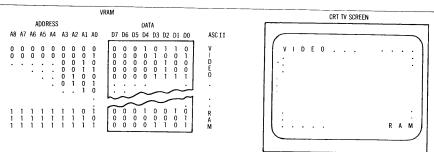
A majority of Matrox displays are designed for use with standard TV CRT monitors. Two main groups are alphanumeric and graphic video random access memories. A third type of display controller (the alpha chip) is designed for use with LED, flourescent, gas discharge, incandescent etc. 5 X 7 dot matrix or multisegment type displays.

The controllers are available in different forms such as general purpose monolithic integrated circuits, plug-in modules or PC boards for any uP, plug-in boards for specific computer bus or uP or stand alone display systems.

Matrox offers numerous models which can be used in various combinations. A wide choice of display formats, character sets, TV standard, external/internal syncs, resolutions bus compatibility etc. allow the OEM user to build a display for any application at the lowest possible cost in the minimum of time.

For applications requiring special custom designs, Matrox has the capability to design and deliver prototype and production quantity display controllers according to customer specifications in a relatively short time.

OEM users have the option to manufacture their own display controllers under Matrox licence. After the user buys 200 units, Matrox will supply all schematics, artworks, specifications, and parts lists, for a flat one time charge. The OEM user can then use Matrox as a second source for his own production.

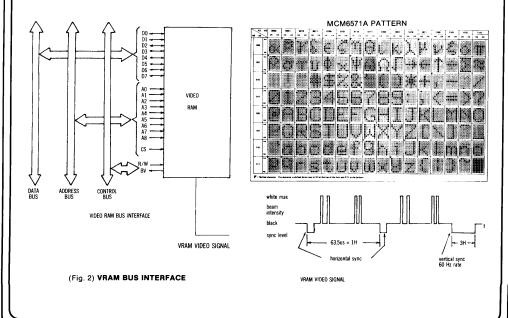

Matrox displays have been used in more than 10,000 installations in every imaginable application: from ground control displays for the Viking mission to Mars to hobby displays.

As an innovator in microcomputer displays, Matrox is fully committed to the design and manufacture of displays using the latest state of the art technology. We were the first to introduce VRAM concept to displays and we are the first to supply complete display controllers in a single chip.

Typical applications for Matrox OEM products include alphanumeric and graphics displays for sophisticated instruments and products such as scientific calculators, process control equipment, navigation equipment, medical instrumentation, industrial control, image processing, simulation, sophisticated video games, dumb or intelligent alphanumeric and/or graphics terminals, etc. The potential for application of Matrox display products is virtually unlimited.

ALPHANUMERIC VIDEO RAM'S

On the input side, an alphanumeric VRAM looks like a static random access memory and it can be directly connected to the address and data bus of a typical microprocessor system. The output is a video signal that produces a display of alphanumeric data on a TV monitor. Each character position on the screen is equivalent to a memory location. It can be written into and read out the same way as any other RAM in the microprocessor address space. The content of a video memory location determines the character to be displayed. Various display effects can be accomplished with the availability of the read/write feature. The full microprocessor instruction set including all memory reference instructions may be used for display data manipulation at full speed.



(Fig. 1) VRAM AND CRT ORGANIZATION

The VRAM bus interface shown in Figure 2 demonstrates the simplicity of interface to a typical bus system. Data, address and control lines can be connected without buffers. The CS (chip select) input is used to select the VRAM in microprocessor address space.

The CRT display is refreshed at a 60 Hz rate. However, there is no need for the CPU to refresh the VRAM; once written, a character is continuously displayed until a new character is rewritten into a location. This unique feature is a significant improvement over the commonly used DMA approach, since it requires no CPU time for refresh.

A VRAM produces a composite video signal which drives directly any standard TV monitor. A 75 ohm output impedance permits connection of a 75 ohm cable of up to 2,000 feet to drive up to 10 TV monitors.

MTX SERIES VRAM MODULES

The Matrox MTX series of VRAM TV CRT controller modules are designed for use in systems that require a display of alphanumeric data. The family is packaged in small self-contained modules to facilitate use as a component. It can be soldered or plugged in the user PCB. On the input side, an MTX VRAM looks like an ordinary 8 bit wide RAM and can be connected directly to the address and data bus of any bus organized system. MTX series VRAM modules are particularly suitable for use in microcomputer systems, due to their low cost, small size, modular packaging, single +5V power supply and asset of interface. and ease of interface.

1. CRT DISPLAY CONTROLLERS (ALPHANUMERIC)

1.1 MODULES

MTX-816

8X16 VIDEO RANDOM ACCESS MEMORY

The MTX-816 is a TV CRT controller designed for use in systems that require display of alphanumeric data. On the input side the device is directly connected to bus organized systems and looks like a 128x8 RAM. The output is a video signal which directly drives a TV monitor to provide an 8x16 field of 128 ASCII characters.

- organized as 128x8 RAM
 8x16 display field
 no external refresh
 bidirectional data bus
 CMOS/TTL compatible
 access time 1 usec
 flicker free display

MTX-1632

Price: \$179/single: \$149/100

single +5V power supply low power 800 mW ASCII font standard (5x7) standard video output drives up to 25 TV monitors remote display electronic intensity control

16X32 VIDEO RANDOM ACCESS MEMORY

Dimensions: 4" x 4.5" x .5" plug-in module

The MTX-1632 is a TV CRT controller designed for use in systems that require display of alphanumeric data. On the input side the device is directly connected to bus organized systems and looks like a 512x8 RAM. The output is a video signal which directly drives a TV monitor to provide a 16x32 field of 512 ASCII characters.

- organized as 512x8 RAM
 16x32 display field
 no external refresh bidirectional data bus
- TTL compatible access time 550 ns
- flicker free display

Price: \$225/single: \$169/100

- single +5V power supply

- Ining to yo power supply
 low power
 ASCII font standard (7x9)
 standard video output
 drives up to 25 TV monitors
 character blinking
 electronic intensity control
 upper/lower case

Dimensions: 4" x 4.5" x .5" plug-in module

MTX-1632SL

16X32 VIDEO RANDOM ACCESS MEMORY

The MTX-1632SL is a TV CRT controller designed for use in systems that require display of alphanumeric data. On the input side the device is directly connected to bus organized systems and looks like a 512x8 RAM. The output is a video signal which directly drives a TV monitor to provide a 16x32 field of 512 XSCII characters. The device can be slave locked to an external source (TV sync. generator).

- external synchronization
 organized as 512x8 RAM
 16x32 display field
 bidirectional data bus
 TTL compatible
 access time 550 ns

- Price: \$225/single: \$169/100
- source (1V sync. generator).

 broadcasting applications
 single +5V power supply
 ASCII font standard (7x9)
 standard video output
 drives up to 25 TV monitors
 character blinking
 upper/lower case

Dimensions: 4" x 4.5" x .5" plug-in module

MTX-2064 20X64 VIDEO RANDOM ACCESS MEMORY

The MTX-2064 is a TV CRT controller designed for use in systems that require display of alphanumeric data. On the input side the device is directly connected to bus organized systems and looks like a 1280x8 RAM. The output is a video signal which directly drives a TV monitor to provide a 20x64 field of 1280 ASCII characters.

- organized as 1280x8 RAM
- 20x64 display field no external refresh
- bidirectional data bus
- 550 ns
- 20x64 display field
 no external refresh
 bidirectional data b
 TTL compatible
 access time 550
 flicker free display Price: \$295/single: \$190/100
- single +5V power supply
 low power
 ASCII font standard (7x9
 standard video output
- single +5V power supply
 low power
 ASCII font standard (7x9)
 standard video output
 drives up to 25 TV monitors
 character blinking
 electronic intensity control
 upper/lower case

Dimensions: 4.5" x 6" x .5" plug-in module

Dimensions: 4.5" x 6" x .5" plug-in module

MMD-2480

24X80 VIDEO RANDOM ACCESS MEMORY

The MMD-2480 is a TV CRT controller designed for use in systems that require display of alphanumeric data. On the input side the device is directly connected to bus organized systems and looks like a 4Kx8 RAM. The output is a video signal which directly drives a TV monitor to provide a 24x80 field of 1920 ASCII characters.

- organized as 4Kx8 RAM
 24x80 display field
- 24x80 display field no external refresh
- bidirectional data bus
- TTL compatible
- · flicker free display

- single +5V power supply
 external sync. option
 ASCII font standard
 standard video output
 drives up to 25 TV monitors
 character blinking
 upper/lower case/graphics

Price: \$395/single: \$290/100

PLUG-IN PC BOARDS **ALPHANUMERIC CONTROLLERS**

A series of plug-in alphanumeric CRT controller PC boards for most industry standard buses is available. This OEM display controller plugs-in directly into the computer bus and provides a video signal which directly drives a CRT monitor. All interface electronics, refresh memory and TV scanning is built-in. Each board has a variety of options and features which can be user programmed by jumpers. Matrox video boards allow the system designer to add display to his system in the shortest possible time at a very low cost. Software packages are also available.

MTX-1664SL

EXTERNALLY SYNCHRONIZED 16X48 OR 16X64 VIDEO RANDOM ACCESS MEMORY

The MTX-1664SL is a TV CRT controller designed for use in systems that require display of alpha-numeric data. On the input side the device is directly connected to bus organized systems and looks like a 1024XB RAM. The output is a video signal which directly drives a TV monitor provides 16X8-field of 1K ASCII characters. The device can be slave locked to an external source (TV sync. gene-rator).

- external synchronization
 organized as 1Kx8 RAM
 16x64 display field or 16x48 display field
 bidirectional data bus
 TTL compatible
 access time 500 ns

- broadcasting applications
 single +5V power supply
 low power
 ASCII font standard (7x9)
 standard video output
 drives up to 25 TV monitors
 character blinking

Price: \$295/single: \$190/100

MTX-2480

24X80 VIDEO RANDOM ACCESS MEMORY

The MTX-2480 is a TV CRT controller designed for use in systems that require display of alpha-numeric data. On the input side the device is directly connected to bus organized systems and looks like a 4096x9 RAM. The output is a video signal which directly drives a TV monitor to provide a 24x80 field of 1920 ASCII characters.

- organized as 4096x9 RAM
 24x80 display field
- 24x80 display field
 no external refresh
 bidirectional data bus
 TTL compatible
 access time 500 ns
 flicker free display

- Price: \$395/single: \$290/100
- single +5V power supply
 low power
 ASCII font standard
 standard video output
 half intensity
 character blinking
 inverse video

ALT-2480 24X80 VIDEO RANDOM ACCESS MEMORY (S-100 BUS)

The ALT-2480 is a TV CRT controller designed especially for the industry standard S-100 bus. It is a controller of systems that require a display of alphanumeric data. On the input side, the device is directly of 500 ns. The output is a video signal which directly drives a TWO datatic PAM with an access time of 500 ns. The output is a video signal which directly drives a TWO datatic PAM with a process time of 500 ns. The output is a video signal which directly drives a TWO datatic PAM with the ALT-2480 to emulate an intelligent terminal.

- organised as 4096x8 RAM
 24x80 display field
 no external refresh
 bidirectional data bus
 TTL compatible
 access time 500 ns
 flicker free display
 standard video output
 single +5V power supply

- low power
 ASCII font 5x7 or 7x9
 option of lower case characters
 character blinking
 inverse viber to TV monitors
 drives up to TV monitors

Price: \$295/single: \$265/100

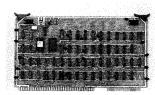
MSBC-2480 24X80 VIDEO RANDOM ACCESS MEMORY (SBC-80)

The MSBC-2480 is a TV CRT controller designed spacially for the industry standard Intel SBC-80 bus. It is used in systems that require a display of alphanumeric data. On thinguistic, the device is directly connected to an SBC-80 bus organised system and looks like kneeding and directly connected to an SBC-80 bus organised system and looks like when the connected as a SBC-80 bus organised system and looks like the connected to an SBC-80 bus organised system and looks like the connected as a SBC-80 bus organised system and looks like the connected to a SBC-80 bus organised system and looks like the connected as a specific system of th

- plugs directly in SBC-80 bus
 32 lines x 80 characters
 upper/lower case, graphics
 memory mapped (VRAM)
 bulli-in refresh memory
 user programmable character
 generator (2716 EPROM)
 external/internal sync
 looks like 4Kx8 RAM

- built-in ASCII keyboard interface
 normal/inverse/biink
 drives TV monitor directly
 software control
 single-5V power supply. .9A
 hardware scroll
 300 lase access time
 can be combined with MSBC-512x512
 graphics

Price: \$495/single: \$350/100



Dimensions: Prolog bus plug-in PCB; 4.5" x 6.5" PCB

Standard S-100 bus size (5.3" x 10")

Standard SBC-80 size card (6.75" x 12")

MLSI-2480

24X80 VIDEO RANDOM ACCESS MEMORY (LSI-11 BUS)

The MLSI-2480 provides an alphanumeric video interface between an LSI-11 bus microcomputer and a TV monitor. It outputs the industry standard 24 line by 80 character display which is invaluable for professional applications such as an intelligent CRT terminal and word processor. The MLSI-30 is compatible with the MLSI-512 graphics interface board, permitting a powerful combined alphanumeric/graphics display. external/internal sync

- plugs directly in LSI-11 bus
 24 lines X 80 charaters
 upper/lower case/graphics
 byte mapped (4K X 8)
 built-in R/W refresh memory
 user programmable character generator
 (2716 EPROM)
 full software control

Price: \$495/single; \$350/100

onormal/inverse control drives TV monitor directly dual size 500 nsec access time can be combined with MLSI-512 X 512 graphics

Standard Dual LSI-11 card

24X80 VIDEO RANDOM ACCESS MEMORY (PDP-11 BUS)

The MDC-2480 provides an alphanumeric video interface between a PDP-11 bus microcomputer and a TV monitor. It outputs the industry standard 24 line X 80 character display which is invaluable for professional applications such as an intelligent CRT terminal and word processor. The MDC-2480 is compatible with the MDC-512 graphics alphanumeric/graphics display.

- plugs directly in-PDP-11 bus
 24 lines X 80 characters
 upper/lower case/graphics
 byte mapped (4K X 8)
 bullt-in R/W refresh memory
 user programmable character
 generator (2716 EPPGM)
 full software control

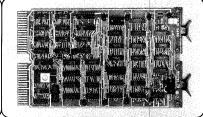
- onertic yaphrus uppays.

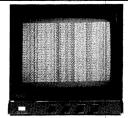
 normal/internal sync

 normal/inverse control

 drives TV monitor directly

 quad size


 500 nsec access time


 single +5V, 9A

 can be combined with MDC-512 X 512

 graphics

Price: \$495/single; \$350/100 Standard Quad PDP-11 card

GRAPHICS CRT CONTROLLERS

Each graphic VRAM has several registers of varying length. The registers are used to store parameters of the currently Each graphic VRAM has several registers of varying length. The registers are used to store parameters of the currently addressed dot such as X-Y coordinates, color or intensity, as well as commands such as clear display, scroll, vector plot, etc. A memory mapped I/O technique is used to address registers. This means that each register looks to the CPU like a RAM location. This feature allows extremely simple hardware and software interfacing since the graphic display can be interfaced to the CPU as a 4 or 8 location x 8 or 16 bit wide RAM. The use of an X-Y addressing scheme permits addressing up to 262,000 on board refresh memory bits using only two computer memory locations.

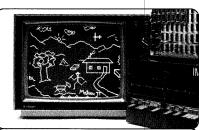
All Matrox graphic video RAM's are designed such that multiple units can be combined for color/grey scale applications. The Matrox graphic VRAM's are divided into two main subgroups: the 256 family and the 512 family. The 256 family is designed for lowest cost with a 256 x 256 dot matrix resolution. The 512 family incorporates a revolutionary variable resolution feature which permits user selection of 256 x 256; 256 x 512; 512 x 512; and 256 x 1025 dot matrix displays. The design is available for a number of nonular buses.

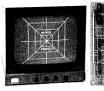
design is available for a number of popular buses.

2. CRT DISPLAY CONTROLLERS (GRAPHICS)

256X256 GRAPHIC DISPLAY CONTROLLER (S-100 BUS)

The ALT-256, directly plug compatible with the S-100 bus contains all interface electronics, a TV sync generator and its own 65.588 X 10 hitrefresh memory. It outputs a composite video which can be connected to any TV monitor or the video portion of a TV set. The unit produces a high resolution 258 X 256 dot raster. The ALT-256 can combine with the ALT-2480 to produce a powerful combined alphanumeric/graphic display.


- A software package, MTX-GRAPH, is available for use with the ALT-256. 256 X 256 dot rester
 each dot individually addressed
 entership entership


256X256 GRAPHIC DISPLAY CONTROLLER (GENERAL PURPOSE)

The MTX-256**2 is a unique modular graphics system designed for direct interfacing with any mini or microcomputer bus. On the input side, the device looks like a 4 location X 8 bit static random access memory. The output is a composite video signal which directly drives commercial TV monitors to provide a 256 X 256 dot raster. Multiple boards can be used for color/grey scale applications. Extendilinterial sync capability is provided. The graphics can be mixed with an alphanumeric VMA (such as the MTX-1632SL or the MTX-2480, etc.) to obtain full alphanumeric/graphic capability.

- 256 X 256 dot raster
 directly interfaces to any microprocessor
 drives a standard TV monitor
 expansion to color/grey scale
 modular for
 individually addressed dots
 individually addressed dots
 individually addressed dots
 vector/point plot
 no external refresh
 no external refresh
 vector/point plot
 no external refresh
 support to the plot of th

- :\$495/100 Price: \$595/single 8.5" X 7", 44 pin dual connector

MSBC-512

VARIABLE RESOLUTION GRAPHICS CONTROLLER (SBC-80 BUS)

The MSBC-512 incorporates the revolutionary concept of variable resolution graphics on a single card. The MSBC-512 is directly plugi-in compatible with the industry standard intel SBC-69 bus. The same card can be user programmed to produce a dot matrix of 258 x 256; 258 x 512; 512 x 512; 102 x 512; 07 x 5

- variable resolutions
 multiple cards stackable for color/grey
 scale applications
 single command erase
 vertical scroll built-in
 external/internal sync
 can be combined with the alphanumeric single command erase
 vertical scroll built-in
 external/internal sync
 can be combined with the alphanumeric
 MSBC-2480

Price: \$1395/single; \$1150/100 512 x 512; 256 x 1024, \$895/single; \$659/100 256 x 256, \$1095/single; \$850/100 256 x 512

Standard SBC-80 size board (12" x 6.75")

MLSI-512

VARIABLE RESOLUTION GRAPHICS CONTROLLER (LSI-11 BUS)

The MLSI-512 incorporates the revolutionary concept of variable resolution graphics on a single card. The MLSI-512 is directly plug-in compatible with the industry standard LSI-11 bus. The same card can be user programmed to produce a dor matrix of 256 X 256: 256 X 512: 512 X 512; or 256 X 1024 points by using 4K, 8K or 16K plug-in compatible dynamic memorles.

- variable resolutions
 multiple cards stackable for color/grey
 scale applications
 variable resolutions
 multiple cards stackable for color/grey
 scale applications
 variable resolutions
 vertical scroll built-in
 external/internal sync
 can be combined with the alphanumeric
 Msi-2408

Price: \$1395/single: \$1150/100 512 x 512; 256 x 1024, \$895/single; \$650/100 256 x 256, \$1095/single; \$850/100 256 x 512

Standard LSI-11 size board (quad) (8.5" x 10.45")

MDC-512

VARIABLE RESOLUTION GRAPHICS CONTROLLER (PDP-11 BUS)

The MDC-512 incorporates the revolutionary concept of variable resolution graphics on a single card. The MDC-512 is directly plug-in compatible with the industry standard DEC PDP-11 bus. The same card can be user programmed to produce a dot matrix of 258x 256;258 of 515: 912 S12, or 258 X 1024 points by using 4K, 8K or 16K plug-in compatible dynamic memories.

Variable resolutions

multiple cards stackable for color/grey
scale applications

single command erase

vertical scroit butil-in

external/infernal sync

can be combined with the alphanumeric

MDC-2460

Variable resolutions

display memory read/write
each dot individually addressed
-1.4 usec max/dot access time
-1.4 usec max/dot acce

Standard PDP-11 size board (quad) (8.5" x 10.45")

Price: \$1395/single; \$1150/100 512 x 512; 256 1024, \$895/single; \$650/100 256 x 256, \$1095/single; \$850/100 256 x 512

RGB-256

SINGLE BOARD 256 X 256 X 4 COLOR CONTROLLER (SBC-80 OR GENERAL PURPOSE)

The RGB-256 is a single board graphic controller which displays a 256 X 256 raster with 4 bits/pixel. All refresh memory is built-in. The board can be used for a variety of graphic systems such as a 256 X 56. 16 level groy or a 16 color display. Each dot is individually addressed and it can be read or written into in less than 1.2 usec/dol.

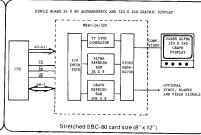
- 256 X 256 X 4 raster
 256 X 256 X 4 raster
 16 fevel color (RGB)
 composite color output
 16 level grey scale
 composite grey scale
 composite grey scale output
 American/European standard
 external/internal sync
 external/internal sync
 for more bits/pixel

- can be combined with optional frame grabber card for frame grabbing applications
 plugs directly into an SBC-80 type computer
 can be used with any uP single instruction clear broadcast application
 image processing

Price: \$1595/single; \$1250/100 256 x 256 x 4, \$995/single; \$680/100 256 x 256 x 1

Stretched SBC-80 board (8" x 12")

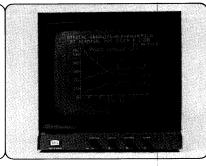
CRT DISPLAY CONTROLLERS (ALPHA AND GRAPH) COMBINED


MSBC-24/320 SINGLE BOARD 24 X 80 ALPHANUMERIC AND 320 X 240 GRAPHIC DISPLAY

320 x 240 GRAPHIC DISPLAY

The MSBC-24/202 is an SBC-50 bus compatible VRAM that integrates an alphanumeric and graphic display on the same printed circuit town of The alphanumeric section outputs a full 24 lines X 80 column text display and the same printed circuit town of the column text display. The graphic and alphanumeric displays are aligned and scaled to so, and rasher of 240 X 320 dots. The graphic and alphanumeric displays are aligned and scaled to so, and rest intendifficult of the processor of the column text displays are aligned and scaled to so, and the state of 500 column text displays are aligned and scaled to so, and the state of 500 column text displays are aligned and scaled to so, and the state of 500 column text displays are aligned and scaled to so, and the state of 500 column text displays are aligned and scaled to so, and the scale of the sc

- alphanumeric and graphic display
- applications and graphic display on a single board
 at lines X 80 columns alphanumerics
 320 X 240 dot raster graphics
 normal/inverse; on/off video control
 single +5V power supply
 2716 EPROM character generator


- assiy De Interlaced to any micro or mini co external/internal sync SBC-80 plug-in or general purpose refresh 12K X 8 static RAM built-in (read/write, 500 ns) Americam/European standard non-interlaced upper/lower case

Price: \$1395/single; \$1150/100

COMBINED ALPHA/GRAPH BOARDS

In addition to using single board alpha/graph combination (MSBC-24/320), the unique Matrox design allows for any combination of graphic and alphanumeric controllers. Since each VRAM has a built-in TV sync generator which can be either externally or internally synchronised, video combination can be generated by selecting one of the controllers as a master and synchronising the rest to the master. Typical combinations are the ALT-2480 and ALT-256; the MTSBC-2480 and MTX-256; the MSBC-2480 and MSBC-512; the MLSI-2480 and MLSI-512; etc. Module VRAMs can also be synchronised to graphics boards if required.

COLOR CRT CONTROLLERS

COMBINED BOARDS

The simplest graphic color system can be obtained by producing three separate video signals which then directly drive the red, green and blue guns of a color monitor. Up to a maximum of 2d graphic cards can be used in a master slave configuration to generate the red, blue and green inputs for the RGB monitor. The master card will supply three signals to all slaves. Dot clock, horizontal and vertical reset. Each card generates one bit of video information which can be used to produce a grey scale or color video signal. Typical graphic cards which can be used in this configuration include the ALT-256, MTX-256, MSBC-512, MLSI-512 and the MDC-512.

Outputs of these boards can be combined via a D/A converter for each color to obtain 2" colors (N-number of boards). Additional RBG encoder circuits can be built to obtain composite color video if required.

The single board RGB-256 provides 4 bits per card, and can be used if 16 colors are required.

SINGLE CHIP DISPLAY/KEYBOARD CONTROLLERS

Matrox has introduced the first two chips in its single chip I/O controller family. They are alphanumeric display/keyboard controllers and are intended to drive a wide variety of the displays presently available on the market in either 5 X 7 dot matrix (MTX-A1) or 7, 14, 16 segment (MTX-B1) configurations (LED, Liquid X-tals, flourescent, incandescent, gas discharge, etc.).

The controllers are monolithic NMOS, LSI circuits packaged in a standard 40 pin DIP. They have a single +5V power supply and interface directly to any uP through an 8 bit bi-directional bus.

The I/O controller provides all timing and refresh signals for driving up to 32 character displays. An ASCII character generator ROM (64 X 5 X 7 -MTX-A1 and 64 X 16 -MTX-B1) is built-in as well as 32 X 8 refresh RAM. The keyboard portion provides all the scanning signals, debounce and decoding for any keyboard with up to 64 keys (X-Y or common pole).

Many intelligent commands such as clear display, shift left/right, cursor control, blink, read/write, etc., are featured. Display parameters such as refresh rate, display length, etc., are user programmable.

Typical applications are uP controlled instruments, equipment, POS terminals, electronic scales.

The Matrox single chip I/O controller represents a breakthrough in display technology by providing a complete intelligent alphanumeric display and keyboard controller in a single LSI chip.

Complete assembled OEM displays are also available. They consist of single chip controller, LED displays, all driving and interface electronics and mounting hardware and filter on a small PCB. (8" X 3.25").

MTX-A1

 \cup

ALPHANUMERIC (DOT) DISPLAY/KEYBOARD CONTROLLER

The MTX-A1 is a general purpose programmable siphanumeric display and keyboard interface device for use with any 8-bit microprocessor such as the 8080A, 8000 alt. The display portion provides all timing and refresh signals to drive up to 32 popular 5X7 dorn matrix LB Odisplays. The keyboard portion provides all scanning signals and debounces and decodes any keyboards with up to 64 keys. The single chip controller interfaces directly to the uP via the uP data bus. Many intelligent commands for display and keyboard manipulation are incorporated.

- Single chip controller
 drives up to 32 SX7 LED

 94 ASCII Character set
 character generator ROM (64X5X7) built-in
 refresh 2X 8 RAM built-in
 n 0 external refresh required
 self-test built-in
 many intelligent commands

Price: \$49/single; \$39/100, \$12/10K

MTX-B1

ALPHANUMERIC (SEGMENT) DISPLAY/KEYBOARD CONTROLLER

The MTX-B1 is a general purpose programmable alphanumeric display and keyboard interface de-vice for use with any 8-bit microprocessor such as the 8000 x, 8000, etc. The display portion provides all timing and refresh signals to drive up to 32 popular segon and the properties of the signal portion provides all scanning signals and debounces and decorded to 10 signals. The keyboard portion provides all scanning signals and debounces and decorded to 10 signals and the signal portion in the signal signals and debounces and decorded to 10 signals with up to 64 keys. The single chip controller interfaces directly to the uP via the uP data bus. Many intelligent com-mands for display and keyboard manipulation are incorporated.

- single chip controller
 drives up to 32 displays
 7 to 16 segment displays
 LED, plasma, flourescent, gas
 discharge, incandescent, etc.
 common anode/cathod
 alphanumeric 16 segment character
 generator bulli-in
- Price: \$49/single; \$39/100, \$12/10K

- refresh 32X8 RAM built-in
 dual scan mode
 doubles duty cycle
 scans up to 64 keys
 interfaces to any up
 directly
- directly

 all parameters programmable

 single +5V, 60 mA

COMPLETE LED DISPLAYS

MTX-A2

COMPLETE OEM 16 CHARACTER ALPHANUMERIC DISPLAY (5X7 LED)

The MTX-A2 is a complete ready to use 16 character alphanumeric display for OEM. It contains all drivers, an MTX-A1 display controller and 16 alphanumeric .35" LED displays. All data signals are brought to a 44 pin connector.

- complete 16 character display
 expansion to 32 characters
 interfaces directly to any up
 MTX-A1 single chip controller
 mounting hardware/red filter included
 \$180 without LEDS/\$280 with LEDS

Price: \$280/single; \$230/100

- single +5V, 800 mA power supply
 variable intensity
 scans up to 64 keys
 all solid state
 22 intelligent commands

Dimensions: 8" X 3.25" PCB

MTX-A2 EXD

The MTX-A2 EXD is a blank PC board which can be used for various applications. By plugging in 16 LEDS and shift registers, the MTX-A2 EXD can be used to expand the MTX-A2 to a 32 digit display (the MTX-A1 and the display drivers from the MTX-A2 will drive the additional LEDS). For applications requiring large characters (up to 3"), the user can plug in the MTX-A1 chip and the display drivers and build his own large 5 X 7 alpha LED display using discrete LEDS.

Prices: Blank PCB only. \$28/single, LEDS & SHR \$200, MTX-A1 & drivers \$95

ACCOMPENSARY.

Dimensions: 8" X 3.25" PCB

MTX-B2

COMPLETE OEM 32 CHARACTER ALPHANUMERIC DISPLAY (14 SEG)

The MTX-B2 is a complete ready to use 32 character alphanumeric display using large .5", 14 segment LEDS. All drivers, LEDS and the MTX-B1 controller are included. The maximum number of characters is 32 organised in 2 lines of 16 seach. However, any display format from 1 to 32 can be used by plugging in the required number of LEDS and initializing the MTX-B2 chip. Keyboard scan signals are brought out on the connector for keyboard scanning.

- complete 32 character display
 interfaces directly to uP
 MTX-B1 single chip controller
 mounting hardware/filter included
 2 lines X 16 character
 modular 1 to 32 character display

- single +5V power supply
 user adjusted brightness
 scans up to 64 keys
 large .5 inch LEDS (MTX-14SD)
 all sold state
 22 intelligent commands

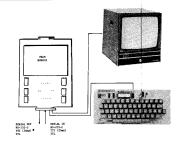
Prices: MTX-B2 (32) [with 32 LEDS] \$380/single; \$285/100 MTX-B2 (16) [with 16 LEDS] \$280single; \$195/100

Dimensions: 8" X 3.75"

ACCESSORIES

SI-ABCD

SERIAL INTERFACE ADAPTER BOARD

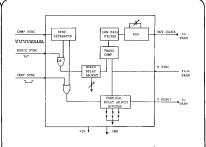

Serial interface adapter board (SI) allows the user to build a variety of low cost terminals with standard serial interface. By adding an ASCII keyboard, TV monitor and any of Matrox VRAM modules or boards, a versatile low cost CRT terminal with different screen formats can be built.

- serial interface (user selectable) RS-232-C; TTY (20mA, 60mA); TTL

- user selectable baud rate: 110, 150, 300, 600, 1200, 2400, 4800, 9600
 works with any Matrox video RAM; MTX-816, -1632, -1632SL, -1648/64SL, -2064, -2480
 accepts ASCII keyboard inputs (8 bits and strobe) drives directly TV monitors, composite video, or separate video and syncs and syncs

Price: \$120/single; \$98/100

- all video and baud rate signals
 X-tal controlled
 accepts CR (carriage return); LF
 (line feed) and clear screen
 commands
 external clear screen command
 synchronised VRAM writing; no
 flicker during VRAM write
 can be used as serial write only
 terminal (no keyboard)

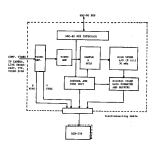

Dimensions: 7" X 9" including VRAM

PLL-01 EXTERNAL SYNC PHASE LOCK LOOP MODULE FOR VRAMS

The PLL-01 is a 2.5" X 3" plug in module intended for use with the alphanumeric and graphic VRAMs requiring external sync capabilities. This module allows the user to synchronise any VRAM to a TV camera, master sync generator, etc., for various applications requiring video mixing.

The module requires a single +5V power supply and interfaces directly to the VRAM. (the VRAM is operating in the slave mode). The PLL-01 will accept either composite or separate syncs. The user can adjust the horizontal and vertical delay. This allows the user to position the VRAM video picture relative to the external syncs.

Price: \$48/single; \$38/100

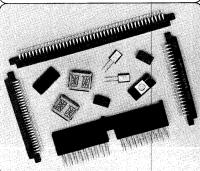

Dimensions: 2.5" X 3"

FG-01

The FG-01 is a frame grabber card used in combination with the RBG-256 single board CRT controller. The grabber plugs into the INTEL SBC-80 bus and allows the CPU to grab a single frame of a standard TV signal. The board contains a high speed 8 bit A/D converter, and all logic required to interface with the RGB-256 card.

- grabs single TV frame
 CPU grab control
 American/European standard
 4 bit/8 bit grey scale

- lowest cost complete video system
 broadcast quality
 can be used with any computer
 wide range of application



Dimensions: 6.75" X 12"

HARDWARE ACCESSORIES

MBC-01	Blank prototype board (SBC-80 or general purpose)	\$68	\$54
MTX-305 MTX-14SD	5X7 LED display (TIL-305 equivalent) Dual (2 digit) 14 seg. alphanumeric LED	\$ 7.5 \$ 9.5	\$ 6.5 \$ 7.8
VCB-75 X-tal	display 75 Ohm coax video cable (price/foot) X-tal (for different TV standards)	\$ 1.5 \$10	
CHG	Character generator (alpha. CRT controllers)	\$20	
MS-BAR CON-44 CON-50	Socket bars for alphanumeric modules 44-pin connector (530654-6) 50-pin connector (MP-0100-25-DP-1)	\$ 4 \$ 5 \$ 6 \$ 6	
CON-56 CON-86	56-pin connector (530664-6) 86-pin connector (1-530654-3) for	\$ 6 \$ 6 \$ 9	
CON-DEC	SBC-80 boards DEG connector (for LSI-11 and PDP-11 boards) (H8030)	\$15	

Price reference: First price per every 1 — Second price per every 100

CRT MONITORS

MCRT-9, MCRT-14/MCRT-14G

The MCRT-9 and MCRT-14 are 9" and 14" (black/white; P4 phosphor) solid state video monitors which have been built to international standards as established by the communications and computer industries. The MCRT-14 (RG is similar to the MCRT-14 except that it has green phosphor (P39). These high quality monitors can be used with any of the Matrox CRT controllers.

 \Box

- Internal external sync capability
 A/B video input selection
 VTR time constant switching
 pilot lamp/tally lamp
 73 Ohm termination switch (A&B)
 38 Ohm termination switch (A&B)
 39 Switchable prowed
 39 Switchable prowed
 39 Switchable prowed
 41 Line 90-1329
 15 MHz bandwidth to optimize resolution
 wide dynamic range

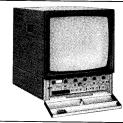
- internal/external sync capability
 A/B video input selection
 VTR time constant switching
 pilot lamp/tally lamp
 pilot lamp/tally lamp
 constants witch (ARR)
 - controls

 AC cord winder
 universal AC interlock
 attractive styling

Price: MCRT-9 \$420 MCRT-14 \$525, MCRT-14G \$580

MCRT-CC19/RGB/PAL/SECAM

The MCRT-19 is a 19" high quality color TV monitor with a 6 MHz color bandwidth. It can be used with any Matrox CRT controller, in systems requiring color graphics.


Price: \$3950

- with any Matrox CRT controller, in systems requiring color graphics.

 RGB/NTSC/PAL/SECAM convertibility
 through optional plug-in circuit boards
 signal processing circuity located on front
 accessible plug-in circuit boards.
 DC coupled operating controls permitting
 final user to remote any or all primary funcexcellent bracking of all three channels
 throughout the operating range.
 active convergence circuity provides full
 raster convergence convergence acceptable provides full
 cacceptable back porch clamp.

 Plant \$3500 display, each model offers reduced scan

SOFTWARE AND DOCUMENTATION

MTX-ALPHA SOFTWARE PACKAGE

The MTX-ALPHA software package, for use with any 2480, provides the user with the full flexibility of a software based intelligent terminal. The software package is written in 8080 assembly language. The program occupies approximately 3K of memory. The package will fully emulate the popular Lear Siegler Inc. ADM-3A and Digital Equipment Corp. DECSCOPE VT-52 interactive display terminals. Line at a time and text block input modes are available to provide the powerful text preparation features of an intelligent terminal. The package includes a detailed manual, a listing with comments and paper tape (object).

Price: \$28

MTX-GRAPH SOFTWARE PACKAGE

The MTX-GRAPH software package is designed for use with any 256 graphics display. The package is configured as a series of callable sub-routines and occupies a 1K block of memory. Some features included in MTX-GRAPH are point plot and line vector graphics, variable size alphanumeric character generation, animation synchronisation and an option for color graphics. The package includes a detailed manual, a listing with comments and an object paper tape.

Price: \$28

MANUALS

Manuals including schematics for various products are available. The price is \$10 each if bought separately. Free if bought with product.

CUSTOM DESIGN

Custom CRT display controllers can be designed according to customer specifications. Examples of custom orders would be different screen formats, special size PCB's, VRAM, additional features, modifications of standard designs, system integration, custom character generators, etc. Send a request for quotation for your particular needs and we will be pleased to suggest solutions and quote prices and delivery. For larger OEM requirements, Matrox can licence the user to make his own VRAM. Matrox will supply all schematics, specifications and custom made integrated circuits, where required for production, for a flat one time charge.

2795 BATES RD., MONTREAL, QUE. H3S 1B5, CANADA TEL.: (514) 481-6838 or 735-1182 TELEX: 05-825651 Canada Postes
Post Canada
Postage paid Port paye

Third Troisième BM 41 MONTREAL

PRINTED MATTER

HEAD OFFICE Matrox Electronic Systems Ltd. 2795 Bates Road Montreal, Que., Canada H3S 185 Tel, 514-481-6838 or 514-735-1182 Telex 05-825651

U.S. SUBSIDIARY Matrox International Corp. Trimex Building Mooers, N.Y. 12958

CANADIAN SALES REPRESENTATIVES Multilek Inc. 15 Grenfell Crescent, 2nd Floor Ottawa. Ontario K2C 0G3 7el. 613-226-2365

U.S. SALES REPRESENTATIVES

Budd-tronics Inc. 256 Engle Street Tenally, N.J. 07670 Burlington, Mass. 01803 Tel. 201-569-2230 Tel. 617-272-5676

Mycrosystems Marketing Inc. 13777 N. Central Expressway Suite 405, Dallas, Texas 75243 Tel. 214-238-7157 Twx. 910-867-4763

Microsystems Marketing Inc. 6610 Harwin Suite 125, Houston, Texas 77036 Tel. 713-783-2900 Twx. 910-881-5439

Newman Computer Exchange 1250 North Main Street Ann Arbor, Mich. 48104 Tel. 313-994-3200 Twx. 810-223-6023

Media Systems Inc. 139 First Street Cambridge, MA 02141 Tel. 617-661-9424

INTERNATIONAL SALES REPRESENTATIVES

AUSTRALIA Measuring & Control Equipment, Mace Co. Pty. Lid. P.O. Box 78 Epping, N.S.W. 2121, Australia Tel. 86-4060

AUSTRIA Kontron GES M.B.H. & Co. KG A-1140 Wein Ameisg. 49, Austria Tel. (0222) 94 56 46 Tix. 01-1699 FINLAND
Distep-KY
Arkadiankatu 16C
00100 Helsinki 10, Finland
Tix. 12-1302 Aspen S.F.

ENGLAND
Shelton Instruments Ltd.
24 Copenhagen Street
London N1 OJD, England
Tel. 01-278 6273
Tix. 299441 GWI G

Techexport Inc. Bradley House St. Paul's Lane Bournemouth BH8 8HN, England

DENMARK Jorgen Andersen Ingeniorfirma A.S. Produktionsvej 1 DK-2600 Glostrup, Denmark Tel. (02) 91 88 88 Tlx. 35378 JORGEX dk

HONG KONG Shanklin Trading Co. Ltd. Rm. 503-5, Kam Chung Bldg. 52-54 Jaffe Road, Hong Kong BCC Tel. 5-281521-3 Tlx. 74269 DIODE HX

FRANCE
Metrologie
La Tour D'Asnieres
4 Ave. Laurent — Cely
92606 Asnieres, France
Tel. 791 44 44
Tix. 611 448

GERMANY
Atlantik Electronik GmbH
Hofmannstrasse 20
8000 Munchen 70, West Germany
Tel. 089/7 85 31 12, 7 85 31 68
Tix. 5 213 066

GREECE Dimitri B. Zahos 30 Dragoumi 612 Athens, Greece Tel. 77 70 423 Tix. (21) 8409 1TALY
3-G Electronics s.r.l.
Via Perugino 9
20135 Milano, Italy
Tel. 544291 5466387 543096
Tix. 35024 TREG

JAPAN
Internix Incorporated
Natio Bidg,
7-2-8 Nishishinjuku
Shinjuku-ku, Tokyo 160, Japan
Tel. 359-110
Tix. J28497

Summit PVT Ltd. 3 Esplanade East Calcutta 700069, India Tel. 23-1671-2 Tlx. 021-7776 NETHERLANDS Famatra Benelux P.O. Box 721 Breda, Netherlands Tel. (076) 133457 Tix. 54521 Fatra ni

ISRAEL RN Electronics Agencies Ltd. 103 Hagolan Street Ramat-Hachayal, Tel-Aviv, Israel Tel. (03) 471659 Tix. 341730 SPEED IL

SPAIN
Neotecnica S.A.E.
Marques de Urquijo 44
Madrid 8, Spain
Tel. 2420900
Tix. 22099 NTSAE E

SWEDEN Satt Electronlund AB P.O. Box 9034 200 39 Maimoe 9, Sweden Tel. 040-22 20 00 Tix. 32422 ELUND

SWITZERLAND Kontron Electronic Ltd. Bernerstrasse — Sud 169 Zurich 8048, Switzerland Tel. 01-62 82 82 Tix. 58836 KONCO CH

SOUTH AFRICA L'Electron (PTY) Ltd. P.O. Box 10544 Johannesburg 2000, South Africa Tel. 40-6296/40-8057/40-8095 Tix. 8-2333 SA TAIWAN
Multitech International Corporation
2nd Floor, 977 Min Shen E. Road
Taipei 105, Taiwan
Tel. (02) 7681232, (02) 7654092,
(02) 7913940
TIX. 23756 MULTIIC

ORDERING INFORMATION

CANADIAN CUSTOMER'S: Order directly from Matrox, Montreal. Add 12% federal sales tax if applicable. Overseas Customers: Order directly from Matrox, Montreal or from overseas distributors. U.S. Customers: Order directly from Matrox, Montreal, or you can order from our U.S. company, Matrox International Corporation, Trimsx Building, Mooers, N.Y. 12958. Shipments can be made either from Canada or from Mooers, N.Y. to avoid delays in customers. Please add 5% duty to cover customs and brokerage charges when ordering his way. Specify in your order whether you wish goods FOB Montreal or FOB Mooers, N.Y. All prices are quoted in U.S. funds, except for Canadian customers. Deliveries are typically two to four weeks ARO on all items. When ordering, specify exactly options and versions desired (consult the data sheets for detailed information). Add suffix "E" when ordering European (50 Hz, vertical scan) versions.

OEM PRICE LIST

Effective November 1, 1978; Supercedes all previous price lists

1.		CONTROLLERS (ALPHANUMERIC)	1	2-9	10-24	25 – 99	100-199
1.1	<u>Modules</u>		1 .	2-3	10-24	25 55	100 177
		and a CDT	179	173	166	156	149
	MTX-816	8 lines X 16 columns CRT controller module	225	210	198	185	169
	MTX-1632	16 lines X 32 CRT controller module	225	210	198	185	169
	MTX-1632SL	16 X 32 CRT contr. module (external sync)		270	245	220	190
	PV-1	Up to 16 X 64 user programmable VRAM (in/ex)	205	270	245	220	190
	MTX-2064	20 lines X 64 columns CRT controller module	293	370	345	320	290
	MMD-2480	24 lines X 80 columns CRT controller module	393	370	343	320	2,0
1.2	Printed Cir	cuit Boards					
	Mmsz 1670/67	SL 16 X 48 or 64 (Prolog bus. ext sync)	295	270	245	220	190
		24 X 80 CRT controller (general purpose)	395	370	345	320	290
	MTX-2480	24 X 80 CRT controller (S100 bus plug-in)	295	295	280	280	265
	ALT-2480	24 X 80 CRT controller (Exorciser plug-in)	495	455	420	385	350
	EXO-2480	24 X 80 CRT controller (SBC-80 bus plug-in)		455	420	385	350
	MSBC-2480	24 X 80 CRT controller (LSI-11 bus plug-in)	495	455	420	385	350
	MLSI-2480	24 X 80 CRT controller (PDP-11 bus plug-in)	495	455	420	385	350
	MDC-2480	24 X 80 CRI controller (IBI-II bus plus III)	.,,				
2.	CRT DISPLAY	CONTROLLERS (GRAPHICS)					
	Modules						
	11000000						105
	MMD-256	256 X 256 dot raster module (+5V only)	595	570	545	520	495
	MMD-256D	256 X 256 dot raster module (+5V, +12V)	495	455	420	385	350
2.2	Printed Ci	rcuit Boards					
		(595	570	545	520	495
	MTX-256	256 X 256 dot raster (general purpose)	395	395	375	375	355
	ALT-256	256 X 256 dot raster CRT contr. (\$100 bus)	595	570	545	520	495
	ALT-512	512 X 256 dot raster CRT contr. (S100 bus)	695	665	635	605	575
	EXO-512	512 X 256 dot raster (Exorciser bus)	895	795	750	695	650
	MSBC-256	256 X 256 (SBC-80 bus or general purpose)		995	950	895	850
	MSBC-256/5	12 256 X 256 (SBC-80 bus or general purpose)	1395	1295	1250	1195	1150
	MSBC-512	512 X 512 (SBC-80 bus or general purpose)		1295	1250	1195	1150
	MSBC-1024	256 X 1024 (SBC-80 bus or general purpose)	1/05	1395	1350	1295	1250
	NSBC-512	512 X 512 raster with vector plot (SBC-80)	895	795	750	695	650
	MLSI-256	256 X 256 dot raster (LSI-bus, plug-in)		995	950	895	850
	MLSI-256/5	12 256 X 512 dot raster (LSI-11 bus,plug-in)	1395	1295	1250	1195	1150
	MLSI-512	512 X 512 dot raster (LSI-11 bus)	1395	1295	1250	1195	1150
	MLSI-1024	256 X 1024 dot raster (LSI-11 bus)		795	750	695	650
	MDC-256	256 X 256 dot raster (PDP-11 bus)	895	995	950	895	850
	MDC-256/51	12 256 X 512 raster (PDP-11 bus)	1095	1295	1250	1195	1150
	MDC-512	512 X 512 raster (PDP-11 bus)	1395		1250	1195	1150
	MDC-1024	256 X 1024 raster (PDP-11 bus)	1395	1295		1365	1300
	RGB-256/4	256 X 256 raster, 4 bit/pixel, color/grey	1595	1480	1430	1303	1300
		(SBC-80 bus or gen. purpose)	1 20 5	1205	1220	1195	1150
	RGB-256/3	256 X 256/3 bit/pixel; color/grey; exp.	1395	1295	1230	1100	1050
	RGB-256/2	256 X 256/2 bit/pixel; color/grey; exp.	1295	1200		940	895
	RGB-256/1	256 X 256/1 bit/pixel; color/grey; exp.	1095	995	965	940	עלט

3. CRT DISPLAY CONTROLLERS (ALPHA & GRAPH COMBINED)

1 2-9 10-24 25-99 100-199

15

15

14

MSBC-24/320 Single board 24 X 80 alphanumeric;320X240 1395 1295 1250 1195 1150 raster graphics CRT display controller (SBC-80 or general purpose)

NOTE: Combined alphanumeric and graphic display can also be obtained by combining other standard Matrox alpha and graph controllers (i.e.: ALT-2480 and ALT-256 or ALT-512; MMD-2480 and MMD-256; MLSI-2480 and MLSI-512, etc.)

4. COLOR CRT CONTROLLERS

Multiple standard graph cards can be combined to obtain color. Up to 24 bit per pixel can be obtained, 256 X 256 or 512 X 512 resolution. NOTE: RGB-256/4 is single board 256 X 256 X 16 color CRT controller.

5. uP DISPLAY CONTROLLERS (INTEGRATED CIRCUITS)

MTX-A1	Single chip I/O display/keyboard controller	49	46.5	44	41	39
	5 X 7 dot LED's up to 32 character, 64 keys			1.		
MTX-B1	Single chip I/O display/keyboard controller	49	46.5	44	41	39
	14, 16 segment LED, 32 characters, 64 keys			i		

MTX-A1 and MTX-B1 in quantities of 10K are \$12 each.

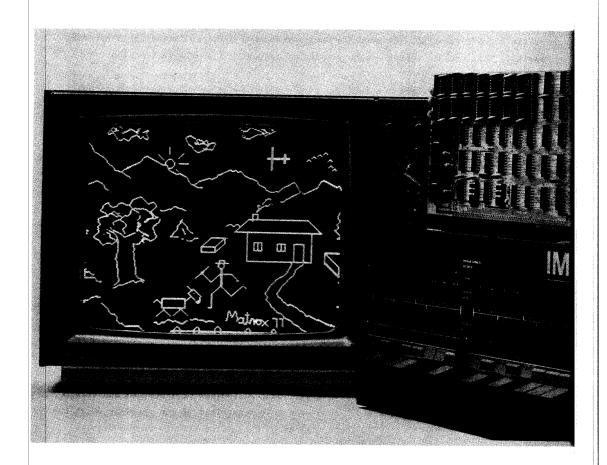
6. COMPLETE LED DISPLAYS

CON-DEC

MTX-A2	16 characters alphanumeric display (5X7 LED) 280	265	250	240	230
	32 characters alphanumeric display (5X7 LED) 460				375
	32 characters alpha. display (14 Seg. LED) 380				310
11111 22	or custocicio arbiar arbitro, (r. rog)				

7. HARDWARE ACCESSORIES 9 UP 120 109 98 Serial interface adaptor board (alpha CRT cont.) SI-ABCD 43 38 PLL-01 External sync phase lock loop module 48 PLL-SBC MTX-A2BI Ext. sync phase lock loop board (SBC-80 plug-in) Blank MTX-A2 board 149 139 119

MIX-AZBL	Blank MIX-AZ board	20	20	22	
MBC-01	Blank prototype board (SBC-80 or general purpose)	68	62	54	
MES-01	TV Sync generator PCB (for MTX-1648/64SL add-on)	38	34	32	
MTX-305	5X7 LED display (TIL-305 equivalent)	7.5	7.0	6.5	
MTX-14SD	Dual (2 digit) 14 seg. alphanumeric LED display	9.5	8.8	7.8	
FG-01	Frame grabber (8 bit/30 mHz A/D) (SBC-80 bus)	3500	3300	3000	
X-tal	X-tal (for different TV standards)	10	10	10	
CHG	Character Generator (alpha. CRT controllers)	20	20	20	
MCH-01	5X7 character generator (upper/lower case/graphics)IC	16	14	12	
MS-BAR	Socket bars for alphanumeric modules	4	4	4	
CON-44	44 pin connector (530654-6)	, 5	5	5	
CON-50	50 pin connector (MP-0100-25-DP-1)	6	6	6	
CON-56	56 pin connector (530664-6)	6	6	6	
CON-86	86 pin connector (1-530654-3)	9	9	9	


DEC connector (for LSI-11 and PDP-11 boards) (H8030)

2795 BATES RD., MONTREAL, QUE. H3S 1B5, CANADA TEL.: (514) 481-6838 or 735-1182 TELEX: 05-825651 ALT - 256 ** 2

MTX TV CRT CONTROLLER FAMILY

GRAPHIC DISPLAY

* MATROX products covered by Canadian and foreign patent and/or patent pending.

INTRODUCTION:

The Matrox ALT-256**2 board is a fully tested, assembled and burned-in interface card which provides capability for a complete graphic system at a fraction of the cost of any other commercial graphic system. The card contains all interface electronics, a TV sync generator, and its own 65,536 X l bit refresh memory. It plugs directly into one slot of any S-100 bus compatible computer. The built in refresh memory allows much greater flexibility and speed since no CPU time is required to refresh the screen.

The output is a composite video signal which can be connected to any TV monitor or the video portion of a TV set. The unit produces a high resolution 256×256 dot raster. The complete screen can be cleared or preset by a single instruction.

The ALT-256**2 board occupies a single S-100 bus slot and requires 4 output ports and 1 input port (port address is selectable on the card with jumpers).

FUNCTIONAL DESCRIPTION:

Four output ports are used for loading of data into the display refresh memory. Assuming that output ports $\emptyset\emptyset$ to $\emptyset3$ are selected (which also gives $\emptyset\emptyset$ for the input port) the addressing is as follows:

The X coordinate of a given dot is loaded by outputting an 8 bit coordinate to the port H $^{\circ}$ 01. (instruction; OUT $^{\circ}$ 01). The Y coordinate is outputted by OUT $^{\circ}$ 02. These two instructions will set the cursor at the desired dot address.

After the dot address is loaded, the dot intensity is loaded by outputting data to port H "00". (OUT 00). Data H "00" will result in a black dot; H "01" will display a white dot. After the dot intensity is loaded, the ALT-256**2 will require 3.4 µsec to write the dot in the refresh memory. This is necessary to allow for internal synchronisation of the write operation, TV read scan and dynamic memory refresh. Since the CPU almost always requires more than 3.4 µsec to load the next dot address and data, the CPU can run at its full speed. Also note that regardless of the speed at which the CPU is accessing the ALT-256**2, there will be no flashes or streaks on the display, since access is internally synchronised. This results in a truly professional display. In other words, all the above three commands can be executed at full CPU speed with no image degradation.

Assuming port select bits are programmed as:

A7 A6 A5 A4 A3 A2 A1 A0 Ø Ø Ø Ø X X

X, Y Ports

OUT \emptyset 1 - X address OUT \emptyset 2 - Y address

0 x 256

DOT write port

OUT $\emptyset\emptyset$ - Dot intensity

 $D\emptyset = \emptyset$ black dot $D\emptyset = 1$ white dot D7-D1 don't care

ERASE port

OUT Ø3 - screen clear

 $D\emptyset = \emptyset$ all dots balck $D\emptyset = 1$ all dots white D7-D1 don't care

STATUS port

IN ØØ - status

DØ = Ø display ready
DØ = 1 display being erased
D1 = Ø video portion
D1 = 1 vertical blank
D7-D2 don't care

TABLE 1: I/O PORT ADDRESSES AND FUNCTIONS OF THE ALT-256**2

The whole screen can be easily cleared by outputting H " $\emptyset\emptyset$ " to the output port H " \emptyset 3". This will result in the entire screen being black. Outputting H " \emptyset 1" will result in all white since all 65,536 bits of the refresh memory will be simultaneously loaded with 1. This operation will require one TV frame time (33 msec max).

After the CPU outputs data to the port H " \emptyset 3", an internal flag is set for between 16 msec to 33 msec until the screen is cleared. The testing of the flag is accomplished by inputting data from the input port H " \emptyset 0". (IN \emptyset 0). If the data bit D \emptyset is high then the ALT-256**2 is busy; if D \emptyset is low the ALT-256**2 is ready to accept new data.

Input port H "00" provides additional information about the position of the electronic beam, (vertical blank) which is useful for dynamic motion display. (see table).

THEORY OF OPERATION:

The ALT-256**2 has four major blocks: the TV sync generator, scanning circuitry, cursor and interface electronics and 65,536 X 1 memory. (see Fig. 3 & 4) The sync generator is formed of x-tal oscillator (A 31) and a divider chain (A24, 16, 23, 6). This divider chain produces all timing signals for the memory scanning as well as horizontal and vertical sync. The TV sync generator can be programmed by jumpers for the European or American TV standard.

The scanning circuitry consists of multiplexers (A4, 12, 21, 20, 25, 26) which provide proper address and R/W signals for the RAM required.

The cursor consists of two 8 bit latches which are loaded by the CPU. $\Lambda10$ and All are X address register, A2 and A3 , Y address register. Necessary interface address and timing decoding is accomplished by A1, A9 and A51 to A55.

The refresh memory has 16, 4K dynamic memories (4096, 16 pin) organised as a 65,536 X 1 bit memory (A32-A47).

Power supplies for 5V, 600 mA; 12V, 100 mA and -5V, 10 mA are generated by A56, A57 and CR1; on board voltage regulators.

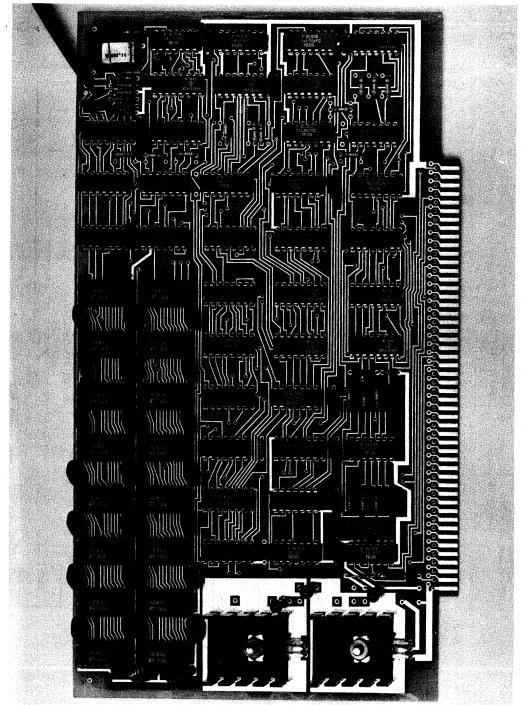
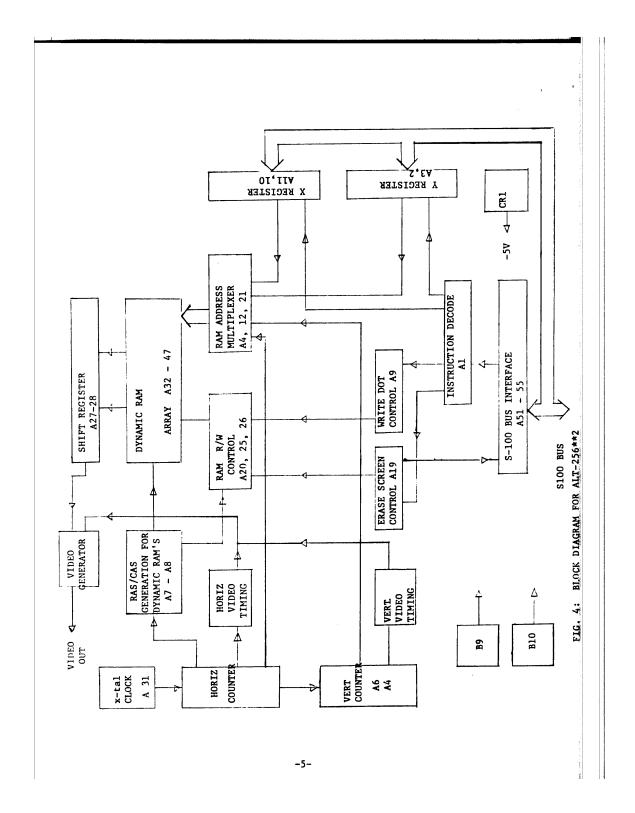



FIG. 1: PHOTOGRAPH OF THE ALT-256 * *2

MAINTENANCE AND WARRANTY:

The ALT-256**2 is a fairly complex card and to understand its operation requires extensive knowledge of TV scanning, 4K dynamic memories and hardware. The complete circuit and assembly schematics are supplied to allow a competent user to troubleshoot the board if necessary. However, each board is fully tested, assembled and burned in for 24 hrs. before shipping to ensure reliability. In case of trouble, a warranty is provided.

Matrox products are warranted against defects in materials and workmanship for a period of 3 months from date of delivery. We will repair or replace products which prove to be defective during the warranty period, provided they are returned to Matrox Electronic Systems Ltd. No other warranty is expressed or implied. We are not liable for consequential damages.

Non-warranty repairs are billed at a minimum of \$50 and a maximum of \$100 according to time and materials required.

JUMPER OPTIONS:

The board is normally programmed for different options before shipping as specified in the purchase order. There are two things which can be programmed.

The TV sync generator can be programmed for one of 3 options. The American Standard option (60 Hz) has a 240 line X 256 dot raster (240 visible horizontal lines). The American Non-standard (60 Hz) version has a full 256 line X 256 dot raster with horizontal frequency of 16.8 KHz for a total of 280 lines. Some adjustment of the horizontal hold on the TV monitor may be necessary to allow the TV to lock. The European standard option has 312 lines (50 Hz).

JUMPERS IN:

ANS W1 W4 W5 W9 W10 W12 W14 W17 W19 W21 W22

AS W2 W4 W6 W8 W11 W13 W15 W17 W18 W20 W23

ES W1 W3 W5 W7 W11 W12 W14 W16 W19 W20 W22

TABLE 2: TV STANDARD JUMPER OPTION

The four output ports and one input port can be located on any 4 location boundary in the 256 port address space. Address bits A2 to A7 can be selected as follows:

	JUMPER ACCROSS PI					
ADDRESS	BIT =	Ø	1			
1	A2	1 and 16	2 and 15			
A49	A3	3,14	4,13			
SOCKET	A4	5,12	6,11			
	A5	1,16	2,15			
A 50	A6	3,14	4,13			
SOCKET	A7	5,12	6,11			

x jumper can be any resistor between Ø to 51 Ohm

TABLE 3: I/O ADDRESSING JUMPER OPTIONS

INSTALLATION AND TESTING:

To install the ALT-256**2, switch the Altair/Imsai 8080 type computer off and plug the card in. Connect the composite video output to the input of the TV monitor and switch the TV monitor and computer on. The display will be a random pattern of the content of the refresh memory.

To help in testing the card a short test program listing (see Table 4) is provided. The program makes the following assumptions: The ALT-256**2 is strapped to begin its output ports at location H "ØØ". The computer front panel has input port switch register at location H "FF". If the address strapping of the ALT-256**2 or front panel ports is different from that specified, the program can be easily modified.

To test the card, toggle into memory the short test program (see Table 4). The starting address is H "Ø100". The program will first clear the entire screen depending on the setting of the input port switch (SWO). A setting of H "ØØ" will produce a black screen, H "O1" will produce a white screen.

Following this, the program clears the X and Y register and writes SWO (up = 1; down = 0) into dot $\emptyset\emptyset$. (Upper left corner). Then address X is incremented, SWO is written into the next dot etc, continuously. By changing the SWO position during the computer scan, a white or black dot is written. The speed of the computer scan can be varied by the position of the switches S7-S1 on the front panel.

VIDEO SIGNALS

Composite video signal. Output impedance 75 Ohms. Short circuit protection built in.

Horizontal and Vertical Sync signals.

SIGNAL	FR	EQ.	HIGH	LOW	STD.
SH	16.	8kHz	4.5	55	ANS
Horizonta)	15.	7kHz	5.8	57.8	AS
Sync	15.	6kHz	4.5	59.6	ES
sv	60	Ηz	238	16.43	ANS
Vertical	óО	Ηz	254	16.42	AS
Sync	50	Нz	256	19.74	ES
DTC		7.0536 mHz			ANS
Dot		5.53	4 mHz		AS
Clock	7.0536 mHz			ES	

AS American nonstandard (280 lines, 60 Hz)
AS American standard (262 lines, 60 Hz)
ES European standard (312 lines, 50 Hz)

ADDRESS	CONTENT (Hex)	MNEMONIC	COMMENT
0100	DB	IN FF	/input front panel switch
0101	FF		
102	D 3	OUT Ø3	/input SW to erase port
03	Ø3		
04	DB	LUP 1, IN ØØ	/input ALT-256**2 status
05	ØØ		
06	E6	ANI Ø1	/mask SWØ
07	Ø1		
08	C2	JNZ LUP1	/test for busy (Not Ø)
09	Ø4		
0 A	Ø1		
OB	21	LXIH ØØ	/load H, L with Ø
OC	ØØ		
OD	ØØ		
O E	7 D	LUP 2, MOV A, L	/move L to A
OF	D3	OUT Ø1	/output X coordinate
10	Ø 1		
11	7C	MOV A, H	/move H to A
12	D3	OUT Ø2	/output Y coordinate
13	Ø 2		
14	DB	IN FF	/input front panel switche
15	FF		
16	D3	OUT ØØ	/write dot to port 🕬
17	ØØ		
18	E6	SPEED, ANI FE	/mask switches S7-S1
19	FE		
1A	3C	LUP 3, INC A	/loop delay for speed
1B	C2	JN 2 LUP 3	/test for zero
1C	1A		
1D	Ø1		
1E	23	INX H	/next dot
1F	С3	JMP LUP 2	/go back
20	OE		
21	ø1		

TABLE 4 : TEST PROGRAM FOR ALT-256**2

COLOR/GREY SCALE

Each ALT-256 card has a built-in crystal controlled sync generator. However, each card can also be synchronized to an external sync source. This feature is extremely useful for applications requiring more than one bit per pixel (grey scale or color). Multiple cards are required for this application (up to 24 cards can be synchronized).

VIDEO AND SYNC SIGNALS

All video and sync signals are available on a 16 pin plug-in socket at position S1. These signals can be used for a variety of applications:

PIN	NAME	COMMENT
12	VDO	Composite video output. Can be directly con- nected to a TV monitor video input via 75 ohm cable
4 .	ALPHA	Alphanumeric video input. (From MTX-1632SL for video mixing). Has to be low when not used. (Jumper W24 in).
13	sv	Vertical sync signal (Positive pulse). It can be used to drive a TV monitor vertical deflec- tion circuit or it can drive an MTX-1632SL alphanumeric VRAM.
10	SH	Horizontal sync signal (positive pulse).
11	BV	Vertical blank. This signal is low during vertical retrace (3 msec). It is available to a uP by reading I/O port 0.
7	ВН	Horizontal blank (low during blank).
3	D OUT	Serial video signal (TTL level, high-white, low-black). It can drive directly a TTL compatible TV monitor video input or it can be used as one bit of video information in a color/grey scale system.
2	DOT CLOCK	Bidirectional dot clock input/output (depends on M/S control jumper W26). If W26 is in, ALT-256 is a master card and DOT CLOCK is an output. If W26 is out, ALT-256 is a slave card and DOT CLOCK is an input.
15	RESET H	Bidirectioanl horizontal reset input/output. (80 nsec negative pulse which synchronizes horizontal counters).

^{*} For more information on color/grey scale applications consult Matrox's MTX-256 color/grey application note.

PIN	NAME	COMMENT
16	RESET V	Bidirectional vertical reset input/output. (80 nsec negative pulse) Synchronizes vertical counters.
1,8,9,16	GND	Ground

The following jumpers determine the use of the ALT-256 in color/grey scale applications.

W26 Determines if card will be a master or slave card (generates its own sync signals or accepts external sync signal from a master card).

Sync signals are DOT CLOCK, Vertical reset and Horizontal reset.

W26 - in ALT-256 is a master card
W26 - out ALT-256 is a slave card

W25 Video data input bit connection.

W25 - in Video data input bit is connected to D∅.

W25 - out The user can connect video data bit to any of the data bus bits D0-D7 with a wire.

W24 Alpha input

W24 - in The socket S1 pin 4 is grounded (no alpha)
W24 - out Alphanumeric input at pin 4 of the graphic video.
S1 is added to

NOTE: All ALT-256 are shipped with jumpers W24, W25, W26 in. (Standard configuration for a single level ALT-256 application).

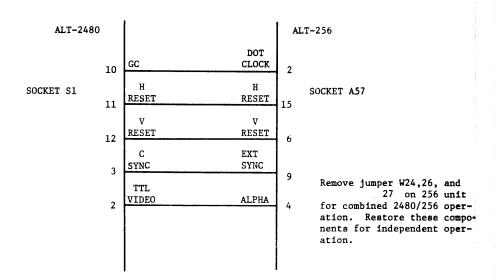


FIG. 5 COMBINING ALT-2480 and ALT-256

The ALT-2480 and -256 display cards are directly compatible with one another. This powerful feature permits generation of a combined alphanumeric/graphic display with no extra hardware. Multiple ALT-256 cards can also be slaved to a single ALT-2480 master for color/grey scale applications.

Figure 5 shows how the ALT-2480 and ALT-256 cards are connected together. The connection is accomplished via 16 pin DIP plugs on each card. Some jumpers must be altered on the ALT-256. The combined composite video output is taken from the ALT-256 output.

SUMMARY OF MTX-GRAPH SOFTWARE PACKAGE

The MTX GRAPH software package is designed for use with the Matrox ALT-256 graphics display. The package is configured as a series of callable sub-routines. The MTX GRAPH package occupies memory locations 0104 to 04FF (Hex). The package incorporates the following features:

- 1. Variable Resolution: The display resolution can be selected to be 256 x 256; 128 x 128; or 64 x 64; by software command.
- 2. Point Plot: Any arbitrary point can be displayed by specifying $\overline{X-Y}$ coordinates. Dot size depends on the resolution selected.
- 3. <u>Line Vector Graphics</u>: Line can be drawn by specifying the two end points.
- 4. Alphanumeric Display: A full ASCII character generation routine is incorporated. Control characters are correctly interpreted. Characters can be positioned anywhere on the screen.
- 5. Animation Synchronization: This feature allows the user to generate animation synchronization at line rate.
- Color Option: The software package will support a 3 card color/grey scale system.

More detail on the above is contained in the MTX CRAPH user manual.

A second program supplied is intended for demonstration purposes. The program utilizes the MTX GRAPH sub-routines to create a continuous live action graphics display.

The paper tapes are supplied in Imsai binary loader compatible format. A listing of the loader and instructions for its use are provided with the manual.

The Imsai loader should be used to load first MTX GRAPH and then the demo program. Both must be co-resident to use the demonstration program. The ALT-256 should be jumpered for address 10-13 (hex) and data bit DØ. (jumpers A2, 3, 5, 6, 7 set to Ø, A4 set to 1. See manual P9.) Start the computer at location 0500 Hex. Sit back and watch the show. The demonstration program will pause whenever the data switches are set to 01 (hex).

NOTE: Old versions of the ALT-256 require the following hardware change to work with this software package: (units shipped prior to Aug. 1/77). Tie A3 and All pin 4 to τ 5V with jumper wires soldered directly to the artwork.

PRICE: \$25.00 for MTX GRAPH manual plus binary paper tapes of MTX GRAPH and demo program.

SPECIFICATIONS FOR ALT-256**2 GRAPHIC DISPLAY INTERFACE

INTRODUCTION: The ALT-256 low cost high resolution graphics interface can be used in

a wide range of applications. Typical examples range from video games like electronic etch-a-sketch, to industrial uses such as computer image processing. The unit has 4 times the resolution of other \$100 bus graphics and includes features such as expansion for color/grey scale, external sync capability, on card refresh memory and direct S100 bus com-

patibility. The ALT-256 is compatible with the ALT-2480 permitting a

powerful combined alphanumeric/graphic display.

RESOLUTION: 256 X 256 dot raster.

ACCESS TIME: 3.4 usec. max /dot: each dot induvidually addressed

ERASE: Single instruction erases screen: 33 msec. max.

REFRESH MEMORY: Built-in on the card: 65,536 X 1 bit memory

S100, plugs directly into Altair-Imsai bus

Up to 24 bits/pixel (2^{24} different colors or grey levels/dot) by using COLOR/GREY SCALE:

identical multiple boards.

DIMENSIONS: 9" X 5"

> POWER: 8V, 600mA; 18V, 100mA; -18V, 10mA, on board regulators

OUTPUTS: Composite video; 75 Ohm, x-tal controlled: TTL video, horizontal and

vertical syncs and blanks outputs.

SYNCHRONIZATION: Built-in TV sync generator (x-tal controlled). Free running or external

sync capability.

TV STANDARD: American standard (262 vertical lines, 60 Hz; 240 vertical video lines)

4:3 aspect ratio; American Non-standard(280 lines, 60 Hz; 256 video

lines), horizon al freq. = 16.8 KHz. (1:1 aspect ratio); European (312, 50 H

1:1 aspect ratio). Non-interlaced picture. Standard selectable on the board

MONITOR: Any standard TV monitor or modified TV set.

REMOTE DISPLAY: 75 Ohm cable, up to 2,500 feet,; multiple monitors, up to 25 TV's.

ADDRESSING: Four output ports and one input port built-in. Port address selectable on

X-Y PLOT MODE: X coordinate (output port 1, 8 bit registor); Y coordinate (output port 2,

8 bit registor). Data port (output port \emptyset , 8 bit registor). Outputting data H" \emptyset 1" to port H" \emptyset 0" writes a white dot at the point addressed by the X and Y registors. Writing data H'002 to port H'00" writes a black dot.

ERASE: Outputting data to port 3 will erase the screen. Data H"00" will set all

bits to 0 (black). Data H"01" will set all bits to 1 (white.)

DISPLAY STATUS: Available by reading input port \emptyset . Data bit DO = graphic interface busy

flag; D1 = vertical blank.

DOCUMENTATION: 12 page manual; complete description, circuit schematics and a test program.

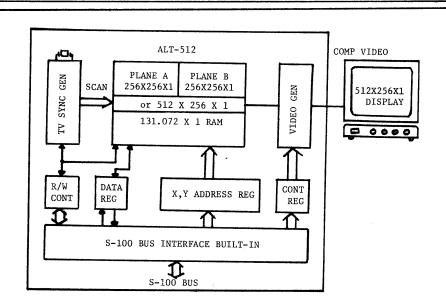
Additional color/grey scale application note available on request.

WARRANTY: 90 days parts and labor.

SOFTWARE: A complete software package is available for \$28.

ORDERING: Available directly from Matrox Electronic Systems Ltd., Montreal or from

franchised distributors. Specify options desired. Delivery 2-4 weeks.



TEL.: (514) 481-6838 or 735-1182

A LT-512

S100 BUS 512 x 256 GRAPHICS DISPLAY

TELEX: 05-825651

- * 512 X 512 X 1 resolution or 256 X 256 X 2 resolution
- * Built-in 131K X 1 RAM
- * Single instruction erase
- * 1.4 usec access time
- * External/internal sync
- * 50/60 Hz
- * Complete software control
- * Grey scale mode (4 level)
- * Multiple boards stackable for color/ grey applications
- * Can be combined with ALT-2480 board
- * Two independent 256 X 256 X 1 planes allow 8 display formats
- * Ideal for live animation effects
- $\mbox{\tt\tiny\$}$ Displays one plane while CPU writes into other
- * Works with any 8080, 8085, Z80 or equivalent (4 or 8 mHz clocks)

The ALT-512 is a complete graphics display controller on a single S100 bus plug-in board. It contains its own 131.072 bit refresh memory, TV sync and video generator, and all I/O for S100 bus. Each display dot (pixel) is addressable via X-Y registers and can either be written into or read out. The board has built-in six outputs and two input ports.

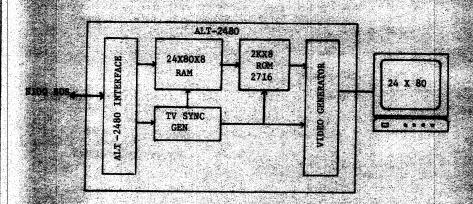
The display field consists of two 256 X 256 X 1 planes. The two plane arrangement allows the user to implement eight different display formats by software control/ (CONTROL register). Either or both planes can be displayed in various combinations.

SPECIFICATIONS ON THE ALT-512 RESOLUTION Eight display modes (software controlled via CONTROL registers_. 256 X 256 X 1 Plane A displayed/B off 256 X 256 X 1 Plane B in/A off 256 X 256 X 1 Plane A & B superimposed (digital video or) 256 X 256 X 2 4 level grey scale display (A=2°, B=2¹) These four modes can be displayed with planes A and B one over the other or plane A horizontally one dot to relatively to plane B. (effectively 512 X 256 resolution when both A and B are dos-ADDRESSING: : The ALT-512 has built-in six I/O ports user positioned addressed as follows: Output ports 5 4 3 2 1 0 Address 7 6 0 - - - DO Dot register; DO=black, DO=1 white 1 х7 . . X1 X register . . . YO Y register Y7 - - DO Clear register - - - X0 X0=0, plane A; X=1 plane B ٠4 5 -- - C4 CO Control register (display mode) Input ports 0 - - - DO Read pixel port B L H V Flag register, (blanks, light pen) ERASE : Single instruction erases screen 33 msec maximum REFRESH : Built-in 131,072 X 1 bit. Independent of the CPU timing. BUS : S-100. Plugs directly into any S-100 bus systems. ; Up to 24 bits by using multiple boards. 3 boards enough for 512 COLOR X 256 X 8 color systems or 256 X 256 X 64 color system (RGB) DIMENSION : 9" x 5" S-100 standard 100 pin connector POWER : 8V, 600mA; 18V, 100mA; -18V, 10mA on board regulators : Composite video; 75 ohm X-tal controlled 50/60hz, TTL video, OUTPUTS horizontal and vertical syncs, blanks. SYNCHRONIZATION: Built-in TV sync generator. Free running or external sync capability. : American (60 Hz) 262 lines non-interlaced. 240 displayed. European (50 Hz) 314 lines non-interlaced. 256 displayed. TV STANDARD TV MONITOR : Any standard TV monitor or modified TV set. REMOTE DISPLAY: 75 Ohm cable, up to 2500 sect, Multiple monitors up to 25 TV. \$595 FOB Montreal; single PRICE SOFTWARE : A complete software package is available for \$28.

ORDERING : Available directly from Matrox Systems Limited, Mtl. or franchise

distributors

DELIVERY : Two to four weeks ARO.


BATES ND. MONTREAL, QUE HIS 186. CANADA (8) 41 48148888 of 735-1182 TELEX: 05-825651

ALTR-24

MTA THE CRIT CONTROLLER FAMILY

ALPHANUMERIC DISPLAT

* NEW EXCLUSIVE TRANSPARENT MEMORY FEATURE

12480 is a unique single board video interface between \$100 type computers. The board allows \$100 users to add video display to their computers. low cost. The ALT-2480 incorporates a revolutionary display mem Man is completely transparent. Alphanumeric video display boards made by Like is completely transparent. Alphanumeric video display boards made by maily all other manufacturers suffer from interference or streaking when the accessmed. This occurs because the display memory must be accessed by better and sync generator. The standard solution is to access the eard dustriant of the control of the display. The Matrox transparent memory is a revolutionary new solution in seath problem. It is not necessary to wait for blanks, no DMA is used. The states at full speed, and there is no streaking on the acceen no matter has a speed the heard. eccess the board.

- one directly in \$100 bus par/lower case/graphics
- es X 80 characters or 2 pages
 - £ 24 X 40 characters

- Ct happed (4K I 8)
 Cle-in k/4 refresh memory
 programmeble sharectet generator
 (2716 EPROM)
- * External/internal sync * Norwal/inverse/blink contral

- * Normal/inverse/sizek control

 Drives TV monitor directly

 \$ 500 neet access time.

 * Single Nev. Sk power supply

 * Can be combined with aCT-256
 graphics

 * Software package available;
- * Full software control

SPECIFICATIONS FOR ALTR-2460 DISPLAY INTEREST

OCTION : The ALT-2486 provides as alphasmostic video interfections.

\$100 bus alcrecomputer and a TV messiver. It output try standard 25 line X 60 characters display which is for professional applications seem as invalidation and serial processors. The ALT-2485 is solventially at 255 at \$155-512 graphics interface parallely, a possible and the although a possible and the although a possible and alphasmostic/graphic display.

DISPLAY FORMAT : 24 lines I 80 character, or 2 pages of 24 I 40 characters.

r Matrix VRAM organization. Each character position on the to equivalent to a memory location (hype). The character memory location (hype) deparations the character to be did The card occupies 46 bytes of SAM addings appear. On bea jumpers parally address positioning.

MEMORY : Built-in on the card (2% & 6 MARE: 500 mount are

: 5100 bus plag-in.

Depair and lever case, limited graphics; 128 different the instite 6 X 18 or 5 X 10 det matrix. The observator general 2X X 5 (2716 Ereck) propagated by Matrix, Caston and for he casely incorporated by propagating stars on 2716 1980).

t May character can be normal totometry, inverse vicing of a under postware control.

American standard (60 Rs), non-interleged. Bomopius structure (50 Hs) non-interlaced. ALT-2480 vill werk with any standard constor or modified IV set (16 mls boundings).

t Gomeonite Videni /5 Chm, w-tell (North-Ofice) Thi vi gnd Vernitesi sync and blank outputs:

DESPLAY : 75 Ohe cable, up to 500 feet, builtiffe monthous up to 10 Of

j kinthed graphics republify behit-to. For full graph graphics Al7-250 board. Both boards can be exactsond by a simple 4 wife gonesetton.

t. Standard \$100 card stars: I 300 pte total

COR :: 14 page envel, complete disc

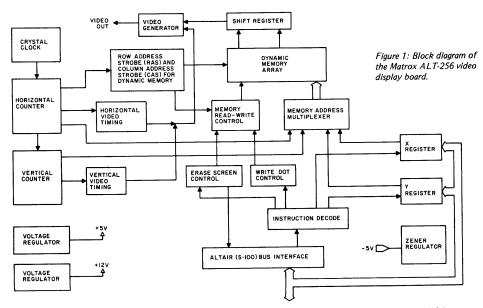
: 90 days paves and labor.

; Two to four weeks ARO.

Product Description:

The Matrox ALT-256 Video Board

Gary Ruple
Matrox Electronics Systems
POB 56 Ahuntsic Sta
Montreal Quebec H3L 3N5
CANADA


The ALT-256 is an Altair (S-100) bus compatible graphics card that gives a resolution of 256 by 256 dots. This display is useful for professional graphics applications such as computer aided design, simulation, business and educational displays, and plotting curves.

The display memory on the ALT-256 consists of 16 4 K dynamic memory integrated circuits in the 16 pin package. The dynamic memory refresh is handled by the video scan circuitry so that no processor time is required for this function.

Board Addressing

The board is addressed as four contiguous output ports and one input port (IO ports

are built in), selectable by on board address jumpers. The dot addressing is done in X-Y fashion. Output ports 1 and 2 are used as registers for the X and Y positions, respectively, to position the cursor at the selected dot. Output 0 is used to write the intensity of the dot: 00 for black and 01 for white. After the dot intensity is loaded, the ALT-256 will require 3.4 µs to write the dot in the display memory (ie: to allow for internal synchronization of the wire operation, video read scan and dynamic memory refresh). Since the 8080 processor almost always requires more than 3.4 µs to load the next dot address and data, the processor can run at its full speed. Also, there will be no streaks or flashes on the display no matter how fast the

This article first appeared in the May 1978 issue of BYTE® 1978. BYTE Publications Inc., Peterborough, N.H. 03458 U.S.A All rights reserved. Reprinted and published by permission.

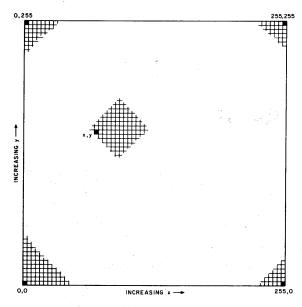


Figure 2: Display coordinate system for video displays (MTX-Graph software).

processor accesses the card since the write operation is internally synchronized.

Output port 3 is used as an erase screen command to either clear the screen or to set it all white according to data bit 0: 0 = black, 1 = white. The erase operation can take up to 33 ms. The status port (IN0) has been provided as a means of checking the status of the ALT-256. The following is a description of the status bits:

Bit 0: When 0 the display is ready.
When 1 the display is being erased and should not be accessed.

Bit 1: When 0 the display scan is in the video portion.

When 1 the display scan is in the vertical blanking period allowing access of the display when not visible. This is useful for dynamic motion and animation synchronization.

The X-Y addressing scheme provides the programmer with a way to address individual dots. A horizontal or vertical line requires only one address to be updated for each new dot. A 45° diagonal requires each address to be incremented or decremented. Using output ports as registers and as a means of addressing the card also conserves memory space, since the 65,536 directly addressable

dots are equivalent to 8 K bytes of memory. (You would also have to keep track of dot position in the byte.)

Theory of Operation

The ALT-256 has four major blocks: the video sync generator, scanning circuitry, cursor and interface electronics, and 65,536 by 1 memory (see figures 1 and 2). The sync generator consists of a crystal oscillator and a divider chain. This divider chain produces all timing signals for the memory scanning as well as horizontal and vertical sync. The video sync generator can be programmed by jumpers for either the European or the American video standard.

The scanning circuitry consists of multiplexers which provide proper address, and read and write signals for the programmable memory.

The cursor consists of two 8 bit latches (the X and Y address registers) which are loaded by the processor. Necessary interface address and timing decoding is accomplished by the Altair (S-100) bus interface logic.

The refresh memory has 16 4 K dynamic memories (IC type 4096) organized as a 65,536 by 1 bit memory.

Power supplies for 5 V, 600 mA; 12 V,

Power supplies for 5 V, 600 mA; 12 V, 100 mA, and -5 V, 10 mA are generated by on board voltage regulators.

Multiple Boards

The ALT-256 may be used in multiple board systems for color graphics or grey scale applications. Any reasonable number of boards may be used. When more than one is used, one board must be chosen as the master and the others are configured as slaves synchronized to the master. There is an on board jumper allowing use as a master or slave and a socket provided for connecting the sync signals and video between master and slaves. Single or multiple boards may also be slaved to an external sync generator such as a TV camera signal or broadcast video.

Software

MTX Graph, the available for the ALT-256, provides all the commonly used low level graphics routines, and is configured as a series of subroutines that occupy hexadecimal memory locations 0104 to 04FF. Multiple boards can be supported by up to a maximum of eight bits of color or grey scale information. Features of the package are described in table 1.

Photo 1a.

Photo 3a.

Photo 1b.

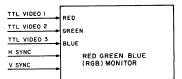
Photo 2b.

Photo 3b.

Photos 1 to 3: Some examples of grey scale and pseudocolor images produced by the ALT-256 video board. The grey scale photos were produced by feeding the output from a TV camera through a slow scan analog to digital converter. Next, the 3 bit digitized output was processed through three ALT-256 video boards and a digital to analog converter to give an 8 level video signal. The color pictures were produced by feeding the outputs from the video boards directly to the red, blue and green inputs of an RBG color monitor (see figure 3).

Table 1: Features of MTX GRAPH, a software package available for the ALT-256 graphics board.

- 1. Variable Resolution: The display resolution may be set to 256 by 256, 128 by 128, or 64 by 64 through software control.
- 64 by 64 through software control.


 2. Point Plot: A dot corresponding in size to the resolution selected may be displayed at any arbitrary point by specifying X-Y coordinates.
- Line Vector Graphics: Lines can be drawn from the current cursor position to the endpoint specified by the user.
- Alphanumeric Display: A full ASCII character generation routine is provided. Character scan be positioned anywhere on the screen. Carriage control characters are correctly interpreted. Character size is adjustable.
- Animation Synchronization: This feature is used to synchronize animated display updates with the vertical scan.
- Color Option: The software package supports a 3 card color or grey scale system as described later in this article.

All subroutines use standard Cartesian coordinates with the display occupying the first quadrant. As shown in figure 2, the origin (X=0, Y=0) is defined as the bottom left point on the display. X increases in value to a maximum of 255 at the right edge, while Y rises to a maximum of 255 at the top. If the ALT-256 is jumpered for American Standard scan (240 lines displayed), the lowest Y coordinate displayed is 16, and points with coordinates from 0 to 15 cannot be seen.

Grey Scale and Color Applications

In the grey scale configuration, multiple boards provide binary intensity information. All boards have the same address decoding and sync signals. Each board has a dot intensity bit (output port 0) which is normally tied to data bus bit D0. In a typical 3 board color or grey scale system, the intensity bit is changed on two boards to be D1 and D2 (or any other bits you choose), thus writing three binary bits for each write operation. This method allows computation of grey scale and single instruction load of all bits making up a single picture element (often contracted to "pixel" in graphics literature). The TTL video outputs from the three boards are fed to a simple 3 bit digital to analog converter.

Figure 3: Connecting an RBG. (red green blue) monitor for 8 color operation using three ALT-256 boards.

RGB (Red Green Blue) Color

In a color scheme, the best results are obtained by directly driving the red, green and blue guns of a color monitor with the video signal from three boards, as in figure 3. An ordinary color TV can be modified to accept separate color inputs. This should not be undertaken by anyone who lacks an understanding of color TV and electronic design. The alternative is to generate an encoded composite color signal. An application note available from Matrox gives details on a color encoder circuit.

Photographs

The photos accompanying this article were generated by feeding a TV camera output through a slow scan analog to digital converter. The 3 bit digitized output was then fed to a 3 card ALT-256 graphics system. The grey scale pictures were produced by feeding the outputs of the three cards to a 3 bit digital to analog converter. The resulting pictures have eight discrete grey levels. The color pictures were produced by feeding the outputs of the three cards to the red, blue and green (RBG) inputs of an RBG color monitor. The resulting eight color pictures are pseudocolored. This means that a different color has been assigned arbitrarily to each grey level in the original picture. Pseudocoloring is used in many industrial and research applications (ie: many NASA space pictures are processed this way).

Conclusion

The Matrox ALT-256 represents one approach to high resolution graphics capabilities for the Altair (S-100) bus. Multiple board systems can be used for medical displays, research applications, pseudocolor imaging, fast animated displays, computer aided design, sophisticated computer games and computer generated art. For the Star Trek freak, now there is available a real (if imaginary) universe to save, rather than a slow printer banging out descriptions. For the artist, a canvas; the researcher, a window; and the kids, an electronic sketch pad.

Note: The completely assembled, tested and burned in ALT-256 board is available for \$395 from Matrox Electronic Systems, POB 56, Ahuntsic Station, Montreal, Quebec H31. 3N5 CANADA. Also available is the ALT-2480, an Altair (S-100) compatible alphanumeric generator board, which can be used in conjunction with the ALT-256 to produce simultaneous graphics and alphanumeric displays.

2795 BATES RD., MONTREAL, QUE. H3S 1B5, CANADA TEL.: (514) 481-6838 or 735-1182 TELEX: 05-825651

SUMMARY OF MTX-ALPHA

SOFTWARE PACKAGE

The MTX-ALPHA software package provides the user the full flexibility of a software based intelligent terminal. The software package has been written in 8080 assembly language and will work with most of the Matrox 2480 family of cards (MTX-2480, ALT-2480, MSBC-2480). MTX-ALPHA has been designed explicitly to support easy and reliable modification to meet varying user requirements. The program occupies approximately 3K of memory.

As supplied, the package will fully emulate the popular Lear Siegler Inc. ADM-3A and Digital Equipment Corp. DECSCOPE VT-52 interactive display terminals. In addition, line at a time and text block input modes are available to provide the powerful text preparation features of an intelligent terminal. More detail on the three basic input modes is provided below:

FULL DUPLEX MODE (FDX)

In this mode no processing is performed on input. For a typed in character to appear on the display, it must be echoed by the user program. Characters are passed unaltered to the user program as soon as they are input. This mode mimics the operation of a dumb terminal or teletype.

HALF DUPLEX MODE (HDX)

Half duplex mode buffers characters as they are input until a full line is typed. A full line consists of either 80 characters or 0 through 79 characters followed by a CR, ESC, or LF. Rubout will delete the last character in the buffer (and on the screen), while $\Delta U({\rm control}\ U)$ will cancel the entire line. Once a line is complete, the buffer may be passed on to the user program.

BLOCK MODE

In block mode, the user can generate an entire block of data using all the editing capabilities of the intelligent terminal system. By inputing the XMIT (end of text) code (\(\int D \)), all the data on the screen entered since the last XMIT code is sent to the user program. Examples of editing commands include:

- Programmable wrap around or scroll
- Insert/delete line
- Insert/delete character
- Horizontal and vertical tab
- Cursor motion and cursor home commands
- Programmable display line length.

2795 BATES RD., MONTREAL, QUE. H3S 1B5, CANADA TEL.: (514) 481-6838 or 735-1182 TELEX: 05-825651

SUMMARY OF MTX-GRAPH SOFTWARE PACKAGE

The MTX GRAPH software package is designed for use with the Matrox ALT-256 graphics display. The package is configured as a series of callable sub-routines. The MTX GRAPH package occupies memory locations 0104 to 04FF (Hex). The package incorporates the following features:

- 1. Variable Resolution: The display resolution can be selected to be 256 x 256; 128 x 128; or 64 x 64; by software command.
- Point Plot: Any arbitrary point can be displayed by specifying X-Y coordinates. Dot size depends on the resolution selected.
- Line Vector Graphics: Line can be drawn by specifying the two end points.
- Alphanumeric Display: A full ASCII character generation routine is incorporated. Control characters are correctly interpreted. Characters can be positioned anywhere on the screen.
- 5. <u>Animation Synchronization</u>: This feature allows the user to generate animation synchronization at line rate.
- Color Option: The software package will support a 3 card color/grey scale system.

More detail on the above is contained in the MTX GRAPH user manual.

A second program supplied is intended for demonstration purposes. The program utilizes the MTX GRAPH sub-routines to create a continuous live action graphics display.

The paper tapes are supplied in Imsai binary loader compatible format. A listing of the loader and instructions for its use are provided with the manual.

The Imsai loader should be used to load first MTX GRAPH and then the demo program. Both must be co-resident to use the demonstration program. The ALT-256 should be jumpered for address 10-13 (hex) and data bit DØ. (jumpers A2, 3, 5, 6, 7 set to Ø, A4 set to 1. See manual P9.) Start the computer at location 0500 Hex. Sit batk and watch the show. The demonstration program will pause whenever the data switches are set to 01 (hex).

NOTE: Old versions of the ALT-256 require the following hardware change to work with this software package: (units shipped prior to Aug. 1/77). Tie A3 and All pin 4 to -5V with jumper wires soldered directly to the artwork.

PRICE: \$25.00 for MTX GRAPH manual plus binary paper tapes of MTX GRAPH and demo program.

2795 BATES RD., MONTREAL, QUE. H3S 1B5, CANADA TEL.: (514) 481-6838 or 735-1182 TELEX: 05-825651 MTX-256

MTX TV CRT CONTROLLER FAMILY

GRAPHIC DISPLAY

GRAPHICS

COLOR / GRAY SCALE

APPLICATION NOTE

by
B. MATIC and L. TROTTIER

April 1977

*MATROX products covered by Canadian and foreign patent and/or patent pending.

MTX-256 GRAPHIC DISPLAY APPLICATION NOTES

INTRODUCTION

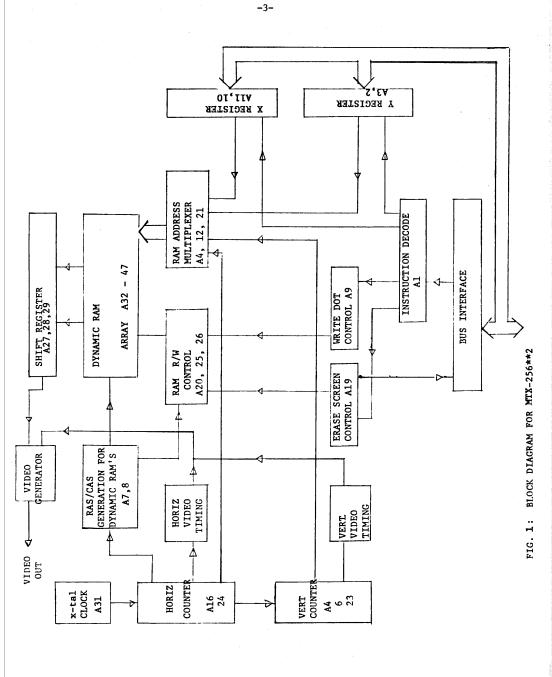
The MTX-256 is a single PC board which can be used for a variety of black and white or color graphic systems. Very low cost, versatility, high speed and extreme simplicity in interfacing in hardware and software makes the MTX-256 an ideal solution for any uP or minicomputer application requiring a graphic display.

Each card has its own built-in TV sync generator. The sync generator can also be synchronized to external TV sync signals. This feature is extremely useful for applications requiring more than one bit per pixel (grey scale or color). Multiple cards are required for this application (up to 24 identical cards).

Each card provides a number of video signals which can be used to drive a TV monitor or TV set directly. Jumpers on the card allow conversion between American and European TV standards.

Interfacing to a particular uP or minicomputer is very simple and requires a minimum of additional hardware. Furthermore, a number of different versions of the MTX-256 are available which plug directly into some of the most popular computer buses (Altair-Imsai, PDP-11, SBC-80). The MTX-512 family of graphics cards features resolutions of 256 X 256; 256 X 512; 512 X 512 and 256 X 1024. Bus compatibility for the Digital Equipment PDP-11, LSI-11 and Intel SBC-80 is featured. Although written specifically for the MTX-256 card, the principles described in this application note may be applied to all Matrox graphics products.

THEORY OF OPERATION


The MTX-256 has four major functional blocks: The TV sync generator, scanning circuitry, cursor and interface electronics, and a 65,536 X 1 internal refresh memory. (See Fig. 1).

The sync generator is formed of a crystal oscillator and a divider chain which produces all timing signals for the memory scanning as well as horizontal and vertical sync. The TV sync generator can be programmed by jumpers for the European or American TV standard.

The scanning circuitry consists of address multiplexers which provide the proper address, R/W and clock signals required for the refresh memory.

The refresh memory has 16 $4\mbox{K}$ dynamic memories (4096, 16 pin) organized as a 65,536 X 1 bit memory.

The cursor control section consists of two 8 bit latch/up/down counters which are loaded by the uP. The interface electronics incorporates an instruction decoder which determines the internal operation to be executed. The uP can load data into the MTX-256 without interference regardless of the position of the TV electron beam, since the TV scan, dynamic memory refresh and write are internally synchronized.

PIN ASSIGNMENT FOR STANDARD MTX-256**2 (44 PIN CONNECTOR)

PIN	NAME	COMMENT SIGNALS FROM UP
N	DO	Data input bit 0. Directly connected to the uP data bus.
12	D1	Data input bit 1.
P	D2	Data input bit 2.
13	р3	Data input bit 3.
R	D4	Data input bit 4.
14	D5	Data input bit 5.
S	D6	Data input bit 6.
15	D7	Data input bit 7.
6	DDO	Refresh memory video data bit input. Can be connected by jumper to one of data bus bits. For a single MTX-256 is normally connected to DO.
17	CS	Chip select (high), selects the MTX-256 in the uP address space.
U	cs	Chip select (low).
v	MAØ	MTX-256 Address bit Ø.
18	MA1	MTX-256 Address bit 1.
T	R∕₩	Read/write pulse (low for write)
		SIGNALS TO uP
М	READY	Flag signal from MTX-256. Goes low during a write operation (write dot) into location \emptyset . (3.3 usec max). Can be used as a busy flag if required.
11	READY LOAD	Flag signal output. Goes low during a write operation (clear screen) into location 3 (33 msec max). Can be used as a busy flag if required.
		CONTROL SIGNALS
A	M/S	Master/slave control input. When grounded, the MTX-256 will become a master card and it will supply its internal clock and sync reset outputs to all other slave cards. When open (high) the MTX-256 becomes a slave card and it will accept external control signals. (M/S must be grounded if only
		one MTX-256 is used).

PIN	NAME	CONTROL SIGNALS
В	Dot Clock	Bi-directional dot clock input/output (7 mHz) (depends on the M/S control input.).
2	RESET H	Bi-directional horizontal reset input/output. (80 nsec negative pulse which synchronizes horizontal counters on all slaves.
4	RESET V	Bi-directional vertical reset input/output. (80 nsec negative pulse which synchronizes vertical counters on all slaves).
1	VE	Vector plot enable input. When grounded enables vector plot. When high (open) disables vector plot. Allows user to use all 8 data bits as dot intensity/color if vector plot is disabled.
		SIGNAL TO TV MONITOR (COMPOSITE)
8	VDO	Composite video output. Can be directly connected to TV monitor video input via 75 ohm cable.
		SIGNALS TO TV MONITOR (SEPARATED)
5	TTL VIDEO	Serial video signal from refresh memory. (TTL level, high-white, low-black). It can drive directly a TTL compatible TV monitor video input or it can be used as bit of video information in a color/grey scale system.
K	SH	Horizontal sync (positive TTL pulse). It can be used to drive the TV monitor horizontal deflection circuit or it can drive an MTX-1632SL alphanumeric VRAM.
9	sv	Vertical sync (positive TTL pulse). It can be used to drive the TV monitor vertical deflection circuit or it can drive an MTX-1632SL VRAM.
		ADDITIONAL VIDEO SIGNALS
10	BV	Vertical blank output. This signal is low during vertical retrace (about 3 msec.) It can be used as a flag for special video effects. (dynamic animation, frame switching, etc).
н	ALPHA	Alphanumeric TTL video input from MTX-1632SL. If used, alphanumeric data from the MTX-1632SL is superimposed on the graphic picture. (Grounded when not used. Otherwise screen will be blank).

PIN	NAME	POWER SUPPLY
X,20	+5V	
E	+12V	
3,C	GND	

The above pin assignments differ somewhat for the other cards in the Matrox graphics family. Consult ALT-256 and MTX-512 family data sheets for exact pin assignments. (See Fig. 2,3, and 4 for typical MTX-256 interfaces to the 8080, 6800 and HP 21XX computers).

MIXING ALPHANUMERIC AND GRAPHIC VIDEO

Certain applications require an alphanumeric text in addition to graphics. This can be done in two ways.

By using software, the uP can plot characters from its ROM character generator (part of the uP program). This method allows great flexibility in character set, size and position of text. However, it requires a considerable uP overhead (time and memory) since a character has to be plotted dot by dot, the method is most useful for special alphabets such as Chinese, Japanese, Arabic, etc. The Matrox 8080 based MTXGRAPH software package already includes this capability.

The second method uses the MTX-1632SL alphanumeric VRAM. The VRAM is slaved to the MTX-256 and its video is added to the graphic video to produce a combined graphic and alphanumeric picture. (See Fig. 5). The MTX-256 can itself be slaved to the MTX-2480 text display board (see Fig. 5A). The result is a powerful high resolution graphics/alphanumeric display. Multiple graphic cards can be synched to a single 2480 for color/grey scale applications.

This method gives very fast writing and minimum uP overhead. The method is limited to the extent that the character set and position screen position is fixed. The MTX-1632SL must also be interfaced separately to the host computer system. (See Fig. 6).

INTERFACING MULTIPLE MTX-256 CARDS TO A uP

Interfacing multiple MTX-256 to a uP is very similar to interfacing a single MTX-256. The main difference is the way in which data is being written into the refresh memory. There are three basic ways:

- a) All cards have the same chip select but the DDO (refresh memory data bit) video bit is connected to different uP data bus bits for each card. This method allows a single instruction load of all bits making up a single pixel. Data is written into all cards simultaneously. If the vector plot function is disabled, the 4MSB can be used for DDO. This allows up to eight cards to share one chip slect decoding.
- b) Each card has a different chip select decoding. (DDO can be connected to the same data bus bit). This method allows the uP to write into each card independently one at a time. The method can be useful for superimpostion of several images or for video effects such as a background change or motion.

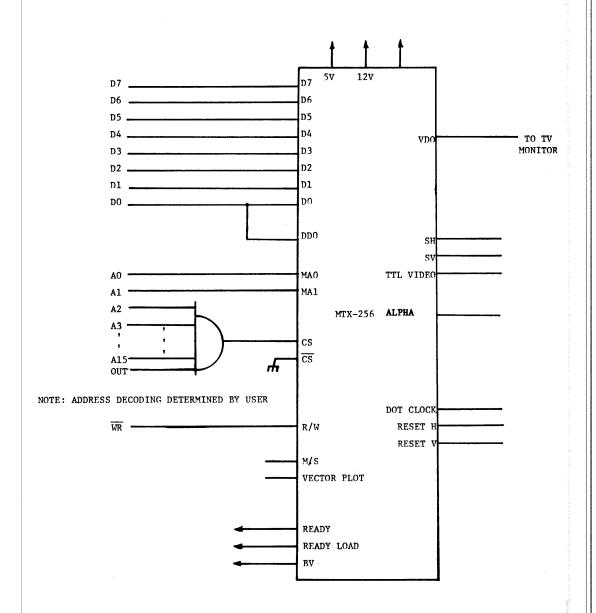
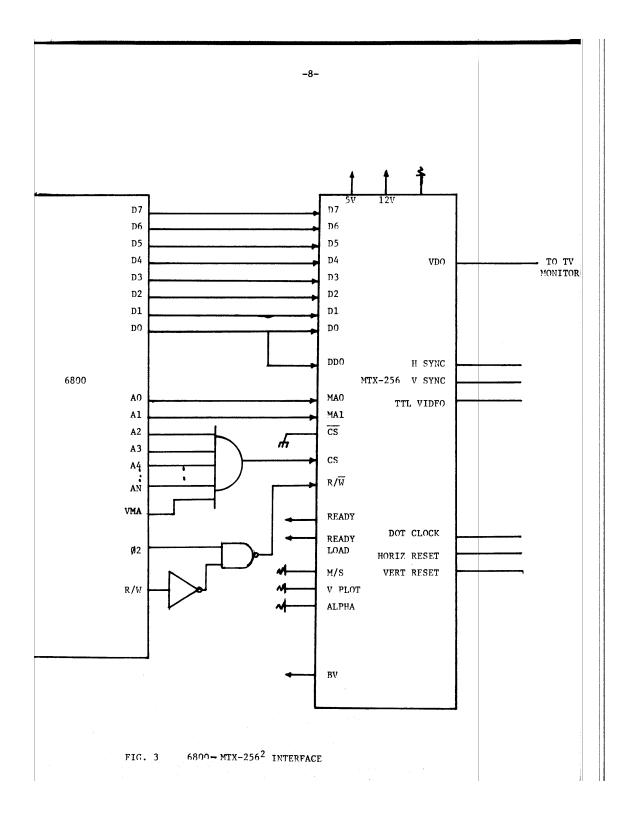



FIG. 2 8080A - MTX-256 INTERFACE

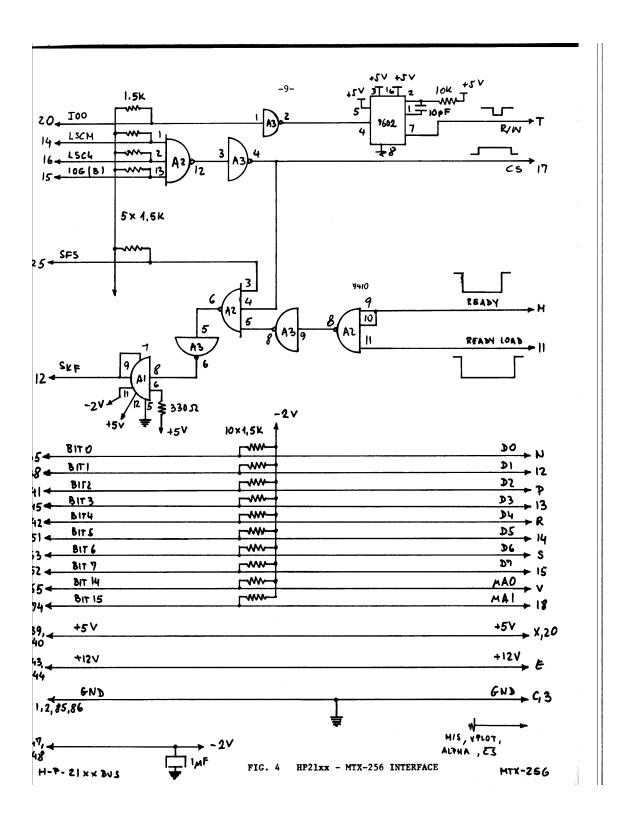


Fig. 5A - MTX-1632SL MTX-256 SYNCHRONIZATION

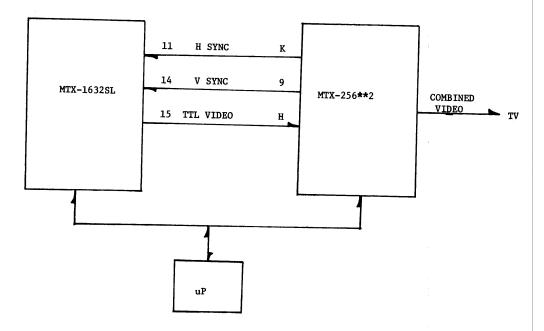
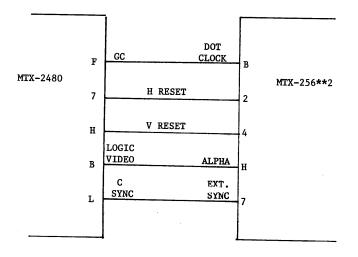
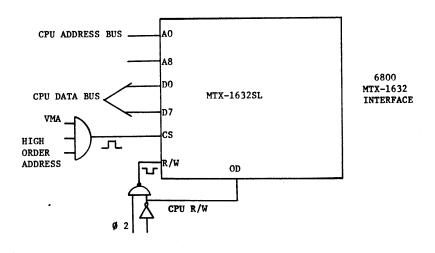




Fig. 5B - COMBINING THE MTX-2480 AND MTX-256 DISPLAYS

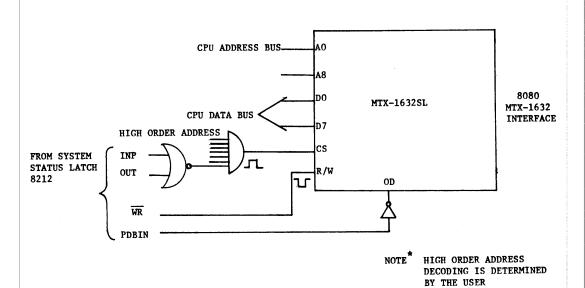


FIG. 6 MTX-1632SL TO 6800 AND 8080 uP INTERFACE

c) A combination of methods a) and b).

MASTER/SLAVE CONFIGURATION

When multiple cards are used, they have to be synchronized to a common set of sync signals. This is easily accomplished by selecting one MTX-256 to be master and all others as slaves (M/S control input).

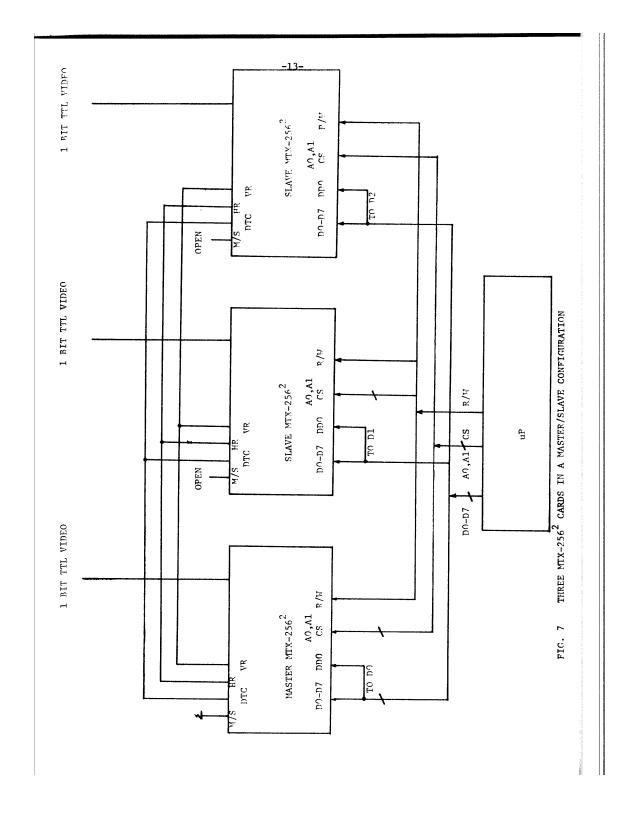
The master card will supply three signals to all slaves: Dot clock, horizontal and vertical reset. (Up to 23 cards can be directly driven by one master card). These three lines are bi-directional input/output controlled by the M/S control input.

Fig. 7 shows an example of three cards in a Master/Slave configuration. (Note that all three cards have a common chip select, but the DDO signals of each card go to different data bus bits).

Each card generates one bit of video information which can be used to produce a grey/scale or color video signal.

GREY/SCALE GRAPHIC SYSTEM

The circuit in Fig. 7 can form the basis for an eight level grey scale system when combined with the circuit in Fig. 8. Three bits of video information are converted to an analog voltage and horizontal and vertical sync is added to the resulting signal. The circuit in Fig. 8 is satisfactory for up to three bits of video information. The circuit is basically a buffer amplifier which sums the TTL video signals from three boards with different weights. Note that weighting resistors R1, R2, and R3 can be adjusted for the desired grey scale steps.


For more bits a digital to analog converter should be used. (Fig. 9).

RGB COLOR GRAPHIC SYSTEM

The simplest graphic color system can be obtained by producing three separate video signals which then directly drive the red, green and blue guns of a color monitor. RGB monitors have separate R, G, B inputs. Color monitors designed for an encoded composite video signal can usually be modified to drive the guns directly. (see fig. 10, 11.)

GENERATING A COMPOSITE COLOR GRAPHIC SYSTEM

The method for generating color graphics described in the preceeding section applies only to RGB monitors. RGB monitors are quite expensive. Most monitors and TV sets are designed to accept a standard composite color signal and are less expensive. While a standard monitor can be modified for RGB operation, this is sometimes quite difficult. It may be more practical to generate an encoded composite color signal. The circuits in figures 12 and 14 illustrate how to do this.

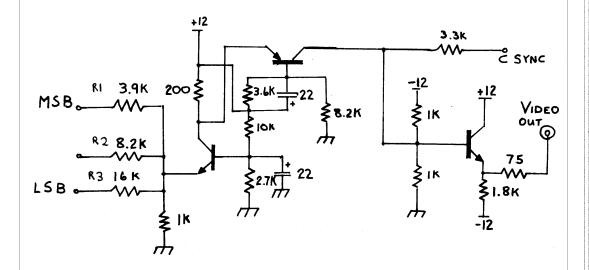


FIGURE 8 - HIGH SPEED 3 BIT VIDEO D/A CONVERTER FOR GREY SCALE IMAGING

7 mHz DATA RATE

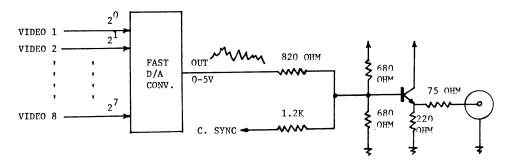
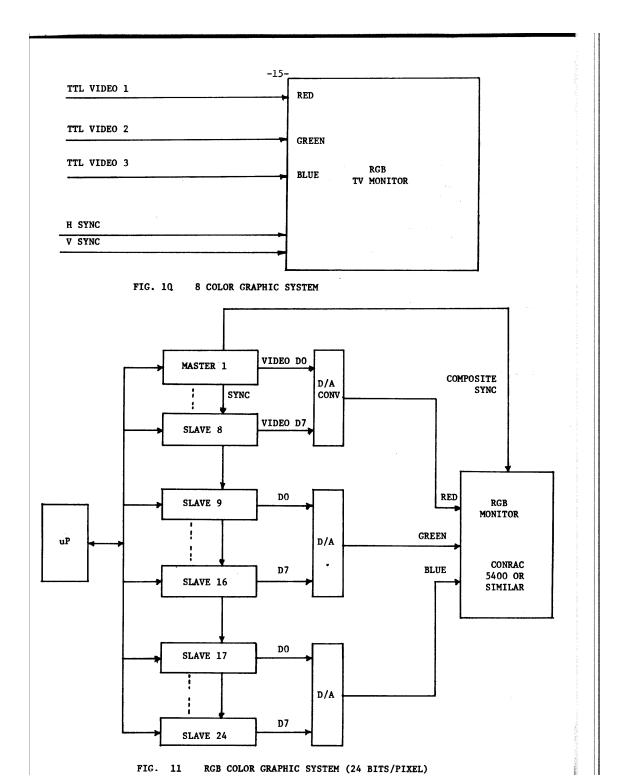



FIG. 9 256 LEVEL CREY SCALE

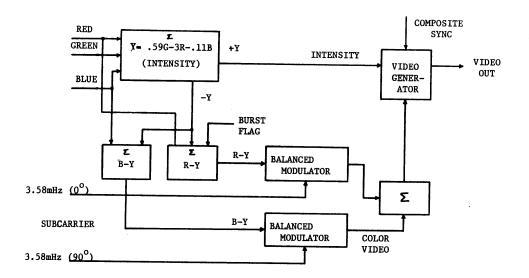


FIGURE 12 - BASIC NTSC CHROMA ENCODER

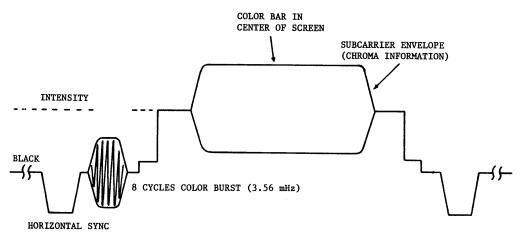


FIGURE 13 - ONE LINE OF COLOR VIDEO SIGNAL

Note that color resolution is sacrificed to some extent by using an encoded composite color signal, due to bandwidth reduction. The first step is to form the standard Y (Luminance) R-Y and B-Y signals. (See Fig. 12). The Y is generated according to the formula Y = 59G + .30R + .11B. The R-Y and B-Y signals are fed to dual balanced modulators. The modulators are supplied with a 3.579545 mHz color subcarrier. The B-Y signal should have a burst flag pulse superimposed on it. The summed output of the two balanced modulators is the chroma component of the composite video signal. The addition of luminance plus sync completes the composite color signal. (See Fig. 13).

A detailed discussion of color television principles is beyond the scope of this application note. More information can be found in numerous reference texts such as:

Color Television Fundamentals M.S. Kiver McGraw Hill 1964

A complete diagram for generating a composite color signal from RGB inputs is shown in Figure 14. Note that the entire color encoding is done by one chip: the LM1889 from National Semiconductor.

The circuit accepts 0-4 volt, R,G,B analog inputs and TTL level composite sync and burst flag signals. The subcarrier input requires a 1-5V p-p signal at the chroma subcarriers frequency of 3.579545 mHz.

Two outputs are provided: a standard composite color video signal and a modulated RF signal. The latter can be fed directly via 75 Ohm cable to the cable input of an ordinary color TV set.

The theory of operation of the color encoder is as follows. The red and blue inputs are buffered, level shifted by Ql and Q2 and fed directly to pins 2 and 4 of the LM1889. The luminance signal Y is formed by adding the weighted R, G,B inputs in common base stage Q3 and fed to pin 3 of the LM1889. The chroma input is phase shifted \$\frac{1}{2}45^0\$ and fed to pins 1 and 18 of the LM1889. The LM1889 contains dual balanced modulators which generate the R-Y and B-Y chroma signals using the above inputs. Note that the color burst is generated by impressing a negative burst flag signal on pin 4.

Sync and luminance signals are added to the chroma signals through pins 13 and 12. The composite color video signal output at pin 11 is fed to common base stage Q7 and level shifted to drive emitter follower output driver Q8.

Switch S1 selects either the composite video or RF output. The RF output can be tuned to Channel 2 or 3 by adjusting C1 or the turns spacing of coil L1 (3 or 4 turns or regular solid wire, coil diameter around 3/8 inch).

To test out the circuit connect all required input signals. Observe the video output on a scope. A signal similar to that of Fig. 13 should be observed with the black level at OV. Adjust Rl to null the subcarrier on the sync portion of the signal.

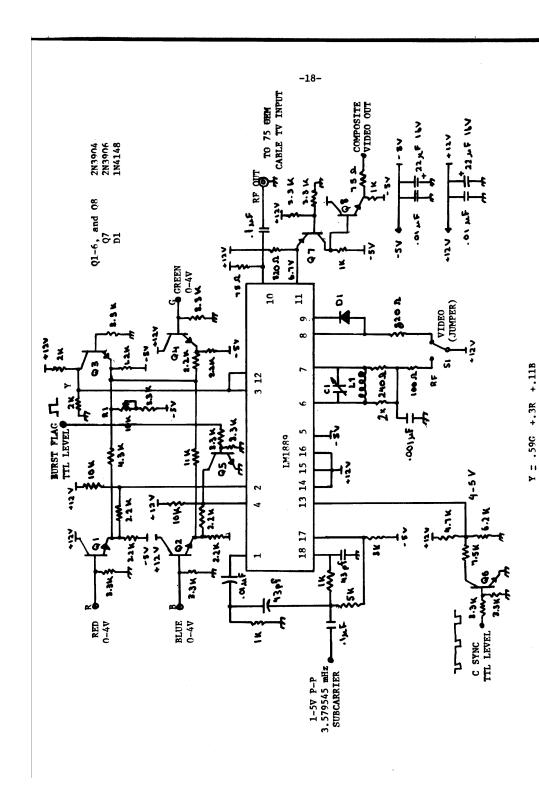


FIG. 14 RGB COLOR ENCODER

For best results, the following points should be observed. The graphics cards should be synchronized to an NTSC standard color sync generator. Sync and subcarrier signals for the color encoder should come from this sync generator. A monitor with a video input is preferred to a TV set. An RGB monitor gives best results where full color resolution is required (due to wider bandwidth than with the composite video type monitor).

SYNCHRONIZING MTX-256 USING EXTERNAL PHASE LOCK LOOP

The MTX-256 built-in sync generator does not conform to the NTSC standard for broadcast video signals. The built-in sync generator generates 262 lines per field non-interlaced in the American Standard version. For broadcasting or video mixing applications, the MTX-256 can be externally synchronized. The MTX-256 must be operated at either the NTSC or PAL standard for best results with the color encoder in Figure 14.

A block diagram for an external phase lock loop is given in Figure 16. The dot clock is replaced by a VCO (voltage controlled oscillator). The VCO is controlled by a phase comparator driven by the MTX-256 horizontal sync and external horizontal sync. This forms a phase locked loop synchronizing the horizontal scanning circuits of the MTX-256 to external horizontal sync. The vertical sync circuits of the MTX-256 are synchronized to a reset pulse derived from external vertical sync. A schematic diagram implementing this approach is given in Figure 17.

 $\underline{\text{All}}$ MTX-256 cards in an external sync system are jumpered as $\underline{\text{slaves.}}$ One card is selected as a quasi-master and its horizontal sync signal is used as an input for the PLL. The H reset signal is taken directly from U30 pin 6 of the quasi-master and fed via buffer U3-11 in the external sync circuit to all the H reset inputs of the graphics cards.

In the case where the MTX-256 is synchronized to an NTSC or PAL standard interlaced sync generator, the composite video output (VDO pin 8) of the MTX-256 cannot be used directly. The TTL video output of the MTX-256 should be mixed with the EXTERNAL composite sync using a circuit similar to Figure 8 or 9.

Alternatively the composite video circuit built into the MTX-256 can be used for the same purpose but the internal composite sync has to be disconnected. (The internal sync coming from pin 8 of A31 has to be disconnected from R7 and the external interlaced sync fed to R7). Composite video output VDO can then be used.

C1 varies the frequency of the VCO and should be adjusted for lockup of the PLL. C1 and R1 adjust the horizontal centering of the graphics video. The vertical centering can be adjusted by connecting U5 to different taps off counter U6. (Digitally controlled vertical delay.)

Note that the PLL VCO is sensitive to noise induced jitter. Follow good layout practices including short signal paths and proper grounding and power supply bypassing.

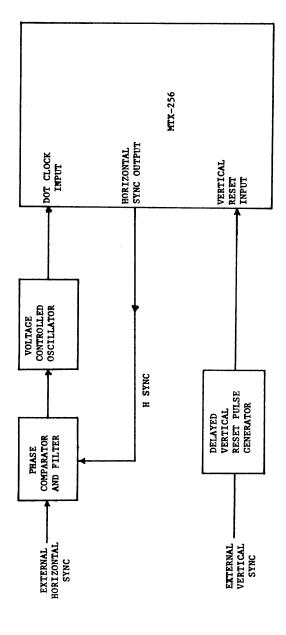


FIG. 16 SYNCHRONIZING MTX-256 USING EXTERNAL PHASE LOCK LOOP - BLOCK DIAGRAM

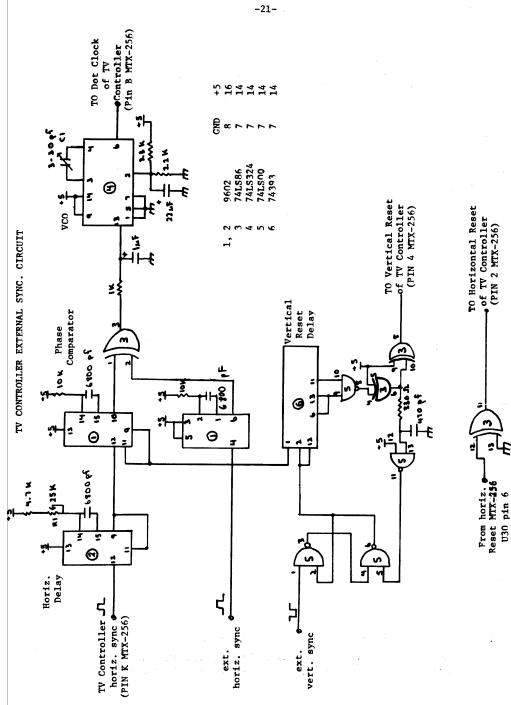


FIG. 17 SYNCHRONIZING MIX-256 USING EXTERNAL PHASE LOCK LOOP - SCHEMATIC

LIGHT PEN SYSTEM USING MTX-256

A variety of low cost, extremely flexible light pen graphic systems can be built using the MTX-256 and a simple inexpensive light pen. There are two ways a light pen system can be built.

HARDWARE METHOD

Using the Dot clock and horizontal and vertical reset signals, a high speed light pen system can be built which offers a minimum of uP overhead time and fast data rate. (Fig. 18) X (9 bit) and Y (8 bit) counters track the position of the electronic beam. When the light pen detects a white dot at its position, a pulse is generated. This pulse stops the X and Y counters at the present dot address and at the same time interrupts the uP. This method requires a fast light pen (100 nsec for response time) due to the high dot frequency (7 mHz).

SOFTWARE METHOD

Any low cost, low speed phototransistor or photodiode can be used as a light pen if the raster is generated by the uP. The scanning speed is in effect controlled by software. The uP selectively illuminates one dot at a time and it checks the light pen output to see if the sensor is in the front of that dot. The computer scans all possible screen positions until the position of the light pen is found. This method requires a minimum of hardware and allows great flexibility in the scanning algorithm.

JUMPER OPTIONS

Each MTX-256 can be programmed for American, European, or American Non-standard configuration.

European and American Non-standard will produce a 256 X 256 dot raster with aspect ratio 1:1 (same distance between two dots in horizontal and vertical direction). The raster is positioned in the middle of the screen. The dot clock is 7.0536 mHz. American standard produces a 256 X 240 (vertical dot raster with a 4:3 aspect ratio. (The raster fills the entire screen). The dot clock is 5.5334 mHz.

Jumper Positions: for the MTX-256**2 standard selection (W1 - W23)

American Standard: (262 vertical lines; 60 Hz; 240 vertical video lines)

Jumpers in: W2 W4 W6 W8 W11 W13 W15 W17 W18 W20 W23 Jumpers out: W1 W3 W5 W7 W9 W10 W12 W14 W16 W21 W22

American Non-Standard: (280 vertical lines; 60 Hz; 256 vertical video lines)

Jumpers in: W1 W4 W5 W9 W10 W12 W14 W17 W19 W21 W22 Jumpers out: W2 W3 W6 W7 W8 W11 W13 W15 W16 W18 W20 W23

European Standard: (312 lines; 50 Hz; 256 video lines)

Jumpers in: W1 W3 W5 W7 W11 W12 W14 W16 W19 W20 W22 Jumpers out: W2 W4 W6 W8 W9 W10 W13 W15 W17 W18 W21 W23

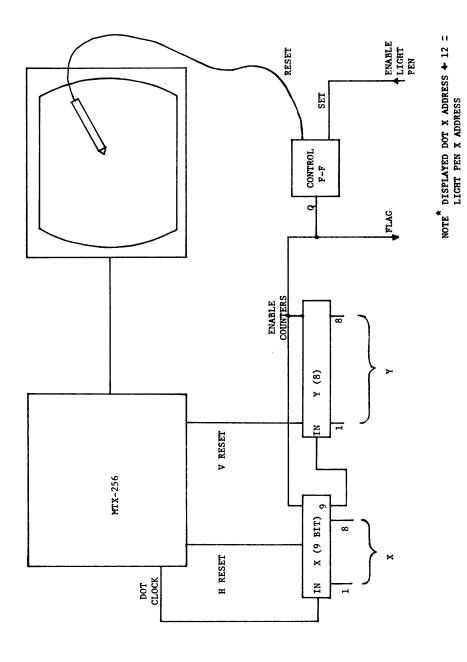
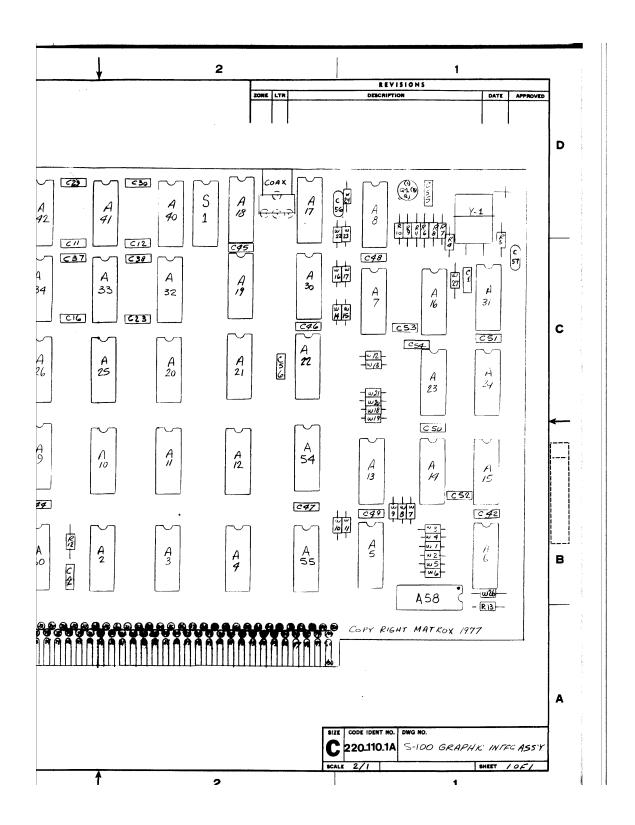
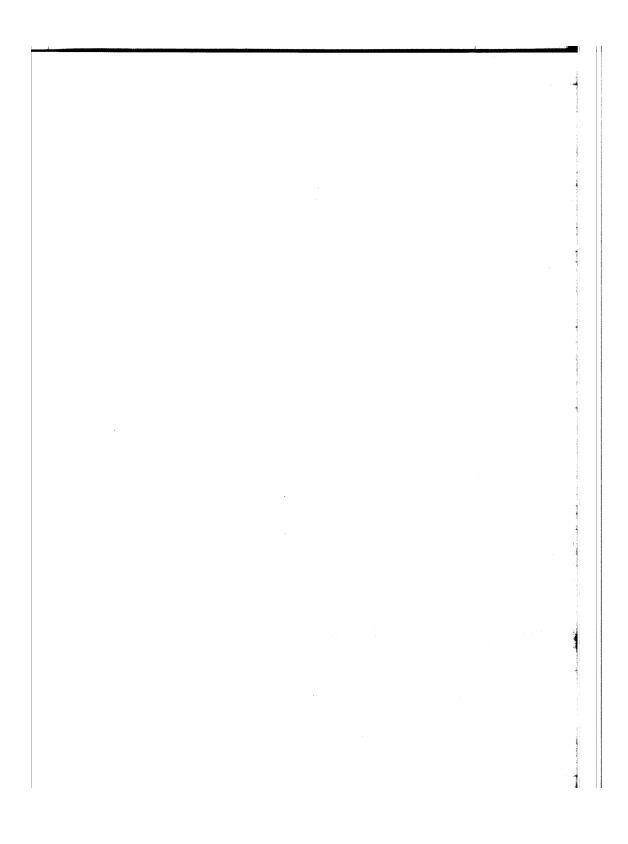


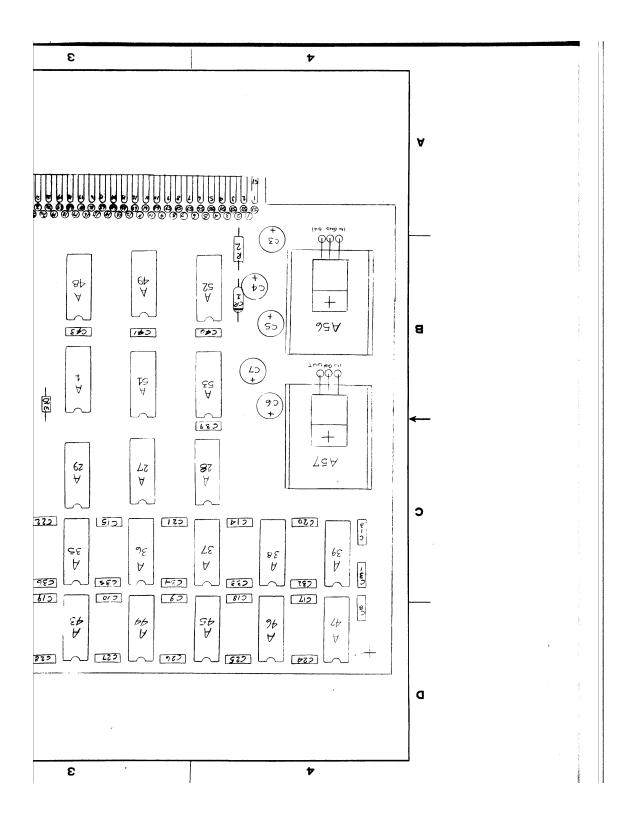
FIG. 18 LIGHT PEN SYSTEM USING MIX-256

OTHER PRODUCTS AVAILABLE

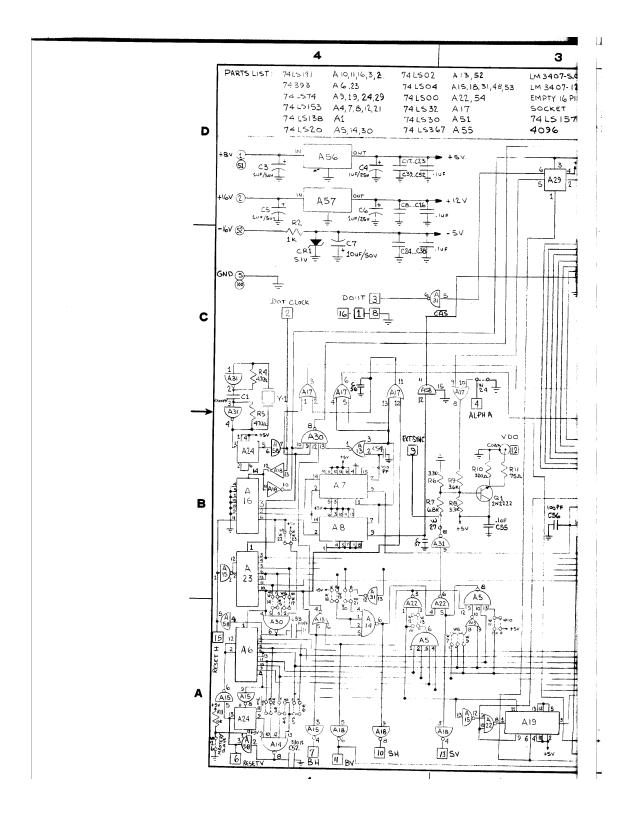
The Matrox 512 graphics family incorporates the revolutionary new concept of a variable resolution graphics on a single controller card. Any card in the 512 family can be user programmed to produce a dot matrix of 256 X 256; 256 X 512; 512 X 512; or 256 X 1024 points. The variable resolution feature is possible because of the new generation of compatible 16 pin 4K, 8K and 16K dynamic RAM's. The resolution is changed by simply plugging in the correct set of RAM's and a couple of PROM's. The first cards in the 512 family are designed for the following buses: the Digital Equipment PDP-11 (MDC); LSI-11 (MLSI) bus and the Intel SBC-80 (MSBC) bus. The manuals provide sufficient data such that either card can be interfaced to any mini or micro computer.

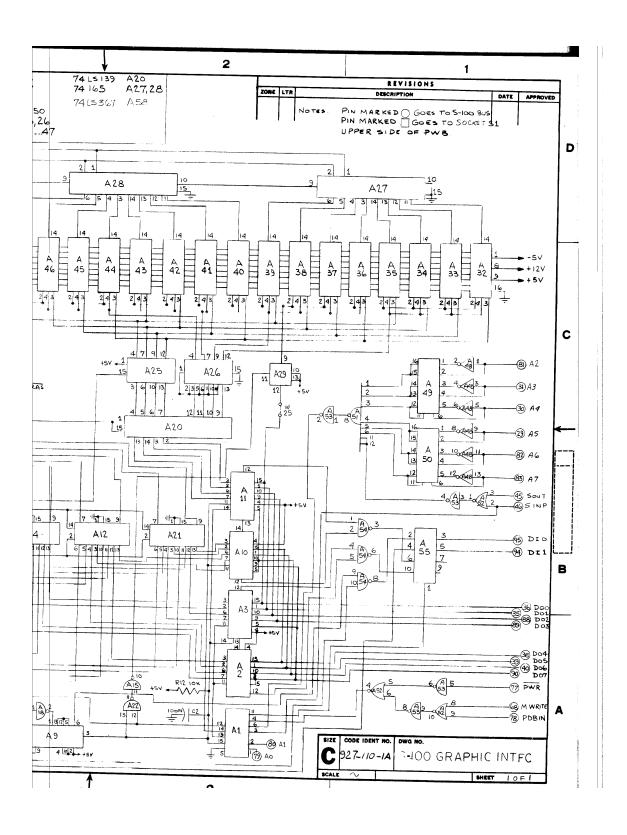

Other important features of the 512 family include the ability to stack multiple cards for color/grey scale applications, X-Y addressing, single command erase, refresh memory read, and scroll. A compatible 24 X 80 text display is available for the LSI-11 and SBC-80 buses. A complete software package is available for the MSBC-256 operated in 256 X 256 resolution mode. Typical applications of the 256 and 512 family include process control systems, computer aided design, business and educational displays, medical displays, curve plotting and image processing. The 512 cards can also be used to make intelligent stand alone graphics terminals when combined with LSI-11 or SBC-80 mainframes.


A complete software package for 8080, 8085, and Z-80 microcomputers for 256 X 256 resolution Matrox graphics controllers is available. These include specifically the ALT-256 and MSBC-256 (S-100 bus and Intel SBC-80 bus respectively) cards. The software package features point and vector plot, software selectable resolution, alphanumeric generation and animation synchronization. A similar software package for the full range of resolutions will be available for 8080 and PDP-11 based systems in the first quarter of '78.


The versatile Matrox graphics family can be used in virtually any application where CRT graphics are required. The low cost of the family is a fraction of that of competing systems.

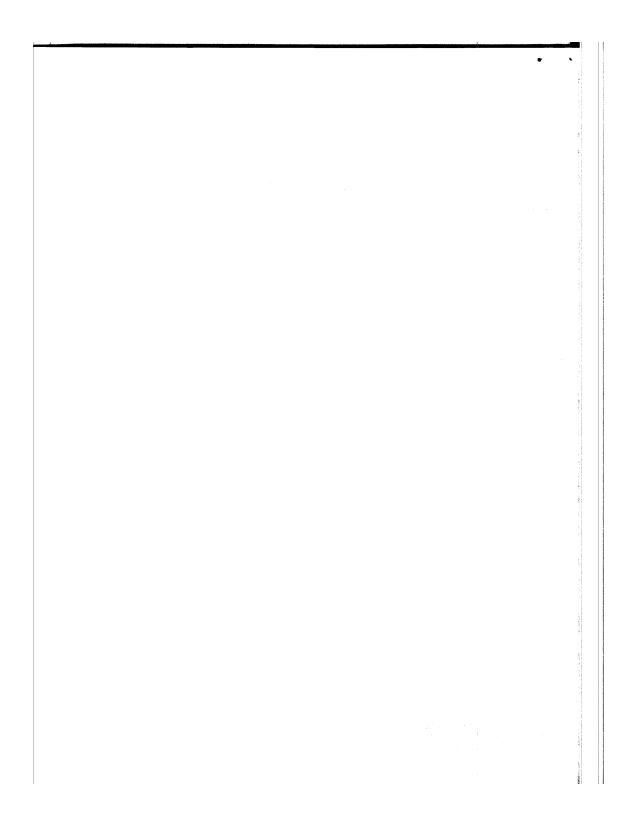
Typical application areas include process control systems, computer aided design, business and educational displays, displays for research applications, curve plotting, medical displays and image processing.


Matrox offers a complete line of alphanumeric and graphic display interfaces for micro and minicomputers. We have a product for almost any application.



	ente entre un estimate de la companya de la company	
		And the second s
		-
		4
		Supplied to the supplied of the supplied to th

	+
	1
	i .
	: : :
	1
	* 1


ALT — 256 ** 2 ALTAIR — IMSAI BUS COMPATIBLE GRAPHIC DISPLAY INTERFACE

MTXGRAPH USER'S MANUAL

AUGUST 1977

Copyright (c) 1977
Dr. Vincent C. Jones

ALT — 256 ** 2
ALT BLE GRAPHIC DISPLAY INTERFACE $\boldsymbol{\mathsf{E}}$ SPECIFICATIONS FOR ALT-256**2 GRAPHIC DISPLAY INTERFACE

INTRODUCTION: The ALT-256 low cost high resolution graphics interface can be used in

a wide range of applications. Typical examples range from video games like electronic etch-a-sketch, to industrial uses such as computer image processing. The unit has 4 times the resolution of other \$100 bus graphics and includes features such as expansion for color/grey scale, external sync capability, on card refresh memory and direct S100 bus compatibility. The ALT-256 is compatible with the ALT-2480 permitting a

powerful combined alphanumeric/graphic display.

RESOLUTION: 256 X 256 dot raster.

ACCESS TIME: 3.4 usec. max /dot: each dot induvidually addressed

ERASE: Single instruction erases screen: 33 msec. max.

REFRESH MEMORY: Built-in on the card: 65,536 X 1 bit memory

> BUS: S100, plugs directly into Altair-Imsai bus

Up to 24 bits/pixel (2²⁴ different colors or grey levels/dot) by using COLOR/GREY SCALE:

identical multiple boards.

DIMENSIONS: 9" X 5"

> POWER: 8V, 600mA; 18V, 100mA; -18V, 10mA, on board regulators

OUTPUTS: Composite video; 75 Ohm, x-tal controlled: TTL video, horizontal and

vertical syncs and blanks outputs.

SYNCHRONIZATION: Built-in TV sync generator (x-tal controlled). Free running or external

sync capability.

TV STANDARD: American standard (262 vertical lines, 60 Hz; 240 vertical video lines)

4:3 aspect ratio; American Non-standard(280 lines, 60 Hz; 256 video lines), horizon al freq. = 16.8 KHz. (1:1 aspect ratio); European (312, 50 Hz

1:1 aspect ratio). Non-interlaced picture. Standard selectable on the board

MONITOR: Any standard TV monitor or modified TV set.

REMOTE DISPLAY: 75 Ohm cable, up to 2,500 feet,; multiple monitors, up to 25 TV's.

ADDRESSING: Four output ports and one input port built-in. Port address selectable on

X-Y PLOT MODE: X coordinate (output port 1, 8 bit registor); Y coordinate (output port 2,

8 bit registor). Data port (output port \emptyset , 8 bit registor). Outputting data H" \emptyset 1" to port H" \emptyset 0" writes a white dot at the point addressed by the

X and Y registors. Writing data $H''\emptyset\emptyset2$ to port $H''\emptyset\emptyset''$ writes a black dot.

ERASE: Outputting data to port 3 will erase the screen. Data $H''\emptyset\emptyset''$ will set all

bits to 0 (black). Data H'01" will set all bits to 1 (white.)

DISPLAY STATUS: Available by reading input port \emptyset . Data bit DO = graphic interface busy

flag: D1 = vertical blank.

DOCUMENTATION: 12 page manual; complete description, circuit schematics and a test program.

Additional color/grey scale application note available on request.

WARRANTY: 90 days parts and labor.

SOFTWARE: A complete software package is available for \$28.

ORDERING: Available directly from Matrox Electronic Systems Ltd., Montreal or from

franchised distributors. Specify options desired. Delivery 2-4 weeks.

TABLE OF CONTENTS

- 1. Introduction
 - 1.1 Display Coordinates
 - 1.2 Functions Provided
- 2. Using MTXGRAPH
 - 2.1 Loading and Calling Conventions
 - 2.2 Display Controls
 - -"DOT" Size
 - -Character Spacing
 - -Carriage Controls
 - -Color Selection
- 3. Subroutine Descriptions
 - 3.1 INITG
 - 3.2 PAGE
 - 3.3 CURSOR
 - 3.4 DOT
 - 3.5 LINE
 - 3.6 CHAR
 - 3.7 ANIMAT
- 4. Available User Adjustments
 - 4.1 Multiboard Systems
 - 4.2 Animation Warning Message
 - 4.3 Changing I/O Ports
- 5. Sample User Program
- 6. Loading & Running MTX GRAPH with the Demo Program
- 7. Using the IMSAI Binary Loader
- 8. Listings.

1. INTRODUCTION

MTXGRAPH is a complete graphics support software subroutine package for the Matrox ALT-256**2 graphic display. It provides for initialization, screen erase, single point display and erase, endpoint vector line generation and deletion, and character generation and deletion. Total memory required is less than 1K (1024) bytes plus program stack. The standard package is configured to be totally compatible with the 8080/Z80 Graphics Software Protocol published in ______ Byte magazine. Multiple board combinations of ALT-256**2's can be supported up to a maximum of eight bits of color/grey scale information.

1.1 Display Coordinates

For greatest flexibility, all subroutine interfaces use standard Cartesian Coordinates with the display occupying the first quadrant. As shown in figure 1-1, the origin (X = 0, Y = 0) is defined as the bottom left point on the display. X increases in value to a maximum of 255 at the right edge while Y rises to a maximum of 255 at the top. If the ALT-256**2 is jumpered for American Standard scan (240 lines displayed) the lowest Y coordinate displayed is 16 and points with Y coordinates from 0 to 15 cannot be seen.

1.2 Functions Provided

Seven subroutines are provided for user programs. They are:

- 1) INITG Initialize the graphics software subsystem to standard defaults.
- 2) PAGE Next page, i.e. erase the entire screen.
- 3) CURSOR (X,Y) Position the cursor at the point X,Y.
- 4) DOT Set the point (or points if in a lower resolution mode) defined by the cursor to the currently selected color.
- 5) LINE (X,Y) Set the "DOT"s along the line connecting the current cursor position to the point X,Y to the currently selected color. Leave the cursor set to X,Y.

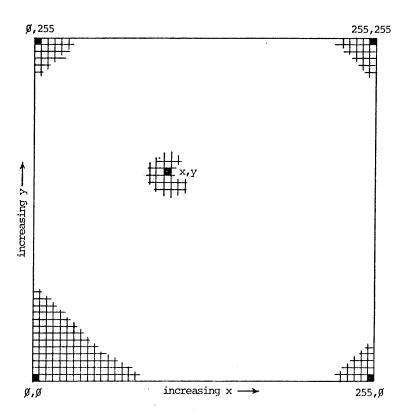


Figure 1-1 Standard Display Coordinate System

- 6) CHAR (VAL) Display the character whose ASCII value is VAL at the current cursor position using the currently selected color.

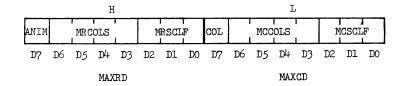
 Leave the cursor at the next character position. Control characters provide for setting the current color, selecting fixed or proportional character spacing, setting "DOT" size, and all carriage controls.
- 7) ANIMAT Pause until the start of the next vertical blanking period.

2. USING MTXGRAPH

The MTXGRAPH graphics support subroutine package provides all of the commonly used low level graphics routines. With its small size and comprehensive, easily utilized routines, it will quickly become an integral part of every program you write that requires graphics. As an added bonus, it is totally compatible with the graphics software protocol standard published in ______ Byte, allowing the use of all applications software that meets the standard regardless of what display the original software was written for.

2.1 Loading and Calling Conventions

MTXGRAPH is loaded into memory locations 0104 to 04FF(hex). This provides a standard location for the package regardless of memory size. (A lower starting address is not used to avoid conflict with monitors and programs which utilize the first 256 bytes of memory.)


The first twenty-one bytes (0104 to 0118 hex) are the entry points to the different routines as indicated in table 2-1. Except for the INITG routine which overwrites registers H and L, the contents of all registers and flags are preserved.

The routine INITG may be called with the address of the first unused memory location above the program in register pair H,L to indicate available space for refresh buffers. While Matrox displays do not require this information, it is normally included for compatibility. The contents of H and L are replaced by INITG with two bytes describing the display being used (all other registers and flags are left undisturbed). The format for these bytes is given in figure 2-1. The available colors and scale factor fields in the H register describe the display when maximum resolution mode is selected, the same fields in the L register describe the maximum color selection mode.

The available colors field gives the number of colors a point can be written to other than white. If this field is zero, it means the

ROUTINE	VECTOR ADDRESS (hex)	PARAMETERS
INITG	104	Returns display description in H,L
PAGE	107	None
CURSOR	10A	H = X coord; L = Y coord
DOT	10D	None
LINE	110	H = X end coord; L = Y end coord
CHAR	113	A = ASCII value of character
ANIMAT	116	None

Table 2-1 MTXGRAPH Entry Vector Addresses

1 - Delay to start of vertical blanking.0 - Double buffered animation supported.

1 - Display is in color.
0 - Display is black and white. COL =

- Colors (grey shades) in MAXR mode. MRCOLS

- Colors (grey shades) in MAXC mode. MCCOLS

 $-\frac{256}{\text{Display resolution}}$ in MAXR mode. MRSCLF

 $-\frac{256}{\text{Display resolution}}$ in MAXC mode. MCSCLF

Figure 2-1 Display Parameter Definitions

only way to erase what has been written is to page the display. The scale factor field indicates the physical size of display points in standard coordinates. If the X and Y scale factors differ, the larger of the two is used. For example, if a display has 64 lines with 100 points on each, the scale factor would be four, based on the Y axis resolution. For the ALT-256**2, the scale factors are one and each board is one bit in the colors field.

The animation and color fields apply to all display modes. If the animation field is one, then the display supports double buffered animation. Since Matrox displays do not support building one display scene while another is displaying, this field is zero. Therefore, the ANIMAT routine is a delay until the start of vertical blanking to permit synchronizing updates. The color/BW field is self-explanatory. If one, the display is in color, otherwise it is black (grey) and white. Note that this field has no meaning if the number of available colors is zero or one.

2.2 Display Controls

To the maximum extent possible, MTXGRAPH emulates a standardized display device. This standard device displays 256 lines with 256 points on each line. Each addressable point may be set to black, white, red, yellow, green, cyan, blue, or magenta. That is, any of the eight possible combinations of the three primary colors. A three board system therefore is a hardware implementation of the ideal standard display. While MTXGRAPH will support up to eight boards, it is impractical to use the CHAR routine for color control with more than four boards. Larger systems require direct manipulation of the color byte (see section 4.1).

Four standard display modes and one special mode are implemented (table 2-2). Mode zero (MAXR) requests the maximum possible resolution while mode one (MAXC) requests the maximum choice of colors. This allows for displays which offer a trade-off between resolution and color selection. For the ALT-256**2 they are identical. Modes two (R128), three (R64),

MNEMONIC	ASCII	HEX	STANDARD FUNCTION	SINGLE ALT-256**2
			Display Mode	Selection
MAXR	NUL	00	Maximum resolution	256x256 B/W
MAXC	SOH	Ol	Maximum colors	256x256 B/W
R128	STX	02	128 by 128	128x128 B/W
R64	ETX	03	64 by 64	64x64 B/W
RXXX	EOT	04	Undefined	64x64 DOT size with 256x256 placement resolution
			Carriage C	ontrol
BS	BS	80	Backspace (optional)	X = X - 6
HT	${ t HT}$	09	Hor. Tab (optional)	X = (X + 32) MOD 32
LF	LF	OA	Line Feed	Y = Y - 8
TV	TV	OB	Vert. Tab (optional)	Y = (Y MOD 32) - 8
FF	FF	OC	Form Feed	X = 0; Y = -6
CIR	CIR	OD	Carriage Return	X = O
			Character	Spacing
SO	SO	OE	Undefined	Fixed
SI	SI	OF	Undefined	Proportional
			Current Color	Selection
BLK	DLE	10	Black	Black
RED	DCl	11	Red	White
BLU	DC2	12	Blue	White
MAG	DC3	13	Magenta	White
GRN	DC4	14	Green	White
YEL	NAK	15	Yellow	White
CYN	SYN	16	Cyan	White
WHI	ETB	17	White	White
$^{\mathrm{N}}$ O $_{\mathrm{N}_{\mathrm{E}}}$	ETX to GS	18 to 1F	Eight optional colors	White

Table 2-2 Control Character Functions

and four (RXXX) provide the ability to deliberately select larger size "DOT"s. As is implied by the mnemonics, R128 is 128 by 128 resolution with four points in each "DOT" and R64 is 64 by 64 resolution with sixteen points in each "DOT". RXXX combines the 64 by 64 "DOT" size with full 256 by 256 dot placement resolution. This is a nonstandard mode and characters generated in this mode are unreadable. All modes use the full 256 by 256 coordinate system with modes R128 and R64 ignoring the low order bit and two bits respectively. Cursor position is not maintained when shifting to or from modes R64 or R128. (Note that the standard does not require the cursor to be maintained with any display mode change.)

To enhance the readability of textual output, a choice between fixed and proportional character spacing is provided. Default mode (set by INITG) is proportional spacing. This provides a higher character density while actually promoting legibility. Like a newspaper, narrow characters use less space than normal while wide characters take more. Fixed character spacing requires every character to use the maximum width, but also results in vertical alignment of the characters in each line. This is particularly beneficial when using the display as a TV typewriter.

Most of the carriage controls are self-explanatory, however, some of them do have nonstandard effects. Backspace backs up the width of a maximum width character. Consequently it is not generally useable when in proportional spacing mode. Similarly, horizontal tab stops do not match character spacing in either mode. Tabs are set at even multiples of thirty-two "DOT"s across the screen. Finally, form-feed does not erase the screen but only homes the cursor to the upper left character position.

As hinted earlier, there are sixteen controls for setting the current color, one for each of a maximum of sixteen colors. The first eight are the defined standards, the second eight are user assigned. The standard colors are arranged so that regardless of the number of boards implemented, at least one will be set for any color other than black (see section 4.1).

3. SUBROUTINE DESCRIPTIONS

3.1 INITG

THTD	[FIRST-FREE]	;Refresh buffer area (ignored)
CALL	INITG	
MOV	[MAXCD], L	;Save display description
MOV	[MAXRD], H	

The INITG routine serves several functions. As an aid to the user, the display software is initialized to the standard configuration: the cursor is positioned at X = 0, Y = 0; the current color is set to white; the display is cleared; proportional character spacing is selected; and the display mode is set for maximum resolution (mode 0). All special options are disabled so that general purpose programs do not need to know about them to function correctly. Because this routine performs all initialization functions required by the other display routines, it must be called before any other graphics package routines are used. INITG also returns the display parameters in register pair H,L. The interpretation of these parameters is described in section 2.1. INITG is the only routine which returns any values to the calling program.

3.2 PAGE

CALL PAGE

The PAGE routine clears the display screen. No other changes are made to the state of the display. In particular, the cursor is not moved, the current color is not changed and the display mode is unaffected.

3.3 CURSOR

MOV H,[X]

CALL CURSOR

The CURSOR routine resets the software display cursor to a particular point on the screen. This establishes the starting location for routines DOT, LINE, and CHAR. Coordinates are always interpreted using the full

256 by 256 coordinate system regardless of the resolution in use. When in a lower resolution mode, the low order bits of the position requested are ignored. For example, when in 128 by 128 resolution mode (mode 2), the points (8,4), (8,5), (9,4), and (9,5) will all be interpreted as the same "DOT" (the low order bit in each coordinate has no effect). When changing between display modes, cursor position is not always maintained by the graphics package. To avoid erroneous results, all changes to display mode should be followed by a cursor positioning command.

3.4 DOT

CALL DOT

The DOT routine sets the display point(s) indicated by the cursor to the currently selected color. This results in several points being written to form each dot when in lower resolution modes. For example, 16 hardware points are affected for every "DOT" when in 64 by 64 resolution mode.

3.5 LINE

MOV H,[XF] ;X coord of destination MOV L,[YF] ;Y coord of destination CALL LINE

The LINE routine generates the line connecting the point defined by the cursor to the point whose coordinates are in H and L. Both endpoints are included in the line. A line of zero length therefore is equivalent to a call to DOT. When erasing or otherwise changing the color of an existing line, care must be exercised as the "DOT"s making up the line from X_1,Y_1 to X_2,Y_2 may not be the same "DOT"s used when the line is drawn from X_2,Y_2 to X_1,Y_1 . The cursor is left positioned at the coordinates specified in H,L.

3.6 CHAR

MOV A,[VAL] ;ASCII character CALL CHAR

The CHAR routine provides the capability to display alphanumeric,

as well as graphical data. Control characters provide for cursor positioning and control over display mode, spacing mode, and current color as discussed in section 2.2. Control characters not recognized are ignored. Note that form feed only positions the cursor, it does not erase the screen.

Characters are positioned so that the cursor defines the lower left corner of a standard character (characters with descenders will extend below the cursor position). The cursor is left positioned at the next character position. No check is made to detect characters off the edge of the screen. Parity is ignored. Lower case characters are converted to upper case.

3.7 ANIMAT

CALL ANIMAT

The ANIMAT routine provides for flicker free changes in the display by permitting the user to synchronize refresh buffer updates with the vertical blanking period. Each call to ANIMAT results in a delay until the start of the next vertical blanking period. Upon return from a call to ANIMAT, the caller is guaranteed a full vertical blanking period to make any desired display changes. Note that the standard's ANIMAT allows for double buffering. To write totally compatible software requires examination of the animation support bit returned by INITG to determine the animation mode supported by the particular display.

4. AVAILABLE USER ADJUSTMENTS

The software as supplied assumes a single ALT-256**2 strapped for I/O ports 10 thru 13(hex) and responding to data bit 0. The following modifications to the code allow customizing the graphics package to suit individual requirements. Before making any changes, be sure to verify that the software (check paper tape label) and the patch table (table 4-1) version numbers correspond.

4.1 Multiboard Systems

As mentioned previously, the basic package will support systems with up to eight ALT-256**2 boards slaved in sync, as long as they all share the same I/O port addresses. To permit general purpose applications programs to fully utilize the additional capability, it is recommended that the two bytes of display parameters returned by INITG be modified to accurately reflect the hardware available.

The positions of the various fields in the display description bytes are defined in figure 2-1. The fields which normally need modification are the color/EW bit and the available colors fields. If the system implemented is a color system, bit 7 (the higher order bit) of location MAXCD should be set to one. Regardless of whether the implementation is color or grey scale, set bits 3 and 4 of both MAXCD and MAXRD to one for a two board system, bits 3, 4, and 5 to one for a three board system, and bits 3, 4, 5, and 6 to one for a four or more board system. Except for the high order bit, MAXCD and MAXRD should be identical. For example, a three board full color system would have MAXCD equal to B9(hex) and MAXRD equal to 39(hex).

For two board systems, the hardware should be strapped so that one board responds to data bit 1 and the other to data bit 2. For best results with color systems, board 2 should be the complementary color for board 1. For grey scale applications, bit 2 is the high order bit.

For three board systems, the boards should be strapped to bits 3, 4, and 5. The standard assumes board 3 is red, board 4 is blue, and

Name	$\frac{\text{Address}}{(\text{hex})}$	Original Contents (hex)
MAXCD	<u>012D</u>	09
MAXRD	<u>012E</u>	09
ANIWRN	OllF	00
COLORS	<u>04Cl - 04D0</u>	See Table 4.2
COLOR	04F3	Variable
MTRO	0135, 0171,	10
	018D, 0194,	
	<u>019B, 01A2</u> ,	
	<u>01BA, 0397</u> ,	
	03CE, 03D5	
MTRX	0168, 0185,	11
	0198, 01Bl,	
	0393	
MTRY	016C, 018A,	12
	<u>0191, 019F</u> ,	
	01B7, 038E	
MTRB	0133	13

Table 4-1 Patch Addresses for MTXGRAPH Version

board 5 is green. Grey scale will be linear if board 5 is twice as bright as board 4 which is twice as bright as board 3. (Board numbers refer to the data bit the board is connected to, not the number of boards in the system.)

A fourth board would be strapped to data bit 6 in a grey scale system. For color use, there is no preferred position. The values of each data bit for each of the sixteen selectable colors/grey shades is given in table 4-2. If different bit patterns are required, the lookup table COLORS may be altered as required. The first entry (black) is not required to be zero by the software, however, a non-zero value would result in black and clear screen using different colors.

To make maximum use of more than four boards, it is necessary to directly manipulate the color byte at location COLOR. However, this does reduce the hardware and software independence gained by using MTXGRAPH. In particular, COLOR is not a guaranteed location and may change in future releases of MTXGRAPH.

4.2 Animation Warning Message

As a service to users of general applications software which sometimes utilizes double buffered animation without first checking for its availability, the routine ANIMAT displays a warning message the first time it is called after initialization. If this warning is objectionable, it may be eliminated by changing location ANIWRN from 00 to FF(hex).

4.3 Changing I/O Port Assignments

MTXGRAPH is normally supplied to use I/O ports 10, 11, 12, and 13(hex). If this conflicts with your system configuration, it is necessary to change all the IN and OUT commands in the package. All the addresses listed in table 4-1 under MTRO should be modified to contain the I/O port number actually assigned to the ALT-256**2(s) control port. Similarly, all locations under MTRX get the new X cursor port, those under MTRY get the Y cursor port and those under MTRB get the page set port.

ARG TO CHAR (hex)	STD COLOR	7	6	DAT . 5 4		BIT 3 2	1	0	1 BD	BW	BDS COL note 3	BW	BDS COL note 5	4 BDS BW note 6
` /														
10	Blk	0	0	0 0	(0 (0	0	Blk	Blk	Blk	Blk	Blk	Blk
11	Red	1	0	0 0	-	LO	1	1	Whi	G <i>5</i>	Red	G2	Red	Gl
12	Blu	1	0	0 1	(0	1	1	Whi	G5	Red	G4	Blu	G2
13	Mag	1	0	0 1	-	0	1	1	Whi	G5	Red	G6	Mag	G3
14	Grn	1	0	1 0	() 1	0	1	Whi	GlO	Cyn	G8	Grn	G4
15	Yel	1	0	1 0	-	. 1	0	1	Whi	GlO	Cyn	GlO	Yel	G <i>5</i>
16	Cyn	1	0	1 1	(1	0	1	Whi	GlO	Cyn	G12	Cyn	G6
17	Whi	1	0	1 1	-	1	1	1	Whi	Whi	Whi	Whi	Whi	G7
18	-	0	1	0 0	(1	0	1	Whi	GlO	Cyn	Blk	Blk	G8
19	-	0	1	0 0	-	1	0	1	Whi	GlO	Cyn	G2	Red	G9
lA	-	0	1	0 1	() 1	0	1	Whi	GlO	Cyn	G4	Blu	GlO
lB	-	0	1	0 1		L 1	0	1	Whi	GlO	Cyn	G 6	Mag	Gll
lC	-	0	1	1 0	(0	1	1	Whi	G5	Red	G8	Grn	G12
lD	-	0	1	1 0		LO	1	1	Whi	G5	Red	GlO	Yel	G13
lE	-	0	1	1 1	(0 0	1	1	Whi	G5	Red	G12	Cyn	G14
1F	_	0	1	1 1		l l	1	1	Whi	Whi	Whi	Whi	Whi	Whi

notes: 1) Single board responding to data bit 0.

- 2) Grey 5 on bit 1; Grey 10 on bit 2.
- 3) Red on bit 1; Cyan on bit 2.
- 4) Grey 2 on bit 3; Grey 4 on bit 4; Grey 8 on bit 5.
- 5) Red on bit 3; Blue on bit 4; Green on bit 5.
- 6) Grey 1 on bit 3; grey 2 on bit 4; Grey 4 on bit 5; Grey 8 on bit 6.

Table 4-2 Color/Grey Scale Assignments

5. SAMPLE USER PROGRAM

The demonstration program provided with the package is more than just a hardware checkout test. It also illustrates how to use the various graphics subroutines and take full advantage of whatever capabilities the display system hardware has to offer. In addition, it indicates some of the techniques useful when writing general purpose programs designed to use with any display meeting the software protocol standard.

6. LOADING & RUNNING MTX GRAPH WITH DEMO PROGRAM

The MTX GRAPH software package is designed for use with Matrox ALT-256 graphics display. The package is configured as a series of callable sub-routines. The MTX GRAPH package occupies memory locations 0104 to 04FF.

A second program supplied is intended for demonstration purposes. The program utilizes the MTX GRAPH sub-routines to create a continuous live action graphics display.

The tapes are supplied in Imsai binary loader compatible format. A listing of the loader and instructions for its use are given in Section 7.

The Imsai loader should be used to load first MTX GRAPH and then the demo program. Both must be co-resident to use the demonstration program. The ALT-256 should be jumpered for address 10-13 (hex) and data bit DØ. (jumper A2, 3, 5, 6, 7 set to Ø, A4 set to 1. See manual P9). Start the computer at location 0500 Hex. Sit back and watch the show. The demonstration program will pause whenever the dot switches are set to 01 (hex).

NOTE: Old versions of the ALT-256 require the following hardware change to work with this software package: (units shipped prior to Aug. 1/77) Tie A3 and All pin 4 to +5V with jumper wires soldered directly to the artwork.

7 - USING THE IMSAI BINARY LOADER

To use this loader, first key it in, starting at location 1000H. Then mount the tape in the reader on the teletype, set the address switches to 1000H, then press 'stop', 'reset', 'examine', and 'run' (i.e. start the program at 1000H). Then start the teletype reader. NOTE: for reasons of brevity, this loader does not check the checksum on the tape.

A detailed listing of the Imsai loader is attached. An abbreviated list in straight hex code is given below. The original Imsai code is for a USART chip at ports 02 and 03 hex. A second abbreviated listing is given for a UART at port 00 and 01 hex. The code may be modified by the user for the port addressing of his serial interface.

For USART at ports 02 - 03, Normal Imsai Loader.

```
1000 3E CE D3 03 3E 17 D3 03 3E 11 D3
                                           Ø2 31 67 1Ø
1010
     51
        10
            FE
               3A
                   C2
                      ØF
                          10
                             CD
                                 37
                                    10
                                       В7
                                           CA 36
                                                  10
                                                     47
                                                         CD
1020 37
               CD
                   37
                                                  77 23
            67
                      10
                          6F
                             CD
                                 37
                                    10
                                           37 19
                                       CD
                                                         Ø5
1Ø3Ø C2 2A
           10
               C3
                   ØF
                     10
                                 44 10
                         76 CD
                                       87 87 87 87 57
                                                         CD
1040 44 10
           В2
               C9
                  CD 51
                          10
                             FE
                                 3A
                                    FA
                                       4E
                                           10
                                               C6
                                                  Ø9
1Ø5Ø C9 DB
            Ø3
                   Ø2
                      CA
                             10
                                 {\tt DB}
```

For UART at port 00 - 01, Modified Imsai Loader

```
1000
            ØØ
                ØØ
                           ØØ
                              ØØ
                                  ØØ
                                     ØØ
                                        ØØ
                                            ØØ
                                                31 67 10
                                                           CD
1010
     51
         10
                   C2
                          10
                                  37
                                     10
            FE
               3A
                       ØF
                              CD
                                        B7 CA
                                                   10 47
                                                36
                                                           ·CD
1020
        10
                       10
                                     1Ø
     37
            67
                CD
                   37
                           6F
                              CD
                                  37
                                         CD
                                            37 1Ø 77 23
                                                           Ø5
1030
    C2
         2A
            1Ø
                03
                   ØF
                       10
                          76
                              CD
                                  44
                                     10
                                         87
                                             87
                                                87
                                                    87
                                                       57
                                                           CD
1040 44 10
           В2
               C9
                  CD
                       51
                          10
                             FE
                                  3A
                                     FA
                                        4E
                                            10
                                                   Ø9
                                                C6
                                                      E6
1Ø5Ø C9 DB
            ØØ
                   Ø1 C2 51 1Ø DB Ø1 E6 7F C9
               E6
```

-19-

```
; *** SCS LOADER REV 1. ***
                ; TO USE THIS LOADER, FIRST KEY IT IN, STARTING
                ; AT LOCATION 1000H. THEN MOUNT THE TAPE IN THE READER; ON THE TELETYPE, SET THE ADDRESS SWITCHES TO 1000H, THEN PRESS 'STOP', 'RESET', 'EXAMINE', AND 'RUN'.
                ; THE TELETYPE READER SHOULD START AUTOMATICALLY.
                ; NOTE: FOR REASONS OF BREVITY, THIS LOADER DOES NOT
                ; CHECK THE CHECKSUMS ON THE TAPE.
0000
                         ORG
                                   1000H
0002
                ŤТY
                         EQU
                                            ;TELETYPE DATA PORT
                                   2
                                            ;TETELYPE STATUS PORT
0003
                TTS
                         EQU
                                   .3
0002
                ጥጥጽ
                                            ;TELETYPE READY BIT
                         EQU
0011
                RON
                         EQU
                                   11H
                                            ; READER ON BIT
                ; THE LOADER BEGINS HERE
1000 3ECE
                LOAD:
                         MVT
                                   A, OCEH ; GET MODE COMMAND
1002 D303
                         CUT
                                   TTS
                                            ; ISSUE IT
1004 3E17
                         MVI
                                   A, 17H
                                            GET COMMAND
1006 D303
                                            ; ISSUE IT
                         OUT
                                   TTS
                                            ;GET 'X-ON' CHAR
                                   A,RON
1008 3E11
                         MVI
                                             START THE READER
100A D302
                         OUT
                                   TTY
100C 316710
                         LXI
                                   6, PEND+10 ; SET UP THE STACK
                ; GO THROUGH THIS LOOP ONCE FOR EACH RECORD
                                            ;GET A CHARACTER ; IS IT A COLON
100F CD5110
1012 FE3A
                LOOP1: CALL
                                   INCH
                                   1:1
                         CPI
                                   LOOP1
1014 C20F10
                         JNZ
                                            ; WAIT FOR COLON
1017 CD3710
                         CALL
                                   GETBT
                                            GET THE COUNT
101A B7
                         ORA
                                            ;SET FLAGS
                                   Α
                                            ;BRANCH IF EOF RECORD
;ELSE, PUT COUNT INTO B REG
101B CA3610
                         JΖ
                                   EOF
101E 47
                         MOV
                                   B,A
101F CD3710
                                            GET HI BYTE OF ADDR
                         CALL
                                   GETBT
                                            ; INTO H
1022 67
                         MOV
                                   H,A
1023 CD3710
                         CALL
                                   GETBT
                                            ;GET LO BYTE OF ADDRESS
1026 6F
1027 CD3710
                         MOV
                                            ; INTO L
                                   L,A
                                   GETBT
                                            GET TYPE BYTE AND IGNORE
                         CALL
                ; GO THROUGH THIS LOOP ONCE FOR FACH DATA BYTE IN
                ; A RECORD
                LOOP2:
                                   GETBT
102A CD3710
                         CALL
                                            ;GET A DATA BYTE
102D 77
                         MOV
                                            ;STORE IT
                                   M.A
                                            ;BUMP ADDRESS
102E 23
                         INX
                                   н
                                            ; DECREMENT COUNT
102F 05
                         DCR
                                   R
1030 C22A10
                                   LOOP2
                         JNZ
                                            ;DO IT AGAIN
1033 C30F10
                         JMP
                                   LOOP1
                                            GO GET NEXT RECORD
```

Sept.

```
1036 76
                EOF:
                         HLT
                ; THIS ROUTINE READS TWO CHARACTERS FROM
                ; THE TAPE, AND ASSEMBLES THEM INTO A BYTE, WHICH
                ; IS RETURNED IN THE A REGISTER
                GETBT:
1037 CD4410
                        CALL
                                           GET A DIGITI
                                  INDIG
103A 87
                         ADD
                                  Α
                                           ;SHIFT IT ONE BIT
103B 87
                        ADD
                                  A
                                               TWO BITS
103C 87
                                               THREE BITS
                         ADD
                                           ; AND FOUR BITS
;SAVE IT IN D
103D 87
                         ADD
                                  Α
103E 57
103F CD4410
                         MOV
                                  D,A
                        CALL
                                           GET ANOTHER DIGIT
                                  INDIG
1042 B2
                        ORA
                                  D
                                           OR IN LAST DIGIT
1043 C9
                        RET
                                           ;AND RETURN
               ; THIS ROUTINE READS A HEX DIGIT FROM THE
               ; TAPE. NOTE THAT IT DOES NO VALIDITY CHECKING.
1044 CD5110
1047 FE3A
               INDIG:
                                  INCH
'9'+1
                        CALL
                                           ;GET A CHAR FROM THE TAPE ;CHECK FOR NUMERIC
                        CPI
1049 FA4E10
104C C609
                         JM
                                  INDl
                                           ;SKIP IF NUMERIC
                                           ;ELSE FUDGE, SO 'A'-'F' => 4A -
;MASK OFF LO 4 BITS
                        ADI
                                  9
104E E60F
               IND1:
                                  OFH
                        ANI
1050 C9
                        RET
                                           ;AND RETURN
               ; THIS ROUTIEN READS A CHARACTER FROM THE TELETYPE
               ; PAPER TAPE READER
1051 DB03
                INCH:
                        IN
                                  TTS
                                           ;GET TELETYPE STATUS
1053 E602
                        ANI
                                  TTR
                                           ; WAIT TILL READY
1055 CA5110
                        JΖ
                                  INCH
1058 DB02
                        IN
                                  TTY
                                           ;GET THE CHAR
105A E67F
                        ANI
                                  7FH
                                           ; KILL THE PARITY BIT
105C C9
                        RET
105D
               PEND
                        EOU
                                  $
0000
                        END
```

```
;
                          GRAPHICS PACKAGE DEMONSTRATION PROGRAM
                 3
                              VERSION 2.86M <> AUG 25.1977
                                     COPYRIGHT 1977
                                  DR. VINCENT C. JONES
11017 BENNINGTON AVE
                 3
                                  KANSAS CITY MO 64134
0500
                                  500H
                                           START AFTER GRAPHICS PACKAGE
                 DEFININTION OF GRAPHICS PACKAGE ENTRY POINTS
6104 =
                         INITG
                                  EQU
                                           1 Ø 4H
0107 =
                         PAGE
                                  EOU
                                           107H
618A =
                         CURSOR
                                  EQU
                                           I SAH
610D =
                         DOT
                                  EQU
                                           1 Ø DH
Ø11Ø =
                         LINE
                                  EQU
                                           116H
#113 =
                         CHAR
                                  EQU
                                           113H
Ø116 =
                         ANIMAT EQU
                                           116H
                     AND STANDARD COLORS
8818 =
                         BLK
                                  EQU
                                           1 Ø H
                                                   J DELETE
0011 =
                         RED
                                  EQU
                                           11H
                                                   ; RED
0015 =
                         YEL
                                  EQU
                                           15H
                                                   ; YELLOW
6614 =
                         GRN
                                  EQU
                                           1 4H
                                                   GREEN
9916 =
                         CYN
                                  EQU
                                                   CYAN
                                           16H
0012 =
                         BLU
                                  EQU
                                           12H
                                                   JBLUE
0013 =
                         MAG
                                  EQU
                                           13H
                                                   JMAGENTA
0017 =
                         WHI
                                  EQU
                                           17H
                                                   ; WHITE
                    AND TIMES FOR PAUSE (ASSUMES 2MHZ CLOCK)
                3
9981 =
                                  EQU
                                                   JHALF A SEC
                         HALF
0002 =
                         ONE
                                  EQU
                                          2
0004 =
                         TWO
                                  EQU
                                          4
886A =
                         FIVE
                                  EQU
                                          ØAH
6614 =
                         TEN
                                  EQU
                     AND DISPLAY MODES
6666 -
                         MAXR
                                  EQU
                                          88H
                                                   JMAXIMUM RESOLUTION
9091 -
                                                   JMAXIMUM COLOR CHOICE
                         MAXC
                                  EQU
                                          Ø1H
9662 =
                         R128
                                  EQU
                                          82H
                                                   3128 BY 128
6663 =
                         R64
                                 EQU
                                          Ø3H
                                                   364 BY 64
8884 -
                         RXXX
                                  EQU
                                          Ø 4H
                                                   JUHO KNOWS
                3
                         HERE STARTS THE ACTUAL PROGRAM
0500 312D09
                DEM 0:
                         LXI
                                 SP. STACK ; INIT STACK
6563 212E69
                         LXI
                                 H. STACK+1 31ST FREE LOC
0506 CD0401
                         CALL
                                 INITG
                                         JGET THE DISPLAY GOING
0509 222B08
                         SHLD
                                          SAVE DISPLAY PARAMETERS
                                 MAXCD
              . 3
```

```
3DEM0 #1:
                              HIGH RESOLUTION LINE DEMO
Ø5ØC 3EØ3
                 DEM 1 :
                         MVI
                                  A. R64
                                           164 BY 64 MODE
Ø5ØE CD13Ø1
                         CALL
                                  CHAR
Ø511 21A444
                         LXI
                                  H. 44A4H JPUT UP LOGO
Ø514 CDØAØ1
                         CALL
                                  CURSOR
Ø517 21BBØ7
                         LXI
                                  H. STRØØ JMATROX
Ø51A CD9187
                         CALL
                                  STRING
Ø51D 218Ø34
                         LXI
                                  H. 3480H
0520 CD0A01
                         CALL
                                  CURSOR
Ø523 21C707
                         LXI
                                  H. STRØ1 JGRAPHICS
Ø526 CD9107
                         CALL
                                  STRING
Ø529 21503¢
                         LXI
                                  H. 3C5CH
052C CD0A01
                         CALL
                                  CURSOR
Ø52F 21D2Ø7
                         LXI
                                  H. STRØ2 JSYSTEMS
Ø532 CD9107
                         CALL
                                  STRING
Ø535 Ø6Ø5
Ø537 CDA1Ø7
                         MVI
                                  B. 5
                                           JLET PEOPLE READ IT
                         CALL
                                  PAUSE
Ø53A 3EØØ
                         MVI
                                  A-MAXR JSHIFT TO MAX RES
Ø53C CD13Ø1
                         CALL
                                  CHAR
Ø53F Ø1FFØØ
                         LXI
                                  B. GOFFH JEXTREMES OF DISPLAY
Ø542 5Ø
                         MOV
                                  D.B
                                           JD = CURRENT STEP
0543 79
                                           JE = MAX-CURRENT
                DEMO1:
                         M OV
                                  A.C
Ø544 92
                         SUB
                                  D
Ø545 5F
                         MOV
                                  E.A
Ø546 62
                         M OV
                                  H. D
                                           STARTING POINT
0547 68
                         M OV
                                  L,B
                                           ; IS D. 8
Ø548 CDØAØ1
                         CALL
                                  CURSOR
Ø54B 61
                         M OV
                                  H. C
                                           3TO 255.D
Ø54C 6A
                         MOV
                                  L.D
Ø54D CD1ØØ1
                         CALL
                                  LINE
Ø55Ø 63
                         M OV
                                  H.E
                                           JTO 255-D,255
Ø551 69
                         MOV
                                  L.C
Ø552 CD1ØØ1
                         CALL
                                  LINE
Ø555 6Ø
                         MOV
                                  H.B
                                           3TO Ø, 255-D
Ø556 6B
                         MOV
                                  L.E
0557 CD1001
                                  LINE
                         CALL
Ø55A 62
                         MOV
                                  H. D
                                           JAND FINALLY
Ø55B 68
                         MOV
                                  L.B
                                           3 BACK TO D.Ø
055C CD1001
055F 3A2C08
                         CALL
                                  LINE
                         LDA
                                  MAXRD
                                           JDETERMINE NEXT D
Ø562 E6Ø7
                         AN I
                                  Ø7H
                                           SWIDTH OF A POINT
                                           SMAKE SURE AT LEAST ONE
Ø564 C268Ø5
                         JNZ
                                  DEM12
Ø567 3C
                         INR
                                  A
Ø568 17
                DEM12:
                         RAL
                                           JMOVE 8 DISPLAY POINTS
Ø569 17
                         RAL
Ø56A 17
                         RAL
056B $2
056C 57
                                           JD = D+RES*8
                         ADD
                                  D
                         MOV
                                  D. A
Ø56D D243Ø5
                         JNC
                                  DEM 01
                                           JMORE TO GO
0570 0614
                         MVI
                                  B. TEN
0572 CDA107
                                  PAUSE
                                           JSHOW IT OFF A BIT
                         CALL
                             SHOW OFF CHARACTER SET
                JDEM0 #2:
0575 C90701
                         CALL
                                  PAGE
0578 3E03
                         MVI
                                  A. R64
                                          JUSE BIGGEST CHARACTERS POSSIBLE
Ø57A CD13Ø1
                         CALL
                                  CHAR
```

```
057D 0E07
                         MVI
                                 C. 7
                                          JINIT COLOR COUNTER
Ø57F 3E1Ø
                DEM2:
                         MUI
                                 A.BLK
                                        START OUT WHITE
0581 81
                         ADD
Ø582 CD13Ø1
                         CALL
                                 CHAR
                                 B,' '
Ø585 Ø62Ø
                         MVI
                                          FIRST CHAR IS 'BLANK'
Ø587 21E8Ø8
                                 H. Ø SESH JUPPER LEFT CORNER
                         LXI
058A CD0A01
                DEM20:
                         CALL.
                                 CURSOR JPOSITION CHARACTER
Ø58D 78
                         M OV
                                 A.B
                                          3 AND DISPLAY IT
Ø58E CD13Ø1
                         CALL
                                 CHAR
Ø591 3E2Ø
                         MVI
                                 A,26H
                                          JMOVE OVER TO NEXT POSITION
0593 84
                         ADD
Ø594 67
                         M OV
                                 H.A
Ø595 D29FØ5
                         JNC
                                 DEM21
                                          JPAST END OF LINE?
Ø598 7D
                         MOV
                                 A.L
                                          JMOVE DOWN TO NEXT
Ø599 D62Ø
                         SUI
                                 2ØH
Ø59B 6F
                        MOV
                                 LAA
                                          JOONE IF OFF BOTTOM
059C DAA305
059F 04
                                 DEM22
                         JC
                DEM21:
                       INR
                                 R
                                          JNEXT CHARACTER
Ø5AØ C38AØ5
                         JMP
                                 DEM20
Ø5A3 Ø6Ø2
                DEM22:
                       MVI
                                 B. ONE
                                          JLOOK AT IT A BIT
05A5 CDA107
                                          JAREN'T THEY PRETTY?
                        CALL
                                 PAUSE
95A8 ØD
                                 C
                                          JTRY A NEW COLOR
                        DCR
65A9 F27F65
                         JP
                                 DEM2
                                          JGO UNTIL ERASE
                                 PAGE JJUST IN CASE A TEK 4010
HJ4DC0H JMUST BE IN R64 AT THIS POINT
Ø5AC CDØ7Ø1
                        CALL
Ø5AF 21CØ4D
                        LXI
05B2 CD0A01
                        CALL
                                 CURSOR
Ø5B5 21Ø2Ø8
                        LXI
                                 H. STRØ6 ; 'LARGE' + SHIFT TO MAXR
Ø5B8 CD9107
                        CALL
                                 STRING
Ø5BB 218Ø69
                        LXI
                                 H. 698ØH
Ø5BE CDØAØ1
                        CALL
                                 CURSOR
05C1 210A08
                        LXI
                                 H.STRO7 ; 'AND SMALL' + SHIFT TO R128
Ø5C4 CD9187
                        CALL
                                 STRING
Ø5C7 214Ø4D
                        LXI
                                 H. 4D40H
Ø5CA CDØAØ1
                        CALL
                                 CURSOR
Ø5CD 2115Ø8
                        LXI
                                 H. STRØ8 3 CHARACTERS
Ø596 CD9107
                        CALL
                                 STRING
Ø5D3 Ø614
                        MVI
                                 B. TEN
                                         JLET THAT SOAK IN
Ø5D5 CDA1Ø7
                        CALL
                                         ; FOR A WHILE
                                 PAUSE
#598 CD#7#1
                                         CLEAR FOR NEXT DEMO
                        CALL
                                 PAGE
                1
                JDEMO #3: FULL COLOR CONTROL
Ø5DB 3EØ3
                        MVI
                                         LARGE LABELS
                                 A. R64
#5DD CD13#1
                        CALL
                                 CHAR
05E0 21985C
                        LXI
                                 H. 5C98H
Ø5E3 CDØAØI
                        CALL
                                 CURSOR
05E6 21DD07
                                 H. STRØ3 J'FULL' + COLOR SELECT
                        LXI
05E9 CD9107
05EC 3A2B08
                        CALL
                                 STRING
                        LDA
                                 MAXCD
                                         JCOLOR CHOICE AVAILABLE?
05EF E670
                        AN I
                                 70 H
                                         J2 OR MORE?
Ø5F1 ØE11
                        MVI
                                 C.BLK+1 JASSUME NOT
                                         JGOOD ASSUMPTION
Ø5F3 CA19Ø6
                                 DEM3X
                        JZ
                        MVI
                                 C.WHI
                                         JASSUME & COLOR
Ø5F6 ØE17
Ø5F8 E64Ø
                        ANI
                                 48H
                                         JMORE THAN 8?
                                 DEM3X1 ; NO. GOOD ASSUMPTION
Ø5FA CAFFØ5
                        JZ
Ø5FD ØEIF
                                 C.BLK+15 ;GO FOR 16 COLORS
                        MVI
Ø5FF 21745Ø
                DEM3X1: LXI
                                 H- 5074H
                                 CURSOR
                        CALL
Ø602 CD0A01
Ø6Ø5 3A2BØ$
                        LDA
                                MAXCD
                                        JCOLOR OR MONOCHROME?
```

```
9698 E688
                         ANI
                                  86 H
                                          J CHECK THE BIT
                                  DEM3X2 JCOLOR!
 868A - C21386
                         JNZ
 060D 21EE07
                                  H. STREAG J'TONAL'
                         LXI
Ø61Ø C316Ø6
                         JMP
                                  DEM3X3
Ø613 21E3Ø7
                DEM3X2: LXI
                                  H. STRØ4 J'COLOR' IN COLOR
Ø616 CD9187
                DEM3X3: CALL
                                  STR ING
Ø619 21583C
                DEM3X:
                         LXI
                                 H. 3C5ØH
Ø61C CDØAØ1
                         CALL
                                 CURSOR
861F 21F987
                         LXI
                                 H. STRØ5 J'CONTROL' IN WHITE
0622 CD9107
                         CALL
                                  STRING
Ø625 1600
                         IVM
                                 D. 66H
                                          JINIT COUNTER
0627 3E01
                         MUI
                                 A.MAXC
                                          MAXIMUM COLORS (GREY SHADES)
Ø629 CD13Ø1
                         CALL
                                 CHAR
Ø62C 59
                DEM30:
                         MOV
                                 E.C
                                          START OUT WHITE
862D 26FF
                DEM3:
                                 H. ØFFH
                         MVI
                                          FROM TOP RIGHT SIDE
Ø62F 7A
                         MOV
                                 A.D
                                          JWHICH STEP?
6636 E63F
                         an i
                                 3FH
                                          JNORMALIZE TO 64
Ø632 17
                         RAL
                                          JAND SCALE BACK
Ø633 17
                         RAL
                                          ; TO 256
Ø634 6F
                         MOV
                                 L,A
Ø635 CDØAØ1
                         CALL
                                 CURSOR
9638 210000
                         LXI
                                 H. 6666H JTO LOWER LEFT CORNER
Ø63B CD1@@1
                         CALL
                                 LINE
063E 2EFF
                        MVI
                                 L. OFFH JUP TO TOP EDGE
8648 67
                        M OV
                                 H.A
8641 CD1881
                         CALL
                                 LINE
Ø644 14
                         INR
                                          JNEXT STEP
8645 CA9786
                                 DEM4
                        JZ
                                          3256 STEPS AND ALL DONE
8648 7A
                        M OV
                                          JUHAT STEP ARE WE ON?
                                 A.D
8649 FE48
                         CPI
                                 40 H
864B DA6486
                        JC
                                 DEM31
                                          FULL COLOR, SLOW
864E CA7886
                        JZ
                                 DEM32
                                          JSHIFT TO R64
Ø651 FE86
                         CPI
                                 20H
9653 DA6486
                        JC
                                 DEM31
                                          JR64, SLOW
8656 CA8D66
8659 FEC8
                        JZ
                                 DEM33
                                          JBACK TO FULL COLOR
                         CPI
                                 ØCØH
Ø65B DA69Ø6
                                          FULL COLOR, FULL SPEED
                        JC
                                 DEM34
965E CA9296
                        JZ
                                 DEM35
                                          JSHIFT TO ERASE
8661 C32D86
                        JMP
                                 DEM3
                                          JFULL SPEED ERASE
8664 8681
                DEM31:
                        MVI
                                 B. HALF
                                          JSLIGHT PAUSE
8666 CDA187
                                 PAUSE
                         CALL
Ø669 1D
                DEM34:
                        DCR
866A 7B
                                 A.E
                                          JBLACK YET?
                        M OV
966B FE19
                        CPI
                                 BLK
866D F27186
                        JP
                                 DEM37
                                          INO
8678 59
                                          START OVER
                        M OV
                                 E. C
8671 7B
                DEM37:
                        MOV
                                          INEW COLOR
                                 A.E
#672 CD13#1
                                 CHAR
                DEM38:
                        CALL
                                          ; (OR MAYBE MODE)
9675 C32D06
                        JMP
                                 DEM3
Ø678 3EØ3
                DEM32:
                                          JSHIFT TO 64 BY 64
                        MVI
                                 A.R64
867A CD1381
                        CALL
                                 CHAR
867D 3E84
                        MVI
                                 A,RXXX JTRY FOR SOMETHING SPECIAL!
867F 8684
                DEM36: MVI
                                 B. TWO
                                          JPAUSE BETWEEN MODE CHANGES
8681 CDA187
                        CALL
                                 PAUSE
8684 CD8781
                        CALL
                                 PAGE
                                          JCLEAR SCREEN
8687 CD1381
                        CALL
                                 CHAR
                                          JAND FINALLY CHANGE MODE
668A C32C66
                        JMP
                                 DEM3#
668D 3E61
                DEM33:
                        MVI
                                 A-MAXC
                                         JSHIFT TO MAX COLORS
668F C37F86
                        JMP
                                 DEM36
```

GPD.PRN

```
0692 3E10
                                  A.BLK
                                          JTIME TO ERASE
                DEM35:
                        MVI
Ø694 C372Ø6
                                  DEM36
                         JMP
                JDEMO #4: ANIMATION
Ø697 3EØ3
                DEM4:
                         MVI
                                  A. R64
                                          JBIG CHARACTERS
Ø699 CD13Ø1
                         CALL
                                  CHAR
Ø69C CDØ7#1
                         CALL
                                  PAGE
                                  H. 2880H JPOSITION TITLE
069F 218028
                         LXI
Ø6A2 CDØAØ1
                         CALL
                                  CURSOR
Ø6A5 212ØØ8
                         LXI.
                                  H. STRØ9 J'ANIMATION'
86A8 CD9187
                         CALL
                                  STRING
Ø6AB CD16Ø1
                         CALL
                                  AN IMAT
                                          SWITCH BUFFERS
86AE CD8781
                                          JCLEAR OTHER BUFFER
                         CALL
                                  PAGE
                                           ; (OR ERROR MESSAGE IF ONE)
Ø6B1 218Ø28
                         LXI
                                  H. 2880H JADD TITLE THERE TOO
Ø6B4 CDØAØ1
                         CALL
                                  CURSOR
                         LXI
                                  H. STRØ9
Ø6B7 212ØØ8
06BA CD9107
                         CALL
                                  STRING
                                          JNEED SOME RESOLUTION
Ø6BD 3EØ2
                         MVI
                                  A.R128
#6BF CD13#1
                         CALL
                                  CHAR
                                  B. TWO
                                          JLET THIS SINK IN
86C2 8684
                         MVI
                                  PAUSE
86C4 CDA187
                         CALL
                                          JNEED SOME TERRA FIRMA
Ø6C7 2112ØØ
                         LXI
                                  H. 18D
                         CALL
                                  CURSOR
Ø6CA CDØAØ1
                         MVI
                                  H. OFFH
Ø6CD 26FF
Ø6CF CD1001
                                  LINE
                         CALL
                                          ; PUT IN BOTH BUFFERS
Ø6D2 CD16@1
                         CALL
                                  AN IMAT
Ø6D5 CDØAØ1
                         CALL
                                  CURSOR
Ø6D8 26ØØ
                         MVI
                                  H. ØØH
Ø6DA CD1881
                         CALL
                                  LINE
                                          STARTING POSITION
                         MUI
                                  B. 16D
Ø6DD Ø616
                                          JDRAW NEW FRAME
Ø6DF CDØEØ7
                DEM40:
                         CALL
                                 MAN
                                          JTRY EVEN IF NOT SUPPORTED
Ø6E2 CD16Ø1
                         CALL
                                  AN IMAT
06E5 3E10
                         MVI
                                  A.BLK
                                          JERASE OLD ONE
                         CALL
                                  CHAR
86E7 CD1361
                                 MAXRD
                                          JOUBLE BUFFERED?
                         LDA
Ø6EA 3A2CØ8
Ø6ED E68Ø
                         AN I
                                  80 H
                                          JTEST BIT
                         JΖ
                                  DEM41
                                          JOON'T BACK UP TO ERASE
Ø6EF CAF3Ø6
Ø6F2 Ø5
                                          JBACK TO PREVIOUS FRAME
                         DCR
                                          JALL GONE
                                  MAN
Ø6F3 CDØEØ7
                DEM41:
                         CALL
                                  A.WHI
                                          JBACK TO WHITE
Ø6F6 3E17
                         MVI
Ø6F8 CD13Ø1
                         CALL
                                  CHAR
                                  MAXRD
                                          ;DID WE DECREMENT BEFORE?
                         LDA
06FB 3A2C08
                         AN I
                                  8ØH
66FE E686
                                          INO, SO DON'T DOUBLE INCR
                                  DEMA2
0700 CA0407
                         JZ
                                          SADVANCE TO NEXT FRAME
                         INR
                                  В
0703 04
                DEM42:
                         INR
0764 E4
                         M OV
                                  A.B
0705 78
                                          ;DONE YET?
;KEEP ON TRUCKING
;START ALL OVER AGAIN
0706 FEF0
                         CPI
                                  ØFØH
                                  DEMAG
0708 DADF06
                         JC
070B C30005
                         JMP
                                  DEMO
                SUBROUTINE TO DRAW A LITTLE MAN
                                          JX IS IN B. Ø TO 255
                MAN :
                         MOV
978E 78
                                  A.B
Ø78F E68F
                         AN I
                                  ØFH
Ø711 D6Ø8
                         SUI
                                  Ø8H
                                          JARM SWING (AS)
                                          JC = AS
                         M OV
                                  C.A
6713 4F
```

```
6714 67
                         RLC
                                           JTIMES 2
Ø715 57
                         MOV
                                  D.A
                                           FOR LEG SWING (LS)
                                           JFIND FIXED LEG
8716 78
                         MOV
                                  A.B
0717 E6F0
                         AN I
                                  ØFØH
8719 C688
                         ADI
                                  ØSH
                                           JR=[X AND F@]+8
871B 5F
                         M OV
                                  E,A
                                           JE = R
Ø71C 78
                         MOV
                                  A.B
                                          JL = X+LS
071D 82
                         ADD
                                  D.
Ø71E 57
                         M OV
                                  D.A
                                          3D = L
071F 78
                         MOV
                                  A.B
6726 3C
                         INR
                                  A
                                           JA = X+1
0721 05
                                          JB = X-1
                         DCR
                                  В
                JALL SET TO DRAW ALL BUT HEAD "
0722 2E14
                         MVI
                                 L. 26
                                          JSTART WITH LEGS
6724 63
                         MOV
                                 H. E
0725 CD0A01
                                  CURSOR IR. 20
                         CALL
8728 67
                         MOV
                                  H.A
Ø729 2E24
                         MVI
                                 L.36
672B CD1661
                         CALL
                                 LINE
                                          3X+1. 36 >> RT LEG
072E 60
                        M OV
                                 H.B
672F CD1661
6732 62
                         CALL
                                 LINE
                                          3X-1, 36 >> HIPS
                         M OV
                                 H. D
6733 2E14
                        MVI
                                 L. 20
0735 CD1001
                         CALL
                                 LINE
                                          ;L. 26 >> LEFT LEG
6738 2E25
                        MVI
                                 L. 37
                                          ;LEFT SIDE OF BODY
Ø73A 67
                        MOV
                                 H.A
                                 CURSOR JX+1, 37
673B CDØA61
                         CALL
673E 2E36
                        MVI
                                 L. 48
6746 CD1661
6743 2E26
                         CALL
                                 LINE
                                          JX+1. 48 >> LEFT BODY
                        MVI
                                 L.38
Ø745 91
                         SUB
Ø746 67
                        MOV
                                 H.A
6747 CD1661
                         CALL
                                 LINE
                                          JX+1-AS, 38 >> LEFT ARM
874A 78
874B 67
                        M OV
                                 A.B
                                          JSAME FOR RIGHT SIDE
                        m ov
                                 H-A
874C 2E25
                        MVI
                                 L.37
                                 CURSOR JX-1, 37
874E CD8A81
                        CALL
6751 2E36
                        MVI
                                 L. AS
6753 CD1661
                                          JX-1, 48 >> RIGHT BODY
                         CALL
                                 LINE
8756 2E26
                        MVI
                                 L.38
Ø758 81
                         ADD
Ø759 67
                        M OV
                                 H.A
675A CD1661
                                 LINE
                                          JX-1+AS, 38 >> RT ARM
                         CALL
875D 84
                         INR
                                 В
                                          FINALLY DO HEAD
075E 2E30
                        MVI
                                          JNOTE: B IS BACK TO
                                          ; ORIGINAL VALUE = X
8768 69
                        M OV
                                 H. B
Ø761 CDØAØ1
                                 CURSOR
                        CALL
8764 2E34
                        MVI
                                 L. 52
0766 CD1661
0769 78
                        CALL
                                 LINE
                                          3X 52 >> NECK
                        MOV
                                 A.B
876A D682
876C 67
                        SUI
                        MOV
                                 H.A
676D CD1661
                        CALL
                                 LINE
                                          ;X-2, 52
6776 2E38
                        MVI
                                 L. 56
6772 CD1661
                        CALL
                                 LINE
                                          1X-2, 56
8775 78
                        M GV
                                 A, B
8776 C682
                        ADI
                                 2
Ø778 67
                        M OV
                                 H.A
```

```
0779 CD1001
077C 2E34
                          CALL
                                   LINE
                                           JX+2, 56
                          MVI
                                   L. 52
 077E CD1001
                          CALL
                                   LINE
                                           1X+2, 59
 8781 68
                          MOV
                                   H.B
 0782 CD1001
0785 2E36
                          CALL
                                  LINE
                                           JX 52 >> END OF HEAD
                          MUI
                                  L.54
 0787 C602
                          ADI
                                   2
 Ø789 67
                          M OV
                                   H.A
 678A CD6A61
                                   CURSOR JX+4, 54
                          CALL
 678D CD6D61
                          CALL
                                   DOT
                                           JTHE NOSE!
 Ø79Ø C9
                          RET
                 JCOMMON SUBROUTINES
                         EXCEPT AS NOTED ALL REGISTERS ARE PRESERVED
                 SUBOUTINE STRING
                         DISPLAY THE STRING OF ASCII CHARACTERS POINTED
                         TO BY H.L ERMINATING WITH "S".
EXITS WITH H.L POINTING TO THE "S".
0791 F5
                 STRING: PUSH
                                           JSAVE A AND FLAGS
                                  PSW
0792 7E
                 STRØØØ: MOV
                                  A.M
                                           JGET CHAR
6793 FE24
                         CPI
                                  ...
                                           J TERM INATOR
Ø795 CA9FØ7
                                  STREEL
                         JΖ
6798 CD1361
                                           JOK SO DISPLAY IT
                         CALL
                                  CHAR
Ø79B 23
                         INX
                                  H
879C C39287
                         JMP
                                  STREES
979F F1
                 STRØØ1: POP
                                  PSW
                                           JRESTORE A
Ø7AØ C9
                         RET
                JSUBROUTINE PAUSE
                         DELAY A BIT AS DETERMINED BY REGISTER B.
                         EXITS WITH B=8.
                         WARNING: B = 8 IS MAX, NOT ZERO, DELAY.
                         SENSE SWITCHS SET TO BIH CAUSE INFINITE PAUSE.
87A1 E5
                PAUSE: PUSH
                                  H
                                           JNEED A COUNT DOWN REGISTER
Ø7A2 F5
                         PUSH
                                  PSW
07A3 210080
                                  H. 8666H JMAKE UNIT DELAY SHORT
                         LXI
Ø7A6 2D
                PAUSØØ: DCR
                                  L
                                          JA 3 REGISTER COUNT DOWN
07A7 C2A607
                         JNZ
                                  PAUS##
87AA 25
                         DCR
                                  H
97AB C2A687
                         JNZ
                                  PAUSOD
Ø7AE Ø5
                         DCR
87AF C2A687
                         JNZ
                                 PA USØØ
67B2 DBFF
                PAUGGI: IN
                                 ØFFH
                                          JREAD SENSE SW
6784 3D
                         DCR
                                 A
                                          JARE THEY SET TO ONE?
97B5 CAB207
                         JZ
                                 PAUSS1
                                         ; YES
07B8 F1
                        POP
                                 PSW
Ø7B9 E1
                        POP
                                 H
Ø7BA C9
                        RET
                STRING DEFINITIONS
07BB 174D415452STR06:
                        DB
                                 WHI, 'MATROXSSSS'
67C7 4752415648STR61:
                        DB
                                 'GRAPHICSSSS'
@7D2 5359535445STR@2:
                        DB
                                 "SYSTEM SSSSS"
87DD 1746554C4C5TR83:
                                 WHI. 'FULLS'
```

GPD.PRN

-PAGE 07-

```
***GPD.PRN***
                                                                      -PAGE Ø8-
67E3 1143154F145TR64: DB
                                      RED, 'C', YEL, 'O', GRN, 'L', CYN, 'O', BLU, 'RS'
87EE 1154124F13STR84G: DB
                                      11H, 'T', 12H, '0', 13H, 'N', 14H, 'A', 15H, 'LS'
                                      WHI, CONTROLS'
WHI, LARGE', MAXR, 'S'
'AND SMALL', R128, 'S'
07F9 17434F4E54STR05: DB
9892 174C4152475TR96:
989A 414E4420535TR67:
                            DB
                            DB
0815 43484152415TR88: DB
                                      "CHARACTERSS"
6826 17414E494DSTR69: DB
                                      WHI, 'AN IMATIONS'
                  JVARIABLE STORAGE AREA
Ø82B
                  MAXCD:
                            DS
                                                JMAXC DISPLAY DESCRIPTOR MAXR DISPLAY DESCRIPTOR
                                      1
Ø82C
                  MAXRD:
                            DS
                                      1
Ø82D
                            D$
                                      100H
                                                STACK
Ø92D
                  STACK:
                            DS
                                      1
692E
                            END
```

DEMO

```
3
                                   THE VCJ GRAPHICS PACKAGE
                                     8686/MATROX VERSION
                                VERSION 1.85 <> SEPT 3,1977
                                      COPYRIGHT 1977
                 3
                                   DR. VINCENT C. JONES
                                   11617 BENNINGTON AVE
                                   KANSAS CITY MO 64134
                 JJUMP TABLE TO DEFINE STANDARD ENTRY POINTS
8184
                          ORG
                                           START OF STANDARD SPACE SINITIIALIZE GRAPHICS
                                   164H
6164 C31961
                          JMP
                                   INITG
#1#7 C33##1
#1#A C33C#1
                          JMP
                                   PAGE
                                           JCLEAR THE SCREEN
                          JMP
                                   CURSOR
                                           JGO TO A POINT ON THE SCREEN
616D C35A61
                          JMP
                                   DOT
                                            JDISPLAY A POINT ON THE SCREEN
6116 C3C861
                          JMP
                                   LINE
                                           JDRAW A LINE BETWEEN POINTS
8113 C36682
                                           JDISPLAY AN ASCII CHARACTER
                                  CHAR
                          JMP
#116 C379#3
                                  AN IMAT JAN IMATION SEMI-SUPPORTED
                          .IMP
                JDEFINE THE ALT-256++2 PORTS
86E8 =
                MTRO
                          EOH
                                  SESH
                                           JCONTROL PORT
66E1 =
                MTRX
                          EQU
                                  MTRS+1
                                           JX COORDINATE
                          EQU
66E2 =
                MTRY
                                  MTRS+2
                                          Y COORDINATE
66E3 =
                MTRB
                          EQU
                                  MTR#+3 JBULK MODE
                JROUTINE INITG
                          INITIALIZE THE MATROX TO 256 BY 256 B/W MODE.
                             PROPORTIONAL SPACING, X = 0, Y = 0,
                3
                             SCREEN CLEARED & CURRENT COLOR SET TO WHITE.
                         H.L CONTAINS FIRST AVAILABLE ADDRESS FOR
REFRESH BUFFERS (NOT USED).
                          RETURNS DISPLAY CHARACTERISTICS IN H.L
6119 F5
                INITG:
                         PUSH
                                  PSV
                                           SAVE ACCULULATOR
BLIA AF
                          XRA
                                  A
                                           CLEAR A
611B 21EF64
                                  H.AN IM
                                           START OF VARIABLE AREA
                         LXI
                                           JNG ATTEMPTS AT AN IMATION
511E 3666
                         MVI
                                  M. GGH
                                           ; CHANGE ARGUMENT TO FF(H) TO
                                               INHIBIT ANIMATION WARNING.
                                           JREAIM AT YPOS
J WHICH IS ZERO
JREAIM AT XPOS
S126 23
                         INX
                                  H
8121 77
                         M OU
                                  M.A
#122 23
                         INX
                                  Ħ
6123 77
                         H OV
                                  N.A
                                           ; WHICH IS ZERO
6124 23
                          INX
                                           FREAIM AT CHARACTER NODE
6125 366F
                                  M. SFH
                                           J WHICH IS PROPORTIONAL SPACING
                         MVI
8127 23
                          INX
                                  н
                                           JREAIM AT CURRENT COLOR
#128 36FF
                         MVI
                                  M. OFFH ; WHICH IS WHITE
512A 23
                          INX
                                           JREAIM AT MODE
                                  H
612B 77
612C 216969
                         M QU
                                           3 WHICH IS 256 BY 256
                                  M.A
                                  H. 6969H JLET THE USER KNOW WHAT'S HERE
PSW JRESTORE A
                         LXI
612F F1
                         POP
```

MTXGRAPH.PRN

```
JAND CLEAR THE SCREEN
                 J***** VARNING**** THIS ROUTINE MUST BE IMMEDIATELY
                                       FOLLOWED BY THE PAGE ROUTINE.
                 FROUTINE PAGE
                          CLEAR THE SCREEN
6136 F5
                          PUSH
                 PAGE:
                                   PSW
                                            SAVE THE USER WORLD
6131 AF
                          XRA
                                   A
                                            INEED A ZERO
Ø132 D3E3
                                   MTRB
                          OUT
                                            JSET ALL MEMORIES TO ZERO
$134 DBES
                 P666:
                          IN
                                   MTRØ
                                            JOONE YET?
#136 IF
                          RAR
6137 DA3461
613A F1
                                   Paga
                                            JKEEP TRYING
                          JC
                          POP
                                   PSV
613B C9
                          RET
                                            JALL DONE
                 JROUTINE CURSOR
                         POSITION THE CURSOR AT X,Y IN H,L
                 3
                            OR . . .
                          CONVERT THE COORDINATES IN HAL FROM IDEAL
                         COORDINATES (6 THRU 255 ON EACH AXIS) TO THE COORDINATES CURRENTLY IN USE BY THE DISPLAY.
613C F5
                CURSOR: PUSH
                                   PSW
                                            SAVE THE WORLD
613D C5
                         PUSH
                                            J OR AT LEAST THE AFFECTED PART
613E E5
                          PUSH
                                   H
                                            JCONVERT TO COORD IN USE
613F CD4961
                                   C1866
                          CALL.
6142 22F664
                                            JAND SAVE FOR OTHER PEOPLE
                          SHLD
                                   YP05
6145 EI
                          POP
                                   H
                                            JRESTORE THE WORLD
6146 CI
                         POP
                                  В
8147 F1
                         POP
                                  PSW
6148 C9
                         RET
                                           JALL DONE
                JINTERNAL SUBROUTINE CU000
                         CONVERT THE X,Y COORDINATE PAIR IN H,L TO
                            THE COORDINATE SYSTEM CURRENTLY IN USE
                2
                3
                         USES REGISTERS A. B. H. AND L
6149 3AF464
                CU060:
                         LDA
                                  MODE
                                           JGET MODE
614C 47
                         M OV
                                  B.A
                                           JAND SAVE IT
614D 65
                                            3-1 YET?
                CU661:
                         DCR
                                  В
SIAE FS
                                            JYES, ALL DONE
BIAF AF
                                            JMOVE H TO A WITH CY CLEAR
                          XRA
                                  A
6156 B4
                          ORA
                                  H
6151 1F
                         RAR
                                           SDIVIDE BY 2
6152 67
                         M OV
                                  H.A
                                            JAND RESTORE
                                            JDO SAME WITH Y
#153 AF
                          XRA
                                  A
                                  L
#154 B5
                          BRA
                                           JDIVIDE BY 2
6155 IF
                         RAR
8156 6F
                         M OV
                                  LA
                                           3H_{*}L = X/2. Y/2
6157 C34D61
                         JMP
                                  CUB Ø1
                                           JOONE YET?
                IRAUTINE DAT
                         DISPLAY THE POINT AT THE CURSOR POSITION
                1
                            MAY BE A SINGLE PIXEL (MODE = 8),
4 PIXELS (MODE = 1), OR 16 PIXELS (MODE = 2).
                3
```

```
BLOCK #1: TEST MODE, DISPLAY IF NORMAL (8)
015A F5
                DOT:
                         PUSH
                                  PSW
                                          SAVE REGISTERS
#15B E5
                         PUSH
                                  H
615C 2AF664
                         LHLD
                                  YPOS
                                          JGET CURSOR POSITION
815F 3AF484
                         LDA
                                  MODE
                                          JAND MODE
6162 B7
                         ORA
                                          JNORMAL MODE?
#163 C275#1
                         JNZ
                                  D200
                                             NO. MODE RI28 OR R64
6166 7C
6167 D3E1
6169 7D
                         MOV
                                  A.H
                         OUT
                                  MTRX
                         MOV
                                          JAND Y
                                  A,L
516A 2F
                         CMA
                                          J WHICH NEEDS INVERTING
616B D3E2
                         OUT
                                  MTRY
616D 3AF364
                         LDA
                                 COLOR
                                          JUHATEVER COLOR
6176 D3E6
                         OUT
                                          JG8 D8 IT
                                 MTRE
6172 EI
                         POP
                                  H
                                          JAND RESTORE
6173 F1
                         POP
                                  PSW
8174 C9
                         RET
                JBL OCK 2:
                             128 BY 128 RESOLUTION "DOT"
Ø175 C5
                D266:
                         PUSH
                                          INEED ANOTHER REGISTER
8176 AF
                         M OV
                                          JSAVE MODE (- 1)
                                  C.A
8177 3AF384
                                          JDO SAME FOR COLOR
                                  COLOR
                         LDA
517A 47
                         M OV
                                 B.A
617B 6D
                         DCR
                                          JM ODE 1. 2 OR -1?
617C FAA 861
                         JM
                                  D36X
                                          3 R64X
617F 29
6186 C2A761
                         DAD
                                  H
                                          JMULTIPLY X AND Y BY 2
                         JNZ
                                 D366
                                          MODE 2
                                          JDISPLAY THE FOUR POINTS
6183 7C
                         H OV
                                 A.H
                                          SIST X COORD
6184 D3E1
                         OUT
                                 MTRX
8186 7D
                         M OV
                                 A.L
0187 2F
                         CMA
                                          J DON'T FORGET TO INVERT
6188 6F
                         MOV
                                 LA
6189 D3E2
                         OUT
                                 MTRY
618B 78
                        M OV
                                 A.B
                                          JGET COLOR
                                          JIST POINT
SISC DIES
                         OUT
                                 MTRO
                                          JBUMP Y BY 1
618E 2C
                         INR
                                 1.
618F 7D
                        M OV
                                 A.L
6196 D3E2
                         OUT
                                 MTRY
                                          JEND Y, SAME X
6192 78
                        MOV
                                 A.B
                                          J2ND POINT
6193 D3E6
                         QUT
                                 MTRO
                                          JEND X SAME Y
5195 24
                         INR
                                 H
8196 7C
                        M OV
                                 A,H
6197 D3E1
                         OUT
                                 MTRX
8199 78
                        M OV
                                 A.B
                                          JORD POINT
619A D3E6
                         BUT
                                 MTRO
Ø19C 2D
                         DCR
                                 L
                                          JORIGINAL Y. 2ND X
619D 7D
                        MOV
                                 A.L
019E D3E2
                         OUT
                                 MTRY
61A6 78
                        M W
                                 A.B
SIAI D3ES
                                          JLAST POINT
                        OUT
                                 MTRØ
ØIA3 CI
                        POP
                                 В
                                          JRESTORE REGS
SIA4 EI
                        POP
                                 H
BIAS FI
                        POP
                                 PSW
                                          J AND RETURN
BIA6 C9
                        RET
```

3

MTXGRAPH.PRN

```
64 BY 64 RESOLUTION "DOT"
                BLOCK #3:
                D3@@:
                                           JMULTIPLY X AND Y BY 2
Ø1A7 29
                         DAD
                                  H
Ø1A8 D5
                D3@X:
                         PUSH
                                  D
                                           INEED ALL THE REGISTERS
Ø1A9 7D
                         MOV
                                  A.L
                                          JINVERT Y
BIAA 2F
                         CMA
ØIAB 6F
                         MOV
                                  LA
                                  C.Ø3H
                                          JCOUNTER FOR X COORD
SIAC SES3
                         MVI
BIAE 7C
                D3@1:
                         M OV
                                  A.H
                                           JX BASE ADDRESS
81AF $1
                         ADD
                                  C
                                           JADD OFFSET
                                  MTRX
                                          SET X
61B6 D3E1
                         OUT
                                          JY COUNTER
                                  D. Ø 3H
61B2 1683
                         MVI
                                          JY BASE ADDRESS
                D3Ø2:
                         M QU
61B4 7D
                                  ALL
Ø125 82
                         ADD
                                  D
                                          JOFF SET
61B6 D3E2
                         OUT
                                  MTRY
                                          SET Y COORD
                                          JUSE CURRENT COLOR
61B$ 7$
                         M OV
                                  A.B
                                          JPUT UP THE POINT
JADJUST Y COUNTER
61B9 D3EØ
                         OUT
                                  MTRO
61BB 15
                         DCR
                                  n
61BC F2B461
                         JP
                                  D3#2
                                           JOFFSET .GE. Ø, MORE POINTS
ØIBF ØD
                         DCR
                                           JADJUST X COUNTER
BICE FZAEBI
                         JP
                                  D3@1
                                           JAS BEFORE
                                      THIS REGISTER RESTORE ROUTINE IS
                ; * * * * * WARN ING * * * * *
                                      ALSO USED BY LINE AND CHAR.
ØIC3 DI
                         POP
                D462:
                                  D
SIC4 CI
                         POP
                                  В
81C5 E1
                         POP
                                  H
61C6 F1
61C7 C9
                                  PSW
                         POP
                         RET
                3
                FROUTINE LINE
                         GENERATE THE LINE FROM THE CURRENT CURSOR
                3
                            POSITION TO THE POINT X. Y IN H.L.
                3
                         USES DOT TO ACTUALLY DISPLAY THE POINTS.
                3
                JBLOCK 1: PRELIMINARIES
                     1.1-- SECTOR DETERMINATION
                1
                                           SAVE THE WORLD
61C8 F5
                LINE:
                         PUSH
                                  PSW
                                               NOTE: ORDER IS SET BY
61C9 E5
                         PUSH
                                  H
                                               RESTORE IN DOT
                         PUSH
                                  В
BICA C5
#1CB D5
                         PUSH
                                  D
                                           COORDINATES NEED CHANGING
$1CC CD4901
                         CALL
                                  CUØØØ
                                           JGET THE CURRENT CURSOR POSITION
ØICF 3AF184
                         LDA
                                  XPOS
                                          ; WHICH IS BIGGER?
                         CMP
Ø1D2 BC
                                  H
SID3 DADCSI
                         JC
                                  L100
                                          3 XF
                                           JNEED A-H
Ø1D6 94
                         SUB
                                  H
81D7 8688
                         MVI
                                  B. GOH
                                           SET SECTOR CODE TO ZERO
61D9 C3E161
                                           JAND CONTINUE
                                  L101
                         JMP
                L166:
                                           JNEED H-A
SIDC 2F
                         CMA
                                           WHICH REQUIRES 2'S COMPLIMENT
SIDD 3C
                         INR
                                  A
                                           3 AND AN ADD
                         ADD
                                  H
61DE 84
81DF 8684
81E1 57
                                  B. Ø 4H
                                          SECTOR CODE GETS 4
                         MUI
                                           JXP GOES IN D
                L101:
                         MOV
                                  D.A
```

```
BIE2 3AFBB4
                                            JDO THE SAME FOR Y
                          LDA
                                   YPOS
 GIES BD
                          CMP
                                            JUHICH IS LARGER
 GIE6 DAEEGI
                          JC
                                   L162
                                            JYF IS
Ø1E9 95
                          SUB
                                            JYC IS
GIEA SF
                          MOV
                                   E.A
                                            JSAVE IT
91EB C3F681
                          .IMP
                                   LIBS
                                            JAND CONTINUE
ØIEE 2F
                 L102:
                          CMA
                                            JAGAIN GET 2'S COMPLIMENT
SIEF 3C
                          INR
                                   A
81F8 85
                                            J TO FIND YF-YC
J AND SAVE IT
                          ADD
                                   L
61F1 5F
                          M OV
                                   E A
61F2 3E62
                          MUI
                                   A. 62H
                                            JINCR SECTOR CODE BY 2
81F4 88
                          ADD
                                   В
01F5 47
                          M OV
                                   B.A
                                            JNEW SECTOR VALUE
61F6 7A
                 L103:
                          M OV
                                   A.D
                                            JIS XP < YP
GIF7 BB
                          CMP
                                   Ē
                                            JIF SO THEY NEED EXCHANGING
SIFS DEFEST
                                            J OK AS THEY ARE
                          JNC
                                   L164
01FB 53
                          M OV
                                            JXP = YP
                                   D.E
BIFC SF
                          M OV
                                   E.A
                                            3 AND YP = OLD XP
01FD 04
                          INR
                                   R
                                            JAND SECTOR CODE GETS ONE MORE
                 3
                 3
                     1-2--PARAMETER INITIALIZATION
01FE 2E00
                 L184:
                          MVI
                                  L. OOH
                                            JXT = Ø
8288 62
                          MOV
                                   H.D
                                           J XP
6201 E5
                          PUSH
                                   H
                                            JXP, XT
0202 65
                          MOV
                                   H.L
                                            30.0
Ø2Ø3 E5
                          PUSH
                                   H
                                           3TA = 0
0204 6B
                          MOV
                                  L.E
                                           JH.L = YP
6265 22E564
                          SHLD
                                  DY
                                           JDY = +YP
8288 7A
                         MOV
                                  A.D
                                           DETERMINE DX
0209 2F
                         CMA
                                           3 WHICH IS 2'S COMPLIMENT
020A 6F
                         HOV
                                  LA
                                              OF XP
6268 26FF
                         MVI
                                  H-ØFFH
                                          3
                                              I.E. DX = -XP
Ø2ØD 23
                          INX
828E 22E784
                          SHLD
                                  DX
                                           JSAVE FOR LOOOP
Ø211 37
                         STC
                                           378 - 1/2 DX
Ø212 7C
                         M OU
                                  A.H
                                           JARITH SHIFT RIGHT
Ø213 1F
                         RAR
                                           J OF H.L
8214 67
                         M OV
                                           JHIGH BYTE DONE
                                  H.A
6215 7D
                         M OV
                                           JNOW DO LOW BYTE
                                  A.L
8216 1F
                         RAR
Ø217 6F
                         M OV
                                  L.A
                                           JALL DONE
6218 E5
                         PUSH
                                  H
                                           SAVE TO
                     1.3 -- SET UP COORDINATE TRANSFORMATION TABLE
                į
                 1
#219 21DD#3
#21C 78
                                           CALCULATE CORRECT MOVES
COFFSET INTO TABLE
                         LXI
                                  H.MXT
                         MOV
                                  A.B
Ø21D Ø7
                         RLC
                                           JEACH ENTRY IS FOUR BYTES
821E 87
                         RLC
021F 5F
                         M OV
                                  E.A
                                           JADD TO BASE ADDRESS
6226 AF
                         XRA
                                  A
                                           JGET A ZERO
Ø221 57
                         M OV
                                  DA
                                           J FOR NOW AND FOR LATER
                                           JH.L IS NOW ADDRESS OF MOX
Ø222 19
                         DAD
                                  D
Ø223 5E
                         M OV
                                  E.M
6224 23
                         INX
                                  H
                                           JAIN AT MØY
0225 56
                         MOV
                                  D. M
                                           JAND GET IT TOO
                                           JSHIFT TO H.L
JAND STORE IN MOVE ZERO
6226 EB
                         XCHG
8227 22E984
                         SHLD
                                  MØX
```

```
622A EB
622B 23
                          XCHG
                                           JNOW GET 'ONE' MOVE
                                           JUHICH ARE THE NEXT 2 ENTRIES
                          INX
                                  H
022C 5E
                         M OV
                                  E.M
                                           JMIX
Ø22D 23
                          INX
Ø22E 56
                         M OV
                                  D. M
                                           SMIY
622F EB
                          XCHG
                                           JGET SET
5236 22EB64
                          SHLD
                                  MIX
                                           3 AND STORE
                 JBLOCK #2: THE ACTUAL LINE GENERATION LOOP
                     2-1-- DISPLAY THE CURRENT POINT
6233 CD5A61
                L200: CALL
                                  DOT
                                           JDISPLAY THE CURRENT POINT
                     2-2-- TEST FOR DONE
#236 CI
                         POP
                                  В
                                           JB.C-TØ
6237 D1
                         POP
                                  D
                                           JD.E = TA
#238 E1
                         POP
                                  H
                                           JH.L = XP. XT
6239 7D
623A BC
                         M OV
                                  AAL
                                           JXT
                         CMP
                                  H
                                           JXP
Ø23B D2C3Ø1
                         JNC
                                  D482
                                           JALL DONE, GO RESTORE
623E 2C
                         INR
                                           1 + TX = TX
823F E5
                         PUSH
                                           JSAVE FOR NEXT ITERATION
                     2.3--DETERMINE NEXT MOVE
6246 2AE564
                         LHLD
                                  DY
                                           JEET DY
                                           JTA = TA + DY
8243 19
                         DAD
                                  D
                                           SAVE FOR NEXT ITERATION
6244 E5
                         PUSH
                                  H
8245 69
                         DAD
                                  В
                                           ;TA + T0
8246 DA5882
                         JC
                                  L24Ø
                                           JIF POSITIVE
                     2.4 -- MAKE THE REQUIRED MOVE
                3
8249 C5
                                           JTØ IS UNCHANGED WITH A MOVE ZER
                L242:
                         PUSH
624A 2AE964
                         LHLD
                                  MØX
                                           JMOX IN L. MOY IN H
#24D C358#2
                         JMP
                                  L241
                                           3 GO MOVE
8258 2AE784
                                           JMOVE ONE INCREMENTS TO
                L240:
                         LHLD
                                  DX
8253 89
                         DAD
                                  В
                                           376 - 76 + DX
8254 E5
                         PUSH
                                  H
                                           JSAVE FOR NEXT ITERATION
9255 2AEB64
6258 EB
                                           JMIX IN L. MIY IN H
JMAKE ROOM FOR AN ADDRESS
                         LHLD
                                  MIX
                L241:
                         XCHG
8259 21F884
825C 7A
                         LXI
                                  H. YPOS
                                         JUPDATE Y FIRST
                         M OV
                                  A.D
                                           JM?Y
925D 86
                         ADD
                                           J IS ADDED TO YPOS
525E 77
625F 23
                         M OV
                                           JNEW YPOS
                                  M.A
                         INX
                                  H
                                           JDO THE SAME FOR XPOS
9269 7B
                         MOV
                                  A.E
8261 86
8262 77
                         A DD
                                  M
                         M OV
                                  M.A
8263 C33382
                                  L266
                                          JEND OF LINE GENERATION LOOP
                         JMP
                JROUTINE CHAR
                         GENERATE THE ASCII CHARACTER IN REGISTER A
                         CHARACTERS ARE BASED ON R VARIABLE WIDTH
                3
                            4 BY 5 DOT NATRIX.
```

CURSOR DEFINES THE LOVER LEFT CORNER

3

MTXGRAPH.PRN

-PAGE 86-

```
OF THE DOT MATRIX.
                         CURSOR IS MOVED TO THE NEXT CHARACTER POSITION.
                        LOWER CASE IS CONVERTED TO UPPER CASE.
                3
                3
                         PARITY IS IGNORED.
                         THE FOLLOWING CONTROL CHARACTERS ARE RECOGNIZED:
                JMEMONIC ASCII HEX
                                         FUNCTION
                JMAXR
                        NUL
                                 66
                                         DISPLAY MODE - 256 BY 256
                                         DISPLAY MODE - 256 BY 256
                3 MAXC
                         SOH
                                 8 1
                JR128
                        STX
                                 Ø2
                                         DISPLAY MODE - 128 BY 128
                                         DISPLAY MODE - 64 BY 64
                3R64
                        ETX
                                 03
                                         DISPLAY MODE - 64 BY 64 DOT SIZE
                3 R64X
                        EOT
                                 ØA
                3
                                           WITH 256 BY 256 RESOLUTION.
                                           NOTE: CHARACTERS ILLEGIBLE
                #BS
                                 4 .
                        BS
                                         BACKSPACE: XPOS - 6
                JHT
                        HT
                                 09
                                         HOR TAB: XPOS = (XPOS+32)MOD 32
                JLF
                        LF
                                 8A
                                         LINE FEED: YPOS = YPOS - 8
                JUT
                        VT
                                 ØB
                                         VERT TAB: ((YPOS-32) MOD 32) - 6
                3 FF
                                 60
                        FF
                                         FORM FEED: XPOS = 8, YPOS = 122
                J CR
                        CR
                                 ØD
                                         CARRIAGE RETURN: XPOS = 0
                2
                350
                        50
                                         PROPORTIONAL CHARACTER SPACING
                                         FIXED CHARACTER SPACING
                3SI
                        SI
                                 aF
                IDLE
                                 16
                                         COLOR SELECTION FOR SYSTEMS UP T
O
                                   TO
                                           FOUR BOARDS WIDE. SEE LOOKUP
                                           TABLE "COLORS" FOR DEFINITIONS
                      US
                                     1 F
                JBLOCK 1: CHARACTER TYPE DETERMINATION
                CHAR:
                        PUSH
                                         SAVE THE WORLD
Ø266 F5
                                PSV
8267 E5
                        PUSH
                                         JNOTE: ORDER IS SET BY
                                H
0268 C5
                        PUSH
                                В
                                             RESTORE IN DOT
Ø269 D5
                        PUSH
                                 D
626A 61C361
                        LXI
                                 B. D402 JFAKE A CALL FROM THE
626D C5
                        PUSH
                                B
                                         ; REGISTER RESTORE SEQUENCE
826E E67F
                        AN I
                                7FH
                                         CLEAR PARITY BIT
8278 21F184
                        LXI
                                H. XPOS JGET X CURSOR ADDRESS
                                         J IN CASE CONTROL CHAR
6273 FE26
                        CPI
                                26H
                                         JCOMPARE TO A BLANK
0275 DA6163
                        JC
                                C5Ø 1
                                            A CONTROL CHAR
9278 FE69
                        CPI
                                         JCOMPARE TO ACCENT GRAVE
                                 60 H
527A DA7F52
                        JC
                                             UPPER CASE
                                C146
627D E65F
                        ANI
                                5FH
                                         JCONVERT LOWER CASE TO UPPER
827F 2AF664
                C100:
                        LHLD
                                 YPOS
                                         JGET CURRENT CURSOR POSITION
6282 EB
                        XCHG
                                         BUT IN D.E
                JBLOCK 2: CALCULATE THE CHARACTER MATRX ADDRESS
                        A = ASCII CHARACTER
                                                 D.E = XPOS, YPOS
0283 21FD03
                        LXI
                                H. CHRX JBASE ADDRESS OF CHAR TABLE
                                        JZEROTH ENTRY IN TABLE IS BLANK
0286 D620
                                26H
                        SHI
8288 4F
                        MOV
                                C.A
                                         J3 BYTES PER ENTRY
5289 8688
                        MVI
                                B. 66H
                                       3 SO MULTIPLY OFFSET BY 3
```

```
-PAGE SS-
```

```
422R 49
                         DAD
                                          JONCE
                                          ; TWICE
028C 09
                         DAD
                                  В
028D 09
                         DAD
                                          THRICE
JGET SPACING MODE
                                  В
028E 3AF204
                         LDA
                                  CMODE
6291 47
                         MOV
                                 B.A
                                          ; AND SAVE FOR LATER
8292 7E
                         M OV
                                 A.M
                                          JGET BYTE Ø WITH FLAGS
6293 E663
                         ANI
                                 Ø3H
                                          SISOLATE WIDTH FIELD
0295 FE03
                         CPI
                                  Ø3H
0297 CAD702
                         JΖ
                                 C488
                                          JYES, GIVE SPECIAL TREATMENT
629A 4A
                         M OV
                                 C.D
                                          JSAVE STARTING XPOS
829B C683
                         ADI
                                 Ø3H
                                          JVIDTH OF CHAR + 1
029D A0
                         ANA
                                          JWHAT SPACING MODE?
                                 B
                                          PROPORTIONAL. OK AS IS
FIXED. MAKE IT SIX WIDE
029E C2A302
                         JNZ
                                 C202
82A1 3E86
                C281:
                         MVI
                                 A.Ø6H
82A3 82
82A4 57
                C202:
                         A DD
                                 D
                                          JXPOS OF NEXT CHARACTER
                         MOV
                                 D.A
                                          JD.E IS NEXT CHAR POSITION
62A5 D5
                         PUSH
                                          JSAVE UNTIL DONE
Ø2A6 51
                                 D.C
                         MOV
                                          JRESTORE CURRENT POSITION
62A7 7E
                         M OV
                                          JONE LAST FLAG TO TEST
                                 A.M
82A8 67
                         RLC
                                          JIS THIS A DESCENDING CHAR?
02A9 D2AE02
                         JNC
                                 C3ØØ
                                          3 NO. GO GENERATE IT
Ø2AC 1D
                         DCR
                                 E
                                             YES. DOWN TWO ON Y
Ø2AD 1D
                         DCR
                JBLOCK 3: GENERATE THE ACTUAL CHARACTER
                        A = MASK FOR BOTTOM ROW
                         D.E = XPOS. YPOS
                         H.L = ADDRESS OF FIRST BYTE OF CHAR TABLE ENTRY
Ø2AE EB
                C3@#:
                         XCHG
                                          JGET REGISTERS IN POSITION
Ø2AF CDC5Ø2
                         CALL
                                 C310
                                          JDC BOTTOM ROW OF CHAR
0282 CDC302
                         CALL
                                 C3Ø5
                                          JSECOND ROW
0285 CDC502
                         CALL
                                 C316
                                          JTHIRD ROW
8288 CDC382
                         CALL
                                 C3Ø5
                                          JFOURTH ROW
Ø2BB CDC5Ø2
                         CALL
                                 C310
                                          JAND TOP ROW
                                          FRETRIEVE PRECALCULATED CURSOR
82BE EI
                         POP
                                 н
82BF 22F884
                         SHLD
                                 YPOS
                                          JAND UPDATE CURSOR
82C2 C9
                         RET
                                          JALL DONE
Ø2C3 13
                C3Ø5:
                         INX
                                 D
                                          JNEXT BYTE IN TABLE
62C4 1A
                        LDAX
                                 D
                                          3 GOES IN A
82C5 8684
                C310:
                        MVI
                                 B, Ø 4H
                                          JCOLUMNS PER ROW
62C7 E5
                        PUSH
                                          JSAVE STARTING POSITION
                                 H
82C$ 87
                C311:
                                          JSHOULD POINT BE ON?
                        RLC
82C9 22F884
                        SHLD
                                 YPOS
                                          JUPDATE CURSOR
#2CC DC5A#1
                         CC
                                 DOT
                                          JPUT UP THE POINT IF REQUIRED
62CF 24
                         INR
                                 H
                                          JNEXT X
82D8 85
                        DCR
                                 R
                                          JCOUNT DOWN
62DI C2C862
                        JNZ
                                 C311
                                          JMORE TO GO
62D4 E1
                         POP
                                          FRESTORE X
#2D5 2C
                                          JUP ONE ON Y
                         INR
82D6 C9
                                          SEND OF LOCAL SUBROUTINE
                        RET
                BLOCK 4: GENERATE FIRST COLUMN OF 5 WIDE CHARACTERS
                                         C = CHAR - 32
                        A = Ø3H
                        D.E = XPOS. YPOS
                        H.L = ADDR OF 1ST BYTE OF CHAR TABLE ENTRY
                1
62D7 7E
                C400:
                        MOV
                                 A.M
                                         MAA VOM
```

PUSH

D

JSAVE STARTING CURSOR

02D8 D5

MTXGRAPH.PRN

```
02D9 E664
62DB C2F562
                           ANI
                                             JAUXILIARY LOOKUP REQUIRED
                           JNZ
                                             FIRST COLUMN IS ALL ON ('M' 4 '
                                    C41 Ø
 Ø2DE 2F
                           CMA
 02DF 0605
                  C411:
                           MVI
                                    B. 65H
                                             35 POINTS TO A COLUMN
 82E1 87
                  C4Ø1:
                           RLC
                                             ISHOULD THE POINT BE ON?
                                             JGET X Y IN H.L
JCURRENT CURSOR POSITION
 62E2 EB
                           XCHG
 02E3 22F004
                           SHLD
                                    YP05
 SEE6 DC5AG1
                           CC
                                    DOT
                                             JDISPLAY AS REQUIRED
 62E9 EB
                                             JBACK TO NORMALCY
JNEXT YPOS
JTEST FOR DONE
                           XCHG
 82EA 1C
                           INR
                                    E
 02EB 65
                           DCR.
                                    В
 82EC C2E182
                                    C4Ø1
                           JNZ
                                             SNOT YET
 S2EF DI
                           POP
                                    D
                                             JORIGINAL CURSOR POSITION
 SEFS AA
                           MOV
                                    C.D
                                             JSAVE A COPY FOR NORMAL
 02F1 0C
                                             FIX UP TO DO COLUMNS 2-5
                           INR
 02F2 C3A102
                           JMP
                                    C2Ø1
                                             JAND RETURN TO MAINSTREAM
 82F5 E5
                 C416:
                           PUSH
                                    H
                                             JSAVE CHAR TABLE ENTRY
82F6 21BAØ4
82F9 8688
                                    H. CHRA-3 JAUXILIARY TABLE ADDR
                          LXI
                                             FOR CHARS #, $, 1, AND &
NOTE: C HAS CHAR - 26H
                           IVM
                                    B. 66H
 02FB 09
                           DAD
                                    В
02FC 7E
                          MOV
                                    A.M
                                             JGET THE FIRST COLUMN
 62FD EI
                          POP
                                    H
                                             JAND RESTORE TABLE ENTRY
Ø2FE C3DFØ2
                           JMP
                                    C411
                                             JDISPLAY THE RETRIEVED COLUMN
                 JBLOCK 5: CONTROL CHARACTERS
                          A = ASCII CONTROL CHARACTER
                 2
                          H.L = ADDRESS OF X CURSOR (XPOS)
6361 FE64
                 C5#1:
                          CPI
                                   Ø 4H
                                             JMODE CHANGE?
8383 CA1283
                          JZ
                                   C587
                                             JR64X REQUIRES SPECIAL
6366 D21683
                          JNC
                                   C510
                                             J NO
0369 3D
                          DCR
                                             JMODE TYPE
                                            J IS NOW CORRECT
838A F28E83
                          JP
                                   C5Ø6
                                            3 OPPS... TOO FAR RECORD NEW MODE
#3#D 3C
                           INR
030E 32F404
                 C5Ø6:
                                   MODE
                          STA
Ø311 C9
                          RET
0312 2F
                 C587:
                          CMA
                                            JMAKE MODE NEGATIVE
0313 C30E03
                          JMP
                                   C5Ø6
                                             ; AND USE IT
6316 D668
                 C51Ø:
                                            JNORMAL CONTROL CHAR?
                          SUI
                                   Ø 8H
6318 D8
                          RC
                                            JTOO LOW, FORGET IT
6319 C22163
631C 7E
                          JNZ
                                   C511
                                            JUHAT IS IT?
                          MOV
                                   A.M
                                            3 BACKSPACE
831D D686
                          SUI
                                   Ø 6H
                                            JXPOS = XPOS - 6
031F 77
0320 C9
                          MOV
                                   M.A
                          RET
Ø321 3D
                 C511:
                          DCR
                                            JHORIZONTAL TAB?
6322 C22C03
                                   C512
                          JNZ
                                            ; NO ; YES
0325 7E
                          M OV
                                   A.M
Ø326 C628
                          ADI
                                   20H
                                            3XP05 + 32
#328 E6E#
                          ANI
                                   ØEØH
                                            3 MODULO 32
Ø32A 77
                          M OV
                                              IS NEW XPOS
                                   M.A
Ø32B C9
                          RET
Ø32C 3D
                 C512:
                          DCR
                                            JLINE FEED?
#32D C236#3
                          JNZ
                                   C513
                                            3 NO
6336 2B
                          DCX
                                   H
                                               YES
Ø331 7E
                                            TPOS
                          M OV
                                   A,M
0332 D608
                          SUI
                                            ; - 8
; IS INEW YPOS
                                   0 8H
9334 77
                          MOV
                                   M.A
```

```
-PAGE 18-
```

```
***MTXGRAPH.PRN***
 Ø335 C9
                          RET
 Ø336 3D
                 C513:
                          DCR
                                  A
                                           JVERTICAL TAB?
 Ø337 C242Ø3
                          JNZ
                                           ; NO
; YES
                                  C514
 Ø33A 2B
                          DCX
                                  H
 033B 7E
                         MOV
                                  McA
                                           JYP05
 033C E6E0
                         ANI
                                  ØEGH
                                           J MODULO 32
 Ø33E D6Ø6
                          SUI
                                  Ø6H
                                           J MINUS 6
 9349 77
                         MOV
                                  M.A
                                           J IS NEW YPOS
 Ø341 C9
                         RET
 6342 3D
                 C514:
                         DCR
                                           JFORM FEED?
 Ø343 C254Ø3
                         JNZ
                                  C515
                                           3 NO
 8346 21FF88
8349 CD4981
                         LXI
                                  H. GOFFH JUPPER LEFT CORNER
                         CALL
                                  CUBBB
                                           IN INTERNAL COORD
 Ø34C 7D
                         MOV
                                  ALL
                                           IMOVE DOWN ONE PRINT LINE
 Ø34D D6Ø6
                         SUI
                                  Ø6H
 834F 6F
                         MOV
                                  LA
                                          FIRST POSITION ON TOP
 0350 22F004
                         SHLD
                                  YP05
                                          J LINE IS NEW CURSOR
 Ø353 C9
                         RET
 Ø354 3D
                C515:
                         DCR
                                          CARRIAGE RETURN?
0355 C25B03
                         JNZ
                                  C516
                                          J NO
                         MVI
                                  M. OOH
                                          3 YES
835A C9
                         RET
                                          JXPOS = Ø
Ø35B 21F2Ø4
                C516:
                                  H. CMODE JGET MODE AND COLOR BYTE ADDRESS
                         LXI
635E 3D
                         DCR
                                          JPROPORTIONAL SPACING REQUEST?
Ø35F C265Ø3
                                  C517
                         JNZ
                                          J NO
8362 368F
                         MVI
                                  M. ØFH
                                          3
                                             YES, SET FLAG
6364 C9
                         RET
Ø365 3D
                C517:
                         DCR
                                          FIXED SPACING REQUEST?
                                  A
#366 C26C#3
                                  C51 8
                         JNZ
                                          3 NO. MUST BE COLOR SELECT
8369 3688
                         MVI
                                  M. ØØH
                                          J YES, SET FLAG
836B C9
                         RET
#36C 3D
                C518:
                         DCR
                                          JA HAS COLOR DESIRED
036D 23
                         INX
                                 H
                                          JREAIM AT COLOR BYTE
Ø36E EB
                         XCHG
                                          JSAVE IN D
Ø36F 21C1Ø4
                         LXI
                                 H. COLORS JCOLORS LOOKUP TABLE
8372 AF
                         M OV
                                 CA
                                          JOFFSET
8373 8688
                         MVI
                                 B. SGH
8375 89
                         DAD
                                          DESIRED COLOR
                                 В
8376 7E
                         M OV
                                 A.M
                                          J GET IT
6377 12
                         STAX
                                 D
                                          3 INTO COLOR BYTE
Ø378 C9
                         RET
                JROUTINE ANIMAT
                         ANIMATION IS NOT SUPPORTED
                                         DISPLAY WARNING
WAIT FOR VERTICAL BLANKING
                          ANIM = Ø
                           ANIM =-1
Ø379 F5
                ANIMAT: PUSH
                                 PSW
                                          JSAVE SOME REGS
637A 3AEF64
                        LDA
                                 AN IM
                                          JCHECK FLAG
                                         JIS IT -1?
J YES. WAIT FOR V/B
Ø37D 3C
                         INR
                                 A
Ø37E CACDØ3
                                 A200
                        JZ
Ø381 E5
                        PUSH
                                          JIST TIME.
                                 H
                                                       GIVE WARNING
6382 2AF664
                                 YPOS
                        LHLD
Ø385 E5
                        PUSH
```

JSAVE CURSOR

3 AND COLOR

JGET SOME BACKGROUND

8386 2AF384

Ø389 E5

838A 268F

LHLD

PUSH

MVI

COLOR

H- ØFH

```
#38C 7C
                A101:
                        M OV
                                          JSET Y COORD
                                 A, H
Ø38D D3E2
                         OUT
                                 MTRY
Ø38F 2EFE
                        MVI
                                 L. OFEH JINIT X COUNTER
Ø391 7D
                A182:
                         M OV
                                 ALL
                                          JSET X COORD
0392 D3E1
                         OUT
                                 MTRX
3394 3E01
                         MVI
                                 A . Ø 1 H
                                          JSET WRITE
Ø396 D3EØ
                         OUT
                                 MTRØ
8398 2D
                         DCR
                                          JADJUST X COUNTER
                                 L
Ø399 C291Ø3
                                 A162
                         JNZ
                                          JMORE TO GO?
Ø39C 25
                         DCR
                                 н
                                          JADJUST Y COUNTER
639D C28C63
                         JNZ
                                 A101
                                          JMORE TOGO
Ø3AØ 217917
                        LXI
                                 H-1779H JCENTER (IF PROPORTIONAL)
63A3 22F664
                         SHLD
                                 YPOS
Ø3A6 21D1Ø4
                        LXI
                                 H. AN IMER JAN IMATION ERROR MESSAGE
Ø3A9 7E
                A183:
                        M OV
                                 A.M
                                         JGET A CHAR
Ø3AA FE24
                         CPI
                                 '5'
                                          JLAST LETTER?
Ø3AC CAB6Ø3
                                 Ã184
                        JZ
                                          JYES. DONE
Ø3AF CD66Ø2
                         CALL CHAR
                                         JDISPLAY IT
Ø3B2 23
                         INX
                                 H
                                         JNEXT CHAR
Ø3B3 C3A9Ø3
                        JMP
                                 A103
03B6 3EFF
                A104:
                        MVI
                                 A. ØFFH JSET AN IMATION FLAG
Ø3B$ 32EFØ4
                        STA
                                 AN IM
                                         JAND WAIT 256 FRAMES
Ø3BB CD79Ø3
                A105:
                                 AN INAT
                         CALL
63BE 3D
                        DCR
                                 A
                                            TO GIVE TIME TO READ
63BF C2BB63
                        JNZ
                                 A185
                                          ; THE BAD NEWS.
Ø3C2 E1
                        POP
                                 H
                                          FRESTORE DISPLAY SETTINGS
Ø3C3 22F3Ø4
                                         COLOR & RESOLUTION
                        SHLD
                                 COLOR
03C6 El
03C7 22F004
                                         JCURSOR POSITION
                        POP
                                 H
                        SHLD
                                 YP05
#3CA EI
                        POP
                                 H
                                         JRESTORE REGS
63CB FI
                        POP
                                 PSW
#3CC C9
                        RET
                JBLOCK #2: DELAY FOR VERTICAL BLANKING TO START
Ø3CD DBEØ
                A200:
                        IN
                                 MTRE
                                         JVER BLANK IN PROGRESS?
Ø3CF E6Ø2
                        ANI
                                 Ø2H
63D1 C2CD63
                        JNZ
                                 A288
                                         JYES. WAIT TILL DONE
                                         JTHEN WAIT FOR VERT
83D4 DBES
                A2Ø1:
                        IN
                                 MTRØ
Ø3D6 E6Ø2
                        AN I
                                 Ø2H
                                         J BLANKING TO START
#3D8 CAD4#3
                        JZ
                                 A261
Ø3DB FI
                        POP
                                 PSW
                                         JRESTORE ACCUM
Ø3DC C9
                        RET
                                 END OF EXECUTABLE PROGRAM CODE
                3
                                 *********
                                         LOOKUP TABLES
                MOVE TABLE FOR THE LINE GENERATOR
63DD FF66FFFF
               MXT:
                        DB
                                 OFFH, OGOH, OFFH, OFFH
                                                          SECTOR 5
63E1 GOFFFFF
                        DB
                                 gooh offh offh offh
                                                          ISECTOR 6
63E5 FFØØFFØ1
                        DR
                                 0FFH, 000H, 0FFH, 001H
                                                          SECTOR 4
03E9 0001FF01
                        DB
                                 666H. 961H. 6FFH. 061H
                                                          SECTOR 3
03ED 610001FF
                        DB
                                 001H 000H 001H 0FFH
                                                          SECTOR 8
03F1 00FF01FF
                        DB
                                 866H, OFFH, 061H, OFFH
                                                          SECTOR 7
```

```
-PAGE 12-
```

MTXGRAPH.PRN

```
63F5 61666161
                           DB
                                    961 H. 889H. 691 H. 601 H
                                                                JSECTOR 1
 63F9 66616161
                           DB
                                    866H-861H-861H-861H
                                                                SECTOR 2
                  JCHARACTER MATRIX TABLE
                           EACH ENTRY IS 3 BYTES
                  2
                           BIT >>
                                               5
                                                        3
                                                            2
                  BYTE
                                    U2
                                               R
                                                        T
                                                           W5
                                                               W2
                                                                    WI
                           6
                                                   S
                  JBYTE
                                     M
                                               0
                                                        I
                                                                K
                                                                     L
                  BYTE
                           2
                                     E
                                                   H
                                               G
                                                                 C
                              B
                                  C
                                     D
                                                          FLAGS
                                             U2:
                  3
                           E
                              F
                                  G
                                     H
                                                  DESCENDERS. MOVE DOWN 2
                           1
                                  ĸ
                                             W2. WI: WIDTH OF CHARACTER - 2
                              J
                                     L
                              N
                                  ٥
                                     P
                                             W5: FOR FIVE WIDE FIGURES ...
                           M
                                                 8 - FIRST COLUMN ALL ONES
                           .
                              R
                                  5
                                     T
                                                 1 = FIRST COLUMN FROM CHRA
                  3
                           REPRESENTS 2ND THRU 5TH COLUMNS
                              OF FIVE COLUMN WIDE CHARACTERS
                  CHRX:
D#3FD #26664668DB
                           62H, 66H, 66H, 46H, 68H, 86H, 61H, 66H, 6AAH
 Ø406 57FAFA775EDB
                           57H, @FAH, @FAH, 77H, 5EH, 4EH, 1FH, @B4H, @A9H 3# $ %
 640F 6F25CC0000DB
                           6FH. 25H. OCCH. OGH. OGH. BSH. 20H. SSH. SAH
                                                                        34
                                                                              •
                                                                         3) ¥
 GAIR AGAAARGIAADR
                           46H, 44H, 48H, 61H, 6A4H, 6A6H, 61H, 4EH, 46H
                                                                              +
 6421 868886616EDB
                           80H, 88H, 66H, 61H, 6EH, 66H, 46H, 66H, 66H
                                                                            .
 642A 42421632DBDB
                           42H, 42H, 10H, 32H, 0DBH, 96H, 71H, 44H, 4CH
                                                                         3/ 0
 8433 7A42967216DB
                                                                         ;2
                           7AH, 42H, 96H, 72H, 16H, 1EH, 8AH, 1FH, 99H
                                                                            3
                                                                              4
 843C 721E8F329EDB
                           72H, 1EH, 8FH, 32H, 9EH, 86H, 42H, 42H, 1FH
                                                                         :5 6
                                                                              7
 9445 3296967217DB
                           32H, 96H, 96H, 72H, 17H, 96H, 40H, 08H, 00H
                                                                         18 9
 944E $988981148DB
                           80H, 88H, 68H, 11H, 48H, 42H, 61H, 6EØH, 6EØH
                                                                         11 <
 9457 4142482202DB
                           41 H. 42H. 48H. 22H. 82H. 96H. 62H. 8BBH. 9FH
                                                                         1> ?
 6468 4AF996729EDB
                           4AH, ØF9H, 96H, 72H, 9EH, 9EH, 32H, 98H, 96H
                                                                         SA B C
                           72Ha 99Ha 9EHa 7AHa 8EHa 8FHA A2HA 8EHA 8FH
 8469 72999E7ASEDB
                                                                         ID E F
 6472 329B864A9FDB
                           32H, 9BH, 86H, 4AH, 9FH, 99H, 71H, 44H, 4EH
                                                                         JG H I
 647B 3291114AACDB
                           32H, 91H, 11H, 4AH, ØACH, ØA9H, 7AH, 88H, 88H
                                                                         JJ K L
 9484 9B55B14A9BDB
                           ØBH, 55H, ØB1H, 4AH, 9BH, ØD9H, 32H, 99H, 96H
                                                                         JM N O
 848D 428E9E3AB9DB
                           42H, 8EH, 9EH, 3AH, ØB9H, 96H, 4AH, ØAEH, 9EH
                                                                         IP & R
                                                                         IS T U
 8496 721687122233
                           72H, 16H, 87H, 12H, 22H, 2FH, 32H, 99H, 99H
 049F 3269990BB5DB
                           32H, 69H, 99H, 6BH, 6B5H, 51H, 4AH, 66H, 99H
                                                                         JV W X
 Ø4A8 2226997A84DB
                           22H, 26H, 99H, 7AH, 84H, 2FH, 66H, 88H, 8CH
                                                                         YZ [
 94B1 9212486944DB
                           Ø2H, 12H, 48H, 6ØH, 44H, 4CH, Ø2H, ØØH, 96H
                                                                         3/ 3
 SABA F89880
                           0F8H. 00H. 00H
                                                                         3 %
                 DB
                  JAUXILIARY LOOKUP TABLE
                           FIRST COLUMN OF #, $, %, AND &
Ø4BD 50109860
                 CHRA:
                           DR
                                    50H, 10H, 98H, 60H 3# $ 7 4
                  COLOR LOCKUP TABLE
                                   NMEMONIC ASCII COLOR
                           BOARDS
                                                               1 ALT-256
                  COLORS:
Ø4C1 ØØ
                                             DLE
                                                      BLACK
                                                               BLACK
                     DB
                           00H 3
84C2 8B
                     DB
                           SBH J
                                    RED
                                             DC 1
                                                      RED
                                                               WHITE
                                                      BLUE
                           93H 1
                                    BLU
                                             DC2
                                                               WHITE
Ø4C3 93
                     DB
                                                      MAGENTA WHITE
 #4C4 9B
                     DB
                           9BH 3
                                    MAG
                                             DC3
 Ø4C5 A5
                     DB
                          ØA5H 3
                                    GRN
                                             DC4
                                                      GREEN
                                                               WHITE
```

```
-PAGE 13-
                           ***MTXGRAPH.PRN***
64C6 AD
                   DB
                       SADH ;
                                                  YELLOW
                                                          WHITE
                                 YEL
                                         NAK
84C7 B5
                   DB
                       BBSH J
                                 CYN
                                         SYN
                                                 CYAN
                                                          WHITE
SACS BF
                   DB
                       ØBFH ;
                                 VH I
                                                  WHITE
                                                          WHITE
                                         ETB
84C9 45
                   DB
                        45H 3
                                                          WHITE
                                                 N A
                                 N A
                                         CAN
84CA 4D
                   BB
                        ADH 3
                                 ٥
                                    S
                                                  0 5
                                         EM
                                                          WHITE
94CB 55
                   DB
                        55H J
                                 N
                                    S
                                         SUB
                                                 N
                                                     5
                                                          WHITE
SACC 5D
                   DB
                        5DH 3
                                 E
                                         ESC
                                                     I
                                                          WHITE
64CD 63
                   DB
                        63H 3
                                    G
                                         FS
                                                     G
                                                          WHITE
Ø4CE 6B
                   DB
                                                          WHITE
                        6BH 3
                                         GS
                                    N
                                                    N
64CF 73
64D6 7F
                   DB
                        73H 3
                                    E
                                         RS
                                                     E
                                                          WHITE
                   DB
                        7FH 3
                                    D
                                         US
                                                     D
                                                          WHITE
                JANIMATION ERROR MESSAGE
64D1 62164C494DANIMER: DB 62H, 16H, 'LIMITED ANIMATIONS'
                33
                                   END OF ROMABLE SEGMENT OF PROGRAM
                3
                                 *******
                                START OF RAM (VARIABLE) STORAGE AREA
                JSCRATCH PAD STORAGE FOR THE LINE GENERATOR
                        THESE LOCATIONS MAY BE ALTERED AT ANY TIME A
                3
                           LINE IS NOT ACTUALLY BEING GENERATED.
                        VARIABLES MUST BE IN THE ORDER GIVEN.
                DY
SAES
                        DS
                                9
                                         3+YP
64E7
                DX:
                        DS
                                2
                                         3- XP
S4E9
                MØX:
                        DS
                                         JX INCR FOR A ZERO MOVE
SAEA
                                         JY INCR FOR A ZERO MOVE
                MGY:
                        DS
                                1
SAEB
                MIX
                        DS
                                         JX INCR FOR A ONE MOVE
                                1
SAEC
                MIY:
                        DS
                                1
                                         JY INCR FOR A ONE MOVE
                JGLOBAL STORAGE AREA FOR THE GRAPHICS PACKAGE
                        THESE LOCATIONS MUST BE PRESERVED BETWEEN
                3
                           CALLS TO THE GRAPHICS ROUTINES.
                3
                        THEY ARE INITIALIZED BY INITG.
                3
                        VARIABLES MUST BE IN THE ORDER GIVEN-
                1
64ED
                FIRST:
                        DS
                                         JREFRESH BUFFER ADDRESS
G4EF
                AN IM:
                        DS
                                         ; AN IMATION WARNING GIVEN FLAG
BAFB
                YP05:
                        DS
                                         JY CURSOR VALUE
                                         JX CURSOR VALUE
SAF1
                XP05:
                        DS
SAF2
                CM ODE:
                        DS
                                         CHARACTER SPACING MODE
                                1
                COL OR:
                                         CURRENT COLOR BYTE
SAF3
                        DS
                                1
84F4
               M ODE:
                        DS
                                         DISPLAY MODE
Ø4F5
                        END
```


P.O. BOX 56, AHUNTSIC STN., MONTREAL, QUE. H3L 3N5 TEL.: (514) 481-6838 TELEX 05 825651

MTX-ALPHA SOFTWARE

ALT-2480 SOFTWARE User's Manual

COPYRIGHT (1978) Dr. Vincent C. Jones

	,
	\$

ALT-2480 SOFTWARE PACKAGE

INTRODUCTION

The ALT-2480 Software Package provides the user the full flexibility of a software driven video display with the implementation ease of a stand-alone terminal. The Software Package has been designed explicitly to support easy and reliable modification to meet varying user requirements. Wherever possible, parameters and definitions are not tested until run time to permit maximum flexibility without requiring user written code modifications. Although the input routines are set up to run using 'skip' I/O, the display routines (OUTCHR and ECHOCH) are explicitly written to be useable at interrupt level.

As supplied, the package will fully emulate the popular Lear Siegler, inc. ADM-3A and Digital Equipment Corp. DECSCOPE VT-52 interactive display terminals. In addition, line at a time and text block input modes are available to provide the powerful text preparation features of an intelligent terminal.

USER'S GUIDE

This section explains the keyboard functions available under the ALT-2480 Software Package. All key codes are interpreted by software, so the ASCII code(s) associated with any function(s) can be changed as desired (see Software Interfacing Guide). The input key codes for ATTN, XON, XOFF, and block mode ESC may also be changed dynamically under keyboard or program control.

Input Modes

There are three basic input modes that can be used depending on the degree of input processing desired. The least sophisticated mode is the full duplex (FDX) mode. In this mode no processing is performed on input. For a typed in character to appear on the display, it must be echoed by the user program. (If the ALT-2480 Software Package is being used as part of a system monitor, that monitor is considered the user program.) Characters are passed on to the user program as soon as they are input, exactly as they are input. The only exceptions are the input control codes SETC (AB), ATTN (AC), XOFF (AS), and XON (AQ) used to set configuration switches, return to monitor level, stop output, and resume output respectively.

Half duplex mode buffers characters as they are input until a full line is typed. A full line consists of either 80 characters or 0 through 79 characters followed by a CR, ESC, or LF. All characters are echoed as they are input. Carriage return echoes as CR-LF and both CR and LF are passed to the user program. Rubout will delete the last character

in the buffer (and on the screen) while AU will cancel the entire line. Once a full line has been entered, no further input will be accepted until the entire line has been read by the user program and the first character on the next line requested. Control characters other than SETC, ATTN, XOFF, XON, RO, Line Cancel, CR, LF, and HT are echoed as A<char> and have no other effect on the display. They will be passed to the user program when requested exactly as typed, not as A<char>. *

In this release, RO and Λ U may not update the display correctly if tabs are erased or the input line exceeds one display line. Regardless of what appears on the display, RO and Λ U always have the correct effect on the input line buffer.

The third input mode is block mode. In this mode, the user can generate an entire block of data using all the editing capabilities of the intelligent terminal system. By inputing the XMIT (End of Text) code (AD), all data on the screen entered since the last XMIT code is sent to the user program. This can be particularly effective in such applications as filling in the entries on a computer generated form. When in block mode, no control characters are passed on to the user program except the implied carriage returns at the end of each line of data, horizontal tabs to indicate a field of protected data, and the EOT to mark the end of the transmission.

EX.: When Typed

A AH B CR

∧H = Backspace

CR = Carriage Return

When Echoed LF = Line Feed

B CR LF

Keyboard Commands

Except as noted in Appendix I, all commands can also be executed by the user program through calls to OUTCHB.

The notation A<char> is used to indicate the ASCII code generated by holding down the control key while the <char> key is depressed. Some control characters such as ESC (A[) may require using both the control and shift keys. Many keyboards include separate keys for some of the frequently typed control codes. For example, virtually every keyboard has a CR (or Return) key, which generates the same code as control M. Appendix I is a list of all the commands, their assigned control characters, and equivalent letter codes. In the definitions which follow, only the letter code is given to avoid confusion.

<u>Cursor Controls</u>. The following commands move the cursor about the screen. To retain compatibility with the LSI ADM-3A, vertical tab and form feed require preceding ESC characters. All cursor controls are nondestructive (i.e., they do not affect any of the data on the display).

Backspace (AH). Each time a backspace is executed, the cursor moves one position to the left. Cursor action when the cursor is already in the leftmost column is determined by OFFLFT.

Horizontal Tab (AI). Each time a horizontal tab is executed, the cursor moves right to the next tab stop. Tab stops are set at every eighth column. Cursor action when the next tab stop is beyond the right end of the line is determined by OFFRT.

<u>Linefeed (AJ)</u>. Each time a line feed is executed the cursor moves down to the same position on the next line. If the cursor is already on the bottom line, either the cursor will wrap around to the top line or the entire display will scroll up one line (losing the contents of the top line) as determined by OFFBOT.

<u>Vertical Tab (Λ I, Λ K)</u>. Each time a vertical tab is executed the cursor moves down to the next vertical tab stop. These stops are set every eight lines. If the next tab stop is off the bottom of the display, cursor action is determined by OFFBOT. This is a two character command because the VT character is used for the upline command.

Upline (ΛK) . Each time an upline is executed the cursor moves to the same character position in the line immediately above the current one. If the cursor is already on the top line, display action is determined by OFFTOP.

Forespace (ΛL) . Each time a forespace is executed the cursor moves to the next character position. If the cursor is on the last position on a line, the next character position is determined by the OFFRT switch.

Return (AM). This code moves the cursor to the first character position of the present line. When input from the keyboard in half duplex or block mode, a line feed is automatically appended and executed.

<u>Home</u> $(\land \land)$. The cursor is moved to the upper left display position; line 1, column 1.

Load Cursor $(\land f, '=', \lt r>, \lt r>)$. The next two characters following the

 Λ [, '=' sequence represent the absolute line and column (Y and X) coordinates which are used to position the cursor. The upper left cursor position is line 1, column 1. The characters required are calculated by adding 31 (decimal) to the desired line (or column) number. The Home Command is equivalent to the Load Cursor sequence Λ [, '=', SP, SP.

Editing Commands

The following commands are used to manipulate data on the screen. They may be output by the user program at any time. However, they are executable from the keyboard only when in block input mode. The half duplex input mode editing command Rubout is described in the Input Mode section.

Form Feed (\(\lambda \mathbb{l}\), \(\lambda \tau \). The form feed command sequence clears the screen and moves the cursor to the first position on the top line. This is a two character command because the FF character is used for the Forespace Command.

Clear Screen (Λ Z). This deletes all data on the screen. The cursor position is not changed.

<u>Line Insert (AW)</u>. The line containing the cursor and all following lines move down one line. The bottom line on the screen is lost.

<u>Line Delete (AU)</u>. The line containing the cursor is deleted. All lines below the cursor are moved up one line and a blank line is moved into the bottom line. In half duplex modes, the entire line buffer is deleted.

<u>Char Insert (ΛV)</u>. The character indicated by the cursor and succeeding characters on the same line are shifted right one character. The cursor position is set to a blank. This function will not operate if the last position on the line contains data.

<u>Char Delete ($\wedge X$)</u>. The character indicated by the cursor is removed. Characters to the right of the cursor on the same line are moved one position to the left.

Insert Mode (AL, 'I'). This command simplifies insertion of long strings of data. Logically precedes each succeeding character with an insert character command. The Insert Mode is terminated by any control character, which is otherwise ignored.

EX : [I FFFF = AFAVFAVF

Transmit Block (ΛD) . Transmit all screen data from the last transmit command (from line 1, column 1 if not on screen) up to the current cursor position, to the user program. Trailing blanks on each line (unless explicitly entered by the user) are ignored. Individual lines are separated by carriage return line feed sequences. End of Text character (ΛD) is appended to the end of the transmission to signify end of text block. Protected fields are replaced by Horizontal Tabs (ΛI) . No other control characters are transmitted. *

<u>Set XMIT Start (Λ [, Λ D)</u>. Changes the cursor position associated with the last Transmit Block command to the current cursor position. This allows the user to select a command from a menu or repeatedly input the same string (as long as it stays on the screen).

*EX:AAAAA BBBB is transmitted as AAAAAIAIAIAI BBBB

Background display = protected field AI is only one character long.

Special Commands

Four special command codes are implemented to maximize system utility. The first one, SETC, is used to change the terminal configuration switches. The other three are normally system monitor functions and can be deleted if the monitor (if any) in use provides the same function.

These switches are always detected and acted upon while the software is in use. Any keyboard input other than these commands while output is being processed is ignored.

Set Configuration (AB, <CMNID, <PARM>). The SETC command allows the user or program complete control over the terminal configuration.

Each configuration switch change requires a complete three character sequence. The AB causes the following two characters to be interpreted as the switch to change and the desired value. The switch must be an upper or lower case letter, the value can be any character other than a control character. When executed from the keyboard, the user will be prompted on the top line. Any response other than 'Y' to the question mark will cause the request to be aborted. The 'Y' should not be included when setting configuration switches from the user program.

The key codes for different setting values are given in Appendix II. Switches which can be set are:

- <A> Use the ALT-2480 display at the address indicated.
- Set OFFBOT to determine whether to wrap around to the top line or scroll the screen up when the cursor is moved below the bottom line.

- Select cursor character. The character input becomes the new cursor character.
- Display lower case as lower case (normal).
- Select escape character for block mode keyboard input.
- ⟨F⟩ Select XOFF character.
- Display lower case characters using the greek symbol set.
- Display lower case as upper case. (This switch should always
 be used with the 2480-C option.)
- <I> Select ATTN character.
- Set display line length. If length is forty or less, the display generated will be compatible with the ALT-2480 low resolution option.
- ≪> Reserved.
- Set OFFIFT to determine whether to back up to the previous line, wrap around on the same line, or remain in the first position on the line when the cursor is moved past the left edge of the display.
- ≪ Select input mode.
- <N>> Select XON character.
- <0>, <P>, <Q> Reserved
- Set OFFRT to determine whether to start a new line, wrap around on the same line, or remain in the last position when the cursor is moved past the last position on a line.
- Set or clear "TTY lock." The TTY lock shifts all lower case characters to upper case on input. It does not affect program output.

Set OFFTOP to determine whether to wrap around to the bottom line or scroll the screen down when the cursor is moved above the top line.

<U>> through <Z> Unused.

Attention $(\land C)$. This command returns control to a user specified address. Normally this would be the monitor restart or breakpoint trap address.

Stop Output (AS). This command stops all output processing until a Resume output command is given. This allows the user to stop the program long enough to read the output and then resume processing.

Only special commands may be entered while this command is in effect.

Resume Output (ΛQ). This nullifies the output freeze caused by a stop output command.

Additional Commands

Six additional commands are provided for additional flexibility.

Auto Answer Back (AE). In response to the ENQ command from the program, the software will respond with a short HERE IS message. This can be convenient for identifying specific versions of the 2480 software which have been specially modified for a given application.

Bell Subroutine (AG). Since the ALT-2480 does not provide an acoustic warning tone, a special routine is provided. This routine can either be modified to ring a user provided bell interface or left as is to flash the screen once.

Select Foreground Display (Λ [, Λ _). Display all following characters in normal video.

Select Background Display (Λ [, Λ Y). Display all following characters in inverse video (and/or blink as strapped in hardware). Note that fields in background mode are not input in block mode but are replaced by horizontal tabs.

Software Interfacing Guide

There are only three primary entry points in the MATROX 2480 Software Package. There is one routine call to output to the display, one to read the next available keyboard input, and one to see if any keyboard input is available. The same three routine calls are used regardless of the input mode in use or the style of output desired. A fourth entry point is also provided to allow independent, noninterfering output. Local storage for this routine is totally independent of that used for program output facilitating adaptation of the package to interrupt driven keyboard input.

All four routines obey the following register conventions:

1) All registers except the PSW are preserved. 2) Values are returned in register A with the flags set to match. 3) Output routines expect the argument to be in register C. In accordance with convention 2, this argument is returned in register A as well.

Primary Entry Points

OUTCHR

The character in register C is displayed at the current cursor position and the cursor is advanced to the next character position. Characters with numerical values less than 32 (blank) are assumed to be control characters (parity is ignored). The action taken for any particular control character is determined by the lookup table at the address in CONAT. If a control character is not in the referenced table, it is displayed as A<char>. Lower case characters may be optionally shifted to their upper case or greek equivalents. The parity bit will be set or cleared to match the current display mode (background or foreground respectively).

INCHRW

The next available input character is returned in register A.

If no input data is available (e.g. a line terminator has not yet been typed in half duplex input mode), the cursor character is flashed at the current cursor location to prompt the user. Only one character is returned with each call to this routine. However, once an input line or block is terminated, there is no delay in subsequent calls as long as buffered data is available.

There is no requirement that all available data be input before processing any output, but be careful with the block mode, as any input data shifted off screen before being input will be irrecoverably lost. Half duplex line storage is limited to 80 bytes. If this limit is reached before a line terminator is entered, the entire line buffer will be released to the user program and no further keyboard data entry will be accepted until the entire buffer has been read by the user program. Care must also be exercised when changing input modes

to avoid undesired loss of buffered input data.

When using block mode input, keep in mind that no distinction is made between displayed program output and displayed keyboard input.

This distinction can be maintained by using foreground mode for keyboard input and background mode for program output.

TSTIN

This routine allows the user program to check if any data is available for input. If calling INCHRW would result in a delay (i.e. a character, line, or block is not available), this routine returns with register A set to zero. If data is currently available, register A is set to FF(hex). Flags are set to match the contents of register A.

ECHOCH

This routine is similar to OUTCHR but is modified to simplify keyboard echo, specially in interrupt driven systems. Its functioning is identical to OUTCHR with the following exceptions.

- 1) Output is independent of the XOFF command.
- 2) The control table referenced by ECONAT is used.
- 3) Parity is not ignored. Characters with the parity bit zero are treated the same as in OUTCHR. However, all characters with parity bit set are considered control characters and searched for in the control table.
- 4) Escape and other multiple character sequences are maintained independent of any in progress in OUTCHR.

Required User Supplied Subroutines

To interface with the user supplied keyboard, this package requires two user defined routines. These routines may use any registers desired, the only requirement is that they return their value in register A.

INKBS

This routine must return the status of the user keyboard. Register A should be zero if a character is not available. Any other value implies a character is available immediately by calling INKBD. For compatibility with potential user programs, there should not be any response time requirement between a positive response to INKBS and the subsequent call to INKBD. INKBS is called at address STFDX + 3.

INKBD

This routine should return in register A the ASCII character input by the user. It is called only after a positive response to INKBS is received. (Note that more than one positive response to INKBS may be required before a call to INKBD depending on the user program.) The parity bit may be set or clear as desired. It is ignored by the package but is provided to the user in full duplex and half duplex input modes. INKBD is called at address INFDD+1.

Lookup Tables and Variables

Most of the power and flexibility of this package are due to the extensive use of run time interpretation of critical parameters and control character definitions along with strict segregation of program code (ROMable) and program data (RAM only). By appropriate use of the SETC command, a single copy of this package can independently control multiple MTX -2480 displays.

The use and allowable values of all variables are documented in the source listing. Some of the more powerful or unusual ones are:

CPTRS

To maintain the identity of specific points on the display as characters and lines are added or deleted and as scrolling occurs, these character pointers are updated by all routines which move data about the screen. Each pointer requires two bytes. The low byte is the column and the high byte is the line. The total number of pointers is determined by the compilation switch CPNUM, currently set to three. The first two pointers are used in block input mode to keep track of which character to transmit next and when to stop transmitting. The third pointer is available for other uses.

CURSAT

This pointer is the current cursor position. It is tested before displaying any data to verify that it is on screen. Action taken when off screen is determined by the variables OFFBOT, OFFLFT, OFFRT, and OFFTOP which are interpreted by the routine TSTCUR. Note that TSTCUR modifies only the cursor data supplied in registers H,L and if necessary, the display. It does not modify the contents of CURSAT.

TAXTM

This word contains the base address to use in all references to the MATROX display memory. It can also be used to provide a left margin by increasing the address by the desired value and decreasing the line width accordingly.

BLKEND

This byte defines both the terminate block (XMIT) character and the second character of the set block start command.

MONLVL

This defines the address to call if the ATTN character is detected on input. It is also called if an attempt is made to input a character while the keyboard is locked. Both conditions are ignored if the address is zero.

ECONAT

This word defines the control character lookup table used by the routine ECHOCH. It must contain the address of a valid control character lookup table. CONAT performs the same function for OUTCHR. In this package ECONAT and CONAT are the same. If wanted a new lookup table can be created for routine ECHOCH. INTRAP

This word is tested before each attempt to get a character from the keyboard. If it is not zero, the address contained is jumped to.

A RET instruction will return the value in register A as if it had been input from the keyboard. A JMP to INFDK will proceed with normal acquisition of keyboard input. Useful to control input data, and output data or commands from the user program when in block of half-duplex mode.

MULJMP

This word is tested by OUTCHR after registers B and C have been set up but before any processing is begun. If not zero, the contents are considered the address of a routine and called. If output has been inhibited by an XOFF command, it will not be tested until output is permitted to resume. The routine called should return with the CY

flag clear if output processing of the contents of register C is desired. CY flag set squelches further processing. Only the contents of register B must be preserved. IMULJM performs the same function for ECHOCH. The same use as INTRAP but in output controlling.

CONTAB

This is an ECHOCH and OUTCHR control character definition table. The table is built of three byte entries consisting of the value of the control character and the address of the routine to execute it. By convention, a character with the parity bit set is equivalent to the same character preceded by the escape character. If a match is found, the associated routine is called with register B positive if from OUTCHR, negative if from ECHOCH (guaranteed not to change sign if incremented less than 100 times). Register C contains the character matched and registers H and L contain the line and column of the current cursor position respectively. The routine called may use any registers desired, including register B.

Table entries may be for any eight bit value. However, the table is only searched for characters from 0 through 31 and 128 through 255. The entries may be in any order with the exception of the null control character. The last entry in the table must be zero in order to terminate the search. The table is linearly searched and only the first occurrence of a character is detected. This is utilized to redefine the carriage return in block input mode without duplicating the entire table.

APPENDIX I

Control Codes

Code ASCII		ASCII	Function	FDX	Input HDX	BLK	Output
Λ@	00	NUL					
ΛA	01	SOH					
ΛB	02	STX	SETC: Set Configuration Switches	х	x	x	x
ΛC	03	ETX	ATTN: Return to Monitor	x	х	x	
۸D	04	EOT	Transmit Block			x	
ΛE	05	ENQ	Auto Answer Back				x
۸F	06	ACK					
۸G	07	BEL	Bell Subroutine			x	х
ΛH	80	BS	Backspace			x	x
۸I	09	HT	Horizontal Tab		x	x , .	· x
۸J	0A	lf	Line Feed		x	x	x
ΛK	OB	VΤ	Upline			x	x
ΛL	0C	FF	Forespace			x	x
ΛM	0D	CIR	Carriage Return		x	x	x
VN	0E	SO	Unlock Keyboard			x	x
Λ0	OF	SI	Lock Keyboard			x	x
ΛP	10	DLE					
ΛQ	11	DCl	XON - Resume Output	x	x	x	
ΛR	12	DC2	Reserved				
۸S	13	DC3	XOFF - Stop Output	х	x	x	
ΛT	14	DC4					
ΛÜ	15	NAK	Delete Line		x	x	x
ΛV	16	SYN	Insert Character			x	x
۸W	17	ETB .	Insert Line			x	x
ΛX	18	CAN	Delete Character			x	x
ΛY	19	EM	Reserved				
۸Z	1A	SUB	Clear Screen			x	x
۸	1B	ESC	Escape Char for Multi Char Commands			x	x
٨	1C	FS					
٨	1D	GS					
^^	1E	RS	Home			x	x
^_	1F	US					
Ruboı	1 t7 F	DEL	Delete Character		x		

Escape Character Sequences

Code	Function	FDX	Input HDX	BLK	Output
ESC '=' <x> <y></y></x>	Direct Cursor Addressing			х	x
ESC 'I'	Insert Mode			x	х
ESC FF	Form Feed			x	х
ESC VT	Vertical Tab			x	х
ESC EOT	Set Start of XMIT Block			x	
ESC US	Select Foreground Display			x	х
ESC EM	Select Background Display			x	x

APPENDIX II

Configuration Switches

AB, < CMND>, < PARM>

ND>	Function	<parm></parm>	Set to
A	Set 2480 Base Address	0 1 9 : ; < = > ?	0000H 1000H 9000H A000H B000H D000H E000H F000H
В	Set OFFBOT Switch	1 H	Wrap around to top Scroll up
C	Select Cursor Char	<char></char>	Cursor becomes the char
D	Display Lower Case as Lower	0	
E	Select Escape Char	<char></char>	Escape becomes the char
F	Select XOFF Char	<char></char>	XOFF becomes the char
G	Display LC as Greek	0	
H	Display Lower Case as Upper	0	
I	Select ATTN Char	<char></char>	ATTN becomes the char
J	Set Display Line Length	X x SP	40 wide 72 wide 80 wide
K	Reserved		
L	Set OFFLFT Switch	SP 1 0	Back up to previous line Overwrite first char on line Wrap around to end of line
M	Set Input Mode	0 1 2	Half duplex Full duplex Block mode
N	Select XON Char	<char></char>	XON becomes the char
O P Q	Reserved		
R	Set OFFRT Switch	SP 1 0	First char of next line Wrap around on same line Overwrite last char
S	Set TTY Upper Case Lock	1 0	On Off (normal)
Т	Set OFFTOP Switch	l H	Scroll down Wrap around to bottom
U through	Undefined		

APPENDIX III

The Demonstration Program 1

To permit evaluation of this software package, a simple demonstration program is included as part of the package. To run the demonstration, load the object paper tape using a standard Intel format hex loader. The program loads starting at address 0100 hex and requires less than 3K bytes of memory. Once loaded, manually patch the address of your INKBS routine into the JMP at location 0103 hex, the address of your INKBD routine into the JMP at location 0106 hex (see Software Interfacing Guide for the definitions of the INKBD and INKBS routines), the address of a routine to read your current console device (value returned in register A) into the JMP at location 0109 hex and the address of a routine to output the character in register C or A on your console device into the JMP at location 010C hex. The console I/O routines are not required if only the first phase of the demonstration is executed. If desired, the location MONLVL (address OA5A hex) may be patched to the breakpoint or restart address of your monitor.

Display software parameters are initially set to the following values. They may be modified as desired using the Set Configuration Switch command.

- -ALT-2480 addressed at E000 hex.
- -Line length is 40 characters (low resolution).
- -Input mode is full duplex.
- -Input upper case shift lock is off.

- -Output displays lower case as upper case.
- -Cursor character is inverse video underline.
- -OFFBOT set to scroll display.
- -OFFTOP set to wrap around to bottom line.
- -OFFRT set to start a new line.
- -OFFLFT set to overwrite the first character on the line.
- -Control characters are defined to correspond with the User's Guide.

To run the demonstration, start execution at location 0100 hex. If your ALT-2480 is addressed in the memory block starting at E000 hex, a flashing cursor will appear in the upper left corner of the display. If your ALT-2480 is not addressed at E000 hex, type in the command sequence AB, A, n, Y where n is the character 0 through 9 or :, ;, <, =, or ?. See Appendix II for the correct value to use. This command sequence will reset the software to use the ALT-2480 at the specified address.

The first phase of the demonstration is a simple loop where a character is read by INCHRW and displayed by OUTCHR. The input mode is initially set to full duplex so that characters are displayed by OUTCHR exactly as typed in. By changing to half duplex input mode, (type $\wedge B$, M, \emptyset , Y) it is possible to see the line at a time editing ability of the package. When a line is terminated by either CR, LF, or ESC, the entire line is redisplayed by OUTCHR. (If the line is terminated by an ESC, the first character provided by the next input from INCHRW will be processed by OUTCHR as the second character of an escape sequence, so use care). Similarly, the full editing power of the display may be tried by selecting block mode (type $\wedge B$, M,

2,Y). When using block mode for the very first time, clear the screen first. This will initialize the line fill table and character pointers from the "random" contents left from the loading process. When changing from half duplex or block mode, type the terminator character immediately after executing the mode change to exit the input buffer fill code and permit the mode change to take effect.

The second phase of the demonstration program is an independent test of OUTCHR. This phase is entered by typing the control character FS (\wedge \) during phase one. Note that this will not change test phases if input mode is block mode, nor will the phase change in half duplex mode until the line is terminated and the FS character is received by the demonstration program. Phase two accepts characters from the console and displays them using OUTCHR. The routines INCHRW and INSTS are not involved. This permits extensive evaluation of display output characteristics without interference from input restrictions. This phase is exited by typing a US (\wedge) on the console.

The final phase of the test program is an independent test of the various INCHRW modes. Characters are output to the console exactly as they would have been received by a user program. Typing an RS $(\land\land)$ will return the demonstration program to the initial phase.

Application Notes

This package is provided to permit the user to experiment with various system capabilities and differing applications with a minimum of programming effort. While this section discusses various applications using the MTX2480 software package, it is important to keep in mind that this software package is not production level software. Efficiency, size, and speed of execution are all deliberately sacrificed to provide a wide range of capabilities and maximum flexibility.

A sophisticated intelligent terminal can be assembled from a minimum number of parts; display, keyboard, CPU, serial port, ROM, and a little RAM. The MTX2480 software package demonstrates many of the capabilities found in the popular Hazeltine 2000 intelligent terminal. In this case, however, many terminal characteristics can be modified by simple keyboard commands. Even production models could be radically modified simply by changing the ROM program, greatly simplifying last minute specification changes or custom variations.

In mini and micro computer based systems, the display can be integrated directly into the system, eliminating the need for extra I/O ports and utilizing idle processor time and memory. This also permits highly interactive, real time control of the display, which is often not practical over typical communication lines.

When used as the operator's console, system parameters can be displayed and updated by the operating system in real time with a minimum of overhead. For example, to display a status message on a PDP-11, an eight word routine is sufficient:

	MOV	R1, #MESSAGE	;Address of message text
	MOV	R2, #DISPLAY	;Address of display area to use
	MOV	R3, #LENGTH	;Length of message
LOOP:	MOVB	(R2)+, (R1)+	;Transfer the message
	SOB	R3, LOOP	Repeat until done

On a Z-80, only ten bytes are required!

LD BC, LENGTH ; Message length

LD DE, DISPLAY ; Display area desired

LD HL, MESSAGE ; Message desired

LDIR ; Display it.

Integrated into a small business system, the display can significantly enhance thruput and accuracy, especially with unsophisticated users. For example, order forms can be filled in by displaying the appropriate blank form and guiding the user through the required entries one step at a time using the line at a time input mode provided by MTX2480. Entries can be checked by the applications software for validity and consistency at the time of entry, allowing immediate interactive correction.

Considering the display can do anything a CRT terminal can do, only far faster; the possibilities are limitless. Except for operations requiring mass data movement (e.g. scrolling), even the MTX2480 software package can display several thousand characters a second. In general, the primary limitation on display update speed is the time required to generate or retrieve the data. This capability to read or write any data on the display almost instantly makes practical applications not even contemplated with conventional terminals.

Demonstration Program 2

This program sets the page mode, clears the screening, sets the cursor at home, and line length in 80 characters. The INTRAP location points to the address of a routine that test the column numbers. If it is 75, the bell is outputted using the OUTCHR routine.

 $\label{thm:continuity} \mbox{When a block is terminated, it is outputted on the screem without } \mbox{blanks.}$

ADDRESS	CONTENT	MNEMONIC	COMMENT
ØCØØ	Ø6 BEG	IN MOVI B,Ø8	/Load B with number of
ØCØ1	Ø8		/Codes
ØCØ2	21	LXI, H,L	/Load H,L with first
ØCØ3	ØØ		/Address of codes
ØCØ4	ØD		
ØCØ5	4E LOO	· - ,	/Get one code and
ØCØ6	CD	CALL	/Output it
ØCØ7	ØC	OUTCHR	
ØCØ8	Ø 2		
ØCØ9	23	INX H	/Point to next code
ØCØA	Ø 5	DCR B	/Decrement counter and
ØCØB	C2	JNZ LOOP	/Test for all done
ØCØC	Ø 5		
ØCØD	ØC		
ØCØE	CD HER	E CALL	/Get a block or
ØCØF	6B	INCHRW	/Buffer character if block
ØC1Ø	Ø 2		/Terminated
ØC11	FE	CPI ''	/If it is a blank
ØC12	2 ø		/Get next character
ØC13	CA	JZ HERE	/
ØC14	ØE		
ØC15	ØC		
ØC16	CD	CALL	/If not output it
ØC17	ØC	OUTCHR	<u>-</u>
ØC18	Ø 2		
ØC19	C3	JMP HERE	/Get next character or
ØC1A	ØE		/Block
ØC1B	ØC		

The bell call is made with the following routine. Manually patch the address of this routine (\emptyset C4 \emptyset) in the INTRAP location (\emptyset AB5).

ØC4Ø	2A	LHLD	/Load H,L with
ØC41	32	CURSAT	/Cursor position
ØC42	ØA		
ØC43	7D	MOV A,L	
ØC44	FE	CPI 75D	/Test if it is
ØC45	4B		/Equal to 75
ØC46	C2	JNZ INFOK	/If not, get the
ØC47	86		/Next character
ØC48	Ø 5		

ADDRESS	CONTENT	MNEMONIC	COMMENT
ØC49	ØE	MOVI CØ7H	/If yes
ØC4A	Ø 7		
ØC4B	CD	CALL	/Output the
ØC4C	ØC	O UTCHR	/Bell command
ØC4D	Ø 2		·
ØC4E	C3	JMP INFOK	/Then get the
ØC4F	86		/Next character
ØC5Ø	Ø 5		,

```
OUTPUT SUBROUTINES
               THESE ROUTINES ALL MUST PRESERVE REGISTERS B AND C
               FROUTINE CONTRL (C=CHAR, B=LEVEL)
                        CONTROL CHARACTER PROCESSING ROUTINE.
                        SCANS TABLE CONTAB OR ECONTAB AS DETERMINED BY
                           LEVEL FOR THE CHARACTER.
                        IF A MATCH IS FOUND, THE INDICATED ROUTINE IS
                           CALLED WITH B=LEVEL, C=CHAR, H=LINE AND L=COLUMN (OF CURRENT CURSOR POSITION).
                        CALLED ROUTINES MAY UTILIZE ANY REGISTERS.
                        CONTROL CHARACTER TABLES (ADDRESS IN CONAT OR EC
                           MUST CONCLUDE WITH THE NULL CHARACTER (OOHEX)
                       REGISTERS A, D, E, FLAGS, H AND L MODIFIED.
CY FLAG IS SET IF THE CHARACTER IS NOT FOUND.
02B0 C5
               CONTRL: PUSH
                                         FSAVE VITALS
02B1 2AC70A
                       LHLD
                                CONAT
                                         FASSUME OUTPUT MODE
                                         ; IS IT?
; IT IS
02B4 04
                       INR
                                В
02B5 F2BB02
                        JP
                                CNTRO
02B8 2AB30A
                       LHLD
                                ECONAT
                                         FIGET ECHO CONTROL TABLE
02BB 7E
               CNTRO:
                       MOV
                                         FGET TABLE ENTRY
                                A,M
02BC 23
                       INX
                                Н
                                         FON TO ADDRESS
02BD B9
                       CMP
                                C
                                         FDESIRED CHARACTER?
02BE CACA02
                       JZ
                                CNTR1
                                         ; YES. DO IT
0201 23
                       INX
                                Н
                                         #STEP TO NEXT ENTRY
0202 23
                       INX
02C3 B7
                                         FBUT CHECK FOR END OF TABLE
                       ORA
                                Α
02C4 C2BB02
                                CNTRO
                       JNZ
                                         FEFORE CONTINUING
0207 37
                                         FLAG AS FAILURE TO FIND
                       STC
02C8 C1
                       POP
                                         FRESTORE VITAE
0209 09
                       RET
                   *EXECUTE THE DESIRED CONTROL FUNCTION
02CA 5E
              CNTR1:
                       YOM
                                E,M
                                         FLOW BYTE OF ADDRESS
02CB 23
02CC 56
                       INX
                       MOV
                                D.M
                                        JAND HI BYTE
02CD 21D602
                                HICNTRB FFAKE A CALL
                       LXI
02D0 E5
                       PUSH
02D1 D5
                       PUSH
                                D
                                        FCALL ADDRESS
02D2 2A320A
                                CURSAT #CURSOR POSITION
                       LHLD
02D5 C9
                                        #WOULD YOU BELIEVE 'CALL'?
                       RET
02D6 C1
              CNTRB:
                                        FRESTORE VITALS
                       POP
                                R
02D7 AF
                       XRA
                                        FCLEAR CARRY
```

```
02D8 C9
                        RET
                                         # AND RETURN SUCCESSFULLY
               SUBROUIINE TSTCUR (H=LINE, L=COLUMN)
                        ADJUST H.L TO THE NEAREST ON SCREEN POINT
                        H AND L ARE TREATED AS SIGNED 8 BIT INTEGERS
                        ACTION TAKEN ON OFF SCREEN POINTS IS DETERMINED
                         BY THE SWITCHES OFFLET, OFFRT, OFFTOP AND
                        OFFBOT.
                        IF ORIGINAL POINT IS ON SCREEN IT IS NOT MODIFIE
                        A, D, E, FLAGS AND HL MODIFIED.
02D9 AF
               TSTCUR: XRA
                                        FTEST FOR OFF LEFT FIRST
                                Α
02DA B5
                        ORA
02DB F2EB02
                        JP
                                TST10
                                        JOK SO FAR, TEST RIGHT SIDE
02DE 3AC50A
                       LDA
                                OFFLFT
                                        FOFF THE LEFT, WHAT TO DO?
02E1 3D
                       DCR
02E2 F2E702
                       JP
                                TST05
                                        JUSE A, LINE # IS OK
02E5 25
                       DCR
                                н
                                        JUP ONE LINE
02E6 2F
02E7 6F
                       CMA
                                           AND CORRECT COL NUMBER
               TST05:
                       MOV
                                L,A
                                        FSET NEW COLUMN
02E8 C3FD02
                       JMP
                                TST20
                                        FAND TEST LINE #
02EB 3ABCOA
               TST10:
                                WIDTH
                       LDA
                                        FIRST FOR OFF RIGHT SIDE
02EE 3D
                       DCR
                                        #MAX LEGAL IS WIDTH-1
OZEF BD
                       CMP
                                        STILL ON?
02F0 D2FD02
                       JNC
                                TST20
                                        FYES. CHECK LINE
02F3 3AC60A
                                        OFF THE RIGHT, NOW WHAT?
                       LDA
                                OFFRT
02F6 3D
                       DCR
02F7 F2FC02
                       JP
                                TST15
                                        FADJUST COL ONLY
02FA 24
                       INR
                                        FDOWN ONE LINE
                               Н
                                        # AND 1ST COLUMN
02FB AF
                       XRA
                               Α
02FC 6F
              TST15:
                       MOV
                                        SET CORRECT COLUMN
                               L.A
                   FCOLUMN IS NOW OK.
                                        CHECK THE LINE.
02FD AF
              TST20:
                       XRA
                                        FIEST FOR OFF TOP
02FE B4
                       ORA
02FF F20D03
                               TST30
                                        FTOP OK, CHECK BOTTOM
                       JP
0302 3AC30A
                       LDA
                               OFFTOP
                                        FOFF TOP. NOW WHAT?
0305 3D
                       DCR
0306 67
                       MOV
                                        FNEW LINE NUMBER
                               H,A
0307 E5
                       PUSH
                               Н
                                        #SAVE CURSOR
0308 CC8F03
                       CZ
                               SCRLDN
                                        #SCROLL IF REQUIRED
030B E1
                       POP
                                        FRETRIEVE CURSOR
030C C9
                       RET
                                        FALL DONE
030D FE18
              TST30:
                       CPT
                               240
                                        FTEST FOR OFF BOTTOM
030F D8
                                        ∮A-OK.
0310 3AC40A
0313 3D
                               OFFBOT
                                        FDOWN TOO FAR, SO FIX
                       LDA
                       DCR
0314 67
                       MOV
                                        FNEW LINE NUMBER
                               H,A
```

SUBROUTINE PUTUP (C=CHAR, H=LINE, L=COLUMN)

FSAVE CURSOR

SCROLLING AS REQUIRED

PUSH

CNZ

POP

RET

н

SCRLUP

0315 E5

0319 E1

031A C9

0316 C44303

```
MATROX 2480 SUBROUTINE PACKAGE
               ŷ
                       VERSION 2.05 <> JAN 21, 1978
                              COPYRIGHT (C) 1978
                             DR VINCENT C JONES
                              25B NORTH MAGNOLIA
                             SATELLITE BCH, FLA
                                    32937
                       COMPILATION SWITCHES
0000
                       FALSE
                               EQU
                                        0
                                        NOT FALSE
FFFF
                       TRUE
                               EQU
0000
                       SALONE
                               EQU
                                        FALSE
                                                #STAND ALONE VERSION
FFFF
                       DEMO
                               EQU
                                        TRUE
                                                COMPILE AS DEMONSTRATIO
0003
                       CFNUM
                                                CURSOR FOINTERS
                               EQU
                                        3
0050
                       LINSIZ EQU
                                        SOD
                                                FLINE BUFFER SIZE
                           IF DEMO
                   STAND ALONE DEMONSTRATION PROGRAM 1
0100
                       ORG
                               100H
                                        #WORK UNDER CP/M
0100 C30F01
                       JMF
                               BEGIN
0103 C312F0
               INKBS:
                       JMP
                               CSTS
                                        *KEYBOARD STATUS
0106 C303F0
               INKBD:
                       JMF
                                CI
                                        FREYBOARD DATA
0109 C303F0
              CILOC:
                       JMP
                               CI
                                        FREAD CONSOLE
010C C309F0
              COLOC:
                       JMF
                               CO
                                        #WRITE CONSOLE
010F 310002
                               SP,STACK
              BEGIN:
                       LXI
                   FSELF CONTAINED TEST
0112 CD6B02
              LOOPO:
                      CALL
                               INCHRW
                                        FGET A CHAR
0115 4F
                       YOM
                               C+A
0116 CD0C02
                       CALL
                               OUTCHR
                                        #DISPLAY IT
                                        FITTINE FOR NEXT TEST?
0119 FE1C
                       CPI
                               FS
011B C21201
                               LOOPO
                       JNZ
                                        FNOT YET
                   <b>FOUTPUT TEST
011E CD0901
              LOOP:
                       CALL
                               CILOC
0121 4F
                       MOV
                               C,A
0122 CD0C02
                               OUTCHR
                       CALL
0125 FE1F
                       CPI
                               US
                                        SHIFT TIME?
0127 C21E01
                       JNZ
                               LOOP
                   FINFUT TEST
              LOOP2: CALL
012A CD6B02
                                INCHRW
012D F5
                       PHSH
                               FS₩
012E 4F
                       MOV
                               CyA
012F CDOC01
                       CALL
                               COLOC
0132 F1
                       F'OF
                               PSW
0133 FE1E
                       CFI
                               RS
0135 C22A01
                               LOOP 2
                       JNZ
0138 C31E01
                       JMF
                               LOOP
0200
                       ORG
                               200H
F003
                       CI
                               EQU
                                        OFOO3H | DEFINE FOR ZAPPLE
```

```
CO
                                  EQU
                                          0F009H
                         CSTS
                                 EQU
                                          OF012H
                         STACK
                                 EQU
                             ENDIF
                                 TOP LEVEL ROUTINES
                         ****
                FEXCEPT AS NOTED ALL REGISTERS ARE PRESERVED.
                $ROUTINE OUTCHR (C≔CHAR)
                     DISPLAY THE ASCII CHARACTER IN C AT THE
                CURRENT CURSOR POSITION AND ADVANCE THE CURSOR
                FTO THE NEXT CHARACTER POSITION.
                     CHARACTERS WITH NUMERICAL VALUES LESS THAN
                $32 (SPACE) ARE ASSUMED TO BE CONTROL CHARACTERS.
                FROUTINE INCHRW
                FRETURNS THE NEXT AVAILABLE INPUT CHARACTER FIN REGISTER A (FLAGS ARE SET TO MATCH).
                ; IF NO CHARACTER IS AVAILABLE, THIS ROUTNE WILL WAIT
                FUNTIL ONE IS.
                     THIS ROUTINE IS USED FOR ALL INPUT MODES.
               FIF IN A BUFFERED MODE (HALF DUPLEX OR BLOCK)
               NO CHARACTERS WILL BE RETURNED UNTIL A COMPLETED
               BUFFER IS AVAILABLE. ONCE THE BUFFER IS RELEASED
               BY THE KEYBOARD, EACH SUCCESSIVE CALL TO INCHRW
               ; WILL RETURN THE NEXT CHARACTER IN THE BUFFER.
               FROUTINE INSTS
                    RETURNS THE ACCUMULATOR SET TO TRUE (FF HEX)
               ; IF A CHARACTER IS AVAILABLE FOR INPUT FROM INCHR.
               OTHERWISE, A IS CLEARED TO FALSE (OO HEX).
                    FLAGS ARE SET TO MATCH.
               FROUTINE ECHOCH (C≔CHAR)
                   SAME AS OUTCHR EXCEPT THAT MULTIPLE CHARACTER SEQUE
               PARE MAINTAINED INDEPENDENTLY TO ALLOW NONCONFLICTING
               ECHOING CONCURRENTLY WITH PROGRAM OUTPUT.
               **** INTERRUPT LEVEL (ECHO) ENTRY POINT
              ECHOCH: PUSH
                                        SAVE THE WORLD
                       PUSH
                               \mathbf{p}
                       PUSH
                               R
                       PUSH
                               PSW
0204 0680
                       MUT
                               B,80H
                                        SET INTERRUPT LEVEL FLAG
```

F009

F012

0200

0200 E5

0201 D5

0202 C5

0203 F5

```
0206 2AC10A
                         LHLD
                                  IMULUM #CHECK FOR MULTICHAR
  0209 C31F02
                         JMP
                                  OUTCO
                                           REST OF PROCESSING IS
                                           COMMON WITH OUTCHR
                 ***** NORMAL ENTRY POINT FOR PROGRAM OUTPUT
 020C E5
                 OUTCHR: PUSH
                                  Н
                                           #SAVE THE WORLD
 020D D5
                         PUSH
                                  n
 020E C5
                         PUSH
                                  В
 020F F5
                         PUSH
                                  PSW
 0210 79
                         MOV
                                  A,C
                                           FOLEAR PARITY
 0211 E67F
                         ANI
                                  7FH
 0213 4F
                         MOV
                                  C A
 0214 0600
                         IVM
                                          FSET NORMAL OUTPUT FLAG
                                  B,00H
 0216 CD3A08
                OUTCE:
                         CALL
                                  XOFFED
                                          FOUTPUT THROTTLED?
 0219 C21602
021C 2ABF0A
                         JNZ
                                  OUTCE
                                           ;YES. KEEP TRYING
                         LHLD
                                  MULJMP
                                          #MULTI CHARACTER SEQUENCE?
 021F 7C
                OUTCO:
                         MUU
                                  ATH
                                          CHECK IF ZERO
 0220 B5
                         ORA
 0221 CA2C02
                         JΖ
                                  OUTC2
                                          FNOTHING TO IT
 0224 112902
                         LXI
                                  D,OUTC1 FFAKE A CALL TO IT
 0227 D5
                         PUSH
                                          FRETURN ADDRESS
 0228 E9
                         PCHL
                                          F'CALL' ROUTINE
 0229 DA3902
                OUTC1:
                                          FCY SET MEANS ALL DONE
                         .IC
                                 OUTC9
 0220 79
                OUTC2:
                        MOV
                                 A.C
                                          FROCESS THE CHARACTER
 022D FE20
                        CF'I
                                          #CONTROL CHARACTER?
 022F DA3E02
                         JC
                                 OUTCC
                                            YES
 0232 B7
                        ORA
                                          FARITY BIT SET?
0233 FA3E02
                         ML
                                 OUTCO
                                          F YES. TREAT AS CONTROL
0236 CD5D02
                        CALL
                                          NORMAL PRINTING CHAR,
                                 OUTCX
                                          # DISPLAY IT
0239 F1
                OUTC9:
                        F'OF'
                                 PSW
                                          FALL DONE, RESTORE
023A C1
                        POP
                                 В
                                          # REGISTERS
023B D1
                        POP
                                 D
                                            AND RETURN
023C E1
                        POP
                                 Н
0230 09
                        RET
                    CONTROL CHARACTER PROCESSING
023E CDB002
               OUTCC: CALL
                                 CONTRL
                                         SSEE IF LEGITIMATE CONTROL
0241 D23902
                        JNC
                                 OUTC9
                                         TYES, ALL DONE
0244 79
                                A,C ;UNRECOGNIZED CO...

' OR 80H ;PRINTING CHAR?

OUTC3 ; YES, FRINT IT
                        YOM
                                          FUNRECOGNIZED CONTROL CHAR
0245 FEA0
                        CPT
0247 D25702
                        JNC
024A C640
                        ADI
                                         SHIFT TO UC ALPHA
024C 4F
                        MOV
                                 C,A
024D C5
                        PUSH
                                 R
                                         # AND SAVE FOR LATER
024E E680
                        ANI
                                PARON
                                         #SAVE FOR/BACK BIT
0250 C65E
                        ADI
                                         JAND INDICATE CONTROL CHAR
0252 4F
                        MOV
                                CyA
0253 CD5D02
                        CALL
                                OUTCX
                                            BY LEADING UP-ARROW
0256 C1
                        POP
                                         FGET THE CHARACTER BACK
0257 CD5D02
               OUTC3:
                       CALL
                                OUTCX
                                         FDISPLAY CHARACTER
025A C33902
                        JMF
                                OUTC9
                                         # AND RETURN
```

INTERNAL SUBROUTINE OUTCX (C = CHAR)
ADJUST CURSOR TO LIE ON THE SCREEN.

```
DISPLAY THE CHARACTER AT THE ADJUSTED
                             CURSOR POSITION.
                     MOVE THE CURSOR TO THE NEXT COLUMN
                              (MAY BE OFF SCREEN).
025D 2A320A
               OUTCX: LHLD
                                 CURSAT
                                         #GET CURRENT CURSOR
0260 CDD902
                        CALL
                                 TSTCUR
                                         FCHECK AND ADJUST
0263 CD1B03
                        CALL
                                 PUTUP
                                          #DISPLAY IT
0266 2C
0267 22320A
                        INR
                                          FNEXT COLUMN
                        SHLD
                                 CURSAT
                                         ∮SAVE NEW CURSOR
026A C9
                        RET
                ****** NORMAL ENTRY POINT FOR PROGRAM INPUT
026B E5
               INCHR:
                        PUSH
                                         SAVE THE WORLD
026C D5
                        PUSH
                                 D
026D C5
                        PUSH
                                 R
026E 3A540A
                        LDA
                                 FDUX
                                         FWHAT INPUT MODE?
0271 30
                        INR
0272 CA8402
                                         # FULL DUPLEX.
# HALF DUPLEX
                        JZ
                                 INCHF
0275 F27E02
                        JP
                                 INCHH
0278 CDA806
                        CALL
                                 INBLK
                                         #BLOCK MODE
027B C38A02
                        JMF
                                 INCHX
                                         # AND RETURN
027E CDF005
               INCHH:
                        CALL
                                 INHUX
                                         FGET A LINE BUFFERED CHAR
0281 C38A02
                        JMF
                                 INCHX
0284 CD7D05
               INCHF:
                        CALL
                                 INFDX
                                         FGET NEXT KEYSTROKE
0287 DA8402
                        JC
                                 INCHF
                                         FCY SET SO TRY AGAIN
028A B7
               INCHX:
                        ORA
                                 Α
                                         SET FLAGS
028B C1
                        POP
                                 В
028C D1
                        FOF
                                 D
028D E1
                        POP
                                Н
028E C9
                        RET
               ****** NORMAL ENTRY POINT FOR INPUT STATUS
028F E5
               INSTS: PUSH
                                Н
                                         SAVE THE WORLD
0290 D5
                        PUSH
                                D
0291 C5
                        PUSH
                                В
0292 3A540A
                       LDA
                                FDUX
                                         FWHAT INPUT MODE?
0295 3C
                        INR
0296 CAA802
                                STCHE
                        JZ
                                         FULL DUPLEX.
0299 F2A202
                        JF.
                                STCHH
                                         # HALF DUPLEX
029C CDB707
                       CALL
                                STBLK
                                         #BLOCK MODE
029F C3AB02
                       JMP
                                STCHX
                                         # AND RETURN
02A2 CDB107
               STCHH:
                       CALL
                                STHDX
                                         GGET A LINE BUFFERED CHAR
02A5 C3AB02
                        .IMP
                                STCHX
02A8 CDA507
               STCHE:
                       CALL
                                STEDX
                                         FORT NEXT KEYSTROKE
02AB B7
               STCHX:
                       ORA
                                Α
                                         FSET FLAGS
02AC C1
                       POP
                                R
02AD D1
                       FOF
                                \mathbf{I}^{t}
02AE E1
                       POP
                                Н
```

```
;
                         BARE MINIMUM ALT-2480 DRIVER
                         VERSION 1.00 <> OCT 20,1977
                             COPYRIGHT (C) 1977
                             DR VINCENT C. JONES
                             11017 BENNINGTON AVE
                             KANSAS CITY MO 64134
                        BARE MINIMUM DRIVER ROUTINE FOR MATROX ALT-2480
                     DISPLAY. EMULATES A SIMPLE SCROLLING TERMINAL.
                     THE ONLY CONTROL CHARACTERS RECOGNIZED ARE LINE
                     FEED AND CARRIAGE RETURN.
                        THE USING PROGRAM MUST DEFINE THE BASE ADDRESS
                     OF THE 2480 IN USE (MTXAD) AND A ONE BYTE LOCATION
                     IN RAM (CURSOR).
                       CHARACTER TO BE DISPLAYED MUST BE IN REGISTER C.
                     A AND FLAGS ARE MODIFIED.
 0000 =
                        FALSE
                                EQU
 FFFF =
                        TRUE
                                EQU
                                        NOT FALSE
 FFFF =
                        DEM 0
                                EQU
                                        TRUE ;SUBROUTINE OR DEMO?
 FFFF =
                        W4Ø
                                EQU
                                        TRUE
                                                340 WIDE OR 80?
 000D =
                        CR
                                EQU
                                        ØDH
                                                DEFINE CARRIAGE RET
 000A =
                        LF
                                EQU
                                        ØAH
                                                ; AND LINE FEED
                ;
                            IF DEMO
                        DEMONSTRATION DRIVER
0100
                                ORG 100H
               BEGIN: LXI
0100 310002
                                SP. STACK
Ø103 DB00
               KBIN:
                        IN
                                Ø
                                       ; WAIT FOR INPUT
0105 E601
0107 CA0301
                       AN I
                       JΖ
                                KBIN
Ø1ØA DBØ1
                       IN
                                1
                                        GET THE CHARACTER
Ø10C E67F
                                        DELETE PARITY
                       ANI
                                7FH
Ø10E 4F
                                        MOVE INTO POSITION
                       MOV
                                C.A
Ø10F CD1501
                       CALL
                               MTXOUT SAND ECHO IT
Ø112 C3Ø3Ø1
                       JMP
                                KBIN
                                        ;AND KEEP ON DOING IT
0200 =
                       STACK
                                EQU
                                        200H
                                                DEFINE SOME STACK
0200 =
                       CURSOR EQU
                                        200H
                                                ; AND A BYTE OF RAM
E000 =
                       MTXAD
                               EQU
                                       ØEØØØH ;MATROX IS HERE
               ;
                       END OF DEMONSTRATION DRIVER
                           ENDIF
               ;
                       START OF ACTUAL 2480 ROUTINE
Ø115 79
               MTXOUT: MOV
                               A.C
                                       CHECK IF CONTROL
Ø116 FEØD
                       CPI
                               CR
Ø118 CA3EØ1
                       JŻ
                               OUTCR ; CARRIAGE RETURN
```

```
-PAGE Ø2-
 Ø11B FEØA
                          CPI
                                  LF
 Ø11D CA43Ø1
                          JZ.
                                  OUTLF
                                           ;LINEFEED
 Ø12Ø 3AØØØ2
                         LDA
                                  CURSOR ; DISPLAY AT NEXT LOCATION
                              IF W40
                                          340 WIDE
 Ø123 FE28
                                  40D
                              ENDIF
                              IF NOT W40
                         CPI
                                  8ØD
                                          ;80 WIDE
                             ENDIF
 Ø125 DA2CØ1
                         JC
                                  OUT20
                                          OK AS IS
 Ø128 CD43Ø1
                         CALL
                                  OUTLF
                                          ;SCROLL
 Ø12B AF
                         XRA
                                 Α
                                          CARRIAGE RETURN
 Ø12C E5
                 OUT20:
                         PUSH
                                  Н
                                          SAVE WORK REGS
 Ø12D D5
                         PUSH
 Ø12E 6F
                         MOV
                                 LA
                                          ; DESIRED COLUMN
 Ø12F 3C
                         INR
                                 Α
                                          ;ADVANCE CURSOR
 0130 320002
                         STA
                                  CURSOR ; FOR NEXT TIME
 0133 2600
                         MUI
                                  H,Ø
                                          ; CALCULATE ADDRESS
Ø135 118ØEB
                         LXI
                                 D.MTXAD+128D*23D ;1ST ON LAST LINE
                             IF W4Ø
Ø138 29
                         DAD
                                 Н
                                          ;40 WIDE IS EVEN ONLY
                             ENDIF
0139 19
                         DAD
                                 D
                                          ;ADDRESS OF CHAR
Ø13A 71
                         MOV
                                 M . C
                                          JDISPLAY IT
Ø13B D1
                         POP
                                 D
Ø13C E1
                         POP
                                 н
Ø13D C9
                         RET
                ;LOCAL ROUTINES FOR MIXOUT
Ø13E AF
                OUTCR:
                        XRA
                                         BEGINNING OF LINE
Ø13F 320002
Ø142 C9
                         STA
                                 CURSOR
                        RET
Ø143 E5
                OUTLF:
                        PUSH
                                 н
                                         SCROLL UP ONE LINE
Ø144 D5
                        PUSH
                                 D
Ø145 C5
                        PUSH
                                 В
Ø146 218ØEØ
                        LXI
                                 H.MTXAD+128D ;SOURCE
Ø149 1100E0
                        LXI
                                 D.MTXAD ; DESTINATION
Ø14C Ø1500B
Ø14F 7E
                        LXI
                                 B,22D*128D+8ØD ;BYTE COUNT
                OUT80:
                        MOV
                                 Α٠M
                                         ;Z-8Ø LDIR
0150 12
                        STAX
                                 D
0151 23
                        INX
                                 н
0152 13
                        INX
                                 D
Ø153 ØB
                        DCX
                                 В
0154 78
                        MOV
                                 A, B
Ø155 B1
                        ORA
                                 С
Ø156 C24FØ1
                        JNZ.
                                 OUTSØ
Ø159 Ø12050
                        LXI
                                 B.80D*256D+' ' ; ZAP LAST LINE
Ø15C 71
                OUT85:
                        MOV
Ø15D 2B
                        DCX
                                 н
Ø15E Ø5
                        DCR
                                 В
Ø15F C25CØ1
                        JNZ
                                 OUT85
Ø162 C1
                        POP
                                 В
Ø163 D1
                        POP
                                 D
Ø164 E1
                        POP
                                 Н
```

RET

Ø165 C9

MINI2480.PRN

```
DISPLAY THE CHARACTER IN C AT THE SCREEN
                            POSITION INDICATED.
                         ADJUST THE CHARACTER TO CORRESPOND WITH
                            OUTPUT SWITCHES GREEK AND FORBAK.
                         H AND L MUST CONTAIN A VALID, ON SCREEN POINT.
                         REGISERS A, D, E AND FLAGS MODIFIED
 031B E5
                PUTUP:
                         PUSH
                                          SAVE HAL FOR LATER
 0310 50
                         MUU
                                  E,H
 031D 1600
031F 7D
                         IVM
                                  D+0
                         MOV
                                  A+L
                                          COLUMN WITH NEW CONTENTS
 0320 21340A
                         LXI
                                  H.LINFIL
 0323 19
                         DAD
                                  Ti
                                          JADDRESS OF PREVIOUS MAX
 0324 BE
                         CMP
                                          THAVE MORE NOW?
 0325 DA2B03
                         JC
                                 PUTUO
                                          ) NO
 0328 3C
0329 77
                                          FILL IS COL + 1
                         INR
                         MOV
                                 M+A
                                          FNEW MAXIMUM
 032A 3D
                         DCR
                                 Α
                                          FBACK TO COLUMN
 032B 63
                PUTUO:
                        MOV
                                 H,E
                                          FRETRIEVE POSITION
 032C 6F
                        MOV
                                 L. , A
032D CDFA03
                        CALL
                                 CAXTM
                                          FCALCULATE ADDRESS
0330 EB
                        XCHG
                                          FPUT IN DIE
0331 21BD0A
                        LXI
                                 H, GREEK #NOTE: GREEK AND FORBAK
0334 79
                                          # MUST BE CONSECUTIVE
                        MNU
                                 A,C
0335 E660
                        ANI
                                 40H
                                          FLOWER CASE?
0337 FE60
0339 79
                        CPI
                                 60H
                        MOV
                                 A,C
                                          #GET FRESH COPY
033A C23E03
                         . IN7
                                 PUTU1
                                          FNOT LC SO OK AS IS
033D A6
                                          CONVERT TO GREEK OR UC AS REQ
                        ANA
                                 М
033E 23
               PUTU1:
                        INX
                                 Н
                                          SAME FOR FORGROUND/BACK
033F B6
0340 12
                        ORA
                                 М
                                          $SET INVERT/BLINK AS REQ
                        STAX
                                 D
                                          DISPLAY IT
0341 E1
                        POP
                                 н
                                          FRESTORE HL
0342 09
                        RET
               SUBROUTINE DELINE (H=LINE)
                        SCROLL THE LINE INDICATED AND ALL LINES BENEATH IT UP ONE LINE.
                        THE LINE INDICATED BY H IS LOST.
                        H MUST CONTAIN A VALID LINE NUMBER BETWEEN
                          O AND 23 INCLUSIVE (NOT CHECKED).
                        THE TOP LINE IS LOST.
                        CP*L AND LINFIL ARE UPDATED AS REQUIRED.
                        A, D, E, H, L AND FLAGS MODIFIED.
0343 2600
               SCRLUP: MVI
                                H . O
                                         FDO THE WHOLE SCREEN
0345 C5
               DELINE: PUSH
                                В
                                         SAVE THE SACRED
0346 2E17
                        IVM
                                L+23D
0348 E5
                        PUSH
                                Н
                                         JAND CURSOR FOR LATER
0349 7D
                        MOV
                                ArL
                                         FIRST CORRECT LINFIL TABLE
034A 94
                       SUB
034B CA8803
                        JZ
                                SCRLST
034E 214B0A
                        LXI
                                H,LINFIL+23D
0351 1E00
                        IVM
                                E • 0
                                         FROTTOM LINE GETS O
0353 56
               SLUPO:
                       MOV
                                D,M
                                         FGET CURRENT CONTENTS
0354 73
                       MOV
```

MyE

FSET TO NEW

```
0355 5A
                         YOM
                                  E,D
                                           SET NEW TO CURRENT
 0356 28
                         DCX
                                  Н
                                           FNEXT ENTRY
0357 310
                         DOR
                                  Α
0358 C25303
                         JNZ
                                  SLUF<sub>0</sub>
                     # UPDATE CP*L POINTERS
035B C1
                         POP
                                           FRETRIEVE CURSOR
035C 212D0A
                         LXI
                                 H+CP1L
                                           FLINE POINTER
035F 0E03
                         MVI
                                 C, CPNUM FOINTER COUNT
0361 78
                         MOV
                                           FLINE MOVED
                                 A,B
0362 BE
                SLUP1:
                         CMF
                                 М
                                           #WAS POINTER MOVED
0363 D26703
                         .INC
                                 SLUP2
                                           #NO
0366 35
                         DOR
                                 М
                                           FMOVE UP ONE LINE
0367 23
                                          FON TO NEXT POINTER
                SLUP2:
                         INX
                                 Н
0368 23
                         INX
                                 Н
0369 OD
                         DCR
                                          FIF ANY
                                 C
036A C26203
                         JN7
                                 SLUP1
                    FINALLY DO
                                 THE ACTUAL SCROLL
036D 60
                SLUP4:
                        MOV
                                 H_{\bullet}B
                                          FIND ADDRESS
036E 2E00
                        IVM
                                 L. , O
0370 CDFA03
                        CALL
                                 MIXAD
0373 3E17
                        MUI
                                 A,23D
                                          THOW MANY LINES?
0375 90
                        SUB
0376 47
0377 EB
                        YOM
                                 BIA
                        XCHG
                                          DESTINATION IN DE
0378 05
               SLUP5:
                        DCR
                                 В
                                          FDONE YET?
0379 FDE03
                       JM
                                SLDN4
                                         FREST IS COMMON
037C 218000
037F 19
                        L.XT
                                 H,128D
                                          FOFFSET TO SOURCE
                        DAD
                                 \mathbf{p}
0380 E5
                        PUSH
                                          SAVE FOR NEXT TIME
                                 Н
0381 CDED03
                        CALL
                                 08V0M
                                          COPY LINE UP
0384 D1
                        POP
                                 D
                                          NEW DESTINATION
0385 C37803
0388 C1
                        JMP
                                 SLUP5
               SCRLST: POP
                                 В
                                          FCLEAN STACK
0389 324B0A
                                 LINFIL+23D #BOTTOM LINE IS EMPTY
                        STA
0380 036003
                                 SLUP4
                        JMP
               $SUBROUTINE SCRLDN (H = LINE)
                        SCROLL INDICATED LINE AND ALL LINES BENEATH IT DOWN ONE LINE.
                        H MUST CONTAIN A VALID LNE NUMBER (0 - 23).
                        CF*L AND LINFIL ARE UPDATED AS REQUIRED.
                        A, FLAGS, D, E, H & L MODIFIED.
038F C5
               SCRLDN: PUSH
                                 R
                                          #SAVE THE SACRED
0390 2E17
                                 L, 23D
                        MUT
0392 E5
                        PUSH
                                 Н
                                          SAVE ARGUMENTS FOR LATER
0393 7D
                        VOM
                                 AIL
                                          FHOW MANY LINES?
0394 94
                        SUB
                                 Н
0395 CA8803
                                 SCRLST #BOTTOM LINE IS SPECIAL
                        JZ
                   SUPDATE LINFIL TABLE
0398 214B0A
                        LXI
                                 H,LINFIL+23D
039B 2B
               SLDNO:
                        DCX
                                 Н
                                          FFICK UP NEW VALUE
0390 56
                        MOV
                                 D.M
039D 23
                        INX
                                 Н
                                          # AND PUT IT WHERE
039E 72
                        YOM
                                 MyD
                                          # IT BELONGS
```

```
039F 2B
                        DCX
                                         FNEXT ENTRY
03A0 3D
                        DOR
                                         JANY LEFT?
03A1 C29B03
                        JNZ
                                SLDNO
                                         # YES.
                                         CLEAR LAST ENTRY
03A4 3600
                        IVM
                                M . O
                   JUPDATE CHARACTER POINTERS
                                         FRETRIEVE PARAMETERS
03A6 D1
                        POP
                                D
03A7 D5
                        PUSH
                                D
03A8 212D0A
                        LXI
                                HyCP1L
                                        FLINE POINTER
03AB 0E03
                                C, CPNUM FLINE POINTER COUNT
                        MUT
03AD 7E
                                         FOET POINTER
               SLIN1:
                        MOV
                                A,M
O3AE BA
                        CMP
                                Ľ
                                         FABOVE TOP LINE?
03AF DAB703
                        JC
                                SLDN2
                                         TYES, NO CHANGE REQ
03B2 BB
                        CMP
                                         FON OR BELOW BOTTOM LINE?
                                E
03B3 D2B703
                                SLDN2
                                         YES, NO CHANGE REQ
                        JNC
03B6 34
                        INR
                                М
                                         #MOVE POINTER DOWN 1 LINE
03B7 23
               SLDN2:
                        INX
                                         *NEXT POINTER
03B8 23
                        INX
03B9 OD
                        DOR
                                C
                                         JANY LEFT?
03BA C2AD03
                                SLDN1
                        JNZ
                                         FYES
                   FDO THE ACTUAL SCROLL
03BD C1
                       FOF
                                B
                                         FRETRIEVE PARAMETERS
03BE 79
                        MOV
                                A,C
03BF 90
                        SUB
                                R
03CO 47
                       MOV
                                B,A
                                         FLINE COUNT IN B
03C1 AF
                        XRA
                                         JMOV A,C W/ CY CLEAR
                                A
03C2 B1
                       ORA
                                C
03C3 1F
                       RAR
                                         #MULTIPLY LINE BY 128
03C4 57
                       MOV
                                DyA
03C5 3E00
                       MVI
                                A+0
03C7 1F
                        RAR
03C8 5F
                       MOV
                                E,A
                                         FINAL LINE OFFSET
03C9 2A4C0A
                       LHLD
                                TAXTM
                                         #BASE ADDRESS
03CC 19
                       DAD
                                n
                                         *DESTINATION ADDRESS
O3CD EB
                       XCHG
                                         #GOES IN DE
03CE 05
               SLDN3:
                       DCR
                                         FOONE YET?
03CF FADE03
                        JM
                                SLDN4
                                         FYES
03D2 2180FF
                       LXI
                                Hy-128D JUP A LINE
03D5 19
                       DAD
                                n
03D6 E5
                       PUSH
                                Н
                                         FOR NEXT
03D7 CDED03
                        CALL
                                MOV80
                                         JCOPY A LINE
03DA D1
                       POP
                                \mathbf{p}
                                         FRETRIEVE LAST SOURCE
O3DB C3CEO3
                        JMF
                                SLDN3
                                         JAND TRY AGAIN
                   #BLANK THE LINE
03DE 214F00
               SLDN4: LXI
                                H,79D
                                         FALSO USED BY SCRLUP
03E1 19
                       DAD
                                \mathbf{p}
                                D,80D*100H+' '
03E2 112050
                       LXT
03E5 73
               SLDN5:
                       MOV
                                M,E
                                         FBLAANK IT
03E6 2B
                       DCX
                                Н
                                         FNEXT
03E7 15
                       DCR
                                         FIF ANY
03E8 C2E503
                        JNZ
                                SLDN5
03EB C1
                       FOR
                                         FRESTORE SACRED
                                В
03EC C9
                       RET
               SUBROUTINE MOV80 (DE=DESTINATION, HL=SOURCE)
```

MOVE 80 CHARACTERS FROM ADDRESS IN HL TO THE ADD

```
IN DE.
A, D, E, FLAGS, H AND L MODIFIED.
03ED C5
               *00A00
                        PUSH
03EE 0650
                                  B,80D
                         MVI
               #USAU
03F0 7E
                        MOV
                                  A,M
03F1 12
                         STAX
                                  D
                                           #COPY TO GOAL
03F2 23
                         INX
                                  Н
                                           *NEXT SOURCE
03F3 13
                         INX
                                 D
                                           # AND DEST
03F4 05
                                           FANY MORE?
                         DCR
                                  R
03F5 C2F003
                                 MOV8L
                                           9 YES
                         JNZ
03F8 C1
                         POP
                                 В
03F9 C9
                         RET
               ;SUBROUTINE MTXAD (H=LINE, L=COLUMN)
; CALCULATE ADDRESS FOR LINE/COLUMN IN H,L.
                         ALL REGISTERS EXCEPT B & C MODIFIED.
                                          $40 OR 80 WIDE?
$IS IT 40 OR LESS?
O3FA 3ABCOA
               MTXAD:
                        LDA
                                 WIDTH
03FD FE29
                         CF I
                                 41D
03FF D20504
0402 7D
                         JNC
                                 MTXAO
                                           # NO.
                        MOV
                                 ArL
                                           #MULTIPLY COLUMN BY 2
0403 87
                       ADD
                                Α
0404 6F
                        MOV
                                 L. + A
0405 7C
               MTXAQ:
                                          FTAKE LINE NUMBR
                        MOV
                                 A,H
                                          #COLUMN * 2
#CLEAR CY SO CAN GET
0406 29
                        DAD
                                 Н
0407 B7
                        ORA
                                 Α
0408 1F
                        RAR
                                           f (LINE+COL*2)/2
0409 67
                        MOV
                                 H,A
040A 7D
                        MOV
                                 ALL
040B 1F
040C 6F
                        RAR
                        MOV
                                 L,A
040D EB
                        XCHG
                                           JDE = LINE*128D + COLUMN
040E 2A4C0A
                                 TAXTM
                                          FADR OF LINE O, COL O
                        LHLD
                                          DESIRED ADDRESS
0411 19
                        DAD
                                 D
0412 C9
                        RET
               SUBROUTINE FUTIN (H=LINE, L=COLUMN)
                        MAKE ROOM ON A LINE FOR A NEW CHARACTER
                        IF LAST CHARACTER POSITION ON THE LINE IS
                          NOT A SPACE, HAS NO EFFECT.
                        LINFIL AND CP*C ARE UPDATED AS REQUIRED.
                        A, D, E, FLAGS, H & L MODIFIED.
0413 0E20
               PUTSPC: MVI
                                 C, ' '
                                          JINSERT A SPACE
0415 C5
               PUTIN: PUSH
                                 В
0416 E5
                        PUSH
                                 Н
0417 E5
                        PUSH
                                          #SAVE EXTRA FPOR LATER
                                 Н
0418 11340A
                                 D,LINFIL
                                                   #CHECK IF ROOM FOR ANOTH
                        LXT
041B 6C
                        MOV
                                 L .H
041C 2600
                        MVI
                                 H,0
041E 19
                        DAD
                                 D
                                          $LOOK UP CURRENT FILL
041F D1
                                          FGET LINE AND COL
                        POP
                                 \mathbf{p}
0420 3ABCOA
                        LTIA
                                 WIDTH
                                          FULL LINE SIZE
0423 BE
                        CMF
                                 М
                                          FIS THERE ROOM?
                                 PUTIO
0424 CA3504
                        JZ
                                           ) NO
0427 34
                        INR
                                          JUPDATE LINFIL
```

```
0428 7E
                         MOV
                                  AyM
                                           FINSERT AFTER LINE END?
  0429 BB
                         CMP
 042A D23804
                                  PUTIA
                         JNC
                                             NO
  042D 73
                         MOU
                                           THIS CHAR IS LAST
                                  MyE
  042E E1
                         FOF
                                  Н
                                           #WHERE DOES IT GO?
 042F CDFA03
                         CALL
                                  MIXAD
 0432 71
                         MOV
                                  M+C
                                           STUFF IT
 0433 C1
                         POP
                                  В
 0434 C9
                         RET
                     CAN'T BE DONE
 0435 C1
                PUTIO: POP
                                  В
                                          FCLEAN UP STACK
 0436 C1
                         POP
                                 В
 0437 C9
                         RET
                     $SHIFT THE LINE OVER ONE COLUMN
 0438 93
                PUTIA: SUB
                                 E
                                          FNOW MANY COL NEED SHIFTING
 0439 47
                         MOV
                                 R . A
                                          SAVE COUNTER IN B
 043A EB
                         XCHG
                                          FGET IN POSITION
 043B CDFA03
                         CALL
                                 CAXTM
                                          PHYSICAL ADDRESS OF INSERT
 043E 7E
                PUTID:
                        MOV
                                 A,M
                                          #GET OLD
 043F 71
                         MOV
                                 M.C
                                          STUFF WITH NEW
 0440 4F
                         MOV
                                 C,A
                                          *MAKE OLD NEW FOR NEXT
 0441 23
                         INX
                                          NEXT COLUMN
 0442 3ABCOA
                         LDA
                                 WIDTH
                                          FLOW RESOLUTION MODE?
 0445 FE29
                         CFT
                                 41.D
 0447 D24B04
                         JNC
                                 PUTIC
                                          INO, OK AS IS
 044A 23
                        INX
                                          FEVERY OTHER
044B 05
                PUTIC:
                        DCR
                                 В
                                          JANY LEFT?
044C F23E04
                         JF
                                 PUTID
                                          FYES
                    FIX CURSOR POINTERS AFFECTED
044F C1
                        POP
                                 B
                                          #GET CURSOR
0450 212D0A
                                 H,CP1L
                        LXI
                                          CHECK IF ON LINE
0453 1603
                        MUT
                                 D, CPNUM
                                          FINIT COUNTER
0455 7E
               PUTIE:
                        MNU
                                 A,M
                                          #WHICH LINE?
0456 B8
                        CMP
                                          THE ONE MOVED?
0457 CA6204
                        JΖ
                                 PUTIF
                                          FYES, CHECK IT OUT
045A 23
               PUTIH:
                        INX
                                H
                                          FMMOVE TO NEXT
045B 23
                        INX
                                 Н
045C 15
                                         JANY LEFT TO CHECK?
                        DOR
                                 \mathfrak{p}
045D C25504
                        JNZ
                                PUTIE
                                            YES
0460 C1
                        POP
                                R
                                         FRESTORE SACRED
0461 C9
                        RET
0462 2B
               PUTIF:
                        DCX
                                Н
                                         FBACK UP TO COL
0463 7E
                        MOV
                                A,M
0464 B9
                        CMP
                                         $TO LEFT OF INSERT?
0465 D27204
                        JNC
                                PUTIG
                                         ; YES, NO CORRECTION REQ
0468 34
                        TNR
                                         MOVE OVER ONE
0469 3ABCOA
                        LIA
                                WIDTH
                                         FCHECK FOR IN RANGE
046C BE
                        CMF
046D C27204
0470 36FF
                        JNZ
                                PUTIG
                                         #OK
                        MVI
                                M, OFFH
                                         FLAG AS OFF (SHOULD NEVER HAPPE
0472 23
               PUTIG:
                       INX
                                Н
                                         FBACK TO LINE
0473 C35A04
                        JMP
                                PUTIH
                                         FDO NEXT
```

```
    $SUBROUTINE SETCON (B=COMMAND, C=PARAMETER)
    $PROCESSOR FOR CONFIGURATION SWITCHES.
    USES TABLE SETTAB FOR DEFINITIONS.
```

```
CALLS SETTAB ROUTINES WITH
                             B=COMMAND
                                                 C=PARAMETER
                             D=PARAMETER-'0'
                             E=FARAMETER-'0'+ 60 HEX IF D NEGATIVE
                          ALL REGISTERS MODIFIED
0476 78
                SETCON: MOV
                                   A, B
                                             FVERIFY VALID COMMAND
0477 E65F
                          ANI
                                   5FH
                                             FINSURE UC
0479 D641
                          SUI
                                    'A'
047B F8
047C FE14
                          RM
                                             FTOO SMALL
                          CPI
                                   (SETEND-SETTAB)/2
047E D0
047F 5F
                          RNC
                                             #TOO LARGE
                          MOV
                                   E,A
                                             FCALCULATE ENTRY
0480 1600
                          MVI
                                   D,0
0482 215505
                          LXI
                                   H, SETTAB
0485 19
                          DAD
                                   \mathbf{p}
0486 19
                          DAD
                                             $2 BYTES/ENTRY
0487 5E
                          MOV
                                             FPICK UP ADDRESS
                                   E,M
0488 23
                          INX
                                   н
0489 56
                          MOV
                                   \mathbf{D}_{\mathbf{7}}\mathbf{M}
048A EB
                          XCHG
048B 79
                          MOV
                                   A,C
                                             FCALCULATE PARAMETER
048C E67F
                          ANI
                                   7FH
                                             # VARIANTS
048E D630
                          SUI
                                   101
0490 57
                          MOV
                                   \mathbf{D}_{\mathbf{z}}\mathbf{A}
0491 F29604
                          JF
                                   SETCO
0494 C660
                          ADI
                                   40H
0496 5F
0497 E9
                SETCO:
                         MOV
                                   E,A
                          PCHI
                                            ;GO TO IT
0498 C9
                SETNOT: RET
                                            #UNDEFINED, IGNORE
                         SETCON CALL ROUTINES
                     FSET ALT-2480 BASE ADDRESS
0499 7A
                SETADR: MOV
                                   A,D
049A FE10
                         CPI
                                            FMAKE SURE VALID
                                   10H
049C DO
                         RNC
                                            FIT ISN'T
049D 07
                                            FTIMES 16
049E 07
                         RLC
049F 07
                         RLC
04A0 07
04A1 324D0A
                         RLC
                                   MTXAT+1 #NEW HIGH ADDRESS BYTE
                         STA
04A4 C9
                     FSET OFFBOT SWITCH
04A5 7A
04A6 FE19
                SETBOT: MOV
                                   A,D
                          CPI
                                   250
04A8 D0
                         RNC
                                            FILLEGAL
04A9 32C40A
                         STA
                                   OFFBOT
04AC C9
                         RET
                     #SET OFFTOP SWITCH
04AD 7A
                SETTOP: MOV
                                   A,D
04AE FE19
                         CPI
                                   25D
04B0 D0
                         RNC
```

```
04B1 32C30A
                         STA
                                 OFFTOP
04B4 C9
                         RET
                    SET OFFRT SWITCH
                    ; 1 SETS TO 1, 0 SETS TO WIDTH
; 2 + SETS TO 1-WIDTH
                         2 + SETS TO 1-WIDTH
04B5 7A
                SETRT: MOV
                                 A \cdot D
04B6 FE01
                         CPI
04B8 CAC404
                         JZ
                                 SETRO
04BB 3ABCOA
04BE DAC404
                         LDA
                                  WIDTH
                         JC
                                 SETRO
04C1 2F
04C2 3C
04C3 3C
                         CMA
                         INR
                         INR
                                          #1-WIDTH
04C4 32C60A
               SETRO: STA
                                 OFFRT
04C7 C9
                         RET
                    SET OFFLET SWITCH
               ; SAVE ACTION AS SETRT SETLET: MOV A,D
04C8 7A
04C9 FE01
                         CPI
                                 1
04CB CAD704
                         JZ
                                 SETLO
04CE 3ABCOA
04D1 DAD704
                        L.DA
                                 WIDTH
                         JC
                                 SETLO
04D4 2F
04D5 3C
                         CMA
                         INR
04D6 3C
                         INR
04D7 32C50A
04DA C9
               SETLO: STA
                                 OFFLFT
                        RET
                    ∮SET GREEK FOR GREEK TRANSLATION
04DB 3E9F
               SETGRK: MVI
                                 A,9FH
04DD 32BD0A
                        STA
                                 GREEK
04E0 C9
                        RET
                    FSET GREEK FOR UPPER CASE ONLY
04E1 3EDF
               SETUC: MVI
                                 A,ODFH
04E3 32BD0A
                       STA
                                 GREEK
04E6 C9
                        RET
                    FSET GREEK FOR NORMAL LOWER CASE
04E7 3EFF
               SETLC: MVI
                              A,OFFH
04E9 32BD0A
04EC C9
                        STA
                                 GREEK
                        RET
                    FSET DISPLAY WIDTH (LINE LENGTH)
04ED 7B
               SETWOH: MOV
                              A,E
04EE 32BC0A
                        STA
                                 WIDTH
04F1 C9
                        RET
                    *DEFINE A NEW CURSOR CHARACTER
04F2 79
04F3 32550A
               SETCUR: MOV
                              A,C
                        STA
                                 CURSOR
04F6 C9
                        RET
                    FDEFINE A NEW ESCAPE, ATTN, XON OR XOFF
04F7 21570A
              SETESC: LXI H, ESCAPE
```

```
04FA C30F05
                         JMP
                                 SETCHR
04FD 21500A
               SETATT: LXI
                                 H, ATTN
0500 C30F05
                        JMF
                                 SETCHR
0503 21510A
               SETXFF: LXI
                                 H,XOFF
0506 C30F05
                        JMP
                                 SETCHR
0509 21520A
050C C30F05
               SETXN:
                        LXI
                                 H,XON
                        JMF
                                 SETCHR
050F 79
               SETCHR: MOV
                                 A,C
                                          FNEW CHARACTER
0510 E67F
0512 77
                        ANI
                                 7FH
                                          INO PARITY ALLOWED
                        MOV
                                 M,A
0513 C9
                        RET
                    FSET INPUT TTY LOCK
                       OFF IF O, OTHERWISE ON.
0514 7A
               SETTTY: MOV
                                 A,D
0515 B7
                        ORA
                                 Α
0516 2F
0517 CA1C05
                        CMA
                                          JASSUME OFF
                                 SETLK
                        .17
051A 3EDF
                        MVI
                                 A,ODFH
                                          FTURN ON
051C 32530A
               SETLK:
                        STA
                                 UCLOCK
051F C9
                        RET
                    SET INPUT MODE
                        O = FULL DUPLEX, 1= HALF DUPLEX
                        2 = BLOCK MODE
0520 7A
               SETMODE: MOV
                                 A,D
0521 B7
                        ORA
0522 F8
                        RΜ
0523 FE03
                        CPI
                                 3
0525 DO
                        RNC
0526 2F
                        CMA
0527 3C
                        INR
0528 32540A
                        STA
                                 FDUX
                                          #SET FLAG
052B 3C
                        INR
                                          FSET ECONTAB TO MATCH
052C 21D10A
052F CA3B05
                        LXI
                                 H, CONTAB ; ASSUME FDUX
                                 SETMF
                        JZ
0532 21CE0A
                                 H, CONBLK ; MAYBE BLOCK?
                        LXI
0535 FA3B05
                        JM
                                 SETMF
0538 211COB
                        LXI
                                 HyHDCON #MUST BE HALF DUPLEX
053B 22B30A
053E 2A320A
               SETMF:
                        SHLD
                                 ECONAT
                        LHLD
                                 CURSAT
                                         FXMIT POINTER
0541 222C0A
                        SHLD
                                 CF1C
0544 21610A
                                 HALINBUF FLINE BUFFER POINTER
                        LXI
0547 225E0A
                        SHLD
                                 LBPTR
054A AF
                                          FLINE BUFFER FILL COUNT
                        XRA
                                 LBCNT
054B 32600A
                        STA
054E 325C0A
                        STA
                                 LDONE
                                          FNO LINE AVAIL
0551 325D0A
0554 C9
                                          #NO BLOCK AVAIL
                        STA
                                 BDONE
                    $LOOKUP TABLE SETTAB
                        CONFIGURATION SWITCH SETTING DEFINITIONS
                        FORMAT IS
                            ADDRESS
                                          FFOR SWITCH 'A'
```

ADDRESS

FOR SWITCH 'B'

```
ETC.
                          SETEND MUST BE DEFINED TO SET TABLE LENGTH.
 0555 9904
                SETTAB: DW
                                   SETADR
                                            #A=SET 2480 ADDRESS
 0557 A504
                          DΨ
                                   SETBOT
                                            #B=SET OFFBOT SWITCH
 0559 F204
                          TIM
                                   SETCUR
                                            #C=SET CURSOR CHARACTER
055B E704
                          DΨ
                                   SETLC
                                            #D=DISPLAY LOWER CASE AS LC
 055D F704
                          10W
                                   SETESC
                                            #E=DEFINE ESCAPE CHARACTER
 055F 0305
                          D₩
                                   SETXEF
                                            #F=DEFINE XOFF CHARACTER
 0561 DB04
                                            #G=DISPLAY LOWER CASE AS GREEK #H=DISPLAY LOWER CASE AS UPPER
                         TILL
                                   SETGRK
 0563 E104
                         DW
                                   SETUC
0565 FD04
                         ĮΨ
                                   SETATT
                                            FIEDIFINE ATTN CHARACTER
0567 ED04
0569 9804
                         DW
                                   SETWOH
                                            J=SET DISPLAY WIDTH
                         DW
                                   SETNOT
                                            ¢K≔
056B C804
                         DW
                                   SETLET
                                            #L=SET OFFLFT SWITCH
056D 2005
056F 0905
                         THA
                                   SETMODE #M=SET INPUT MODE
                         DΨ
                                   SETXN
                                            *N=DEFINE XON CHARACTER
0571 9804
                         DΨ
                                  SETNOT
                                            ♦ ∩ :=:
0573 9804
                         TILL
                                   SETNOT
                                            ; F'≔
0575 9804
                         nw
                                  SETNOT
                                            ₽ (2::::
0577 B504
0579 1405
                         TIШ
                                   SETRT
                                            PR≔SET OFFRT SWITCH
                                            $S=SET/RESET TTY LOCK
$T=SET OFFTOP SWITCH
                         DW
                                   SETTTY
057B AD04
                         ĽΨ
                                  SETTOP
057D
                SETEND: DS
                                  O
                                            FEND OF TABLE
                         *************
                         INPUT SUBROUTINES
                SUBROUTINE INFOX
                         BASIC KEYBOARD READ ROUTINE
                         RETURNS NEXT USER KEYSTROKE IN A
                         FLASHES CURSOR TO PROMPT USER.
                         CHECKS FOR SPECIAL CHARACTERS
                            SETC-SET CONFIGURATION SWITCHES
                            ATTN-RETURN TO MONITOR
                            XOFF-HALT OUTPUT.
                            XON -RESUME OUTPUT
                         A, D, E, FLAGS, H AND L MODIFIED.
057D 2AB50A
                INFDX:
                         LHLD
                                  INTRAP #CHECK FOR SPECIALS
0580 7C
                         MOV
                                  A,H
0581 B5
0582 CA8605
                         ORA
                         JZ
                                  INFDK
                                           #PROCEED
0585 E9
                         PCHL
                                           #CHECK IT OUT
0586 2A320A
0589 CDD902
                INFDK:
                         LHLD
                                  CURSAT
                                           #GET CURSOR
                         CALL
                                  TSTCUR
                                           #MAKE SURE ON SCREEN
058C CDFA03
                         CALL.
                                  MTXAD
                                           CONVERT TO ADDRESS
                                           SAVE CURRENT CONTENTS
F IN C, CURSOR CHAR
058F 4E
                         VOM
                                  C+M
0590 3A550A
                                  CURSOR
                         LDA
0593.47
                         MOV
                                  B,A
                                             IN B
                    ; WAIT FOR USER INPUT
                         FREGISTERS ARE SET UP AS FOLLOWS:
```

B=CURSOR CHARACTER

```
C=ORIGINAL SCREEN CONTENTS AT CURSOR POS
                               HL=ADDRESS OF SCREEN CHAR CORRESPONDING
                                   TO CURRENT CURSOR POSITION.
  0594 CDA507
                 INFDO:
                          CALL
                                   STFIX
                                           JANYTHING AVAILABLE?
  0597 C2B405
                                   INFDD
                          JNZ
                                            FINALLY
  059A 3E80
                          MVI
                                   A,80H
                                           FKILL SOME TIME
  0590 30
                 INFD3:
                          THER
  059D C29C05
                                   INFD3
                          JNZ
  05A0 3A590A
                          LDA
                                   FLASH
                                           FRUMP FLASH COUNTER
  05A3 3C
05A4 32590A
                          INR
                          STA
                                   FLASH
  05A7 C2AB05
                          JN7
                                  INFD1
                                           FINE FOR CURSOR?
  05AA 70
05AB FE80
                          MOV
                                  M,B
                                            YES
                 INFD1:
                          CFI
                                  80H
                                            FITTIME FOR CURRENT?
  05AD C2B105
                          JNZ
                                   INFD2
                                            # NO
  05B0 71
                          MOV
                                  M.C
  05B1 C39405
                 INFD2:
                                  INFDO
                          JMF
                                           *KEEP TRYING
                     #GET A CHARACTER AND CHECK IT OUT
  05B4 71
                 INFOD:
                         MOV
                                           *RESTORE DISPLAY
                                  MyC
→ 05B5 CD0601
                          CALL
                                  INKBD
                                           GET USER INPUT
                                           # ALL REGISTERS EXPENDABLE
  05B8 4F
                         MOV
                                  C.A
                                           FSAVE USER INPUT
  05B9 214F0A
                         LXI
                                  H, SETC
                                           FCHECK IF SPECIAL
  05BC E67F
                          ANI
                                  7FH
                                           FREMOVE PARITY BEFORE CHECKING
  OSBE BE
                          CMP
                                           #SETC?
  05BF CAD207
                          JZ
                                  KSETC
                                           # YES
  0502 23
                          INX
  05C3 BE
                         CMP
                                  М
                                           FATTN?
  05C4 CAC007
                          JZ
                                  BREAK
                                           ) YES
  0507 23
                          INX
                                  Н
  05C8 BE
                                           XOFF?
                          CMF
 05C9 C2D105
05CC 3EFF
                                  INFDE
                          JNZ
                                           # NO
                         MVI
                                  A, OFFH
                                              YES
  05CE C3D705
                          JMP
                                  INFDF
 05D1 23
                 INFDE:
                         INX
                                  Н
 05D2 BE
                                           FXON?
                          CMP
 05D3 C2DD05
                                  INFDZ
                          IN7
                                           # NO
 05D6 AF
                         XRA
                                           CLEAR FLAG
 05D7 324E0A
                 INFDF:
                                  XOFFD
                                           SET XOFFED AS REQ.
                         STA
 05DA AF
                 INFDG:
                         XRA
                                           FRETURN NULL
                                  Α
 05DB 37
                         STC
                                           BUT WITH CY SET
 05DC C9
                         RET
 05DD FE7F
                 INFUZ:
                         CPI
                                  DEL
                                           #SPECIAL CASE
                                           # NOT REALLY LC BUT IS.
#LOWER CASE?
 05DF CAEE05
                                  INFDU
                          JZ
 05E2 E660
                         ANT
                                  40H
 05E4 EE60
                         XR I
                                  H06
                                           CLEAR CY REGARDLESS
 05E6 C2EE05
                          JNZ
                                  INFDU
                                           FOK AS IS
 05E9 3A530A
                         LIA
                                  UCLOCK
                                           *FIX UP AS REQUIRED
 05EC A1
                         ANA
                                  С
 05ED 4F
                         MOU
                                  CA
 05EE 79
                 INFDU:
                                           FISH OF FOR RETURN
                         MOV
                                  A+C
 05EF C9
                         RET
                                           FNOTE: CY MUST BE CLEAR
```

ÿ

*HALF DUPLEX INPUT PROCESSING

```
05F0 3A5C0A
                :XCHNI
                        LTIA
                                 LIONE
                                          FGOT A LINE YET?
05F3 B7
                         ORA
05F4 CC1006
                         CZ
                                  INHDY
                                          #GO READ ONE
05F7 2A5E0A
                         LHLD
                                 LBPTR
                                          FBUFFER POINTER
05FA 7E
                         VOM
                                 A,M
                                          FGET NEXT CHARACTER
05FB 23
                         TNX
                                          FUPDATE POINTER
05FC 225E0A
05FF 21600A
                         SHLD
                                 LBFTR
                                          FNEW POINTER
                        LXI
                                 H, LBCNT ; CHARACTER COUNT
0602 35
                        DCR
                                          FIS ONE LESS
FROME IF NOT LAST
0603 CO
                        RNZ
0604 215C0A
                        LXI
                                 H,LDONE FRESET TO EMPTY
0607 3600
                        MVI
                                 M • O
0609 21610A
060C 225E0A
                        LXI
                                 H, LINBUF
                        SHLD
                                 LBPTR
060F C9
                        RET
                    FILL UP THE LINE BUFFER
0610 CD7D05
                INHDY:
                        CALL
                                 INFDX
                                          FGET A CHAR
0613 47
               : OUTHNI
                        MOV
                                 B,A
                                          SAVE ORIGINAL
0614 E67F
                        ANI
                                 7FH
                                          CLEAR PARITY
0616 4F
                        YOM
                                 CFA
                                          ; AND SAVE A COPY
0617 FE7F
                        CPI
                                 DEL
                                          #RUBOUT?
0619 CA5D06
                        JZ
                                 RUBOUT
                                          ; YES
061C FE15
                        CFI
                                 NAK
                                          FLINE CANCEL?
061E CA8206
                        JZ
                                 CANCEL
                                            YES
                    FADD CHAR TO BUFFER AND ECHO IT
0621 CD0002
                        CALL
                                 ECHOCH
                                          JECHO IT
0624 2A5E0A
                        LHLD
                                 LBPTR
                                          #BUFFER POINTER
0627 70
                        VOM
                                 M,B
                                          FPUT IN BUFFER
0628 23
0629 225E0A
                        INX
                                          PNEXT
                        SHLD
                                 LBPTR
                                          FNEW POINTER
062C 21600A
                                 H,LBCNT JCHAR COUNTER
                        LXI
062F 7E
                        MOU
                                 A,M
0630 34
                        INR
                                 М
                                          FBUMP IT
0631 FE4F
                        CF I
                                 LINSIZ-1 #FULL LINE?
0633 CA5206
                        JZ
                                 INHD1
                                         FYES
0636 79
                        MOV
                                          #GET COPY WITHOUT PARITY
                                 A,C
0637 FEOD
                        CPT
                                 CR
                                          FCARRIAGE RETURN?
0639 CA5806
                        JZ
                                 INHDC
                                            APPEND A LINEFEED
063C FE1B
                        CPI
                                 ESC
                                          FESCAPE?
063E CA4606
                        JZ
                                 INHDZ
                                         F END THE LINE
0641 FE0A
                        CPT
                                 I F
                                         FLINE FEED?
0643 C21006
                                 TNHTY
                        JNZ
                                          ; NO, GET ANOTHER CHARACTER
0646 3EFF
               INHDZ:
                        MVI
                                 A,OFFH
                                         SET LINE COMPLETE FLAG
0648 325C0A
                        STA
                                 LDONE
064B 21610A
                        LXI
                                H+LINBUF
                                                  FRESET BUFFER POINTER
064E 225E0A
                                         7 TO SCAN BUFFER
                        SHLD
                                LBPTR
0651 C9
                        RET
0652 79
               INHD1:
                       MOV
                                 A,C
                                         FTEST FOR CR
0653 FEOD
                        CFT
                                CR
                                         ; WHIH IS A SPECIAL
0655 C24606
                                INHDZ
                        JNZ
                                            CASE IN LINE OVERFLOW
```

0658 3E0A

065A C31306

INHDC:

MUI

JMP

ALLE

INHDO

JAPPEND A LINEFEED

FRUBOUT LAST TYPED CHARACTER

```
065D 21600A
                RUBOUT: LXI
                                   H, LBCNT FFIX CHAR COUNT
 0660 7E
                          MOV
                                   A,M
0661 B7
                          ORA
                                            FANYTHING TO DELETE?
0662 CA1006
                          JZ
                                   INHDY
                                            #NO
0665 35
                          DCR
                                            FONE LESS CHAR IN BUFFER
0666 2A5E0A
0669 7E
066A 2B
                         LHLD
                                   LBPTR
                                            FIX POINTER
                         MUU
                                   A,M
                                            FCHECK WHAT IS GETTING ZAPPED
                          DCX
066B 225E0A
                          SHLD
                                   LBPTR
066E 21320A
0671 35
                INHDR:
                         LXI
                                   H, CURSC | BACK UP ONE SPACE
                         DCR
                                            ;NOTE: THIS ALGORITHM IS NOT
                                   Cy′′
0672 0E20
                         MVI
                                            # GOOD WITH TABS
0674 CD0002
0677 35
                                   ECHOCH
                         CALL
                         DCR
0678 E660
                         ANI
                                   409
                                            #WAS IT A CONTROL CHAR?
                                           ; IF SO, REPEAT TO DELETE
; THE PRECEEDING UP ARROW
067A 3EFF
                         IVM
                                   A,OFFH
067C CA6E06
                                   INHDR
                         JZ
067F C31006
                          JMF
                                   YCHNI
                                            FROCESS NEXT
                     CANCEL THE ENTIRE LINE TYPED
                         NOTE: IF LINE HAS OVERFLOWED ONTO NEXT LINE,
THIS ALGORITHM WILL NOT CLEAN UP PREVIOUS PHYS
0682 21320A
                CANCEL: LXI
                                  H, CURSC # CURRENT COLUMN
0685 0E20
0687 35
                         MVI
                                  C, ' '
                                           FILL WITH BLANKS
                INHDD:
                         DCR
                                            #BACK UP
0688 FA9206
                                  INHDE
                         JM
                                           FALL DONE
068B CD0002
068E 35
                         CALL
                                  ECHOCH #BLANK IT
                         DCR
068F C38706
                         JMF'
                                  INHDD
                                            FREPEAT TO COL O
                     FRESET POINTERS AND COUNTERS
0692 34
                INHDE:
                         INR
                                  М
                                            FIX UP CURSOR
0693 AF
                         XRA
0694 32600A
0697 23
                         STA
                                  LECNT
                                            INO BUFFER CONTENTS
                         INX
                                            WHAT LINE DID WE ZAP?
                                  Н
0698 4E
                         MOV
                                  C.M
0699 47
                         MOV
                                  B,A
                                           FSET APPROPRIATE ENTRY
069A 21340A
                                  H, LINFIL ; IN LINFIL TABLE TO
                         LXI
069D 09
                         DAD
                                  В
                                                ZERO
069E 77
069F 21610A
                         MOV
                                  M+A
                         LXI
                                  H,LINBUF
06A2 225E0A
                         SHLD
                                  LBPTR
                                           FRESET POINTER
06A5 C31006
                         JMP
                                  INHDY
                                           FNEXT CHARACTER
                FBLOCK MODE INPUT ROUTINE
06A8 3A5D0A
                INBLK:
                         LDA
                                  BDONE
                                           #GOT A BLOCK YET?
06AB B7
                         ORA
                                  Α
06AC CC4B07
                                  INBLN
                         CZ
                                           # NO, GET ONE
06AF 2A2C0A
                         LHLD
                                           FGET 'AT' POINTER
                                  CP1C
06B2 7C
                         MOV
                                           FCHECK IF ON SCREEN
                                  A,H
```

```
06B3 FE18
                         CFI
                                  240
                                          FOFF BOTTOM OR TOP?
 06B5 D2CB06
                         JNC
                                  INBLZ
                                          FYES. FATAL ERROR
 06B8 B5
                                          IS COLUMN POSITIVE?
                         ORA
 06B9 F2C206
                         JF
                                  INBLO
                                          SEEMS TO BE
 06BC 210000
                         LXI
                                 H,00
                                          START AT COL O LINE O
 06BF 222C0A
                         SHLD
                                 CF1C
 06C2 EB
                INBLO:
                        XCHG
                                          FUT AT IN DE
 06C3 2A2E0A
                         LHLD
                                 CP2C
                                          GET LAST POINTER
 0606 70
                         MOV
                                 Α·Η
                                          FIS IT OFF SCREEN?
 06C7 B5
                         ORA
 06C8 F2E106
                         JP.
                                 INBL 1
                                          STILL ON SCREEN
 06CB 2A2E0A
                INBLZ:
                        LHLD
                                 CP2C
                                          FCOPY END POINTER TO
 06CE 7C
                        MOV
                                 A,H
                                             AT POINTER UNLESS
 06CF B5
                        ORA
                                             WOULD BE OFF SCREEN,
 06D0 3C
                        INR
                                             IN WHICH CASE GO BACK
06D1 C2D706
06D4 210000
                         JNZ
                                 INBLU
                                             TO LINE O COL O
                        LXI
                                 H,0000H
06D7 222C0A
                INBLU:
                        SHLD
                                 CF1C
06DA 215D0A
                        LXT
                                 H, BDONE FRESET BDONE
06DD 7E
                        MOV
                                 A,M
                                          #WHILE PICKING
06DE 3600
                                          F UP TERMINATOR.
                        MUI
                                 M , O
06E0 C9
                        RET
06E1 7A
                INBL1:
                        MOV
                                 A,D
                                          FTEST FOR END OF TEXT
06E2 BC
                        CMP
                                 н
                                          HOW DO LINES COMPARE
06E3 DAEE06
                        JC
                                          FNOT DOWN TO LAST YET
                                 INBL2
06E6 C2CB06
                        JNZ
                                 INBLZ
                                          WENT TOO FAR!
06E9 7B
                        MOV
                                 A,E
                                          FCOLUMN?
OSEA BD
                        CMP
06EB D2CB06
                                 INBLZ
                        JNC
                                          FTHAT'S ALL FOLKS
06EE 4A
               INBL2:
                        MOV
                                 CyD
                                          CURRENT LINE
06EF 0600
06F1 21340A
                        MVI
                                 B,0
                                          JANY DATA LEFT ON IT?
                        LXI
                                 H,LINFIL
06F4 09
                        DAD
                                 В
06F5 7E
                        MOU
                                 A,M
                                          CHARACTRS ON LINE
06F6 EB
                        XCHG
                                          MEANTIME ...
06F7 2C
                        INR
                                              SET POINTERS FOR
06F8 222C0A
                        SHLD
                                 CP1C
                                              NEXT ITERATION
06FB 2D
                        DCR
                                         FBACK TO PRESENT
                                 L
O6FC BD
                        CMP
                                         FRAST END OF LINE?
06FD CA0C07
                        JΖ
                                 INBL3
                                         #SEND CR
0700 DAOF07
                        JC
                                 INBL4
                                         FSEND LF
0703 CDFA03
                        CALL
                                 MEXAD
                                         #SEND NEXT CHARACTER
0706 7E
                        พกบ
                                 A,M
0707 B7
                        ORA
                                         #BACKGROUND?
0708 FA1807
                        JM
                                 INBLF
                                         FYES.
070B C9
                        RET
070C 3EOD
               INBL3:
                        MVI
                                 A, CR
                                         CARRIAGE RETURN
070E C9
                        RET
070F 24
               INBL4:
                                         FDOWN 1 LINE
                        INR
0710 2E00
                        MUT
                                L,0
                                         FIRST COLUMN
0712 222COA
                        SHLD
                                CP1C
                                         ∮NEW AT POINTER
0715 3E0A
                        MVI
                                A,LF
                                         FRETURN LF
0717 C9
                       RET
0718 212C0A
               INBLF:
                       LXI
                                H,CP1C
                                         #BACK UP TO CHECKED
071B 35
                        DOR
                                М
071C 2A2C0A
               INBL5:
                                         SKIP TO NEXT FOREGROUND
                       LHLD
                                CP1C
071F 2C
                        INR
                                L...
                                         # FIELD
```

```
FTRY NEXT CHARACTER
0723 3E17
                                          CHECK FOR OFF BOTTOM
                        TVM
                                 A,23D
0725 BC
                        CMF
0726 3E09
                        IVM
                                 A,HT
                                          FASSUME OFF
0728 D8
                        RC
0729 4C
                                         #HOW LONG IS CURRENT LINE?
                        MOV
                                 C+H
072A 0600
                        MVI
                                 B,0
072C EB
                        XCHG
072D 21340A
                        LXI
                                 H,LINFIL
0730 09
                        DAD
                                 В
0731 7B
                                 A,E
                                         FLINE LENGTH
                        MOV
0732 BE
                        CMF
                                 М
                                          FTRIED THEM ALL?
0733 EB
0734 D24207
                        XCHG
                                 INBL6
                        JNC
                                          TYES. NEXT LINE
0737 CDFA03
                        CALL
                                 CAXTM
                                         FCONVERT TO ADDRESS
073A 7E
                        YOM
                                 A,M
                                         #FORGROUND?
073B B7
                        ORA
                                 Δ
073C FA1C07
073F 3E09
                        JM
                                 INBL5
                                         #NO, TRY NEXT
                        MVI
                                A,HT
0741 C9
                        RET
                  FMOVE DOWN TO NEXT LINE
0742 24
               INBL6:
                        INR
                                Н
0743 2E00
                                L+0
                        MUT
                                         FRESET COL
0745 222C0A
                        SHLD
                                CP1C
0748 C31807
                        JMP
                                INBLF
                   JACCEPT A BLOCK FROM THE KEYBOARD
074B 2A2C0A
               INBLN: LHLD
                                CP1C
                                         FIF START POINTER IS
074E 7C
                        VOM
                                A,H
                                         ; OFF SCREEN, RESET TO HOME
074F B5
                                         # BEFORE PROCEEDING
                        ORA
                                L
0750 30
                        TNR
                                Α
0751 C25A07
                        JNZ
                                INBLL
                                         FOK AS IS
0754 210000
                        LXI
                                H,0000H FRESET REQUIRED
0757 222C0A
                        SHLD
                                CP1C
075A CD7D05
               INBLL:
                       CALL
                                INFDX
                                         #GET A CHARACTER
075D E67F
                                         †CLEAR PARITY
                        ANI
                                7FH
075F 4F
                        MOV
                                C,A
                                         SAVE A COPY
0760 3A560A
                        LDA
                                FIXUP
                                         #WAS PREVIOUS AN ESCAPE?
0763 B7
                        ORA
0764 3E00
                                A,0
                        MUT
                                         †CLEAR FLAG REGARDLESS
0766 32560A
                                FIXUP
                       STA
0769 CA7007
076C 79
                                INBLM
                                         INO FIXUP REQUIRED
                        MOV
                                A,C
                                         FPATCH IT UP
076D F680
                       ORI
                                80H
076F 4F
                       MOV
                                C+A
0770 79
                                A,C
               INBLM:
                                         #GET A COPY
                       MNU
0771 21570A
                       LXI
                                HYESCAPE #GOT AN ESCAPE?
0774 BE
                        CMP
0775 CA8907
                        JΖ
                                INBLE
                                         FYES
0778 23
                       TNX
                                         #GOT AN END OF TEXT?
                                Н
0779 BE
                       CMP
                                M
077A CA9A07
                        JZ
                                INBLT
                                         # YES
077D EE80
                       XRI
                                80H
                                         #GOT SET START?
077F BE
                       CMP
                                         #ESC EOT
0780 CA9107
                                TNRI U
                                         FYES
                        JZ
```

CALL

ECHOCH

₹ECHO IT

SHLD

CP1C

0720 222C0A

0783 CD0002

```
0786 C35A07
                        JMP
                                INBLL
                                         JAND GET ANOTHER
0789 3EFF
               INBLE: MVI
                                A, OFFH
                                        SET FIXUP FLAG
078B 32560A
                       STA
                                FIXUE
078E C35A07
                                INBLL
                                        #GET ANOTHER CHARACTER
                        JMP
0791 2A320A
               INBLV:
                       LHLD
                                CURSAT
                                        #SET START MARKER
0794 222C0A
                       SHLD
                                CP1C
0797 C35A07
                        JMF
                                INBLL
                                         FGET THE NEXT
079A 79
               INBLT:
                       MOV
                                A,C
                                        #SET BUFFER READY FLAG
079B 325D0A
                                BDONE
                       STA
079E 2A320A
07A1 222E0A
07A4 C9
                       LHLD
                                CURSAT
                                        SET END MARKER
                       SHLD
                                CF2C
                       RET
               FINPUT STATUS ROUTINES
                       RETURN A=0 (Z=1) IF NO CHAR AVAILABLE
                       RETURN A=FF(HEX) (Z=0) IF A CHAR IS AVAILABLE
                       A AND FLAGS MODIFIED.
                   FULL DUPLES INPUT MODE
07A5 C5
               STEDX: PUSH
                               В
                                        FEXTERNAL INTERFACES ARE
07A6 D5
                       PUSH
                                \mathbf{p}
                                        INHERENTLY UNTRUSTWORTHY
07A7 E5
                       PUSH
07A8 CD0301
                       CALL
                                INKBS
                                        #KEYBOARD READY?
07AB E1
                       FOF
                                Н
07AC D1
                       POP
                                \mathbf{p}
07AD C1
                       POP
07AE C3BA07
                       JMP
                                STHDB
                                        FTEST FLAGS
                   HALF DUPLEX INPUT MODE
07B1 3A5C0A
               STHDX: LDA
                               LDONE
                                        FSEEN TERMINATOR YET?
07B4 C3BA07
                       JMF
                                STHDB
                                        FSET FLAGS ACCORDINGLY
                   #BLOCK INPUT MODE
07B7 3A5D0A
                                        F'END OF TEXT' ENTERED?
               STBLK:
                                BDONE
                       LDA
07BA B7
                                        FRETURN Z=1, A=0 IF A=0
               STHDB:
                       ORA
                                Α
07BB C8
                       RΖ
                                               Z=0, A=-1 IF A NOT 0
07BC 3EFF
                                A, OFFH
                       MVI
07BE B7
                       ORA
07BF C9
                       RET
               SUBROUTINE BREAK
                       JUMP TO MONITOR ENTRY POINT
                       WILL NOT JUMP IF ADDRESS IS FFFF HEX.
07C0 21DA05
               BREAK :
                       LXI
                               H, INFDG
07C3 E5
                       PUSH
                                        FRETURN ADDRESS
07C4 2A5A0A
                               MONLVL
                                        #BREAK ADDRESS
                       LHLD
07C7 7C
                                        CHECK IF SPECIFIED
                       MOV
                               A,H
07C8 A5
                       ANA
0709 30
                       INR
07CA CACE07
                               BRKOO
                                        #NONE SPECIFIED
                       JZ
                                        JMP TO IT
07CD E9
                       PCHL
07CE 3A500A
              BRK00:
                       LDA
                               ATTN
07D1 C9
                       RET
                                        JAND GO TO INFDG
```

```
TRAP NEXT TWO KEYSTROKES TO SET CONFIGURATION
                         PROMPTS USER TO AVOID CONFUSION.
07D2 2A320A
                KSETC:
                        LHLD
                                  CURSAT
                                          #SAVE CURSOR
07D5 E5
                         PUSH
                                 Н
07D6 2A4C0A
07D9 1610
                                 MTXAT
                         LHLD
                                           #DISPLAY ADDRESS
                                           SAVE TOP LINE
                         MUI
                                 D,10H
07DB 46
                KSETO:
                        MOV
                                  B * \mathsf{M}
07DC 3620
07DE 23
                         MVI
                                  M+'
                                           CLEAR SOME ECOJHO SPACE
                         INX
07DF 4E
                         MOV
                                 C+M
                                  M+ / /
07E0 3620
07E2 23
                         MUT
                         TNX
                                 14
07E3 C5
                        PUSH
                                  В
07E4 15
                         DCR
                                           FANY MORE LEFT?
                                 \mathbf{p}
07E5 C2DB07
                         JNZ
                                 KSETO
                                           # YES
07E8 E5
                        PUSH
                                           FSAVE LAST ADDRESS
                                 Н
07E9 210000
                        LXI
                                 H,0
                                           FSET CURSOR
07EC 22320A
                         SHLD
                                 CURSAT
07EF 213608
                        LXI
                                 H,KSETM ;MESSAGE
07F2 0604
                         MUI
                                 B, KSETN-KSETM ; AND LENGTH
07F4 4E
               KSET1:
                        MOV
                                 C+M
07F5 CD0002
                        CALL
                                 ECHOCH
07F8 23
                        INX
07F9 05
                        DCR
07FA C2F407
                        JNZ
                                 KSET1
                    FACCEPT NEW PARAMETERS
07FD CD7D05
                        CALL
                                 INFDX
                                           # COMMAND
0800 F5
                        PUSH
                                 PSW
                                           SAVE FOR LATER
0801 4F
                        YOM
                                 C,A
0802 CD0002
                        CALL
                                 ECHOCH
                                          #ECHO IT
0805 0E20
0807 CD0002
                        MVI
                                 C,' '
                                           SPAC OVER
                        CALL
                                 ECHOCH
080A CD7D05
                                           #GET VALUE
                        CALL
                                 INFDX
080D 4F
                        MOV
                                 C+A
080E CD0002
                                 ECHOCH
                                          FECHO IT
                        CALL
0811 F1
                        POP
                                 ₽S₩
                                           FRETRIEVE COMMAND
0812 47
                        MOV
                                 B,A
0813 C5
                        PUSH
                                          - #SAVE ENTIRITY
                                 В
0814 0E3F
                        MVI
                                 C, '?'
                                          #VERIFY CORRECT
0816 CD0002
                                 ECHOCH
                        CALL
0819 CD7D05
081C E65F
                        CALL
                                 INFDX
                        ANI
                                 5FH
                                           FTAKE CARE OF LC
081E FE59
                        CPI
                                 141
                                          #YES???
0820 C1
                                          FRETRIEVE ARGUMENTS
                        POP
                                 В
0821 CC7604
                                 SETCON
                        CZ
                                          #DO IT IF OK
                    CLEAN UP THE RESULTS
0824 E1
                        POP
                                 Н
                                          *RESTORE ADDRESS
0825 1610
                        IVM
                                 D,10H
                                          FCOUNT
0827 C1
               KSET9:
                        POP
                                 В
                                          FGET 2 CHARS
0828 2B
                        DCX
                                 Н
0829 71
                        MOV
                                 M,C
                                          JAND RESTORE THEM
```

*SUBROUTINE KSETC

DCX

Н

082A 2B

```
082B 70
082C 15
                       YOM
                                M,B
                        DCR
                                         JANY LEFT?
                                n
082D C22708
                        .1N7
                                KSET9
                                         *KEEP TRUCKING
0830 E1
                                         *RESTORE CURSOR
                       POP
0831 22320A
                        SHLD
                                CURSAT
0834 37
                        STC
                                         FLAG AS IGNORABLE
                                         FAND DONE
0835 C9
                       RET
0836 5345542D KSETM:
                                'SET-'
                       DB
                                         FROMPT
083A
               KSETN:
                                ٥
                       DS
                                         JEND OF PROMPT
083A C5
               XOFFED: PUSH
                                        SAVE SACRED
083B CD0301
                                INKES
                       CALL
                                        JANY USER ACTION?
083E B7
                       ORA
                                        CHECK IT OUT
083F C47D05
                       CNZ
                                INFDX
0842 3A4E0A
                       LDA
                                XOFFD
0845 B7
                       DRA
0846 C1
0847 C9
                       POP
                                        *RESTORE SACRED
                       RET
               ÷
                       **********
                       CONTROL CHARACTER PROCESSING ROUTINES
               FESCAPE CHARACTER PROCESSING
                       TRAP TO ADD PARITY BIT TO NEXT CHARACTER
0848 215708
              ESCCHR: LXI
                               HIESCTRP ISET UP TRAP
084B 04
              TRPSET: INR
                               В
                                        #WHICH ONE?
084C F25308
084F 22C10A
                       JF
                               ESCAO
                                        #OUTPUT
                       SHLD
                               MULJMI
                                       ; ECHO
0852 C9
                       RET
0853 22BF0A
0856 C9
              ESCAO: SHLD
                               MULJMP
                       RET
                   FESCAPE TRAP
0857 79
              ESCTRP: MOV
                                        FTURN ON PARITY BIT
                               A,C
0858 F680
                       ORI
                               80H
                                        # AND CLEAR CY
085A 4F
                       MOV
                               C+A
085B 210000
              TRPCLR: LXI
                               H,0
                                        FRESET TRAP VECTOR
085E C34B08
                       JMF
                               TRPSET
              #LOCK KEYBOARD
0861 2A5A0A
              LCKKB: LHLD
                               MONLVL
                                        FTRAP ATTEMPT TO ACCESS
0864 22B50A
                       SHLD
                               INTRAP
0867 C9
                       RET
              FUNLOCK KEYBOARD
0898
                       UNLKKB SET
                                        CLRTRP
              FRETURN HEREIS MESSAGE
```

086B 086E 0870 0873	217A08 22B90A 3E11 32BB0A 218B08 22B50A C9	HEREIS:	LXI SHLD MVI STA LXI SHLD RET	HRISF A,HRISN HRISC	; #MESSAGE ADDRESS ;GOES INPOINTER -HRISM ;COUNTER O ;HEREIS TRAP		
087E 0882 0886 088A	4D617472 6F782041 4C542D32 3438300D 0A		DB	'MATROX	ALT-2480',CR,LF		
0883		HRISN:	DS	0			
088E 088F 0890 0893 0896 0897	23 22B90A 21BB0A 35 C0	HERETO:	MOV INX SHLD LXI DCR RNZ	М	#MESSAGE POINTER #GET A CHAR #SET FOR NEXT #COUNTER #ANY LEFT? #YES		
	210000 22B50A	CLRTRP:	LXI	H,O INTRAP	COMMON CODE SEGMENT		
089E			RET	TIALIVAL			
		#BACKSP#	ACE				
	CDD902 22320A	BACKSP: TESTIT:		L TSTCUR CURSAT	#BACK ONE #STAY ON PAGE		
		#HORIZON	NTAL TAB				
08A7 08A8 08AA 08AC 08AD	C608 E6F8	HORTAB:	MOV INA INA MOV JMP	A,L 08H 0F8H L,A TESTIT	FNEXT COL MOD 8 FOVER 8 FAND BACK TO LAST MOD 8		
		CARRIAGE RETURN AND LINE FEED WARNING*** LINE FEED MUST FOLLOW IMMEDIATELY					
0880	2E00	CRLF:	MVI	L,0	FRESET COLUMN		
		FLINE FE	ED				
08B2 08B3	24 C3A008	LNFEED:	INR JMP	H TESTIT	DOWN ONE LINE		
		FVERTICAL TAB					
0886 0887 0889 0888	C608 E6F8		MOV ADI ANI MOV	A,H 08H 0F8H H,A	NEXT LINE MOD 8		

```
×~08BC C3A008
                           JMP
                                    TESTIT
                  FORM FEED
  08BF 210000
                  FORMED: LXI
                                    H+0000
                                             JUPPER LEFT
  08C2 222C0A
                           SHLD
                                    CP1C
  08C5 22320A
                           SHLD
                                    CURSAT
  08C8 C3F009
                           .IMP
                                              CLEAR THE SCREEN TOO
                                    CLEAR
                  FCARRIAGE RETURN
  08CB 2E00
08CD 22320A
                  CARRET: MVI
                                    L,00
                                              ∮COLUMN ZERO
                           SHLD
                                    CURSAT
  08D0 C9
                           RET
                  FUPLINE
  08D1 25
                  UPLINE: DCR
                                             FUP ONE LINE
  08D2 C3A008
                                    TESTIT
                           JMF
                  FORESPACE
                  FORSPC: INR
  08D5 2C
                                             FNEXT COLUMN
  08D6 C3A008
                                    TESTIT
                           JMP
                  *DIRECT CURSOR ADDRESSING
  08D9 21DF08
                  DCACOM: LXI
                                    H,DCAY
  08DC C34B08
                           JMP
                                    TRPSET
                                             #SET TRAP VECTOR
                      FREAD LINE DESIRED
 08DF 21FE08
08E2 CD4B08
                  DCAY:
                           L.XI
                                    H,DCAX
                           CALL
                                    TRPSET
  08E5 79
                           VOM
                                    A+C
 08E6 D620
08E8 FE18
                           SUI
                                    24D
                           CPI
  OBEA DAEFO8
                           JC
                                    STATMP
                                             JOK AS IS
  08ED 3E00
08EF E5
                           MVI
                                    A,0
                  STATMP: PUSH
                                             FOR GP ROUTINE
 08F0 21C90A
08F3 04
                                    H, TEMP
                                             FASSUME OUTPUT MODE
                           LXI
                           INR
                                    В
 08F4 F2FA08
08F7 21B70A
                                    DCAY2
                           JP
                           LXI
                                    H, TEMPE #WRONG
  08FA 77
                  DCAY2:
                           MOV
                                    M,A
                                             *STORE IT
  08FB E1
                           POP
  08FC 37
                           STC
                                             FINHIBIT FURTHER PROCESSING
  08FD C9
                           RET
                      FREAD COLUMN AND SET CURSOR
  08FE 210000
                 DCAX:
                           LXI
                                    H.0
 0901 CD4B08
0904 79
                           CALL
                                    TRPSET
                           YOM
                                    A,C
 0905 D620
0907 21BC0A
090A BE
                           SUI
                           LXI
                                    H,WIDTH
                           CMP
                                    М
 090B DAOF09
090E 7E
090F 6F
                                    DCAX1
                           JC
                                             FOK AS IS
                           YOM
                                    A,M
                 DCAX1:
                           MOV
                                    L,A
 0910 CD1909
                           CALL
                                    LDATMP
                                             FGET STORED ARG
 0913 67
                           MOV
                                    H,A
```

```
0914 22320A
0917 37
                         SHLD
                                 CURSAT
                         STC
 0918 C9
                         RET
                FROUTINES LDATMP AND STATMP TO LOAD AND
                     STORE THE TEMPORARY VARIABLE AS PER ECHO OR OUTPUT.
0919 E5
               LDATMP: PUSH
                                 н
                                          SAVE H
091A 21C90A
                        LXT
                                 H, TEMP
                                          FASSUME UTPUT MODE
091D 04
                         INR
                                 В
091E F22409
                        JP
                                 LDATE
                                          #GOOD ASSUMPTION
 0921 21B70A
                        LXI
                                 H, TEMPE
 0924 7E
               LDATP:
                        MOV
                                          FETCH IT
                                 A,M
0925 E1
                        POP
                                 Н
0926 C9
                        RET
                FINSERT A STRING OF CHARACTERS
0927 212D09
               PUTSTR: LXI
                                 H, PUTSO ; SET UP TRAP
092A C34B08
                        JMP
                                 TRPSET
092D 3E1F
               PUTSO:
                        MVI
                                 A, ' '-1 ; VALID CHARACTER?
092F B9
                        CMP
                                          #QUIT IF CONTROL
                                 С
0930 3F
                                          FRETURN FLAG VALUE
FEND OF INSERT
                        CMC
0931 DA5B08
                                 TRECLR
                        JC
0934 2A320A
                        LHLD
                                 CURSAT
                                         #GOES HERE
0937 C5
                        PUSH
                                          SAVE VITAE
                                 В
0938 CD1304
                        CALL
                                 PUTSPC FMAKE ROOM
093B C1
                        POP
                                 В
093C AF
                        XRA
                                 Α
                                          FALLOW FURTHER PROCESSING
093D C9
                        RET
               DELETE THE CHARACTER SPECIFIED BY H.L
093E EB
               DECHAR: XCHG
                                          FMAKE ROOM IN HL
093F 4A
                        MOV
                                 C,D
                                         #CHECK LINE FILL
0940 0600
                        MVI
                                 B . 0
0942 21340A
                        LXI
                                 H,LINFIL
0945 09
                        DAD
                                 R
0946 7E
                        MOV
                                 A,M
                                         FNUMBER OF CHARS ON LINE
0947 OC
                                         F PLUS ONE
                        INR
                                 C
0948 B9
                                         CHAR TO BE DELETED NOTHING THERE
                        CMF
                                 C
0949 D8
                        RC
094A 35
                        DCR
                                 М
                                         FONE LESS NOW
                    FIX UP
                            CURSOR POINTERS
094B 0603
                        MVI
                                B, CPNUM ; COUNTER
094D 212D0A
                                H,CP1L
                        LXI
                                         FLINE POINTER
0950 7A
               DECH1:
                       MOV
                                 A,D
                                         FCHECK LINE
0951 BE
                        CMP
                                 М
                                         FSAME ONE?
0952 C25D09
                        JNZ
                                 DECH2
                                         ;NO, CAN IGNORE
0955 2B
                        DCX
                                         FCHECK COLUMN
                                Н
0956 7B
                        MOV
                                 A,E
0957 BE
                        CMP
                                м
                                         #TO THE RIGHT?
0958 D25C09
                        JNC
                                DECH3
                                         , NO, NOT AFFECTED
095B 35
                        DCR
                                         FIX IT UP
                                M
```

095C 23

095D 23

DECH3:

DECH2:

INX

INX

Н

Н

FBACK TO LINE POINTER

JON TO NEXT

```
095E 23
                        INX
                                Н
095F 05
                        DOR
                                 R
                                         JANY LEFT?
0960 C25009
                        JNZ
                                DECH1
                                            DO IT
                    FINALLY, DELETE THE CHARACTER
0963 EB
                        XCHG
                                         SET UP FOR MIXAD
                                         SAVE FOR LATER
0964 E5
                        PUSH
0965 CDFA03
                        CALL
                                 MIXAD
                                         FCONVERT TO ADDRESS
0968 E3
                        XTHL.
                                         SAVE AND RETRIEVE
0969 3ABCOA
096C 0E00
                                 WIDTH
                                         FLAST ON LINE
                        LDA
                        MVI
                                 C+0
                                         #HIGH OR LOW RESOLUTION?
096E FE29
                        CPI
                                 41 D
                                         FASSUME HIGH
0970 D27509
                        JNC
                                DECH6
                                            IT IS
0973 OE80
                        MVI
                                 C,80H
                                         $LOW RESOLUTION FLAG
0975 6F
               DECH6:
                        MOV
                                         FADDRESS OF LAST POSITION
                                LA
0976 2D
0977 CDFA03
                                         FCONVERT TO COL NUM
                        DCR
                                         ; AND THEN TO ADDRESS
                        CALL
                                MIXAD
097A D1
                                         STARTING AT
                        POP
                                D
097B EB
                        XCHG
097C 7B
                                 A,E
                                         FINAL ADDRESS
                        MOV
097D BD
               DECH4:
                        CMP
                                         FDONE YET?
097E CA9809
                                DECH5
                        .17
                                         FYES
0981 23
                        INX
                                Н
                                         #MOVE A CHAR
0982 OC
                        INR
                                         FCHECK FOR LOW RES
0983 F28709
                        JP
                                DECH7
0986 23
                        INX
                                         FEVERY OTHER ADDRESS
                                Н
0987 46
               DECH7:
                        MOV
                                B,M
                                         #GET A CHAR
0988 2B
                        DCX
                                         FBACK UP ONE SPACE
0989 OC
                        INR
                                         FCHECK RESOLUTION
098A F28E09
                                DECH8
                        JF.
098D 2B
098E 70
                        DCX
                                Н
                                         # LOW
               DECH8:
                                         STUFF IT
                        MOU
                                M.R
098F 23
                        INX
                                Н
                                         FOR NEXT
0990 OD
                        DCR
                                         *CHECK RESOLUTION
0991 F27D09
                        JP
                                DECH4
                                         #HIGH
0994 23
                        INX
                                н
0995 C37D09
                                DECH4
                        JMP
0998 3620
               DECH5:
                        MVI
                                M, '
                                         FCLEAR LAST COLUMN
099A C9
                        RET
               FISH CONFIGURATION SWITCHES
099B 04
               CONSET: INR
                                         FONLY VALID ON OUTPUT
099C F8
099D 21A409
                        LXI
                                H,CONS1 ;SET UP TRAP
09A0 22BF0A
                        SHLD
                                MULJMP
09A3 C9
                        RET
09A4 21AE09
               CONS1:
                        LXI
                                H, CONS2 ; SET NEW TRAP
09A7 22BF0A
                        SHLD
                                MULJMP
09AA 79
                                         FSAVE COMMAND
                        MOV
                                A,C
                                         FSAVE AND RETURN
09AB C3EF08
                                STATME
                        .IMP
09AE 210000
               CONS2:
                        LXI
                                H , O
                                         FRESET TRAP
                                MULJMP
09B1 22BF0A
                        SHLD
09B4 CD1909
                        CALL
                                LDATMP
                                         FRETRIEVE COMMAND
0987 47
                        VOM
                                B,A
09B8 CD7604
                        CALL
                                SETCON
09BB 37
                        STC
                                         FALL DONE
```

RET

09BC C9

FBELL (FLASH SCREEN) ROUTINE

```
09BD 2A4C0A
               BELL:
                        LHIT
                                 MTXAT
09C0 E5
                        PUSH
09C1 CDCF09
                         CALL
                                 BELLO
09C4 1B
               BELLK:
                        DCX
                                 D
                                          FKILL SOME TIME
09C5 7A
09C6 B3
                        MOV
                                 A,D
                        ORA
0907 020409
                        JNZ
                                 BELLK
09CA E1
09CB CDCF09
                        POP
                                 BELLO
                        CALL
09CE C9
                        RET
09CF 11000C
                                 D+128D*24D
               BELLO:
                        LXI
                                                   FTOTAL OF CHARS
09D2 7E
               BELL1:
                        YOM
                                 A,M
09D3 EE80
                        XRI
                                 80H
09D5 77
                        YOM
                                 M,A
09D6 1B
                        DCX
                                 \mathbf{p}
09D7 23
                        INX
                                 Н
09D8 7A
                        MNU
                                 A,D
09D9 B3
                        ORA
                                 E
09DA C2D209
                        JNZ
                                 BELL1
09DD C9
                        RET
               FOREGROUND FOLLOWS
09DE AF
               OUTFOR: XRA
09DF 32BE0A
                        STA
                                 FORBAK
09E2 C9
                        RET
               #BACKGROUND FOLLOWS
09E3 3E80
               OUTBAK: MVI
                                 A,80H
09E5 32BE0A
                        STA
                                 FORBAK
09E8 C9
                        RET
               #HOME CURSOR
09E9 210000
               HOMEIT: LXI
                                 H,0000
09EC 22320A
09EF C9
                        SHLD
                                 CURSAT
                        RET
               ;SUBROUTINE CLEAR
; SET ALL DISPLAY POSITIONS TO BLANK
                        RESET LINFIL TABLE TO ZERO
                        ALL REGISTERS EXCEPT B & C ARE MODIFIED.
09F0 C5
               CLEAR: PUSH
09F1 21340A
                                 H,LINFIL
                                                   FRESET LINFIL 1ST
                        L.XI
                                          #BYTE COUNT
09F4 111800
                        LXI
                                 D,24D
09F7 0E00
                        MVI
                                 C,00
                                          #STUFF WITH ZEROS
09F9 CB090A
09FC 2A4C0A
                                 FILLUP
                                         SET THEM ALL
                        CALL
                                          FDISPLAY ADDRESS
                        LHLD
                                 MTXAT
09FF 11010C
                        LXI
                                 D,24D*128D+1 ;ERASE BETWEEN LINES TOO
0A02 0E20
                        MVI
                                        FILL WITH BLANKS
```

```
FILLUP
0A04 CD090A
                      CALL
0A07 C1
                      POP
                               B
0A08 C9
                      RET
              SUBROUTINE FILLUP (C=VALUE, DE=BYTE COUNT, HL=ADDR
                      SET DE POINTS TO C STARTING AT H
                      RETURNS WITH A=O, DE=O, HL=NEXT ADDRES
              ÷
                      WARNING*** DE = 0 DOES 64K
                      A, D, E, FLAGS, H & L MODIFIED
                               M,C
0A09 71
              FILLUP: MOV
                                       STUFF ONE
0A0A 23
0A0B 1B
                       INX
                               Н
                                       FNEXT ADR
                      DCX
                               D
                                       JONE LESS TO DO
0A0C 7A
                      MOV
                               A,D
OAOD B3
                      ORA
0A0E C2090A
                               FILLUP JANY LEFT?
                       JNZ
0A11 C9
                      RET
0A12 04
              ANULL:
                      INR
                                       FECHO OR PRINT '00'
                               ANULE
C,'C'
0A13 FA210A
                                       ¢ECHO IT
                      .IM
0A16 0E5E
                      MUI
                               OUTCHR
0A18 CD0C02
                      CALL
0A1B 0E30
                      IVM
                               C+'0'
OA1D CDOCO2
                               OUTCHR
                      CALL
0A20 C9
                      RET
                               C,'^'
0A21 0E5E
              ANULE:
                      MVI
0A23 CD0002
                      CALL
                               ECHOCH
0A26 0E30
                      MVI
                               C+'0'
0A28 CD0002
                      CALL
                               ECHOCH
0A2B C9
                      RET
              ;***************
                      VARIABLES AND SWITCHES
              #GLOBALS
              CHARACTER POINTERS
                      THESE POINTERS ARE MAINTAINED TO ALWAYS POINT
                        TO THE SAME CHARACTER. IF THE CHARACTER AT THAT POSITION IS DELETED OR OVERWRITTTEN
                        THEY POINT TO ITS REPLACEMENT. IF THE CHARACT
                        IS MOVED OFF THE SCREEN, ONE OF ITS COORDINATE WILL BE SET TO -1.
0A2C FFFF
                               OFFFFH
              CPTRS:
                      ĽΨ
                                               FCP1 IS XMIT POINTER
OA2E FFFF
                      DW
                               OFFFFH
                                               #CP2 IS END POINTER
                                       CPTRS FINIT TO OFF SCREEN
0A2C
                      CP1C
                              EQU
0A2D
                      CF1L
                                       CP1C+1
                               EQU
QA2E
                      CP2C
                               EQU
                                       CPTRS+2
0A2F
                               EQU
                      CP2L
                                       CP2C+1
                               CFNUM*2 - 4 JEXTRAS
0A30
                      TIS
```

FTHE CURRENT CURSOR POSITION
NOTE: MAY DRIFT PAST EDGES

					1 1 1 to 1 1 1000 the total beau total
0A32	0000	CURSAT:	DW	0000Н	START AT UPPER LEFT
0A33 0A32			CURSL CURSC	EQU EQU	CURSAT+1 FLINE NUMBER CURSAT+0 FCOLUMN NUMBER
		;TABLE ; ;	(I.E. N		UMN IN EACH LINE CONTAINING EXPLI FROM CLEAR TYPE FUNCTION) NUMBER
0A34		LINFIL:	DS	24D	
		FBASE A	ODRESS O	THE 4K	MEMORY SPACE USED BY THE 2480
0A4C	00E0	MTXAT:	DW	0Е000Н	
		;	,	*****	******
		#INPUT (CONTROL S	SWITCHES	
OA4E	00	XOFFD:	DB	0	\$INHIBIT OUTCHR OUTPUT IF −1
0A4F	02	SETC:	DB	STX	CONFIGURATION CHANGE CHARACTER
0A50	03	ATTN:	DB	ETX	#BREAK CHARACTER
0A51	13	XOFF:	DB	DC3	\$INPUT CHAR TO STOP OUTPUT
0A52	11	XON:	DB	DC1	SINPUT CHAR TO RESUME OUTPUT
0A53	FF	UCLOCK:	DB	OFFH	;-1: NORMAL ;DFHEX: CONVERT LC TO UC ON INPU
0A54	FF	FDUX:	DB	OFFH	;00: HALF DUPLEX ;-1: FULL DUPLEX ;-2: BLOCK MODE
0A55	DF	CURSOR:	DB	'_'+PARO	ON ‡CHAR TO USE FOR CURSOR
0A56	00	FIXUF:	DB	0	;-1 IF PREVIOUS CHAR WAS ESCPE C
0A57	1B	ESCAPE:	DB	ESC	FINPUT ESCAPE CHARATER
0A58	04	BLKEND:	DB	EOT	FINPUT BLOCK TERMINATE CHARACTER
0A59	00	FLASH:	DB	0	COUNTER FOR TIMING CURSOR FLASH
0A5A	0000	MONLVL:	D₩	0000Н	#MONITOR TRAP ADDRESS # DISABLED IF 0000

OASC OO LDONE: DB O ;O = NOT YET

;-1=LINE AVAILABLE

0A5D 00	BDONE: DB	0	<pre>FO = BLOCK BEING FILLED FNON-ZERO = BLOCK COMPLETE</pre>
0A5E 610A	LBPTR: DW	LINBUF	LINE BUFFER POINTER
0A60 00	LBCNT: DB	0	FLINE BUFFER FILL COUNT
0A61	LINBUF: DS	LINSIZ+	2 FLINE BUFFER
0AB3 D10A	ECONAT: DW	CONTAB	FECHO CONTROL TABLE TO USE
0AB5 0000	INTRAP: DW	0000Н	;INPUT TRAP VECTOR
OAB7	TEMPE: DS	5	TEMPORARY VARIABLE SPACE
OABB OAB9	HRISC HRISP	EQU EQU	TEMPE+4 TEMPE+2
	;************	*****	*******
	÷	OUTPUT	SWITCHES
0ABC 28	WIDTH: DB	40D	COLUMNS PER LINE
OABD 5F	GREEK: DB	5FH	<pre>### ### ### #########################</pre>
OABE OO	FORBAK: DB	0	;00: NORMAL ;80: INVERSE VIDIO
OABF 0000	MULJMF: DW	0	;0000: NORMAL ;ADDR: ADDRESS OF ROUTINE TO CAL ; BEFORE OUTPUTING.
0AC1 0000	IMULJM: DW	0000Н	SAME AS MULJMP EXCEPT FOR ECHO
			RAMETERS DETERMINE DISPLAY ACTION IS MOVED OFF SCREEN
0AC3 18	OFFTOP: DB	24D	; 1: SCROLL DOWN ;24: WRAPAROUND TO BOTTOM
OAC4 18	OFFBOT: DB	24D	; 1: WRAPAROUND TO TOP LINE ;24: SCROLL UP
0AC5 01	OFFLFT: DR	1	; 1: OVERWRITE 1ST CHAR ON LINE ;WIDTH: WRAPAROUND TO END OF SAM ;1-WIDTH: BACK UP TO PREVIOUS LI
0AC6 00	OFFRT: DB	0	; O: START NEXT LINE ; 1: WRAP AROUND TO SAME LINE ;WIDTH: OVERWRITE LAST CHAR ON L

0AC7 D10A	CONAT:	₽₩	CONTAB	#OUTPUT	CONTROL CHAR TABLE
0AC9	TEMP:	DS	5	# TEMPOR	ARY VARIABLE STORAGE
	;TABLE	CONTROL		ER FUNCT	
	; ; ;	BYTE BYTE	N = CH N+1 = LO	W BYTE OF	TO RECOGNIZE F ADDRESS
	, ; ;	ADDRESS	IS OF T		DF ADDRESS NE TO CALL TO EXECUTE •
	÷				(OOHEX).
OACE OD OACF BOOB	CONBLK:	DB	CR D W	CRLF	SPECIAL ECHO FOR BLOCK MODE
OAD1 OD OAD2 CBO8	CONTAB:	DB	CR	CADDET	CARRIAGE RETURN
OAD4 OA OAD5 B208		DB	DW LF DW	CARRET	FLINE FEED
OAD7 09 OAD8 A708		DB	HT DW	HORTAB	HORIZONTAL TAB
OADA BC OADB BFOB		DB	FF+PARO		FORM FEED
OADD 08 OADE 9F08		DB	BS DW	BACKSP	FBACK SPACE
OAEO 8B OAE1 B608		DB	VT+PARO	N VERTAB	FVERTICAL TAB
0AE3 1B 0AE4 4808		DB	ESC DW	ESCCHR	\$ESCAPE
0AE6 07 0AE7 BD09		DB	BEL DW	BELL	#BELL DING # FLASHER
0AE9 02 0AEA 9B09		DB	STX DW	CONSET	SET CONFIG SWITCHES
OAEC OB OAED D108		DB	VT DW	UPLINE	FUPLINE
OAEF OC OAFO D508		DB	FF DW	FORSPC	#FORESPACE
0AF2 BD 0AF3 D908		DB	'='+PAR(DIRECT CURSOR ADDRESSIN
OAF5 9F OAF6 DE09		DB	US+PARON DW		FORGROUND FOLLOWS
0AF8 99 0AF9 E309		DB	EM+PARON DW	OUTBAK	#BACKGROUND FOLLOWS
OAFB 1A OAFC FOO9		DB	XUB Mu	CLEAR	CLEAR SCREEN
OAFE 1E OAFF E909		DB	RS DW	HOMEIT	#HOME CURSOR
0B01 05 0B02 6808		DB	ENQ DW	HEREIS	HERE IS MESAGE
0B04 16 0B05 1304		DB	SYN DW	PUTSPC	FINSERT CHARACTER
0B07 18 0B08 3E09		DB	CAN DW	DECHAR	DELETE CHARACTER
OBOA 17		DB	ETB		FINSERT LINE

```
OBOB 8F03
                               DΨ
                                       SCRLDN
OBOD 15
                      DB
                               NAK
                                               DELETE LINE
OBOE 4503
                               DW
                                       DELINE
0B10 OF
                                               FLOCK KEYBOARD
                      DB
                               SI
OB11 6108
                                       LCKKB
                               DΨ
0B13 OE
                      DB
                               SO
                                               FUNLOCK KEYBOARD
OB14 9808
                                       UNLKKB
OB16 C9
                      \mathbf{D}\mathbf{B}
                               'I'+PARON
                                               STRING INSERT
OB17 2709
                               DW
                                       PUTSTR
                  FEND OF LIST MUST BE NUL <<<<<<<
OB19 OO
                      \mathbf{D}\mathbf{B}
                               NUL
                                               FNULL
0B1A 120A
                                       ANULL
                               DW
              CONTAB FOR HALF DUPLEX ECHOING
OBIC OD
              HDCON:
                      DB
                               CR
                                       CARRIAGE RETURN
OBID CBOS
OBIF OA
                               DW
                                       CARRET
                      DB
                               LF
                                               FLINE FEED
OB20 B208
                               DW
                                       LNFEED
0B22 09
                      DB
                              HT
                                               HOR TAB
0B23 A708
0B25 00
                              TILL
                                       HORTAB
                      DB
                              NUL
OB26 120A
                              DW
                                       ANULL
              CONTROL CHARACTER DEFINITIONS
              0000
                      NUL
                               EQU
                                       ООН
                                               FNULL
0001
                      SOH
                               EQU
                                       01H
                                               ; ^A
0002
                      STX
                              EQU
                                       02H
0003
                      ETX
                              EQU
                                       03H
0004
                      EOT
                              EQU
                                       04H
0005
                      ENQ
                              EQU
                                       05H
0006
                      ACK
                              EQU
                                       06H
0007
                                       07H
                      BEL
                              EQU
0008
                                       08H
                                               #BACK SPACE
                      BS
                              EQU
0009
                      HT
                              EQU
                                       09H
                                               #HORIZONTAL TAB
000A
                              EQU
                                       OAH
                                               FLINE FEED
000B
                      VT
                               EQU
                                       OBH
                                               FVERTICAL TAB
000C
                                               FORM FEED
                      FF
                              EQU
                                       OCH
ooon
                                               CARRIAGE RE
                      CR
                              EQU
                                       OTH
000E
                      SO
                              EQU
                                       0EH
000F
                      SI
                              EQU
                                       OFH
0010
                      DLE
                              EQU
                                       10H
0011
                      DC1
                              EQU
                                       11H
0012
                      DC2
                              EQU
                                       12H
0013
                      DC3
                              EQU
                                       13H
0014
                      DC4
                              EQU
                                       14H
0015
                      NAK
                              EQU
                                       15H
0016
                      SYN
                              EQU
                                       16H
```

0017	1	ETB	EQU	17H	
0018	ı	CAN	EQU	18H	
0019		EM	EQU	19H	
001A		XUB	EQU	1AH	∮^X (SUB)
001B	1	ESC	EQU	1BH	, x (002)
001C	Í	FS	EQU	1CH	
001D	i	GS	EQU	1 DH	
001E		RS	EQU	1EH	
001F		US	EQU	1FH	
007F		DEL	EQU	7FH	
	; ; ;	BIT DEF	HOITINI	S	******
	*******	*****	*****	*****	*****
0080	F	PARON	EQU	80H	PARITY BIT
0040		ALPHA	EQU	40H	JALPHA CHARACTER BIT
0020			EQU	20H	*LOWERCASE = LC + ALPHA
001F		CTRL.	EQU	1FH	f'X' AND CTRL = "X
	•		h 1.0 1.J	41 11	7 A HILD CIRL A
0000	F	END			
	-				

	'
	à I

-