¢ Paperbyte™ Bar Code Loader

Table of Contents

Byte Publications and PAPERBYTE T™M Software 5
The Bar Code 6
Loader design considerations 7
A General Bar Code Loader Algorithm 10

LDA or LDR Subroutine 10

RBYT Subroutine 12

L RBIT Subroutine 13
RBAR Subroutine 14

Adjusting Program Timing Loops 15

The 6800 Bar Code Loader Program 17

The 6502 Bar Code Loader Program 21

The 8080 or Z-80 Bar Code Loader Program 25

Using The Bar Code Loader Algorithm: 29
Implementation and Checkout Procedure 29
Text Entry Procedure 30
Absolute Entry Procedure 31

L_/ A Note About Bar Codes 32

The Bar Code

Bar codes are the newest form of software communica-
tion. Combining efficiency of space, low cost, and ease of
data entry, bar codes were originally used for product
identification in inventory control and supermarket check-
out. Because of their direct binary representation of data
they are an ideal computer compatible communications
media. By using a simple but reliable bar code format and
a low cost scanner, the Paperbytes machine readable
representation gives the small system user an inexpensive
method of input for new software purchased in printed
form.

Figure 1 shows how data is coded in bar code format.

Binary data is coded in bars of two different widths mea-
sured in terms of a unit width. A black bar one unit wide is
a zero, while a black bar two units wide is a one. Spaces
are also one unit wide.
[in Paperbytes™ books and articles, the physical con-
straints of the phototypesetting machines currently em-
ployed make this unit width 1/72 part of an inch (0.0139
inches, or 0.353 mm). There is nothing sacred about this
particular choice of size, since the software used to read
the bars is adaptive and only cares about ratios of bar
width. ... CHJ

The data to be coded is broken into records or frames,
where one frame is one line of bars on the printed page.
Figure 2 shows the frame format. Each frame can be
divided into three parts: header, data, and trailer. The
header consists of four bytes and starts with synchroniza-
tion character (96 hexadecimal) which is used to define
the start of the 8 bit byte boundaries within the frame.
In addition, this character is used to establish the scanning
rate and provide an initial reference in decoding the bars.
This is followed by a checksum byte which is the two's
complement of the modulo 256 sum of the rest of the
header and the data. If the frame is read correctly the sum
of the checksum and all following bytes in the frame
will be zero. This provides a simple but effective means
for the program to determine if any errors have been
made in scanning the frame. The next byte is the frame
identification. The first frame will have an identification
of 0; the second frame’s identification will be 1, etc., being
incremented by one to the last frarhe. This identification
makes it possible to rescan a line in case of error. As a
frame is being scanned, the program can check the identifi-
cation to see whether this is a rescan of the last frame or a
scan of the next frame. The final byte in the header is the
frame length, which is a count of the number of data
bytes in the data section of the frame. If the length is zero,
then the frame is interpreted as an end of file record.

If the file represented in this format requires more than
256 frames, the identification number will wrap around
module 256. This number is used solely to establish local
order during an input operation, so that the loader can
verify an orderly progression of the sequential frames of a
long program.

6

The header section is followed by n data bytes, with
n being the length specified in the header. In present
practice the data section has one of two formats depending
on the type of data it contains (see figure 3). A text format
frame consists of n data bytes. This format is used for
data which does not have a memory address associated
with it. An absolute loader format frame also in current
use, has a memory address in the first two bytes of the
data section, followed by n-2 data bytes. This format
is used for programs or any other data which must be
loaded into specific memory locations.

Finally, the frame ends with a trailer which consists
of a single zero bit. This bit is necessary for those decoding
schemes which measure the spaces to derive the scanning
velocity.

DIRECTION

SCAN
. WIDTH = | UNIT
SPACE WIDTH = I UNIT
1 WIDTH = 2 UNITS
SPACE
[

o o

Figure 1: Bar code format. As used in
PaperbytesTM products, data is coded using
a bar width modulation technique where
width is measured in terms of a single unit.
In current practice the unit of width is 1 172
part of an inch (0.0139 inches, 0.353 mm).
Each bit is represented as a bar followed by
a space one unit in width. The zero bar is
one unit in width; the one bar is two units in
width. Thus the complete pattern of a single
bit cell is either two units or three units in
width.

Loader Design Considerations

At first glance it would appear that the software to
decode bar codes would be quite simple. 1t would seem
that one needs only check the output of the scanner for
zeros and ones and then assemble them into 8-bit bytes.
Unfortunately, the solution is not quite this simplistic.
The software to decode bar codes must be capable of hand-
ling many different problems such as speed variation and
acceleration, spots and drop-outs, varying print quality,
and noise from the scanner. The algorithm design and
programs presented here are able to handle all of these
problem areas. .

One of the more severe problems is speed variation.
When using a scanner the average person will vary his
scanning rate from about 10 to 40 inches per second
(25 to 102 cm per second). Therefore the software must
be able to allow for speed variations of several hundred
percent. This large speed variation eliminates the possi-
bility of decoding the bars by directly measuring bar widths
with respect to a processor clock. Some simple calculations
will show that a zero bar at 10 inches per second will be
one and one half times as wide as a one bar at 30 inches
per second. This is almost a complete reversal of the proper
relationship between zeros and ones, where a zero bar
should be only half as wide as a one bar.

One possible method for solving this speed variation
problem is to compare each bar to the space which follows
it. Since all spaces are as wide as a zero bar we now have a
reference to use in decoding the bar widths. This method
however has several drawbacks. First, since we are timing
both bars and spaces there will be no time left over to
process data. A 1 MHz processor clock on a typical 8 bit
machine is simply too slow to allow long timing loops or
the use of interrupts because the counts representing the
bar widths would become too small to allow for accuracy.
Since data cannot be processed on the fly, it would appear
to be necessary to store the raw counts in an intermediate
buffer for later processing by another routine in order to
arrive at the final data. This not only wastes large amounts
of memory but results in a program that is unnecessarily
complex.

A different approach to the speed variation problem
(and the one used here) is to use “adaptive’” software.
In this method the program does not know how wide a
zero bar (or a one bar) is supposed to be. Instead it knows
that the first bar in each frame is a one. One half of the
width of this bar is used as a “unit” width (i.e. a zero bar
is one unit wide and a one bar is two units wide). The next
bar which is scanned is compared to the unit width to
determine whether it is a zero or one. Any bar which is
less than 1% times the unit width is considered to be a
zero, and any longer bar is a one. In addition, as each bar
is read, its width (in the case of a one bar, half its width)
is averaged with the unit width to arrive at a new unit
width to use in decoding the next bar. This method assumes
that the speed will not change drastically in two bar widths,

which is a valid assumption under normal scanning condi-
tions. If the scanner is used with a light touch so that it
does not stick and jump as it moves across the page the
software will be able to handle most of the speed variations
that are likely to occur.

Since this method does not measure the spaces it is
possible to do the processing for each bit during the space
that follows it. This allows the data to be decoded imme-
diately and stored in its final location in memory without
the use of intermediate buffers or post-processing. This
results in a shorter and simpler program, a program which
does not require a large memory buffer for input
processing.

A second problem, closely related to speed variation, is
acceleration. This problem occurs in two different forms.
First is the acceleration as the operator begins moving
the scanner at the beginning of the frame. If the operator
normally scans at around 30 inches per second, it would
be necessary to accelerate from 0 to 30 inches per second
in a fairly short distance. This requirement is not too
severe, so the problem can be largely eliminated with
a “running start”, When used properly, the scanner should
be placed at least one inch away from the first bar in the
frame, then most of the acceleration will occur before the
first bar is detected. When reading Paperbytes™ bar codes
with the programs presented here, it is possible to read
right over the humanly readable print of the frame number
and relative data address. This “invalid data” appearing
at the beginning of each frame is ignored, because the
program is seeking a synchronization character pattern.
This should give a more than adequate margin for accelera-
tion. Similarly, deceleration (and thereby slow speed)
at the end of the line is a potential problem. The solution
here is to follow through. Scan right off the end of the
frame. This will insure that the large decelerations occur
after reading the last bar in the frame. In the printed
form, Paperbytes™ bar codes are positioned with ample
acceleration and deceleration zones at the top and bottom
of the page.

The second area where the problem of acceleration
(and deceleration) occurs is when the scanner sticks and
jumps as it moves across the page. This problem is so
severe that no scanner or software in the world could
take care of it. Luckily, the solution here is also quite
simple. In our experience, this problem is caused by using
excessive pressure when scanning the page. All that is
required is enough pressure to insure that the scanner does
not lift away from the page in the middle of a frame.

Another common mistake is to grip the scanner too
tightly. This makes it difficult to maintain a light pressure
against the page. The correct procedure is to grasp the
scanner lightly with the finger tips, keeping everything
from the fingers to the shoulder loose and flexible. When
the scanner is used in this manner it will seem to ‘‘float”
across the page, with a nice even pressure and speed.

A)

B)
Q)

D)

> E)

F)

Synchronization pattern hexadecimal 96

Check sum hexadecimal EC

Line identification, hexadecimal 2D, decimal 45

Length, hexadecimal 1C, decimal 28

Data field, 28 bytes with the following values:

05 B5
BC 04
74 04
BC 04

BF
D1
D7
EQ

70
70
FE
70

16 04 CC 70
BE 04 D4 FF
48 04 DB 70

Single zero width bar as trailer.

Another problem which must be handled by the scan-
ning program is the presence of spots during the white
spaces and dropouts during the bars. The spot problem is
relatively minor because during much of the space the
software is not looking at the scanner output because it
is busy processing the last bar. Therefore it never sees
any spots which occur in the first part of the space. Later
spots are handled in the same manner as dropouts. The

. dropout problem is more severe because the program

will see all the dropouts which occur. To help eliminate
this problem software filtering has been included. Since a
spot will appear to be a very short bar, each bar is required
to be at least one fourth of the unit width. Similarly,
a dropout will appear as a short space. Therefore, when a
space is detected, a short loop is entered to assure that the
space has a certain minimum width. Otherwise it is con-
sidered to be a dropout. Bar widths are accumulated until
the total width is greater than one fourth of a unit width
and a minimum width space is detected. At this point
the program has read a valid bar and begins processing it.

header data trailer
A N ——
sync | check- | frame | length n data bytes
char | sum ID n

| - -~ ——
®—j zero bit

Figure 2: Frame Format. (a) The frame is divided into three
major sections. The header section contains four bytes (8
bit) of overhead information. It begins with a synchroni-
zation character (hexadecimal 96). This is followed by a
checksum of the remaining bytes in the frame. The frame
Identification byte is a sequential 8 bit integer used to keep
track of the order of frames. The length byte specifies how
many data bytes are contained in the balance of the frame.
The data section contains “n” 8 bit data bytes where n is
the value of the length byte in the header. The trailer
consists of a single zero bit used to define the

space following the last bit cell in the frame.

(b) A single bar code frame taken from a typical Paper-
bytesT™™ product illustrates this format. The bytes of this
frame are listed to illustrate a specific example. This frame
was created by Walter Banks at the University of Waterloo,
and is taken from the object text of a 6800 processor pro-
gram called MONDEB written by Don Peters of Nashua,
NH.

a)

b)

1 2 3 n
data data data data
byte byte byte byte

1 2 3 n

1 -2 3 n
high low data data

address address byte byte
byte byte 1 n-2

W

N Address of first data byte

Figure 3: In current Paperbytes T™ software products, two
formats for the data field of a frame of bar codes have been
used. The most common practice is to use a text format
data field as shown in (a). Here the optical bar code
medium is being used to transfer an address independent
block of text into the user’s computer for later processing
according to the specific needs of the software involved.
This form is intended for character texts as well as object
code data input to relocation schemes. A second data
field format currently in use is shown in (b). This absolute
loader format is used for data which will be loaded in a
known segment of address space at addresses contained in
the first two bytes of each frame.

A General Bar Code
Loader Algorithm

In this publication I've provided a set of three bar code
loader programs appropriate for use- with PaperbytesTM
software products and articles appearing in BYTE maga-
zine. The detailed programs are written and assembled for
the 6800, 6502 and 8080 microprocessor designs.

All three programs presented here use the same general
algorithm for reading the bar codes. Figure 4. shows a high
level flow chart which applies to all programs. The algor-
ithm has been divided into four subroutine to make it easier
to understand and modify. The first is the main or control
subroutine. This calls the other three to decode the bytes,
separates the header bytes, and then stores the data bytes
into memory. The second subroutine reads one byte from
the bar codes and adds it to the checksum. The third sub-
routine reads a single bit of data. And the fourth subroutine
reads the length of a bar. The operation of these subrou-
tines will be more easily understood if they are studied
in reverse order.

LDA, LDR Subroutine

The last subroutine is the control loop. It contains
two entry points: LDA, which loads absolute data, and
LDR, which loads relocatable data. The only difference
between the two entry points is the setting of the text or
absolute format indicator flag. The LDA entry sets the
flag to a “1” and the LDR entry sets it to a *‘0"". Next,
ID (the frame number of the frame being scanned) is
initialized to 0. At LD4 the timing bit is read by calling
RBAR. Since the timing bit is a one, its length must be
divided in half to arrive at the UNIT width (this timing bit
is actually the first bit of the synchronization character).
The header is now read and values are saved for later use.
At LD6 a loop is entered ‘to search for the rest of the

10

synchronization byte (hexadecimal 16). This is done
by calling RBIT to read bits until the assembled BYTE
equals 16 hex. Next, at LD8, the checksum (CKSM) is
read and saved. At LD10 the frame number is read and
compared to ID (the identification number of the last
frame scanned). If the frame number equals the identifi-
cation number a rescan of the fast frame is implied. It is
therefore necessary to reset the buffer address pointer
to the value it had at the beginning of the frame the last
time. This value was saved in ABUF. If the frame number
equals ID plus one, then the next frame is being scanned.
The new frame number is saved in ID and ABUF is set
to the present value of the buffer address pointer (in case
this frame is rescanned). If the frame number has any other
value then an error has occurred and control is transferred
to LD4 to prepare to read another frame. Next, at LD14
the frame length (LEN) is read and saved. If LEN = 0 then
this is an end-of-file frame and if the CKSM is zero then
control is returned to the user. If LEN is not zero then
there is data to be read. If flag is zero, then this is text
data and the program skips to LD18 to read the data.
However if flag = 1, then it is absolute data, and the address
of where to store the data is contained in the first two
bytes of the data section. This address is read by two calls
to RBYT and saved in the buffer address pointer. (Note
that the previous process of saving and/or retrieving a
buffer address from ABUF has meaning only for a text
format frame. However, the process is carried out for both
text and absolute types in order to simplify the program.)
Finally at LD18 aloop is entered to read and store the data
bytes. When all data bytes have been read, the CKSM
is checked. If it equals zero then the frame has been read
correctly and the bell on the terminal is rung as an indicator
(ASCIl hexadecimal value 07). Control is then transferred
to LLD4 to prepare for reading the next frame.

ABSOLUTE FORMAT TEXT FORMAT

CLEAR
TEXT/ABS FLAG

ABUF=
BUFFER ADR

Figure 4a: The main program of the

bar code loader software. Two

entry points are defined. LDA sets

- 1 FLAG=1 to indicate use of the
T _Revr | absolute loader format defined in
figure 3b. LDR clears FLAG to

indicate loading of a block of text

---------- starting at the initialized value of

RING BELL

RETURN

IREAD
BUFFER ADDRESS

. - A
e S;E\?AD 8 STORE “""“L RavT J: ABUF. The lower level subroutines
---------- RBAR, RBIT and RBYT are called
LD 20 N by this routine from the points
CKSW=0 noted. Labels of the form LDN
no ? show corresponding points in the
YeS detail assemblies of listings 1, 2,

and 3.

RING BELL

1

12

RBYT Subroutine

The RBYT (Read Byte) subroutine reads an 8 bit
byte. This is accomplished by calling RBIT eight times.
If RBIT returns an end of frame timeout indication (carry
flag set), RBYT immediately returns to the calling routine
with the carry flag still set. When the entire byte has been
read it is added to the checksum. The checksum was of
course initialized to zero for the line identification prior
to the beginning of the RBYTE call.) Finally the carry
flag is cleared to indicate that a byte has been read and
RBYT returns to the calling routine.

BITCNT = 8

tAN ERROR -!
—————— 1(TIMEOYT) i

VARIABLES

BITCNT =COUNTER FOR BITS PER BYTE

BYTE =8 BIT INPUT FIELD (LOADED BY
RBAR WITH SHIFT.

CHECKSUM = CURRENT RUNNING CHECK SUM
TOTAL

CARRY =PROCESSOR CARRY FLAG USED
AS ERROR FLAG

RETURN

Figure 4b: The byte read subroutine, RBYT. This subroutine assembles one 8 bit byte of data
and adds it to the checksum. Each bit of the byte is read with a call to the subroutine RBIT.

BIT2:

BIT 4:

VARIABLES:

BAR = BAR WIDTH COUNT FROM
RBAR

UNIT = CURRENT UNIT WIDTH

BIT = OUTPUT BIT, 0 OR |

BYTE = OUTPUT BYTE (LOW OR-
DER HAS LATEST BIT
SHIFTED INTO T}

CARRY = PROCESSOR CARRY FLAG,

USED AS ERROR FLAG.

RBIT Subrqutine

The RBIT (Read Bit) subroutine reads a single data
bit. 1t starts by calling RBAR to get the width of the bar.
If the carry flag is set on the return from RBAR, an end
of frame timeout has occurred and RBIT returns to the
calling routine with the carry flag still set. If a bar was
read, it is compared to the current unit width to determine
whether it represents a 0 or 1 bit. Any bar which is less
than one and one half unit widths is called a 0 bit and all
others are called 1 bits. This bit is then shifted into the
low:-order bit position of the BYTE that is being read.
The bar width is then used to compute a new unit width
by dividing the bar width in half if it was determined to be
a one bit. The bar width is then averaged with the old unit
width to arrive at the new unit width and finally, the
carry flag is cleared to indicate that a bit was read and
RBIT returns to the calling routine. Note that when im-
plementing the algorithm, dividing by one half is done
using a right shift operation; calculating 1.5 times a small
integer is similarly done with a single bit shift followed
by an addition. :

m————————
1 AN ERROR _‘
r= (TIMEOUT) !

L HAS OCCURRED_ |

BAR =BAR/2
BIT=1

SHIFT BIT
INTO BYTE

———————— -
NORMAL H
RETURN]

Figure 4c: The bit read subroutine, RBIT. This subroutine decodes a single
bit of data and shifts it into the BYTE which is being assembled. This
subroutine contains the adaptive portion of the program which eliminates
dependence upon speed and acceleration by averaging each new BAR width
with the previous UNIT width. Each bar width is measured using the
subroutine RBAR. .

C

RBAR Subroutine

The RBAR (Read Bar) subroutine returns the width of
a single bar. It includes filtering to eliminate spots and
dropouts and, if there is no change in the scanner output
for a long period of time relative to a typical bandwidth,
returning an end of frame timeout indication. The sub-
routine measures the bar width by incrementing a counter
in a timing loop. Thus the bar width is a count in the range
of 0 to 255.)

The program actually keeps two counters, one for spaces”

and another for bars. The only use of the space counter is
in detecting the end of a frame. If either counter overflows,
the program assumes that the end of the frame has been
reached and returns an end of frame timeout indication
to the calling routine.

The RBAR subroutine consists of three timing loops
starting at BAR2, BAR4, and BARG. The first loop (at
BAR2) cycles until a bar is detected, at which time the
space counter is incremented. When a bar is detected,
the second timing loop (at BAR4) is entered. This loop
increments the bar counter until a space is detected. The
bar width is now checked to see if it is greater than one
fourth of the current unit width. If it s not, this bar is
assumed to be a partial bar (caused by a dropout) and the
first timing loop (BAR2) is reentered to wait for the
rest of the bar to be detected. If the bar width is greater
than one fourth of the unit width, the third loop (at
BARS) is entered to make sure that the space has a certain
minimum width. If the space is too short, it is assumed
to be a dropout in the bar and the second timing loop
(BAR4) is reentered to continue reading the bar. Finally,
when this trailing space is found to be wider than the
minimum width, the subroutine clears the processor’s
carry flag to indicate that a bar has been read and returns
to the calling routine. If a counter overflows in any timing
loop, the subroutine sets the carry fiag to indicate an end-
of-frame timeout before returning. (The carry flag is thus
used as an error indicator.)

Figure 4d: The bar width measurement
subroutine, RBAR. This subroutine times
the width of a single bar of data input
from the scanner. A bar starts when the
scanner input becomes logical 1, and it
ends when the scanner input again
becomes logical O. Filtering for dropouts
and ink blotches is provided by testing to
make sure that the measurement is
greater than the current UNIT width
divided by 4.

14

RBAR

BAR:0

o e——-)

_'I TIMEOUT :

- ERROR
LERROR__

VARIABLES:

BAR = BAR WITH COUNT
SPAC = SPACE WIDTH COUNT
UNIT = CURRENT UNIT WIDTH
CARRY+ PROCESSOR'S CARRY
FLAG USED TO PASS
STATUS BACK ON RETURN
0=G00D READ
1 = TIMEOUT ERROR

Adjusting Program Timing Loops

While the program of listing 1 is address independent
due to the use of relative addressing on all branches, several
assumptions have been made about the hardware address
commitments of the system which uses the program. All
the hardware address space commitments are essentially
arbitrary, and should be changed to reflect the character-
istics of the 6800 system in which this code is actually
used.

The origin of hexadecimal 1000 for the program itself
was arbitrarily chosen as a “nice”” round number that is far
away from page 0. In order to take advantage of direct
addressing, all scratch data areas of the program have been
assembled at locations hexadecimal 30 to 36 in page 0.
These locations can be changed by hand to any location
within page zero by modifying each use within the listing,
or with re-assembly using the source code of listing 1. The
data areas can be reassembled anywhere in memory if
desired, using extended addressing instead of direct ad-
dressing of page 0, but some thought should be given to the
effect this will have on the execution time characteristics of
the program,

The program also assumes that the user has a simple 8
bit input port wired to hexadecimal address 8000 such that
the high order bit of the port reads the value of the
scanner’s output: logical level 1 for input of a bar opposite
“the scanner’s aperture, and logical level 0 for input of a
space under the aperture. This port must be initialized prior
to entry into the scanning routine, so users of PIA ports
should do this either by hand or using a program set up the
proper PIA configuration for input.

An ASCIl “bell” character output is used as operator
feedback to indicate end of frame without error. This
program assumes a Motorola MIKBUG monitor program
with a character output routine located at hexadecimal
address E1D1,

Unlike the 6800 program of listing 1, the 6502 program
is not address independent. An origin of hexadecimal 300
was chosen for the program based on the original system’s
characteristics. The 6502 system used for this version’s
testing is reflected in the choice of the location for a
routine to type out a single ASCII character at location
02D9, and the input port which is assumed to be located at
hexadecimal address FC12.

The program timing loops in RBAR must be set up so
that the resulting counts do not get too small on zero bars
when scanning fast, or too large on one bars when scanning
slow. If the computer is slow (or the timing loop too long)
then accuracy will decrease resulting in more errors. This
will force the user to scan at a slower rate. If the computer
is fast (or the timing loop too short) then the counts will
overflow at slower scanning speeds causing end of frame
timeouts to occur. This will force the user to scan at a

higher speed, which significantly increases the wear on the
page of bar codes. Table 1 shows the time required to
scan zero and one bars at various scanning rates. The table
also gives the counts that would result from a 16 us timing
loop. (This count is found by dividing the given times
by the length of the timing loop in microseconds.) For
good accuracy, a zero bar scanned at the highest speed
should give a count greater than 20 and a one bar scanned
at the slowest speed should give a count less than 200.
If the loader program does not seem to work reliably on
your system, calculate these counts for the timing loop
at BAR4, If the counts are too high, then insert some
NOPs or other “do nothing” instructions into each of the
timing loops to slow them down. If the counts are too
low, then either the computer or the timing loops will
have to be speeded up, or you should scan the bars more
slowly.

Scanning Rate

10 ips 20 ips 30 ips
zero
- bar 1400 us/87 700 us/43 466 us/29
@ (.014 in)
Ew
5 one
a bar 2800 us/175 1400 us/87 932 us/59
(.028 in)

Table 1: Time and counts required to scan a bar at various
rates of speed. In each position of the matrix, the number
to the left of the slash is the number of microseconds that a
bar will take in crossing the scanner head at a given rate of
scan. The number to the right of the slash gives the integer
width count for the bar, assuming a (typical) 16 uS timing
loop performs the measurement.

15

The 8080 or Z-80 program is able to use the registers in
the computer to hold most of the program variables. The B,
C, D and E registers contain the decoded byte, the unit
width, the checksum, and ‘the frame length, respectively.
The HL register pair holds the buffer address. The only
values which must be stored in memory are ABUF (buffer
address at the beginning of the frame), ID (frame ID), and
FLAG (the absolute or text format flag). The only
programming “trick” used was to have the RBAR sub-
routine return to the calling program by jumping to the
return sequences in RBIT (BIT7 for a normal return, and
BIT9 for an end-of-frame timeout return). This saves a few
bytes of code since both routines have to do similar cleanup
operations before actually returning. The 8080 or Z-80
program was developed using a2 TDL Z-80 processor board
running at 2 MHz. This program probably will not operate
properly on a slow 8080 system because the bar counts will
get too small to allow for good accuracy. Because of the
inherent limitations of an 8080 microprocessor, the timing
loops are about as fast as possible (which is not all that
fast). This problem can be compensated for by scanning at
a slower rate than would be used for an equivalent Z-80,
6502 or 6800 system.

25

LISTING NO. 3

NINLIY ¢

Qqu3y 4037

INDIS . 1I34¥0J. LNDIND T
d0¥¥3 417

WNSHIFHI MI3HI ¢

Hibd U3y’

$53300H g¥3¥ - 586 I ¢
13y 4

73y ¥0 Sg¥ JI 3357
403 417

HIONIT 3WEyd QH3y ¢
NHIS3Y !

IWHNS LXIN Y
QI w3 41

ENHISIN 30 IWHES MIN
qr au3d !

13¥ 53

Msd d0d T4

9 d04 T2

g __d0d 7.1

segd g7

EEEL]

pAT ZNI g1ar I3

e 147 ea3d

d°H ADN k207 £

PA7 dHT FaT L7

3dAL TIHI £804 a3

£a°3 La3a

#I7 arar £

a ao34

q¥ azal He
&Td1 NI L40F T2 288T
H°3 AON 45 FRaT
¥ 33g [2 0
FH AON 2 4487
H XNI £& 348T
N A0 L d4LaT
LORUY arar vd HLar
1A9Y W2 8707 ZHAT g3 <487
Y3 AON 98T
- J-N i) S4BT
Y ¥ag £20T
ERCANIL £487
37 AN Z4aT
#3717 ar 498T
148y TTHI 987
aH ADN aaart
#q7 I 2947
1AGY T £3aT
8T07T 2 z9at
8 142 #2aT
oM14 HJT FTIT STIT HE 3697
$201 ZF £6AT B3 HSAT
e Id3 @p34 85AT
gy AOW 82 2587
93 AON 85 9587
ra1 I 9187 Hd £SaT
1A8¥ 17W2 (#FA7 zHaT g2 esar
anNgy gIH1 ETal 9TTT 2 abOT
4Nay aTHS STTT 22 UverT
a1 uis QITT 2£ 2907
Pa71 ZNL STAT 22 PPAT
g dWd 83 &£rar
H ANI a8 ZravT
Zra1 2 qreT ¥l 4287
8 dNd 88 3far
a1 ¥g7 BTTT HE gfa7v
pq1 30 aTaT WG 8L4T
1A8Y_TWI @ra7 2087 42 SEOT

a:q AN T es

#a7 0 8187 UQ
WASYIIHI QHIY ¢ 1AGY TWI 807 2uar g

2g7 2NL 2e8r 23

gz 143 8734

g AON 3

LR, [TaT Ha

119y T2 247 #3087 Q2

F1A8 INAS ¥04 HONY3S ¢ €3 IAN aase
HD AGH Eid

yuy . 47

+3d71 _ar STAT a4

JHEN TWI FIOT 42

118 ONIWIL OB3¥ ¢ @r <2 IaK k07 ge3e

gl els 8TIT 28

@y IAN R

a HSNd £q

g Hsnd 52

oyl4 HIS (207 ETTT &%

Q" IAN ea3s

N84 QHS RTIT &7

INIOd AYING ¥3QY07 37861HI073 1 MSd HSNd ‘¥37 &4
207 dNr Je87 £2

TH IAW Fe3s

INIOd AJLINI ¥3QHOT 3LNI0SEH ¢ MSd HSNd :¥a7 £

HINNHIS 40 1d0d O/1¢ 2 = ANIS
NUHD Y FdAL 0L 3NILNOY 30 JQH ¢ HE@RG=3dAL

Haeara 201
S8ud

ANONIN OINI J30H0T

J1AG HIHQ LSHT ¥3Ld¥ NOILHIOT 0 SSIYIIH
NIHINOD T7IM T°H 1IX3 NO 030153 ONH
ANINI NO 03AWS 33 T°H 1d3IX3 SYIFLSINIY W

S53YaJH 3OKYOLS =TH
HIONIT JHedd - 3
NNSMIIHI - ¢

HIQIM LIND - 2
31A9 Q300230 - €

:JOHSN ¥3LST1934

‘WiHd JN¥OLS 0L F¥3HM S0 SS3ygaY
ONINIHINOD S¥3ILSIQIY T°H HLIIM YIINI
‘553NAJE AYONIN H HLIN J3LHI0SSH

10N H1HG ¢I125d 9 '3 3IGHLHI0TIY SHOT - ¥37

‘JWHYS HIEG NI QINIHINQD S1 SSINAQH AYOHIN
‘ANOWIN OLNI HLHQ AYHENIS 2107053 SQUOT - HOT

ANONIN OLNT
NINNKIS 3002 YU WOd4 HLET QW07 01 SINILNO¥INS

(402
R2x:14
3207

azar
éza7
szar
czat
zza7
azaT

Jrer

2eae
saod

aear

¥ C Wt

I

o714 TIESSAHY @ 3LAG 014 e 6177
ar 3WEd4¢ @ 34Ag° Al 00 8TT7
3WE¥4 40 ONINNIO3S 16 dadH 08¢ @ QdON © dngy agoe 9TTT
IOWN0LS HING
2119 dur 68T £ SITT
NSILIY THWHON ¢ TE AON gz 2TIT
SWHg ZNI ZOTF 23 40TT
a wa ST 3017
paeg W 7407 B4 90T
@ 1dd 0033 _ 60TT
N35SI TILS FMdS 404 NIFHI L £°0 TN Tast COTT
TyMg INE #3397 2q ZOTT
R 99 Terr
iy 7 earT
b 47 4907
262 IN® 2493 a407
CULHG QITHAY FALIND < d69 41 33S¢ DU AON 6. o487
paug Wr TAT HI €407
a_ 142
e TNIE T
5119 ZF b
479 ¥INNHIS ¥04 LIEN* 3 dNI cpang ar Tder
Zuvg df 2307 24 3307
Tel13 Zr EC I BPE]
135 ¥INNGIS ¥04 LIUN ¢ a dNI :za¥g b7 B30T
INNO3 306dS ¥WT1I¢ B0 TAN NS 0asT 30T
INNOD ¥Y8 ¥WITI! @°T 1AM ee3T 307
30 3AUS ¢ a HSNd -d6gY ca T3er
1N03NIL INHY-I0-ONT 4T 13S = ‘
Qv3¥ 3bg 41 317 = s¥NED ‘
INOD 69 = <U>3 LIX3
HLON3T ¥H QH3Y
yegy ¢
dsy |
13¥ 53 0307
218 2z
: q d0d4 6119 T
NANL3Y LNOIWIL INHNF-F0-ONT ¢ MSd d0d 8lld T4
13y £
W2 P
s 25
a 409 2113 11 08T
NYNL3Y THNION MSd d0d c9LId T4 2987

D

—- e — Y

1IN = (DI ¢

LIND M3N 3LNdNOT ¢

3149 OINI LIF L4IMS?
(AYYYI WS 1

LINN%S F ¢ 349 JI 3357
YHI QU3 ¢

S0 Y JAWS ¢

397 3AMS ¢

LN03WIL IWPIS-J0-ANT 41 135 =

@ hoox
o C . N -
HWE HWwo

118
Iy
Msd
C]

au3y 118 41 370 = AddHI

NI J3L4IHS LI9 HLIM 31A9 =
YINNHIS WONH L

WASNIIHI 01 31A9 QaF ¢
118 1X3N QH3¥ 01 d007T¢

31A9 QH3N ¢

INNODY 119 = (HXJ7

AINO3NIL 3WHYS-40-aNI 41 135
Qqy3y 31A8 41 312

P2
I9 3INQ

va
3
aH
2148

L}
6148
118y

eY

AN

WNSNIIHI = ()2

3148 =

WNSXJ3HI 0L 31A8 Qv
YINNYIS WONJ 31A9 3INOQ QU3

e e -
1

82

Uy k119

AOW (2119

419y

[
~
>
w

JN2
als
AOW
qgy
AOH

2ZNr

¥2q

ar
TWI 2149

AN :1A8Y

‘11X3

1A3¥ ¢

PHAT 22

as
£897 Ha
#8087 92

8038

Using The Bar Code Loader Algorithm

Implementation and Checkout Procedure

1. Verify the hardware connections to the scanner. The ‘‘wand” unit and electronics employed
must be level sensitive, translating reflectance of a white paper into a data value of 0 on its
output line, translating reflectance of a black (fully inked) paper into a data value of 1 on its
output line. (Some commercial point of sale scanners produce edge timing information in the
form of pulses which occur when light changes to dark and vice versa. These scanners are
unusable with the programs given here.) The output line of the scanner electronics should be
connected to the high order bit of the 8 bit input port used by the programs of listings 1 to 3.

2. Using the manual methods (ie: keyboard and monitor program, toggle switches, etc.) of
your system, enter one of the programs from listing 1 to listing 3. Modify the program’s
hardware dependent address constants to suit your system’s hardware constraints. If you use a
processor other than a 6800, 6502, 8080 or Z-80, then use the flowcharts of figure 4 and
examples of listings 1 to 3 to create a new loader program for your processor.

3. Verify the operation of the loader program by using one pass of the data contained in figure
2b and comparing the results to the data listed in the figure. For those who use listings 1 to 3
for the program, most problems will probably be found in the area of making the hardware
dependent address changes. More general debugging may be needed if a new program is coded
for a different processor. Use the Text Entry Procedure (see separate box) for this checkout

operation.

4. With the loader’s operation verified, save it on your system’s mass storage device; make sure
the cassette or floppy disk copy is verified against the memory image of the program, and make
redundant copies if you require that degree of safety.

29

X

30

Using The Bar Code Loader Algorithm

Text Entry Procedure

This procedure is used whenever reading bar code texts which have been encoded using the
“text” format of figure 3a. In this format, the bar code copy is used to define an address
independent block of data which can be placed’in an arbitrary buffer in memory. Typical types
of data involved are character source téxts of applications programs, character data files in
general and relocatable object code files which will be processed further by appropriate linking
loaders, etc.

1. Make sure that your bar code loader program has been correctly loaded into a scratch area
of memory, and that the hardware is all set up. Set up of the hardware includes initialization of
the scanner input port if this is required, as in the case of those who use PIA (Motorola 6820)

input ports.

2. Set the initial value of the pointer ABUF. For the 6800 program of listing 1, this is
accomplished by loading the index (X) register prior to entry. In the 6502 program of listing 2,
this is accomplished by initializing the variable ADR which is at location hexadecimal 30 in
memory in listing 2. For the 8080 or Z-80 program of listing 3, this is accomplished by
initializing the H and L register pair with the starting memory pointer. ABUF should be set so
that during the course of the loading operation it will not conflict with the memory location of
the loader program itself, or for that matter, any other program which you want to preserve.

3. Physically prepare for the first scan by laying the bar codes on a flat surface, obtaining a
ruler or straight edge which is longer than the longest frame of bars by several inches, and
positioning yourself comfortably.

4. Start the bar code loader program by calling the LDR entry point from your monitor.

5. For each frame of the bar code text being read, position the ruler so that the wand will scan
with its aperture centered directly over the bars. Use guide marks (built in or added by
yourself) on the wand head to set the ruler position. Then, with a steady hand, move the wand
down the line of bars starting from about one half to three fourths of an inch before the
beginning of the frame, and continuing at a steady rate until the end of the frame has been
scanned. If the frame was successfully read, the terminal device of your system will sound the
“bell” code (a bell on Teletypes, or tone of some form on CRT terminals). When you have
received a correct read acknowledgement go on to the next frame of the text.

If no acknowledgement is heard, there was a timeout or checksum error and the frame was
incorrectly read. Repeat the same frame, after checking the ruler position, your scanning
technique, etc. This feedback interactively teaches you how to correctly position the ruler and
wand; from our own experience, once the technique is practiced a bit, nearly every frame will
be correctly positioned and read.

6. When the last frame has been read with a zero length and zero checksum, end of file is
determined and the program loader will return to the calling point. If no end of file frame is
found in the bars, return can also be effected by restarting the system in your usual manner.

7. This has read the data into memory starting at the initial value of ABUF. What is done with
the bar code originated data depends on the documentation accompanying the program or
other text which you have just read.

A General Bar Code Loader Algorithm

Absolute Entry Procedure

This procedure is used whenever reading"Ear code texts which have been encoded using the
simple “absolute’” loader format of figure 3b. In this format, the bar code data of each frame
begins with a two byte destination address for the data, high order byte first. This form is
generally used with absolute object code of simple programs which are compiled for fixed
addresses in memory. Such programs are generally ready to run upon completion of the loading
process.

1. Make sure that your bar code loader program has been correctly loaded into a scratch area of
memory, and that the hardware is all set up. Hardware set up should include initialization of
the scanner input port if necessary. Using the documentation of the program being input, verify
that the absolute addresses encoded in the bar code file are consistent with available memory
areas in your system.

2. Physically prepare for the first scan by laying the bar codes on a flat surface, obtaining a
ruler or straight edge which is longer than the longest frame of bars by several inches, and posi-
tioning yourself comfortably.

3. Start the bar code loader program by calling the LDA entry point from your monitor.

4. For each frame of the bar code text being read, position the ruler so that the wand will scan
with its aperture centered directly over the bars. Use guide marks (built in or added by your-
self) on the wand head to set the ruler position. Then, with a steady hand, move the wand
down the line of bars starting from about one half to three fourths of an inch before the begin-
ning of the frame, and continuing at a steady rate until the end of the frame has been scanned.
If the frame was successfully read, the terminal device of your system will sound the “bell”
code (a bell on Teletypes, or tone of some form on CRT terminals). When you have received a
correct read acknowledgement go on to the next frame of the text.

If no acknowledgement is heard, there was a timeout or checksum error and the frame was
incorrectly read. Repeat the same frame, after checking the ruler position, your scanning
technique, etc. This feedback interactively teaches you how to correctly position the ruler and
wand; from our own experience, once the technique is practiced a bit, nearly every frame will
be correctly positioned and read.

5. When the last frame has been read with a zero length and zero checksum, end of file is deter-
mined and the program loader will return to the calling point. If no end of file frame is found in
the bars, return can also be effected by restarting the system in your usual manner.

6. This has loaded data in regions of your system’s memory which are encoded within the bar
code text. Proceed to use the data as specified in the documentation accompanying the bar
codes; for example, if the data is a program loaded in absolute form, call or jump to the appro-
priate entry point address.

31

