Microcomputer
Interfacing
With the

8255 PPI Chip







Preface

This book was started in early 1977, when the two-volume set
Introductory Experiments in Digital Electronics and 8080A Micro-
computer Programming Interfacing was in the final stage of prepara-
tion. I had just begun a six-month study leave from the Canberra
College of Advanced Education and had come to Blacksburg to
work with the authors of the Blacksburg Continuing Education Series
for three months. During my stay with the authors I was given some
preliminary experiments that had been written about the Intel Corpo-
ration’s 8255 Programmable Peripheral Interface (PPI) integrated
circuit. After completing the experiments and reading the available
information about the 8255 I was excited by the concept of a general-
ized software-programmable integrated circuit, so I suggested that I
write the text for a book about the 8255 chip and expand and revise
the experiments to make a general-purpose book, one that would ap-
peal to students, experimenters, computer hobbyists, engineers, sci-
entists, and other users of programmable interface chips.

In the very early stages of preparation, two important points
emerged:

1. The various modes of operation of the PPI reflect the major
parallel-data input/output techniques used with microcom-
puters.

2. The use of generalized software-configurable LSI integrated
circuits, which concentrate microcomputer interface hardware,
would increase. Flexibility is built in through designs that allow




the configuration of the devices to be changed through sending
control bytes to a control register within the integrated circuits.

Hence the emphasis of the book was directed so that:

® The major microcomputer input/output techniques are intro-
duced in Chapters 3 through 7, and then their implementation
is illustrated through the use of the 8255 PPL

® The procedure for configuring the PPI is introduced in a gen-
eralized way in Chapter 2 so that, once the procedure is mas-
tered, it can be applied to other software-configurable (pro-
grammable) interface ICs with a minimum of difficulty. While
the details of their application will change, the procedure for
using them through access to their control and data (and pos-
sibly other) registers will remain essentially the same.

The reader is assumed to have mastered the basics of microcom-
puter programming and interfacing. This includes the topics of de-
vice select pulse generation, polled and vectored interrupts, accumu-
lator and memory-mapped I/O, as well as assembly language pro-
gramming. The topics of accumulator and memory-mapped I/O have
been reviewed in Chapter 1 because of their importance in making
the interface connections between the 8080A microprocessor chip
or 8080A-based microcomputer and the 8255 chip.

For the details of microcomputer interfacing, the reader is re-
ferred to the two-volume set of books mentioned earlier. For details
of microcomputer programming, you are referred to the two-volume
set 8080/8085 Software Design.

The experiments have been designed to reinforce the concepts in
each chapter. The experiments assume some familiarity with digital
electronics and solderless breadboarding. You will need some addi-
tional circuitry to perform the experiments. Useful digital breadboard-
ing aids such as lamp monitors, pulsers, logic switches, and a clock
are all used in the experiments. Some general SN7400-series inte-
grated circuits are also required.

As with other books in the Blacksburg Continuing Education Se-
ries, this book has been designed to be self-instructional, and, to this
end, answers to all of the questions in the experiments have been pro-
vided. Since your answers will probably agree with our observations,
it may be tempting to move along quickly without a review of why
the various observations were made, and what they are related to.




In laboratory-based classes where time is limited, there is a tendency
to succumb to this temptation, without being aware of what is actu-
ally taking place in an experimental circuit. With care, these experi-
ments can provide a very rewarding experience. We have also found
that many of the more complex interface chips use techniques that
are similar to those used in the 8255. Thus an understanding of the
PPI chip will provide you with a head start when you are interested
in using some of the latest interface chips.

The materials presented in this book have been tested with success
in both formal laboratory class situations and in short-course presen-
tations in which lectures and hands-on experience have been com-
bined. Readers in Australia may get in touch with me directly for
additional information.

This book would not have been completed without the help of
many people. I am particularly indebted to Peter Rony, Dave Larsen,
and Jon and Chris Titus for their helpful advice and encouragement
throughout the preparation of this book. From the Canberra CAE,
my thanks to Roberta Vetter and to Margaret Bonnett for the many
hours spent carefully typing drafts and then the final manuscript; to
Tony Howkins and John Houldsworth for diagram preparation; and
to Steve Morland for artwork in Chapter 7 and the preparation of the
final assembled programs.

Finally, my love and thanks to my wife, Anne, whose support, en-
couragement, patience, and understanding during the writing was so
necessary and so readily forthcoming. I dedicate this book to her.

PauL F. GOLDSBROUGH







Contents

CHAPTER 1

INTRODUCTION TO THE 8255PPI . . . . . . . . 9

1-1. Some Questions and Answers—1-2. Input/Output Basics—
1-3. Summary of Experiments 1-1 through 1-5—Bus Monitor and
Counting Circuits—Single-Step Circuit—A Memory-Mapped Input
Port—Execution of AND Operation—Accumulator I/0 Versus
Memory-Mapped 1/0

CHAPTER 2

AN OVERVIEW OF THE 8255 . . . . .. 40
2-1. Electronics—2-2. Steps for Using the 8255—Software

CHAPTER 3
MoDE 0 OPERATION: SIMPLEI/O . . . . . . . . 52
3-1. Introduction—3-2. Requi 3-3. Progr ing—3-4.

Timing Diagram—3-5. Port C 4-Bit Subports—3-6. References—
3-7. Summary of Experiments 3-1 Through 3-3—Mode 0 Data Out-
put Operation—Mode 0 Data Input Operation—Combined Mode 0
Input and Output Operation

CHAPTER 4

PPI BiT-SET/RESET OPERATION . . . . 80
4-1. Introduction—4-2. Procedure for Setting and Resetting Port C
Bits—4.3. Example: A Valve Controller—4-4. Summary of Experi-
ments 4-1 and 4-2—Setting and Resetting Bits of Port C—A PPI-
Based Data Logger




CHAPTER 5

STATUS-DRIVEN HANDSHAKING 1/0O: COMBINED MODE O
AND BIT-SET/RESET OPERATION . . . . . . .
5-1. What is Handshaking?—S5-2. Status-Driven Versus Interrupt-
Driven Handshaking 1/0—>5-3. Implementing Status-Driven Hand-
shaking 1/0 With a PPI—5-4. Summary of Experiment 5-1—Status-
Driven Handshaking Input and Output

CHAPTER 6

INTERRUPT-DRIVEN HANDSHAKING I/O: MODE 1 OPERATION

orFTHEPPI . . . . . . . . . . . .
6-1. Introduction—é6-2. Mode 1 PPI Features—6-3. Mode 1 Oper-
ating Requirements—6-4. An Example—6-5. S ry of Experi-
ments 6-1 Through 6-5—Mode 1 Output Operation of the PPI—
Mode 1 Input Operation of the PPI—Combined Mode 1 Input and
Output Operation of the PPI—Mode 1 Polled-Interrupt PPI Opera-
tion—Mode 1 Vectored-Interrupt Operation of the PPI

CHAPTER 7

MobE 2 OPERATION: BmiIRECTIONAL I/O . . . . .

7-1. Introduction—7-2. PPI Mode 1 Operation for Bidirectional
Data Flow—7-3. Mode 2 PPI Features—7-4. Mode 2 PPI Operation
and Requirements—7-5. An Application—7-6. References—7-7.
Summary of Experiment 7-1—A Bidirectional Interface Between a
Master and a Slave Microcomputer: Polled Operation

APPENDIX 1

ELECTRICAL CHARACTERISTICS AND TIMING DIAGRAMS
FOR THE 8255 .

APPENDIX 2

8255 CONTROL WORD AND STATUS WORD SUMMARY

INDEX

104

122

174

207

211

213




Introduction to the
8255 PPI

1-1. SOME QUESTIONS AND ANSWERS

In books and magazines that discuss microcomputers, increasing
mention is being made of the Programmable Peripheral Interface, or
PPIL. This device is being used extensively by original equipment
manufacturers as an input/output integrated circuit in microcom-
puter-based products. It is also being used increasingly by electronics
engineers, technicians, and hobbyists.

® Whatis it?

® Where does it fit as an element in a microcomputer system?
® Why use it?

® How do you use it?

These are questions which we will discuss in the following pages us-
ing the Intel 8255 Programmable Peripheral Interface Chip as an
example.

The PPI is a 40-pin large-scale integrated-circuit (LSI) “chip”
that is used in a microcomputer as an interface between the micro-
computer data bus and external input/output devices. This broad
description also applies to other input/output (I/O) chips, e.g., the
programmable communications interface (8251), or USART. The
PPI differs from the USART in that the PPI is designed for parallel
data transfer, whereas the USART is used for serial data transmission.

9




While the details of their application in a microcomputer system are
of course different, the basic approach to their use is the same. Hence,
when you have completed this book and mastered the basic techniques
involved in using the PPI, you will find understanding and applying
the USART and other programmable input/output devices much
easier. (Such devices include Motorola’s 6820 Programmable Inter-
face Adaptor (PIA) and 6850 Asynchronous Interface Adaptor
(ACIA), Texas Instruments’ TMS 6011 UART, and Intel’s 8259
Interrupt Controller.)

Fig. 1-1 shows a block diagram of a typical Intel 8080-based micro-
computer. This diagram illustrates the position of the PPI and its re-
Jationship to the other system components. For clarity, not all of the
data, address, and control paths have been included. Notice that the
PPI is connected to the microcomputer via the data bus and that it
connects the microcomputer to the outside world via 24 I/0 lines.
These are generally divided into three 8-bit bytes, which are labelled -
PAO-PA7, PBO-PB7, and PCO-PC7.

There are two major advantages in using the PPI in a microcom-
puter system. The first is that the PPI concentrates parallel input/
output operations into one integrated circuit, unless more than 24
input/output lines are required. Since all input/output logic is on
one integrated circuit, both interfacing complexity and chip count are
reduced, with a resulting reduction in cost. The second, and perhaps
most important advantage of using the PP, is the tremendous flexi-
bility which it brings to microcomputer 1/0 interfacing. This flexibil-
ity is obtained by making the PPI software configurable—hence its
name, the programmable peripheral interface. The configuration of
its 24 I/0 lines for input, output, or perhaps bidirectional 1/0 is
then under software, rather than hardware control. This makes the
allocation of 1/0 lines and any subsequent alterations much easier.
If, for example, you wish to add an extra input or output device to
your microcomputer system, or, if you decide to alter the type of
peripheral you are using from perhaps a light display to a video dis-
play terminal, then all that is needed, apart from perhaps adding or
removing one or two control lines in some cases, is to change your
input/output software.

Simple in concept? The author thinks so, and it is simple in prac-
tice once you have an overview of the chip electronics and user pro-
cedures. This is our task in the coming chapters. We will begin first,
though, with a review of basic input/output techniques. Before doing
5o, it is only fair in this introduction of the PPI to mention some of

10




S1AX
o7t
oL

9 1304

2 1404

¥ 1404

sng

viva

snd
SSHIAV

A 10 =00

184-08d 1dd [
13d-03d [oer4] * »
vd-0vd 100
¥311041N00
® L o - WILSAS
Tz / N 8228
—
£ 8/ 3
/ ¥344N8
m\ _ SsIU00¥
<7 b F

B0 WONd3

LN
ON1SS304d

V0808

——

HOLVYINI9
A0
12243

b

system

1-1. A generalized 8080A-based

Fig.

position of the




its disadvantages. While it does concentrate the 1/0 lines in one area,
this may not always be desirable. The software configuration of the
device will also add, on average, approximately 10 bytes to the length
of a program and this may cause the program to exceed say 1K bytes
with the resultant need for a second ROM for program storage. Also,
once the input/output interface requirements have been established,
it may be less expensive to use standard 1/0 ports of the type to be
described in the next section, even allowing for the additional costs
in the layout of the printed-circuit board. Finaily, the outputs of a
PPI (8255) do not have the full fan-out of standard 7400-series inte-
grated circuits.

1-2. INPUT/OUTPUT BASICS

The fundamental task of I/O transfers is to either transfer digital
data from a register within the microcomputer to an external output
device such as a teletypewriter, keyboard, another computer, light,
relay, and so on, or to input digital data from an external device to the
microcomputer. The digital data may be transferred in serial form,
in which case a UART or USART may be used; or it may be trans-
ferred in parallel form. We will discuss only this latter class of 1/0
transfers here.

The transmission of parallel digital data or bytes of information
to and from the microcomputer can be accomplished in either of two
ways, both of which are associated with the internal registers of the
microcomputer. Fig. 1-2 shows the seven registers which are avail-
able in the 8080A. These include six general-purpose registers (B,
C,D,E, H and L) and the accumulator. The accumulator is a special
register, as all arithmetic and logical operations are carried out with
a data byte which is held in the accumulator. In general, when data
bytes are input to or output from the accumulator, the input/output
procedure is known as accumulator 1/0. 1f the data byte is trans-
ferred directly between an external I/O device and a general-purpose
register, the technique is known as memory-mapped 1/0.

(A) Accumulator 1/O

Accumulator 1/0 is the simplest input/output technique to under-
stand and use. Only two special I/O instructions are needed for data
transfer between the accumulator and an external device. The exter-
nal device is assigned one of 256 device codes, which are encoded in
an 8-bit device code. To input data, we use the instruction

12




/\_
ACCUMULATOR

@
3
2
=
<
= ADDRESS CONTROL
BUS LINES
*J 8{7 :||[: J
D0-D7 DEVICE ™ or
CODE
A0-A7

(A) Accumulator 1/0.

REGISTERS

C 1]

s ] L ¢
|/ =3
2
= L ] [+ 1]
E ADDRESS CONTROL

BUS LINE
I @
00-D7 ADDRESS WEMR MEMW
CODE
A0-A15
(B) Memory-mapped 1/0O.
Fig. 1-2. Sch ic rep ions of I and memory-mapped 1/0.




IN
<B2>

where <B2> is the 8-bit device code of the input device. During the
execution of this instruction, a control signal, IN, is set to a logic low
by the 8228 system controller chip (cf Fig. 1-1) when the device code
byte <B2> appears on the address lines AO-A7. In 8080 systems the
device code is also duplicated on address lines A8—A15. The IN pulse
and the device code must then be used to generate a data transfer
synchronizing pulse which is known as a device select pulse. One
method of doing this is illustrated in Fig. 1-3. The device select pulse
is then used to enable three-state buffers, which place the input data
on the data bus, to be latched by the accumulator inside the 8080
microprocessor.

Outputting data with accumulator I/0 is done in an analogous
manner. The two-byte instruction

out
<B2>

is used, where <B2> is an 8-bit data byte that represents the device
code of the device to which data is being output. This time, an OUT
pulse is generated by the 8228 system controller (using 8080A status
information) at the same time as the device code. A circuit such as
that shown in Fig. 1-3 is again used to produce a device select pulse

v @D
% 12
I 0 |
LOWER 4 "
wrrs oF e { M2 ¢
8 BIT N —— s " b
DEVICE —
CODE Mo —r —
10 fram—
l— 0 THROUGH 15
74154 — r DEVICE SELECT
6f——  <¢——————p  PULSES WITH CODES
N XXXX 0000 THROUGH
o—_ 000 1111
L] W z
™ ~
R P et G1 [} -l_.

Fig. 1-3. Circuit used to generate accumulator 1/O device select pulses. This is not an
absolute decoder as only four of the eight address lines have been used for device
address decoding.




which this time is used to latch the data byte appearing on the data
bus from the accumulator. Figs. 1-4A and 1-4B show typical circuits |
for accumulator input and output respectively.

-
w = 07 |
Loslc J el [—> 06 ;
sitcnes  F > 8035 - 05
£ BUFFER [ ™
1
I L
20808
>
DATA
DEVICE SELECT s
—
r AL
Wz
15
T ]
-; —
5 2095 -
-
Los1c c BUFFER ")
SWITCHES B
A
(A) For accumulator input.
(o
06— Lawe
05— 7475 MONITOR
e BT (]
FROM
8080 JL =LJ~  DEVICE SeLECT
DATA
Bus STE PULSE
475
g IV Lanp
MONITOR
01—
Lo
(B) For accumulator output.
Fig. 1-4. Typical circuits for buffering accumulator 1/ input data and latching output data.
15 |




The advantages of accumulator I/O are simplicity and directness
of approach. The input or output of information requires the use of
only the two special instructions provided. This is particularly advan-
tageous when first using a microcomputer. There are two possible
disadvantages to this I/O technique. The first and most important
is that all data bytes being input or output must go via the accumu-
lator. In many cases the origin of output data or the destination of
input data is read/write memory or one of the general-purpose reg-
isters. This means that extra instructions will be required to shift the
data bytes to or from the accumulator. The extra time and memory
requirements may, in some circumstances, be critical. The second
disadvantage is that only 256 device codes are available for input/
output devices. The author honestly doubts whether this second point
is really a serious problem for most users of microprocessors.

(B) Memory-Mapped 1/0

The technique used in memory-mapped I/0 is to trick the 8080A
into thinking that the I/O device is, in fact, part of the memory.
As the microprocessor has no real way of knowing what type of
“memory” device it is accessing, all that is required is to:

@ Use memory data transfer instructions in input/output subrou-
tines.
Examples of such instructions include:
MOV, M ADCM CMPM
MOV M, r SBB M  MVI M
where
r represents one of the seven 8080A registers,
M is the memory location addressed indirectly by the contents
of register pair H and L.

@ Decode address select pulses using the address lines (A0-A15)
and the memory read/write control signals, MEMR and MEMW,
to select or enable a three-state buffer (for input) or a latch (for
output).

Proceeding in this way, 64K (1K = 1024) device codes become avail-
able. In practice, at least the first 32K addresses (address bit A15 at
logic 0) are reserved for memory. If memory requirements are only
moderate, the second half of memory, i.e., addresses above 32K, are
allocated to memory 1/0 (address bit A15 to logic 1). This is illus-
trated in Fig. 1-5.

16




[ bttt 1
|
1o ” o |
' 77 |
! MEMORY :
| 45 {
(A) Accumulator 1/O. : |
6 |
1 0 25 |
| |
t 1/0 |
| |
[} [}
e e = — ]
| ]
| |
: 0 32K 65K :
; i
| MEMORY /o0 ll
(B} Memory-mapped 1/0. | |
] i
| |
1 1
! |
b e e = J
Fig. 1-5. Memory block parison b I 1/0 and y-mapped 1/0.

Usually, absolute or unique decoding of a 16-bit memory address
is not required, and a circuit such as the one shown in Fig. 1-6, which
employs lineal or single-line decoding, can be used if several device
codes are required. If more than 32K of memory is needed, the 1/0
address allocations can be reduced to 16K, 8K, or 4K, etc., by gating
address bits A15, A14, A13, respectively, together in place of the in-
verter shown in Fig. 1-6.

It is important to understand the concept of memory-mapped 1/0
since microprocessors, in general, do not have the special input and
output instructions which are available in Intel microprocessors and
which were described in the accumulator 1/0 technique earlier. The
advantage of memory-mapped I/O is that all the general-purpose
registers can be used for data transfers to and from peripherals.
Logical operations can also be carried out directly between a byte
in the accumulator and the contents of an input port (usually repre-
senting peripheral status information). In some cases this can result
in an increase in overall system speed. However, memory-mapped
I/0 is much less efficient than accumulator 1/O in terms of its mem-
ory requirements, as it ties up the H and L register pair (in an 8080-

17




l +5¢ GND I

BEBE&

MEMORY-MAPPED

74154 LS 1/0 ADDRESS

SELECT PULSES

I

A

Fig. 1-6. Decoder circuit for the generation of 16 different memory 1/O address select
pulses. With the inverter and A15 in use the HI address byte is 200 and the LO address
byte ranges from 000 to 017. Note that the addresses are neither unique nor absolute.

based microcomputer) for addressing plus one other register for data.
In addition, memory-mapped I/O usually requires more complex de-
coding schemes than does accumulator I/O. The author has used
both I/0 techniques and prefers accumulator I/O for all but the most
time-critical I/O tasks. In this book, examples of using both tech-
niques for interfacing the PPI to the 8080 will be included.

To complete this brief discussion of the basic input/output tech-
niques, Charts 1-1 and 1-2 summarize the important characteristics
of accumulator and memory-mapped 1/0. NoTE: For both memory-
mapped 1/0 and accumulator I/O care should always be taken to
ensure that the decoding of the memory address or device code ad-
dress is sufficient to guarantee unique addresses for the input/output
devices. The extent of this decoding depends simply on the size of
the microcomputer-based system. In small systems the use of indi-
vidual address lines (lineal decoding) will probably be adequate.
Larger systems or systems likely to be expanded will require addi-
tional decoding.




Chart 1-1. Summary of Characteristics of Accumulator 1/O

8080OA instructions: out <B2>
IN <B2>

Control signals: ouT
N

Data transfer: Between accumulator and /O device

Device decoding: An 8-bit device code, A0 to A7 or A8 to A5, that is byte
<B2> in the IN or OUT instruction.

Terminology: The 1/O processes are called input and output. The decoded
signal that strobes an 1/O device will be called a device se-
lect pulse.

Chart 1-2. Summary of Characteristics of Memory-Mapped 1/0

B8080A instructions: MOV BM MOV MH ANA M
MOV Cm MOV ML XRA M
MOV DM MOV MA ORA M
MOV EM STAX B CMP M
MOV HM STAX D INR M
MOV LM LDAX B DCR M
MOV AM LDAX D MVI M
MOV MB ADD M STA <B2> <B3>
MOV MC ADC M LDA <B2> <B3>
MOV MD suB M SHLD<B2> <B3>
MOV ME SBB M LHED<B2> <B3>
Control signals: MERMR
MENW
Data transfer: Between memory-mapped |/ O device and registers B, C, D,
E, H, L, or the accumulator (register A)
Device decoding: A 16-bit device code, A to Al5, that is contained either in

register pair H; register pair B; register pair D; or is bytes
<B2> and <B3> for the STA, LDA, SHLD, or LHLD in-
structions. In some instances it is useful and convenient to
reserve the upper 32K memory area for memory-mapped
1/O addresses; when A15 on the address bus is at logic 1,
memory 1/O exists. Bits AO through A7 can be used to de-
code a specific H/O device when A15 = 1. The 1/O device
is made to look like an 8-bit memory location and the mem-
ory reference instructions are used in their normal manner
to read from or write into the specific memory 1/O device.
Terminology: The memory-mapped 1/O processes will be called read and
write rather than input and output. The decoded signal
that strobes a memory-mapped 1/O device will be called
an address select pulse rather than a device select pulse.

19




1-3. SUMMARY OF EXPERIMENTS 1-1 THROUGH 1-5

The objectives of the experiments are as follows:

Experiments 1-1 and 1-2: These two experiments will show you
how to construct a simple bus monitor, a counting circuit, and a
hardware single-step circuit. The circuits are used in later ex-
periments and are provided for information if your 8080A-based
microcomputer does not have them already wired.

Experiments 1-3 to 1-5: In these experiments the techniques of
memory-mapped I/0 and accumulator I/O are illustrated. If
you are not familiar with these topics, you should do these ex-

periments.
Experiment Description
1-1 The purpose of this experiment is to wire a pair of

circuits on an SK-10 socket that (a) count different
types of synchronizing pulses, and (b) monitor the
information present on the bidirectional data bus.

1-2 The purpose of this experiment s to construct a sin-
gle-step circuit for an 8080A-based microcomputer.

1-3 In this experiment you will wire and examine the op-
eration of the 8212 integrated-circuit chip as a mem-
ory-mapped input port.

1-4 The purpose of this experiment is to demonstrate the
execution of an AND operation between a memory-
mapped input port and the accumulator.

1-5 This experiment demonstrates and compares the be-
haviour of two I/O techniques, viz, accumulator and
memory-mapped 1/0, for the input of data into an
8080 microcomputer.

EXPERIMENT 1-1
BUS MONITOR AND COUNTING CIRCUITS
Purpose
The purpose of this experiment is to wire a pair of circuits on a
solderless breadboarding socket that (a) count different types of
synchronizing pulses, and (b) monitor the information present on
the bidirectional data bus.

20




Pin Configuration of Integrated Circuits (Fig. 1-7)

LOGIC SYMBOL PIN CONNECTIONS
7t 2 iii (FRONT VIEW)
Ao A1 A2 Az E_ RBI 1
9368 Al Y
R8O 2 b c d e | g F 8
<]
T i
4 13 12 11 10 9 15 14 E C|
4
2]
Vce =PIN 16
GND =Pin8 s/l
INPUT
A Qaa Qp GND QB ac
" 3l " » ] L]
Qa Qo Q8
—ab A acp—
—P> B0 Re2)
Rot)  Ro) Ra(1)

1 2 3 4 § ] 7

BD  Ro¢t) Ro2 NC vee  Rey Re)
INPUT

CONNECTION DIAGRAM
DIP {TOP VIEW)

PIN

Common Cathode
Segment F
Segment G
Segment E
Segment D
Common Cathode
Decimal Point
Segment C
Segment 8
Segment A

COWONOO HWN =

-

Fig. 1-7. IC pin configurations.

21




Schematic Diagrams of Circuits (Fig. 1-8)
Counting Circuit—A Hewlett-Packard common-anode seven-seg-
ment display integrated circuit has been used in this configuration

14 1| =——

(Fig. 1-8A).
+85 GND +5 GND
[ IIO 6 |8
7 1 13 1
° R a|AN 12 l k4 A : 12 13
o—"n B s ¢ '; ': l , o 47 t/2watn
cls He  af — Mww— +5
1 [3 9 7
14 o o ¢ 15 2 , l
= CLOCK f
[

7490 7447 HP 5082-7730
(OR EQUIVALENT)

(A) Counting circvit.

9368
FND70
+8 16 M 13 10 q FND 357
GND 2 b H2 21
Bl b—: ]l
| A2 d 3 . d — GND
D7 7 Al L] s 2 [] I
Dé AO t f —
3 T e 14 3 0
+5 —1
IGND
o .. 1'7
0s A2 — GND
DATA D4 Al I {
D3 AO
BUS T
+5—
GND —
S PV [
02 A2 — GND
DI Al ! ?
po AO
E
ENABLE

(B) Bus monitors.

Fig. 1-8. Schematic diagrams of circuits.




Bus Monitors—A Fairchild 9368 latch/decoder/driver integrated
circuit has been used to drive the FND70 common-cathode seven-
segment display chips (Fig. 1-8B). Pin outputs for one section have
been shown, for purposes of clarity.

Step 1

Wire the counting circuit and one of the bus monitor circuits pre-
ferably on a single solderless breadboarding socket. You may wish
to leave room for additional chips and/or displays for possible ex-
pansion of your circuits.

Step 2
In the space below, list the various types of synchronizing signals
that you can count with the counting circuit given in Fig. 1-8A.

Signals such as MEMR, MEMW, TN, OUT, INT and other control

bus signals can be counted.

Step 3

In the space below, explain the different types of inputs that can
be applied to the latch inputs of the circuits in Fig. 1-8B. We shall
call either of these circuits a bus monitor for the bidirectional data
bus on the 8080 microprocessor chip.

You can latch input data, output data, memory read data, memory
write data, and interrupt instruction vectors, provided the appropriate
control line is applied to the latch enable input of the bus monitor
circuit.

EXPERIMENT 1-2
SINGLE-STEP CIRCUIT

Purpose

The purpose of this experiment is to construct a single-step circuit
for an 8080A-based microcomputer.

2




Pin Configuration of Integrated Circuit Chip (Fig. 1-9)

2
Vi CLR 2D 2Ck 2PR 20 20

1 1D 1CK 1PR 1 10 GND
CLR
Fig. 1-9. Pin configuration of 7474.

Schematic Diagram of Circuit (Fig. 1-10)

0= Full spesd i

I Single  step '
1
A
1 5 READY 3 eovin 8080A
T474 8224
CLg’CK READY P READY
T 3 ciock wair 22
PULSER CLEAR
(
WAIT
INTERFACE MICROCOMPUTER

Fig. 1-10. Single-step circuit.

24




Program (Fig. 1-11)

/
/SINGLE STEP TEST PROGRAM
7/

*003 000
003 000 000 START, NOP /NO OPERATION
003 001 074 INRA /INCREMENT ACCUMULATOR BY ONE
003 002 323 ouT /0UTPUT ACCUMULATOR CONTENTS
€03 003 000 000 /DEVICE CODE OF OUTPUT PORT
003 004 303 JMP /UNCONDITIONAL JUMP
003 005 000 START /L0 MEMORY ADDRESS OF JUMP
003 006 003 [¢] /H1 MEMORY ADDRESS OF JUMP

Fig. 1-11. Program for single-step circuit.

Step 1

Wire the circuit shown in Fig. 1-10. If you are using a Mini-Micro
Designer (MMD-1) microcomputer, the READY and WAIT lines
may be found on the solderless breadboarding socket. Otherwise you
will need to locate these control lines on your microcomputer. Con-
nect your bus monitor circuit to the data bus, and connect the latch
enable line to ground. The latches will now be permanently enabled
and the bus monitor will continuously display the data appearing on
the data bus.

Step 2
Enter the program in Fig. 1-11 into read/write memory.

Step 3
Begin execution of the program at the full speed of your micro-
computer. What do you observe on the bus monitor? Why?

25




We observed that all the bus monitor LEDs were lit (8’s on a seven-
segment display). The reason for this is that the bus monitor is dis-
playing machine instructions and data bytes as they appear on the
data bus during program execution. At full microcomputer speed
these bytes are changing so rapidly that the LEDs of the bus moni-
tor appear permanently lit.

Step 4

To test that your single-step circuit is operating correctly, switch
to single step and begin stepping through your program one machine
cycle at a time by pressing your single-step push-button switch. Write
down, in the space below, the bytes that you observe until a clear
sequential pattern emerges. Using this data, together with observa-
tions of when the data byte at output port O appears, you should be
able to deduce the machine cycle at which data from the accumu-
lator is output to port O.

The sequence of observed bytes was:
000, 074, 323, 000, ***, 303, 000, 003

where the *** byte represents the data byte being output from the
accumulator. Its value changes as the program is executing.

EXPERIMENT 1-3
A MEMORY-MAPPED INPUT PORT
Purpose
The purpose of this experiment is to wire and examine the opera-
tion of the 8212 (SN745412) integrated-circuit chip as a memory-
mapped input port.

26




Pin Configuration and Truth Table for the 8212 Eight-Bit Input/
Output Port (Fig. 1-12)
LOGIC DIAGRAM

SERVICE FEQUEST FF

PIN CONFIGURATION

DEVICE SELECTION _ A
N os, [ 28 [Jvo
[ D_S‘D W@ wmo{T] 2 23 [JinT
> os2. ACTIVE LOW! o, L3 22 [ _Joug
1 LD'— EN o, [ ¢ 21 | Joo,
MD T 8
(g | WR o, s 20 (Jo,
> ste — — 1 oumeur P06 212 00,
| BUFFER DI ? 8 [ Jo),
3 6
| | po,[ 8 17 [J oo,
Boy—m 0oy [©> o, 0 16 [ Jorg
oatatatcn | | oo, [ 10 15 | Joo,
o, N %"°°ZE> ste[] 1 JoR
| | ano [ 12 13 (Jos,
|
Dony—— I 00y
! |
>0, “———————J’* & D0y
| |
|
B> ot ————— o B>
| | PIN NAMES
|
>0 T 00g 7> ©Oi, Dy | DATAIN
| 00, 00y | DATA OUT
I | b% 0s; | DEVICE sELECT
B> oy ———————————4 00y vo i
i st8 STROBE
iNT INTERRUPT (ACTIVE LOW)
| i
& CLEAR (ACTIVE LOW)
] P — ooy >
RESET ORIVER | |
|

> >
IACTIVE LOW) L o _‘ _ _J

STB | MD | (08,082 | DATAOUT €QUALS | [cur [ 5,05, [ste [ =sn |
ISTATE
ISTATE
DATA LATCH =
DATA LATCH
DATA LATCH
DATAIN =
DATA IN
DATA IN *INTERNAL SR FLIP-FLOP
CUR - RESETS DATA LATCH

SETS SR FLIP FLOP
INO EFFECT ON OUTPUT BUFFER;

—

~---0co0o00

[
)
[
)
[
1
0
1

Courtesy Intel Corp.
Fig. 1-12. 1/O port pin configuration and truth table.




Schematic Diagram of Circuit (Fig. 1-13)

+5 GND
24 12
0 zz H H —2; b7
1 2|s G G :7 D6
i A
Y oo g3 TO DATA BUS
o —Hc c}2—op2
o —8 8 [2— DI
CLOCK 2 a al2— oo
a5 —2os2
MEMR ——'z_om
o —21m0
Alq _|_4 sSTB
| —Y R

Fig. 1-13. 8212 IC as memory-mapped input port.

Program (Fig. 1-14)
/
/MEMORY MAPPED 1/0 TEST PROGRAM

/
DB BUSMON 000
DW MMCODE 300 000

*030 000
030 000 041 LXIH /LOAD H,L WITH ADDRESS SELECT CODE
030 001 000 MMCODE /L0 ADDRESS BYTE
030 002 300 0 /H1 ADDRESS BYTE
030 003 176 LOOP, MOVAM /LOAD A WITH CONTENTS OF
/LOCATION *'M"
030 004 323 ouTt /0UTPUT A TO PORT O
030 005 000 BUSMON /DEVICE CODE FOR PORT 0
030 006 303 JMP /JUMP TO LOOP AT
030 007 003 LooP /L0 ADDRESS BYTE
030 010 030 0 /H1 ADDRESS BYTE

Fig. 1-14. Program for memory-mapped input port.

Step 1
Load the program into memory. Enter 3003 at memory address
00350025.

Step 2

Wire the bus monitor circuit given in Experiment 1-1 in this unit.
The block diagram for such a circuit will be given in subsequent ex-
periments as shown in Fig. 1-15.

28




BUS MONITOR
OUT —————{ Latch Enable

Fig. 1-15, Diagram of bus monitor circuit.

Step 3

Wire the circuit given in Fig. 1-13. Fig. 1-16 is the application note
for the use of the 8212 integrated circuit as a gated three-state input
buffer.

The following shows the 8212 control pins, the control lines attached
to these pins, and the logic levels required for data input:

8212 Input DS DS2 MD STB CIR
Control Line MEMR AlS 0 Al4 0
Logic Level for

Data Input 0 1 0 1 1

Through reference to the application note (Fig. 1-16) and the truth
table for the 8212 (Fig. 2-12), confirm for yourself that the five logic
levels given above must be applied to the five 8212 control pins for
data input. In the space below, write down the memory address re-

GATED BUFFER
Gated Buffer { 3- STATE) 3STATE
The simplest use of the 8212 is that of a gated
buffer. By tying the mode signal low and the strobe
input high, the data latch is acting as a straight
through gate. The output buffers are then enabled
from the device selection logic D7 and DS2. weuT
When the device selection logic is false, the outputs -+ E>

are 3-state.

When the device selection logic is true, the input

data from the system is directly transferred to the

output. The input data load is 250 micro amps. The 5;,:'1':&_{
output data can sink 15 milli amps. The minimum  (BSkos2)
high output is 3.65 volts.

outeuT
o212

DATA
(15ma)
(3.85V MINY

Fig. 1-16. Application note for the 8212.

quired to enable the 8212 for data input. Use an X for “don’t care”
bits.

29




If you replace your X bits by logic 0, is your memory address con-
sistent with our address select code entered at LO address bytes 0015
and 0025 of the program entered at Step 1?7

The memory address required to enable the 8212 for data input
is

T1 XXX XXXz XX XXX XXX2

Replacing the “don’t care” bits by logic 0 gives 30050005, which is
the address given at LO address bytes 0015 and 002, in the program.

Step 4

Set the clock oscillator to about 10 Hz and execute your program
at full microcomputer speed. What octal bytes do you observe on your
bus monitor?

We observed the bytes 110; and 1114, with the least significant octal
digit changing at the same rate as the clock oscillator.

Step 5

Replace the HI address byte at memory location 003 002 in your
program with the following bytes in turn: 0105 and 365s. Explain
your observations of the behavior of the bus monitor during each
program execution.

We observed normal data transfer from the input to the bus monitor
with HI address byte 3655 when the input port is enabled (A15 and
Al14 at logic 1). You observed 377 at the bus monitor when the pro-
gram was executed with 0105 at memory location 0035 002;. The ad-
dress bit A15 is zero for this case, and so the 8212 input lines are in
the three-state mode and no data is input.

Step 6
The bus monitor as wired in this experiment is being used as an
output port. Is data transferred to this port using memory-mapped or

30




accumulator I/0O techniques? What is the disadvantage of this port
as it presently stands?

The bus monitor is, of course, an accumulator output port since the
OUT pulse is used to enable the latches during data output from the
accumulator. The problem with the port as it presently stands is that
it has no unique device code. You may wish to confirm this by chang-
ing “BUSMON” at LO memory location 005s in your program to
another value. (NoTE: If you are using an MMD-1 microcomputer,
do not use device codes 0005, 0015, or 002, since these are already
used for the three LED output ports.)

Retain this circuit for the next experiment.

EXPERIMENT 1-4
EXECUTION OF AND OPERATION

Purpose

The purpose of this experiment is to demonstrate the execution of
an AND operation between a memory-mapped input port and the
accumulator.
Schematic Diagram of Circuit

Use the circuit wired in Experiment 1-3.

Program (Fig. 1-17)
DB BUSMON 000

*003 000
003 000 041l LXIH /LOAD REGISTER PAIR H WITH:
003 001 003 003 /LO ADDRESS BYTE OF INPUT PORT
003 002 300 300 /H1 ADDRESS BYTE OF INPUT PORT
003 003 076 TEST. MVIA /MOVE FOLLOVWING BYTE IN ACCUMULATOR
003 004 001! 0ol /MASK BYTE
003 005 246 ANAM /6ND CONTENTS OF INPORT PORT

/WITH CONTENTS OF ACCUMULATOR

003 006 312 Jz /1S RESULT ZERO? YES- JUMP BACK
003 007 003 TEST /TO0 TEST
003 010 003 o
003 011 076 MVIA /N0, FLAG BIT="1" SO LOAD A
003 012 377 377 /WITH ALL ONES
003 013 323 ouT /QUTPUT BYTE
003 014 000 BUSMON /TO PORT 0
003 01S 1¢€¢ HLT /HALT THE MICROCOMPUTER

Fig. 1-17. Program for AND operation.

3




Step 1

Wire the memory—mapiaed input port circuit shown in Experiment
1-3 (Fig. 1-13) if it is not already wired on your breadboard.

Step 2
Load and execute the program of Fig. 1-17 with your clock oscil-
lator set to about 2 Hz. What happens at output port BUSMON?

We observed the octal code 377 on the bus monitor.

Step 3

Alter the bytes at LO memory addresses 004 and 005 to 111 and
276. This latter byte is the op code for the CMP M instruction. Now
execute the program at full speed. Note and explain in the space be-
low what you observe on the bus monitor.

We observed 377 on the bus monitor. The CMP M instruction com-
pares the contents of the accumulator (111 in this case) with the
contents of memory location M (in this case the memory-mapped
input port). If the two bytes are equal, the zero flag is set and the
program loops to TEST. If the two bytes are not equal, a 377 is out-
put to the bus monitor.

Questions

1. What is the advantage of memory-mapped 1/O over accumulator
1/0 in this masking situation?

2. Write a program using accumulator I/O to replace the program
given in this experiment. Compare the number of bytes required
in each case.

32




EXPERIMENT- 1.5
ACCUMULATOR 1/O VERSUS MEMORY-MAPPED 1/O

Purpose

The purpose of this experiment is to demonstrate and compare the
behavior of two different I/O techniques, viz., accumulator 1/0
and memory-mapped 1/0, for the input of data into an 8080 micro-
computer.

Pin Configuration of Integrated Circuits (Fig. 1-18)

INPUTS ouTPUTS
vee COY
wjwjwlInffe]fnjjeile

l %&ﬁ%ﬂj
(A) 7442.
Eapans

s C

5

0

O NN ST
SateoTs

Vi 6A  6Y  5A  5Y  4A  4Y
hod 3l {2 " 0 9 1
>

e

1A Y 2A 2y  3A 3 GND

(B) 7404.

(C) 74365 (8095).

1 2 3 4 $ . 7 L]
T A v 2 v 34 v Gw

Fig. 1-18. IC pin-configurations.




Schematic Diagrams of Circuits (Fig. 1-19)
+5 GND
16 la
10 9
H H H |— D7
Losic ¢ e of—0s
F F F — D5
SWITCHES _ 2] e ek pa
L 8095
15
z
TO DATA BUS
Y
15
L 8095
10 9
D D D D3
Logic ¢ s LI : b2
B B B DI
SWITCHES 2], NE 60 i
6 8 |
+5 GND

(A) Input buffer circuit.

v, G

. 7442

]

(B) Device select pulse decoder circuit.

Fig. 1-19. Circuit diagrams.

34




Program No. 1. Accumulator 1/ O (Fig. 1-20)

DB BUFF 200

*003 000
003 000 333 START, IN /INPUT DATA TO A FROM
003 00! 200 BUFF /BUFFER CIRCUIT
003 002 323 ouT /0UTPUT THE DATA BYTE TO
003 003 000 000 /PORT 0O
003 004 303 JMP /UNCONDITIONAL JUMP TO
003 005 000 START /1.0 MEMORY ADDRESS BYTE
003 006 003 0 /H1 MEMORY ADDRESS BYTE

Fig. 1-20. Program No. 1

Program No. 2. Memory-Mapped 1/ O (Fig. 1-21)

DW MMCODE 300 000

*003 020
003 020 041 LXIH /LOAD REGISTER PAIR H WITH:
003 021 000 MMCODE /MEMORY MAPPED 1/0 DEVICE
003 022 300 o] /CODE

003 023 176 LOOP, MOVAM /MOVE CONTENTS OF MEMORY LOCATION M
/GIVEN BY REGISTER PAIR H INTO A

003 024 323 ouT /OUTPUT THE CONTENTS OF A TO
003 025 000 000 /PORT 0

003 026 303 JMP /JUMP TO

003 027 023 LOOP /L0 ADDRESS BYTE

003 030 003 o /Hl ADDRESS BYTE

Fig. 1-21. Program No. 2.

Accumulator 1/0

Step 1
Wire the input buffer circuit shown in Fig. 1-19A. Connect the
control line IN to point Y and wire point X to a logic 1.

Step 2
Load Program No. 1 into memory. Set the buffer circuit device
code byte BUFF at memory location 00350015 to 220s.

Step 3

Run the program at full microcomputer speed. Alter the logic
switches at the input to the buffer circuit and explain in the space
below what you observe at port 0.

35




We observed that the byte displayed at port 0 was the same as that
set on the logic switches.

Step 4

Alter the buffer circuit device code byte BUFF to 3505. Run your
program again. What do you observe when the logic switches are
altered?

We observed that the byte displayed on the bus monitor was again
the same as that set at the logic switches. Explain, in the space below,
why the device code byte had no effect.

The reason is that for the circuit wired in Step 1, the buffer enable
pulse is TN, which is generated each time an IN <B2> instruction
is executed. For the device code to enable the three-state buffers,
either:

@ one of the bits (A0-A7) of the device code byte <B2>, which
appears on the address lines during an TN instruction, must be
gated with TN to produce a device select pulse or

® several or all of AG—A7 should be decoded to generate a pulse
which is again gated with TN to produce a device select pulse.

In this case a NOR gate is available within the 8095 chip, and we will
use this gate.

Step 5

Disconnect the logic 1 connection from point X and wire point X
at your input buffer circuit to address line A7. Referring to the pin
configuration diagram for the 8095 and also to the input buffer cir-
cuit, it may be seen that we now have A7 and TN Nored together.
The result is a logic output to the three-state buffers which is nor-
mally low (high-impedance state) and which goes high (enabled)
when both A7 and IN are low. This latter condition only occurs dur-

36




ing the third machine cycle of an IN <B2> instruction. Hence the
device code for the input buffer circuit will be

IA7|A6lA5|A4IA3|A2|A|iA0|=| 'II XlXIXIXlXIXIXl

where X = “don’t care.”

Step 6

With BUFF at memory location 00330015 set in turn to 100g, 2205,
and 3505, repeat Step 3 and explain why data is successfully trans-
ferred from the logic switches to output port 0 in the latter two cases
but not in the first.

If you are having trouble with the answer to this question, review the
comments in Step 5 and note which of the device codes in Step 6
has address bit A7 set to a logic 1.

Step 7

Clearly, considerable device code redundancy results from using
a single address code bit to generate a device select pulse. Some or
all of this redundancy may be removed by decoding some or all of
the device code bits AO-A7 (or A8—A15). To illustrate this, dis-
connect power to your solderless breadboardir g socket and wire the
SN7442 decoder circuit shown in Fig. 1-19B, preferably on the
same solderle.s breadboarding socket as your input buffer circuit.
Wire address lines A4, A3, and A2 to inputs C, B, and A, respec-
tively, of the SN7442. Wire the SN7442 output “3” (pin 4) di-
rectly to point Z in the input buffer circuit and disconnect A7 from
point X. Make sure that you also disconnect the inverter from Z.
What device codes will now enable the input buffer circuit?

Any device code which has A4 equal to logic 0 and A3 and A2 both
equal to logic 1 will enable the input buffer.

37




Step 8

Set BUFF to 00001111 = 017, repeat Step 4 and confirm that data
is being successfully transferred from the logic switches to port 0
once you have applied power to your solderless breadboarding socket.

Memory-Mapped 1/0

Step 9

To wire your input buffer circuit for memory-mapped 1/0, remove
power from your solderless breadboarding socket, disconnect IN from
point Y in your circuit, and connect MEMR in its place. Also, dis-
connect the decoder output line from point Z, and connect address
line A15 to point X. Remember also to reconnect the inverter to
point Z. Address bit A15 will now determine whether the micro-
eomputer is accessing memory (A15 is logic 0) or I/O devices (A15
is logic 1).

Step 10
Load program No. 2 into memory.

Step 11

Apply power to your solderless breadboarding socket and begin
the execution of your program. While your program is running con-
firm that data which is input from the memory-mapped input port
is displayed again at port 0.

Step 12

As for accumulator 1/0, considerable device code duplication ex-
ists in this case when address bit A15 and MEMR are used, since
any address above 20040005 will enable the input buffer. Confirm
that this is the case by substituting different address select codes at
memory locations 00350215 and 0035022s.

Step 13
A decoder circuit can again be used, as with accumulator 1/0, to
reduce this device code redundancy. Draw a circuit in the space be-

low that would reserve addresses below 48K for memory, and ad-
dresses above 48K for I/O. You may want to test this circuit.




The required circuit shows A15 and ‘Al4 wired to the inputs of
a two-input NAND gate which replaces the inverter at point Z in
Fig. 1-19A.

Step 14

What if you desired to input an 8-bit byte from the logic switches
into register C rather than the accumulator. What modifications would
you need to make to the accumulator I/0 and memory-mapped I/O
programs to accomplish this objective? Write the new programs in
the space below.

For the accumulator I/0O program, a MOV C, A instruction would
need to be added at location 003 002. For the memory-mapped I/0O
program, the MOV A, M instruction would be replaced by a MOV
C, M.

Step 15

On the basis of these programs, identify one advantage and one
disadvantage of memory-mapped 1/0.

The advantage of memory-mapped I/O over accumulator I/O that
is illustrated in these programs is that data can be moved directly
into the desired register with memory-mapped I/O, whereas an extra
MOV instruction is required with accumulator I/O. Where a large
block of data is being transferred and processed, this saving of an
instruction is useful. The disadvantage of memory-mapped I/O which
is illustrated here is the longer length of the program and the need to
tie up the H,L register pair for I/0.

39




An Overview of the 8255

2-1. ELECTRONICS

In this section we will examine the basic, functional electronic
blocks within the PPI to see how these “blocks” interact with the
outside world through their data and control lines. Our purpose is to
examine the potential of the PPI as an 1/0 interface and also to see
the hardware connections that are needed for satisfactory chip op-
eration.

Fig. 2-1 shows a block diagram of the PPL. Notice that the PPI
can be divided into three main units, viz, the interface circuitry to
the 8080 central processing unit (CPU) module, a peripheral inter-
face unit, and an internal control logic unit.

(A) Peripheral Interface Pins

Since over 50 percent of the pins of the 8255 are dedicated to data
input or data output operations, we will look at these pins first. Data
is transferred to and from external I/O devices through three 8-bit
ports known as port A (PAO-PA7), port B (PBO-PB7), and port C
(PCO-PC7).

The electronic characteristics and functions of these three ports
are determined by the PPI operating mode, which is selected under
program control. There are three main ways in which the 8255 /0
lines can be programmed:

® Basic Input and Basic Output (Mode 0). In this mode the 24
1/0 lines are divided into two groups of eight lines each (ports




L pe————.
SUPPLIES 1/0

PAT-PAO

— GHD

10
PC7-pCa

BI DIRECTIONAL
DATA BUS

07-00

i
PC3-PCO

1/0
P87-PBO

al
;
o

i
|
I
8080 CPU INTERNAL | PERIPHERAL
LOGIC l INTERFACE

MODULE
INTERFACE
Fig. 2-1. Block diagram of 8255 PPI.

A and B) and two groups of four lines that together are called
port C. Each port or group can then be individually programmed
for basic input or output operation. In this operating mode,
which is the simplest of the three, each assigned output port
is latched. The input ports are not latched, operating as three-
state input buffers.

Strobed Input and Strobed Output (Mode 1). In this mode the
PPI uses the two 8-bit ports, A and B, as unidirectional input
or output ports. Each port transfers data in conjunction with a
strobe or “handshaking” signal. Ports A and B use the 8 bits of
port C to generate or accept these “handshaking” signals. Data
is latched for both input and output at ports A and B.

Strobed Bidirectional 1/O (Mode 2). A single bidirectional 1/O
port (port A) is available for mode 2 operation. As with mode 1,
strobing or “handshaking” is used to maintain an ordered flow
of data to and from the cpu. Five bits of port C are used for this

purpose.

11




Table 2-1. 1/O Line Allocation for Mode 0, 1, and 2 Operations

Mode Port A Port B Port €
0 BASIC INPUT/OUTPUT BASIC INPUT/OUTPUT BASIC INPUT/
Outputs latched Outputs latched OuTPUT
Inputs not latched Inputs not latched Outputs latched
Inputs not latched
1 STROBED 1/O STROBED 1/0 CONTROL/STATUS|
Inputs & Outputs latched Inputs & Outputs latched BITS FOR
PORTS A & B
2 STROBED BIDIRECTIONAL - CONTROL/STATUS
/o BITS FOR PORT A
Inputs & Outputs latched

Table 2-1 summarizes the main ways in which the 24 I/O lines are
allocated for these three major modes of operation.

When programming the operating mode for the PPI, you are not
restricted to committing all of the PPI I/O lines to one particular
operating role. The mode control word, which is used to define the
operating mode for each of the PPI ports, is set up so each port can
be assigned a different operating mode. If, for example, port A is
programmed for mode 2 operation, the remaining eight lines of port
B and three lines of port C can be configured for either mode 0 or
mode 1 operation.

An additional feature of port C is that each bit may be individ-
ually set or reset. This is important since it permits strobe and gating
signals to be generated by software using a bit-set/reset control word.
This eliminates the need for additional external logic, although addi-
tional software steps will be required to generate the set/reset con-
ditions.

(B) 8080A CPU Interface Pins

Referring to Fig. 2-1, there are eight data lines, six control lines,
and two power supply lines which make up the remainder of the PPI
chip pins. These pins are associated with the PPI's 8080 CPU inter-
face (Fig. 2-1). Let us examine the function of each of these pins.

During the execution of the IN, OUT, and MOV input/output
commands, the 8080 CPU communicates with the PPI via the micro-
computer system data bus, which is connected to pins DO to D7.
All data bytes that pass between the 8080 and the 8255 are trans-
mitted or received by a bidirectional 8-bit buffer. Now in any com-
puter system there may be many devices, including read/write mem-

42




ories (RAMs), ROMs, EPROMs, PPIs, and USARTSs, connected to
the data bus. Since only one device at a time may be “active” if bus
loading is to be avoided, the PPI, as with the other devices, has three-
state data bus lines. These lines are enabled, and the chip is effec-
tively connected to the bus, by a logic zero on the PPI chip select
(C3) line. A logic one on the chip select pin forces the PPI data bus
lines into the high-impedance state. Once the PPI is enabled by a
logic zero on TS, the PPI must then be told whether it is to read data
(RD) from the I/O ports and place it on the data bus lines (D0-D7)
to the 8080 or to write the data (WR) which is present on the data
bus lines (D0-D7) to the 1/0 ports. Clearly simultaneous logic zeros
to RD and WR is an illegal condition!

Consider for a moment the types of byte which might be sent down
the data bus to the PPI. These include:

® Data bytes for port A, port B, or port C.

® Control bytes, which are routed to a control register within the
Read/Write Control Logic Block of the 8255. There are two
types of control bytes: the mode control word, which specifies
the operating modes of ports A to C, and the bit set/reset con-
trol word, which is used to set and reset the individual bits of
port C.

When a data or control byte is sent to the PPI using accumulator or
memory-mapped 1/0, a destination address or code must also be sent
at the same time to specify the byte type and its destination. The ad-
dress pins AO and A1 are used by the PPI for this purpose. Table 2-2

Table 2-2. Use of Address Pins A0 and Al

A Ao 1/O Operation

DATA BUS <> port A
DATA BUS <> port B
DATA BUS > port C
DATA BUS — control

register

0
]
1
1

-0 - o

shows the way in which the signals that are connected to these pins
define the type and destination of a byte being communicated between
the 8080A and the 8255. Clearly these two address bits do not pro-
vide unique addressing when an 8-bit device code is available for
accumulator I/0, or when a 16-bit address code is available for

43




memory-mapped 1/0. Suffice it to say for the moment that a non-
unique address does not, in general, introduce difficulties.

The reset pin (RESET) is usually connected to the microcom-
puter’s reset line. A logic 1 on this input clears all of the internal
registers, including the control word register, and sets all of the I/O
ports to their input mode. This latter feature can be useful for system
initialization. Finally, the PPI requires a single +5-V supply (V.. and
GND) and this makes it easily adaptable to virtually all microcomputer
systems.

(C) internal Control Logic

As was mentioned earlier, the operating modes of ports A through
C as well as the bit set/reset operation on port C are controlled by
sending the PPI either a mode control byte or a bit-set/reset control
byte under software control. The destination of this control word
is the control register (within the read/write control logic block)
whose code is A0 = 1, Al = 1. The internal logic (Fig. 2-1) of the
chip then manages the transfer of data and control information on
the internal data bus. The mode control byte is transferred to two
port controllers, which are designated GROUP A and GROUP B
control. The GROUP A control module controls the mode definition
of (and data transfer to and from) port A and the most significant
four bits of port C. Similarly, the GROUP B control module super-
vises port B and the least significant four bits of port C.

The heart of the control logic, then, is the 8-bit control register
since the control byte, which is written into this register, ultimately
defines the operational characteristics of the PPL. Fig. 2-2 shows the
formats of the two types of control byte. The most important point
to note concerning the control word is that the most significant bit
(D7) is used to specify the type of control word. If D7 is set to a
logic O (Fig 2-2B), the control word will be used by the PPI to define
the port C bit that is to be set or reset. If D7 is set to a logic 1 (Fig.
2-2A), the remaining control word bits will be used by the internal
logic to specify the operating modes of each of ports A through C.

As an example of the use of the control word, let us assume that
we require the PPI to be configured with:

PORT A: Mode 0 Output PORT C: BITS PC7-PC4 Mode 0 Input
PORT B: Mode 1 Input PORT C: BITS PC3-PCO Mode 0 Output

Using Fig. 2-2A, the individual bits of the control word can be chosen
as follows:

44

S




CONTROL WORD

GRouP 8

PORT C (LOWER)
I
0 outPuT

s B
0-qureur

MODE SELECTION
0- MOOE 0

1~ MODE 1

conTROL WORD.

o1 100 9 [04 [ 03] 2] 01| %]

GRoue & SETRESET FLAG

PORT C [UPPER) o-mesermr
1 NPT Tiseren

o oureUT

PORT A Bt seLec

1 vPUT o oo
0 outeut 20204 | Portcan
MODE SELECTION

00~ MODE 0

——— oY usen seT 10 000

o1 - MODE 1
1X < MODE 2

e e L

(A) Mode definition control word. (B) Bit-set/reset control word.

Fig. 2-2. Comparison of the two types of the control word which defines the operational
characteristics of the PPI.

D7 : Opcode; mode set = 1

D6,D5 : PORT A mode; mode 0 = 0,0
D4 : PORT A I/O; output =0

D3 : PORT C upper 1/0; input =0
D2 : PORT B mode; mode 1 =1

D1 : PORTBI/O; input =1

b0 : PORT C lower 1/0; output = 0

Hence the mode control word would be:
100001 10=206

In a similar manner a control word can be constructed from the table
in Fig. 2-2B and sent, using an output instruction, to the control reg-
ister to set or reset any of bits PC7 to PCO of port C. To reset bit PC2,
for example, the control word




00000101 =005

would be required. Note that a separate control word is needed to
reset PC2, as only one bit set or reset operation can be accomplished
with each bit-set/reset control word.

(D) Interfacing a PPl to a Microcomputer

Fig. 2-3 presents one approach to interfacing a PPI to an 8080-
based microcomputer data bus for accumulator I/O. Notice that the
chip select pin TS is connected to A7 through an inverter. The 8255
is then enabled when address line A7 is a logic high (TS low). The
device-select address code format for the example in Fig. 2-3 is illus-
trated in Fig. 2-4. The addresses form the second byte of the IN and
OUT instructions used to access the PPI in this example. Since there
are so many “don’t care” bits, considerable ambiguity of addressing
exists, and so care is required to avoid enabling the PPI and another
1/0 peripheral on the data bus at the same time. The loading of the
data bus that results will usually render the microcomputer inopera-
tive and may damage the 8080.

The technique of using a single bit to enable a peripheral is known
as lineal device selection. It is used in small systems, such as the Intel
SDK-80, where the number of peripherals is small and the risks and
problems, as explained above, are low. In bigger systems, such as
the Intel SBC-80,10, absolute decoding of the chip select is used to

L ——_.._._.
}w e
8228 w
8255 ~|iI—
wmou.sﬂ .4 - PPI 7 e KT
.. S 0| A
: B et o AL e—
s [} | E—
i B > L st w| =
"

AN 8220 CLOCK CONTRLLER

Fig. 2-3. Typical ‘wiring diagram for 8255 PPI for accumulator i/o.




eliminate nonunique device addressing. The author recommends this
even in small systems since small systems have a habit of growing!
A 74154, four-line to 16-line decoder is usually quite adequate to
decode address lines A7, A6, A5, and A4 and to provide a more
unique chip select pulse, CS.

ADDRESS BITS
7 6 5 4 3 2 1 0
|1Ix|x|xlx|x|0/1]o/1]
[N —

[—'I/O PORT SELECT

00 = DATA BUS <a——p-
X = DON'T CARE PORT A
(USUALLY SET TO ZERO) 01 = DATA BUS <~ PORT B
10 = DATA BUS <s——» PORT C
11 = DATA BUS ~mmm=——=jme- CONTROL

Fig. 2-4. Device-select address code format for the circuit of Fig. 2-3.

To interface the PPI in Fig. 2-3 for memory-mapped 1/0, the fol-
lowing simple alterations must be made to the circuit:

® Replace the TN and OUT control signals with the memory-
mapped 1/0 read and write control signals, MEMR and MEMW,
respectively

® Replace A7 with Al5 to ensure that the addresses of the PPI,
as a memory-mapped I/0O port, are in the second half of memory.

2-2. STEPS FOR USING THE 8255

In the introduction we saw where the PPI fits in a microcomputer
system and the reason for its popularity, viz, the ability to program
the way it will look and behave to the outside world. As with most
aspects of microcomputer usage, the application of this device in a
microcomputer system requires a mix of hardware and software skills.
The three main steps required to use a PPI are:

® Interface the PPI to the microcomputer using either accumulator
or memory-mapped 1/0.

a7




® Program the operational mode of the 8255.
@ Input or output data under software control.

In the previous section on the chip electronics, we saw how the PPI
could be wired onto the 8080A data bus for accumulator I/O (cf
Fig. 2-3). The method for constructing control word bytes to specify
the operational mode of the PPI was also explained [Section 2-1(C)].
What remains, then, is to discuss, in broad terms, the software re-
quirements of the PPL. The chapters that follow will then discuss in
detail the electronics and programming required for the three opera-
tional modes of the PPI.

2-3. SOFTWARE

Regardless of the operational modes selected for the PPI I/O
ports, the first step required of any program is a system initialization
subroutine. In the simplest case this may contain steps for outputting,
to the PPI, the mode control word required to specify the operating
modes of the three I/O ports. As an example let us use the PPI, con-
nected as shown in Fig. 2-3, with the operating modes of ports A
through C specified as shown in the example in Section 2-1 (C). Re-
ferring to that section, the required mode control word was 206.
For the PPI in Fig. 2-3 the device address for the control register
can be determined from Fig. 2-4. If we set the “don’t care” bits, D2
through D6, equal to logic 0, the device address for the control reg-
ister is:

1000001 1 =203
Hence a simple PPI initialization subroutine, INT, could be as shown

in Program 2-1.

/
/PPl INITILISATION SUBROUTINE:INIT
/

DB MODE 206
DB CNTRL 203

*003 200
003 200 365 INIT, PUSHPSW /STORE PROCESSOR STATUS
003 201 076 MVIA /LOAD A WITH THE FOLLOVING
003 202 206 MODE /MODE CONTROL BYTE
003 203 323 ouT /O0UTPUT CONTROL BYTE TO
003 204 203 CNTRL /CONTROL REGISTER
003 205 361 POPPSW /RESTORE PROCESSOR STATUS
003 206 31t RET

Fig. 2-5. Program 2-1.




Program 2-1 (Fig. 2-5)

In mode 1 and mode 2 I/O operations and in certain mode 0 I/O
operations, some of the bits of port C must be set using the bit-set/
reset control word prior to using the PPI. In these cases the required

START
O,
LOAD ACCUMULATOR
WITH
MODE CONTROL BYTE
OUTPUT CONTROL
BYTETO
CONTROL REG ISTER
OUTPUT CONTROL
BYTETO
CONTROL REG ISTER
INITIALIZE PROGRAM
CONSTANTS
LOAD ACCUMULATOR
WITH
BIT-SET CONTROL BYTE
RETURN
Fig. 2-6. Flow diag of an initializati k ine for a ¥

bit-set/reset control word must also be sent to the PPI control reg-
ister during system initialization. The generalized flow diagram of an
initialization routine, shown in Fig. 2, illustrates the position within
the subroutine of the required bit-set instructions.

Program 2-2 in Fig 2-7 shows a typical PPI initialization subrou-
tine. Note that for short programs the PPI initialization coding could
(and most probably would) be incorporated in the main program by
omitting the PUSH, POP, and RETURN instructions.

49




Program 2-2 (Fig. 2-7)

Having initialized the PPI through the use of software, the next step
is to transfer data through the PPL In the case of the PPI in Fig. 2-3,
interfaced for accumulator 1/0, data may be input from any port or
output to any port for basic mode 0 I/O using the following accumu-
lator I/O instructions:

INPUT OuUTPUT
' '
' '
' '
' '
IN out

< DEVICE CODE> <DEVICE CODE>
' '

where the <device code> byte is the device address of ports A
through C, as required. For the circuit in Fig. 2-3, for example, the

/
/SUBROUTINE: INITB
/

DB MODE 206
DB CNTRL 203
DB BITSET 005

*003 100
003 100 365 INITB, .PUSHPSW /STORE PROCESSOR STATUS
003 101 076 MVIA /LOAD ACCUMULATOR WITH THE
003 102 206 MODE /FOLLOVING MODE CONTROL WORD
003 103 323 ouT /OUTPUT MODE CONTROL WORD TO THE
003 104 203 CNTRL /CONTROL REGISTER
003 105 076 MVIA /LOAD ACCUMULATOR WITH
003 106 005 BITSET /BIT SET/RESET CONTROL WORD
003 107 323 ouT /O0UTPUT 1T TO THE
003 110 203 CNTRL /CONTROL REGISTER
003 111 361 POPPSW /RESTORE PROCESSOR STATUS
003 112 311 RET

Fig. 2-7. Program 2-2.

device addresses for ports A through C are given from Fig. 2-4 as
200, 2015, and 2024, respectively.

In mode 1 and 2 operation, data transfer is usually accompanied
by the issue of and checking of handshaking pulses which are used to
synchronize data transfer between an external interface and the PPL
The PPI is first checked to see if it is either READY to receive data

50




PPI
INPUT

SUBROUTINE

READ PORT C

PP
ouTPUT

SUBROUTINE

READ PORT C

FOR PP STATUS

FOR PP1 STATUS

READY
TO TRANSFER
DATA?

HAS DATA BEEN
RECEIVED BY PP1?

READ PORT WRITE DATA TO
FOR DATA PPI

RETURN RETURN

(A) Reading data. (B) Writing data.

Fig. 2-8. Data transfer flow diagrams.

from the CPU for output or if it has received new data for input to
the CPU. The lines of port C are used as status signals for ports A
and B during mode 1 operation. They must then be checked by read-
ing port C prior to inputting or outputting data through the PPI. The
details of these software operations will be discussed in later chapters
on-mode 1 and mode 2 operation. The flow diagrams in Fig. 2-8 give
an overview of the techniques involved.




e e g

3

Mode O Operation: Simple 1/O

3-1. INTRODUCTION

In the following chapters we will examine in detail the three op-
erating modes of the 8255. Modes 0 and 1 of the PPI reflect, in
particular, two different programmed data transfer techniques,
namely, unconditional and conditional data transfers. Let us begin
by defining and discussing these terms. Superscripts in brackets refer
to references in Section 3-6.

® Programmed data transfer'l}: A data transfer between a micro-
computer system and external logic that is completely controlled
by a microcomputer program. The majority of microcomputer
input/output operations are programmed data transfers. This
type of data transfer will not support high rates of data transfer
because of the relatively slow instruction execution time for
most microcomputers (at least 2 us for the 8080A) and the
need to execute a number of instructions in the process of in-
putting or outputting a data byte. For the improved data transfer
rates, input/output operations between memory and an external
device can be achieved without program intervention using the
direct memory access technique. This technique is rarely used
in microcomputer systems except perhaps in the interfacing of
floppy-disc devices.

Unconditional data transfer'®: This is the simplest type of data
transfer and assumes that the external device is always available

52




and ready for communication with the microcomputer. It is
open-loop in nature as there is no feedback from the peripheral
to inform the microprocessor that the peripheral is ready to
receive data or that data is available on the data bus from the
peripheral. The technique has also been described as simple
[/011 to reflect its low level of difficulty in both programming
and interfacing. It has also been described as synchronous
17021, presumably to reflect the fact that the data is transferred
in synchronization with the microcomputer clock and without
reference to the peripheral’s state of readiness. However, the
author feels that this well accepted and understood digital logic
term is not applicable to microcomputer-controlled parallel data
transfers, and only adds confusion. It can equally well be argued
that because there is no common clocking of both the micro-
processor and the 1/0 logic, the simple or unconditional I/O
technique is asynchronous. To avoid confusion we will use
either “simple I/O” or “unconditional 1/0” to describe this
I/0 technique.

® Conditional data transfer'®): In this approach, which is often
called handshaking 1/0 and is very common in microcomputer
systems, data is only transferred to or from a peripheral if it is
ready for the transfer. This status information, in the form of
logic flag bits, is provided by the peripheral. This technique
could also be described as asynchronous handshaking 1/0.

The mode 0 PPI operation, which we will discuss in this chapter,
is designed for unconditional data transfers. When the 8255 is pro-
grammed for mode 0, the three 8-bit ports—port A, port B, and
port C—are all available for this simple data transfer technique. It
is most generally used in situations where a peripheral does not need
to indicate to the microcomputer that it is ready to receive data, or
that it has data available for input. A typical example of such a situa-
tion is the outputting of processed data by the microcomputer to
various front-panel alphanumeric displays. In such cases data may be
continuously altered without reference to the display. For input, there
are again many cases where data may be input to the microcomputer
without the need to monitor the status of the input peripheral. The
8 bits of an A/D converter which is continuously digitizing an analog
input signal could be input to the microcomputer using simple or
unconditional I/0. The outputs from SN7493, divide-by-16 counters,
operating as event counters, could likewise be input in this way.

53




The discussion of accumulator I/O and memory-mapped I/0 in
Chapter 1 was based on the unconditional data transfer technique
since in fact no mention of peripheral status information was made.
Referring to Fig. 1-4, it will be seen that for input, the essential
elements of the circuit (Fig. 1-4A) are the logic switches representing
the peripheral and the two 4-bit three-state buffers. Clearly the logic
switches would in practice be replaced by 7493 counters or an A/D
converter, etc. The three-state buffer, however, is essential. For out-
put the latches are also essential to ensure that the data that is output
during a synchronous output operation is held until updated by the
next output operation. In accordance with these requirements of
simple 1/0, all three PPI ports, when configured for mode O opera-
tion, have latched outputs. For mode O input the eight lines of each
port are not “connected” to the microcomputer data bus until the
port is addressed by the microcomputer for data input. Data is not
latched by the PPI when mode O input is used, since it is transferred
immediately through the PPI to the microcomputer. Fig. 3-1 shows
how the simple 1/0 input and output circuits of Fig. 1-4A and 1-4B
can be replaced by a single PPI. Note that the eight bits of port C
are still available for additional unconditional data transfer tasks.

3.2. REQUIREMENTS

To use the PPI in its mode O configuration for unconditional or
simple3! 1/0, the following steps (cf Section 2-2) are required:

(a) Program the PPI for mode O operation: This is the system
initialization.
(b) Input and/or output data using simple 1/0.
These steps then require the determination of:

® The mode control word for mode O input or output operation
of ports A through C.

® The device code of the control register.

® The device addresses of ports A through C.

As an example, let us look at the circuit in Fig. 3-1 where port A
has been configured for mode 0 output and port B has been configured
for mode O input. Although port C is not used, we will assign it for
mode O output. Referring then to Fig. 2-2A, bits D7 through DO in
the mode control word must be set as follows:

54




sB0LIS >
21901 -
SIOLINS -
1901 I
—
ST ——
widsia
@ -
AisIa
@

08d
184
28d
€8d

84
58d

184

034

0vd
Tvd
2vd
£Vd

d

9vd

vd

Idd

GGZ8

1

& 8 8 8 8

g
SV

v0808

[T

18jj0RU0D)
sng

8778

T

viva

V0808

Fig. 3-1. The PPl is wired in this circuit for simple 1/O (mode 0) to input data from port B

and output data to port A,

55




D7 : opcode; mode set =1
D6,D5 : group A mode selection; mode 0 = 0,0

D4 : port A I/O: output =0

D3 : port C upper 1/0; output =0

D2 : group B mode selection: mode 0 =0
b1 : port B 1/O; input =1

Do : port C lower 1/0; output =0

OR
D7,D6,D5,04,03,02,01,00
10000010
202

Hence the required mode control word is 202s. As an aside, note that
we could have split port C into two sets of four bits, namely, port C
upper (PC7-PC4) and port C lower (PC3-PCO0); and assigned each
of these independently for either simple input or output. This feature
of port C is illustrated in Steps 8 through 10 of Experiment 3-1.
The device addresses for ports A through C and for the control
register are determined, in general, by the address lines that are con-
nected to the A0, A1, and TS. In the circuit that is given in Fig. 3-1,
the microcomputer’s address lines AO and Al have been connected
to the PPD’s pins AO and Al as is usually the case. Address lines A4

A7 A6 A5 A4 A3 A2 AL AD
F]111|1|x|x|ou|onl

/0 PORT SELECT

X = DON'T CARE (USUALLY SETTO ZERD) 00 = PORT A —— DATA BUS
01 = PORT B =— DATA BUS
10 = PORT C ~— DATA BUS
11 = DATA BUS — CONTROL REGISTER

Fig. 3-2. Device-select address code format.

through A7 have to be NaNDed together to provide a partially de-
coded chip select line for the TS input. The partial decoding used in
this example is superior to the lineal device selection technique used
in Fig. 2-3. Remembering that the chip select line is active when set
to a logic low, and keeping in mind the function of pins A0 and Al,
as summarized in Table 2-2, a device-select address code format can
be generated for the above circuit as shown in the diagram of Fig. 3-2.

From the information in Fig. 3-2 and by setting the “don’t care”
bits to logic zero, it can be seen that the device codes for ports A
through C and for the control register are:

56




PORT A: 360,  PORT C: 3625
PORT B: 361y  CONTROL REGISTER: 3634

As a general principle, after interfacing your PPI to the microcom-
puter, you should construct a diagram showing the device-select ad-
dress code format for the circuit. Such a diagram is extremely useful,
since it is a characteristic of the PPI circuit and can be used to obtain
the appropriate address codes for configuring the PPI and accessing
its ports for as long as the PPI circuitry remains unchanged.

3-3. PROGRAMMING

Having determined the mode control word which will configure
the PPI ports for mode O input or output, and knowing the device
codes for the ports and for the control register, the programming
required then becomes a relatively simple matter. Fig. 3-3 shows
a flowchart of a simple program which inputs data from port B in
Fig. 3-1 and outputs results after processing to the LED displays

at port A.
( smwr )

INITIALIZE PPI

INPUT DATA

Fig. 3-3. Flowchart for mode 0 (simple) 1/O.

OUTPUT RESULT
T0
PORTA

]

57




A typical mode 0, simple 1/0 program for this flowchart is Pro-
gram 3-1.

Program 3-1 (Fig. 3-4)

Note how, in this program, the mode control word and the de-
vice code for the control register were used for system initializa-
tion, and how the device codes for ports A and B were used for
output and input, respectively.

/MODE 0, SIMPLE 1/0 PROGRAM EXAMPLE
/

DB MODE 202
DB PORTA 360
DB PORTB 361
DB CNTRL 363

*000 000
000 000 076 MVIA /LOAD A WITH:
000 001 202 MODE /MODE CONTROL BYTE
000 002 323 ouT /0UTPUT MODE CONTROL WORD TO
000 003 363 CNTRL /CONTROL REGISTER
000 004 333 LOOP, IN /INPUT DATA FROM PORT B
000 005 361 PORTB /PORT B DEVICE CODE
/ .
/ .
/ - DATA PROCESSING =
/ .
/ .
*000 070
000 070 323 ouT /O0UTPUT RESULTS IN ACCUMULATOR
000 071 360 PORTA /TO PORT A
000 072 303 JMP /JUMP TO INPUT NEW DATA
000 073 004 LOOP /L0 ADDRESS BYTE
000 074 000 [} /H1 ADDRESS BYTE

Fig. 3-4. Program 3-1.

3-4. TIMING DIAGRAM

Fig. 3-5 shows a typical timing diagram for mode 0 input and out-
put. The diagram represents the logic changes at the RD, WR, and
DO-D7 inputs of the PPI during the execution of the program steps
between memory locations 00050045 and 00030715 in the mode O,
simple 1/O program given in Fig. 3-4.

The important point to note with simple 1/0 is that data transfer
occurs immediately upon receipt of a logic low signal at the RD or
WE inputs of the PPI, regardless of whether the data is fixed or
changing and regardless of the readiness of the peripherals. For input,
data is passed from the port currently being addressed through the
PPI to the microcomputer when the RD line goes to logic low. Simi-
larly, a logic low on the WR line will cause whatever data is present

58




| ~A; N (RD)
N Y — —

v U ouT (WR)

[y

-

DATA INPUT
FROM PPI PORT B

DATA OUTPUT
TO PPl PORT A

Fig. 3-5. Timing diagram for mode 0 simple 1/O.

on the microcomputer data bus to be immediately latched by the PPI
port currently addressed. For accumulator I/O this is, of course, the
contents of the A register (accumulator).

3-5. PORT C 4-BIT SUBPORTS

In a previous section of this chapter it was mentioned that bits
D3 and DO of the mode control word could be used to separately
allocate port C upper (bits PC7-PC4) and port C lower (bits PC3—
PCO) for mode 0 input or output, respectively (cf Fig. 2-2A). Hence,
port C can be effectively divided into two 4-bit subports for mode 0
1/0 as shown in Fig. 3-6.

T ADDRESS BUS ?
{ CONTROL BUS ?
g DATA BUS !
AD.WR 0;-Dg Ag-Ay
cs
8255 4
c T
MODE 9 8 - ) A
10 1o 10 1o
PB;—PBy PC3—PCq PC;-PCy PA;-PAg
Courtesy Intel Corp.
Fig. 3-6. Schematic diagram of the grouping of interface lines le with the 8255

for mode 0 simple 1/0.

59




While the 8 bits of port C can be assigned as two 4-bit 1/0 ports,
these subports cannot be independently accessed. Communication of
data to and from the PPI is via 8-bit bytes. Therefore, when using
either port C upper or port C lower, care must be exercised at all
times to ensure that the contents of one port C subport are not acci-
dentally altered when writing data to the other subport. Table 3-1
illustrates the six likely conditions under which the two subports of
port C might be accessed.

Table 3-1. Port C Subport 1/O Allocation

Port C Port C

Task Upper Lower Requirement
Input Input Output Mask out the 4
Input Output Input bits not
Input Input Input required
Output Input Output Data set in lower 4 bits
Output Output Input Data set in upper 4 bits
Output Output Output Data set in upper and lower 4 bits

For data input from a port C subport, a masking technique is used
to retrieve the required four bits. Thus, having determined from
which subport data is required, an input instruction is used to input
the 8 bits of port C. An 8-bit mask is then used to mask out the un-
wanted 4 bits. If the four bits of port C upper are required, four RAR
(rotate right through carry) instructions may be needed to shift these
bits into the four least significant bit positions if, for example, the 4
bits represent a bcd number or perhaps the least significant 4 bits
of an event counter. Program 3-2 illustrates the program steps re-
quired to input data from port C upper using the circuit in Fig. 3-1.
Note that the mode control word for PPI initialization has been
altered to 212. Bit D3 in the mode control word has been changed
from zero to one to redefine port C upper for input.

Program 3-2. Reading From Port C Upper (Fig. 3-7)

For data output to either port C upper or port C lower, data is
simply placed in the appropriate 4 bits of the accumulator and the
accumulator contents output to port C. The contents of the other 4
bits of the accumulator (i.e., the top four bits if data is being output
to port C lower) are unimportant as long as the remaining subport
is programmed for input. If, however, the remaining subport is also

60




4
/PORT C INPUT PROGRAM
7

DB MODE 212
DB PORTC 362
DB CNTRL 363

*001 000
001 000 076 MVIA /LOAD A VITH MODE CONTTOL
001 001 212 MODE /WORD WHICH FOLLOWS
001 002 323 ouT /0UTPUT MODE CONTROL WORD TO
001 003 363 CNTRL /CONTROL REGISTER, FOR PPI INITIALIZATION
001 004 333 IN /INPUT DATA FROM PORT C
001 005 362 PORTC  /PORT C DEVICE CODE
001 006 346 AN1 /MASK OUT THE BOTTOM FOUR BITS
001 007 360 360 /MASK BYTE
001 010 037 RAR /ROTATE A RIGHT THROUGH CARRY
001 011 037 RAR /ROTATE A RIGHT THROUGH CARRY
001 012 037 RAR /ROTATE A RIGHT THROUGH CARRY
001 013 037 RAR /ROTATE A RIGHT THROUGH CARRY
001 014 166 HLT /HALT *

Fig. 3-7. Program 3-2,

programmed for output, care must be taken to ensure that the 4 bits
associated with this subport are not accidentally changed by an output
operation to the intended half of port C. This is done by ensuring
that the byte which is output to port C consists of the new 4-bit nibble
for the subport which is being updated together with the previously
output 4-bit nibble for the other subport. These values would prob-
ably be saved in a general-purpose register or in a read/write memory
location. Program 3-3 (Fig. 3-8) illustrates the technique for out-
putting data to port C lower when output data is also latched at port
C upper. We will assume that the PPI has already been initialized
with both port C upper and lower configured for output.

Program 3-3. Writing to Port C Lower (Fig. 3-8)

DB PORTC 362

*020 000

7/ .

/7 .

/ .
020 000 006 MVIB /LOAD REGISTER B WITH DATA
020 001 010 010 /FOR PORT C LOVER
020 002 016 MVIC /LOAD REGISTER C WITH DATA
020 003 200 200 /FOR PORT C UPPER
020 004 171 MOVAC /MOVE PORT C UPPER DATA TO A
020 005 346 AN1 /CLEAR LOWER FOUR BITS
020 006 360 360
020 007 260 ORAB /0R IN DATA FOR PORT C LOVER
020 010 323 ouT /0UTPUT DATA BYTE TO
020 011 362 PORTC /PORT C

/ .

/ .

/ .

Fig. 3-8. Program 3-3.

61




3-6. REFERENCES

[1] Osborne, Adam An Introduction to Microcomputers, Adam
Osborne and Associates, Inc., Berkeley, CA, 1976.

[2] Hilburn, J. L. & Julich, P. M. Microcomputers| Microprocessors:
Hardware, Software and Applications, Prentice-Hall, Englewood
Cliffs, 1976.

[3] Soucek, B. Microprocessors & Microcomputers, J. Wiley & Sons,
New York, 1976.

8255 BLOCK DIAGRAM

—_— v i

POWER GRour
suPPLIES . Py o |
PORT ‘
anour <:> A <:>u,m :
CONTROL - i
|
GROUP
A
10
<: PoRTC
ey PCr #Ce
w
BIDIRECTIONAL DATA 8US
pata
0,0, ) eus )
"% BUFFER
INTERNAL GRour
DATA BUS 1 o
<‘-“_:_“'> PORT C
t LOWER haZiac]
w
#5 ————e0y
AEAD/ i
R o e arour anowe :
conTROL <: ;
Ay ] conTROL <:> PORT 0 i
oaic o K :: D rayre, i
A "
RESET ————] L J
L]

Fig. 3-9. IC block diagrams

62




3-7. SUMMARY OF EXPERIMENTS 3-1 THROUGH 3-3

Experiment Description

3-1 (a) To interface the 8255 PPI for simple accumula-

tor I/0.
(b) To illustrate the use of the 8255 PPI in mode 0

operation for data output.

3-2 To illustrate the use of the 8255 PPI in mode 0
operation for data input.

3-3 The purpose of this experiment is to illustrate

the mode O operation of the 8255 for combined
input and output. The experiment is a synthesis
of the procedures illustrated individually in Ex-
periments 3-1 and 3-2 and so can be treated as

Pin Configuration and Block Diagram for Integrated Circuit (Fig. 3-9)

PIN NAMES
0;-Dy DATA BUS (8I-DIRECTIONAL}
RESET RESET INPUT
[ CHIP SELECT
RD READ INPUT
WR WRITE INPUT
A0, A1 PORT ADDRESS
PA7.PAO_ | PORT A (BIT)
PB7-PBO PORT 8 (BIT)
PCT-PCO PORT C (BIT)
Vee +5 VOLTS
GND g VOLTS

and pin configurations.

PIN CONFIGURATION

A\

pa3 ]
raz ]
pa1 [
pao []
(e
&
GND [
ar]
a0 ]
pc7 10
pce 1 8255
ecs 12
pce (13
pco []1e
pc1[]1s
pc2 {116
pc3[]17
reo 18
ee1 |19

pe2([] 20

PR R

PA4
R PAS
[ pas
[ pay
[0 wR
[ RESET
[ o,
Ko,
[0 o,
o,
[ o,
[ og
[J o,
Ho
[ Vee
[ re7
[ rPae
[ ees
[ pBa

[J e8a

63




a hardware and software test of your under- |
standing of mode 0 PPI operation. |

EXPERIMENT 3-1
MODE 0 DATA OUTPUT OPERATION

Purpose

The aims of this experiment are the following:
(a) To interface the 8255 integrated-circuit chip for simple ac-
cumulator I/0 operation.

Program (Fig. 3-10)

/
/PP1 MODE 0 QUTPUT PROGRAM
/

DB MODE 200
DB DATA 200
DB CNTRL 203 |
*003 000
003 000 06! LXISP  /LOAD THE STACK POINTER WITH
003 00! 200 200 /L0 ADDFIZT YTE
003 002 003 003 /HI ADDRESS EYTE
003 003 076 MUIA /MOVE INTO THE ACCUMULATOR THE !
003 004 200 1ODE /MODE O CONTROL BYTE !
003 005 323 ouT /QUTPUT CONTENTS OF A TO |
003 006 203 CNTRL  /CONTROL REGISTER |
003 007 323 LOOP,  OUT /0UTPUT CONTENTS OF A TO I
003 010 200 DATA /PORT A.
003 011 074 INRA /1NCREMENT A H
003 012 315 CALL /CALL THE SUBROUTINE “DELAY" i
003 013 200 DELAY !
003 Ol4 003 0 |
003 015 303 JamMp /UNCONDITIONAL JUMP TO “LOOP" |
003 016 007 Loor
003 017 003 0
’
/SUBROUTINE: DELAY
/DESCRIPTION: THIS SUBROUTINE GENERATES
/A 0.1 SECOND DELAY FOR A MICROCOMPUTER
/OPERATING WITH A 750 KHZ CLOCK
’
%003 200
003 200 365 DELAY, PUSHPSW /SAVE MICROCOMPUTER STATUS
003 201 325 PUSHD
003 202 021 LXID /LOAD REGISTER PAIR D WITH
003 203 250 250 /TIMING BYTES FOR
003 204 015 015 /0.1 SECOND DELAY
003 205 033 LOGP1, DCXD
003 206 173 MOVAE
003 207 262 ORAD /TIMING BYTE ZERO?
003 210 302 JNZ /NO, KEEP DECREASING
003 211 205 LOOP1
003 212 003 ]
003 213 321 POPD /YES, RESTORE MICROCOMPUTER STATUS
003 214 361 POPPSW
003 215 311 RET
Fig. 3-10. Program for Experiment 3-1.

b




(b) To illustrate the use of the 8255 in mode 0 operation for data
output.
Step 1

Connect the circuit shown in the schematic diagram in Fig. 3-11.
Inputs AO, Al, and A7 are available on the memory address bus.

+5V

pA7 |21
Pas |2 ——
PAS —::—-—-
porT A{ PA%H LAMP
PA3 | MONITOR
PA2
RESET —Do—’i RESET Al |2
PAO |2
N 51 RD
p7 |-2°
ouT—2& WR 24
__2_3
22
AT D L el e E>PORT B
_2_0
al —2 Al (1o
a0 —2 a0 pBo M8
or —24 o7 pc7 |2
28 m
29 '_IZ
DATA —30] ]
31 [ PORT C
BUS P (e
33 |15
po —4 po pco |4

7
_l 8255A or 8255A-5
v

Fig. 3-11. Use of 8255 IC.

Since two identical sets of device codes appear on address lines AQ
through A7 and A8 through A15 during an OUT or IN instruction,
bits A7 and A15 are identical in this case.

Make certain that the proper connections are made to the RESET
input at pin 35 on the 8255 chip. The author once had a faulty

65




RESET connection and spent two hours trying to track down the
problem, which he thought was elsewhere in the circuit.

Step 2
The truth table for the operation of the 8255 programmable pe-
ripheral interface chip is shown in Table 3-2.

Table 3-2. Basic Operation of 8255 IC

Ay Ao i) WR © Input Operation (Read)

) 0 o 1 [} Port A —> Data Bus

[ 1 o 1 o Port B —> Data Bus

1 0 [ 1 [+] Port C > Data Bus
Output Operation (Write)

[} ] 1 0 0 Data Bus - Port A

o 1 1 o 0o Data Bus > Port B

1 0 1 [} 0 Data Bus > Port C

1 1 1 0 0 Data Bus —> Control
Disable Function

X X X X 1 Data Bus —> 3-State

1 1 0 1 0 Illegal Condition

Schematic Diagram of Circuit (Fig. 3-11)
Study the truth table in Table 3-3 for the four control inputs to
the 8255 chip. Assume that input TS is at logic O, ie., A7 is at

logic 1.
Keep in mind that the address bus has the following significance

when used to address our 8255 chip:

Bit: A7 A6 A5 A4 A3 A2 Al A0
Input: T X X X X X A A0

An X indicates that the logic state of the address bit is unimportant.
What device address value is needed if you wish to write a control
byte into the control register?

To write into the control register, A7 must be logic 1, Al must be
at logic 1, and AO must be at logic 1, according to the truth table.
Therefore the device code is:

66




Table 3-3. Control Inputs to 8255 IC [

our IN Al A0 Action

[ 1 0 0 Data Bus > Port A
o 1 o 1 Data Bus = Port B
[ 1 1 0 Data Bus = Port C
4] 1 1 1 Data Bus —> Control Register
1 0 [} 0o Port A —> Data Bus
1 [ [} 1 Port B — Data Bus
1 [} 1 [} Port C > Data Bus
1 [ 1 1 Not Allowed

1 1 o o Data Bus => 3-State
1 1 o 1 Data Bus —> 3-State
1 1 1 0 Data Bus —> 3-State
1 1 1 1 Data Bus = 3-State
[ ] X X Not Allowed

IXXXXXT1

If we set X equal to logic O, then the device address is simply
10000011, or 203. This is the technique that we use to address the
8255 chip.

Step 3

The mode O configuration that you will first test is for the mode 0
control word which is given by Intel Corporation as in Fig. 3-12.
This is the value of the 8-bit control word, MODE, that must appear

nopoonon

A _—.ﬁ/a—> PA, PA,

8255

D, Dy =————]

LR
¢ {
4q
4% e, 2,

8
8 P8, P8,

Fig. 3-12. Mode 0 control word and schematic diagram.




\

at LO memory address 004 in the program. The schematic diagram
indicates that you will output data to port A on the 8255 chip. The
device address for port A is simply 200, according to the truth table
provided in Step 2. This device code, DATA, must appear at LO
memory address 010 in the program.

Step 4
Load the program into memory. Make certain that the mode con-
trol word and the PPI 1/0 device code are correct.

Step 5
Execute the program. What do you observe on the pair of lamp
monitor Outboards™* connected to port A? i

We observed that the lamp monitors incremented at a rate of ap-
proximately 10 Hz.

Step 6

Relocate the pair of lamp monitor Outboards to port B. Change
the PPI I/O device address at LO memory address 010 to 201.
Execute the program. What do you observe? |

We observed that the lamp monitors again incremented at a rate of
approximately 10 Hz.

Step 7

Relocate the pair of lamp monitor Qutboards to port C. Change
the device address at LO memory address 010 to 202. Execute the
program. What do you observe now?

We again observed that the lamp monitors at port C incremented at
a rate of approximately 10 Hz.

* QUTBOARD is a registered trademark of E & L Instruments, Inc.




To summarize, the program values that you have used so far are

the following:
Control word : 200  Establishes mode O PPI operation and
sets up ports A through C as output
ports.

Port A (output): 200
Port B (output): 201
Port C (output): 202

I/O device codes for ports A through
C, respectively.

Step 8

With the pair of lamp monitor Outboards still located at port C,
change the mode control word, MODE, at memory address 004 to
that shown in Fig. 3-13. Execute the program. What do you observe
on the pair of lamp monitor Outboards? Explain your observations.

We observed that only the LEDs connected to the port C lower pins
(PCO-PC3) were incrementing. This is because the mode control
word 210 configures port C lower for output but port C upper for
input. Hence, even though 8 bits are output to port C, only the lower
four bits are displayed.

D, Dy Dg D, D3 D, Dy Dy
|. olo‘ollloluloj

A ———/5—— PA,PA,

8255

Dy +———>
D;D,

l« 24— ec,pc,
¢ {
———/‘—" PC;-PCy

of—— v,

Fig. 3-13. Second mode control word.

69




Step 9

With the pair of lamp monitor Outboards still located at port C,
now change “MODE” at memory address 004 to that shown in
Fig. 3-14. Execute the program. What do you observe on the pair of
lamp monitor Outboards? Explain your observations.

We found that this time the LEDs connected to port C upper were
slowly incrementing while those connected to port C lower were
‘not lit. This is because the mode control word 201 configures port C
upper for output but port C lower for input. Only the top four bits
of the 8-bit byte, which is sent to port C, are thus displayed.

poooponn

Al —ra,ra,

8255

D,y +——————]

A PC; PCy
¢ {
-t e,

"——/—’“_’ Pe;PBy

Fig. 3-14. Third mode control word.

Step 10

With the pair of lamp monitor Outboards still located at port C,
change the control word at LO memory address 004 to the control
word shown in Fig. 3-15. Execute the revised program and explain
what you observe on the pair of lamp monitor Outboards.

70




nooonnon

Al e pa,pa,

8255

Dy +———|
0,0,

ISR S— )
¢ {
.4 — ecyec,

o —— e e, 08,

Fig. 3-15. Fourth mode control word.

This time no LEDs were lit during program execution since mode
control word 211 configures both port C upper and lower for input.
Thus none of the bits of the 8-bit byte, which is sent to port C from
the accumulator, are displayed.

NoTE: Remove the lamp monitor Outboards that are connected to
port C. Do not make any other changes to your hardware if you
plan to go on to the next experiment.

Questions

1. What device code and input/output command (i.e., either IN or
OUT) are required if you wish to read the data appearing at port
A? Set all Xs to logic 0.

2. What device code and input/output command are required if
you wish to output data to port B? Set all Xs to logic 0.

3. What device code and input/output command are required if you
wish to output data to port C? Set all Xs to logic 0.

4. How many device codes could be used for the input and output
operations to the 8255 chip? You can assume that each X can
be either logic O or logic 1.

n




5. Suggest at least one way to decrease the number of possible
device codes used, as calculated in Question No. 4 above. If !
necessary, draw a schematic diagram of your circuit.

6. What device code and control signals, if any, allow you to read
the status of the 8-bit control register?

5v GND
]zs ]7
2
o7 —2L 7 PAT
06 —28.406 PAS ﬁ:
b5 —29 |5 PAS ﬁ
D4 —30 {pg M
03 —31{p3 3 i
02 —32]p2 o] wa i
0 —34n PATLL
20 —3%1po pAo[ 4
8 pC7 W
2 PCe 6 L0GIC
PCS[IZ 1 ¢ swITCHES
5 PCA £
7404
17
N 5o TS 5 peaE1® Loarc
_{>°—° el Eg SHITCHES
A —E A A
A —2 A0 pe7 |25
PBE |24
PBS[23
—S T
™ PBa22
T —Lo W
P83 :ﬁ:
RESET RESET Fgf (19~
7404 P8oLlA.

Fig. 3-16. Circuit for Experiment 3-2.

i
72 |




EXPERIMENT 3-2
MODE 0 DATA INPUT OPERATION
Purpose .

The purpose of this experiment is to illustrate the mode 0 operation
of the 8255 for input of data into the accumulator via the 8255 chip
from a pair of logic switch Outboards.

Schematic Diagram of Circuit (Fig. 3-16)

Nortk: This circuit is the same as that which was connected in
Experiment 3-1 except for the use of logic switches in place of lamp
monitors at the port A through C lines.

Program (Fig. 3-17)

/
/PP1 MODE 0 INPUT PROGRAM
7/

DB MODE 233
DB DATA 202
DB CNTRL 203

*003 000
003 000 076 MVIA /LOAD A VITH
003 001 233 MODE /MODE 0 CONTROL BYTE
003 002 323 oUT /QUTPUT CONTENTS OF A TO
003 003 203 CNTRL /CONTROL REGISTER
003 004 333 LOOP, IN /INPUT DATA FROM
003 005 202 DATA /PPL INPUT PORT
003 006 323 ouT /OUTPUT IT TO PORT 2
003 007 002 002
003 010 303 JMP /JUMP TO LOOP AT
003 011 004 LOOP
003 012 003 o

Fig. 3-17. Program for Experiment 3-2.

Step 1

Wire the circuit shown in the schematic diagram of Fig. 3-16 if
it is not already connected from the previous experiment. The mode 0
configuration that you will first test is the mode O control word, which
is shown in Fig. 3-18. This is the value of the 8-bit control word that
you should enter at LO memory address 001 in the program.

The schematic diagram of Fig. 3-18 indicates that you will input
data through port C on the 8255 chip. The device for port C is 202,
according to the truth table provided in Experiment 3-1. This device
code must appear at LO memory address 005 in the program.

73




D, Dg Dg O, D3 D, D D
Ll le[ ]

A 4—715— PA,-PA,

8265

D, Dy «————

4
le——F————— PC,-PC,
‘ {

4
le- —A—— PC,yPC,

DRI WY

Fig. 3-18. Mode O control and schematic diagram.

Step 2

Load the program into read/write memory. Make certain that the
mode control word and the PPI input/output device code are
correct.

Step 3

Execute the program. While the microcomputer is running, alter
the logic switch settings and observe at output port 002 the bytes
which are being input. What happens?

We observed that the 8-bit byte, which is set on the logic switches,
is continuously displayed at output port 002. Any alteration to the
logic switches produced an immediate corresponding change at out-
put port 002,

Step 4
Relocate the pair of logic switch Outboard to port B. Change the

device address at LO memory address 005 to 201. Execute the pro-
gram. What happens now?

We again observed that the byte displayed at output port 2 was the
same as that set up at port B of the PPI by the logic switches.

74




Step 5

Finally, relocate the pair of logic switch Outboards to port A.
Change the device code at LO memory address 005 to 200. Execute
the program. Do you still observe the bytes which are input from
the logic switches at port A being displayed at output port 002 when
the program is run? You should.

EXPERIMENT 3-3
COMBINED MODE O INPUT AND OUTPUT OPERATION

Purpose

The purpose of this experiment is to illustrate the mode O opera-
tion of the 8255 chip for combined input and output using port C

Schematic Diagram of Circvit (Fig. 3-19)

sy oND
lzc ‘7
27
07 —=— 7 PA7
b6 —28.4p6 PAG i
b5 —29 |ps PAS ‘-'it
D4 30 g Pas
B pA3L)
2 —32]02 ] o
01— PAl
%0 —34] 0o PAO j:
8 PC7 [
2 s W
F SW H
5 PCARLY _J ¢
7404
5 5 4] o LoGIC
M D"’ TS el i;t & swITcHES
a—&n WA
Mo —34a0 pe7[28 1~
W —So| 15 mﬁt & Lontros
poapz 1 ¢
T —Eol I
Hromm )
ReSET RESET pi[1a 1€ W op
7404 PBOLIA_] 5

Fig. 3-19. Circuit for Experiment 3-3.

75




Program (Fig. 3-20)

/
/PP1 MODE O COMBINED INPUT AND OUTPUT PROGRAM

/

DB MODE 232

DB CNTRL 203
DB DATAl 202
DB DATA2 201

*003 000
003 000 076 MVIA /LOAD A VITH
003 001 232 MODE /MODE O CONTROL WORD
003 002 323 ouT /0UTPUT CONTENTS OF A TO
003 003 203 CNTRL /CONTROL REGISTER
003 004 333 LOOP, IN /LOAD A WITH THE CONTENTS
003 005 202 DATAIl /0F THE PPI INPUT PORT
003 006 000 NOP
003 007 000 NOP
003 010 323 ouT /QUTPUT CONTENTS OF A TO
003 011 201 DATA2 /PPl OUTPUT PORT
003 012 303 JMP /JUMP TO “LOOP"
003 013 004 LOOP
003 014 003 [

Fig. 3-20. Program for Experiment 3-3.

for input and port B for output. Port A will also be assigned for
output, This experiment is a synthesis of the procedures illustrated
individually in Experiments 3-1 and 3-2 for output and input of data,
respectively. If you feel that you have grasped the procedures re-
quired for the mode O input/output operation of the PPI, you might
like to write and test a program to input data from the logic switches
at port C, and output this data to the lamp monitors at port B (or
port A). The author has written a program if you would prefer not
to attempt a program at this stage. The decision on this experiment
is yours—have fun!

Step 1

The mode 0 configuration that you will test first is defined by the
mode control word in Fig. 3-21. This is the value of the 8-bit control
word, MODE, that appears at LO memory address 001 in the pro-
gram of Fig. 3-20. The schematic diagram of Fig. 3-21 indicates
that you will input data through port C, which has device code 202,
and output data back through port B, which has device code 201.
These two device addresses should appear, respectively, at LO
memory addresses 005 and 011.

76




A ‘.—/—B—- PA,-PA,
A e, e,

D,-Dy ¢+ c {
At peyrcy

Py S B

Fig. 3-21. Mode control word and schematic diagram.

Step 2
Load the program into read/write memory. Make certain that the
control word and the two device addresses are correct.

Step 3

Execute the program. While the microcomputer is running, alter
the logic switch settings and observe the output at port B. What
happens?

We observed that the data byte which was set by the logic switches
at port C was continuously displayed at port B and immediately
updated whenever the switches were altered.

Step 4
Relocate the pair of lamp monitors to port A. Change the device
address at LO memory address 011 to 200, which is the port A
device address; and the mode control word at LO memory address
001 to 213, which configures the PPI as shown in Fig. 3-22.
Execute the program once more and again alter the logic switch
settings. What happens now?

77

N —




nooooonn

At paeay

-0, +—— ]
D,-D,

e e, pc,
¢ {

44
7 PCyPCy

8 #L— ey ea

Fig. 3-22. Second mode control word and schematic diagram.

This time the data byte which was set by the logic switches at port C
was continuously displayed at port A and again immediately updated
whenever the logic switches were altered.

Step 5
Add the following instructions to your program in place of the
two no-operation (NOP) instructions at 003 006 and 003 007:

003 006 346 ANI
003 007 272 272

Now run your program and set each switch position in turn from
logic zero to logic one. What happens at Port A?

We observed that the lamps corresponding to bits PC6, PC2, and
PCO would not go on. Why?

The bits in the immediate AND byte for these positions are zero.
Anything aNDed with O yields a result of 0.

Step 6
Now replace the instruction at memory location 003 006 with the
following instruction:

78




003 006 356 XRI

Execute your program and explain what you observe at port A when
the logic switches are set, in turn, from logic 0 to logic 1.

We observed that a LED at port A would light wherever the logic
state of a bit at port C was opposite to the corresponding bit in the
immediate byte, 272, at location 003 007. This is because the ex-
clusive-OR logic function is a difference detector and gives a logic 1
result when the two bits being exclusive-ored are different.

Steps 7, 8, ..., etc.

We invite you to try for yourself the following instructions, in turn,
at location 003 006.

366 ORI
306 ADI
326 sul

79




4

PPI Bit-Set/Reset Operation

4-1. INTRODUCTION

The bit-set/reset feature of the 8255 was mentioned briefly in
Section 2-1(D) of Chapter 2. We saw that it is essentially a feature
of port C which allows the user to individually set or reset any of
its bits. To use this property of port C a bit-set/reset control word
must be sent to the PPI control register. The format of this control
word was presented in Chapter 2 and is reproduced again in Fig. 4-1.

Note that it is the most significant bit (D7) of the control word
that determines whether the control byte will be interpreted by the
8255 as a mode control word (D7 = 1) or a bit-set/reset control
word (D7 = 0). Other important features of this control word are:

® Bits D3, D2, and D1 of the bit-set/reset control word represent
a 3-bit code, the binary value of which defines the port C bit
(PCO-PC7) which is to be set or reset.

® The logic state of bit DO specifies whether the selected port C
bit is to be set (DO =1) or reset (DO = 0). This means that
each bit-set/reset control word can be used to set or reset only
one of the port C bits at a time. If, for example, port C bit PCO
(D3 D2 D1 = 000) had been set (DO = 1) by outputting a bit-
set/reset control word to the PPI control word register, a second
bit-set/reset control word would be needed to reset PCO.

® Bits D6, D5, and D4 are unused and are usually set to 0. How-
ever, as you will see in Experiment 4-1, they are “don’t care”
bits and any logic values can be used for these bits.




Having looked at the control word that is output to the PPI control
register to independently set or reset any one of the port C bits, it
is not unreasonable to ask why such a feature is incorporated in the
8255. The main reason is concerned with the mode 1 and 2 opera-
tions of the PPI which are described in the next three chapters. Let
us just say for the moment that operating modes 1 and 2 are used
for unidirectional and bidirectional handshaking 1/0, respectively,
with interrupt capability. The port C bits are employed as hand-
shaking control bits for port A and port B. These control bits are

CONTROL WORD

[orJoe o Joufo oo o1 o]

—_— e — ——

SET RESET FLAG
0= RESETB!T
1:SETBIT

BITSELECT

050,0y [ PORT C BIT

BITO
BIT1
BIT2
BIT3
BIT4

NOT USED SET TO 000

~-oo-=0o0
“o0s0-0-0

i BIT7
H

@

Courtesy Intel Corp.
Fig. 4-1. The format of the bit-set/reset contral word.

configured so that the port A or port B interrupt flags will be set
once an external peripheral has acknowledged an I/O transfer. As-
sociated with each interrupt flag is an interrupt enable flip-flop which
can be set or reset using the bit-set/reset feature of port C. The de-
tails of how and why this is done will be explained in Chapters
6 and 7.

A second simpler, but equally important, use for the port C bit-set/
reset facility is to generate logic levels and pulses of varying duration
that can be used as gating pulses and hardware reset pulses for
counters, flip-flops, etc. In general the port C bits, when used with the
bit-set/reset control word, can be used for the gating, strobing, and
reset functions that are normally associated with device select or




address select pulses.* The major advantage to using the PPI port C
bits for these functions is that no additional hardware is needed.
This is certainly the case for the generation of short duration (ap-
proximately 8 us) pulses where the software requirements, as shown
in Fig. 4-2, are simple. The software is, however, somewhat more
complex than that required to generate device select or address select
pulses. Note that 2 DCR A instruction has been used in the program
flowchart shown in Fig. 4-2. This instruction changes the control
word from its set to reset function.

PROGRAM

LOAD A WITH
BIT-SET CONTROL
WORD

l

OUTPUT CONTROL
WORD TO PPI
CONTROL REGISTER Fig. 4-2. Flowchart of a partial program required to generate a

short-duration pulse at any one of the port C bits.
DECREMENT
A
OUTPUT BIT-RESET
CONTROL REGISTER

The pulse duration in the above case would be approximately
7.5 us for a microcomputer operating at a 2-MHz clock frequency.
This is the time required to execute the decrement and output instruc-
tions. Gating pulses of controlled duration can be generated by in-
serting known time delays following the first output instruction. On
occasions, however, it may be more effective to set and reset an
external flip-flop using two bits of port C. The use of port C bits
for gating and hardware reset is illustrated in Experiment 4-2.

* See Introductory Experiments in Digital Electronics and 8080A Microcom-
puter Programming and Interfacing, Book 2, Unit 17.

82




4-2. PROCEDURE FOR SETTING AND
RESETTING PORT C BITS

To illustrate the use of the bit-set/reset control byte, let us write
a program to set and reset port C bit PC5. From Fig. 4-1 the bit-set/
reset control bytes needed to set and reset bit PC5 are constructed
as follows:

D7: Function code = 0 for bit-set/reset operation
D6,D5,D4: Unused
D3,D2,D1: Port C bit select = 101, for PC5
DO: Set/reset select flag =1 for bit set
=0 for bit reset

Hence the PC5 bit-set/reset control word format is:

00001011/0
= 013; for bit set
= 0125 for bit reset

The flow diagram for this example is the same as that shown in
Fig. 4-2. A program listing that is the equivalent of this flowchart
is given in Program 4-1. The only addition is the PPI initialization
statements which must be executed in a program before any attempt
is made to use the PPI.

Program 4-1 (Fig 4-3)

In this program we have not specified a value for the mode control
byte. By now you will understand that its value depends on the way
in which the PPI is to be configured. The only thing that can be said
for the moment is that since bit PC5 is used for output, bit D3 (port
C upper I/0 select) of the mode control word will need to be set at
logic 0 (cf Fig. 2-2A). The control register device code has also
been left unspecified since this is a function of the hardware address
decoding to the PPI.

Three further points are of interest in relation to this program
example of bit-set/reset operation:

1. At memory location 003 010, a single-byte DCR A instruction
was used to change the bit-set control byte in the accumulator
to a bit-reset control byte. This is possible since the bit-reset
control byte is one less than the bit-set control byte. The tech-




84

/
/A PROGRAM TO SET & RESET POPT C BIT PCS
/

DB CNTRL 203

*003 000
003 000 07¢ MVIA /LOAD A VITH
003 001 MODE /MODE CONTROL BYTE
003 002 323 out /QUTPUT 1IT
003 003 203 CNTRL /CONTROL REGISTEP DEVICE CODE
003 004 07¢ LOOP, MVIA /LOAD A WITH PC5 EIT-SET
003 005 013 013 /CONTROL BYTE
003 006 323 ouT /QUTPUT IT
003 007 203 CNTRL /CONTROL FEGISTER DEVICE CODE
003 010 075 DCRA /DECREMENT A TO GENERATE A BIT
/RESET CONTROL BYTE
003 011 323 ouT /QUTPUT PCS BIT RESET
003 012 203 CNTRL /CONTROL BYTE TO CONTROL REGISTER
003 013 303 JMP /LOOP TO GENERATE ANOTHER PULSE
003 014 004 LOOP
003 015 003 [¢]

Fig. 4-3. Program 4-1.

nique of using this one-byte instruction instead of the two-byte
instruction:

MVI A
BITRST

is recommended since it conserves memory space which, on
occasions, may be critical, and also since it is slightly faster
(five clock cycles compared with seven for the MVI A,
which, on occasions, may be critical, and also since it is slightly
faster (five clock cycles compared with seven for the MVI A,
BITRST instruction). The decrement instruction could not be
used, of course, if instructions which altered the accumulator
contents were to follow the bit-set output instruction and pre-
cede the bit-reset output instruction.

The pulses generated by Program 4-1 are active high, i.e., the
PC5 logic state is normally low and goes high momentarily. A
complementary, or inverted, active low pulse can be generated
with essentially the same software by outputting a bit-reset
control byte first, incrementing the accumulator, and then out-
putting the resulting bit-set control byte. In doing this it is
assumed that PC5 was initially at logic one. Now Experiment
4-1 illustrates how loading the control register of the PPI with
a mode control byte resets all bits of port C to logic 0. Hence
in this program the initial state of PC5 is logic 0 and so PC5
would need to be initialized to logic 1 using a bit-set control




byte prior to entering the loop that commences at location
003 004. This is illustrated in Program 4-2. The simple soft-
ware changes illustrated in Program 4-2 avoid the need for
an inverter and again serve to illustrate the advantage of pro-
grammed logic (the PPI and microcomputer in this case) in
replacing hardware with software.

. To generate a longer-duration gating signal using Program 4-1,
a call to a time-delay subroutine would need to be inserted
between the two output commands (c¢f Program 4-2). This
routine would then delay the resetting of PCS5 for as long as
is required. After returning from the delay routine the accumu-
lator would need to be loaded with the bit-reset control word
for output to the PPI control register. Whether a DCR A or
MVI A instruction is used to do this depends on whether the

Program 4-2 (Fig. 4-4)

/

/THIS PROGRAM GENERATES, AT PORT C BIT PC5, AN
/ACTIVE LOW PULSE WHOSE DURATION IS CONTROLLED
/BY A CALL TO SUBROUTINE DELAY

/

DB MODE 200 /THIS IS AN ARBITAPY FIGURE

DB CNTRL 203 /THIS 1S ALSO AN ARBITARY FIGURE
DY DELAY! 003 200 /STARTING ADDRESSES OF

DV DELAY2 003 220 /DELAY SUBROUTINES

*003 000
000 076 START, MVIA /INITIALIZE PPI
001 200 MODE
002 323 ouT
003 203 CNTRL
004 076 MVIA /LOAD A VITH A CONTROL BYTE
00S5 013 013 /TO SET PCS TO LOGIC ONE
006 323 ouT
007 203 CNTRL
010 076 LOOP, MVIA /LOAD A WITH A CONTROL BYTE
o1t 012 012 /TO RESET PC5 TO LOGIC ZERO
o012 323 ouT
013 203 CNTRL
014 315 CALL /CALL DELAY! SUBROUTINE TO GENERATE
01s 200 DELAY! /THE REQUIRED PULSE VIDTH
016 003 [
017 074 INRA /INCREMENT A TO FORM THE PC5 BIT
X /SET CONTROL BYTE
020 323 ouT
021 203 CNTRL
022 315 CALL /CALL DELAY2 SUBROUTINE TO GENERATE
023 220 DELAY2 /THE PERIOD BETWEEN PULSES
024 003 0
025 303 JMP
026 010 LOOP
027 003 [}

Fig. 4-4. Program 4-2.




time-delay routine destroys the accumulator contents. Clearly
the MVI A instruction would need to be used if the accumula-
tor contents are destroyed. However, it is common practice in
writing subroutines to save the status of any registers (using
PUSH instructions) which are used by the subroutine and to
restore their original status (using POP instructions) before
returning from the subroutine. Hence, it will generally be safe
to use a DCRA instruction. Check the subroutine first through
before deciding.

4-3. EXAMPLE: A VALVE CONTROLLER

(A) The Physical Process and Its Control Interface

In this section we have a practical example of the way in which
the port C bit-set/reset feature of the PPI can be used to control
and sequence the operation of a microcomputer interface. Our ex-
ample concerns the establishment of vacuum conditions in a chemical
reactor. The absolute pressure in the reactor is to be reduced to ap-
proximately 5 X 10~% mm of mercury (ie., 5 X 10-3 torr), a value
which can be conveniently established using a vacuum backing pump.
The pressure in the reactor vessel is measured using a thermistor
pressure gauge which is placed in the vacuum line to the vessel.

Fig. 4-5 shows a schematic diagram of the vacuum line and the
controller interface to the PPL. A solenoid valve is placed between
the backing pump and the reactor so that the reactor can be isolated
from the backing pump once vacuum conditions have been estab-
lished. The sequence of events that are controlled by the microcom-
puter is as follows:

® Turn on the vacuum backing pump.

@ Open the solenoid pressure valve.

©® Monitor the pressure.

® Close the solenoid valve when the pressure reaches the required
set point value (5 X 10—2 torr in this case).

Both the pump and the solenoid valve are 110 Vac operated and
can therefore be switched on and off by switching the voltage on
and off using solid-state relays. These devices are cheap (a few
dollors) and can switch up to 10 amperes at 110 volts with a dc
switching voltage between 3 and 32 V across their dc inputs. The
normal condition of the pressure valve is closed. When 110 Vac
is applied, a solenoid coil is energized and a metal slug, which is

86




A

Y0LIYY WIIWIHD OL

AVI3d
I1V1iS-CI70S =

"
N

all}

A8°9

AS

—
i
v
=

390V
TUNSSTYd HOLSIWYIHL
IAWA
QION3T0S and
2 4 ONINOVE
1 WINOVA
£ A6
JUED]
31Y1S-0110S
W8"9
¥8°9

00d
L2d

133

sna
viva

oL

Fig. 4-5. A vacuum controller interface.

87




attached to a spring-loaded valve, is raised to open the valve. The
valve stays open as long as the voltage is applied to the solenoid.
Hence, in the interface which is depicted in Fig. 4-5, bits PCO
and PC1 of port C are used to switch two solid-state relays that are
connected to the backing pump and the solenoid valve, respectively.

An interesting feature of port B and C of the PPI that is used
here is that any set of eight lines can provide approximately 2-mA
drive current each when the output voltage is 1.5 V. This drive cur-
rent, even when the outputs are greater than 3 V (using the pull-up
resistor) is sufficient to drive the dc inputs of the solid-state relays
and to switch them on when the PCO and PC1 outputs are at a logic
high. This avoids the need for buffers between the outputs of the
PPI and the solid-state relays.

The thermistor pressure gauge, like most transducers, has an out-
put voltage that is not suitable for direct connection to a PPI (PC7
in this case). At atmospheric pressure its output voltage is approxi-
mately 120 mV, while at an absolute pressure of approximately
5 x 10-% torr, its output voltage is approximately 4 mV. These
potentials are said to be “floating” as they are not referenced to a
ground (0 V). The operational amplifiers in Fig. 4-5 are used to
produce an input signal at PC7 of the PPI which is normally at 0 V
(logic 0) and rises to +5 V (logic 1) when the system pressure
reaches 5 X 102 torr.

(B) The PPI and the Controlling Program

The PPI has been connected to an 8080A-based microcomputer,
in this example, for memory-mapped 1/0. Following the discussion
in Section 2-1, it can be seen that the device addresses in this case are:

PORT C : 200 002
CONTROL REGISTER : 200 003

The labels PORT C and CNTRL have been defined with these values,
in the controller program which is listed in Fig. 4-6.

Program 4-3 (Fig. 4-6)

We must now construct the mode control byte, MODE, which will
configure port C upper for input to accept the pressure flag; and con-
figure port C lower for output so that the two solid-state relays can
be switched on and off. Although not used, ports A and B will be
configured for mode 0 input. The required mode control byte can
be constructed from Fig. 2-2A and is:




/
/VACUUM VALVE CONTROLLER PROGPRAM
/

DB MODE 232

DW PORTC 200 002
DW CNTRL 200 003
DW DELAY 003 200

*003 000
003 000 061 START, LXISP /SET STACK POINTER
003 001 000 000
003 002 004 004
003 003 04l LXIH /SET UP PPl DEVICE ADDRESS
003 004 003 CNTRL /FOR THE CONTROL REGISTER
003 005 200 0
003 006 021 LX1D /LOAD THE D REGISTER PAIR VITH
®3 007 003 003 /PCI BITSET CONTROL BYTE IN D
003 010 00! 001 /PCO BITSET CONTROL BYTE IN E
003 0tl 076 MVIA /LOAD ACCUMULATOR WITH MODE
003 012 232 MODE /CONTROL BYTE
003 013 167 MOVMA /0UTPUT IT TO CONTROL REGISTER
W3 014 163 MOVME /SWITCH ON BACKING PUMP
003 015 162 MOVMD /0PEN SOLENOID VALVE
003 016 053 DCXH /SET UP PORT C ADDRESS IN H,L
003 017 176 LOOP, MOVAM /INPUT PRESSURE FLAG
003 020 346 ANI /MASK PC7
003 021 200 200
003 022 3i2 Jz /1S VACUUM ESTABLISHED
003 023 017 LooP /NO, LOOK AGAIN
003 024 003 0
003 025 315 CALL /YES, WAIT FOR ONE SECOND
003 026 200 DELAY
003 027 003 0
003 030 176 MOVAM /AND LOOK AGAIN
003 03! 346 ANI /MASK PC7
003 032 200 200
003 033 312 Jz /1S VACUUM STILL ESTABLISHED
003 034 017 LOOP /NO, LOOK AGAIN
003 035 003 0
003 036 043 INXH /YES,SET ADDRESS OF CONTROL REGISTER
003 037 172 MOVAD /CONSTRUCT PCI BIT-RESET CONTROL BYTE
003 040 075 DCRA
003 04t 167 MOVMA /AND USE IT TO CLOSE VALVE
4 .
/ .
/ .
/ .
7/ .

Fig. 4-6. Program 4-3.

MODE : 232

Since port C bits PCO and PC1 must be set and reset to control the
backing pump and solenoid valve respectively, bit-set/reset control
bytes will be required. We will define bit-set control bytes for PCO
(PCOSET) and PC1 (PCISET) and decrement their respective val-
ues in the program to obtain bit-reset control bytes. From Fig. 2-2B
the required values are:

PCOSET : 001
PCISET : 003

89




Remembering now that the PPI is connected to the microcomputer
for memory-mapped 1/0, a program which will establish vacuum
conditions in the reactor following the sequence of events described
above, is listed as Program 4-3 (Fig. 4-6). After initializing the PPI
with port C upper configured for input and port C lower configured
for output, the program then switches on the backing pump and opens
the solenoid valve by setting PCO and PC1 to logic 1 respectively.
The pressure flag is then monitored by inputting the contents of port
C and masking out all bits except PC7. When PC7 is at logic 1 a
1-second delay is generated and the flag is checked again as de-
scribed above. Because the system pressure changes very slowly as
it approaches 5 x 10~2 torr the initial detection of PC7 at logic 1
may represent only a transient excursion of the system pressure down
to 5 x 10—3 torr. The delay ensures that a steady value of the re-
quired pressure has been established. When this is the case the sole-
noid valve is closed by resetting port C bit PCO to logic 0.

The feature of the programming in this example is the use of the
MOV M,r memoty reference instruction to output bit-set and bit-
reset control bytes to the PPI, which is connected as a memory-
mapped 1/0 port. In this case register pair H has been used to ini-
tially store the device address of the PPI’s control register. The ad-
dress of port C is then obtained by decrementing the H register pair
with a DCX H instruction. At the end of the program the H register
pair is incremented (INX H) to again establish the device address
of the control register, so that a PC1 bit-reset control byte can be
sent to the control register of the PPI to switch off the solenoid
valve. Care must be exercised in establishing device addresses for
the PPI through this incrementation and decrementation technique,
since the risk always exists that you may lose track of “where you
are up to,” or that the H register pair contents may be altered
in a subroutine call. Note also that registers D and E are used to
store the PC1 and PCO bit-set control bytes respectively. These bytes
are then output directly to the control register of the PPI with MOV
M,D and MOV M,E instructions.

In conclusion, the example has illustrated the use of the port C bit-
set/reset feature for control and sequencing the operation of a
vacuum line. Hardware is reduced to a minimum through the ability
to set, and later to reset, the bits of port C. The high-current drive
of each bit of port C for logic 1 outputs eliminates the need for
buffer drivers where devices are being driven to a logic 1. (Note that
the fan-out of each of the bits of port C for a logic O is only one

90




standard TTL load). The software is straightforward and involves
the initialization of the PPI, the sending of bit-set and bit-reset con-
trol bytes to the PPI's control register, and the polling of port C for
the logic state of PC7

4-4, SUMMARY OF EXPERIMENTS 4-1 AND 4-2

Experiment Description
4-1 This experiment illustrates how the bit-set/reset con-
trol word can be used to set and reset individual bits
of port C; and how the code control word resets all
the bits of port C.
4-2 In this experiment you will:
(a) Use the bit-set/reset operation of the PPI to
gate pulses into a counter.
(b) Input the data from the counter using mode 0
simple 1/0. )
(c) Reset the counter using the PPI set/reset feature
of port C.

EXPERIMENT 4-1
SETTING AND RESETTING OF PORT C

Purpose
The aims of this experiment are the following:
(a) To set and reset the individual bits of port C using the bit-
set/reset format of the control word; and
(b) To show that the bits of port C are reset by:
(i) A logic high to the PPI’s reset pin; and
(ii) Outputting a mode control byte to the control register.

Step 1

Wire the circuit shown in the schematic diagram of Fig. 4-7 and
load the program into the microcomputer’s read/write memory.

Step 2
Insert a halt instruction (HLT = 166) for the first NOP instruc-

tion at address 003 011. Start the program. Have any of the lamps at
port C been turned on?

n




Schematic Diagram of Circuit (Fig. 4-7)

+5V
26
i
RESET 35 RESET
™ —®RD 8255A or
o0F 261 wWR 8255A-5
A7 —-{>o—L_
£ cs
a —24 a
a0 —2 ao
p7 —24 o7 pc7 2
:: pce L
pcs -2
DATA 30 Pca 2 LAMP
31 17
—_— P
BUS P pg: "6 MONITOR
33 pci 2 |
po —%4 po pcopi |

_]?_7

Fig. 4-7. Circuit for Experiment 4-1.

Yes, we observed that bit PCO was on (logic 1). Is this consistent
with the chart provided in Fig. 4-1?

Yes, a bit-set/reset control byte of 001 will set bit PCO.

Step 3

Can you determine the bit-set/reset control bytes that are needed
to set bits PC3, PC5, and PC6 to logic 1, one at a time? (See Fig.
4-1.)

L]




Program (Fig. 4-8)
/
/THIS PROGPAM ILLUSTRATES THE SETTING &
/RESETTING OF BITS PCO TO PC7 OF PORT C

/
DB CNTRL 203

*003 000
003 000 Ote MVIC /LOAD REGISTER C WITH
003 001 200 200 /MODE CONTROL BYTE
003 002 171 MOVAC /COPY MODE CONTROL BYTE TO A
003 003 323 ouT /0UTPUT IT TO PPI CONTROL
003 004 203 CNTRL /REGISTER
003 005 076 MVIA /LOAD ACCUMULATOF VWITH THE
003 006 001 001 /BIT-SET CONTROL WORD
003 007 323 ouT /QUTPUT IT TO PPI CONTROL
003 010 203 CNTRL /REGISTER
003 C¢11 000 NOP
003 012 000 NOP
003 013 000 NOP
003 014 075 DCRA /DECREMENT A
003 015 323 ouT /QUTPUT BIT-RESET CONTROL BYTE
003 016 203 CNTRL /TO CONTROL REGISTER
003 017 166 HLT

Fig. 4-8. Program for Experiment 4-1.

Mode Control Byte
PC3
PC4
PC5

We used control bytes of 007, 013, and 015, respectively. Insert
these control bytes, one at a time, for the bit-set control byte at ad-
dress 003 006 and run the program. Do the appropriate bits be-
come logic 1?

Yes, they do, but only one at a time. Bits PC3, PC5, and PC6 were
not set simultaneously to logic 1. How would you set up a program
to leave all 3 bits set at a logic 1 after the program was executed?

We suggest the sequence shown in Fig. 4-9. This sequence will leave
all the bits “on” after the program has been run.

93




MVIA /SET PC3

007

ouT

203

MVIA /SET PCS

013

ouT Fig. 49. Sequence to leave PC3, PC5, and PC6 at logic 1.

203
MVIA /SET PC6
01s
ouT
203
HLT

Step 4
Remove the halt instruction at address 003 011 by replacing it and
the two following NOP instructions with a call to the DELAY sub-
routine:
003 011 315  CAL

003 012 200 DELAY
003 013 003 ¢

Enter the delay subroutine, DELAY, which is listed in Fig. 3-10 if
it is not already entered in your microcomputer.

Step 5

Be sure to reinsert the PCO bit-set control byte of 001 at address
003 006. Start the microcomputer and observe any changes in the
lamp monitors. What happens?

The lamp monitoring bit PCO comes on (logic 1) and then goes
off. The on period is about 0.1 second. Why is this activity observed?

A bit-set control byte is output to the PPI and the time-delay sub-
routine is then executed. After the time delay is finished, the pro-
gram outputs a bit-reset control byte to the PP1. The on time can
be varied by changing the timing bytes in the DELAY subroutine.

94




Step 6

To demonstrate the software control of the on time, change the
timing bytes in the DELAY subroutines to 377 377. Again try the
program. What do you see?

The on time should be approximately 2 seconds.

Step 7

In this step you will examine the effect of an external reset on
the logic state of the port C outputs. To see the effect, replace the
CALL instruction (315) at address 003 011 with a halt instruction
(HLT). Load the bit-set control byte 001 into location 003 006.
This will set bit PCO to a logic 1. Start the program. What happens?
Reset your computer with its reset push button or switch. What hap-
pens now? Why?

When the program was run, we saw the lamp monitor for bit PCO
come on (logic 1). When the computer was reset it went off. This
property of the PPI’s reset function applies to all of the port C bits.
You may wish to confirm this by repeating this step with different
bit-set control bytes at location 003 006.

Step 8

Another method of resetting all of the bits of port C to logic 0
is by outputting a mode control byte to the control register of the
PPI. This, of course, is not the main function of the mode control
byte but is an interesting and useful side effect. To illustrate this,
make the following changes to your program:

(a) Reinsert the CALL instruction (315) at location 003 011.

(b) Use timing bytes 377 377 in the time-delay subroutine.

(c) Alter the program steps from location 003 014 onward as in
Fig. 4-10.

Reset the microcomputer and start your program. What do you
observe?

95




003 0l4 076 MVIA /LOAD ACCUMULATOR WITH

003 015 200 200 /A MODE CONTROL BYTE;
003 016 323 ouT /AND OUTPUT IT

003 017 203 CNTRL /T0 THE CONTROL REGISTER
003 020 166 HLT

Fig. 4-10, Altered program steps.

We observed that the lamp monitor for bit PCO was turned on and
then, shortly thereafter, turned off. How can you explain this, when
there was no bit-reset control byte in the program?

Any change to the control byte sent to the 8255, in which bit D7
is a logic 1, resets all of the bits at port C to logic 0s. Can you sug-
gest why this feature is useful?

When a mode control byte is loaded into the PPI’s control register,
all of the bits of port C are reset to logic 0. This fact is useful since
it defines the initial logic states of all the bits of port C, after the
PPI has been initialized with a mode control byte. If an interface
logic control line which is being driven must be initially at logic O,
then on the basis of the above feature, no further action is required
following PPI initialization. If, on the other hand, the initial logic
state of the interface control line is to be a logic 1, then the bit of
port C which is driving the control line, must be set to logic 1 with
a bit-set control byte following PPI initialization.

Questions

1. Using the mode control word format given in Fig. 2-2A, describe
the way in which the PPI's ports A through C have been con-
figured by the mode control word used in this experiment. Could
port C have been configured for input in this experiment? If not,
why not?




2. Explain why a control register device code of 203 was used in
this experiment.

3. What advantage is to be gained by using the output of a mode
control byte at the beginning of a program to reset the bits of
port C?

4. Suggest some uses for the bit-set/reset feature of the 8255.

EXPERIMENT 4-2
A PPI-BASED DATA LOGGER

Purpose

The purpose of this experiment is to illustrate how the PPI bit-set/
reset feature can be used to generate pulses for circuit gating and
reset operations. A simple mode 0 PPI-based data logger will be
constructed.

Step 1

Wire the circuit shown in the schematic diagram of Fig. 4-12. Note
that because a NAND gate was needed to gate the clock pulses through
to the A,y input of the first SN7493, the remainder of the gates in
the SN7400 chip have been used to provide the inverters required in
the circuit.

Step 2

Enter Program A into your microcomputer’s read/write memory.
Set the frequency of your external clock (connected to the SN7493
counters) to a value of from 1 to 5 Hz.

97




Programs (Fig. 4-11)

/

/PROGRAM *'B"

/DESCRIPTION: THIS IS A PPl BASED DATA
/ LOGGING PROGRAM

’

DB MODE 202

DB CNTRL 203

DV DELAY 003 200

*003 000
003 000 061 LX1SP
003 001 Q00 000
003 002 004 004
003 003 076 MVIA /INITILISE PPI FOR MODE O WITH
003 004 202 MODE /PORTS A&C=0UTPUT

/PORT B=INPUT

003 005 323 ouT
003 006 203 CNTRL
003 007 076 MVIA /SET PCO TO ENABLE COUNTERS
003 010 001 oot
003 011 323 ouT
003 012 203 CNTRL
003 013 076 MVIA /0PEN GATE BY SETTING PC7
003 014 017 017
003 0ts 323 ouT
003 0té6 203 CNTRL
003 017 315 CALL /WAIT WHILE A COUNT
003 020 200 DELAY /1S COLLECTED
003 021 003 [
003 022 076 MVIA /CLOSE GATE BY RESETTING PC7
003 023 016 olé
003 024 323 ouT
003 025 203 CNTRL
003 026 333 IN /INPUT DATA FROM
003 027 201 201 /PORT B
003 030 323 ouT /0QUTPUT DATA UNCHANGED TO
003 031 200 200 /PORT A
003 032 166 HLT

7/
/PROGRAM "A"

/
/DESCRIPTION: THIS PROGRAM 1S USED TO TEST THE
/SATISFACTORY OPERATION OF YOUR INTERFACE CIRCUIT

/
DB MODE 202
DB CNTRL 203

*003 000
003 000 076 MVIA /SET UP MODE OF PPI FOR
003 001 202 MODE /A=0UTPUT, B=INPUT
003 002 323 ouT /C=0UTPUT
003 003 203 CNTRL
003 004 076 MVIA /SET PCO TO LOGIC ! TO
003 005 001 001 /ENABLE THE COUNTERS
003 006 323 ouT
003 007 203 CNTRL
003 010 076 MVIA /OPEN GATE BY
003 011 017 o017 /SETTING PC7
003 012 323 ouT
003 013 203 CNTRL
003 014 333 LOOP, N /INPUT COUNTS
003 015 201 201 /FROM PORT B
003 016 323 ouT /0UTPUT IT TO
003 017 200 200 /PORT A
003 020 303 JMP
003 021 014 LOOP
003 022 003 o

Fig. 4-11. Program for Experiment 4-2.

98




Pin Configurations of Integrated-Circuit Chips (Fig. 4-12)

Ve 48 4A 4y 38 3A  3Y
L

“ 1] 12 " 9 L}
{A) 7400.
] 7

4 5

INPUT
A NC Qa Qo GND  Os Oc
" 3] n » 9 s
Qaa ap Qs
—ap A
(B) 7493. oc
—ap B
Ro(n_ Ro2
1 2 3 4 § L] ?
NC

INPUT  Ro1) Ro2) NG Ve NC
[

Fig. 4-12. IC chip pin configurations.

Step 3

Start the program. Do you note any changes at the LEDs that are

connected to port A?

We observed a count that is incremented at the same rate as the
clock that we set in Step 3. This is a checkout of your interface and
your program. If you did not observe this, go back and check your

program and your interface.

If you adjust your clock’s frequency you should see a similar
change in both the count at port A and in the rate at which the lamp

monitors appear to be incremented.

9




Schematic Diagram of Circuit (Fig. 4-13)

eeece

[
MONITOR

AP

MONITOR

Fig. 4-13. Circuit for Experiment 4-2

11 L
Sieslg] ~o-je] = EEBEEIEERER ] g
5283 8% ? E 8| |8t
e LA Ad
oAV
5 8833838 Bz =
5 o o
Eﬁlﬁ‘ﬁ;ﬁﬁjﬂ
588353858
2 2 2




Step 4

Load Program B into memory. Study this program and the com-
ments supplied, in conjunction with the circuit diagram, and draw
a flow diagram of the program’s operation in the space below. To
help you, our comments are more generalized this time. You need
not draw a flowchart of the DELAY subroutine. NoTE: If you have
not completed Experiment 4-1, you will need to enter into memory
the delay subroutine, DELAY, that is listed in Fig. 3-10.

As you will have seen by now, the object of the program is to log
an 8-bit count of the number of pulses that passed through the
SN7400 while the gate is open, and then to display this count at
port A. The program first sets the SN7493 reset lines to 0 using
PPI bit PCO. PPI bit PC7 is then set to logic 1 to open the gate and
to allow pulse counting. Bit PC7 is reset to stop counting, the 8 bits
of the two SN7493 counters are input and displayed at port A. The
counters are reset by PCO.

Step 5
Set your external clock to a frequency of about 50-60 Hz. If you
don’t have an oscilloscope to do this, follow the steps below:

(a) Disconnect one lamp monitor from the PPI and reconnect
the indicator to the clock’s output. Adjust the clock fre-
quency so that the flicker of the indicator is no longer seen.

(b) Reconnect the lamp monitor indicator to its proper pin on the
8255 chip.

Set the timing bytes in the DELAY subroutine as follows:

003 203 060 (These bytes will generate
003 204 165 }a lsecond delay.

Start your program. What do you observe on the two sets of lamp
monitors?




We observed that the same counts were displayed at port A and on
the lamp monitors connected to the SN7493 counters. Our count
was 001110005, or 56,,. This value will probably be different to your
observation since it depends upon your clock frequency. What does
this count represent?

The count represents the number of pulses that the SN7493 counters
detected during the time between when the gate was “opened” (step
003 016) and when it was “closed” (step 003 025). The DELAY
subroutine kept the gate open for about 1 second.

Step 6
Repeat Step 5 again by running the program and note your count
below. Is it close to the count in Step 5?

We again observed a count of 56, on both the port A lamp monitors
and on the lamp monitors connected to the SN7493 counters.

If the gate is set for 1 second, what function is the microcomputer
performing?

It acts as a frequency meter since it detects and displays the number
of pulses received per second and this, by definition, is the frequency
of the pulse train from the external clock.

Step 7

Unfortunately, Program B only makes one measurement. Can the
program be modified to make continuous measurements that can be
used to update the display? Suggest simple changes to the program
that will do this.




We changed the program so that after outputting the accumulated
count to port A, the counters are reset and the program jumps to
cycle through the appropriate steps again and again. The halt instruc-
tion (HLT) at location 003 032 was replaced with the instructions
in Fig. 4-14.

Make the necessary changes to your program and try it. Do the dis-
plays indicate any changes in the clock’s frequency when it is ad-
justed? They should! Remember though that the range of this fre-
quency meter is O to 255 Hz.

003 032 076 MVIA /RESET COUNTERS BY RESETTING
003 033 000 000 /PCO

003 034 323 ouT

003 035 203 CNTRL

003 036 303 JMP /LOOP TO REPEAT THE

003 037 004 LOOP /DATA LOGGING CYCLE

003 040 003 0

Fig. 4-14. Instructions replacing halt instruction.

Questions

1. How could you change your overall system to measure higher
frequencies? (There is a hardware solution and a software solution
to this problem.)

2. Why are the reset lines of the SN7493 counters driven through
an inverter rather than being driven directly by PC0?

103




Status-Driven
Handshaking 1/O:
Combined Mode O and
Bit-Set/Reset Operation

5-1. WHAT IS HANDSHAKING?

In Chapter 3 we discussed a classification of input/output opera-
tions into two categories, namely, unconditional and conditional data
transfers. The unconditional data transfer is the simplest since it
assumes that the I/O device is able to accept or supply data im-
mediately upon request from the microcomputer. Conditional or
asynchronous data transfers, which will be discussed in this chapter,
are so called because of a basic lack of timing synchronization be-
tween a microprocessor and some of its peripherals. The data transfer
is then “conditional” upon the peripheral being ready. Such timing
difficulties arise in general because of the small, but finite, time re-
quired by many peripherals to either provide data upon request, or
to accept and record data presented to them. Analog-to-digital
(A/D) converters and paper tape readers, for example, both require
a delay following the initiation of a read command before data is
available for input. For the A/D converter, time is needed for the
analog-to-digital conversion, while, for the paper tape reader, time
is required to mechanically move the tape. A similar situation exists




for output devices. A paper tape punch, for example, needs time to
move and punch the tape, while a printer similarly needs time, after
receipt of the data, to print the decoded character.

These I/0 timing problems are overcome in practice by providing
the peripherals with status lines which can be used to tell the mi-
crocomputer the current status of the 1/0 devices. These status lines
or flags are generally in the form of flip-flops that indicate, among
other things, whether the peripheral is ready for a data transfer or
perhaps busy completing a previously initiated data transfer. On the
microcomputer’s part, it must be able to tell its peripherals when

{

A

_—
\ f—

\Y

ves

TRANSFER
AT

3
i
—— A ——

Software

—

INTEMPT

: oaTA :

|
|
|
1
|
|
- | o
READY/BUSY
!
|
!
|
|

ACKMOMLE DGE ACKNOWLE 0GE
wi -
st i strosc
PERTPVIRAL seatoneass
Hardware
(A) Status-driven 1/O. (B) Interrupt-driven 1/O.

Fig. 5-1. Essential differences between status-driven and interrupt-driven handshaking 1/O.




it wants to initiate a data transfer. It does this by means of a strobe
pulse.

In the simplest case, then, there are two control lines needed, in
addition to the data lines, to interconnect a microcomputer and a
“slow” peripheral. One line, the strobe line, is provided by the micro-
computer while the second, the busy/ready line, is provided by the
peripheral as shown in Fig. 5-1A. An orderly data flow between
microcomputer and peripheral is then ensured by the exchange of
pulses on these two lines. To read data from a peripheral, for ex-
ample, the microcomputer sends a “data strobe” pulse down its
strobe line to initiate the data conversion or data collection process.
The peripheral responds with a “busy” logic level on its busy/ready
line to indicate that it is fetching the data. The “busy” logic state is
maintained by the peripheral until the data is available. Then the
logic state changes to indicate that data is “ready.” During the data
conversion or collection period the microcomputer monitors the
peripheral’s busy/ready line, waiting for the logic change that indi-
cates that data is ready. When the change is detected, the micro-
computer then inputs data from the peripheral. This I/O procedure
is illustrated in Fig. 5-1A.

The exchange of information between a microcomputer and a
peripheral, in the form of pulses to synchronize data transfer, is
analogous to the exchange of greetings between two persons by shak-
ing each other’s hands. Because of this similarity the use of busy/
data-strobe flags in conditional data transfers is often called hand-
shaking and the technique described as handshaking 1/0.

5-2. STATUS-DRIVEN VERSUS INTERRUPT-
DRIVEN HANDSHAKING I/O

Two types of handshaking I/O can be identified and are illustrated
in Fig. 5-1. The first type is status-driven handshaking 1/0, which
was described above and supports a BUSY/DATA-STROBE inter-
face. The problem with this type of handshaking I/O is that the
microcomputer must wait in a delay loop for the peripheral to com-
plete its data transfer or data conversion (see Fig. 5-1A). While
this is acceptable in some dedicated microcomputer systems having
a small number of peripherals, in larger systems, these delays, which
may exceed 1 ms (millisecond), can be intolerable since they may
prevent the microcomputer from completing other necessary data
processing tasks.

106




The second type of handshaking I/O is interrupt-driven handshak-
ing 1/0. This overcomes the time-delay problem by allowing the
microcomputer to proceed with its other processing tasks until a
peripheral is ready to transfer data. At this time an interrupt pulse
is generated by the interface and fed to the microcomputer’s interrupt
line as shown in Fig. 5-1B. This pulse causes the microcomputer to
stop what it is doing and to service the cause of the interrupt, the
peripheral. In this way the microcomputer is only committed to pe-
ripheral servicing for a short period when service is actually required.
The topic of interrupts and interrupts servicing is difficult, and care
must be taken to ensure that:

(i) The main program is not interrupted during the execution of
essential code.
(ii) The appropriate service routine is quickly and easily located.
(iii) The status of the microcomputer at the time of an interrupt
is preserved during interrupt servicing.
(iv) The system does not become interrupt bound, so that it
spends all of its time servicing interrupting devices.

The PPI can be used in both modes 0 and 1 for unidirectional hand-
shaking 1/0. Mode O operation combined with the bit-set/reset
feature of the PPI can be used to easily implement a status-driven
handshaking I/O interface. Mode 1 operation has been designed for
interrupt-driven handshaking I/0, and we will discuss this technique
in Chapter 6.

5.3. IMPLEMENTING STATUS-DRIVEN
HANDSHAKING 1/0 WITH A PPI

(A) Hardware

The status-driven handshaking I/O technique illustrated in Fig. 5-
1A can be easily implemented in an 8080-based microcomputer by:

(i) Using the PPI in mode O operation for input and output of
data and for the input of the peripheral’s ready/busy status.

(ii) Using the PPI bit-set/reset feature of port C to generate the
data strobe pulses.

Since many peripheral devices are designed for status-driven I1/0,
the PPI is often used to implement this type of handshaking tech-
nique, particularly where the inherent delays are unimportant.




Several important features of status-driven handshaking 1/0 can
be identified and are illustrated in Fig. 5-1A:

@ The data strobe pulse, whether for data input or data output, is
always generated by the microcomputer and applied to the
peripheral.

® The ready/busy status flag is always generated by the peripheral
and must be read by the microcomputer.

® Data that is to be output must be latched and held by the
microcomputer until the peripheral is ready to accept it. In mode
0 PPI operation, output data is latched at ports A, B, and C.

® Input data will usually be latched and held by the peripheral
for some time after it indicates that data is ready.

® There is a great deal of CPU peripheral interaction during data
transfer because of the need for the processor to regularly moni-
tor the peripheral status line.

Fig. 5-2 shows the steps required to read data from a peripheral
and write data to a peripheral, using a PPI-based status-driven hand-
shaking I/O interface. In general, the peripheral data lines are con-
nected to either port A or port B, which is then configured, using
the mode control word for mode O input or output, as appropriate.
The bits of port C are used for the handshaking control lines. The
author recommends that, for standardization, the bits of port C upper,
PC7-PC4, be used for data strobe lines and the bits of port C lower,
PC3-PCO, be used to accept peripheral status lines. Port C upper
would then be configured for mode O output and port C lower for
mode O input. Fig. 5-3 illustrates this port allocation approach for
the case of a paper tape punch and paper tape reader interfaced to
the PPI for status-driven handshaking I/0.

(B) Software

Let us now look at subroutines that could be used to input data
from the paper tape reader and output data to the paper tape punch,
respectively. The first step, as usual though, is to initialize the PPIL.
In this case port A and port C upper must be configured for mode 0
output, and port B and port C lower must be configured for mode 0
input. Referring to the mode control word format shown in Fig. 2-2A,
the required mode control word is 1 0000 011, or 203. As in the
experiments of previous chapters where the PPI control lines TS,
Al, and AQ were similarly wired, the PPI device codes for ports




o

GENERATE DATA STROBE READ PERIPHERAL
WITH PPT BIT SET/ STATUS - A PPI
RESET OPERATION MODE O INPUT
g PERIPHERAL BUSY —I
y . 1
TGAIN
RESET PERIPHERAL T
STATUS - A PP ‘ PERIPHERAL
‘ MODE O INPUT R READY?
Y \ B

PERIPHERAL BUSY WRITE DATA TO

PPI, DATA
LATCHED

T
\

- WAIT AND TRY
AGATN

PERIPHERAL

READY?
GENERATE DATA STROBE
WITH PRI BIT SET/
RESET OPERATION

\J v
(A) To input data. (B) To output data.
Fig. 5-2. Flow di of the proced quired to input and output data through the

PPI using status-driven handshaking 1/0.

A through C and for the control register are 200, 201, 202, and
203, respectively.

Program 5-1 (Fig. 5-4)

The flow diagrams for the paper tape read and write subroutines
were given in generalized form in Fig. 5-2. To provide an example
of the programming techniques used with status-driven handshaking
I/0, the paper punch subroutine has been written. The punch com-
mand input to the paper tape punch is an active high signal that
moves the tape and initiates punching. This signal is actually the

109




PAPER TAPE
PUNCH

PAPER TAPE
READER

Bevesenssneieg Boeveesersseeang

DATA READY

PUNCH
COMMAND
PUNCH READY

Il A

AN

7407
: D>-tpw-4 TRIVE RIGH

7407

1 || 1 1 1
S B 8 % D& &8 = 2
FLRREERLIIRNS . 5 88¢% 28858 Boveresessend

0o
L]
W
L3
Al
0

RESET. ——I D0—1 RESET

07 | 7
% <a————| 06
05 | 5
L
03 e { 03
02 | 7
Dl oo | D1

00
™
T
Y
A

0

Fig. 5-3. PP1 port allocation for interfacing a paper tape reader and paper tape punch
for status-driven handshaking 1/0.

o




paper tape punch data strobe signal, and it is wired to port C bit
PCS. The bit-set/reset control words required to set and reset bit
PC5, and therefore to set and reset the punch command input, can
be constructed from Fig. 2-2B and are given in Table 5-1.

/

/THIS PROGRAM INITIALIZES THE PPI, INPUTS DATA FROM
/THE PAPER TAPE READER AND OUTPUTS IT TO THE PAPER
/TAPE PUNCH.

/

MVIA /LOAD A WITH THE PPl MODE

MODE /CONTROL WORD

out /0UTPUT MODE CONTROL WORD TO PP1
CNTRL  /CONTROL REGISTER

CALL /INPUT A DATA BYTE FROM

TAPEIN /THE PAPER TAPE READER

0

CALL /OUTPUT THE DATA BYTE TO

TAPOUT /PAPER TAPE PUNCH
0
HLT /HALT

Fig. 5-4. Program 5-1.
The punch-ready output is an active high signal, which goes to a

logic 1 to indicate that the punch is ready to accept data to be
punched. A logic low on this line, which is wired to PC1, indicates

Table 5-1. Bit-Set/Reset Control Words Required to Set
and Reset PC5 and PC4

Action Symbol Bit-Set/Reset Control Word
Set Drive Right (PC4) PCASET 1000 100 1 = 211
Reset Drive Right (PC4) PC4RST 1000 100 0 = 210
Set Punch Command (PC5) PC5SET 1000 101 1 = 213
Reset Punch Command (PC5) PCSRST 1000 10! 0 = 212

that the punch is busy. Our coding of the punch subroutine, following
the flow diagram of Fig. 5-2B, is given below:

Subroutine Tapout (Fig. 5-5)

This program illustrates the standard masking technique that is
used to determine the status of a peripheral. In this case the logic
state of the bits at port C is determined by a port C input instruction.
The logic state of bit PC1, which is wired to the “punch-ready” line,
is then determined by a logical AND of the accumulator contents with
a mask byte whose bits are set to 0 except for bit D1, which is set

m




to a logic 1. If bit PC1 is at logic O (punch busy), the result of the
logical operation is 0. The “jump on zero result” (JZ) instruction
will then cause the program to loop so that it will input the status of
port C again for testing. If bit PC1 is logic 1 (punch ready), the
result of the logical operation is nonzero and the program does not
loop, but it instead commences outputting a byte to the punch
through port A.

This technique for testing a flag’s status is a general one, and it
can be used for the tape reader subroutine. Care must be taken when
deciding on whether to use the JNZ or JZ instruction. The decision
depends on the interpretation of the logic status of the peripheral’s
busy/ready flag. For the paper tape reader, its status line “Data

SUBROUTINE TAPOUT
/DESCRIPTION: THIS SUBROUTINE QUTPUTS A DATA BYTE

/ FROM THE ACCUMULATOR TO THE PAPER
/ TAPE PUNCH
/
MOVBA /SAVE BYTE TO BE OUTPUT
LOOP, N /GET STATUS OF PUNCH
PORTC
ANI /1S PUNCH BUSY?
PCIMSK /MASK BYTE 00 000 010
Jz /PC1="0". PUNCH BUSY SO
LOOP /LOOP & TRY AGAIN

0
MOVAB /PCl="1", PUNCH READY SO
/RESTORE BYTE TO BE OUTPUT

ouT /0UTPUT BYTE TO PORT A

PORTA

MVIA /LOAD A WITH "SET DATA STROBE"
PCSSET /CONTROL BYTE

ouT /SET DATA STROBE

CNTRL

DCRA /GENERATE "“RESET DATA STROBE" BYTE
ouT /RESET DATA STROBE

CNTRL

RET /RETURN TO CALLER

Fig. 5-5. Subroutine tapout.

Ready” is again an active high flag with a logic 1 indicating that data
is ready, and a logic O indicating that the reader is busy. Hence a JZ
instruction would again be used with a mask byte 00 000 001. An
exercise for you is to write the paper tape reader subroutine.

Remember that the generation of strobe pulses that are normally
high or normally low is readily accomplished in software using the
bit-set/reset feature of the PPI. This was discussed in Chapter 4. The
“inversion” of the sense of a flag can also be accomplished easily in
software through the appropriate choice of the JNZ instruction or
the JZ instruction.

112




5-4. SUMMARY OF EXPERIMENT 5-1

Experiment Description

5-1 The purpose of the experiment is to illustrate the
technique of status-driven handshaking I/O using
the mode O operation for the PPI. The experiment
is in two parts:

(a) Status-driven input operation.

(b) Status-driven output operation.
A circuit that can be used for both parts of the ex-
periment is provided, and a program is given for the
input operation. You are invited to write and test a
subroutine to output data using status driven hand-
shaking I/0. A subroutine is provided at the end of
the experiment for comparison.

EXPERIMENT 5-1
STATUS-DRIVEN HANDSHAKING INPUT AND OUTPUT

Purpose

The aim of this experiment is to illustrate the technique of status-
driven 1/0, using both mode 0 PPI operation for input and output;
and the PPI bit-set/reset operation for strobe pulse generation. The
experiment is in two parts:

(a) Status-driven input operation.
(b) Status-driven output operation.

A circuit is provided for both parts, and a program is given for input
operation. You may write and test a subroutine to output data using
status-driven handshaking I/0. The requirements for this subroutine
are given in Step 8. The author’s subroutine is provided at the end
of the experiment for comparison.

Status-Driven Input

Step 1

Wire the circuit shown in the schematic diagram of Fig. 5-8. In
this circuit, port B is used to input data from logic switches. Port A
is used to output data to a pair of SN7475 4-bit latches. Port C
upper (PC7-PC4) is used to generate active-low strobe pulses with




bit PC7 used via an inverter to enable the latches (the latches are
enabled with a logic 1) and PC6 being used to supply the input
strobe pulse. In this simple simulation of status driven handshaking
1/0, the strobe pulse for data input is not physically required and
so is used only to drive a lamp monitor. Port C lower (PC3-PCO)

Program (Fig. 5-6)

/
/STATUS DRIVEN 1/0 PROGRAM

/

DB MODE 203
DB CNTRL 203
DB PC7SET 017
DB PC6SET 015
DB PCERST 014

*003 010
003 010 076 MVIA /INITIALIZE PPl. PORT A & PORT C
003 011 203 MODE /UPPER: 0/P. PORT B & PORT C
/L0TET: 1/P
003 0t2 323 ouT
003 013 203 CNTRL
003 014 076 MVIA /SET PC7, THE ACTIVE LOV
003 015 017 PC7SET /STROBE FOR PORT A
003 0Ol6 323 ouT
003 017 203 CNTRL
003 020 076 MVIA /SET PC6, THE ACTIVE LOV
003 021 015 PC6SET /STROBE FOR PORT B
003 022 323 our
003 023 203 CNTRL
003 024 061 LXISP /LOAD THE STACK
003 025 000 000 /POINTER
003 026 004 004
003 027 .315 LOOP1, CALL
003 030 Q42 READ
003 031 003 0
003 032 000 NOP
003 033 000 NOP
003 034 000 NOP
003 035 323 ouT /OUTPUT ACCUMULATOR CONTENTS
003 036 000 000 /T0 PORT O
003 037 303 JMP
003 040 027 LOOP1L
003 041 003 o
/
/SUBROUTINE : READ

/DESCRIPTION:TH1S ROUTINE READS DATA FROM
/PORT B USING STATUS DRIVEN HANDSHAKING 1/0

/
003 042 365 READ, PUSHPSW /SAVE PROGRAM STATUS
/WORD & ACCUMULATOR CONTENTS

003 043 076 MVIA /GENERATE AN ACTIVE

003 044 014 PC6RST /LOW STROBE PULSE

003 045 323 ouT

003 046 203 CNTRL

003 047 315 CALL /GENERATE A DELAY SO THAT

003 050 200 DELAY /THE STROBE PULSE CAN BE SEEN
003 05! 003 [¢]

Fig. 5-6. Program for

n4 t




has been assigned as input for the BUSY/READY status of the input ‘
device at port B (PC2) and the output device at port A (PC3).

Schematic Diagram of Circuit (Fig. 5-8)

From this data and using the mode control word format of Fig.
2-2A, construct the mode control word that is required to configure |
the PPI as shown in Fig. 5-7. Use the bit-set/reset control word for- |
mat of Fig. 2-2B to construct bit-set/reset control words which will

003 052 074 INRA

003 053 323 ouT

003 054 203 CNTRL

003 055 333 LOOP2, IN /INPUT BUSY/READY STATUS FROM
003 056 202 202 /PORT C

003 057 346 ANI

003 060 004 004 /MASK BYTE FOR PORT C BIT PC2
003 061 302 JNZ /PC2='1'. THEREFORE, PORT B IS
003 062 100 POINTX /READY. JUMP INPUT DATA

003 063 003 0

003 064 01€ MVIC /PC2='0'. THEREFORE PORT B IS
003 065 005 005 /BUSY, 50 GENERATE

003 066 015 LOOP3, DCRC /A DELAY

003 067 315 CALL

003 070 200 DELAY

003 07t 003 ]

003 072 302 JNZ

003 073 066 LOOP3

003 074 003 ]

003 075 303 JMP /NOV TRY PORT B

003 076 055 LOOP2 /STATUS AGAIN

003 077 003 0

003 100 333 POINTX, IN

003 101 201 201

003 102 107 MOVBA /SAVE CONTENTS OF PORT B

003 103 361 POPPSW

003 104 311 RET

/SUBROUTINEs DELAY
/DESCRIPTION: THIS SUBROUTINE GENERATES A ONE SECOND

/ DELAY FOR A MICROCOMPUTER HAVING A
/ 750KHZ CLOCK
/
*003 200
003 200 365 DELAY, PUSHPSW
003 201 325 PUSHD
003 202 021 LXID /LOAD TIMING BYTES FOR
003 203 000 000 /A ONE SECOND DELAY
003 204 200 200
003 205 033 LOOP4, DCXD
003 206 173 MOVAE
003 207 262 ORAD
003 210 302 JNZ
003 211 205 LOOP4
003 212 003 0
003 213 32i POPD
003 214 361 POPPSW
003 215 311 RET
Experiment 5-1.




Pin Configuration of Integrated-Circuit Chips (Fig. 5-7)

|
{A) 7475.
T 0 b ENABLE vcc 30 ¢ 4O
34
Vi 8A 6y 5A 5Y 4A av
“ 13 12 n L 9 ]
(B) 7404.
1 2 3 4 5 [ ] ?

1A w 2A 2Y 3A 3¥ GND

Fig. 5-7. IC chip pin configurations.

set and reset bits PC7 and PC6 of port C. Write your results in the
space provided.

The required results are as follows:

16




Mode control word byte: 1 0000 011 or 203 (MODE)
Bit-set/reset word bytes:
PC7 set: 0000 111 1 or 017 (PC7SET)
PC7 reset: 0 000 111 O 016 (PC7RST)
PC6 set: 0 000 110 1 015 (PC6SET)
PC6 reset: 0 000 110 0 or 014 (PC6RST)

[=3N-]
R

LAMP
MONITORS
5V GND LA
I ] MONITORS
+5 GND
Js Il
07— 2107 A7 A 24 7 h
6 28 | o6 pag |38 3 1 LAMP
2 pas |32 6 1 MONITOR
D5 ————1 D5 pag J40
04— {p4 O T
03— N3 | }
02— 32p PA3 ; : 1
PA2 1 LAMP
01— pal |3 i MONITOR
D0 ———341po 8 Ao |4
s[12
2 704 J1| & e
N2
pC7
A7 § 81T 5 pes |10 A Lawe
n B MONITOR
7404 pes L c
5 pea | -
[ PE—S ;E; 7 gi:;wl.szn
}
a0 ———3180 PCl ;g :
PCO |
T4
—5q pe7jRE——
™ L] PB6 LOGIC
wr 3 W PBS |23 SWITCHES
PB4 |22
PB3
s PB2 LOGIC
RESET RESET PB jl8 o SWITCHES
» Pg0 |18 —— ]
7404 |
Fig. 5-8. Circuit for Experiment 5-1.
1114




Note how these bytes are used in the program to initialize the PPI
and generate the port A strobe pulse.

Step 2

Load the program into memory. Study the program listing. You
will see that it is divided into a main program section and a port B
read subroutine. In this first part of the experiment we will be con-
cerned only with status-driven reading. In the space below, sketch
a flowchart of the program. Your flowchart of the read subroutine
should be similar to that given in Fig. 5-2A. Note any differences
you find in the space below.

The two differences are that the data which is input through port B is:

(i) output to port 0; and
(ii) saved in register B of the 8080A.

Step 3

Set the logic switches to 1010 1010. Execute the program, com-
mencing at location 003 010 while watching output port 0 and the
lamp monitors that are connected to PC7 and PC6. Describe and
explain what you observe.

We observed that the lamp monitor which is wired to bit PC6 of
port C was turned off for approximately 1 second. There was no
change in the contents of port 0. The program has entered the READ
subroutine which generates a 1-second active-low pulse at bit'PC6
of port C. It is now polling bit PC2 for the busy/ready status of
port B.

Step 4
Now press pulser B for at least 3 seconds and then release it. What
do you observe at port 0?

1ns




We observed that the data byte, 252, which was set on the logic
switches, was output to port 0. Since pulser B is the BUSY/READY
status flag for port B, what conclusion can be drawn concerning the
logic states which represent the BUSY status and the READY status
of the “peripheral” at port B?

Since the pulser is normally in a logic O state and goes to logic 1 only
when it is pressed, the program interprets a logic 1 as the READY
status of port B.

Step 5

Set the logic switches to 1111 0000. Now press and release pulser
B as quickly as you can. Do you observe any change to the byte
which is displayed at port 0? If not, why not?

We found that, on most occasions, no change was observed in the
byte displayed at port 0. The reason for this is that the program was
not monitoring the port B status flag during the time that the pulser
was pressed. It was, in fact, looping through the instructions within
LOOP3 of the program that generate a 4-second delay.

The monitoring of a status flag is known as “polling” and this
step was included to illustrate a potential problem which may arise
if the status flag is not checked often enough. The solution to the
problem is to poll the status flag more often. Hence, remove the call
instruction at location 003 067 by inserting NOPs (000) into mem-
ory locations 067, 070, and 071 (LO address bytes). This will re-
duce the delay to virtually zero. Now, alter the logic switches and
press and release pulser B. Repeat the operation with different bytes
at the logic switches. Do you observe that the byte at port B was read
each time? We did.

Step 6

Press and release pulser A. What do you observe, if anything?
Why?

119




We observed no change at port 0. Pulser A represents the BUSY/
READY status flag for port A which has been configured for data
output. It is not checked by the READ subroutine.

Step 7
Insert into LO memory locations 032 and 033 the following bytes:

003 032 326 Sul
003 033 060 060

Set the logic switches to 066 (ASCII for decimal 6). Execute the
program and press and release pulser B. What byte is displayed at
port 0? Why?

The byte 006 was displayed at port O when we ran the program and
pressed and released the pulser. The READ subroutine input the
byte 066 from port B when the pulser was pressed. This is the
value in the accumulator when the instruction, which we inserted
above, is exceuted following the return from the READ subroutine.
Since 006 is the value for decimal 6, in what way has the mirco-
computer processed the data from port B?

As ASCII to BCD conversion has been done by the microcomputer.
This is a very useful technique since the ASCII codes for the decimal
numbers 0 to 9 are 060 through 071, respectively. Hence, set the
ASCII code for 8 (070) on your logic switches and have the micro-
computer convert this to BCD at port 0 by pressing and releasing
the pulser. Did it work? It did for us.

Status-Driven Output

Step 8

You are now invited to write a subroutine, WRITE, using the
flowchart of Fig. 5-2B. The subroutine is to output data, stored in
register B, to port A using status-driven mode 0 PPI operation. The
program should commence at location 003 120. Bit PC7 (see sche-




DB CNTRL 203
DB PC7RST 017
*003 120

/

/SUBROUTINE:WRITE

/DESCRIPTION: THIS SUBROUTINE OUTPUTS DATA
/HELD IN REGISTER B,TO PORT A USING STATUS
/DRIVEN HANDSHAKING 1/0.

/

003 120 365 WKITE, PUSHPSW

003 121 333 LOOP2, IN /INPUT BUSY/PEADY STATUS

003 122 202 202 /FROM PORT C

003 123 346 ANI

003 124 010 olo /MASK BYTE FOR PORT C BIT PC3

003 125 312 JZ /PC3='0'+. PORT A BUSY, TRY

003 126 121 LOOP2 /AGAIN

003 127 003 o

003 130 170 MOVAB /PORT A READY, RESTORE DATA TO
/BE OUTPUT

003 131 323 oUT /OUTPUT DATA TO PORT A

003 132 200 200

003 133 076 MVIA /GENERATE ACTIVE LOW STROBE PULSE

003 134 017 PC7RST

003 135 323 ouT

003 136 203 CNTRL

003 137 074 INRA

003 140 323 ouT

003 t41 203 CNTRL

003 142 361 POPPSW

003 143 311 RET

Fig. 5-9. WRITE subroutine.

matic diagram of circuit) is an active-low strobe and the BUSY/
READY status flag for port A is to be input at port C bit PC3 with
the convention that a logic 1 represents the READY status. Since
the accumulator contents and the logic state of the zero flag will be
destroyed during the execution of the WRITE subroutine, don’t
forget to push the program status word (PUSH PSW) on to the stack
at the beginning of the routine and pop it off the stack immediately
prior to the return statement. (See Fig. 5-9 for comparison.)

Having written the subroutine, you may incorporate it into the
program by inserting a CALL instruction at location 003 032 as
follows:

003 032 315 CALL

003 033 120 WRITE
003 034 003 [

If the program is now run commencing at location 003 010, data
should be input from port B and output to port A when pulsers B
and A respectively are pressed. The data which is monitored at port
0 in steps 3 through 7 can now be displayed on the lamp monitors at
port A of the PPI by pressing pulser A.




Interrupt-Driven
Handshaking 1/O:
Mode 1 Operation of the PPI

6-1. INTRODUCTION

The mode 1 operation of the PPI was designed to permit con-
ditional data transfers between the 8080A and its peripherals without
the microcomputer having continuously to poll the status of its pe-
ripherals in the manner illustrated in Chapter 5. Polling of peripheral
status is clearly an inefficient use of the 8080A’s capability in many
cases. The role of the PPI in mode 1 operation is to manage micro-
computer peripheral data transfers using handshaking signals and to
interrupt the microcomputer only when it is absolutely required. The
microcomputer is thus freed for other logic sequencing and data
processing tasks.

Fig. 6-1 illustrates schematically the way in which the 8255 can
be used in mode 1 operation for data input and data output. In this
example the input device is a fully decoded keyboard and the output
device is a video display.

The important feature of this mode 1 interface, which distinguishes
it from the busy/data-strobe status-driven interface in Fig. 5-3, is
that interrupts are used to signal the microcomputer that a data
transfer between the PPI and the peripherals has been completed.

122




INTERRUPT

REQUEST :
——

¥,
+ T X
azss | A LY
, R, FULLY
- R,  DECODED
3 3 KEYBOARD
", ",
PAy
mODE 1 |
tneuT) | A SHIFT
PA, CONTROL
ec, STROBE
pey ack
(e, 8,
v8, 8,
re, e
"8, 8, DAy
v8, 8, :
v, 5
MODE 1 | po'
outrur 1 "8
ve, CLEAR
rc, DATA READY
ec, ack
2
PCy BLANKING
Lec, CANCEL WORD

ey
INTERRUPT

REQUEST
Courtesy Intel Corp,

Fig. 6-1. An example of the use of the PPl in mode 1 operation for data input and output.

The handshaking signals are also slightly different from those used
in Fig. 5-3. In Fig. 6-1 data strobe/acknowledge signals are used.
The data strobe signal is generated by the device from which the data
originates. The receiving device then signals the sender that it has
accepted the data by raising its acknowledge flag (ACK for both pe-
ripherals in Fig. 6-1). When a key is pressed, and the appropriate
code is available at the data lines RO to RS for input to the micro-
computer, the keyboard generates a “strobe” signal which the PPI
acknowledges when the microcomputer has read the data from port
A. Similarly, when the PPI has a data byte ready at port A for output
to the video display, the PPI generates a pulse on the “data ready”
line of the video display to signal it that data is available for display.
When the display has latched the byte, it acknowledges receipt of
the byte by pulsing the ACK line. In contrast, the two data strobe
signals used in Fig. 5-3 were generated by the PPI to request data
transfer with the peripherals.




The difference between the busy/data strobe and the data strobe/
acknowledge handshaking signals is then essentially one of where the
initiative for the data transfer lies. For a busy/data strobe-based
interface, the initiative lies with the microcomputer for both input and
output. For a data strobe/acknowledge-based interface, the initiative
always lies with the device from which the data originates. This may
be the microcomputer (through the PPI) or the peripheral as il-
lustrated in Fig. 5-1B. Because of this the data strobe/acknowledge
handshaking signals are better suited to the mode 1 operation of the
PPI where the PPI manages the data transfers independently of the
microcomputer. We will now look in more detail at the features of
the PPI when it is configured for mode 1 operation.

6-2. MODE 1 PPl FEATURES

The allocation of the PPI’s 24 interface lines for mode 1 operation
is shown schematically in Fig. 6-2. Ports A and B are used for uni-
directional handshaking I/0, and port C provides the required con-
trol lines. Each mode 1 port (A or B) consists of an 8-bit data
port, three control lines, and some internal interrupt support logic.
This leaves two free port C lines that are available for mode 0 1/0
or pulse generation using the PPI bit-set/reset features. Each mode 1
8-bit data port (port A or B) can be used for either input or output
operations, and both inputs and outputs are latched. In Fig. 6-2 the
data lines and the control or handshaking lines, associated with each
mode 1 port, have been bracketed. Notice that the two free I/0
lines have been grouped with the port A control lines. The reason
is that, in mode 2 operation of the PPI, port A is used for bidirec-
tional handshaking I/O and it uses all five port C bits (PC7 to PC3)
as control lines. Notice also that the allocation of the port A and
port B control lines changes for input and output. Let us look first
at the input control lines to see how these are used to control mode 1
input operation.

(A) Mode 1 Input

The internal control and external handshaking signals used to
control mode 1 input operations at ports A and B are illustrated
in Fig. 6-3.

Each port has three external handshaking signals (STB, IBF, and
INTR) and one internal control line (INTE). These are defined as
follows:

124




o
-0 '
vt TPt
Lo & 1/0 = UF )
M— | PORT A { s "0 X,
L . PO e 18 ol e 170 P
L e S L. 8 "0 |t 3T g 1/0
2 (. "
Ll e R e —
5 N e T S
5 o i

PORT B ¢

D —

Ve @ P:I7 N
(S ——

Fig. 6:2. Mode 1 PPl interface line allocation.

® JSTB (Strobe Input). This is the data strobe signal, which indi-
cates that the peripheral has data ready for input. It must be
generated by an external peripheral. Port C bits PC4 and PC2
are used, and a logic O on these inputs will load data into the
input latches of either port A or port B respectively (cf PC4 in

Fig. 6-1).
MODE 1 IPORT A} MOODE 1 (PORT B)
n,uﬁ@ v, 28,k &
r——— =
e e, e [l am,
l]-_.a ——ei Llr__o "_
T PG b— 8¢ [ i el L
s a
v U
— oy T, — e TR,
L™ -
AD ——qf L]
2
"oy [~F— 10

Fig. 63. Hlustration of the internal and external control signals required to manage mode
1 PPl input operation.

125




® IBF (Input Buffer Full). This is the PPI’s acknowledge signal
for data that has been input to the PPI from a peripheral. A
logic 1 on this output indicates that data has been loaded into
the port A (PC5) or port B (PC1) input latch. The line is set
to a logic 1 approximately 300 ns after the STB input goes to
logic 0.

® INTR (Interrupt Request). As its name suggests, this signal
can be used to interrupt the 8080A when data from an external
peripheral has been loaded into the port A or port B latches
for input to the 8080A. This interrupt request output is set
to logic 1 if STB, IBF, and INTE, the internal control line,
are all at logic 1.

® INTE (Interrupt Enable). This is an internal, interrupt control
flip-flop that can be used to inhibit (INTE =0) or enable
(INTE = 1) the generation of interrupts, from either port A
or port B. The logic state of INTE is set or reset using the
bit-set/reset function of port C. The interrupt enable flip-flop
of port A, INTE A, is controlled by the setting and resetting
of PC4, while INTE B, the interrupt enable flip-flop for port B,
is controlled by the setting and resetting of PC2. It should be
noted that, in mode 1 operation, the bit-set/reset operations on
PC4 and PC2 to control the INTE flip-flops of port A and
port B respectively, are internal PPI operations and have no
effect on the logic states of PPI pins PC4 and PC2, which for
mode 1 data input are used as strobe input (STB) lines. The
advantage of the internal PPI INTE flip-flops is that they permit
the microcomputer user to selectively disable peripherals under
software control. This is an extremely useful facility to have
available in circumstances where it is known, for example, that
at certain times, all the microcomputer processing capability will
be required for one important task (data processing, 1/0, etc.).
System resource priority can be shifted in this way to meet peak
demands.

Fig. 6-4 shows a timing diagram for the mode 1 input which we
can use to gain an appreciation of the operating sequence for mode 1
input. The mode 1 data input operation is initiated by an active low
strobe input (STB) pulse from a peripheral which causes the input
buffer full (IBF) output line to go to logic 1. This signal can be
used as a PPI acknowledge signal. The logic 1 indicates that data
has been loaded into the input latch of the port, but that it has not

126




yet been read by the microcomputer. The next step depends on the
status of the interrupt enable (INTE) flip-flop for the port. If this
had been previously set using the port C bit-set/reset feature, the
PPI’s interrupt request line (INTR) will be set to logic 1 when
STB returns to a logic 1. If INTE was at logic 0, INTR will not be
set when STB returns to a logic 1 and the data from the peripheral
is effectively lost. Assuming that INTE was set, the resulting logic
1 on the interrupt request line (INTR) can be used to interrupt the
microcomputer. The microcomputer must then determine which port

STB
IBF
INTR

% e

S S

Fig. 6-4. Mode 1 input timing diagram. INTE is assumed to be at logic 1.

is interrupting it, either by using a vectored interrupt or by polling.
Having done this it then reads the data that is held in the PPI’s
input port latch. The logic O that is generated on the RD line during
the microcomputer read operation, resets INTR back to a logic 0.
The IBF line is reset to 0 by the trailing edge of RD and hence
the PPI acknowledges to the peripheral that the microcomputer sys-
tem has received the data. The mode 1 data input operation is
then complete.

The advantage of this input procedure is that an input device
can request service from the microcomputer simply by strobing its
data into port A or port B. It is the PPI which manages the input
operation and the microcomputer is only interrupted when data is
actually ready to be input from the PPIL.

(B) Mode 1 Output

The internal control and external handshaking signals used to
control mode 1 output operations are illustrated in Fig. 6-5. Three
external handshaking signals (OBF, ACK, and INTR) and the in-
terrupt enable (INTE) internal control signal are used to manage
mode 1 output operations at ports A and B, and these signals are
defined as follows:

127




MODE 1 (PORT A} MODE 1 (PORT B}
NS e

|— 587,

y fo—— TRy

|——« INTR,

Fig. 65. Illustration of the internal and external control signals required to manage

mode 1 PPl output operation.

® OBF (Output Buffer Full). This is the output data strobe signal

and is generated by the PPI. A logic O on this line indicates
that the microcomputer has written data to the port, and that
the data has been latched.

@ ACK (Acknowledge Input). A logic O on this input line indi-

cates that the peripheral has accepted data from the port’s
output lines. It is an acknowledge signal from the peripheral.
INTR (Interrupt Request). This output line is used to interrupt
the microcomputer after data has been output by the PPI, and
accepted by the peripheral. INTR is set to logic 1, when ACK,
OBF, and INTE are all at logic 1, to indicate that the data
has been received by the peripheral.

INTE (Interrupt Enable). This is the interrupt enable flip-flop
as described for mode 1 input. As for input operations the
INTE, and INTEg flip-flops can again be used to selectively
enable or disable ports A and B respectively, this time for
mode 1 output. For PPI output operations INTE, is controlled
by setting and resetting PC6, while INTEp is controlled by
setting and resetting PC2. Note again that the bit-set/reset
operations on PC6 and PC2 for mode 1 output are operations
on internal PPI flip-flops. The logic states of the PPI's pins PC6
and PC2 are unaffected. In mode 1 output these PPI pins are
used for the ACK inputs from the external peripherals.

Fig. 6-6 shows a timing diagram which illustrates the operating
sequence for a mode 1 output operation. The initial write operation
at program start-up will probably be initiated by the CPU, while the
INTR line is at logic 0. After this, interrupt-driven operation, as

128




Iy
0BF

—icx =
i =

OUTPUT X

Fig. 6-6. Timing diagram for mode 1 output operation. The interrupt enable (INTE) flip-flop
is assumed to have been set to logic 1.

illustrated in the timing diagram of Fig. 6-6, will be established. Let
us assume that interrupt driven mode 1 output operation has been
established at either port A or port B. That is to say, a previously
initiated write operation to a peripheral has been acknowledged,
setting INTR to logic 1. This is the point at which we can consider
the timing diagram in Fig. 6-6 to commence. Through the use of a
vectored interrupt or through polling, the CPU must then identify the
interrupting port and initiate a new write sequence to the PPI mode
1 output port. The leading edge of WR (Fig. 6-6) resets INTR
to logic 0, removing the CPU interrupt.* The rising of WR causes
OBF to go low, which, in turn, strobes the data on the output port
lines into the peripheral latches. When the peripheral has accepted
the data, it sets ACK, the peripheral line, low, and this resets OBF
to logic 1. When ACK returns to logic one, the interrupt request
line, INTR, is set to a logic 1. The CPU is then interrupted and
another cycle is initiated.

In summary, a model 1 write sequence is initiated by an interrupt.
The CPU write operation causes a data strobe pulse (OBF) to be
generated by the PPI, strobing data to the peripheral. The peripheral
acknowledges receipt of this data by driving ACK low. Following
the ACK pulse another interrupt is generated to initiate a new write
operation.

(C) Input/Output Mode 1 Combinations

Because ports A and B can be assigned independently for input
or output, two mode 1 input/output combinations are possible as
shown in Fig. 6-7. Our initial example (Fig. 6-1) of the use of the
PPI in mode 1 operation for combined data input and output can

* This should not be confused with an interrupt acknowledge.

129




{2NdN1 Q300MLS) - 9 104
(iN41NO QIBOULS) - ¥ LHOY

N ———{ %y
%40 oy
‘s —tu
aap VO
on tln\rl 79
VuiN %2
e epum— [
190 (‘N

Ovelve

f1

% ‘a ‘a ‘a o %0 %a ‘a
QHOM T0UINGD

4N4LN0 0IBOULS) ~ 8 LHOd
(LAdNI Q380U LS) — ¥ 1404

oy —={ta

%490 '
<9 1%etaa
N 7| ¢

Yais ——={vy

v

oe——um

1161n0 =0

1NN = L
e
Honznnon

% 'a g 'a ' %a % ‘a

aQUOM T08LNOD

o———ay

of the PPI.

P

for mode 1

Fig. 6-7. Port A and port B input/output




now be compared with Fig. 6-7A to see the way in which the port
C control bits have been used. Notice that the two PPI port C lines
(PC6 and PC7) that are not used for handshaking have to be used
to drive the blanking and cancel word flags. These lines would be
set and reset using the port C bit-set/reset feature.

6-3. MODE 1 OPERATING REQUIREMENTS

(A) Hardware

In most microcomputer applications the peripherals are selected
on the basis of cost and overall system requirements. The task of
interfacing these peripherals to the CPU must then be tackled, and
it is here that the PPI is most valuable because of its flexibility. If the
peripherals to be used in a microcomputer application support a data
strobe/acknowledge interface of mode 1 type PPI operation, the first
hardware decision that must be made, in implementing the mode 1
interface, is whether port A and port B are to be used for input,
output, or a combination of both. Once this decision is made, the
port C handshaking signals are automatically defined (cf Fig. 6-2),
and the appropriate data strobe and acknowledge bits can be con-
nected to the peripherals.

The second hardware decision which must be made is the type
of interrupt structure that will be used, that is, a vectored interrupt
or a polled interrupt. The vectored interrupt generally results in a
faster CPU response to the interrupting peripheral, since CPU opera-
tion is automatically vectored to the correct service routine by one
of the 8080’s single-byte call or restart instructions, RST. An addi-
tional three-state buffer latch such as the SN74365 is required to
“jam” the RST instruction into the 8080A’s instruction register when
the CPU acknowledges the interrupt with a logic low on the interrupt
acknowledge (INTA or TACTK) output. Fig. 6-8 illustrates one
circuit that can be used to implement vectored interrupts with a
PPI having an input device at port A and an output device at port B.
Notice that we have used the IBF and OBF signals as inputs to the
SN74365. It is worth noting here that the circuit will not support
simultaneous interrupts and that priority in servicing the interrupts
must be set in the software.

Referring now to the mode 1 input and output timing diagrams
of Fig. 6-4 and 6-6 respectively, it will be seen that both IBF and
OBF are logic high during the time that INTR, and INTRg are
high. Hence in this example the vectored interrupt RESTART in-

131




INT
KEYBOARD
INTR, _
TNTA
m—
5V
STROBE o1 PC4(STE) \
— GT
ACK |ty PC5(18F
e | Bk
. B o ) g
e [0 2 :
DATA g
READY [ Pe1 (GEF) 1 s g
ACK | PC2(ACK) =
g
8
B K DATA
<: INTRg >
DISPLAY
l—> T0 7432

Fig. 6-8. Circuit diagram of a vector-interrupt mode 1 PPl interface to an
8080A-based microcomputer.

structions RST 7(377) and RST 5(357) would be generated for
input and output respectively. Note also that because the 8080A
has only one interrupt line (INT), the INTR, and INTRy signals
have been ORed together and the resulting output wired to INT.

If only one port is required for mode 1 I/0, a feature of the 8228
system controller chip can be effectively used to jam an RST 7
vector interrupt instruction into the 8080A instruction register during
an interrupt. All that is required is to wire the 8228 TNTA line to
+12 V through a 1-kQ resistor. This then avoids the need for the
SN74365 three-state buffer shown in Fig. 6-8. In microcomputer
systems that do not use an 8228 an RST 7 code (377), should be
established using an SN74365 as in Fig. 6-8 but with all its input
lines connected to logic 1.

If two or more mode 1 ports are used in an interrupt-driven
interface, an RST 7 instruction alone can still be employed, if the
mode 1 ports are then checked or polled to determine which one is
requesting service. This is the polled interrupt approach. The ques-

132




PORT C BITS

EEREREE]

GROUP A GROUP B
STATUS STATUS
INPUT INPUT
PORT PORT
Ii | S—
]

A ————— . [P N

O Dy Do

O; DOg D5 Dy 03
[oo [0 [ [ovealored]

ouTPUT ouTPUT

PORT |___PORT
A ——— ~— U S
0, Dg Dg Dy O3 0, Dy Dg

[ [weea] o [ 7o Jmima] P

Fig. 6-9. The mode 1 status word, which is obtained by reading port C.

tion then arises as to how the status of each mode 1 port can be de-
termined, since this point was not mentioned earlier. The answer is
to initiate a read operation from port C. When this is done and the
8255 is configured for mode 1 operation, the microcomputer will
receive the mode 1 status word, which is shown in Fig. 6-9. The
status of the INTR lines (bits D3 and DO) can then be checked by
software since the bits in the status word represent, in general, the
state of the associated ports C lines. By comparing the mode 1 status
word in Fig. 6-9 with the port C pin allocation for input and output
shown in Fig. 6-2, you will see that the only differences are the re-
placement in Fig. 6-9 of:

(a) The STB lines (PC4 and PC2) by the INTE flip-flop status
for input.

(b) The ACK lines (PC6 and PC2) by the INTE flip-flop status
for output.

The polled interrupt approach requires more software to deter-
mine which port was interrupting. It therefore has an inherently
slower service response time which is still, however, only on the
order of a few tens of microseconds.

(B) Software

The first step in writing software for mode 1 PPI operation is to
write the PPI initialization code that will configure the PPI as was
decided from consideration from the hardware. This is done by

133




loading the accumulator with the appropriate mode control byte and
outputting it to the PPI control register. The mode control byte is
determined in the usual way by referring to the mode control word
format of Fig. 2-2A. Note that in this case bits D6, D5, and D2
are set to 0, 1, and 1, respectively, in order to set ports A and B
to mode 1.

The second PPI mode 1 initialization operation is to set the in-
terrupt enable INTE flip-flops using the port C bit-set/reset feature.
Care should be taken to ensure that the correct bits are set since
the port C bits assigned for the INTE flags of ports A and B change
for input and output (cf Fig. 6-9). Port C bits PC4 and PC2 are
allocated for mode 1 input, and bits PC6 and PC2 are allocated
for mode 1 output INTE flip-flops.

The remaining software associated with mode 1 PPI input/output
operations is concerned with servicing the interrupts (INTR, and
INTR;) generated by port A and port B. The software requirements
of polled interrupt and vectored interrupt handshaking I/0 are il-
lustrated, and may be compared, in Fig. 6-10. In general, more steps
are required to service polled interrupt handshaking I/0, since at
each interrupt the mode 1 status word must be read, and the status
of the port A and B INTR lines (cf bits DO and D3 of Fig. 6-9)
must be separately checked to determine which port is requesting
service. The programming technique used to determine the status
of a port is the same as that which was used in Chapter 5 to de-
termine peripheral status (cf Section 5-3B), i.e., masking combined
with a program jump based upon the results of a logical AND of the
status byte and the masking byte. This technique is illustrated in the
example that is described in Section 6-4. The response speed of a
polled-interrupt handshaking 1/O subroutine can be improved in
circumstances where it is known that one peripheral will require
service more often than others. In such cases it is clearly most effi-
cient to check the status of the more demanding peripheral first.
The port whose status is checked first in a program is said to have
highest priority. When writing polled interrupt software the priority
of the system’s peripherals must be decided upon so that the status
of each port can be checked in the most appropriate order. Such
decisions can be made on the basis of response speed or perhaps
on the basis of some other criterion such as the relative importance
of the data from one or all of the peripherals.

The software for vectored interrupts as shown in Fig. 6-10B is
much simpler than for polled interrupts and only involves writing

134




Y v
READ PORT C FOR 1
MODE 1 STATUS
PORT A SERVICE
oo ROUTINE
T
Y
/
ves PORT A RETURN
- SERVICE
ROUTINE
Y
LY
\ -
INTERRUPT B
YES PORT B
- —y SERVICE
ROUTINE
!
\ ] PORT B SERVICE
w0 ROUTINE
|
SERVICE
ROUTINE
I
y
; N
IGHORE INTERRUPT
SET ALARM
L]
(A) Polled interrupt. (B) Vectored interrupt.
Fig. 6-10. Flow diag of the i pt sul ines needed to support polled-interrupt
and d-i pt mode 1 operation of the PPL.

the service routines for each port at the appropriate vector restart
location. Because of this simplicity of programming, the peripheral
service response time is quicker than for polled-interrupt handshak-
ing I/0. It is useful with vectored interrupts to again consider the
servicing priority of the peripherals. In this case, however, servicing

135




priority will, in general, be set in hardware rather than software, and
this is discussed in Unit 23 of Introductory Experiments in Digital
Electronics and 8080A Microcomputer Programming and Interfacing,
Book 2. A circuit which establishes peripheral service priority in
hardware using an SN74148 priority encoder is also discussed in
that unit.

In microcomputer systems where CPU data processing and logic
sequencing requirements are minimal the continuous polling of the
PPI’s INTR status lines may be acceptable. Flow diagrams of the
software required to support continuous polling for read and write
I/0 operations are shown in Fig. 6-11. A small advantage of this
approach is that no external hardware other than the PPI is needed.

READ PORT € FOR ITE A TO
WOOE L STATUS .
wORD
‘ 1
READ POKT C FOR
» MOOE 1 STATUS
— woro
]
es oATA
ACCEPTED —
?
READ DATA FROM
o1 PoRT ves

PROCESS
oaTA

* L]

(A) Read. (B) Write.
Fig. 6-11. Flow di for i it polled mode 1 PP operation.

136




6-4. AN EXAMPLE

To illustrate the considerations involved in using mode 1 PPI
operation, let us look at the example in Fig. 6-1. Here a fully de-
coded keyboard and a video display have been interfaced to a PPL
We will look at the hardware and then the software considerations.

(A) Hardware

In producing the schematic of Fig. 6-1 a number of important
decisions have already been made. Clearly both peripherals support
a data strobe/acknowledge interface and so it was decided to use
mode 1 operation of the PPI. The spare I/O lines of port C were
then allocated to the video display as control lines. These decisions
were made in tailoring the PPI to the peripheral requirements. Hav-
ing decided to employ an interrupt-driven system rather than a con-
tinuous software polled system, the next problem is to decide between
the vector-interrupt and the polled-interrupt approaches. The decision
will usually be made on the basis of the required service response
speed and the tradeoff between additional hardware and extra soft-
ware. The author recommends that if maximum response speed is
not necessary and if memory space is not at a premium, then the
polled interrupt approach be adopted since it reduces the external
hardware to an interrupt instruction port and a single or gate. This
is the approach that we will use.

The required interface circuit is shown in Fig. 6-8 with the
SN74365 hard-wired for a 367 (RST 6) vector. Because a polled-
interrupt approach is being used the servicing priority of the per-
ipherals will be determined by the software rather than the hard-
ware. We will assign the highest priority to the display since it will
require refreshing more often than the entry of data at the keyboard.
Finally, the decision to use port A for input and port B for output
is quite arbitrary.

(B) Software

The first requirement when writing the software is to draw a
flow diagram. Fig. 6-10A shows the flow diagram for the polled in-
terrupt software. We will not flowchart the port A and B service
routines since these are a function of the particular microcomputer
system used for the keyboard and display. Before coding the polled-
interrupt flowchart however, we must first write the PPI initialization
code. This is shown in the program listing of Fig. 6-12 together

137




138

000 060 303
000 061 060
000 062 003

003
003

003
003
003

003
003
003
003
003
003

003
003
003
003
003
003
003

003
003
003
003
003
003
003
003
003
003
003
003
003

003

00!
002
003
004
005
006
007
010
otl
012
013
o014
015

060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101

103
104
105
106

076
264
323
203
076
011
323
203
076
005
323
203
373

365
345
325
305
333
202
107
346
001
302
200
003
170
346
olo
302
300
003
301
321
341
361
311

*000 060
J

MP /JUMP TO VECTOR RESTART
RESTRT /SUBROUTINE
0

/ .

/ .

/7 .

/ .

/

/]

PROGRAM STARTS HERE
4

DB MQODE 264

DB PORTC 202

DB CNTRL 203

DB INTEAS 01!

DB INTEBS 00S

DB MASKA 010

DB MASKB 001

DW PASVC 003 300

DW PBSVC 003 200

*003 001

START, MVIA /INITIALIZE PPI~-PORT A:MODE 1
MODE /INPUT; PORT B:MODE ! OUTPUT
ouT /0UTPUT MODE CONTROL BYTE TO
CNTRL /PP1 CONTROL REGISTER
MVIA /SET INTEACPC4) USING BIT
INTEAS /SET/RESET CONTROL BYTE
ouT
CNTRL
MVIA /SET INTEB(PC2) USING BIT
INTEBS /SET/RESET CONTROL BYTE
ouT
CNTRL
El

/

/THIS 15 THE BEGINNING OF THE

/INTERRUPT SERVICE ROUTINE.

/

*003 060

RESTRT, PUSHPSV /SAVE MICROCOMPUTER STATUS
PUSHD
PUSHB
N /INPUT MODE STATUS WORD FROM

PORTC /PORT C
MOVBA /SAVE MODE | STATUS WORD

ANI /PORT B INTERRUPTING?
MASKB /MASK BYTE FOR INTRB(DO)
JNZ /YES! - JUMP TO SERVICE
PBSVC /THE PORT B PERIPHERAL

4]

MOVAB /NO? - RESTORE STATUS WORD
ANI /PORT A INTERRUPTING?
MASKA /MASK BYTE FOR INTRA(D3)
JNZ /YES! - JUMP TO SERVICE THE

PASVC /PORT A PERIPHERAL

0
POPB /NO, IGNORE INTERRUPT
POPD /RESTORE MICROCOMPUTER STATUS

POPPSW
RET /AND RETURN

Fig. 6-12. Program 6-).




with the polled-interrupt service routine. In writing the program the
author began by writing the PPI initialization code and polled-
interrupt service routine in mnemonics adding comments to show
the program structure. Variables such as the mode control byte, bit
set bytes, mask bytes, and PPI addresses were given symbolic names.
Now read the program listing in mnemonics and watch for these

points.

Program 6-1 (Fig. 6-12)

An important feature of this program is the determination of the
values for the variables. The addresses of the PPI control register
and port C are a function of the way in which the PPI is wired to
the microcomputer address lines, and so for this example we have
used 203 and 202, respectively. The remaining variables were de-
termined as follows:

(a) MODE. This is the mode control byte which is required to
configure port A for mode 1 input operation, port B for mode
1 output operation, and port C upper bits PC6 and PC7 for
output. From Fig. 2-2A the required byte is 10110100 or
264.

(b) INTEAS, INTEBS. These are the bit-set/reset control bytes
required to set the INTE, and INTEzg, interrupt enable flags,
of ports A and B, respectively. Referring to the mode 1 status
word in Fig. 6-9, it will be seen that the interrupt enable
flag for port A (INTE,) is represented by different port C
bits, depending upon whether port A is used for input or
output. In this example port A is used for input (cf Fig. 6-8)
and so port C bit D4 must be set to logic 1 using the PPI
port C bit-set/reset feature. Referring to Fig. 2-2B the re-
quired bit-set/reset control byte is 00001001 or 011. The
port B interrupt enable flip-flop is controlled by setting and
resetting port C bit D2 (cf Fig. 6-9). The bit-set/reset control
byte (from Fig. 2-2B) required to set PC2 is 00000101 =
005.

(c) MASKA, MASKB. These are the mask bytes that are required
to mask out all of the mode 1 status word bits except those
giving the status of the port A and port B interrupt request
flags INTR, and INTRj, respectively. For port A input,
INTR, is represented by bit D3 of the mode 1 status word
(Fig. 6-9) and hence MASKA is 00001000 or 010. INTRp

139




is represented by bit DO of the mode 1 status word and so
is 00000001 or 001.

(d) PASVC and PBSVC. These represent the low address bytes
for the port A and B service routines, respectively, and have
been arbitrarily set in this program to 300 and 200, re-
spectively.

In conclusion this example has been presented to illustrate the de-
sign approach to using a PPI for mode 1 handshaking I/0. For the
hardware the major points to be evaluated include:

® Port and control line allocation.

® Vector interrupt, polled interrupt, or continuous software
polling.

® Peripheral priority.

® If vector interrupt or polled interrupt, then the RST instructions
to be jammed onto the data bus during an interrupt.

For software the major considerations include:

® Writing the PPI initialization code.

® For vector interrupt, writing and properly locating in memory
the peripheral service routines.

® For polled interrupt, writing and properly locating in memory
the software to determine which peripheral is interrupting.

The necessary variables which must be determined are:

® The mode control byte.

® The bit-set/reset control bytes required to set INTE, and/or
INTEg.

® The masking bytes required to determine the status of INTR,
and/or INTRg.

® The PPI addresses for ports A through C and for the control

register.
6-5. SUMMARY OF EXPERIMENTS 6-1
THROUGH 6-5
Experiment Description
6-1 The purpose of this experiment is to demonstrate

the mode 1 output operation of the 8255 using the
technique of continuous software polling. The use




of handshaking between the microcomputer and a
pulser is also illustrated.

6-2 The purpose of this experiment is to demonstrate
the mode 1 input operation of the 8255 using the
technique of continuous software polling.

6-3 This experiment illustrates the mode 1 operation of
the 8255 for combined input and output by contin-
uous software polling.

6-4 This experiment illustrates the mode 1 polled-inter-
rupt operation of the 8255.
6-5 The purpose of this experiment is to illustrate the

mode 1 vectored-interrupt operation of the PPL

EXPERIMENT 6-1
MODE 1 OUTPUT OPERATION OF THE PPI

Purpose

The purpose of this experiment is to demonstrate the mode 1 out-
put operation of the 8255 integrated-circuit chip. The use of hand-
shaking between the microcomputer and pulser will also be illus-
trated.

Step 1

Fig. 6-15 shows the Intel Corporation information on the mode 1
operation of ports A and B as output ports.

In this experiment we shall employ mode control word 240, which
assigns port A as a mode 1 output port. Bit D3 in the control word
is logic 0, which means that PC4 and PC5 have been configured as
outputs.

Step 2

Connect the circuit shown in the schematic diagram (Fig. 6-14).
Connect PC6 (ACK,) to the “1” output of the pulser. This is the
pulser’s output that is normally at logic 1.

Step 3

Load the program into memory. Explain what the control words at
LO memory addresses 001 and 002 mean. At which addresses in
the program are they loaded into the control register of the 8255
chip?

141




Schematic Diagram of Circuit (Fig. 6-13)

5V GND
lzo |7
27
07 0
06— 281 : i LANP
05 g: : MONITORS
p4—— ! :
03— : LAMP
02 —324 : : MONITORS
0 —a ¢ PAO
po —344 00
pc2 |—13 0
1
8255 :‘c:i ity | 1y PULSERS
— w2
Pes |
7404 Pl f—1? Law
N —>o—8g TS pe7 |15 g MONITORS
O8F,
Al 8 | PC3 —u’_li___l_l TRy
PCO __LLL____‘
Mn—39140 g
TN__5d ™ P Z__
WY %64 W :
i F
m‘!T__DoJL RESET T
7404 g0 HE

Fig. 6-13. Circuit for Experiment 6-1.

The control byte at LO memory address 001 is the mode control
byte and this is loaded into the control register of the PPI with
instructions commencing at LO memory address 003. The control
byte at LO memory address 002 is the bit-set/reset control byte
that is output to the control register with instructions commencing
at LO memory address 010.

142




Program (Fig. 6-14)

4
/PP1 MODE ONE OUTPUT OPERATION
/

DB CNTRL 203
DB DATAl 200
DB DATA3 202

*003 000 .
003 000 001 LXIB /LOAD PAIR B WITH THE FOLLOWING BYTES
003 001 240 240 /PPl MODE CONTROL WORD
003 002 015 015 /PPL BIT SET/RESET CONTROL WORD
003 003 171 MOVAC /MOVE MODE CONTROL WORD TO ACCUMULATOR
003 004 323 ouT /0UTPUT ACCUMULATOR CONTENTS TO THE
003 005 203 CNTRL /PP1 CONTROL REGISTER
003 006 026 MVID /LOAD REGISTER D VITH 377
003 007 377 377
003 010 170 MOVAB /LOAD A VITH PPI BIT SET/RESET CONTROL
003 011 323 out /0UTPUT IT TO THE
003 012 203 CNTRL /PPl CONTROL REGISTER
003 013 172 LOCP, MOVAD /ZERQ THE ACCUMULATOR
003 014 323 ouT /0UTPUT ACCUMULATOR CONTENTS TO
003 015 200 DATA1L /PORT A
003 016 024 INRD /INCREMENT REGISTER D CONTENTS BY |
003 017 172 MOVAD
003 020 323 ouT /DISPLAY NEXT OUTPUT BYTE
003 021 001 001 /AT PORT #1
003 022 333 WAIT. IN /INPUT THE STATUS OF THE 8255, 1.E.,
003 023 202 DATA3 /THE CONTENTS OF PORT C
003 024 323 ouT /DISPLAY PPl STATUS AT
003 025 000 000 /PORT #0
003 026 346 anI /AND THE FOLLOWING MASK BYTE WITH
003 027 010 o010 /THE ACCUMULATOR CONTENTS. THIS MASKS
/ALL BITS EXCEPT BIT 3 (INTRA)

003 030 312 Jz /INTRA=1; NO:=-TRY AGAIN
003 031 022 VAIT
003 032 003 [}
003 033 303 JMP /YES, PPl OUTPUT BUFFER EMPTY S50 JUMP TO
003 034 013 LooP /JUMP TO OQUTPUT ANOTHER BYTE
003 035 003 [

Fig. 6-14. Program for Experiment 6-1.
Step 4

Execute the program. Press and release the pulser several times.
What do you observe at output port A?

We observed that the output at port A was incremented by one each
time the pulser was pressed and released. While the pulser was
pressed in [sending PC6 (ACK,) to logic 0}, PC7 (OBF,) went to
logic 0. Output PC3 (INTR,) remained at logic 0, according to our
visual indication. However, when we employed the simple counting
circuit shown in Fig. 6-16, we observed one count each time that

143




Output Control Signal Definition

OBF (Output Buffer Full F/F)

The GBF output will go “low" to indicate that the CPU has
written data out to the specified port. The OBF F/F will be
set by the rising edge of the WR input and reset by the fall
ing edge of the ACK input signal.

ATK (Acknowledge Input)

A “low” on this input informs the 825 that the data from
Port A or Port B has been accepted. In essence, a response
from the peripheral device indicating hat it has received
the data output by the CPU.

INTR {Interrupt Request}
A “high” on this output can be used to interrupt the CPU
when an output device has accepted data transmitted by the
CPU. INTR s set by the rising edge of ACK if OBF is a
“one” and INTE is a “one”. It is reset by the falling edge
of WR.

INTE A

Controlled by bit set/reset of PCg.

INTEB

Controlied by bit set/reset of PC.

MODE 1 (PORT A)

Pa,Pa [

MODE 1 (PORT B|

[ Y

PCo [—— INTR,

Fig. 6-15. Mode 1 operation of ports A and B as output ports.

the pulser was pressed and released. This means that the PC3 con-
nection generated a single pulse each time the pulser was pressed

and released.

Step 5

Carefully examine the program steps. Can you identify the pro-
gram steps which cause the microcomputer to “loop” once the
program is executed. If you have trouble answering this question,
study the mode 1 output timing diagram given in Fig. 6-17. Look at
the relationship between ACK, (PC6) and INTR, (PC3).

+ 5V GND
ls o
o4 o[
2] c
0 BA Z

7490 |, |
14

PC3 ———fcLOCK

>OWOO

LAMP
MONITOR

Fig. 6-16. Simple counting circuit.




When the program is first started, the PPI is initialized (LO ad-
dresses 000 through 012) for mode 1 operation with port A con-
figured for output. The microcomputer then transfers data to port A
(LO addresses 013 through 015). This sets the Output Buffer Full
(OBF) flag to logic O to indicate that data has been transferred to
port A. The program then waits in the WAIT loop (LO addresses

ww ] ‘5 ]

DATA WRITTEN TO
""" " poRT A

‘4 "
§ §
ACK
PULSER ACTUATED , PULSER RELEASED

Fig. 6-17. Mode 1 output timing.

022 through 032) until it detects the presence of the INTR, flag
which is checked in software. The INTR, signal is set to logic 1
when you acknowledge (ACK,) that you (the peripheral) have re-
ceived the data. Once you acknowledge receipt of the data a new
(incremented) data byte is output and the process is repeated.
What happens when you press the pulser (ACK, =0) and hold
it in? Use Fig. 6-17 timing diagrams to help you with your answer.

The answer is that the ACK, input to the PPI goes to logic 0 and
the OBF; output goes to logic 1. As long as the pulser remains
pressed in, nothing else happens.

Step 6

Now explain what occurs when you release the pulser. (Hint:
What happens on the rising edge of ACK, if both INTE, and OBF,
are at logic 1?) Make certain that you explain what happens to the
output at port A. Please give a detailed answer.




When you release the ACK, pulser (ACK,=1), you have ack-
nowledged receipt of the data that was previously output to port A
by the 8080 and displayed on the lamp monitors. A new data byte
is then output. This is indicated by the Output Buffer Full flag
(OBF,) going to a logic 0 again.

Step 7

Change the bit-set/reset control word at LO memory address
002 to 014. When this byte is output to the control register it will
cause the internal PPI flip-flop, INTE,, to be reset to logic 0. Will
this have an effect on the operation of the interface?

Yes. “It turns off” the port A interrupts so that INTR, cannot be
set to logic 1.

Step 8

With the change in your software (made in Step 7), execute the
program. Repeatedly press and release the pulser. Is any data trans-
ferred to port A?

Yes, data is transferred, but only the first byte, 377.

Explain why the program change had such an effect. You may
find the timing diagram of Fig. 6-18 useful in your explanation.
Note that the output, INTR,, never goes to logic 1. You can confirm
this behavior with the aid of the 7490 counter circuit given in Step 4.
With the internal interrupt enable (INTE,) turned off, the ack-
nowledge signal is not gated through to PC3, the INTR, output.

146




INTE

0
1
OUT (WR) | |
0 T~ 1T DATA TRANSFER COMPLETED

INTRp
0

TF 1 —l /BUFFER FULL FLAG INDICATES DATA AVAILABLE
0

=, L L
‘\1/

PULSER ACKNOWLEDGEMENTS HAVE NO EFFECT
Fig. 6-18. Timing diagram for program change.

Questions

1. A key step in the program is the IN instruction given at LO
memory address 022. If you have successfully answered the ques-
tions given in the preceding steps, then you already understand
why we input the status of the 8255 chip into the accumulator.
In the space below, explain why.

2. The status word for mode 1 operation when either port A or
port B is an output port is given by Intel as in Fig. 6-19.
(a) What is the significance of bits D3, D6, and D7?

(b) What is the significance of mask byte 010 at LO memory
address 027? Why do we use it rather than either 300 or 100?

147




OUTPUT CONFIGURATION
D, Dg Dy Dy D3 D D, D

Fﬁﬁ,, INTR:I

T T
GROUP A GROUPB
Fig. 6-19. Status word for mode 1 operation with port A or port B as an output port.

INTE, INTR, | INTEg | OBFy

1o | 10

m

3. What changes must be made to the program given in this ex-
periment to permit it to be used for the mode 1 operation of
output port B? Hint: The changes need to be made at the fol-
lowing LO memory address.

LO Memory Address Port A Output Port B Output
001 240
002 015
015 200
027 010

4. Complete the schematic diagram given in Fig. 6-20 for the mode 1
output operation of port B. We want eight lamp monitors at port
B, a pulser input to the appropriate input at port C, and the OBFx
and INTRy outputs connected to a pair of lamp monitors.

EXPERIMENT 6-2
MODE 1 INPUT OPERATION OF THE PPI

Purpose

The purpose of this experiment is to demonstrate the mode I input
operation of the 8255 integrated-circuit chip. The use of handshaking
is again illustrated.

Schematic Diagram of Circuit (Fig. 6-21)

Nortk: If you have just completed Experiment 6-1, you will have
other hardware connected to your interface. This is not shown in
this diagram for the sake of clarity.

Step 1

The author recommends that you use the 7490 decade counter cir-
cuit in Fig. 6-23 to follow and monitor the behavior of the program
in Fig. 6-22 and 8255 circuit. Connect output PCO (INTRp) to the
7490 decade counter.

148




Pa7 2
a6 [32—
PAS 22—
pag [0
PA3 [H—
Paz [2—
RESET —Do—“ RESET Pal [2—
PAO [F— |
W —2 w6 I
po7 (2 |
oot 8] ¥R [2s
[23
a7 —Do—‘__ 122
sl o (21
8 2
A —2 A Cie
a0 — a0 peo (2
b7 —24 o7 pc7 0
T [u
—2s] [z
DATA T [
—] [
BUS [e
33 [is
oo — po pco |-
7
l 8255A or 8255A-5
+
Fig. 6-20. Sch Jiag! to be pleted.

Step 2

Shown in Fig. 6-24 are the Intel Corporation specifications of the
mode 1 operation of ports A and B as input ports.

In this experiment, you will use mode control word 246 to con-
figure port B as an input port. Bit D3 is at logic 0, which means that
PC6 and PC7 are configured for output operation. The port C status
word for mode 1 operation when either port A or port B is an input
port is given by Intel as shown in Fig. 6-25. Bit DO (INTRy) of this
port C status word is set to logic 1 when data is available at port B
for input to the microcomputer (assuming that INTE = 1). Bit DO
is checked in the program and data is input from port B only when
DO (INTRg) goes to logic 1.

Step 3
Wire the circuit shown in the schematic diagram (Fig. 6-21).
Wire port C bit PC2 (STBg) to the 1 output on the pulser.

Step 4
Load the program into memory and execute the program.

149




2
07 28 D] pa7 LA
S E
D5 H :
Dl—i .
033l : |
D2 —-32] : I
e pio [
2
po—2H 0o
PC2 ;
8255 pe6 |16 ]::f PULSERS
PCa |—o "
pes |
7404 pc1 |12 LAMP
M08 T pe7 |—15 5Bl MONITORS
8 pe3 —1le—
A Al i
ol e D U
Jry—1 TNTRy
P87 i LOGIC
W__iq® P SWITCHES
T __%q WR
T : L0GIC
—{Do-38 RESET : SWITCHES
7404 P8O

Fig. 6-21. Circuit for Experiment 6-2.

Step 5

Set the logic switches to 01001001 and press and release the
pulser. What do you observe at port 07 What change do you observe
on the 7490 decade counter?

We observed an output of 111 at the port 0 LED display, as expected.
The 7490 counter detected a single count. The lamp monitor con-
nected to PC1 (IBFgp) remained lit for as long as the pulser was
pressed.

150




Program (Fig. 6-22)

/
/PPl MODE | INPUT PROGRAM
4

DB CNTRL 203
DB DATA3 202
DB DATAZ2 201

/LOAD REGISTER PAIR B WITH

/C REGISTER: MODE CONTROL WORD
/B REGISTER: BIT SET CONTROL WORD
/LOAD THE ACCUMULATOR WITH THE
/MODE CONTROL WORD

/0UTPUT IT TO THE

/CONTROL REGISTER

/LOAD THE ACCUMULATOR WITH THE
/BI1T SET/RESET CONTROL WORD
/0UTPUT IT TO THE

/CONTROL REGISTER

/INPUT THE 8255 STATUS BYTE FROM
/PORT C

/0UTPUT PORT C STATUS BYTE FOR DISPLAY

/MASK BIT DO:-INTRB

/INTRB ="0"?

/YES, LOOP TO WAIT FOR DATA TO BE
/LOADED INTQ THE PPI PORT B INPUT BUFFER
/INTRB ="1", SO INPUT THE DATA AT

/PORT B

/0UTPUT DATA

/DEVICE CODE OF PORT 0O

/JUMP TO LOOK FOR NEW DATA

Fig. 6-22. Program for Experiment 6-2.

*003 000
003 000 001 Lx1B
003 001 246 246
003 002 005 005
003 003 171 MOVAC
003 004 323 out
003 005 203 CNTRL
003 006 170 MOVAB
003 007 323 ouT
003 010 203 CNTRL
003 011 333 WAIT, IN
003 012 202 DATA3
003 013 323 ouT
003 014 000 000
003 015 346 AN1
003 016 001 001
003 017 3t2 Jz
003 020 011 VALT
003 021 003 0
003 022 333 IN
003 023 201 DATA2
003 024 323 ouTt
003 025 000 000
003 026 303 JMP
003 027 011 WAIT
003 030 003 o
Step 6

Change the logic switch

setting and press and release the pulser

after each change. In each case you should observe that the data at
the logic switches appears at port 0.

+ 8V GND

o0 —4
0 =2

Pc3 — 4

|5 IIO \

D

7490 |

CLOCK

2 Law
8 MONITORS
A

»OO
=

Fig. 6-23. Decade counter circuit.

151




MODE 11PORT &)

Input Control Signal Definition
hills s on, o T
STB (Strobe Input} N
A “low" on this input loads data into the input latch. e [ e, 5,
A
IBF (Input Buffer Full F/F) 1 po
{ N
A "high” on this output indicates that the data has been q
Ioade.d into the input fatch; in essence, an acknowledgement. v, e,
1BF is set by the falling edge of the ST8 input and is reset _ L
by the rising edge of the RD input. e 2
0 3 [t 10
INTR (Interrupt Request) MODE 1 1PORT 61

A “high** on this output can be used to interrupt the CPU " ’%@
when an input device is requesting service. INTR is set by !

the rising edge of STB it IBF is a “one” and INTE is a
“one”". It is reset by the falling edge of AD. This procedure

allows an input device to request service from the CPU by T o
simply strobing its data into the port. (] | .
INTE A
Controlied by bit set/reset of PC 4. B PCo [ TRy
INTEB o4

Controiled by bit set/reset of PCo.

Courtesy Intel Corp.
Fig. 6-24. Mode 1 operation of poris A and B as input ports.

Step 7
Among what program steps does the program loop once it has been
started? Why?

The program loops between addresses 003 011 and 003 017. This
is the loop in which the INTRp, flag is tested. The program will only
leave this loop when the pulser has been pressed and released and
INTRjz has been set to logic 1.

Change the switch settings to a new 8-bit pattern. Press the pulser
and keep it pressed. Does any action take place when it is pressed in?

INPUT CONFIGURATION
D, Dg DOy D, Dy D, Dy Dy

7
110 { 1o ’ 1BF,
=

INTE, | INTR, | INTE | 1BFg

INTRBI
—

L T
GROUP A GROUP B

Fig. 6-25. Port C status word for mode 1 operation when either port A or port B is an
input port.

152




PULSER PRESSED, INDICATING DATA AVAILABLE

a1

Iy PULSER RELEASED, COMPLETING ACTION

/ ALY
sT8 —b\_R‘PFi INPUT OF DATA
d "\ l-
L

RD A
INTERRUPT STATUS INPUT, TESTED
2

INTR N | | AND ACTED UPON

N\
X

7 /
IBF l\ N |’ BUFFER FLAG CLEARED

INPUT BUFFER READY
WITH DATA TO BE INPUT

Fig. 6-26. Action of pressing and releasing pulser.

No action takes place until the pulser is released. This is shown
clearly in Fig. 6-26.

Step 8
What now happens when you release the pulser? You leave the

loop, obviously. What else occurs? Use the timing diagram of Fig.
6-26 to aid in your explanation.

Action takes place in that the new 8-bit pattern is transferred to the
output port lamp monitors.

Step 9
Change the byte at LO memory address 002 to 004. This control
byte causes the internal flip-flop output, INTEj, to be reset to logic 0.
Again run the program. Repeatedly press and release the pulser
as you change the settings of the logic switches. Do you observe any
changes at output port 0?

We observed no changes.

Explain why the program change at memory address 003 002
had such an effect. (Hint: The Intel literature states that “INTR is
set by the rising edge of STB if IBF is a logic 1 and INTE is a
logic 1.”)

153




When INTE; is a logic 0, the INTRp flag is never set to logic 1
by STB; and so there is no way for the program to exit from the
WAIT loop.

Questions

1. Complete the schematic diagram given in Fig. 6-27 for the mode 1
operation of input port A. You will need eight logic switches at

+5V
26
pa7 |21
Pag 22—
PAS 22—
PAG —‘I"’—
PA3 H—
pa2 2—
RESET —| >0—-322] RESET Pl |B—
PAO F—
W —H R’

pa7 |22

BUT 24 WR 2

[=3

a7 _-DOL 22
s &5 [21

. [[20

A —2 A s

a0 —2 a0 pBo

o7 —24 o7 pc7 |2

28 L

28] [z

DATA -2 MK
T [z

BUS ) e
] [

oo —4 oo pco ¢

T
8255A or B255A-5
Fig. 6-27. Scl ic di to be leted

port A, a pulser to strobe the STB, input, and two lamp monitors
that are connected to IBF; and INTR,.

2. List below the changes that must be made to the program given
in this experiment to permit port A to be used for mode 1 input
operation.

154




LO Memory Address Port A Input Port B Input

001 206
002 005
016 001
023 201

NorEe:Retain the circuit you wired in this experiment for the fol-
lowing experiment.

EXPERIMENT 6-3
COMBINED MODE 1 INPUT AND OUTPUT
OPERATION OF THE PPI

Purpose

The purpose of this experiment is to demonstrate the mode 1
operation of the 8255 for combined input and output using port B
for input and port A for output. The concept of handshaking is also
illustrated. This experiment is a synthesis of the procedures in Ex-
periments 6-1 and 6-2. If you feel you have grasped the procedures
required for mode 1 I/O operation of the 8255, you may want to
write and test a program that will input data (from logic switches)
at port B and output this data (to lamp monitors) at port A. Our
program is listed in Fig. 6-28.

Step 1

Wire the circuit shown in Fig. 6-29. You will also require a bus
monitor as shown in Fig. 6-30.
Step 2

Load the program into memory.

Step 3
Start the program. Set the logic switches to 1111 1111. Is the
data transferred to the lamp monitors? Why?

No, data was not transferred to the port B lamp monitors since the
PPI has not flagged the 8080 that its port B input buffer is full.

158




Program (Fig. 6-28)

/
/THIS PROGRAM INPUTS DATA FROM PORT B
/AND OUTPUTS IT TO PORT A

DB PC2SET 005
DB PORTA'200
DB PCRTB 201
DB PORTC 202

DB CNTRL 203

*003 000
003 000 001 LXIB /LOAD REGISTER PAIR B WITH:
003 001 246 246 /PP1 MODE CONTROL WORD
003 002 015 015 /PPL BIT-SET CONTROL WORD(SETS INTEA)
003 003 026 MVID /LOAD REGISTER D WITH:
003 004 005 PC2SET /PPl BIT-SET/RESET WORD (SETS INTEB)
003 005 17! #0tsC /LOAD A WITH MODE CONTROL BYTE
003 00¢ 327 out /OUTPUT IT TO THE
003 007 203 CNTRL  /PPI'S CONTROL REGISTER
003 010 170 MOVAB  /LOAD A VITH PCESET
003 011 323 ouT /0UTPUT IT TO THE
003 012 203 CNTRL  /PPI'S CONTROL REGISTER
003 013 172 MOVAD /LOAD A WITH PC2SET
003 0la 323 ouT /QUTPUT IT TO THE
003 015 203 CNTRL /PP1'S CONTROL REGISTER
003 016 333 WAITB, IN /INPUT PPI'S STATUS FROM PORT C
003 017 202 PORTC
003 020 346 ANI /MASK OUT ALL BITS
003 021 00! 001 /EXCEPT BIT DOCINTRB)
003 o022 323 out /0UTPUT RESULT TO PORT O
003 023 000 000
003 024 312 Jz /INTRB=""0",S0 TRY AGAIN
003 025 016 WAITB
003 026 003 [¢]
003 027 333 IN /INTRB ="1", S0 INPUT DATA i
003 030 201 PORTB /FROM PORT B |
003 031 323 ouT /O0UTPUT DATA BYTE TO: |
003 032 200 PORTA /PORT A i
003 033 333 WAITA, IN /INPUT PPl STATUS WORD FROM
003 034 202 PORTC /PORT C
003 035 346 AN
003 036 0l0 010 /MASK OUT ALL BITS EXCEPT |

/BIT D3(INTRA)
003 037 312 JzZ /INTRA="0", SO TRY AGAIN i
003 040 033 VAITA
003 041 003 0
003 042 303 JMP /INTRA ="1". DATA ACCEPTED AT
003 043 016 WAITB /PORT A SO JUMP TO INPUT
003 044 003 [} /A NEV BYTE FROM PORT B
Fig. 6-28. Program for Experiment 6-3.

Step 4

Press and release pulser #1. This is the port B data strobe signal
STB;:. Does this cause the data to be transferred? Why?

156 i




Schematic Diagram of Circuit (Fig. 6-29)

Note: The schematic diagram represents the circuitry that was
connected and used in Experiments 6-1 and 6-2. If all your wiring
is intact, go on to examine the program that is provided or to write
your own program.

5y GND
126 |7
o7—207 oa7 |z
— 28} D we
ps—29] P R—— mowtToRs
N E :
m—n{z : : LAMP
b2 : : MONITORS
o1 —3y PAO
p0 —344 Do
PC2
B 0
A
8255 P« :” PULSERS
PCA L — ox 1
pcs | A
7404 12
po 12l L
N —>obq TS pe7 |—15 T5EB|  MONITORS
a8l PC3 __Lz.:ﬁ_ﬁ_ INTR,
PCO _LLI—*_‘
.
Mn—2 40 TR,
w__sd pe7 122 LOGIC
W Pl SWITCHES
BT 65 WR :
M 1
ST : LOGIC
SET—{ o025 RESET i SWITCHES
7404 PBO

Fig. 6-29. Circuit for Experiment 6-3.

Yes. This action strobes data into the port B input buffer, causing
the port B input buffer full flag to go to logic 1. The program detects
this, inputs the data at port B, and then outputs it to port A.

157




DATA BUS BUS MONITOR
Z ENABLE ————J

Fig. 6-30. Bus monitor arrangement.

Step 5

Change the logic switch setting to 0000 0000. Again press and
release pulser $ 1. Is this data transferred? Why? If you are in doubt,
examine the program at WAITA.

No, data was not transferred since the program is now waiting for
the output device (lamp monitors) to acknowledge its receipt of the
data byte.

Step 6

Press and release pulser #2, the acknowledge control signal for
port A (ACK,). What is now observed at port A?

You should observe that the Os are finally transferred. Remember
that you just acknowledged receipt of the 1s, so press and release
pulser #2 again to indicate that the lamp monitors have received
the Os.

Step 7
Repeatedly change the switch settings and press and release pulser
#2 and pulser #1. Is the switch data transferred now?

Yes, after a complete cycle of pulser #1 and pulser #£2 activations
have been completed.




PA,PA, @ PAyPA I>
RD —=0) PC4 f«— 578, WA —=0 PC,|——» OBF,
PCs }——» 1BF, PCq [+—— ACK,
PC3}—— INTR, PC; [—— INTR,
2 2
PCq 7 fa—rf— 110 PCy g le—rs 110
s, e, 8 > PB,PB,
WR——0f pc,|— GBF, AD—=0) [ S—
PC, |+—— ACKy PCyf—— 1BFy
PCof——- INTR, #Co|—— INTRg
PORT A — (STROBED INPUT) PORT A — (STROBED OUTPUT)
PORT B — (STROBED OUTPUT) PORT B ~ (STROBED INPUT)

Courtesy Intel Corp.
Fig. 6-31. Two mode 1 combinations for ports A and B.

Step 8
Shown in this step are block diagrams (Fig. 6-31) for the use
of two of the four possible mode 1 combinations for ports A and B.

Which of these block diagrams applies to this experiment? Provide
evidence with your answer.

The diagram on the right-hand side represents the mode 1 configura-
tion that has been implemented in this experiment since port B is
used for input (from our logic switches) and port A is used for out-
put (to the lamp monitors).

Step 9
Write the mode 1 status word format for this particular experiment.

159




The required mode 1 status word can be constructed from Fig. 6-9,
remembering that group B is configured for input and group A for
output.

The program given in this experiment employs two of the 8 bits
for the mode 1 status word. Which bits are used? Why?

In loop, WAITB, of the program we have monitored bit DO (INTRg)
of the mode 1 status word. This signal goes high when data has been
loaded into the port B input buffer and is ready for input to the
8080A. In loop, WAITA, we have monitored bit D3 (INTR,) of the
mode 1 status word since this signal goes to logic 1 when the output
peripheral at port A has acknowledged receipt of the data sent to
port A. We do this in this experiment by pressing and releasing

pulser #2 (ACK,).

Step 10

A set of timing diagrams that depict the operation of this program
are shown in Fig. 6-32.

Reset your microcomputer, run the program and switch to single-
step operation. STBj is generated by pulser #1 and ACK, is gener-
ated to pulser #2. Begin single-stepping through your program while
monitoring IBFg, INTRg, OBF,, and ACK,. Through what steps is,
the program looping?

The program is in the loop, WAITB between memory locations
003 016 and 003 026, waiting for INTRg to go high. This situation
is depicted on the far left of the timing diagram. Step through the
loop and stop at the third machine cycle, the input machine cycle,

160

1




INTR, 45 h—f f___r_

I . !

WAITING FOR WAITING FOR WAITING FOR MAITING FOR
STS! TO SET R'KA TO SET mn TO SET WA TO SET
INTRy INTR, INTRy INTR,

Fig. 6-32. Program timing diagrams.

of the input instruction. Now press and release pulser #1, the STBy
signal and continue single-stepping. Note below what you observe.

161




We observed:

(a) IBFjy went high when the pulser was pressed.

(b) INTR; went to logic 1 when the pulser was released. Both
these actions were observed in the mode 1 status word and
on the lamp monitors.

(c) Data from the logic switches was input during the third ma-
chine cycle of the IN instruction at memory location 003 030.
INTR; was reset here.

(d) The IBFy flag was reset during the next machine cycle.

(e) The program, after outputting the byte to port A, then looped
in the WAITA loop (memory locations 003 033 through
003 041) waiting for INTR, to go high.

Now stop in the third machine cycle of the input instruction at
location 003 034. You are observing the mode 1 status word on the
bus monitor. Press and release pulser #2. What changes do you ob-
serve to the mode 1 status word and on the lamp monitors at port C?

When the pulser was pressed, OBF, went to logic 1. When the pulser
was released, INTR, went to logic 1.
Continue single-stepping. Where does the program go? Why?

The program enters the loop, WAITB, after exiting WAITA, to input
a byte from port B.

Repeat the entire procedure of Step 10 again and confirm the
remainder of the timing diagram.

Step 11

We have used the single-step procedure here to illustrate the
timing operation of the PPI for mode 1 input and output operation.
From Step 10, can you suggest an important application of the single-
step facility?

162




The single-step facility is very useful in debugging an interface and
its associated software driver. By single-stepping through the soft-
ware driver and stopping at the third machine cycle of input and
output instructions, the bytes that are input from the interface as
status and data can be checked for any possible errors. Similarly, the
data bytes that are output to the interface can be checked.

NotE: Retain your circuit for the following experiment.

EXPERIMENT 6-4
MODE 1 POLLED-INTERRUPT PPI OPERATION

Purpose

The purpose of this experiment is to illustrate the mode I polled-
interrupt operation of the 8255.

Step 1

Wire the circuits shown in Fig. 6-35. Note that all the wiring con-
nections to the PPI are identical with those used in Experiment 6-3
except for the reconnection of the INTR, and INTRg lines. Hence,
if you have completed this experiment, only the INTR, and INTRg
connections need be altered. Make sure that pins PC2 (STBg) and
PC6 (ACK,) of the PPI are connected to the logic 1 outputs of the
two pulsers.

Step 2
Load the program into the read/write memory of the micro-
computer.

Step 3

Study the program listing. You will see that there are four major
blocks of instructions of varying lengths. In the space below list the
starting memory locations for each of these blocks and briefly de-
scribe their functions.

163




Program (Fig. 6-33)
003 127 015 LOOP2, DCRC

003 130 302 JNZ
003 131 127 LOGP2
003 132 003 0
003 133 303 JMP
003 134 123 LOOP1
003 135 003 0
/7 .
’ .
/ .
/ .
/ .
*003 150
003 150 365 SEARCH, PUSHPSV /COMMENCE SEARCH FOR SOUFCE
/0F INTERRUPT
003 151 305 PUSHE
003 152 333 IN /INPUT MODE 1 STATUS WOPD
003 153 202 PORTC
003 154 107 MOVBA  /SAVE IT
003 155 34¢€ AN /MASK EIT D3 C(INTRA)
003 156 010 010 /PORT A INTRRUPTING?
003 157 302 JNZ /YES! -JUMP TO POFT A |
003 160 250 PASUCE /SERVICE ROUTINE |
003 161 003 o
003 162 170 MOVAB  /NO, RESTOPRE MODE 1 STATUS WOPD
003 163 34€ ANI /MASK EIT DO =INTEE !
003 164 001 001 /PORT ® INTERRUPTING?
003 165 302 JNZ /YES! -JUMP TO POFT © |
003 1€6 210 PBSUCE /SEPUICE ROUTINE !
003 1€7 003 o !
003 170 301 POPE /HC? -1GHOTRE INTEPRUPT |
003 171 3€1 POPPSY
003 172 311 RET
/ -
/ .
/ .
/ .
7/ .
%003 210
003 210 333 PESVCE, IN /INPUT DATA FROM POET B
003 211 201 PORTE
003 212 323 ouT /OUTPUT 1T TO POFT O
003 213 000 000 .
003 214 127 MOVDA
003 215 303 JHP /JUMP TO POPT A
003 216 250 PASVCE /SERVICE ROUTINE
003 217 003 0
/ .
/ .
/ . ¢
/ .
/ .
%003 250
003 250 024 PASVCE, INRD /INCREMENT D
003 251 172 MOVAD  /MOVE CONTENTS OF D TO ACCUMULATOP |
003 252 323 ouT /QUTPUT CONTENTS OF D TO
003 253 200 PORTA  /PORT A |
003 254 301 POPB /RESTORE MI1CROCOMPUTEF STATUS |

Fig. 6-33. Program for

164




Schematic Diagram of Circuit (Fig. 6-35)

The major functional blocks of instructions commence at LO
memory addresses 100, 150, 210, and 250. The first block is the
PPI initialization code and wait loop. The second block is concerned
with polling the PPI to determine the source of the interrupt. Blocks
three and four are the port B and port A service routines respectively.
The port B service subroutine inputs the logic switch data from port

003 255 361 POPPSW
003 256 373 El /ENABLE INTERRUPTS
003 257 311 RET

DB MODE 24¢

DB PORTA 200
DB PORTB 201
DB PORTC 202
DB CNTPL 203
DB PCESET 015
DB PC2SET 005

*003 050
003 050 303 JMP /PPl REQUIRES SEPVICE
003 051 150 SEARCH /JUMP TO SEARCH FOF
003 052 003 0 /SOURCE OF INTERRUPT

/ .

/ .

/ .

/ .

/ .

*003 100
003 100 061 START, LXISP /BEGIN PPl INITIALIZATION FOR
003 101 377 377 /MODE 1, POLLED INTERRUPT
003 102 003 003 /OPERATION
003 103 07¢€¢ MVIA /LOAD MODE | CONTROL WOPD
003 104 246 MODE /PORT A: OUTPUT; PORT B: INPUT
003 105 323 ouT
003 106 203 CNTRL
003 107 076 MVIA /SET PPl EIT D6 (INTEA)
003 110 015 PC6SET
003 111 323 ouT
003 112 203 CNTRL
003 113 076 MVIA /SET PPI EIT D2 (INTEB)
003 114 005 PC2SET
003 115 323 ouT
003 116 203 CNTRL
003 117 373 El /ENABLE THE &080A FOR INTERRUPTS
003 120 001 WAIT, LX1E /BEGIN EXECUTION OF A
003 121 377 377 /WAIT LOOP
003 122 377 377
003 123 005 LOOPI, DCRB
003 124 312 Jz
003 125 120 WAIT
003 126 003 0

Experiment 6-4.




Pin Configuration of Integrated-Circuit Chips (Fig. 6-34)

(B) 7432.

Fig. 6-34. Pin configurations of ICs.

B output to port 0, increments the data byte in register D, and out-
puts the results to port A. The port A service subroutine (PASVCE)
increments the contents of register D and outputs the result to port A.

Two additional features should also be noted while studying the
program. First, the device codes used to address port A, B, C, and
the control register of the PPI are the same as those used in Experi-
ments 6-1 to 6-3 since the wiring of the 8255 control lines TS, Al,
and AO in this experiment is the same as that used in the earlier ex-
periments. Second, since this is an interrupt experiment, the 8080A
interrupt enable flag must be set before the microcomputer can be
interrupted. The flag is set, using the EI instruction, after the PPl
has been initialized to ensure that both INTR, and INTRj are both
at logic 0.

166




>
o
=

ls |7
—2 o7
m_% : i B——1
- R MONITORS
0s—= B It
] ]
p3—al : 1 ™
n—24: PR monrToes
n—33 ; 579 i s—
0o —34400
pc2
Pes
8255
PCS
o Pt
7 DII QT pc7
[ ] re3
PCO
-
»87
W—Sg B :
WY %y R :
st é ‘—
7404 PEO
{A) PPI connections.
+5V GND
I]s 8
] 2 |3 ~p7
8 5 D6
6 g P
o 10 9 04
2 3 D3
4 8 5 D2
] % i D
10 9 00
1 !15
+5V GND

(B) 3-state buffer circuits.
Fig. 6-35. Circuits for Experiment 6-4.

167




Step 4
Execute the program commencing at address 003 100. Is the INT
line at logic 1? If not, why not?

The interrupt line, INT, should be at logic O at this stage. A logic 1
would indicate that either INTR, or INTRy were at logic 1, hence
requesting service for either port A or port B. This should only occur
if the STBg or ACK, pulsers have been pressed.

Step 5

Set the logic switches to 000. Now press and release pulser #2
(8TBjg). Describe in the space below what you observe and relate
this to the expected action of the program.

Pressing STBj loads port B with the data byte set on the logic
switches. When the pulser is released, INTRg and hence INT are set.
This causes the microcomputer to be interrupted. A logic 0 on IACK,
acknowledging the interrupt, causes the byte 357 or RSTS5 to be
“jammed” into the instruction register. Program controi is vectored
via jumps at 000 050 and 003 050 to location 003 150 where
through polling the PPI, it is determined that port B is interrupting.
The port B service routine outputs the contents of port B firstly to
port O and then, after incrementation, to port A. The data bytes
000 and 001 should be observed then at port O and port A re-
spectively.

Step 6
Press and release the ACK, pulser. Describe in the space below
what you observed each time the pulser was pressed and released.

168




We observed that the contents of port A were incremented each
time the pulser was pressed.

Step 7

Connect your bus monitor circuit to the data bus with its latch
enable input wired to logic O so that the monitor is continuously
enabled. Run your microcomputer in single-step mode. Press the
STB; pulser and note what happens to IBFg. Release TTB; and note
what happens to INT. Now commence single stepping through your
program. After the microcomputer has completed its current instruc-
tion, you will observe the address of the instructior that will be
executed on return from the interrupt being pushed on to the stack,
the RSTS instruction on the data bus, and then program execution
as described in Step 5. Write down the bytes that appear on the data
bus and compare these with the program listing. Note the changes
in INTR,. The timing diagram is the same as that given in Fig. 6-32.
Repeat the exercise when ACK, is pressed. Once again take note of
the changes in the PPI control and status lines. You will find Figs.
6-4 and 6-6 useful in understanding the operation of the circuit.

NoOTE: Retain your program and circuit for the next experiment.
EXPERIMENT 6-5
MODE 1 VECTORED INTERRUPT OPERATION OF THE PPI

Purpose
The purpose of this experiment is to illustrate the mode 1 vectored
interrupt operation of the PPL

169




Schematic Diagram of Circuit (Fig. 6-36)

+5V  GND
l'6 |8
1 z 3 07
4 > .06
0_* 6 7 05
IBFg 10 9 D4
1 5
TACK
1|15
2 7 P -
- B . D2
0~§— 7—-—. Nl
L10} e - o
16 |8
45V GND

Program (Fig. 6-37)

003
003
003
003
003

603
603
003
003
003

Step 1

010
011
012
013
ola

030
03t
032
033
034

365
305
303
210
003

Fig. 6-36. Circuit for Experiment 6-5,

DV PASVCE 003 250
DW PBSVCE 003 210

*003 010
PUSHPSW /STORE PROGRAM STATUS
PUSHB
JMP /JUMP TO THE PORT A
PASVCE /SERVICE SUEROUTINE
o]

/ .

/ .

/ .« .

/ .

/ .

*003 030
PUSHPSV /STORE PROGRAM STATUS
PUSHEB
JHP /JUMP TO THE PORT B
PBSVCE /SERVICE SUBROUTINE
o]

Fig. 6-37. Program for Experiment 6-5.

The circuit for this experiment is the same as that used in the
previous experiment except for two changes that have been made at

170




the inputs of the 8095 (SN74365) three-state buffers and noted
with an asterisk. Make the alterations shown in the schematic diagram
of Fig. 6-36.

Step 2

The port A and B service routines and the PPI initialization code,
which were loaded into memory in Experiment 6-4, will again be
used in this experiment. Add the program instructions listed in Fig.
6-37 to memory. Note that the instructions at locations 003 050
through 003 052 and 003 150 through 003 172 will not be used in
this experiment.

Step 3

The 8095 three-state buffer circuit shown in the schematic diagram
is used to generate the two vector restart instructions that are jammed
into the instruction register during a port A or port B interrupt. To
generate these two vector restart instructions, the port B status line
IBFy is wired to the interrupt instruction buffer. By referring to
Figs. 6-4 and 6-6, deduce the logic states of IBF, during an interrupt.
Complete Table 6-1 and hence deduce the restart instructions which
are jammed into the instruction register during data input from port
B and data output to port A.

Table 6-1. Restart Instruction Data

RST Instruction

IBFa Binary Octal

Port A Input

Port B Output

During port B input, IBFg is at logic 1 and an RST 3(337) instruc-
tion is generated. During port A output, IBFg is at logic 0 and an
RST 1(317) instruction is generated.

Step 4

Execute the program commencing at location 003 100.
Step 5

Set the logic switches to 377. Press and release the STBy pulser.
Describe and explain what you observe.

m




We observed that the data byte 377 was output to the MMD-1 port
0 and the data byte 000 was output to the lamp monitors at port A.
This is caused by microcomputer operation being vectored directly
to the port B service routine whose operation was described in Step 5
of Experiment 6-4.

Step 6
Now press and release the ACK, pulser several times. What do
you observe?

We observed that the data byte at the port A lamp monitors was
incremented by one each time the pulser was pressed and released.

Step 7

Switch the microcomputer to single-step operation. Press and re-
lease the ACK, pulser. Now single-step through the microcomputer
execution of the port A interrupt. Watch for the RST 1(317) in-
struction on the data bus using a bus monitor which is permanently
enabled. Note the logic states of OBF, and INT as you step through
the program and compare these with those of Fig. 6-6. To keep
track of program execution, you will find it helpful to write down
in the space below the octal bytes you observe on the data bus and
to compare these with the program.

The first few bytes which we observed were as follows:

172




% okok

317
003
127
303
010
003
365

etc.

Completion of current instruction
RST 1 instruction

HI address byte of program counter
LO address byte of program counter
Jump instruction in hex at 000 010

173




Mode 2 Operation:
Bidirectional 1/O

7-1. INTRODUCTION

With the introduction of the microcomputer the implementation of
digital process control systems using a number of computers is
becoming more popular. In this type of distributed computer control
system a number of small computers—increasingly microcomputers
—are dedicated to control small portions of the overall process. In
a chemical process, for example, a microcomputer can be used to
control a small portion of the process such as the pressure or tem-
perature in, say, a distillation column. With microcomputers used
in this way a larger computer with increased speed, memory, and
disc storage (a minicomputer or a larger, more powerful microcom-
puter) is then used to supervise the operation of the overall process
by monitoring and altering, by command as necessary, the operation
of the dedicated microcomputer controllers. This leads naturally to
the concept of a hierarchy of computer control. In the example
given, the supervising computer was at a higher level than the dedi-
cated microcomputers. Because of this, the supervising small com-
puter or microcomputer is often referred to as the master while the
lower-level, dedicated microcomputers are called slaves.

The master-slave concept is illustrated in Fig. 7-1, which also
shows the role which the PPI can play in this situation. The essential
requirement of a distributed computer control system is a two-way

174




MASTER

AFEELE

ﬁ DATA/ADDRESS/CONTROL

SYSTEM |
BUS

DATA, CONTROL

[ ]
D 0

i 7

PROCESS PROCESS
A A

SLAVES

Fig. 7-1. A distributed computer process control which illustrates the way in which the
face element b the bidirectional data busses of the master
and slave MPUs,

PPI is used as an i

transfer of data between master and slave microprocessor units
(MPUs). This data may be in the form of blocks of data which are
collected by the slave and transferred back to the master for process-
ing; or it may be set point data which is passed by the master to the
slave so that the slave can hold a process parameter (temperature,
pressure, thickness, etc.) at a required value. Hence the slave MPU
must be connected to the data and control bus of the master MPU.

The interconnection of a master MPU with various slave MPUs
must be done with care to ensure valid data transfer and to avoid

175




a situation where a slave MPU loads the data bus of the master MPU.
For this reason an interface circuit is required between the master
and each slave MPU. The PPI, in its mode 2 operation, provides
the required interface. The necessary requirements of this interface
circuit can be summarized as follows:

® A two-way or bidirectional data flow must be allowed.

® Because the transfer of data to and from the master may occur
at any time, handshaking signals are required to ensure an or-
derly data flow between master and slave.

® Since the data buses of the master and slave MPU must be
interfaced, tri-state buffers are required between the master
MPU and the PPI (to ensure that the slave MPU does not
load the master MPU data bus) and between the PPI and the
slave MPU (to ensure that the data lines of the master do not
load the slave MPU data bus). The first three-state buffer, on
the master MPU side of the PPI, is enabled by the PPI chip
select line. The second three-state buffer on the slave side of
the PPI is enabled by a handshaking signal from the slave MPU
when it is ready to accept data from the master.

® Data that are to be transferred from master to slave MPU must
be latched by the interface circuit and held until the slave MPU
is ready to accept the data.

7-2. PPl MODE 1 OPERATION FOR
BIDIRECTIONAL DATA FLOW

Fig. 7-2 shows a schematic diagram of how the PPI can be used
in its mode 1 configuration to implement the interface which is
needed between a master and a slaye MPU for bidirectional I/0. It
must be emphasized from the outset that the PPI is not normally con-
figured in this way to support bidirectional I/O between two MPUs.
The reason for including the diagram is to clarify the requirements
of the interface and to introduce the features of mode 2 operation.

Referring then to Fig. 7-2, the PPI has been configured with port
A used for data output (and therefore to transmit data to the slave)
and port B used for data input (and therefore to receive data from
the slave MPU). Consider first the transfer of data from slave to
master MPU. When the slave is ready to transmit data to the master,
it must write the data into port B of the PPI which, as far as the
slave is concerned, is a unique handshaking output port. By strobing

176




MASTER MPU
Al5 A1 A0 DB7-DO

=] =
m| ™
=
=

> WR oS ‘ 1/0
fINTRB RD WR CS AL A0 DO-D7 chég._ >
e PP| INTR

PC6 A A
PORT B PC1 PC2 PORT A PC7-A%
o~ dl
0BF
18Fg TNPUT
THREE-STATE
1 BUFFER [+
STB,|  81LS98
OUTPUT
SLAVE U
pATA [ ]
BUS
0UT 006 ﬁ |
D0-D7
SLAVE MPU OUT 507

Fig. 7-2. lllustration of how the PPl could be configured in mode 1 operation to support
bidirectional 1/O between a master and a slave MPU.

the STBj line with an active low device select pulse, the slave thus
latches its data into port B of the PPI. The PPI responds in the usual
way by raising its IBFy, line to acknowledge receipt of the data from
the slave and to signal the master that a data byte is available for
input. Once the master has read port B for the data byte from the
slave MPU, the PPI drops its IBFy line to signal the slave that the
first data byte has been transferred and that port B can be loaded
with another data byte. The data transfer just described is simply
a mode 1 handshaking input operation by the master MPU using

177




the PPI for data synchronization. The only difference between this
description and that of Section 6-2, where mode 1 input was dis-
cussed, is that the source of data in this case is a second micro-
computer.

Consider now the transfer of data from master to slave. A PPI
output operation through port A in Fig. 7-2 is used. The data lines
of port A cannot be connected directly to the data bus of the slave
MPU, however, since port A of the PPI appears as an input per-
ipheral to the slave MPU and would load its data bus. The solution,
as in all microcomputer input operations, is to employ an 8-bit three-
state buffer between port A and the slave MPU data bus. The mode
1 handshaking lines of port A are then used to synchronize data
transfer from the master to the slave as follows. A data byte is first
sent by the master to port A of the PPI in the usual way. This op-
eration causes the OBF, flag to go low to indicate that the data has
been latched at port A. When the slave MPU detects that the OBF,
flag is low, it inputs the data that is latched at port A by enabling
the three-state buffer, which is between the PPI and the slave MPU
in Fig. 7-2, with a device select pulse. Note that the device select
pulse is also used to strobe ACK, and so to advise the PPI that the
data at port A has been received by the slave. With OBF, now high
as a result of the ACK, pulse, the master is free to load port A with
a further byte for transfer to the slave MPU.

Hence the essential hardware features of this master/slave inter-
face are:

® The need for a three-state buffer between port A and the slave
MPU data bus since, as far as the slave is concerned, the data
transfer just described is a simple handshaking input operation.

® The use of the port A handshaking signals to again synchronize
the data flow.

® The need to connect the PPI to the master microcomputer as
an 170 device. In the illustration in Fig. 7-2 the PPI was wired
for memory-mapped 1/0.

As a final generalization from this discussion, it should be noted
that for successful master/slave data transfers both the master and
the slave must monitor the IBF and OBF flags. The details of this
are discussed in Section 7-4. Let us first look at how the PPI mode 2
configuration of port A achieves the same master/slave data transfers
described above.

178




7-3. MODE 2 PPl FEATURES

In Fig. 7-3 the assignment of the lines of ports A to C is shown
when port A is configured to mode 2 operation. Port A is now a
bidirectional I/O port which is supported by five port C lines (PC3
to PC7) as handshaking control lines. Port B can be configured for
mode O simple I/O (in which case the port C lines PCO-PC2 are
available for input/output), or it can be configured for mode 1
handshaking input or output (in which case port C lines PCO-PC2
have their usual assignment as handshaking control lines). Let us
now look more closely at port A. Fig. 7-4 shows the functional ar-
rangement of port A when the PPI is configured for mode 2 opera-
tion. Port A is now a true bidirectional port and is designed to
provide the interface between two microcomputers or between a
microcomputer and a peripheral device which transmits and receives
data. A floppy disc unit is an example of this type of peripheral
although floppy discs are usually interfaced to a microcomputer
through a dedicated floppy disc controller integrated circuit such
as the Western Digital DM1771. Compare now the PPI lines in Fig.
7-2 with the mode 2 PPI lines which are illustrated in Fig. 7-4 and
which are used to implement an equivalent bidirectional I/O struc-
ture. In Fig. 7-4 assume that, as in Fig. 7-2, the PPI is wired to the
master MPU and that the master is therefore to the left of the PPI.
In the mode 1 implementation example of Fig. 7-2 two PPI ports,

{ ADDRESS BUS ?
s CONTROL BUS )
N DATA BUS !
RD,WR D7-Dg Ag—Aq
3
8255
MODE 2 8 PCy PC, PC, PCy PC; PC5 PCq  PCq a
8 I T I I 8
58, ACK,
PByPBy e INTR 1BF,  OBF,  PA;PAg
CONTROL —— e o

PORT A CONTROL
DIRECTIONAL
BUS

PORT B MAY BE
MODE 0 OR MODE 1

Fig. 7-3. PPl interface line assignment when port A is configured for mode 2 operation.

179




—— INTR,

=

—— obF,
}OUTPUT
* HANDSHAKING

SIGNALS

fe———
I,

}INPUT

——— 107,

Cyq fo—F—= 10

B, O, O Di 0; D,

(A) Block diagram for port A.

CONTROL WORD

D, 9

[ ]

DOl

PC0

1= INPUT
0= 0UTPUT

L PORTE
1= INPUT
9= 0UTPUT

L————————= GROUP 8 MODE
0= MODE 0
1= MODE 1

(B) Mode control word.

Fig. 7-4. Functional block diagram for port A when the PPl is configured by mode control

word for mode 2 operation.

A and B, were needed to effect a transfer of data in either direction
between master MPU and slave MPU. In mode 2 PPI operation
(Fig. 7-4), port A is configured as a true bidirectional port for data
transfer between master and slave, and so frees port B for additional
mode 0 or mode 1 input/output tasks associated with the master
MPU. In addition, it can be seen that in both figures, the same sets
of handshaking signals are used to synchronize data transfers. The
mode 2 PPI configuration then is simply a concentration of the mode




1 implemented, bidirectional 1/0 interface shown in Fig. 7-2 into
a single port (A) for data transfer and five lines of port C (PC7-
PC3) for handshaking.

Consider now the function of each of the mode 2 handshaking
control signals. For mode 2 data input to the PPI (this is equivalent
to data transfer from slave to master MPU in Fig. 7-2):

® STB,, the strobe input line, loads data from the slave MPU into
the port A input latch when set to a logic low.

® IBF,, the input buffer full flag, is an active-high acknowledge-
ment signal indicating that data has been loaded into the PPI's
input latch.

Mode 2 data input to the PPI through port A is identical to a mode
1 input operation. The mode 2 handshaking signals, STB, and IBF,,
are identical in meaning and function to the mode 1 input hand-
shaking signals which were discussed in Chapter 6 and used in Fig.
7-2. The major difference between mode 2 and mode 1 input opera-
tions is in the type of device which would be wired to the lines of
port A of the PPI. For mode 2 a device capable of both providing
data and receiving data is connected to port A. For mode 1 a pe-
ripheral which only provides data, such as an A/D converter, would
be connected to port A.

For mode 2 data output from the PPI (this is equivalent to
data transfer from master to slave in Fig. 7-2):

® OBF,, the output buffer full flag, goes to a logic O when the
master MPU has written data into the port A output latch.

® ACK,, the acknowledge input is sent to a logic low by the
slave MPU to flag the PPI that the data latched at port A is
being read. This enables the three-state output buffer of port A.
Under normal conditions, ACK is usually at a logic high and
the port A output buffer is held in its high-impedance state.

‘The important difference between the mode 2 and mode 1 output
configurations of port A is the built-in three-state output buffer
which is enabled by a logic low on the ACK, line in mode 2 opera-
tion. This is necessary because the data held in the output latch of
the PPI is an input to the slave MPU and must be buffered to avoid
any loading of the slave MPU’s data bus. Thus the effects of using
the PPI in mode 2 operation as an interface between master and
slave MPU’s are to free port B and control lines PCO to PC2 for other
tasks and to alleviate the need for an external three-state buffer. Port

181




A, in mode 2 operation, functions as a data buffer between master
and slave microcomputers.

The remaining functions in Fig. 7-4, namely, INTE 1, INTE 2,
and INTR,, are concerned with the means by which the PPI advises
the master MPU that a master-to-slave transmission has been com-
pleted or that it has received data from the slave. In the first instance,
OBF, goes high to indicate that a master-to-slave data transmission
has been completed. In the second instance, IBF, goes high to indi-
cate that the PPI has received data from the slave. In either event,
INTR,, the interrupt request flag (PC3 in Fig. 7-4) goes to logic 1
provided that INTE 1 (in the case of OBF,) or INTE 2 (in the case
of IBF,) is also high. The INTE 1 and INTE 2, interrupt enable
flags, are internal flip-flops whose function in controlling the genera-
tion of interrupts by OBF, and IBF,, respectively, is similar to the
function and operation of the mode 1 interrupt enable flags, INTEA
and INTEg. The INTE 1 and INTE 2 flags are controlled by the
master MPU through bit-set/reset operations on the PPI's PC6 and
PC4 bits, respectively. Hence the INTR, line can be used to interrupt
the master MPU for the control of both input or output operations
and, as discussed in Chapter 6, either vectored or polled interrupts
can be used. For vectored interrupts, OBF, and IBF, can be wired

PORT C BITS

GROUP A GROUP B

STATUS STATUS

MODE 0
INPUT/OUTPUT

D4

o, D0Og Ds [
| O8F, I'N"‘ I 8F, | INTE lmm,l o, 0y Do

EAKALD

MODE 1
QUTPUT

Fig. 7-5. Modoe 2 status word.




‘to an interrupt instruction register to generate unique vector restart
instructions to the master for input and output operations. When
polled interrupts are used by the master MPU it must determine
whether an input or output operation is to be serviced by checking
the status of the IBF, and OBF, flags, respectively. This is done
by reading port C, which provides the mode 2 status word shown in
Fig. 7-5. Bits D7-D3 provide the status of bidirectional port A.
Note that the assignment of D6 and D4 to INTE 1 and INTE 2 is
consistent with the bit-set/reset operations on PC6 and PC4, which
are required to set or reset the internal INTE 1 or INTE 2 flags,
respectively.

7-4. MODE 2 PPl OPERATION AND REQUIREMENTS

(A) Hardware Requirements

Fig. 7-6 shows a typical interconnection of two microcomputers
using the PPI as the interface element. The PPI is wired to the master

|
|

INTERRUPT REQUEST LINE l s LAV E
|

DATA 8US

INYRA

DATA BUS | (pe3) BIDIRECTIONAL BU
PORT

SLAVE

ADBRESS

WASTER BUS P TBF, Sl
U

(8080R)

CONTROL '
BUS

MASTER

Fig. 7-6. A typical interface between master and slave microcomputers.

MPU in the usual way for either accumulator or memory-mapped
I/0, and it has been configured for polled-interrupt operation by
connecting its INTR, line to the interrupt input of the master MPU.
The slave microcomputer is an 8080A-based system and is wired




for polled operation. The major hardware requirement of an inter-
face between two microcomputers is to ensure that both microcom-
puters are able to monitor the mode 2 handshaking flag outputs
OBF, and IBF, of the PPIL

In this example the master MPU monitors these flags, upon receipt
of an interrupt, by polling port C of the PPI for its mode 2 status
word. The slave MPU is able to monitor these flags through the
connection of the OBF, and IBF, outputs of the PPI to the slave
MPU data bus through a 74125 three-state buffer integrated circuit.
Note again that no external three-state buffer is needed to interface
port A to the slave MPU data bus as the three-state buffer is provided
internally at port A when the PPI is configured for mode 2 operation.

A second hardware requirement of the master-slave microcomputer
interface is for the slave microcomputer to provide a strobe (STB4)
pulse for slave-to-master data transfers and an acknowledge (ACK,)
pulse for master-to-slave data transfers. In Fig. 7-6 these pulses are
generated by the slave microcomputer as device select pulses ouT
040 and TN 100, respectively. Note that an output device select pulse
is required to drive the STB, line since data are being loaded into
port A of the PPI and therefore are output from the slave MPU.
Similarly, an input device select pulse is required to drive the ACKy
line since data are being sent from the PPI and must therefore be
input to the slave MPU.

(B) An Operational Sequence

The exact sequence of events which occurs in data transfers be-
tween master and slave, when the PPI is used as the interface ele-
ment, depends of course on the tasks which are being supervised by
the slave MPU. In all cases, however, the data transfers are governed
by the following simple rules:

(i) In master-to-slave data transfers the behavior of the hand-
shaking signals OBF and ACK is identical with that for mode
1 strobed output operation of the PPIL.

(ii) In slave-to-master MPU data transfers the behavior of the
handshaking signals STB and IBF is identical with that for
mode 1 strobed input operation of the PPL

(iii) The port A interrupt request line of the PPI, INTR,, will
be set by either OBF or IBF going to logic 1, provided that
their respective internal interrupt enable flip-flops INTE 1
and INTE 2 are at logic 1.

184




Table 7-1. Sequence of Events illustrated
in the Mode 2 Timing Diagram of Fig. 7-7

Data Transfer

Action

Results

1. Master to PPI

2. Slave to PPI

3. PPI to slave

4. PP] to master

The master MPU writes data
to port A

The slave MPU writes data to
port A by strobing STB with
an output device select pulse

The slave MPU detects OBF
low and reads port A for the
data from the master MPU
which is held in the port A
output buffer. The slave mi-
crocomputer input device se-
lect pulse is used to strobe

ATK

Responding to the interrupt
from Step 2 above, the mas-
ter MPU detects IBF high and
reads port A for data, from
the slave MPU, which is held

® Leading edge of WR resets
INTR flag

® Trailing edge of WR sets
OFF to logic low

® Leading edge of STB sets
1BF

® Trailing edge of STB sets
INTR flag

® The leading edge of ACK
resets OBF high

® The trailing edge of ACK
sets INTR high. In this ex-
ample, however, INTR is
already high through Step
2 above

® The leading edge of RD
would reset INTR if OBF
wasn’t high

® The trailing edge of RD re-
sets IBF low

in the port A input buffer.

(iv) Since port A, in mode 2 operation, has an input buffer/latch
to accept data from a slave MPU and an output buffer/latch
to accept data from the master MPU, master-to-slave and
slave-to-master data transfers may be initiated simultaneously
or nearly simultaneously by the master MPU and the slave
MPU, respectively.

The rules are illustrated diagrammatically in the mode 2 timing
diagram which is shown in Fig. 7-7. As an example of a possible
master-slave operating sequence, let us look more closely at the se-
quence illustrated in Fig. 7-7.

Here a master-to-slave and slave-to-master data transfer are repre-
sented. The sequence of events which is depicted in Fig. 7-7 is de-
scribed in Table 7-1. You should read Table 7-1 as you examine the
timing diagram in Fig. 7-7. The interesting feature of this sequence
is that before the slave MPU has received the data that was trans-
mitted to it via the PPI, the slave MPU itself initiates a transmission

185




DATA FROM MASTER TO
PPI PORT A

——————
O5F MASTER MPU

_ 70
WR SLAVE MPU
Ak A

DAT.
TRANSFER
PPI PORT A

INTERRUPT INTEA \
LINE
IBF
DATA FROM PPI
SLAVE CPU \’ TO MASTER MPY
T0 T8
MASTER CPU
DATA
TRANSFER w0
SLAVE e < - | e
DATA
BUS Pl /
DATA FROM DATA FROM PPI
SLAVE TO TO SLAVE MPU
PPI PORT A

Fig. 7-7. Mode 2 timing diagram.

of data to the master MPU. Note also the way in which the PPI acts
as a buffer between master and slave MPUs, and the way the hand-
shaking signals act to resynchronize the data transfers that represent
asynchronous inputs to both MPUs.

(C) Software Considerations

Our discussions so far have centered on the hardware requirements
of a mode 2 PPI bidirectional interface between master and slave
microcomputers. This section would be lacking, however, if mention
was not made of the software required to support the interface. A dis-
cussion of the software is complicated by the need for two co-ordi-
nated, interactive programs for the master and slave, respectively.
The major concern of both sets of software is the monitoring of the
PPI handshaking flags OBF and IBF. The master-slave interface of
Fig. 7-6 reflects a typical allocation of the overall software of a dis-
tributed microcomputer control system. Because the master MPU
will, in general, have responsibility for overall system monitoring and
control, it is generally necessary for the master to service the slave
only as required. For this reason an interrupt system will usually be
adopted for the master MPU-to-PPI port A interface. The selection
of polled or vectored interrupts is a variable which is determined by
considering the trade-off between hardware requirements and re-




sponse speed. Since the slave microcomputer will be dedicated to a
particular task, the improved response speed (master-to-slave data
transfer) of an interrupt system is usually not justified for the slave
microcomputer and polling of the PPI flags by the slave MPU, as

SLAVE MPU SLAVE MPU
READ READ
SUBROUTINE SUBROUT INE

\

INPUT
PPI STATUS

INPUT
PPI STATUS

INPUT A INPUT A
CHARACTER CHARACTER
FROM PPI ROM PP
Y
‘ RETURN ) ‘ RETURN ’
(A) For reading port A, (B) For writing to port A.
Fig. 7-8. Flow diags of polling subroutines which could be used by the slave MPU in

Fig. 7-6 for reading port A of the PPl and writing data to port A of the PPI.

illustrated in Fig. 7-6, is used. Because the software for the slave
microcomputer is the most straightforward, let us consider this first.

Fig. 7-8 shows flowcharts of the subroutines which the slave micro-
computer could used to read data from the PPI (a master-to-slave
data transfer) and to write data to the PPI (a slave-to-master data
transfer). The corresponding coded subroutines, which were written

187




to fit the slave hardware configuration of Fig. 7-6, are shown in
Fig. 7-9.

No new concepts are presented in the polling software that is used
by the slave MPU. The mode 2 handshaking flags OBF and IBF are
connected to the microcomputer data bus lines DO and D7 (via a
three-state buffer) so that their status can be easily tested by a left

/
7 SLAVE SOFTWARE
/
/(A> SLAVE READ SUERQUTINE: MASTER TO SLAVE DATA TEANSFEFR
/
SLAVFD, IN / INPUT PPl FLAGS FRO"
200 /74125 TR1-STATE BUFFERS
RAR /SHIFT PPl OBFA FLAG(DO> INTO CARRY FLAG
JNZ /OBFA = "0"? IE. DATA READY FOR

/MASTER TO SLAVE TRANSFER
SLAVPD /NO? , TRY AGAIN
2]

m JYES! INPUT A CARACTEF BY STPOBING
100 /ACKA TO LOGIC LOY
RET

/
/ (B> SLAVE WRITE SUBROUTINE : SLAVE TO MASTEF DATA TRANSFER
/

SLAVVYF, IN /INPUT PPl FLAGS FROM
200 /74125 TRI STATE BUFFEPFS
RAL /SHIFT PPl IBFA FLAG(D7) INTO CAFEY FLAG
JZ /IBFA = "0"? 1E. 1S PPl READY FOR

/SLAVE TO MASTER TRANSFER
SLAVWER /HO XKEEP TRYING
[¢]

ouT /YES 0/P BYTE TO PPI BY STROBING
040 /STBA WITH AN O/P DEVICE SELECT PULSE
RET
Fig. 7-9. Slave MPU soft for bidirectional 1/O b a master and a slave MPU

using a PPl in mode 2 configuration for interfacing.

shift (for D7, the IBF flag) or a right shift (for DO, the OBF flag)
of the accumulator contents into the carry flag.

The software for the master microcomputer is more difficult to
generalize because of the many and varied tasks which may be re-
quired of this microcomputer in its role as the overall system super-
visor and controller. The simplest situation is one in which port A
of the PPI, when configured for mode 2 operation, provides the only
source of 'system interrupts. By reading port C for the mode 2 status
word and then by masking and testing bits D7 (OBF,) and D5
(IBF,) in turn, the master MPU can determine whether the PPI has

188




received data from the slave microcomputer (IBF, high) or whether
the slave MPU has successfully read data which the master had sent
to port A (OBF high). In the first case, where the “input buffer full”
flag of the PPI is high, the master MPU reads port A for data which
was sent from the slave and which is held at port A. The master then
processes this data and returns to its main task.

SYMBOLIC | _MEMORY
ADDRESS |, ]

A 7

Y,
L~

<@t LENGTH OF DATA BLOCK

10BLOK, F REMAINING CONTROL
il LOCATION OF CURRENT BLOCK
- BYTE TO BE TRANSFERRED
J? 7
DATADD,
DATA
BLOCK
Fig. 7-10. Sch ic ill: ion of a simple i pt control block for a write operation

by the master to the PPI.

In the second case the OBF, flag generates an interrupt by return-
ing to a logic high. This implies that the data, which was sent to the
PPI by the master, has been successfully read by the slave MPU and
that the output buffer of port A is empty. The response of the master
MPU depends upon whether a single byte or a block of data was to
be sent to the slave MPU. One approach to handling these two pos-
sibilities is to set up a control block in memory. This is illustrated in
Fig. 7-10 and, in the simplest case, would consist of the number of
data bytes remaining to be transferred to the slave MPU, and of the

189




address in memory of the location of the current byte which is to be
transferred. Initially, the main task software must load the control
block with the length of the data block which is to be transferred to
the slave and the starting location in memory of the data block, and
to enable the INTE 1, interrupt enable flip-flop. This is illustrated
in Fig. 7-11 which gives flowcharts for the main task and for the
interrupt service subroutine. With INTE 1 enabled (cf Fig. 7-4) and
the PPI output buffer empty (OBF high), an interrupt will be gen-
erated by the PPL. The interrupt software polls the status of the PPI
and, when the output buffer of port A is found to be empty, a data
byte for the slave is written to the PPL The address in memory of this
byte is found in the control block. The counter representing the length
of the data block is decremented and stored at the beginning of the
control block. The new value of the counter, representing the num-
ber of bytes remaining to be transferred, is checked and, if nonzero,
the INTE 1 flag is re-enabled (both INTE 1 and INTE 2 are dis-
abled at the beginning of the subroutine). If the counter is zero, the
INTE 1 flag is left disabled, thus preventing further interrupts from
OBF,. When a further data block is to be sent to the slave CPU, the
main task software would again initialize the control block with the
block length and the starting address of the new data, and enable
INTE 1. The data would then be transferred under interrupt control
as described above and as illustrated in the flowchart which is
shown in Fig. 7-11. The software corresponding to these flowcharts
is given in Fig. 7-12.

In microcomputer systems which supervise a number of input and
output tasks under interrupt control, an expanded control block may
be required for each peripheral. Additional control information may
include:

® The type of 1/0, viz, input or output.

@ The status of the current I/O transaction, i.e., busy or complete.

® The address of a subroutine which will be called after the I/O
block has been performed.

® Other parameters associated with the particular input or output
task.

Further details on typical applications of this software technique for
managing interrupts are given in Intel Corporation’s Application
Notes for their SBC 80/ 10 microcomputer and their 8255 PPI (see
Section 7-6).

190




HAIN TASK
SOFTHARE

PP1 INTERRUPT
SERVICE ROUTINE

INITIALIZE PPL
PORT A FOR

DISABLE PP1
INTERRUPTS

MODE 2
OPERATION

ENABLE SYSTEM
INTERRUPTS

ENABLE INTE 2 &
Ti

INTERRUPTS

SET UP CONTROL
BLOCK FOR DATA
TRANSFER TO

ENABLE INTE 1

INTERRUP et

'
¥
i
'
'
'
'

QUTPYT DATA
FOR SLAVE TO PPI

DECREMENT BLOCK|
COUNTER

ENABLE NO
INTE 1
YES
ENASLE
INTE 2
RETURN
Fig. 7-11. Flowck ftware for lave data transf

1h4)




(A) dAl

MAIN,

PPIINT,

InSTER SOFTWARE

I TASH SOFTWARE ASSOCIATED WITH MASTER/SLAVE
DATA TPANSFERS

WGP

MVIA /LOAD ACCUMULATOF WITH PPl MODE CONTROL
ouT /0UTPUT MODE CONTFOL WORD TO PPI

CNTRL /CONTROL REGISTER

MVIA /LOAD ACCUMULATOR WITH BIT SET CONTROL WOPD
PC4SET /FOR PC4-INTE 2

ouT /OUTPUT IT TO THE CONTROL REGISTER

CNTRL

EI /ENABLE SYSTEM INTERUPTS

LXIH /LOAD H,L REGISTERS WITH ADDRESS POINTER
10BLOK /TO THE BEGINNING OF THE MASTER TO

o] /SLAVE WRITE CONTROL BLOCK

MUIM /WRITE THE DATA BLOCK EYTE NUMBEF

oot /TO THE FIRST LOCATION IN THE VRITE

LXIH /CONTROL BLOCK.LOAD H,L WITH ADDRESS
DATADD /OF BEGINNING OF DATA BLOCK

o]

SHLD /STORE THIS ADDRESS IN

10BLOK+1/THE WRITE CONTROL BLOCK

o] /

MVIA /LOAD ACCUMULATOR WITH THE BIT SET CONTROL
PC6SET /WORD FOR PC6-INTE 1

ouT /QUTPUT IT TO THE CONTROL REGISTER

CNTRL

PUSHPSW /SAVE MICROCOMPUTER STATUS

PUSHH

PUSHB

MVIA /DISABLE PPl INTERRUPTS
PC6RST

ouT

CNTRL

MVIA

PC4RST

ouT

CNTRL

Fig. 7-12. Main task software associated




El /ENABLE SYSTEM INTERRUPTS

N /INPUT PPl STATUS WORD
PORTC
MOVBA  /SAVE STATUS WORD
AN /MASK 1BFA:- BIT DS
040
JZ /1S INPUT BUFFER FULL (IBF='1")
POINTA /N0, TRY STATUS OF OUTPUT BUFFER
0
IN /YES, INPUT BYTE FROM PORT A
PORTA
CALL /AND PROCESS IT
PROCESS
0
POINTA, MOVAB  /RESTORE PPl STATUS WORD
AN /MASK OBFA=BIT D7
200
Jz /15 OUTPUT BUFFEP EMPTY (OBF='1")
- POINTB /NO, RETURN
0
LDA /CHECK 1F COUNTEP IS ZERO
I0BLOK /SO THAT OUTPUT CODE CAN
o /BE BYPASSED IF INTERRUPT
ORI /VWAS FOR AN INPUT
000
Jz
POINTB
0
LHLD /LOAD CURRENT ADDRESS OF DATA BYTE
10BLOK+ !
0
MOVAM  /INPUT THE DATA BYTE FROM MEMOPY TO A
out /OUTPUT DATA BYTE TO PORT A
PORTA

INXH /POINT TO ADRESS OF NEXT BYTE

HLD /STORE ADDRESS OF NEXT BYTE IN THE
I10BLOK+1/CONTROL BLOCK

LXIH /POINT TO BYTE COUNTER

10BLOK

]

MOvVAM /INPUT BYTE COUNTER

DCRA /DECREMENT COUNTER

MOVMA /WRITE RESULT TO MEMORY

JzZ /COUNTER ZERO?

POINTB /YES, RETURN
0

MVIA /NO, LOAD ACCUMULATOR WITH CONTROL BYTE TO
PC6SET /SET PC6=INTE 1
QuT /0UTPUT TO CONTROL REGISTER
CNTRL
POINTB, MVIA /ENABLE INTE 2=PC4
PC4SET
ouT
CNTRL
POPB /RESTOR STATUS OF MICROCOMPUTER
POPH
POPPSV
RET

with masterslave data transfers.

193




7-5. AN APPLICATION

In the previous section the hardware and software required to
interface two microcomputers were detailed using the mode 2 opera-
tion of the PPI as the interface. The purpose of this section is to
illustrate a typical environment in which distributed microcomputer
control is useful, and to illustrate the type of data which would need
to be transferred between MPUs on the bidirectional bus. The ex-
ample is taken from the area of digital microcomputer control of an
industrial process. The schematic diagram of Fig. 7-13 shows part
of the overall process. A larger microcomputer system is used as the
overall process supervisor while small dedicated microcomputers are
distributed throughout the plant to provide localized control of
small portions of the overall process. The main supervising micro-
computer would probably be located in the process control room.
In addition to a large read/write memory and floppy disc capability
for program and data storage, this master microcomputer would typi-
cally control several video display units (VDUs) or cathode ray ter-
minals (crt’s), both within the control room and at stations through-
out the plant, as well as the process control panel and board. The
VDUs would be used for system interrogation to determine the sys-
tem status in terms of plots, histograms, tabulations, etc.

In the illustration of Fig. 7-13, the microcomputer is being used
for pressure and temperature control. Typical data, which would be
sent to the slave microcomputer by the master, would include upper
and lower limits, as well as set point values, for the bath temperature
and the pressures in the two gas lines shown. The slave would then
be responsible for controlling the temperature within the limits sent
by the master as well as for switching from one gas line to another
when, say, the line 1 pressure dropped below the lower limit set by
the master. In cases where the pressure and temperature limits ex-
ceed those sent by the master, the slave could send an alarm or flag
back to the master. A task completed flag could be sent when the
temperature and pressures stabilized. Additional tasks for the slave
would include the periodic logging and display of the local pressures
and temperatures. This data would be passed back to the master at
periods depending upon the storage capacity (usually minimal) of
the slave microcomputer. Throughout the process cycle the master
microcomputer would monitor the temperature and pressure data
from the slave as well as the alarm and task completed flags and
send updated limits and setpoints to the slave as the process variables

194




Z NI

1 NI

SY9
-

3OVAUIINT
F4NSSIYd

7

|

JOVAYILINI
YN1VYIdNIL

W

Lgon

naq4>w

124 £#
o n
AAYIS 3AVIS
S.3s10
1dd idd

AV14S1a
¥ 1INVd
104LNOD

Fq-WX

——1]

Sn8 viva

— O

YNOILJ3¥1018

$,NaA

Fig. 7-13. Typical distributed process control system.

195



in other parts of the process changed. The alarm flag from the slave
would necessarily be monitored closely by the master so that in the
event of problems arising, the master could take action to alter process
parameters elsewhere in the plant.

7-6. REFERENCES

Ebright, A., “8255 Programmable Peripheral Interface Applications,”
Intel Application Note AP-15.

Rolander, T., “SBC 80/10—System 80/10 Single Board Computer
Applications,” Intel Application Note AP-26 (1977).

7-7. SUMMARY OF EXPERIMENT 7-1

Experiment Description
7-1 In this experiment two 8080 microcomputers are in-
terfaced for bidirectional I/0 using the PPI in its
mode 2 operation. The sequential transfer of data
from master MPU to slave MPU and back again to
the master is illustrated.

EXPERIMENT 7-1
A BIDIRECTIONAL INTERFACE BETWEEN A MASTER
AND A SLAVE MICROCOMPUTER: POLLED OPERATION

Purpose

The aims of this experiment are as follows:

a. To interface two 8080-based microcomputers for bidirectional
1/0 using a PPI which is configured for mode 2 polled opera-
tion.

b. To illustrate a sequential transfer of data from master MPU
to slave MPU and back again to the master.

Discussion

In this experiment the master and slave microcomputers will be
interfaced using the technique which was described in the text for
this chapter. Both the master and slave microcomputers monitor the
bidirectional 1/0 handshaking signals IBF and OBF by polling their
status. Note, however, from the circuit for the interface that the slave
microcomputer inputs IBF and OBF on data lines D1 and DO respec-
tively in this experiment.

196




Pin Configurations of the Integrated Circuits (Fig. 7-14)

(A) 74125,

(B) 7400.

(C) 7404.

Ve 4 4A  4Y 3¢ 3A 3V
" 3 12 n 10 9 8
1 2 3 4 5 6 7
iC 1A 1Y 2 2A 2Y GND

Fig. 7-14. IC pin configurations.




Schematic Diagram of the Circuit (Fig. 7-15)

001 110

020 NI

010 NI

L0

ovo ino

\ «JAVIS, a3sv8-0808 OL

veGes

ais

AV (ni08) S2UYLNS

ﬁ

Iy
71

HJ41V1 - HOLINOW sna@

ovd
tvd
2vd
€vd

Svd
9vd
Lvd

oa

ia

ov
v

3 oa

3

2 sng
[

3 viva
62

8z

yr] pA:]

3 ov

s 1w

9

tA S

¢ 400
e M

03 4383y

Fig. 7-15. Circuit for Experiment 7-1.

198




Fig. 7-16 shows, in block diagram form, the path of the sequential
flow of data between master and slave which will be implemented.
Data will be transferred from the master MPU to the PPI, thence to
the slave microcomputer which will increment the data byte and
transmit it back to the master via the PPI. The master then incre-
ments the received byte and retransmits it to the slave. The objective
is to program both master and slave microcomputers so that this data
exchange can be easily monitored.

__ _ MASTER _ e SLAVE
| |

= ==
8080 /r 8080

85

|
|
/L ' ' - —
PORT A OUTPUT BUFFER

Fig. 7-16. Block di of the i ion of master and slave MPUs showing the
data path for Objective b of the experiment.

To do this it is necessary to introduce delays in both the master
and slave software to ensure that several seconds elapse between re-
ception and retransmission of data by both the master and the slave.
The timing diagram for the data exchange (Fig. 7-17) shows four
stable states and the tasks of both the master and slave software have
been noted for each of the states. The software in Figs. 7-18 and 7-19
for the master and the slave microcomputers implements these tasks.

Procedure

Step 1

The first step is to connect the interface between the two micro-
computers that are to be used as the master and the slave. This can
be done in two steps. First, interface a PPI to the microcomputer,
designated as the master, for accumulator input/output. Most prob-
ably this task will have already been completed for experiments in

199




STATE 1 STATE 2 STATE 3 STATE 4 STATE 1

_U TR+

2 SEC -w=f=— 2 SEC — TBF
|| K *
3T+
4 SEC —] 4SEC —a{ e
RO #+
T OUTPUT A BYTE T T T T T T [VIneuT oATA -
- POLLS FOR IBF « POLLS FOR IBF | - IBF HIGH; WAIT |+ DISPLAY DATA MASTER &
HIGH HIGH - 4 SECONDS + WAIT 4 SECONDS
- OBF LOW; WAIT « INPUT DATA « OUTPUT DATA « POLL FOR OBF
2 SECONDS + DISPLAY DATA - POLL FOR OBF LOM SLAVE #
+ WAIT 2 SECONDS LOW
S E e T —_— —
Fig. 7-17. Timing diag of the bidirectional handshaking signals for the exchange of

data between master and slave which is illustrated in Fig. 7-16.

earlier chapters. Second, wire PPI lines PA7-PAQ and PC7-PC4 to
the slave microcomputer as shown in the circuit diagram (Fig. 7-15).
As part of this exercise, the following device select pulses must be
decoded:

IN 010 OUT 040
IN 020 OUT 100

Since the slave microcomputer requires no additional device select
pulses, single address line or lineal decoding can be implemented
with the circuits in Fig. 7-20. Use these circuits to complete the inter-
facing of the slave microcomputer to the PPL. Be sure that there is a
good ground connection in common between both computer systems!

Step 2

Study the programs for the master and slave microcomputers in
conjunction with Fig. 7-17. In particular, for both master and slave
software, identify the sections of code corresponding to each of the
four states which are identified in Fig. 7-17. In the master software
an endless loop has been inserted in the program at location “HERE”

200




(020 011). This loop is used to effectively halt the program during
initial testing of the interface (STEP 5). It will then be removed for
proper master/slave interaction.

Step 3

In the master software, symbolic names PORTA, PORTC, and
CNTRL have been used to represent the device codes for port A,
port C, and the control register of the PPI, respectively. These sym-
bolic names have been equated with device codes 204, 206, and 207,
respectively. For the master microcomputer to PPI interface, deter-
mine the device codes for port A, port C, and the control register.
Now replace our device codes in the master program with the appro-
priate ones for your PPI interface, if necessary.

Step 4

By referring to the mode control word format of Fig. 2-2A, verify
that 300 is a suitable code for initializing the PPI for mode 2 op-
eration.

Step 5

Load the master and slave microcomputers with the respective pro-
grams that are provided. Execute the program stored in the mas-
ter microcomputer. What do you observe on the lamp monitors? What
is the program in the master microcomputer doing? Can you see why
this step has been included? Note your answers in the space below.

When the master software was rum, it was observed that both the
OBF and the IBF flags took up initial logic O states. The program
has been effectively halted at location HERE due to the tight loop.
This allows the bidirectional I/O handshaking flags to be moni-
tored. It is necessary to know the initial values for OBF and IBF
in this example to ensure an ordered sequential data transfer as de-

m




scribed in Fig. 7-17. If IBF, in particular, is at logic 1 on initializa-
tion, state 2 in the diagram would be missed entirely. This would
not invalidate the data transfer sequence, but it would make the flags
more difficult to observe. If IBF does initialize to logic 1 in your PPI,
replace the jump instruction at location HERE with

Programs
(A) Master Software (Fig. 7-18)

020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
620
020
020

000
001
002
003
004
00s
006
007
010
o1l
c12
013
014
018
016
017
020
021
o022
023
024
025
026
027
030
031
032
033
034
035
036
037
040
041
042
043
044

06l

000
024
076
300
323
207
006
coo
303
o1l

020
170
074
323
204
333
206
346
040
312
020
020
315
045
020
333
204
107
323
000
315
045
020
303
014
020

/
/MASTER SOFTWARE: POLLING.
/

oV
bW
DB
DB
DB
DB

STACK 024 000
TIMOUT 000 277

PORTA 204
PORTC 206
CNTRL 207
MODE 300

*020 000
MSTART, LXISP

STACK
[}
MVIA
MODE
ouT
CNTRL
MV1B
000

HERE, JMP

HERE

[+]
LOOPl, MOVAB

INRA
ouT
PORTA

LOOP2, IN

PORTC
ANI
040

JzZ
LooP2
0

CALL
FORSEC
0

N
PORTA
MOVBA
ouT
000
CALL
FORSEC
o]

JMP
LOOPI1
[}

/INITIALIZE PPI FOR MODE 2 OPEPRATION

/RESTORE BYTE

/AND OUTPUT TO PORT A

/GET PPl STATUS

/CHECK INPUT BUFFER FLAG(PCS)

/1S PORT A INPUT BUFFER FULL?
/NQ, TRY AGAIN

/YES, WAIT 4 SECONDS
/NOW INPUT BYTE FROM SLAVE

/STORE BYTE
/AND DISPLAY IT

/LOOP TO SEND THE BYTE TO THE SLAVE

Fig. 7-18. Master software




203 IN
204 PORTA

This will clear the IBF flag. Otherwise replace the code at locations
011, 012, and 013 with NOPs i.e., 000.

Step 6
Reset the master microcomputer and commence program execu-
tion. What do you observe this time?

You should observe that OBF has been reset to logic 0, indicating
that the master software has loaded the PPI with a byte for the slave
microcomputer. The master microcomputer is in state 1 (Fig. 7-17).

Step 7
Now execute the slave microcomputer program. What do you ob-
serve? Is this consistent with the timing diagram of Fig. 7-17? Note
your observations below.
/

/DELAY SUBROUTINE "FORSEC"
/DESCRIPTION: THIS SUBROUTINE GENERATES A FOUR(4)

/ SECOND DELAY. ALL REGISTERS ARE
4 SAVED.
/
020 045 365 FORSEC, PUSHPSV /SAVE MASTER STATUS
020 04€ 345 PUSHH
020 047 305 PUSHB
020 050 325 PUSHD
020 051 00! LXIB /LOAD TIMING WORD
020 052 310 310 /FOP A 4 SEC. DELAY
020 053 001 ool
020 0S4 315 LOOPA, CALL
020 055 277 TIMOUT
020 056 000 0
020 057 013 DCXB
02C 060 170 MOVAB
020 061 261 GRAC
020 062 302 JNZ
020 063 054 LOOPA
020 064 020 0
020 065 321 POPD /RESTORE MASTER STATUS
020 066 301 POPB
020 067 341 POPH
020 070 361 POPPSW
020 071 311 RET

for Experiment 7-1.

203




If you are using MMD-1 type microcomputer for the master and the
slave, you will observe the byte at port O of the master being incre-
mented by two each time IBF goes from logic 1 to logic 0. This should
occur approximately once per 12 seconds. Similarly, the octal display,
which is driven by the slave microcomputer, will increment with re-
spect to the value displayed at port O of the master each time OBF
goes from logic O to logic 1. Again this should be approximately once
per 12 seconds.

If the displays are increasing as described above and the handshak-
ing flags are following the pattern of Fig. 7-17, you have successfully
interfaced two microcomputers!

Step 8
Note in the following space the locations in the master and the
slave software at which the received byte is incremented.

In the master software the INRA instruction is at location 020 015.
In the slave software the INRA instruction is at location 003 024.

Now try removing either of these instructions and executing the
programs. Be sure, when starting up the programs, to execute the
master software first. With one of the INRA instructions removed,
the displays will increment by 1. Replace the INTA instructions with
DCRA instructions. You should be able to predict the effect of this
change and to confirm your prediction.

Step 9

As a final exercise, write in the following space the location in
read/write memory of the call to the 4-second delay in the master

204




(B) Slave Software (Fig. 7-19)

003 000
003 001
003 o002
003 003
003 004

003 005

003 014

003 032
003 033
003 034
003 035
003 036
003 037
003 040
003 041
003 042
003 043
003 044
003 045
003 046
003 047
003 050
003 051
003 052
003 053

/
/SLAVE SOFTWARE
/

DW STACK 004 000
DW TIMOUT 000 277
*003 000
LXISP
STACK

[¢]
START, IN /INPUT PPl FLAGS

010

ANI /PP1 QUTPUT BUFFER FULL?

001

JNZ /NO,TRY AGAIN

START

o

CALL /YES.WALIT 2 SECS.
TWOSEC

0

IN /1INPUT DATA FROM PORT A
020

our /DISPLAY DATA

040

CALL

TWOSEC

0

INRA /INCARMENT BYTE

ouT /SEND BYTE TO MASTER
100

JMP /JUMP TO INPUT BYTE FROM MASTER
START

)

ENENENEN

/DELAY SUBROUTINE "TWOSEC"

/DESCRIPTION: THIS SUBROUTINE GENERATES A TWO(2) SECOND

/ DELAY.ALL REGISTERS ARE SAVED.
/

/
TWOSEC, PUSHPSW /SAVE SLAVE STATUS
PUSH!

PUSHB

PUSHD

MVIC /LOAD TIMING BYTE

310 /FOR A 2 SEC. DELAY
LOOPA, CALL

TIMOUT

o
DCRC
JUNZ
LOOPA
o

POPD /RESTORE SLAVE STATUS
POPB

POPH

POPPSW

RET

Fig. 7-19. Slave software for Experiment 7-1.




A5 9 SUT 030
13 12
ouT
1 1
o T o0T 100

Fig. 7-20. Circuits for single address line or lineal decoding.

software which generates state 4; and write the location of the call
to the 2-second delay in the slave software which generates state 2.

For state 4 the master software call is at location 020 037. For state
2 the slave software call is at location 003 021. Replace these calls
with NOPs and again execute master and slave software, commenc-
ing with the master software. Have states 2 and 4 been removed?
They should have.

Questions
1. Draw a timing diagram similar to Fig. 7-17 for the following four-
state sequence:

(a) Master outputs a byte to PPL
(b) Slave outputs a byte to PPI.
(c) Master inputs a byte from PPL
(d) Slave inputs a byte from PPIL.

2. Modify the master and slave software to generate this data trans-
fer sequence.




Appendix 1

Electrical Characteristics
and Timing Diagrams
For the 8255*

* Courtesy of Intel Corporation

207




D.C. CHARACTERISTICS Ta = 0°C to 70°C; Vg = +5V $5%; Vg = OV

Symbol | Parameter Min. | Typ. | Max. | Unit_| Test Conditions
Vie Input Low Voltage 8 v

Vin Input High Voltage 20 v

Vou Output Low Voltage | a v | loL=16mA

Vou Output High Vottage 24 | V| lon=-50A (-1004A for D.B. Port)
lon™ Darlington Drive Current I 20 mA | Vou=15V, Rgxr = 3902

lec Power Supply Current 40 mA

NOTE:
1. Avallable on B pins anky.

A.C. CHARACTERISTICS T = 0°C to 70°C; Vgc = +5V £6%; Vgg = OV
Symbol | Parameter Tyo.[Max.| Unit | Test Condition
we Pulse Width of WR 430 ns
ow Time D.B. Stable Before WR 10 s
two Time D.B. Stable After W 65 ns
taw Time Address Stable Before WR 2 ns
wa Time Address Stable After WR 35 ns
tow Time CS Stable Before WR 2 ns
we Time CS Stable After WR I35 ns
twe Delay From WR To Output 500 [ ns
he Pulse Width of RD 4% ns
R D Set-Up Time | 50 s
tua Input Hold Time 50 s
thp Detay From RD = 0 To System Bus. | 350 n
top Delay From RD = 1 To System Bus 150 ns
R Time Address Stable Before AD 50 s
R Time T3 Stable Before AD 50 s
tak Width Of ACK Pulse 500 ns
157 Width Of §TB Pulse 350 ns
s Set-Up Time For Peripheral 150 s
o 150 s
tRA Hold Time for Ay, Ag After RD = 1 37 ns
Re Hold Time For CS After AD = 1 5 ns
tan Time From ACK = 0 To Output(Mode 2) 500 | ns
o Time From ACK = 1 To Output Floating 300| ns
two Time From WR = 1 To OBF =0 0] n
tao Time From ACK = 0 To OBF = 1 600 | ns
ol Time From §T8 = 0 To IBF 60| ns
Ry Time From RD = 1 To IBF = 0 300 ns




ooy e — — —

Mods 0 (Basic Input)

Moda 0 (Basic Output}

.

Mods 1 {Strobed Input)




——

Mode 1 (Strobed Output)

oATA FROM
A

0aTA FROM Data From
PERIPHERAL T 8255 w285 70 pERHERAL
oATA FROM
o255 10 soad

MODE 2 (BI-DIRECTIONAL INPUT/OUTPUT)

|
i
!
210 l;




Appendix 2

8255 Control Word and
Status Word Summary*

* Courtesy of Intel Corporation

2n




aaours.
romY C lLoweR - ¢y PCy)
o

-oumun

ronte
Vot
o< oureur

MOE seLECTION
0 MoDE 0
1+ M00e |

GRovP A

PORT € (UPPER — PGPy
e

T
0+ outrur

o iner
o ouTRT

WGOE SELECTION
Mook 0

MODE CONTROL WORD

rorr

[e: oo [ [ i oo}

GRour & GRours
STaTs Status
oot o
NeUTIOUTRUY

o o P 0 O

CAC A CC)] o o %

w00t 1
weor
vont

o 0 O

MODE 2 STATUS WORD

CONTROL WORD

57 oe[os o [oa [P ot oo
Sevmest eaG

‘ ‘-T L s
L

ar secet
03050, | PORTCAIT
000 oro
201
910
NOT USED SET 10 000 01
— Too
Yol
IR
T o)

o o % 0 %
v | v wrea] e [rne]
ourne
Yont
—_——
o CEENEN

o 0 0 0
B el o [ o [wea] [Frea] 5o [rma]

BIT SET/RESET CONTROL WORD

m

MODE ]STATUS WORD




Index

A

Absolute decoding, 17
Accumulator I/0

description, 12-16

vs. memory-mapped 1/0, 33-39
ACIA, 10
ACK signal, 128
Acknowledge input signal, 128
Address select pulses, 16
AND operation, execution of, 31-32
Application, PPI mode 2 operation,

194-196

Asynchronous handshaking, 1/0, 53

Bidirectional 1/0, mode 2 operation,
174-206
application, 194-196
bidirectional interface between a
master and a slave micro-
computer: polled operation,
197-206
introduction, 174-176
mode 2 PPI
features, 179-183
operation and requirements,
183-193

Bidirectional 1/0, mode 2 operation—
cont
PPI mode 1 operation for
bidirectional data flow,
176-178
references, 196
Bit-set/reset operation, PPI, 80-103
introduction, 80-82
PPI-based data logger, 97-103
procedure for setting and resetting
port C bits, 83-86
setting and resetting bits of port C,
91-97
summary of experiments, 91
valve controller, 86-91
physical process and its control
interface, 86-88
PPI and the controlling program,
88-91
Bus monitor and counting circuits,
20-23

[4
Combined input and output operation
mode 1, 155-163
maode 0, 75-79
Conditional data transfer, 33
Continuous polling, 136
Control word and status word
summary, 8255, 211-212

213




Counting circuits and bus monitor,

20-23
]
Data
input operation, mode 0 operation,
72-75

logger, PPI-based, 97-103
output operation, mode 0 operation,
64-72
strobe signal, 123
Device select pulse, 14

8080A CPU interface pins, 42-44
8255
overview of, 40-52
electronics, 40-47
8080A CPU interface pins,
42-44
interfacing a PPIto a
microcomputer, 96-97
internal control logic, 44-46
peripheral interface pins, 40-42
software, 48-52
steps for using 8255, 47-48
PPI, introduction to, 9-39
accumulator 1/0 versus memory-
mapped 1/0, 33-39
bus monitor and counting
circuits, 20-23
execution of AND operation, 31-32
input/output basics, 12-20
accumulator 1/0, 12-16
memory mapped 1/0, 16-20
memory-mapped input port,
26-31
some questions and answers, 9-12
single-step circuit, 23-26
summary of experiments, 20
Electrical characteristics and timing
diagrams, 8255, 207-210
Electronics, 8255, 40-47
8080A CPU interface pins, 42-44
interfacing a PPI to a micro-
computer, 46-47
internal control logic, 44-46

214

Electronics, 8255—cont
peripheral interface pins, 40-42
Execution of AND operation, 31-32

Handshaking I/0
interrupt-driven; mode 1 operation
of the PPJ, 122-173
example, 137-140
introduction, 122-124
mode 1
combined input and output
operation of the PPI,
155-163
input operation of the PPI,
148-155
operating requirements,
131-136
output operation of the PPI,
141-148
polled-interrupt PPI operation,
163-169
PPI features, 124-131
vectored-interrupt PPI
operation, 169-173
summary of experiments,
140-141
status-driven: combined mode 0
and bit-set/reset operation,
104-121
implementing with a PPI,
107-112
hardware, 107-108
software, 108-109
subroutine tapout, 111-112
input and output, 113-121
vs. interrupt-driven handshaking,
106-107
what is handshaking, 104-106

IBF signal, 126
Input
and output, status-driven
handshaking 1/0, 113-121




Input—cont
buffer full signal, 126
operation of the PPI, mode 1,
148-155
/output basics, 12-20
accumulator 170, 12-16
memory-mapped 1/0, 16-20
port, memory-mapped, 26-31
INTE signal, 126, 128
INTEAS, INTEBS, variable, 139
Interface pins
bidirectional, between a master and
a slave microcomputer,
197-206
8080A CPU, 42-44
peripheral, 40-42
Interfacing a PPI to a microcomputer,
46-47
Internal control logic, 8255, 44-46
Interrupt
-driven handshaking 170
mode 1 operation of the PPI,
122-173
combined input and output
operation of the PPI,
155-163
example, 137-140
input operation, 148-155
introduction, 122-124
operating requirements,
131-136
output operation, 141-148
polled-interrupt, 163-169
PPI features, 124-131
summary of experiments,
140-141
vectored-interrupt, 169-173
vs. status-driven handshaking,
106-107
enable signal, 126, 128
request signal, 126, 128
INTR signal, 126, 128
Introduction to
bit-set/reset operation, 80-82
interrupt-driven handshaking 1/0,
122-124
mode 0 operation, 52-54
mode 1 operation, 122-124
mode 2 operation, 174-176

Introduction to—cont
the 8255 PP, 9-39
accumulator I70 vs. memory-
mapped 1/0, 33-39
bus monitor and counting
circuits, 20-23
execution of AND operation, 31-32
input/output basics, 12-20
accumulator 1/0, 12-16
memory-mapped 170, 16-20
memory-mapped input port,
26-31
single-step circuit, 23-26
some questions and answers, 9-12
summary of experiments, 20
1/0
bidirectional, mode 2 operation,
174-206
handshaking
interrupt-driven, 122-173
status-driven, 104-121

L

Lineal decoding, 17

MASKA, MASKB, variable, 139-140
Master microcomputer, 174
Memory-mapped 1/0
description, 16-20
input port, 26-31
vs. accumulator 1/0, 33-39
Microcomputer, interfacing a PPI to,
46-47
Mode 1
combined input and output
operation of the PPI,
155-163
example, 137-140
hardware, 137
program, 139-140
software, 133-136
experiments, summary of, 140-141
input operation of the PPI, 148-155
operating requirements, 131-136
hardware, 131-133
software, 133-136




Mode 1—cont
operation for bidirectional data
flow, 176-178
output operation of the PPI,
141-148
polled-interrupt PPI operation,
163-169
PPI features
input, 124-127
input/output combinations,
129:131
output, 127-129
vectored-interrupt PPI operation,
169-173
Mode 2 operation: bidirectional 1/0,
174-206
application, 194-196
bidirectional interface between a
master and a slave micro-
computer: polled operation,
197-206
introduction, 174-176
mode 2 PPI
features, 179-183
operation and requirements,
183-193
PPI mode 1 operation for
bidirectional data flow,
176-178
references, 196
MODE, variable, 139
Mode 0 operation: simple 1/0, 52-79
combined input and output
operation, 75-79
data
output operation, 64-72
input operation, 72-75
introduction, 52-54
port C 4-bit subports, 59-62
programming, 57-58
references, 62
requirements, 54-57
summary of experiments, 63-64
timing diagram, 58-59

OBEF signal, 128

216

Operating requirements, mode 1,
131-136
Output
buffer full signal, 128
operation of PPI, mode 1, 141-148
Overview of the 8255, 40-52
electronics, 40-47
8080A CPU interface pins, 42-44
interfacing a PPI to a micro-
computer, 46-47
internal control logic, 44-46
peripheral interface pins, 40-42
software, 48-52
steps for using the 8255, 47-48

P

PASVC, PBSVC, variable, 140
Peripheral interface pins, 8255, 40-42
PIA, 10
Polled
-interrupt PPI operation, mode 1,
163-169
operation, 197-206
Port C
bits, procedure for setting and
resetting, 83-86
4-bit subports, 59-62
PPI
-based data logger, 97-103
bit-set/reset operation, 80-103
introduction, 80-82
PPI-based data logger, 97-103
procedure for setting and
resetting port C bits, 83-86
setting and resetting bits of
port C, 91-97
summary of experiments, 91
valve controller, 86-91
physical process and its control
interface, 86-88
PPI and the controlling
program, 88-91
features
mode 1 operation, 124-131
mode 2 operation, 179-183
implementing status-driven
handshaking with, 107-112
hardware, 107-108




PPl—cont
implementing status-driven hand-
shaking with
program, 109-111
software, 108-109
subroutine tapout, 111-112
initialization code, 133
interfacing to a microcomputer,
46-47
introduction to the 8255, 9-39
accumulator 170 vs. memory-
mapped 1/0, 33-39
bus monitor and counting
circuits, 20-23
execution of AND operation, 31-32
input/output basics, 12-20
accumulator 1/0, 12-16
memory-mapped 1/0, 16-20
memory mapped input port, 26-31
single-step circuit, 23-26
some questions and answers, 9-12
summary of experiments, 20
operation and require

Single-step circuit, 23-26
Slave microcomputer, 174
Software, 8255 overview, 48-52
Status
-driven handshaking I/0: combined
mode 0 and bit-set/ reset
operation, 104-121
implementing with a PPI,
107-112
hardware, 107-108
program, 109-111
software, 108-109
subroutine tapout, 111-112
input and output, 113-121
what is handshaking, 104-106
word, mode 1, 133
STB signal, 125
Steps for using 8255, 47-48
Strobe
input signal, 125
line, 106
Subports, 4-bit, port C, 59-62
S ry of experiments

mode 2, 183-193
hardware requirements, 183-184
operational sequence, 184-186
software considerations, 186-193
Priority, 134
Programmable peripheral interface,
see PP
Programmed data transfer, 52
Programming, mode 0 operation,

57-58
Q
Questions and answers on 8255 PPI,
9-12
R
References

mode 2 operation, 196
mode 0 operation, 62
Requirements for mode 0 operation,
54-57

s
Second hardware decision, 131
Setting and resetting port C bits,
83-86, 91-97

basic circuits, 20
interrupt-driven handshaking 1/0,
140-141
mode 0 operation, 63-64
PPI bit-set/reset operation, 91
Synchronous 170, 53

T
Timing diagram, mode 0 operation,
58-59
u
UART, 10

Unconditional data transfer, 52-53
USART, 9-10

v

Valve controller, 86-91
physical process and its control
interface, 86-88
PPI and the controlling program,
88-91
Vectored-interrupt PPI operation,
mode 1, 169-173

27







