

PLEIADES MICADWARE -- SORCERER --

A DISASSEMBLER PROGRAM FOR 8080 BASED MICROCOMPUTERS

COPYRIGHT © BY GEORGE GILBERT; PLEIADES MICROWARE

_				Page 1 of
1 .	Christo			Date: 3/3/76
Program	Length in By			Language: x Machine Asse
TAG	MNEMONIC	ADDRESS	OCTAL - CODE	EXPLANATION
START	PUSHH	XXX, 300	345	Save H,L
	PUSHB	301	305	Save B,C
	LXIH	302	041	Point to "locate CR" switch
		303	334	
		304	xxx	
SENSE	IN	305	333	Read sense switch
		306	377	
	RAL	307	027	Bit 7 to Carry - test Al5
	JC	310	332	Al5 is set. GO TO ACRIN
***************************************		311	335	
		312	XXX	
KBDIN	MVIA .	313	076	Set ACC to 1
		314	001	
	MOV	315	167	Set "locate CR" switch to 1
KBDCSW	IN	316	333	Read keyboard status word
		317	000	
	ANI	320	346	examine data ready bit
		321	002	
\overline{C}	JZ	322	312	Not ready. Go to KBDCSW

Program Name: BASIC Keyboard-ACR Input Routine #3-12-763 Page 2 of 10

TAG MNEMONIC ADDRESS OCTAL EXPLANATION

XXX, 324 XXX

TAG	MNEMONIC	AUDRESS	CODE	EXPLANATION
		XXX, 324	XXX	
	IN	325	333	Read keyboard data
· · · · · · · · · · · · · · · · · · ·		326	001	
	ANI	327	346	Select bits 0-6
		330	177	
	POP9	331	301	Restore B,C
	POPH	332	341	Restore H,L
	RET	333	311	Pass kbd character to BASIC
SWITCH		334	001	If switch is 1, search for CR
ACRIN	CALL	335	315	Obtain data word from ACR
		336	367	
		337	xxx	
	MOVBA	340	107	Save ACR data word in Reg B
	MOVAM .	341	176	Load "locate CR" switch
	RAR	342	037	Bit 0 to carry -test for seek or read
	JNC	343	332	Bit 0 is 0 go to read mode.
		344	361	
		345	XXX	
ACRSEEK	MOVAB	346	170	Restore ACC from Reg B
-	CPI	347	376	Does ACC contain a CR
		350	015	
	JNZ	351	302	No, keep looking for the 1st CR
		352	335	
		353	XXX	
	SUBA	354	227	Yes, set "locate CR" switch to 0
	MOVMA	3 55	167	
	JMP	356	303	Now go read data

rogram N	ame: BASIC K	eyboard-ACR	Input Rout	tine #3-12-763 Page 3 of 10
TAG	MNEMONIC	AUDRESS	OCTAL CODE	EXPLANATION
		XXX, 360	xxx	
CRREAD	MOVAB	361	170	Restore ACC from Reg B
	ANI	362	346	Select bits 0-6
		363	177	
	POPB	364	301	Restore B,C
	РОРН	365	341	Restore H,L
	RET	366	311	Pass ACR character to BASIC
CRCSW	IN	367	333	Read ACR status word
		370	006	
	RRC	371	017	Bit 0 to carry - te t for data ready
	JC .	372	33,2	Not ready. GOTO ACRCSW
(•	373	367	
		374	xxx	
	IN	375	333	Ready. Read ACR character
	·	376	007	
	RET	377	311	Pass character to caller
•		-		
<u></u>				
				•

	ALTAIR	8800 MACHI	NE/ASSEM	BLY LANGUAGE PROGRAM CODING SHEET								
Program	Name: Modifie	ed BASIC Outr	ut Routin	e #1 #3-12-763 Page 4 of								
(roeramm	er: Christo	opher J. Flyn	n	Date: 3/3/76								
Address:	2601 Cls	xton Drive,	Herndon,									
Program Length in Bytes: 13 Language: X Machine Ass												
Other In	baud rate is less than ACR baud rate.											
Code applies to unmodified 88-SIO board.												
TAG	MNEMONIC	ADDRESS	CODE	EXPLANATION								
TTYCSW	IN	XXX, 260	333	Read output device CSW								
		261	000									
	ANI	262	346	Select device ready bit								
		263	001									
-	JZ	264	312	Not ready. GOTO TTYCSW								
(·	265	260									
· .		266	XXX									
	POPA	267	, 361	Restore ACC								
	OUT	270	323	Send contents of ACC to output device								
	·	271	001									
	OUT	272	323	Send contents of ACC to ACR								
		273	007									
	RET	274	311	Back to caller								
•												
		4.										
,												
	1											

Program I	Name: Modifi	ed BASIC Out	out Routin	e.#2 #3-12-763 Page 5
	er: Christ			
Address:	2601 Claxto	n Drive, Her	ndon, VA	22070
Program i	ength in By	tes: 12		Language: X Machine
Other In	formation: A	ssumes outpu	t device b	aud rate is greater than or equal to ACR
baud ra				
TAG	MNEMONIC	ADDRESS	OCTAL CODE	EXPLANATION
BEGIN	IN	XXX, 260	333	Read ACR status
		261	006	
	RLC	262	007	Move device ready bit to carry
	JC	263	332	Not ready. GOTO BEGIN
		264	260	
		265	xxx	
	POPA	266	361	Restore ACC
	OUT	267	323	Send contents of ACC to ACR
		270	007	
	OUT	271	323	Send contents of ACC to output device
		272	001	
	RET	273	311	Back to caller
		11		
•				

Saving BASIC Programs with the ACR

1.500 × 1 150 1

Introduction

Users of the cassette versions of BASIC and users lacking paper tape quipment have only limited capability to save debugged BASIC programs for later use. 4K users are in a peculiar situation in that there is no provision at all for saving programs short of investing in a paper tape reader, punch. In 8K BASIC (cassette version) there is the capability to save programents (CLOAD). When programs are stored in this manner, they are written to tape in internation form rather than in source (ASCII character) form. This method may impose a release dependency on stored programs. That is, programs CSAVEd in one version of BASIC may or may not CLOAD in a different version of BASIC. Another difficulty with CSAVE and CLOAD is the potential problem in merging program segments from multiple tapes to create a composite program. Finally, BASIC compatible tapes are not easily created or listed off-line.

This article describes a method of using the ACR cassette interface together with patches to BASIC's input and output subroutines in order to si ulate a paper tape reader and punch. Thus, any information which can be displayed on the terminal (programs, subroutines, comments, DATA statements, are so on) can be stored on cassette tape and retrieved at some point later in the comments.

Since the system described herein stores data in source form, several advantages in operational flexibility are immediately obtained. Barring any changes in BASIC syntax, release dependency is minimized. Programs saved under 4K 3.2 BASIC should load and execute properly under future releases. PASIC statements may be loaded from several tapes to create a larger program or example, a main program may be loaded from one tape, any required subroutines may be loaded from a tape containing a subroutine library, and finally, DATA statements may be read from yet another tape. Using the prope system, it is also possible to create and list BASIC tapes without bringing BASIC. Some of the text editting systems now available can be useful for of line data preparation.

The proposed system does have a few disadvantages. At the present time it is not possible to name files stored on tape. The tape recorder index counter readings must be used to locate files. As will be shown later, the proposed system does not pack characters on the tape as closely as possible. Normally, this will not be of too great significance. The most severe criticism of the proposed method is that there is some question as to the transferability of tapes made in this manner to users with other terminal configurations.

Method

BASIC handles input and output to the terminal by means of input and ourput subroutines which are tailored to the particular I/O interface boards supporting the terminal. These subroutines provide a logical starting place for any attempt to develop effective cassette software.

One subroutine in BASIC is responsible for terminal output. Whenever BASIC attempts to print a character, the output subroutine is invoked. The utput subroutine checks the output device status and outputs a character when the device is ready. A simple modification to this subroutine causes a character to be written to the ACR every time a character is printed on the terminal. Thus, if the tape recorder is in the record mode all information (whether typed by the user or printed by BASIC) will be stored on the casset

#3-12-763 Page 8 of 10

Operation

Once BASIC has been loaded and the new input and output routines established aving and retrieving programs becomes very straightforward.

A. Saving a BASIC program

To store a program on tape follow the steps enumerated below:

- Type in the program. Test it to make sure it is fully operational.
- 2. Add a dummy line at the end of the program (e.g. 999 REM. . .).
- 3. Type LIST, but do not hit RETURN.
- 4. Set up the recorder in the record mode. Write down the footage meter reading.
- 5. Record at least 10-15 seconds of leader.
- 6. Now type RETURN. The program will be printed on the terminal and recorded on the tape recorder. Note that carriage return marks the beginning of the tape file.
- After the program has finished printing, allow the ACR to write at least 10-15 seconds of trailer.
- 8. Stop the tape recorder.
- 9. Write down the final footage meter reading.

B. Retrieving a BASIC program from tape

To access a program which is stored on tape, perform the following step

- 1. Prepare the tape recorder for playback operation.
- Using the footage meter, locate the desired file and stop the recorder in the leader.
- 3. At this point you may wish to type NEW at the terminal if you are loading a main program. Otherwise, the program statements read fro tape will be merged with the BASIC program currently in memory.
- Turn on the Al5 sense switch to signify that system input will come from the ACR.
- 5. Type RETURN on the keyboard this completes the changeover from the keyboard read routine to the ACR read routine.
 The keyboard should now be insensitive to further input. Furthermough the INP console light should be on indicating that BASIC is expecting ACR input.
- 6. Start the tape recorder making sure that the tape is positioned in leader. BASIC will scan the tape until the first carriage return is encountered which signifies the beginning of the tape file.
- After the beginning of the file has been located, BASIC statements will be read from tape and printed or displayed on the output terminal.
- Watch for the dummy statement (999REM...) at the end of the program
 When this is encountered, turn off Al5 as soon as possible in order
 switch BASIC back to keyboard entry.
- If Al5 is not turned off in time, BASIC will be "stuck" in the ACR read mode. If this should happen, keep Al5 in the off posistion,

Saving BASIC programs is then a matter of selectively (and manually) turning on and off the tap recorder.

The modification to the output subroutine presumes no alteration of ACR adjustments; the ACR remains set at 300 baud. If the output device is teletype machine operation at less than 300 baud, the extra write instructing in the output subroutine will not substantially degrade printing speed. Indeed, the mismatch in baud rates is the reason that this method does not achieve optimum packing of characters on the cassette tape. Depending on the exact baud rates, there will be a delay of several milliseconds after the character has been written and before the Teletype has finished printing the character. This delay, however, insures that during playback the ACR which is significantly faster than 300 baud (e.g.a TV typewriter using a path of board), then the output routine, modified as above, will limit the data transfer rate from the computer to the output device. If the degradation it too severe, it may be possible to selectively enable and disable the ACR output logic in a manner similar to the input routine discussed below.

Depending on the version of BASIC, there may be several places in the interpreter where a check for terminal input is made. Only one of these routines, however, is used for accepting terminal data. The other routines Control C checks used to interrupt a running program.

BASIC's input routine is similar to the output routine. The device string checked. If the device is ready, a character is read from the device an passed to BASIC for processing. Otherwise, BASIC waits until an input signing sensed.

The modifications to BASIC's input routine are more involved that the output routine. Essentially, however, the modifications consist of checking a sense switch on the CPU front panel and then reading from the keyboard or ACR depending on the sense switch setting. To retrieve data from tape then, the only action that is required is to turn on the sense switch and to start the tape recorder. Note that since the ACR has replaced the keyboard as the input device (as long as the sense switch is set) all characters stored on tape will apear on the output device as though they were input from the keyboard.

The timing considerations discussed earlier also apply during playback. Tapes recorded and played back on the same system should be processed proper ly. A potential problem exists, however, with trying to play back a tape created on another user's system if the other user employs a different speed terminal. For example, a tape made on parallel I/O board TV typewriter syst will most likely not have the several millisecond delay between ASCII charac Attempting to print such a tape on a slower Teletype will cause the ACR to overrun the Teletype. To remedy such a situation where there is a timing mismatch, simply NOP the output device status checking code, read in the protape, ignore the gibberish that is printed, and restore the output routine. Most probably, BASIC will have read the tape properly even though the charac could not be printed.

\$3-12-763 Page 9 of 10

rewind the tape back slightly into the data, and play the tape again. As soon as one character is read from the tape, BASIC will revert back the keyboard entry mode.

Modifying BASIC

The modification required to BASIC consist of adding a new input subroutine and a new output subroutine and modifying BASIC's existing I/O routines to CALL these new routines. Accompanying sheets contain the machine language code for the new routines and patches for the cassette version of 3.2 4K RASIC.

Refer to the code for new I/O routines. The sections of code labelled KBDCSW and TTYCSW handle the terminal input and output devices respectively. In the example shown, keyboard input is accepted via an 88-PIO parallel I/O board. Terminal output, on the other hand, is performed via an early versic serial board. The important point is that the KBDCSW and TTYCSW routines must be tailored to the specific devices being used. Any doubt about the I/programming can be resolved by loading BASIC and examining its terminal I/O routines.

Note that two output routines have been included in the documentation. Choose one of them according to the baud rate of the output terminal device. The new output routine is designed to capitalize on speed difference between the ACR and terminal. By outputting to the slower device first and by performing status checking on the slower device, the assumption can be made that the faster device will always be ready to output. Therefore, status checking code for the faster device can be eliminated. If, for some reason, satisfactory results are not achieved, modify the new output routine to check the status of both the ACR and the terminal before writing.

As shown on the accompanying documentation, BASIC's I/O routines are replaced with CALL instructions to the new routines. Teh locations shown are applicable to 4K BASIC Version 3.2. A recent issue of "Computer Notes" suggested a method for locating these I/O routines. An easy way to find BASIC's I/O routines consists of loading BASIC and then stopping BASIC while it is printing and stopping it again while it is waiting for terminal input. In each case, note the locations and memory contents when BASIC is stopped. Then, using the EXAMINE switch, find the device status checking IN instruction each routine. These are the locations that will be replaced by CALLs to the new routines.

Listed below are stops to be followed in order to bring up BASIC and apply the necessary modifications:

- 1. Toggle in or load from tape the new I/O routines. Locate these routines in a high page of memory and above the area used by the bootstrap loader.
 - 2. Load BASIC according to normal procedure.
 - Stop BASIC as soon as the initialization dialogue begins.
 Note the location where BASIC was stopped.
 - Replace BASIC's I/O routines with CALLs to the new I/O routines just loaded.
 - Restart BASIC from the location where it was stopped. If BASIC was in the old output routine, restart it from the newly inserted CALL

statement.

6. Complete the initialization dialogue. Do not allocate all of the memory to BASIC or the new I/O routines will be overlaid.

Conclusion

This article has described a simple software interface to BASIC which effectively simulates a paper tape reader and punch with the result that BAS capability in the area of off-line data storage is greatly enhanced.

Although the system was originally intended to provide a source program storage facility, other applications suggest themselves since any data that can be entered via a keyboard can also be entered via tape. Consider the following BASIC program.

- 10 FOR I = 1 to 10
- 15 PRINT 900 + I; "DATA"; 3.14159*I
- 20 .: NEXT I

This program prints a series of DATA statements. If the DATA statement are stored on cassette tape, they can be accessed later by another BASIC pro The ACR, then, may serve as a convenient work file for communicating tempora results between programs.

An advanced user may carry the work file principle a step further. Wit the string capabilities of 8K BASIC, it is possible to write a single comiler. Instead of generating machine code, the compiler could generate BASI statements and save them on tape for later execution.

There are, in the end, a potentially unlimited number of uses for the ACR data storage system presented in this article.

MODIFICATIONS TO 4K 3.2 BASIC

The following patches to BASIC are made after BASIC has been loaded and started and <u>before</u> the initialization dialogue has been completed. Do not apply these patches and then start BASIC from location zero or the patches will be overlaid.

Output Routine

Locati	<u>on</u>	Old Contents	New Contents				
003, 1	.67	333	315	Call	new	output	rt
, 1	.70	000	260				
, 1	.71	346	XXX				
, 1	.72	001	311	Back	to	BAS IC	
put Routi	ne		•				

Location	Old Contents	New Contents	
003, 202	333	315	Call new input rt
, 203	000	300	
, 204	346	xxx	
205	002	211	

SORCERER IS A DISASSEMBLER WHICH RUNS ON 8080 BASED MICRO COMPUTERS, IS WRITTEN IN ASSEMBLY LANGUAGE, COMES COMPLETE WITH A FULLY COMMENTED ASSEMBLED SOURCE LISTING AND AN OBJECT TAPE RECORDED IN "TARBELL FORMAT". A UNIQUE FEATURE OF SORCERER IS THAT IT COMES WITH THREE DIFFERENT OBJECT ASSEMBLIES ON THE CASSETTE TAPE. THIS MEANS THE PROGRAM CAN BE LOADED AND RUN AT 8000 HEX, 2000 HEX OR 4000 HEX. THE USER CAN SELECT A VERSION OF THE DISASSEMBLER (WHICH WILL LEAVE THE AREA OF MEMORY THAT WILL CONTAIN THE PROGRAM TO BE DISASSEMBLED FREE) THAT BEST SUITS HIS NEEDS. BINARY PUNCHED PAPER TAPES OF THE DISASSEMBLER ARE AVAILABLE FROM PLEIADES MICROWARE AND CAN BE ORDERED BY USING THE FORM ON THE LAST PAGE OF THE OPERATORS MANUAL.

SORCERER WILL TAKE ANOTHER PROGRAM WHICH IS LOADED IN MEMORY AND PRODUCE A "DISASSMBLY" OF THE CODE RESIDING THERE, STARTING AND ENDING AT THE ADDRESSES THE OPERATOR SPECIFIES. THE DISASSEMBLY WILL INCLUDE IN ORDER FROM LEFT TO RIGHT, THE THE HEX ADDRESS OF THE CODE, THE HEX DATA CONTAINED AT THAT ADDRESS, THE INSTRUCTION MNEMONIC AND THE ASSOCIATED HEX LABEL OR REGISTER NAME IF APPLICAPABLE. ALSO BY PROPER SETTING OF THE SENSE SWITCHES, THE USER CAN SELECT PRINTING OF THE ASCII CHARACTER EQUIVALENTS AND THE OCTAL ADDRESSES AND DATA CONTAINED IN THE MEMORY LOCATIONS PREVIOUSLY REFERENCED IN HEX. THE ASCII DATA IS USEFUL FOR DETERMINING IF CHARACTER MESSAGES OR DATA ARE EMBEDDED IN THE PROGRAM BEING DISASSEMBLED. DURING PRINTING OF THE ASCII DATA, AN ASTERISK WILL BE PRINTED PRECEDING THE CHARACTER IF THE SIGN BIT IS SET AT THE REFERENCED LOCATION AND A PERIOD WILL BE PRINTED AFTER THE CHARACTER IF IT IS A CONTROL CHARACTER. THE SIGN BIT IS OFTEN USED TO "MARK" THE END OF AN ASCII CHARACTER STRING IN SOME PROGRAMS.

THE SORCERER OBJECT PROGRAM IS RECORDED IN TARBELL FORMAT ON CASSETTE TAPE AND THE RECORDED LOCATION OF THE THREE VERSIONS ARE GIVEN ON THE TAPE LABEL. HOWEVER, DUE TO VARIATIONS IN COUNTERS OF DIFFERENT RECORDERS, IT IS RECOMMENDED THAT THE TONES ON THE TAPE BE USED TO VERIFY THE ACTUAL LOCATION. IF THE USER IS NOT FAMILIAR WITH THESE SOUNDS, LISTEN FOR A PURE SYNC TONE WHICH PRECEDES EACH RECORD ON THE TAPE. WHEN THE DATA BEGINS A VERY DISTINCT CHANGE CAN BE HEARD IN THE TONE. THE SOUND WILL CHANGE FROM A RATHER PURE CONTINUOUS TONE TO A SOUND WHICH CONSISTS OF ALMOST PURE NOISE. THIS "NOISE" TONE MARKS THE BEGINNING OF THE DATA FOR EACH VERSION OF THE DISASSEMBLER. AS SOON AS THIS TONE IS HEARD, IMMEDIATLY STOP THE RECORDER AND REWIND JUST FAR ENOUGH TO GET BACK INTO THE "PURE SYNC TONE" AREA. THE USER WILL THEN BE READY TO LOAD THE DATA FROM THE CASSETTE TAPE INTO THE COMPUTER. USE THIS PROCEDURE TO FIND THE BEGINNING OF EACH OF THE THREE VERSIONS OF THE DISASSEMBLER WHICH ARE RECORDED ON THE TAPE.

IT IS SUGGESTED THAT THE ACTUAL LOCATIONS AS SHOWN ON YOUR TAPE COUNTER BE MARKED ON THE TAPE LABEL FOR SUBSEQUENT USE SO THAT THE ABOVE PROCEDURE NEED NOT BE REPEATED EACH TIME THE DISASSEMBLER IS RELOADED. IT IS ALSO HIGHLY RECOMMENDED THAT THE SMALL PLASTIC TABS ON THE CASSETTE TAPE (LOOK ON THE OPPOSITE EDGE FROM THE EDGE WHERE THE TAPE IS EXPOSED) BE BROKEN OUT USING A SMALL TIPPED SCREW DRIVER. THIS WILL PREVENT ACCIDENTAL ERASURE OF THE TAPE SINCE MOST RECORDERS DISABLE ENGAGEMENT OF THE RECORD HEAD WHEN THESE TABS ARE REMOVED. PLEIADES MICROWARE CAN NOT BE RESPONSIBLE FOR REPLACING TAPES WHICH HAVE BEEN ACCIDENTALLY RECORDED OVER.

EL

FOR THE OPERATORS CONVENIENCE, PAGES OF THE SOURCE LISTING HAVE BEEN NUMBERED 1 THRU 20 AND PAGES OF THE OPERATORS MANUAL HAVE BEEN NUMBERED 01 THRU 09. ON THE FOLLOWING PAGE, BRIEF INSTRUCTIONS ARE GIVEN ON HOW TO USE SORCERER, EACH STEP MAY REFER THE USER TO ANOTHER PAGE WHICH WILL GIVE MORE DETAILS PERTAINING TO THAT STEP. AFTER READING THE INDICATED PAGE, ALWAYS RETURN TO PAGE 03 AND PROCEED WITH THE NEXT STEP. SEVERAL REFERENCES ARE MADE ON PATCHING THE INPUT/OUTPUT ROUTINES TO CONFORM TO YOUR SYSTEMS CONFIGURATION. TERMS LIKE "TRANSMITTER BUFFER EMPTY" AND "DATA AVAILABLE FLAG" ARE USED IN THESE REFERENCES. IF THE USER IS UNFAMILIAR WITH THESE TERMS, HE SHOULD CONTACT THE STORE WHERE HIS SYSTEM WAS PURCHASED OR A LOCAL HOBBIEST GROUP TO FIND OUT EXACTLY HOW THEY APPLY TO HIS SYSTEM. IT CAN ONLY BENEFIT THE USER TO BECOME INTIMATELY FAMILIAR WITH THESE COMMON I/O TERMS.

ONLY ONE SOURCE LISTING IS PROVIDED, ASSEMBLED TO 4000H ALTHOUGH THREE OBJECT ASSEMBLIES ARE RECORDED ON THE TAPE. TO APPLY THE SOURCE LISTING TO THE OTHER VERSIONS OF THE DISASSEMBLER, MENTALLY REPLACE THE FIRST NUMBER OF EACH ADDRESS GIVEN ON THE 4000H LISTING WITH A "2" FOR THE (2)000H VERSION OR A "0" FOR THE (0)000H VERSION. ONE OF THE FIRST USES OF SORCERER, SHOULD BE TO TURN THE DISASSEMBLER ON ITSELF TO PRODUCE USEFUL LISTINGS OF THE 0000H AND 2000H VERSIONS.

THIS SOFTWARE HAS BEEN THOROUGHLY TESTED AND IS BELIEVED TO BE FREE OF ERRORS. HOWEVER, NO WARRANTIES ARE EXPRESSED OR IMPLIED AND THE USER MUST DETERMINE THE SUITABLITY OF THIS PRODUCT FOR ITS INTENDED USE. PLEIADES MICROWARE RESERVES THE RIGHT TO MAKE CHANGES, CORRECTIONS AND IMPROVEMENTS IN FUTURE EDITIONS.

THE AUTHOR WISHES TO THANK THE FOLLOWING PERSONS;

DAN MAC LEAN: FOR INSPIRATION, SUGGESTIONS, AND ASSISTANCE IN THE FINAL PREPARATION OF THIS DOCUMENT.

CORINNE BROEKER: FOR PROOF READING THE OPERATORS MANUAL AND FOR "ASSISTANCE" WHICH WILL ALWAYS BE REMEMBERED.

DENNIS BURKE: FOR ISOLATING A SOFTWARE BUG.

PAGE Ø2

- 1. KEY IN THE TARBELL FORMAT LOADER SHOWN ON PAGE 04. (IF YOU HAVE A TARBELL LOADER IN PROM OR ON PAPER TAPE OMIT STEP 1)
 - 2. LOAD THE DISASSEMBLER FOLLOWING THE INSTRUCTIONS ON PAGE 05.
 - 3. THE PROGRAM IS DELIVERED WITH PROCESSOR TECH. STANDARD TELETYPE I/O, THAT IS;

FOR THE STATUS PORT. PORT Ø

FOR THE DATA AVAILABLE FLAG. 6

FOR THE TRANSMITTER BUFFER EMPTY FLAG. FOR THE DATA PORT. BIT BIŤ

PORT 1

BOTH OF THE FLAG BITS ARE ACTIVE HIGH, IE. USE A JZ IN A WAIT LOOP UNTIL READY.

IF YOUR SYSTEM USES A DIFFERENT I/O FORMAT THAN THE ONE DESCRIBED ABOVE THEN MAKE THE CHANGES SHOWN ON PAGE 06 TO THE DISASSEMBLER USING THE SOURCE LISTING TO AID YOU.

4. MAKE THE FOLLOWING PROGRAM TERMINATION PATCH ONLY IF YOUR SYSTEM HAS A PERMANENT MONITOR IN ROM OR PROM. OTHERWISE, LEAVE ADDRESS 4294 AND 4295 AS THEY ARE. SEE THE RUNNING INSTRUCTIONS ON PAGE 07 FOR DETAILS.

TO THE LOW ADDRESS AT LINE NO. 2880, PATCH ADDRESS 4294, OF YOUR SYSTEM PROM MONITOR.

TO THE HIGH ADDRESS AT LINE NO. 2880, PATCH ADDRESS 4295, OF YOUR SYSTEM PROM MONITOR.

- 5. THE DISASSEMBLER RUNS FROM 0000H, 2000H OR 4000H (DEPENDING ON WHICH VERSION YOU LOAD) EXAMINE THAT ADDRESS.
- 6. DECIDE WHAT DATA YOU WANT PRINTED ON THE DISASSEMBLY. SENSE SWITCH 8 CONTROLS PRINTING OF THE ASCII DATA AND SENSE SWITCH 9 CONTROLS PRINTING OF THE OCTAL DATA.

TO PRINT ASCII DATA UP SET SENSE SWITCH 8: DOWN TO OMIT PRINTING OF THE ASCII DATA

TO PRINT OCTAL DATA SET SENSE SWITCH 9: UP DOWN TO OMIT PRINTING OF THE OCTAL DATA

7. FOLLOW THE RUNNING INSTRUCTIONS ON PAGE 07.

*********************** PAGE Ø3

```
START SYNCH STREAM
            11
   570P
9
14 START
           TONE
                           MACRO DIS
           PATA I
15% START
                           CASSETTE
I TONE RETORNS
    START DATA 2
20
    TINE
          RETURNS
24
    START PATA 3
26
    TONE RETURNS
з•
     END
36
    START TONE
3/2 STAART PATA
    TONE RETURNS
5
    START PATA
                     SORCERER
6%
   TONE RETURNS
                      CASSETTE
8%
  START DATA
12 TONE RETURNS
13% END
```

THE DISASSEMBLER IS SUPPLIED ON A PHILLIPS TYPE CASSETTE TAPE AND IS RECORDED IN STANDARD "TARBELL" FORMAT. IT IS ASSUMED THAT THE COMPUTER IS EQUIPPED WITH A "TARBELL CASSETTE INTERFACE" AND THAT THE INTERFACE IS CONNECTED TO A RECORDER CAPABLE OF RECOVERING AUDIO ENCODED DIGITAL DATA.

PROPER OPERATION OF THE TARBELL INTERFACE SHOULD HAVE ALREADY BEEN VERIFIED. IF DIFFICULTIES ARE ENCOUNTERED, CHECK THAT THE RECORDER VOLUME IS SET AT APPROXIMATELY MID-RANGE AND THAT THE TONE IS SET TO FULL TREBLE FOR MAXIMUM FREQUENCY RESPONSE. TURN THE COMPUTER ON AND PLAY THE SYNC STREAM TAPE PROVIDED WITH THE CASSETTE INTERFACE, VERIFY THAT THE SYNC LIGHT (ON THE TARBELL) IS ON CONTINUOUSLY DURING PLAYBACK OF THE SYNC STREAM. IF THE SYNC LIGHT FLICKERS OR DOESN'T LIGHT, AND CAN'T BE ADJUSTED TO REMAIN ON. THE TARBELL INTERFACE SHOULD BE SERVICED. IF IT IS CERTAIN THAT THE INTERFACE IS WORKING PROPERLY AND DATA STILL CAN NOT BE RECOVERED FROM THE TAPE, RETURN IT TO PLEIADES MICROWARE FOR A CHECK READ TEST.

A CASSETTE LOADER PROGRAM MUST BE USED TO RECOVER THE DISASSEMBLER PROGRAM FROM THE CASSETTE. IF A "STANDARD TARBELL LOADER" WITH PROVISIONS FOR KEYBOARD ENTRY IS NOT AVAILABLE IN PROM OR ROM IN YOUR SYSTEM, THEN THE LOADER SHOWN ON PAGE Ø2 OF THIS MANUAL MUST BE KEYED IN. IT MUST BE RE-EMPHASIZED THAT THIS IS A STANDARD FORMAT WHICH REQUIRES THE H & L REGISTERS TO POINT TO THE START ADDRESS OF THE LOAD AND THE D & E REGISTERS TO CONTAIN THE BLOCK LENGTH OF THE LOAD. IF YOU NORMALLY USE A SPECIAL PREAMBLE FORMAT FOR DATA RECOVERY THEN YOU MUST LOAD THE "STANDARD LOADER SHOWN ON PAGE Ø2", LOAD THE PROGRAM INTO MEMORY AND RE-SAVE THE PROGRAM ON ANOTHER BLANK TAPE IN YOUR OWN FORMAT.

THE DISASSEMBLER CAN BE LOADED INTO THREE DIFFERENT LOCATIONS 0000H, 2000H OR 4000H. AFTER KEYING IN THE LOADER ON PAGE 02, BE CERTAIN TO CHECK THAT ADDRESS 0909H IS PATCHED TO CONTAIN THE CORRECT STARTING ADDRESS OF THE VERSION OF THE DISASSEMBLER TO BE LOADED. EXAMINE ADDRESS 0000H, 2000H OR 4000H (DEPENDING ON WHICH VERSION IS TO BE LOADED) AND VERIFY THAT THE MEMORY THERE IS UNPROTECTED. AT LEAST 2K OF MEMORY SHOULD BE AVAILABLE FOR THE DISASSEMBLER TO RESIDE IN STARTING AT ADDRESS 0000H, 2000H OR 4000H (DEPENDING ON WHICH VERSION).

EXAMINE THE START ADDRESS OF THE LOADER, 0900H. LOAD
THE DISASSEMBLER CASSETTE INTO THE RECORDER AND REWIND IT
TO ZERO. RESET THE TAPE COUNTER ON THE RECORDER TO ZERO.
IF THE 2000H OR 4000H VERSION IS TO BE LOADED, FAST FORWARD
TO THE COUNTER LOCATION RECORDED ON THE TAPE LABEL FOR THE
VERSION YOU WISH TO LOAD OR VERIFY THE RECORDED LOCATION AS
DESCRIBED ON PAGE 01. PUT THE RECORDER IN THE PLAY MODE AND
IMMEDIATLY PRESS "RUN" ON THE COMPUTER. WHEN THE PROGRAM
FINISHES LOADING, A "G" SHOULD BE PRINTED ON THE TELETYPE OR
VIDEO DISPLAY INDICATING THAT A GOOD LOAD HAS OCCURRED WITHOUT
A CHECKSUM ERROR. IF AN "E" IS PRINTED INSTEAD, IT INDICATES
THAT A CHECKSUM ERROR OCCURRED DURING LOADING AND THE PROGRAM
SHOULD BE RELOADED.

PAGE Ø5

							D. = D
*****	*****	****	I/U PA	CHES	THE D.	ISASSEM.	BL ER************
AT	LINE	NO •	6820,	PATCH	ADDRESS	4404,	TO YOUR SYSTEMS OUTPUT STATUS PORT.
AT	LINE	NO.	6830,	PATCH	ADDRESS	4406,	TO YOUR SYSTEMS OUTPUT TRANSMITTER BUFFER EMPTY FLAG.
AT	LINE	NO.	6840,	PATCH	ADDRESS	4407,	TO A JNZ, (C2) ONLY IF YOUR SYSTEM TRANSMITTER BUFFER EMPTY FLAG IS ACTIVE LOW. OTHERWISE LEAVE THIS ADDRESS AS IT IS
AT	LINE	мо•	6860,	PATCH	ADDRESS	44CC.	TO YOUR SYSTEMS OUTPUT DATA PORT.
AT	LINE	ЙΟ•	6870,	PATCH	ADDRESS	44CE.	TO YOUR SYSTEMS INPUT STATUS PORT.
AT	LINE	NO.	6880,	PATCH	ADDRESS	44DØ,	TO YOUR SYSTEMS INPUT DATA AVAILABLE FLAG.
AT	LINE	NO•	6890,	PATCH	ADDRESS	44D1.	TO A JZ (CA) ONLY IF YOUR SYSTEMS INPUT DATA AVAILABLE FLAG IS ACTIVE LOW, OTHERWISE LEAVE ADDRESS 44D1 AS IT IS
AT	LINE	NO •	6910,	PATCH	ADDRESS	44D6,	TO YOUR SYSTEMS INPUT STATUS PORT
AT	LINE	NO •	692 0 ,	PATCH	ADDRESS	44D8,	TO YOUR SYSTEMS INPUT DATA AVAILABLE FLAG.
AT	LINE	• Ои	6930,	PATCH	ADDRESS	44D9,	TO A JNZ (C2) ONLY IF YOUR SYSTEM INPUT DATA AVAILABLE FLAG IS ACTIVE LOW, OTHERWISE LEAVE ADDRESS 44D9 AS IT IS

AT LINE NO. 6940, PATCH ADDRESS 44DD, TO YOUR SYSTEMS INPUT DATA PORT.

攀

PAGE Ø6

U

PRESS "RUN" ON THE COMPUTER, THE DISASSEMBLER WILL PROMPT BY PRINTING "START ADDRESS?". AT THIS POINT TYPE IN THE HEXADECIMAL START ADDRESS OF THE PROGRAM TO BE DISASSEMBLED. TYPE IN THE ABSOLUTE ADDRESS, HIGH ORDER FIRST, IE; TO DISASSEMBLE A PROGRAM AT 5000H, TYPE 5000 (CARRIAGE RETURN). IF AT ANY TIME DURING ENTRY YOU TYPE ANY CHARACTER OTHER THAN A VALID HEXADECIMAL CHARACTER, THE DISASSEMBLER WILL PRINT "NON HEX DATA" AND JMP TO YOUR SYSTEM MONITOR (PROVIDED THE PATCHES LISTED IN STEP 4 ON PAGE 03 HAVE BEEN MADE) OTHERWISE THE PROGRAM WILL JMP TO THE START OF THE DISASSEMBLER AND ASK FOR "START ADDRESS?" AGAIN.

AFTER PRESSING CARRIAGE RETURN, THE DISASSEMBLER WILL ASK FOR "END ADDRESS?". NOW TYPE IN THE HEXIDECIMAL END ADDRESS OF THE PROGRAM TO BE DISASSEMBLED. DO NOT PRESS CARRIAGE RETURN THE SAME CONVENTION FOR HEX DATA ENTRY APPLIES AS DESCRIBED ABOVE AND THE SAME ERROR ROUTINE WILL BE EXECUTED IF AN INVALID HEXIDECIMAL CHARACTER IS TYPED. IF THE SENSE SWITCHES HAVEN'T ALREADY BEEN SET AS DESCRIBED ON PAGE Ø3 STEP 6. DO SO NOW. PRESS CARRIAGE RETURN. THE DISASSEMBLER WILL TYPE A LINE OF DASHES SEPARATING THE FIRST PAGE OF THE DISASSEMBLY, FOLLOWED BY SEVERAL CARRIAGE RETURN/LINE FEEDS AND TWO LINES OF HEADER MESSAGES. THE PROGRAM WILL THEN BEGIN PRINTING THE DISASSEMBLY, PRINTING ONLY THE DATA SELECTED BY AFTER 45 LINES OF DISASSEMBLY HAVE BEEN THE SENSE SWITCHES. PRINTED, THE DISASSEMBLER WILL PAGE, SEPARATE THE NEXT PAGE WITH ANOTHER LINE OF DASHES, PRINT NEW HEADER LINES AND CONTINUE THE DISASSEMBLY AS BEFORE.

IF AT ANY TIME DURING THE DISASSEMBLY, IT BECOMES NECESSARY TO CHANGE WHAT DATA IS BEING PRINTED, SIMPLY CHANGE THE SENSE SWITCHES (AS DESCRIBED ON PAGE Ø3 STEP 6) TO THE DESIRED DATA. IF AT ANY TIME DURING THE DISASSEMBLY IT IS DESIRED TO STOP THE DISASSEMBLY, PRESS ANY PRINTING CHARACTER ON THE TELETYPE OR SYSTEM KEYBOARD. THE DISASSEMBLER WILL THEN START OVER AGAIN AND ASK FOR "START ADDRESS?"

AT THIS POINT, THE DISASSEMBLY CAN BE STARTED AGAIN, BY TYPING IN A NEW START ADDRESS AND END ADDRESS EXACTLY AS ABOVE. ALTERNATELY TYPE AN INVALID HEXIDECIMAL CHARACTER, FOR EXAMPLE THE SPACE BAR, AND THE DISASSEMBLER WILL PRINT "NON HEX DATA" AND JMP TO YOUR SYSTEM MONITOR (PROVIDED THE PATCHES HAVE BEEN MADE), THIS PROVIDES A CONVENIENT MEANS OF EXITING THE DISASSEMBLER PROGRAM AND ENTERING A PROGRAM WHICH HAS DIRECTED CONTROL OF PROGRAM EXECUTION SUCH AS A SYSTEM MONITOR.

BE CAREFUL WHILE THE DISASSEMBLER IS RUNNING NOT TO ACCIDENTALLY TYPE SOMETHING ON THE SYSTEM KEYBOARD AS THIS WILL BE INTERPRETED AS A DISASSEMBLY STOP COMMAND. ALSO BE CAREFUL NOT TO ENTER AN INVALID HEX CARACTER (SUCH AS PRESSING THE SPACE BAR TWICE ACCIDENTALLY DURING A STOP COMMAND) AS THIS WILL CAUSE THE DISASSEMBLER TO JMP OUT TO THE MONITOR. CHANGING THE SENSE SWITCHES DURING ACTIVE DISASSEMBLY WILL NOT HAVE AN DURING PRINTING). THE CHANGE WILL BE REFLECTED IN THE NEXT LINE OF THE DISASSEMBLY.

THIS IS A SAMPLE OF AN ACTUAL DISASSEMBLY PAGE WITH THE EXCEPTION THAT THE DASHED LINES ARE SPACED CLOSER HERE TO ALLOW THIS PAGE TO FIT IN 11 INCHES. THE ACTUAL PAGES ARE SEPARATED EVERY 11 INCHES TO ALLOW THEM TO BE CUT APART AND PUT IN AN 8 AND 1/2 BY 11 INCH NOTEBOOK.

HEX	HEX		LABEL	AS	CII		OCTAL	DATA	
ADDR		INST	HILO	1	2	3	ADDRESS	1 2	3
				•	_				•
4000	31	LXI SP,	46BD	1	*=	F	100 000	Ø61 27	106
4003	DB	IN	Ø1	*[A.		100 003	333 ØØ	}
4005	CD	CALL	44F7	*M	* W	D	100 005	315 36	7 104
4008	21	LXI H.	4525	1	Z	E	100 010	Ø41 Ø45	105
400B	CD	CALL	4519	*M	Y.	E	100 013	315 Ø3	105
400E	CD	CALL	45B4	*M	*4	E	100 016	315 264	
4011	FE	CPI	ØD	*1	M.		100 021	376 Ø15	
4013	C2	JN Z	4287	*B	∗G.	В	100 023	302 20	102
4016	22	SHLD	44EE	**	*N	D	100 026	Ø42 356	104
4019	CD	CALL	44F7	*M	*V	D	100 031	315 36	104
401C	21	LXI H.	4535	1	5	E	100 034	Ø41 Ø65	
401F	CD	CALL	4519	*M	Y.	E	100 037	315 Ø31	
4022	CD	CALL	45B4	*M	*4	E	100 042	315 264	
4025	FE	CPI	ØD	*1	M.	_	100 045	376 Ø15	
4027	C2	JNZ	4287	*B	∗G•	В	100 047	302 20	
4Ø2A	C3	JMP	4684	*C	*D.	F	100 052	303 204	
4Ø2D	21	LXI H.	4543	1	C	E	100 055	041 103	
4030	CD	CALL	44F7	*M	*W	D	100 060	315 361	
4033 .		CALL	44F7	*M	*¥	D	100 063	315 367	
4036	CD	CALL	4519	*M	Ÿ.	Ē	100 066	315 Ø31	
4039	CD	CALL	44F7	*M	*¥	D	100 071	315 367	
4Ø3C	21	LXI H.	4579	1	Ÿ	Ē	100 074	Ø41 171	
403F	CD	CALL	4519	*M	Ÿ.	Ē	100 077	315 Ø31	
4042	CD	CALL	44F7	*M	*W	מ	100 102	315 367	
4045	C3	JMP	464C	*C	Ë	F	100 105	303 114	
4048	2A	LHLD	44EE	*	*N	Ď	100 110	Ø52 356	
4Ø4B	7E	MOV A.M		•	• ••	_	100 113	176	
404C	23	INX H					100 114	Ø43	
404D	22	SHLD	44EE	**	*N	D	100 115		104
4050	C9	RET		*1	•••	_	100 120	311	
4051	3C	INR A		<			100 121	Ø74	
4052	E6	ANI	Ø7	*F	G.		100 122	346 007	,
4054	FE	CPI	Ø6	*1	F.		100 124	376 006	
4056	DA	JC	4Ø5B	*Z	<u>.</u>	e	100 126	332 133	
4059	C6	ADI	Ø3	*F	ċ.	•	100 131	306 003	
405B	FE	CPI	Ø5	*1	E.		100 133	376 005	
4Ø5D	DA	JC	4062	*Z	В	8	100 135	332 142	
4060	C6	ADI	Ø2	*F	В.	•	100 140	306 002	
4062	C6	ADI	41	*F	A		100 142	306 101	
4064	12	STAX D		R.	**		100 144	Ø22	
4065	C9	RET		*I			100 145	311	
4066	Ø6	MVI B.	Ø4	F.	D.		100 146	ØØ6 ØØ4	
4068	7E	MOV A.M	~ ~	1	2.		100 150	176	
4069	12	STAX D		R.			100 151	Ø22	
406A	23	INX H		,			100 152	Ø43	
75				•			.00 102	240	

```
/SET STACK POINTER
                ØØ1Ø START LXI SP.STACK
4000 31 BD 46
                                            /CLEAR TTY DAV FLAG
4003 DB 01 .
                ØØ2Ø
                      IN 1
                                                  /PRINT A CRLF
4005 CD F7 44
                       CALL CRLF
                0030
                      LXI H. STADD
                                          /POINT TO MESSAGE ONE
4008 21 25 45
                0040
                                        /PRINT "START ADDRESS?"
400B CD 19 45
                ØØ5Ø
                       CALL MSG
                                  /INPUT 4 VALID HEX CHARACTERS
                       CALL HEX
400E CD B4 45
                0060
                                          /WAS LAST CHAR. A CR?
4011 FE 0D
                       CPI 13
                 0070
                       JNZ BAD /NO, "NON HEX DATA", JMP MONITOR
4013 C2 87 42
                 0080
                       SHLD PGMCT / SAVE THE BEG. PROGRAM COUNTER
4016 22 EE 44
                0090
                       CALL CRLF
                                                  /PRINT A CRLF
4Ø19 CD F7 44
                0100
                                           /POINT TO MESSAGE TWO
401C 21 35 45
                 Ø11Ø
                      LXI H, ENADD
                                          /PRINT "END ADDRESS?"
401F CD 19 45
                0120
                       CALL MSG
                       CALL HEX
                                  /INPUT 4 VALID HEX CHARACTERS
                Ø13Ø
4022 CD B4 45
                                  /WAS LAST CHAR. ENTERED A CR?
4025 FE 0D
                 Ø14Ø
                       CPI 13
                      JNZ BAD /NO, "NON HEX DATA", JMP MONITOR
4027 C2 87 42
                 Ø15Ø
                       JMP STORE /SAVE END ADDRES & PG. DIVIDE
402A C3 84 46
                 0160
                 0170 HEADR LXI H, LNONE /POINT TO MESSAGE THREE
4Ø2D 21 43 45
                                                   /PRINT A CRLF
4030 CD F7 44
                 Ø18Ø
                      CALL CRLF
                 Ø19Ø
                       CALL CRLF
                                                   /PRINT A CRLF
4033 CD F7 44
                       CALL MSG /PRINT LINE 1 OF HEADER MESSAGE
4036 CD 19 45
                 0200
                                                   /PRINT A CRLF
                       CALL CRLF
4039 CD F7 44
                 Ø21Ø
                                         /POINT TO MESSAGE FOUR
403C 21 79 45
                       LXI H.LNTWO
                 Ø22Ø
                       CALL MSG /PRINT LINE 2 OF HEADER MESSAGE
403F CD 19 45
                 Ø23Ø
                       CALL CRLF
                                                  /PRINT A CRLF
4042 CD F7 44
                 Ø24Ø
                                             /GO SET PAGE LENGTH
                 Ø25Ø
                       JMP SET
4Ø45 C3 4C 46
                 0260 FETCH&LHLD PGMCT /LOAD THE CURRENT ADDRESS
4048 2A EE 44
                                   /FETCH THE BYTE REFERENCED
                     McA VOM
404B 7E
                 Ø27Ø
                                        /POINT TO THE NEXT BYTE
                 Ø28Ø
                       INX H
404C 23
                                      /STORE THE NEW REFERENCE
                       SHLD PGMCT
484D 22 EE 44
                 Ø29Ø
                                                   /CONTINUE...
4Ø5Ø C9
                 0300
                      RET
                                     /INCREMENT THE MASKED BYTE
4Ø51 3C
                 Ø31Ø REGLD INR A
                     ANI 07 /STRIP OFF THE CARRY INTO BIT 3
4052 E6 07
                 Ø32Ø
                                   /WAS VALUE IN MASKED BYTE 5
                 Ø33Ø
                       CPI Ø6
4Ø54 FE Ø6
                                    /IF <5 SKIP NEXT INSTRUCTION
                       JC REL1
4056 DA 5B 40
                 0340
                                        /ADD THREE TO THE VALUE
                 Ø35Ø
                      ADI Ø3
4059 C6 03
                                        /IS NEW VALUE EQUAL TO 5
                 Ø36Ø REL1 CPI 5
405B FE 05
                                   /IF <5 SKIP NEXT INSTRUCTION
                 Ø37Ø JC REL2
405D DA 62 40
                                /ADD TWO TO THE CALCULATED VALUE
                       ADI Ø2
4060 C6 02
                 Ø38Ø
                      REL2 ADI 'A' /ADD 41H TO CALC. VALUE
4062 C6 41
                 Ø39Ø
                                /WRITE CALC. REGISTER IN OUTBUF
                       STAX D
4064 12
                 0400
                                                    /CONTINUE ...
4Ø65 C9
                 Ø41Ø RET
                                    /SET NO. OF CHARS. TO LOAD
                 Ø42Ø PRINT MVI B.4
4066 06 04
4Ø68 7E
                 Ø43Ø SPRN MOV AJM
                                        /FETCH CHAR. FROM TABLE
                                  /WRITE CHAR. IN OUTPUT BUFFER
                      STAX D
4069 12
                 0440
                                  /POINT TO NEXT CHAR. IN TABLE
4Ø6A 23
                 Ø45Ø
                       INX H
                                  /POINT TO NEXT SLOT IN OUTBUF
                       INX D
4Ø6B 13
                 Ø46Ø
                                         /DECREMENT CHAR. COUNT
406C 05
                 0470
                      DCR B
                                  /IF MORE CHARS. CONT. LOADING
                       JNZ SPRN
4Ø6D C2 68 4Ø
                 0480
                                                    /CONTINUE...
4070 C9
                 Ø49Ø RET
```

0500 MASK LDA SAVE /LOAD THE CORREST. 2.1.2

/MASK FOR THE MIDDLE BITS

/MASK FOR THE INTO THE-4071 3A ED 44 /LOAD THE CURRENT BYTE 4074 E6 38 4076 ØF /PUT THE MIDDLE BITS INTO THE-4077 ØF RRC Ø53Ø /THREE LEAST SIGNIFICANT-4078 ØF RRC 0540 /BITS IN THE ACCUMULATOR 4079 C9 Ø55Ø RET /CONTINUE. . . 407A CD 71 40 Ø56Ø CONDL CALL MASK / GET BITS 3,4,5 INTO 1,2,3 /DOUBLE CONDITION BITS 407D 87 0570 ADD A MOV CA /PUT OFFSET VALUE IN REG. C 407E 4F 0580 407F 21 52 44 Ø59Ø LXI H, CONDN /POINT TO CONDITION TABLE 4082 09 Ø 6ØØ DAD B /ADD OFFSET TO COND. TABLE POINTER 4Ø83 7E MOV A.M 0610 /FETCH CONDITION DIGIT 4084 12 /WRITE CONDITION DIGIT IN OUTBUF Ø62Ø STAX D /POINT TO NEXT DIGIT IN TABLE /POINT TO NEXT SLOT IN OUTBUF 4085 23 Ø63Ø INX H 4086 13 0640 INX D 4087 7E Ø65Ø MOV A,M /FETCH NEXT COND. DIGIT FROM TBL. 4088 12 Ø66Ø STAX D /WRITE IT IN OUTPUT BUFFER 4Ø89 C9 0670 RET /CONTINUE... Ø68Ø LXICD CALL MASK / GET BITS 3,4,5 INTO Ø,1,2 408A CD 71 40 408D E6 06 Ø69Ø ANI Ø6 /MASK FOR BITS 1,2 408F FE 06 0700 CPI Ø6 /ARE BOTH BITS 1 & 2 SET? JNZ REGLD /NO, GO LOAD A REGISTER NAME 4091 C2 51 40 0710 4094 3E 53 MVI A, 'S' /YES, MUST BE LXI SP. LOAD AN S 0720 4096 12 Ø73Ø STAX D /WRITE AN 'S' IN THE OUTPUT BUFF. INX D /POINT TO NEXT SPACE IN OUTBUF 4097 13 0740 4098 3E 50 Ø75Ø STAX D /WRITE A 'P' IN THE OUTPUT BUFF. 409A 12 0760 409B C9 0770 RET /CONTINUE... 409C CD F7 44 Ø78Ø DISAS CALL CRLF /PRINT A CRLF CALL CLRBUF /CLEAR THE OUTPUT BUFFER LHLD PGMCT /GET CURRENT PROGRAM COUNTER 409F CD F4 42 0790 4ØA2 2A EE 44 0800 SHLD OSAVE /SAVE PGMCT FOR OCTAL ROUTINE 4ØA5 22 F5 44 0810 40A8 CD 96 42 0820 CALL HEXOT /WRITE HEX ADDRESS IN OUTBUF 40AB CD 48 40 Ø83Ø CALL FETCH /GET REFERENCED BYTE FROM MEM. 4ØAE 32 F2 44 Ø84Ø STA CHAR1 /SAVE BYTE IN 1ST. ASCII BUFFER 4ØB1 32 ED 44 Ø85Ø /SAVE BYTE FOR LATER USE STA SAVE 4ØB4 67 Ø8 6Ø AcH VOM /PUT BYTE IN REGISTER H 4ØB5 11 68 44 Ø87Ø LXI D.OUTBUF+2 /POINT TO DATA COLUMN 40B8 CD E7 42 /WRITE HEX BYTE IN OUTBUF Ø88Ø CALL XCODE 40BB 21 55 43 0890 LXI H.OPCODES /POINT TO OPCODE TABLE 40BE 01 11 00 LXI B.17 /CLR B AND SET C TO NO. OF CODES Ø9ØØ 6910 ONE CMP M /DOES DATA BYTE MATCH TABLE? 6920 JZ BYTE1 /YES, GO PROCESS ONE BYTE INST. 40C1 BE /DOES DATA BYTE MATCH TABLE? 4ØC2 CA 76 42 0930 INX H /NO. POINT TO NEXT INST. IN TABLE 4ØC5 23 40C6 0D 0940 /DECREMENT ONE BYTE TABLE COUNT DCR C 40C7 C2 C1 40 JNZ ONE /IF MORE ONE BYTE INSTS GO. TEST Ø95Ø 40CA ØE ØA 0960 MVI C. ØAH /SET C TO NO. OF TWO BYTE INSTS 40CC BE Ø97Ø TWO CMP M /DOES DATA BYTE MATCH TABLE? JZ BYTE2 /YES, GO PROCESS A 2 BYTE INST. 4ØCD CA 59 42 Ø98Ø 4ØDØ 23 0990 INX H /NO. POINT TO NEXT INST. IN TABLE

(

/DECREMENT TWO BYTE TABLE COUNT 1000 DCR C 4ØD1 ØD /IF MORE 2 BYTE INSTS. GO TEST 40D2 C2 CC 40 1010 JNZ TWO MVI C.6 /SET C TO NO. OF 3 BYTE INSTS. ØØD5 ØE Ø6 1020 /DO ES DATA BYTE MATCH TABLE? 1030 THREE CMP M 4ØD7 BE /YES, GO PROCESS A 3 BYTE INST? 4ØD8 CA 2D 42 1040 JZ BYTE3 /POINT TO NEXT INST. IN TABLE INX H 1050 40DB 23 1060 DCR C /DECREMENT 3 BYTE TABLE COUNT 4ØDC ØD JNZ THREE /IF MORE 3 BYTE INSTS. GO TEST 4ØDD C2 D7 4Ø 1070 /MASK FOR BITS 6 & 7 1080 ANI ØCØH 4ØEØ E6 CØ 4ØE2 FE 4Ø 1090 CPI 4ØH /WAS BIT 6 SET? JZ MOV /YES, GO PROCESS A MOV INSTRUCTION 1100 40E4 CA 0B 42 /WAS BIT 7 SET? AØE7 FE 8Ø 1110 CPI 8ØH /YES, GO PROCESS AN ADD INST. 4ØE9 CA F7 41 1120 JZ ADD /RESTORE ORIGINAL BYTE 1130 LDA SAVE 40EC 3A ED 44 /MASK FOR BITS 0,1,2,6,7 40EF E6 C7 1140 ANI ØC7H /IS BIT 2 SET? 4ØF1 D6 Ø4 1150 SUI Ø4 JZ INR /YES, GO PROCESS A INR INSTRUCTION 1160 4ØF3 CA E2 41 /WERE BITS Ø AND 2 SET? DCR A 40F6 3D 1170 JZ DCR /YES, GO PROCESS A DCR INSTRUCTION 4ØF7 CA D9 41 1180 /WERE BITS 1 AND 2 SET? 4ØFA 3D 1190 DCR A JZ MVI /YES, GO PROCESS A MVI INSTRUCTION 40FB CA CØ 41 1200 /RESTORE ORIGINAL DATA BYTE 40FE 3A ED 44 1210 LDA SAVE ANI ØCØH /ARE BOTH BITS 6 AND 7 SET? 4101 E6 C0 1220 JZ LXI /YES, GO PROCESS A LXI INSTRUCTION 4103 CA 7F 41 1230 /RESTORE ORIGINAL DATA BYTE LDA SAVE 41Ø6 3A ED 44 1240 /MASK FOR BITS 0.1.2.6.7 1250 ANI ØC7H 4109 E6 C7 /WERE BITS 6 AND 7 SET? 1260 SUI ØCØH 410B D6 C0 JZ RET /YES, GO PROCESS A RET INSTRUCTION 41ØD CA 72 41 1270 /WERE BITS 1,6,3 SET? 1280 SUI Ø2 4110 D6 02 JZ JMP /YES, GO PROCESS A JMP INSTRUCTION 1290 4112 CA 65 41 /WERE BITS 2,6,7 SET? SUI Ø2 Ø115 D6 Ø2 1300 JZ CALL /YES, GO PROCESS CALL INSTRUCTION 4117 CA 58 41 131Ø /WERE BITS 0,1,2,6,7 SET? 1320 SUI Ø3 411A D6 Ø3 JZ RST /YES, GO PROCESS A RST INSTRUCTION 1330 411C CA 43 41 /RESTORE ORIGINAL DATA BYTE LDA SAVE 411F 3A ED 44 1340 /MASK FOR BITS 0.1.2 4122 E6 Ø7 1350 ANI Ø7 /STORE REGISTER CODE IN C MOV C.A 1360 4124 4F /POINT TO 'POP' IN TABLE 4125 21 49 44 1370 LXI H.LPOP DAD B /OFFSET, POINT TO CORRECT MNEMONIC 4128 09 1380 LXI D.OUTBUF+7 /POINT TO MNEMONIC COLUMN 1390 4129 11 6D 44 /WRITE MNEMONIC IN OUTBUF 412C CD 66 40 1400 CALL PRINT CALL MASK /GET BITS 3,4,5 INTO BITS 0,1,2 412F CD 71 40 1410 /WERE BITS 4,5 SET? 4132 FE Ø6 1420 CPI Ø6 JNZ INR3 /YES, GO PROCESS INR INSTRUCTION 4134 C2 EE 41 1430 LXI H, LPSW /POINT TO 'PSW' IN TABLE 1440 4137 21 46 44 /POINT TO REGISTER AREA LXI D.OUTBUF+12 413A 11 72 44 1450 /WRITE 'PSW' IN OUTBUF 1460 CAHH PRINT 413D CD 66 4Ø JMP FINISH /PROCESS ASCII & OCT. & PRINT 4140 C3 A5 42 1470 /POINT TO RST MNEMONIC 1480 RST LXI H.LRST 4143 21 42 44 /POINT TO MNEMONIC SLOT 1490 LXI D.OUTBUF+7 Ø146 11 6D 44

a

```
1500 CALL PRINT
                                         /WRITE MNEMONIC IN OUTBUF
4149 CD 66 40
                        CALL MASK /GET BITS 3,4,5 INTO BITS 0,1,2
414C CD 71 4Ø
                  151Ø
                        LXI D.OUTBUF+15
                                            /POINT TO RST NUMERIC
414F 11 75 44
                  1520
                        CALL XCODE /WRITE HEX NUMERIC IN OUTBUF
JMP FINISH /WRITE ASCII, OCTAL AND PRINT
                  1530
4152 CD E7 42
4155 C3 A5 42
                  1540
                  1550 CALL MVI A. C'
                                               /LOAD AN ASCII 'C'
4158 3E 43
                  1560
                        LXI D.OUTBUF+7 /POINT TO MNEMONIC COLUMN
415A 11 6D 44
                                      /WRITE 'C' IN OUTPUT BUFFER
415D 12
                  1570
                        STAX D
                  1580
                        INX D
                                     /POINT TO NEXT SLOT IN OUTBUF
415E 13
415F CD 7A 4Ø
                  1590
                        CALL CONDL /WRITE REST OF CALL CONDITION
                 1600 JMP BYT3 /GO FINISH A THREE BYTE INST.
1610 JMP MVI A. J' /LOAD AN ASCII 'J'
4162 C3 3B 42
                       JMP MVI A,'J' /LOAD AN ASCII 'J'
LXI D,OUTBUF+7 /POINT TO MNEMONIC COLUMN
4165 3E 4A
4167 11 6D 44
                  1620
                                          /WRITE A 'J' IN OUTBUF
                        STAX D
                  1630
416A 12
                                     /POINT TO NEXT SLOT IN OUTBUF
416B 13
                  1640
                        INX D
416C CD 7A 4Ø
                  1650
                        CALL CONDL
                                     /WRITE REST OF JMP CONDITION
                                     /GO FINISH A THREE BYTE INST.
                        JMP BYT3
416F C3 3B 42
                  1660
                       RET MVI A, 'R' /LOAD AN ASCII 'R'
LXI D, OUTBUF+7 /POINT TO MNEMONIC COLUMN
                  1670 RET MVI A. 'R'
4172 3E 52
4174 11 6D 44
                  168Ø
                                      /WRITE 'R' IN OUTPUT BUFFER
4177 12
                  1690
                        STAX D
                                     /POINT TO NEXT SLOT IN OUTBUF
                  1700
                        INX D
4178 13
                                         /WRITE REST OF RET INST.
4179 CD 7A 4Ø
                  1710
                        CALL CONDL
                       JMP FINISH
                                      /WRITE ASCII, OCTAL & PRINT
417C C3 A5 42
                  1720
417F 21 2A 44
                  1730 LXI LXI H,LLXI
                                           /POINT TO LXI MNEMONIC
4182 3A ED 44
                  1740
                       LDA SAVE
                                    /RESTORE ORIGINAL DATA BYTE
                                        /MASK FOR BITS 0,1,2,3
4185 E6 ØF
                  1750
                        ANI ØFH
4187 3D
                        DCR A
                                                    /WAS BIT Ø SET?
                  1760
                                       /YES, GO LOAD LXI MNEMONIC
4188 CA AD 41
                  1770
                        JZ LXIP
418B FE Ø4
                  178Ø
                        CPI Ø4
                                            /WAS BYTE LESS THAN 5?
                                          /YES, GO JUSTIFY POINTER
418D DA 92 41
                  1790
                        JC LX2
                                      IF BYTE WAS > 5 SUBTRACT BIAS
419Ø D6 Ø5
                  1800
                        SUL 05
                                         /DOUBLE MNEMONIC POINTER
4192 87
                  1810 LX2 ADD A
                                          /DOUBLE MNEMONIC POINTER
4193 87
                  1820
                        ADD A
                       MOV C.A /PUT CALCULATED JUSTIFY IN REG. C
4194 4F
                  1830
                                /ADD JUSTIFY TO MNEMONIC POINTER
4195 09
                  1840
                        DAD B
4196 11 6D 44
                  1850
                        LXI D.OUTBUF+7
                                          /POINT TO MNEMONIC SLOT
                                        /WRITE MNEMONIC IN OUTBUF
4199 CD 66 40
                  1860
                        CALL PRINT
                        LXI D.OUTBUF+12 /POINT TO LXI REG. SLOT
4190 11 72 44
                  1870
                        CALL LXICD /WRITE REG. OR 'SP' IN OUTBUF
419F CD 8A 4Ø
                  1880
                                     /RESTORE ORIGINAL DATA BYTE
41A2 3A ED 44
                  1890
                        LDA SAVE
                        CPI . .
41A5 FE 20
                  1900
                                                    /WAS IT A 20H?
                                     /YES. GO INVALIDATE MNEMONIC
41A7 CC 39 46
                        CZ INVAL
                  1910
41AA C3 A5 42
                  1920
                        JMP FINISH
                                      /WRITE ASCII, OCTAL & PRINT
                  1930 LXIP LXI D.OUTBU+7 /POINT TO MNEMONIC SLOT
41AD 11 6D 44
                                     /WRITE MNEMONIC IN OUTBUF
                        CALL PRINT
41BØ CD 66 4Ø
                  1940
                       LXI D.OUTBUF+11 /POINT TO REG. SLOT
41B3 11 71 44
                  1950
                  1960
                                    /WRITE REG. NAME IN OUTBUF
41B6 CD 8A 4Ø
                        CALL LXICD
41B9 3E 2C
                       MVI A, 2CH
                                                     /LOAD A COMMA
                  1970
                                    /POINT TO NEXT SLOT IN OUTBUF
41BB 13
                 1980
                       INX D
41BC 12
                 1990
                       STAX D
                                          /WRITE A COMMA IN OUTBUF
```

```
41BD C3 3B 42
                2000 JMP BYT3
                                 /GO WRITE THE LABEL IN OUTBUF
41CØ 21 26 44
                2010 MVI LXI H, LMVI /POINT TO MVI MNEMONIC
                 2020 LXI D,OUTBUF+7
                                        /POINT TO MNEMONIC SLOT
41C3 11 6D 44
41C6 CD 66 40
                 2030
                      CALL PRINT
                                     /WRITE MNEMONIC IN OUTBUF
                     CALL MASK
                                   /GET BITS 3,4,5 IN BITS 1,2,3
41C9 CD 71 40
                 2040
41CC 11 71 44
                                            /POINT TO REG. SLOT
                2050
                     LXI D.OUTBUF+11
                                    /WRITE REGISTER IN OUTBUF
41CF CD 51 40
                2060
                      CALL REGLD
41D2 3E 2C
                     MVI A, 2CH
                                                  /LOAD A COMMA
                2070
                                  /POINT TO NEXT SLOT IN OUTBUF
41D4 13
                2080
                      INX D
                                  /WRITE A COMMA IN OUTBUF
41D5 12
                2090
                      STAX D
41D6 C3 67 42
                2100
                     JMP BYT2
                                       /GO WRITE VALUE IN OUTBUF
                                       /POINT TO DCR MNEMONIC
/POINT TO MNEMONIC SLOT
41D9 21 22 44
                2110 DCR LXI H.LDCR
41DC 11 6D 44
                2120 LXI D.OUTBUF+7
                                    /GO FINISH DCR INSTRUCTION
41DF C3 E8 41
                2130
                      JMP INR2
                2140 INR LXI H,LINR
                                     /POINT TO INR INSTRUCTION
41E2 21 1E 44
                                        /POINT TO MNEMONIC SLOT
41E5 11 6D 44
                2150 LXI D.OUTBUF+7
                2160 INR2 CALL PRINT /WRITE MNEMONIC IN OUTBUF
41E8 CD 66 40
                2170 CALL MASK /GET BITS 3,4,5 IN BITS 1,2,3
41EB CD 71 40
41EE 11 72 44
                218Ø INR3 LXI D.OUTBUF+12 /POINT TO REG. SLOT
                2190 CALL REGLD
                                     /WRITE REGISTER IN OUTBUF
41F1 CD 51 40
                                     /WRITE ASCII, OCTAL & PRINT
                2200
                      JMP FINISH
41F4 C3 A5 42
                                    /RESTORE ORIGINAL BYTE
41F7 3A ED 44
                2210 ADD LDA SAVE
                222Ø ANI 38H
                                           /MASK FOR BITS 3,4,5
41FA E6 38
                                              /CALCULATE OFFSET
                2230
                      RRC
41FC ØF
                     MOV C.A
                                          /PUT OFFSET IN REG. C
41FD 4F
                2240
                2250
                                          /POINT TO ADD MNEMONIC
41FE 21 FE 43
                      LXI H, LADD
                      DAD B /ADD OFFSET TO MNEMONIC POINTER
4201 09
                2260
4202 11 6D 44
                2270
                     LXI D.OUTBUF+7
                                        /POINT TO MNEMONIC SLOT
                2280
                      CALL PRINT
                                       /WRITE MNEMONIC IN OUTBUF
4205 CD 66 40
                                     /GO FINISH ADD INSTRUCTION
                      JMP MOV2
42Ø8 C3 21 42
                229Ø
                2300 MOV LXI H, LMOV /POINT TO MOV MNEMONIC
420B 21 FA 43
42ØE 11 6D 44
                2310 LXI D.OUTBUF+7
                                         /POINT TO MNEMONIC SLOT
                     CALL PRINT
                                      /WRITE MNEMONIC IN OUTBUF
4211 CD 66 40
                2320
                                  /GET BITS 3,4,5 IN BITS 1,2,3
4214 CD 71 4Ø
                233Ø
                     CALL MASK
4217 11 71 44
                2340
                     LXI D.OUTBUF+11 /POINT TO REGISTER SLOT
                     CALL REGLD /WRITE REGISTER IN OUTBUF
421A CD 51 4Ø
                2350
                                                  /LOAD A COMMA
                2360 MVI A. 2CH
421D 3E 2C
                              POINT TO NEXT SLOT IN OUTBUF
421F 13
                2370
                      INX D
                                    /WRITE A COMMA IN OUTBUF
4220 12
                2380
                     STAX D
                2390 MOV2 LDA SAVE
4221 3A ED 44
                                         /RESTORE ORIGINAL BYTE
                                           /MASK FOR BITS 0.1.2
4224 E6 Ø7
                2400 ANI 07
4226 13
                2410
                      INX D
                                  /POINT TO NEXT SLOT IN OUTBUF
                                  /WRITE REG. NAME IN OUTBUF
                      CALL REGLD
4227 CD 51 4Ø
                2420
                                     /WRITE ASCII, OCTAL & PRINT
422A C3 A5 42
                2430
                      JMP FINISH
                 2440 BYTE3 MOV A,C /GET MNEMONIC COUNT IN REG.A
422D 79
                                                     /CALCULATE-
422E 87
                2450
                      ADD A
422F 87
                PUT OFFSET IN REG. C
2480 LXI H.NEM3 /POINT TO MNEMONIC TAB 3
2490 DAD B /ADD OFFSET TO MNEMONIC TAB 3
                246Ø ADD A
423Ø 4F
4231 21 DE 43
4234 Ø9
```

```
2500 LXI D.OUTBUF+7
                                          /POINT TO MNEMONIC SLOT
4235 11 6D 44
                                        /WRITE MNEMONIC IN OUTBUF
4238 CD 66 4Ø
                 251Ø
                      CALL PRINT
                 2520 BYT3 CALL FETCH
                                        /GET BITS 3,4,5 IN 1,2,3
423B CD 48 4Ø
                                        /SAVE SECOND ASCII CHAR.
                       STA CHAR2
423E 32 F3 44
                 253Ø
4241 32 ED 44
                                                /SAVE SECOND BYTE
                 2540
                       STA SAVE
                 2550
                       CALL FETCH /GET BITS 3,4,5 IN BITS 1,2,3
4244 CD 48 4Ø
                       STA CHAR3
                                                 /SAVE THIRD BYTE
4247 32 F4 44
                 2560
                       LXI D,OUTBUF+15
                                             /POINT TO LABEL SLOT
424A 11 75 44
                 2578
424D CD E7 42
                 258Ø
                       CALL XCODE /WRITE HIGH ORDER IN OUTBUF
425Ø 3A ED 44
                 259Ø
                       LDA SAVE
                                            /RESTORE SECOND BYTE
                 2600
                       CALL XCODE
                                      /WRITE LOW ORDER IN OUTBUF
4253 CD E7 42
4256 C3 A5 42
                 2610
                       JMP FINISH
                                      /WRITE ASCII, OCTAL & PRINT
4259 79
                 2620 BYTE2 MOV A,C /GET MNEMONIC COUNT IN REG.A
                 263Ø
                       ADD A
                                                      /CALCULATE-
425A 87
425B 87
                 2640
                       ADD A
                                                          /OFFSET
                 2650
                       MOV C.A
                                            /PUT OFFSET IN REG. C
425C 4F
425D 21 B6 43
                 2660
                       LXI H.NEM2
                                        /POINT TO MNEMONIC TAB 2
                                /ADD OFFSET TO MNEMONIC POINTER
4260 09
                 2670
                       DAD B
4261 11 6D 44
                 268Ø
                       LXI D.OUTBUF+7
                                         /POINT TO MNEMONIC SLOT
4264 CD 66 4Ø
                 2690
                       CALL PRINT
                                        /WRITE MNEMONIC IN OUTBUF
4267 CD 48 4Ø
                 2700 BYT2 CALL FETCH
                                       /GET BITS 3,4,5 IN 1,2,3
                                         /SAVE SECOND ASCII CHAR.
426A 32 F3 44
                 2710
                       STA CHAR2
                                             /POINT TO LABEL SLOT
426D 11 75 44
                 2720
                       LXI D.OUTBUF+15
                       CALL XCODE
                                           /WRITE LABEL IN OUTBUF
427Ø CD E7 42
                 2730
                                     /WRITE ASCII, OCTAL & PRINT
4273 C3 A5 42
                 2740
                       JMP FINISH
                 2750 BYTE1 MOV A,C /GET MNEMONIC COUNT IN REG.A
4276 79
4277 87
                 2760
                       ADD A
                                                      /CALCULATE-
                                                          /OFFSET
                 2770
                       ADD A
4278 87
                                            /PUT OFFSET IN REG. C
4279 4F
                 2780
                       MOV C.A
                       LXI H.N EMON
                                         /POINT TO MNEMONIC TABLE
427A 21 72 43
                 2790
                       DAD B /ADD OFFSET TO MNEMONIC POINTER
LXI D.OUTBUF+7 /POINT TO MNEMONIC SLOT
                 2800
427D Ø9
                       LXI D.OUTBUF+7
427E 11 6D 44
                 2810
                       CALL PRINT
                                        /WRITE MNEMONIC IN OUTBUF
4281 CD 66 4Ø
                 2820
                 2830
                       JMP FINISH
                                     /WRITE ASCII, OCTAL & PRINT
4284 C3 A5 42
                 2840 BAD LXI H, DATA /POINT TO "NON HEX DATA"
4287 21 ØC 45
428A CD F7 44
                 285Ø
                       CALL CRLF
                                                    /PRINT A CRLF
                                           /PRINT "NON HEX DATA"
428D CD 19 45
                 2860
                       CALL MSG
                       CALL CRLF
                                                    /PRINT A CRLF
429Ø CD F7 44
                 2870
4293 C3 ØØ EC
                 2880
                       JMP ØECØØH
                                          /JMP TO SYSTEM MONITOR
                 289Ø HEXOT PUSH H
                                           /SAVE REGISTERS H & L
4296 E5
                      PUSH B
                                            /SAVE REGISTERS B & C
4297 C5
                 2900
                       PUSH D
                                            /SAVE REGISTERS D & E
4298 D5
                 2910
4299 11 62 44
                 2920
                       LXI D, ADDBUF
                                         /POINT TO ADDRESS BUFFER
                                       /SET NO. OF CHARS. TO LOAD
429C ØE Ø4
                 293Ø
                       MVI C.4
                       CALL XLOAD /LOAD ASCII NUMERICS IN ADDBUF
429E CD AA 44
                 2940
                                         /RESTORE REGISTERS D & E
42A1 D1
                 29 5Ø
                       POP D
                       POP B
                                        /RESTORE REGISTERS B & C
42A2 C1
                 29 60
42A3 E1
                                        /RESTORE REGISTERS H & L
                 29 70
                       POP H
                 298Ø RET
                                                     /CONTINUE ...
42A4 C9
                                        /INPUT THE SENSE SWITCHS
42A5 DB FF
                 2990 FINISH IN 0FFH
```

```
/WAS SENSE SWITCH 8 SET?
42A7 E6 Ø1
                 3000 ANI 1
                       JZ OVER /YES, SKIP THE ASCII BUFFER LOAD
42A9 CA C7 42
                 3Ø1Ø
                       LXI D.OUTBUF+24 /POINT TO 1ST ASCII SLOT
42AC 11 7E 44
                 3020
                                     /LOAD THE FIRST ASCII BYTE
                 3030
                       LDA CHARI
42AF 3A F2 44
                                       /GO WRITE THE ASCII CHAR.
                       CALL ASCII
                 3040
42B2 CD 11 43
                       LXI D,OUTBUF+28 /POINT TO 2ND ASCII SLOT
42B5 11 82 44
                 3Ø5Ø
                                    /LOAD THE SECOND ASCII BYTE
                       LDA CHAR2
42B8 3A F3 44
                 3060
                                      /GO WRITE THE ASCII CHAR.
                       CALL ASCII
42BB CD 11 43
                 3070
                       LXI D.OUTBUF+32 /POINT TO 3RD ASCII SLOT
                 3Ø8Ø
42BE 11 86 44
                                  /LOAD THE THIRD ASCII BYTE
                 3090
                       LDA CHAR3
42C1 3A F4 44
                      CALL ASCII
                                      /GO WRITE THE ASCII CHAR.
42C4 CD 11 43
                 3100
                                        /GO TRY TO WRITE OCTAL
                 3110 OVER CALL OCTAL
42C7 CD E1 45
42CA CD 28 43
                 3120
                       CALL BUFPNT /DONE. PRINT THE OUTPUT BUF.
                 3130
                       LHLD DONE
                                        /LOAD THE ENDING POINTER
42CD 2A FØ 44
                                  /PUT END POINTER IN REG. D & E
                 3140
                       XCHG
42DØ EB
                       CALL FETC2 /LOAD THE CURRENT INST ADDR.
42D1 CD 47 46
                 315Ø
                       MOV A.H /PUT LOW ORDER CURRENT IN REG. A
                 3160
42D4 7C
                       CMP D' /COMPARE LOW ORDER CURRENT TO END
42D5 BA
                 3170
                       JZ LOW /IF LOW ORDERS EQUAL, GO TEST HIGH
JMP PAGE /GO PROCESS NEXT INSTRUCTION!
42D6 CA DC 42
                 3180
42D9 C3 55 46
                 3190
                 3200 LOW MOV A.L
                                    /PUT HIGH ORDER CURRENT IN A
42DC 7D
                      CMP E /COMPARE HIGH CURRENT TO HIGH END
                 3210
42DD BB
                                   /IF LESS THAN BEGIN AGAIN
42DE D2 00 40
                 3220
                       JNC START
                       JZ START
                                       /IF EQUAL TO BEGIN AGAIN
                 3230
42E1 CA 00 40
                                   /GO PROCESS NEXT INSTRUCTION
42E4 C3 55 46
                 3240
                       JMP PAGE
                                           /SAVE REGISTERS H & L
                 3250 XCODE PUSH H
42E7 E5
                                           /SAVE REGISTERS B & C
                      PUSH B
                 3260
42E8 C5
                                                /SAVE A AND FLAGS
                       PUSH PSW
42E9 F5
                 3270
                                   /SET NUMBER OF CHARS. TO LOAD
42EA ØE Ø2
                 3280
                       MVI C.2
                       MOV HA
                                  /MOVE BYTE TO ENCODE TO REG. A
42EC 67
                 3290
                       CALL XLOAD /WRITE ASCII BYTES IN OUTBUF
                 3300
42ED CD AA 44
                                            /RESTORE A AND FLAGS
                       POP PSW
42FØ F1
                 331Ø
                       POP B
                                        /RESTORE REGISTERS B & C
42F1 C1
                 3320
                                        /RESTORE REGISTERS H & L
                       POP H
                 3330
42F2 E1
                                                    /CONTINUE...
42F3 C9
                 3340
                       RET
                 3350 CLRBUF LXI D.68 /SET NO. OF CHAR. TO CLEAR
42F4 11 44 ØØ
                      LXI H,OUTBUF /POINT TO OUTPUT BUFFER
42F7 21 66 44
                 3360
                      MVI A, '
                                                   /LOAD A SPACE
42FA 3E 2Ø
                 3370
                                         /INSERT SPACE IN OUTBUF
                 338Ø MORE MOV M.A
42FC 77
                       DCR E
                                          /DECREMENT CHAR. COUNT
42FD 1D
                 339Ø
                       JZ CLRCHAR /IF DONE CLEAR ASCII CHAR. BUF
42FE CA Ø5 43
                 3400
                                 /POINT TO NEXT SLOT IN OUTBUF
                       INX H
4301 23
                 3410
                                               /GO CLEAR MORE...
4302 C3 FC 42
                       JMP MORE
                 3420
                 343Ø CLRCHAR LXI H, CHARI
                                           /POINT TO ASCII BUF1
4305 21 F2 44
                 3440 MVI C.3 /SET NUMBER OF CHARS. TO CLEAR
4308 ØE Ø3
                 3450 MRE2 MOV M.A /WRITE A SPACE IN ASCII BUF.
43ØA 77
                                         /DECREMENT BUFFER COUNT
43ØB ØD
                 3460
                      DCR C
                                           /IF DONE, CONTINUE...
                 3470
                       RZ
43ØC C8
                                     /POINT TO NEXT ASCII BUFFER
                       INX H
43ØD 23
                 348Ø
                                        /CLEAR NEXT ASCII BUFFER
43ØE C3 ØA 43
                 3490 JMP MRE2
```

```
3500 ASCII CPI 7FH
                                         /TEST IF SIGN BIT IS SET
4311 FE 7F
                       CNC SIGN /SET? GO WRITE "*" BEFORE CHAR.
                 3510
4313 D4 4D 43
                                  /STRIP SIGN BIT FROM CHAR.
4316 E6 7F
                 3520
                        ANI 7FH
4318 FE 2Ø
                 353Ø
                        CPI ' '
                                            /TEST FOR ASCII SPACE
                 3540
                       RZ
                                /IF EQUAL, DON'T BOTHER WITH REST
431A C8
431B FE ØØ
                 3550
                        CPI Ø
                                             /TEST FOR NULL CHAR.
431D C8
                 356Ø
                        RZ
                                /IF EQUAL, DON'T BOTHER WITH REST
                       RZ /IF EQUAL, DON'T BOTHER WITH REST
                           7FH
                 3570
431E FE 7F
432Ø C8
                 3580
4321 FE 20
                 359Ø
                 3600
                        CC CONT /IF LESS THAN 20H DO CONTROL CHAR
4323 DC 43 43
4326 12
                 3610
                        STAX D
                                    /WRITE ASCII CHAR. IN OUTBUF
4327 C9
                 3620
                       RET
                                                      /CONTINUE...
4328 21 A9 44
                 363Ø BUFPNT LXI H. BUFEND-1 /POINT TO END OF BUF
432B 11 49 00
                 3640
                       LXI D.73 /SET NO. OF CHAR. IN BUFFER +1
                                           /DECREMENT CHAR. COUNT
                 3650 LESS DCX D
432E 1B
432F 7E
                 3660
                       McA VOM
                                    /FETCH CHAR. FROM END OF BUF.
433Ø 2B
                 3670
                       DCX H
                                        /DECREMENT BUFFER POINTER
4331 FE 20
                       CPI ' '
                 3680
                                        /FOUND A VALID CHAR. YET?
                       JZ LESS /NO. KEEP DECREASING BUF. LENGTH
4333 CA 2E 43
                 369Ø
4336 21 62 44
                 3700
                       LXI H, ADDBUF /OTHERWISE POINT BEG OF LINE
                 3710 GET MOV C.M /MOVE CHAR. FROM OUTBUF TO C
3720 CALL HISPD /PRINT CHAR. ON OUTPUT DEVICE
4339 AE
433A CD C3 44
433D 1D
                 373Ø
                       DCR E
                                           /DECREMENT CHAR. COUNT
433E C8
                 3740
                       RZ
                                /WHEN DONE WITH LINE, CONTINUE...
                                  /POINT TO NEXT CHAR. TO PRINT
433F 23
                 3750
                       INX H
434Ø C3 39 43
                 3760
                       JMP GET
                                             /GO PRINT NEXT CHAR.
4343 C6 4Ø
                 377Ø CONT ADI 'e'/MAKE A PRINTING CHAR. OF CONT
                                         /SAVE THE PRINTING CHAR.
4345 4F
                 3780
                       MOV C.A
                                    /POINT TO NEXT SLOT IN OUTBUF
4346 13
                 379Ø
                       INX D
4347 3E 2E
                 3800
                       MVI A, . . /LOAD A CONTROL CHAR. INDICATOR
                       STAX D /WRITE CONTROL INDICATOR IN BUF.
4349 12
                 3810
                                 /POINT TO ASCII SLOT IN OUTBUF
434A 1B
                 3820
                       DCX D
434B 79
                 383Ø
                       MOV A.C
                                          /RESTORE PRINTING CHAR.
434C C9
                 384Ø
                       RET
                                                     /CONTINUE...
                 3850 SIGN MOV C.A
                                                /SAVE ASCII CHAR.
434D 4F
                      MVI A. '*'
                                       /LOAD A SIGN BIT INDICATOR
434E 3E 2A
                 386Ø
435Ø 1B
                 3870
                       DCX D.
                                      /POINT AHEAD OF ASCII CHAR.
4351 12
                 3880
                       STAX D
                                  /WRITE SIGN INDICATOR IN OUTBUF
                                  /RESTORE ASCII POINTER TO CHAR.
4352 13
                 3890
                       INX D
4353 79
                 3900 MOV A.C
                                             /RESTORE ASCII CHAR.
                                                     /CONTINUE...
4354 C9
                 391Ø
                       RET
4355 ØØ
                 3920 OPCODES NOP /THE FOLOWING IS A
                                                             /NOP
                                    /IS A TABLE OF 8080
4356 Ø7
                 393Ø
                       DB ØØ7H
                                                              /RLC
                 3940
                       DB ØØFH
                                    /OPCODES USED BY-
                                                              /RRC
4357 ØF
4358 17
                 39 5Ø
                       DB Ø17H
                                    /THIS PROGRAM TO-
                                                              /RAL
                                    /COMPARE AGAINST-
/THE BYTE FETCHED-
                                    /COMPARE
                                                              /RAR
4359 1F
                 39 6Ø
                       DB Ø1FH
435A 27
                 39 7Ø
                       DB Ø27H
                                                              /DAA
                                    /FROM MEMORY
435B 2F
                 398Ø
                      DB Ø2FH
                                                              /CMA
435C 37
                 399Ø DB Ø37H
                                                              /STC
```

```
DB Ø3FH
435D 3F
                  4000
                                                                  /HLT
                  4010
                         DB Ø76H
435E 76
                                                                  /RET
                         DB
                            ØС9Н
                  4020
435F C9
                                                                 /XTHL
                         DB ØE3H
436Ø E3
                  4030
                                                                 /PCHL
                  4040
                         DB ØE9H
4361 E9
                                                                 /XCHG
                         DB ØEBH
                  4050
4362 EB
                                                                   /DI
                         DB ØF3H
                  4060
4363 F3
                                                                 /SPHL
                         DB ØF9H
                  4070
4364 F9
                                                                   /EI
                   4080
                         DB ØFBH
4365 FB
                                                                  /ADI
                                        /HERE STARTS THE-
                         DB ØC6H
                  4090
4366 C6
                                                                  /ACI
                                        /TWO BYTE OPCODES
                         DB ØCEH
4367 CE
                   4100
                                                                  /OUT
                   4110
                         DB ØD3H
4368 D3
                                                                  /SUI
                   4120
                         DB ØD6H
4369 D6
                                                                  /IN
                         DB ØDBH
                   4130
436A DB
                                                                   /SBI
                   4140
                         DB ØDEH
436B DE
                                                                   /ANI
                   4150
                         DB ØE6H
436C E6
                                                                   /XRI
                         DB ØEEH
                   4160
436D EE
                                                                   /ORI
                         DB ØF6H
                   4170
436E F6
                                                                   /CPI
                   4180
                         DB ØFEH
436F FE
                                        /HERE STARTS THE-
                                                                 /SHLD
                   4190
                         DB Ø22H
437Ø 22
                                                                  /LHLD
                                        /THREE BYTE OPCODES
                         DB Ø2AH
4371 2A
                   4200
                                                                   /STA
                   4210 NEMON DB 32H
4372 32
                                                                   /LDA
                   4220
                         DB Ø3AH
4373 3A
                                                                   /JMP
                         DB ØC3H
                   4230
4374 C3
                                                                  /CALL
                   4240
                         DB ØCDH
4375 CD
                                        /THE FOLOWING ARE TABLES OF-
4376 45 49
                   4250
                         DW
                            'IE'
                                       /ASCIT MNEMONICS USED BY THE-
/DISASSEMBLER TO LOAD THE-
                         DW '
                   4260
4378 20 20
                         DW 'PS'
437A 53 5Ø
                   4270
                                            /OUTPUT BUFFER WITH THE-
                          DW 'LH'
437C 48 4C
                   4280
                                               /INSTRUCTION MNEMONICS
                          DW 'ID'
                   4290
437E 44 49
                   4300
                          DW
4380 20 20
                             'CX'
4382 58 43
                   4310
                          DW
                   4320
                          DW 'GH'
4384 48 47
                             'CP'
                          DW
                   4330
4386 5Ø 43
                             'LH'
                          DW
4388 48 4C
                   4340
                   4350
                          DW 'TX'
438A 58 54
                             'LH'
                   4360
                          DW
438C 48 4C
                             "ER"
                          DW
438E 52 45
                   4370
                          DW 'T'
4390 54 20
                   438Ø
                   4390
                          DW
                             'LH'
4392 48 4C
                             · T ·
                   4400
                          DW
4394 54 20
                          DW 'MC'
4396 43 4D
                   4410
                             ' C'
                   4420
                          DW
4398 43 20
                             'TS'
                   4430
                          DW
439A 53 54
                          DW ' C'
                   4440
439C 43 2Ø
                          DW 'MC'
439E 43 4D
                   445Ø
                          DW . A.
43AØ 41 2Ø
                   4460
                          DW 'AD'
                   4470
 43A2 44 41
                          DW ' A'
 43A4 41 2Ø
                   4480
                          DW 'AR'
                   449Ø
 43A6 52 41
```

/ CMC

```
4500 DW ' R'
43A8 52 2Ø
                        DW 'AR'
                  451Ø
43AA 52 41
                        DW ' L'
43AC 4C 2Ø
                  4520
                        DW 'RR'
43AE 52 52
                  453Ø
43BØ 43 2Ø
43B2 52 4C
                        DW ' C'
                  4540
                        DW 'LR'
                  4550
                        DW 'C'
                  4560
43B4 43 2Ø
                  4570 NEM2 DW 'ON'
43B6 4E 4F
                        DW ' P'
43B8 5Ø 2Ø
                  458Ø
                  4590
                        DB 43H
                                                                   /C
43BA 43
                                                                   /P
                        DB 5ØH
43BB 5Ø
                  4600
                        DB 49H
43BC 49
                  4610
                                                                   /I
                        DB 2ØH
                  4620
43BD 2Ø
                                                                   10
                        DB 4FH
43BE 4F
                  4630
                                                                   /R
43BF 52
                  4640
                        DB 52H
43CØ 49
                  4650
                        DB 49H
                                                                   /I
                        DB 2ØH
43C1 2Ø
                  4660
                                                                   /X
43C2 58
                  4670
                        DB 58H
43C3 52
                  4680
                        DB 52H
                                                                   /R
                                                                   /I
                  4690
                        DB 49H
43C4 49
                  4700
                        DB 20H
4305 20
                  4710
                        DB 41H
                                                                   /A
43C6 41
43C7 4E
                                                                   /N
                  4720
                        DB 4EH
                                                                   /I
                        DB 49H
43C8 49
                  4730
4309 20
                  4749
                        DB 2ØH
                        DB 53H
                                                                   /S
43CA 53
                  4750
                                                                   /B
                        DB 42H
43CB 42
                  4760
                                                                   /I
43CC 49
                  4770
                        DB 49H
43CD 20
                  4780
                        DB 2ØH
                                                                   /1
                        DB 49H
                  4790
43CE 49
                                                                   /N
43CF 4E
                  4800
                        DB 4EH
43DØ 2Ø
                  4810
                        DB 2ØH
                        DB 20H
43D1 2Ø
                  4820
                                                                   /S
43D2 53
                  4830
                        DB 53H
                                                                   / U
43D3 55
                  4840
                        DB 55H
43D4 49
                  4850
                        DB 49H
                                                                   /I
43D5 2Ø
                        DB 2ØH
                  48 6Ø
                                                                   /0
43D6 4F
                  487Ø
                        DB 4FH
43D7 55
                  4880
                        DB 55H
                                                                   /U
43D8 54
                                                                   /T
                  4890
                        DB 54H
43D9 2Ø
                  4900
                        DB 2ØH
                                                                   /A
43DA 41
                  4910
                        DB 41H
43DB 43
                  4920
                        DB 43H
                                                                   /C
                                                                   /I
43DC 49
                  4930
                        DB 49H
43DD 2Ø
                  4940
                        DB 20H
43DE 41
                  495Ø NEM3 DB 41H
                                                                   /A
43DF 44
                                                                   /D
                  4960
                        DB 44H
                                                                   /I
                        DB 49H
43EØ 49
                  49 70
43E1 2Ø
                  498Ø DB 2ØH
43E2 43
                  499Ø DB 43H
                                                                   /C
```

a

	43E3	41	5000	DB	41H		/A
i	43E4	4C	5010	DB	4CH		/L
	43E5	4C	5020	DB	4CH		/L
	43E6	4A	5030	DB	4AH		/ J
	43E7	4D	5Ø4Ø	DB	4DH		/M
	43E8	5Ø	5050	DB	5ØH		/P
	43E9	20	5060	DB	2ØH		
	43 EA		5070	DB	4CH		/L
	43EB		5080	DB	44H		/D
	43EC	41	5090	DB	41H		/A
	43ED		5100	DB	2ØH		
	43EE	53	5110	DB	53H		· /S
	43EF	54	5120	DB	54H		/T
	43FØ	41	5130	DB	41H		/A
	43F1	20	5140	DB	2ØH		
	43F2	4C	5150	DB	4CH		/L
	43F3		5160	DB	48H	•	/H
	43F4	4C	5170	DB	4CH		/L
	43F5	44	5180	DB	44H		/D
	43F6	53	5190	DB	53H		/ S
	43F7	48	5200	DB	48H		/H
	43F8	4C	5210	DB	4CH		/L
	43F9	44	5220	DB	44H		/D
	43FA	4D	5230	LMO	J DB	4DH	/M
	43FB	4F	5240	DB	4FH		/0
	43FC	56	5250	DB	56H		/ V
	43FD	20	5260	DB	2ØH		
	43FE	41	5270	LADI	DB	41H	/A
	43FF	44	528Ø	DB	44H		/D
	4400	44	529Ø	DB	44H		/D
	4401	20	5300	DB	2ØH		
	4402		531Ø		41H		/A
	4403	44	5320		44H		/D
	4404		5330		43H		/C
	4405		5340		2ØH		
	4406		535Ø		53H		/ S
	4407		5360		55H		/U
	4408		5370		42H		/B
	4409		538Ø		2ØH		
	44ØA		539Ø		53H		/\$
	44ØB		5400		42H		/B
	44ØC		5410		42H		/B
	44ØD		5420		2ØH		
	440E		5430		41H		/A
	440F		5440		4EH		/N
	4410		5450		41H		/A
	4411	20	5460		2ØH		***
		58	5470		58H		/X
	4413		5480		52H		/R
	4414	41	549Ø	ນສ	41H		/A

	FFRA DD OGU	
4415 20	5500 DB 20H 5510 DB 4FH	- /0
4416 4F	5510 DB 4FH 5520 DB 52H	/R
4417 52	5530 DB 41H	/A
4418 41	5540 DB 20H	7.5
4419 20	5550 DB 43H	/C
441A 43	5560 DB 4DH	/M
441B 4D	5570 DB 50H	/P
441C 5Ø	5580 DB 20H	•
441D 2Ø	5590 LINR DB 49H	/1
441E 49	5600 DB 4EH	/N
441F 4E	5610 DB 52H	/R
442Ø 52 4421 2Ø	5620 DB 20H	
4421 20	5630 LDCR DB 44H	/D
4422 44	5640 DB 43H	/C
4424 52	5650 DB 52H	/R
4425 20	5660 DB 20H	
4426 4D	5670 LMVI DB 4DH	/M
4427 56	5680 DB 56H	/V
4428 49	569Ø DB 49H	/1
4429 20	5700 DB 20H	
442A 4C	5710 LLXI DB 4CH	/L
442B 58	572Ø DB 58H	/X
442C 49	5730 DB 49H	· /I
442D 20	5740 DB 20H	
442E 53	575Ø DB 53H	/5
442F 54	5760 DB 54H	/T
4430 41	5770 DB 41H	/A
4431 58	578Ø DB 58H	/X
4432 49	5790 DB 49H	/1
4433 4E	5800 DB 4EH	/N
4434 58	5810 DB 58H	/X
4435 20	5820 DB 20H	
4436 44	5830 DB 44H	/D
4437 41	5840 DB 41H	/A
4438 44	5850 DB 44H	/D
4439 20	5860 DB 20H	
443A 4C	5870 DB 4CH	/L
443B 44	5880 DB 44H	/D
443C 41	5890 DB 41H	/A
443D 58	5900 DB 58H	/X /D
443E 44	5910 DB 44H	/C
443F 43	5920 DB 43H	/X
4440 58	593Ø DB 58H	/*
4441 20	5940 DB 20H	/R
4442 52	5950 LRST DB 52H	/s
4443 53	5960 DB 53H	/T
4444 54	5970 DB 54H 5980 DB 20H	, ,,
4445 20	5980 DB 20H 5990 LPSW DB 50H	/P
4446 50	STAN TESM DO SOU	••

```
6ØØØ DB 53H
4447 53
                                                                  /S
4448 57
                  6010 DB 57H
4449 20
                  6020 LPOP DB 20H
                  6030
                        DB 5ØH
444A 5Ø
                                                                  /P
444B 4F
                  6040
                        DB 4FH
                                                                  10
444C 5Ø
                  6050
                        DB 5ØH
                                                                  /P
444D 2Ø
                  6060
                        DB 2ØH
444E 5Ø
                  6070
                        DB 5ØH
                                                                  /P
444F 55
                  6080
                        DB 55H
                                                                  / U
445Ø 53
                  6090
                        DB 53H
                                                                  /S
4451 48
                  6100
                        DB 48H
                                                                  /H
                  6110 CONDN DB 4EH
4452 4E
                                        /THIS IS A TABLE-
                                                                  /N
4453 5A
                                       /OF ENDINGS FOR-
                  6120
                        DB 5AH
                                                                  12
4454 5A
                  6130
                        DB 5AH
                                       /CONDITIONAL CALLS-
                                                                  /Z
4455 20
                  6140
                        DB 20H
                                       /JUMPS AND RET'S.
4456 4E
                  6150
                        DB 4EH
                                                                  /N
4457 43
                  6160
                        DB 43H
                                                                  /C
4458 43
                  6170
                        DB 43H
                                                                  /C
4459 20
                  6180
                        DB 2ØH
445A 5Ø
                  6190
                        DB 5ØH
                                                                  /P
445B 4F
                  6200
                        DB 4FH
                                                                  10
445C 5Ø
                  6210
                        DB 5ØH
                                                                  /P
445D 45
                  6220
                        DB 45H
                                                                  /E
445E 5Ø
                  6230
                        DB 5ØH
                                                                  /P
445F 2Ø
                  6240
                        DB 20H
446Ø 4D
                  625Ø
                        DB 4DH
                                                                  /M
4461 20
                  6260
                        DB 2ØH
                  627Ø ADDBUF DW Ø
4462 00 00
                                          /THIS BUFFER STORES THE-
4464 ØØ ØØ
                  6280
                       DW Ø
                                        /HEX ADDRESS FOR PRINTING.
4466 ØØ ØØ
                  629Ø OUTBUF DW Ø
                                          /HERE BEGINS THE OUTPUT-
4468 ØØ ØØ
                  6300
                        DW Ø
                                          /BUFFER WHICH HOLDS THE-
446A ØØ ØØ
                  631Ø
                        DW Ø
                                       /ENTIRE LINE OF DATA TO BE-
446C ØØ ØØ
                  632Ø
                        DW Ø
                                     /PRINTED. AFTER THIS BUFFER-
446E ØØ ØØ
                  633Ø
                        DW Ø
                                       /IS LOADED WITH ASCII DATA-
4470 00 00
                        DW Ø
                                       /THE ROUTINE CALLED BUFPNT-
                  6340
4472 00 00
                  6350
                        DW Ø
                                      /POINTS TO THE BEGINNING OF-
4474 00 00
                  63 6Ø
                        DW Ø
                                   /ADDBUF AND OUTPUTS THE CHAR'S-
                                   /FROM THERE TO BUFEND-1. THAT-
4476 ØØ ØØ
                  6370
                        DW Ø
4478 ØØ ØØ
                  6380
                        DW Ø
                                     /ROUTINE ALSO CALCULATES THE-
447A ØØ ØØ
                  639Ø
                        DW Ø
                                    /ACTUAL LENGTH OF THIS BUFFER-
447C ØØ ØØ
                  6400
                        DW Ø
                                     /EACH TIME A LINE IS PRINTED.
447E ØØ ØØ
                  6410
                        DW Ø
4480 00 00
                  6420
                        DW Ø
4482 00 00
                  643Ø
                        DW Ø
4484 00 00
                  6440
                        DW Ø
4486 ØØ ØØ
                        DW Ø
                  6450
4488 ØØ ØØ
                  6460
                        DW Ø
448A ØØ ØØ
                  6470
                        DW Ø
448C ØØ ØØ
                  6480
                        DW Ø
448E ØØ ØØ
                  6490
                        DW Ø
```

•

```
4490 00 00
                  6500 DW 0
4492 00 00
                  651Ø
4494 00 00
                  6520
                        DW Ø
4496 00 00
                  653Ø
                        DW Ø
4498 00 00
                  6540
449A ØØ ØØ
                  6550
                        DW Ø
449C ØØ ØØ
                  656Ø
                        DW Ø
449E ØØ ØØ
                  6570
                        DW Ø
44AØ ØØ ØØ
                  658Ø
                        DW Ø
44A2 ØØ ØØ
                  659Ø
                        DW a
44A4 ØØ ØØ
                  6600
                        DW Ø
44A6 ØØ ØØ
                  6610
                        DW Ø
44A8 ØØ ØØ
                  662Ø
                        שמ מ
44AA
                  663Ø BUFEND EQU $
44AA AF
                  664Ø XLOAD XRA A
                                          /THIS ROUTINE LOADS THE-
                  665Ø DAD H
44AB 29
                                          /OUTPUT BUFFER WITH HEX-
44AC 17
                  666Ø
                        RAL
                                        /CHAR'S. UPON ENTRY REG.-
44AD 29
                  6670
                        DAD H
                                        /C CONTAINS THE NUMBER OF-
                                        /CHARACTERS TO BE LOADED.
44AE 17
                  668Ø
                        RAL
44AF 29
                  669Ø
                        DAD H
                                          /UPON ENTRY REG. D & E -
                                       /POINT TO THE SLOT IN THE-
/OUTPUT BUFFER WHICH IS TO-
44BØ 17
                  6700
                        RAL
44B1 29
                  6710
                        DAD H
44B2 17
                  6720
                        RAI.
                                       /BE LOADED WITH HEX CHAR'S.
44B3 FE ØA
                  673Ø
                        CPI 10
                                     /THE ROUTINE TERMINATES WHEN-
44B5 DA BA 44
                  6740
                        JC ASCOUT
                                                /REG. C REACHES Ø.
44B8 C6 Ø7
                  675Ø
                        ADI 7
44BA C6 3Ø
                  676Ø ASCOUT ADI 'Ø'
44BC 12
                  6770
                       STAX D
44BD 13
                  678Ø
                        INX D
44BE ØD
                  6790
                        DCR C
44BF C2 AA 44
                  6800
                        JNZ XLOAD
44C2 C9
                  681Ø
                        RET
44C3 DB ØØ
                                            /INPUT THE STATUS PORT
                  682Ø HISPD IN Ø
44C5 E6 8Ø
                  683Ø
                        ANI 80H /TEST FOR TRANSMITTER BUF. EMPTY
44C7 CA C3 44
                  6840
                        JZ HISPD
                                         /IF NOT READY, TRY AGAIN
44CA 79
                        MOV A.C
                                   /GET THE CHAR. TO PRINT IN ACC.
                  6850
44CB D3 Ø1
                  68 6Ø
                        OUT 1
                                      /OUTPUT IT TO THE DATA PORT
44CD DB ØØ
                  68 7Ø
                        IN Ø
                                            /INPUT THE STATUS PORT
44CF E6 4Ø
                  688Ø
                        ANI 4ØH
                                     /IS DATA AVAILABLE FLAG SET?
                                      /YES, THEN STOP & START OVER /OTHERWISE CONTINUE...
44D1 C2 ØØ 4Ø
                  689Ø
                        JNZ START
AADA C9
                  6900
                        RET
44D5 DB ØØ
                                            /INPUT THE STATUS PORT
                  6910 INPUT IN 0
44D7 E6 4Ø
                                                /TEST FOR DAV FLAG
                  692Ø
                       ANI 40H
44D9 CA D5 44
                        JZ INPUT
                                             /NOT READY? TRY AGAIN
                  6930
44DC DB Ø1
                  6940
                       IN 1
                                             /INPUT THE DATA PORT
44DE E6 7F
                  69 5Ø
                        ANI 7FH
                                                      /STRIP PARITY
                        MOV C.A
44EØ 4F
                                             /SAVE DATA IN REG. C
                  69 6Ø
44E1 C9
                  69 7Ø
                       RET
                                                       /CONTINUE...
44E2 DB 00
                  698Ø CPRINT IN Ø
                                            /INPUT THE STATUS PORT
44E4 E6 8Ø
                 6990 ANI 80H / TEST FOR TRANSMITTER BUF. EMPTY
```

€

•

```
7000 JZ CPRINT /NOT READY? THEN TRY AGAIN 7010 MOV A.C /GET CHAR TO PRINT IN ACC.
 44E6 CA E2 44
 44E9 79
                                            /PRINT CHARACTER
                    7020 OUT 1
 44EA D3 Ø1
                                                             /CONTINUE...
 44EC C9
                    7030 RET
                                        /FETCHED BILL STORAGE
/PROGRAM COUNTER STORAGE
 44ED 00
                    7040 SAVE DB 0
                    7050 PGMCT DW 0
 44EE 00 00
                    7060 DONE DW 0 /ENDING PROGRAM COUNTER STORAGE
 44FØ ØØ ØØ
 44F2 ØØ
                    7070 CHARI DB Ø /FIRST BYTE, ASCII STORAGE
                    7080 CHAR2 DB 0
                                           /SECOND BYTE, ASCII STORAGE
 44F3 ØØ
                                            /THRID BYTE, ASCII STORAGE
                    7090 CHAR3 DB 0 /THRID BYTE, ASCII STORAGE
7100 OSAVE DW 0 /CURRENT INSTRUCTION ADDRESS
 44F4 00
 44F5 ØØ ØØ
 44F7 ØE ØD
                    7110 CRLF MVI C.ODH /LOAD A CARRIAGE RETURN
                    7120 CALL HISPD
7130 MVI C.OAH
 44F9 CD C3 44
                                                              /PRINT A CR
 44FC ØE ØA
                                                       /LOAD A LINE FEED
 44FE CD C3 44
                    7140 CALL HISPD
                                                     /PRINT A LINE FEED
 4501 ØE ØØ
                    7150 MVI C.0
                                                             /LOAD A NULL
                                                            /PRINT A NULL
                    7160 CALL HISPD
 4503 CD C3 44
                    7170 CALL HISPD
7180 JMP HISPD
                                                           /PRINT A NULL
 45Ø6 CD C3 44
                    7180 JMP HISPD /PRINT A NULL AND CONTINUE...
7190 DATA DW 'ON' /ASCII STORAGE FOR-
 45Ø9 C3 C3 44
 45ØC 4E 4F
                    7200 DW 'N'
7210 DW 'EH'
7220 DW 'X'
                                                         /"NON HEX DATA"
 45ØE 4E 2Ø
 4510 48 45
 4512 58 20
                    7230 DW 'AD'
7240 DW 'AT'
7250 DB 0
4514 44 41
 4516 54 41
 4518 00
                                                     /MESSAGE TERMINATOR
                    7260 MSG MOV C.M /FETCH A STORED CHAR. FROM MEM
7270 CALL HISPD /PRINT THAT CHARACTER
 4519 4E
 451A CD C3 44
                    727Ø CALL HISPD
                    7280 MOV A.C
                                                 /RESTORE THE CHARACTER
 451D 79
                    7290 CPI 0 7300 RZ 7310 INX H 7320 JMP MSG
 451E FE 00
                                         /WAS IT A MESSAGE TERMINATOR?
                                      /YES, THEN QUIT AND CONTINUE...
 452Ø C8
                                      POINT TO NEXT STORED CHAR.
 4521 23
                                                              /PRINT MORE
 4522 C3 19 45
                    7330 STADD DW 'TS'
                                                    /ASCII STORAGE FOR-
 4525 53 54
                                                       /"START ADDRESS?"
 4527 41 52
                    734Ø DW 'RA'
                    7350 DW 'T'
7360 DW 'DA'
 4529 54 20
 452B 41 44
                    7370 DW 'RD'
7380 DW 'SE'
 452D 44 52
 452F 45 53
                    739Ø DW '?S'
 4531 53 3F
                    7400 DW 0020H
                                         /SPACE AND MESSAGE TERMINATOR
 4533 20 00
                    7410 ENADD DW 'NE' /ASCII STORAGE FOR-
 4535 45 4E
                                                        /"END ADDRESS?"
                    7420 DW ' D'
 4537 44 20
                    7430 DW 'DA'
7440 DW 'RD'
 4539 41 44
 453B 44 52
                    7450 DW 'SE'
 453D 45 53
                    7460 DW '?S'
7470 DW 0020H
 453F 53 3F
                    7470 DW 0020H /SPACE AND MESSAGE TERMINATOR
7480 LNONE DW 'EH' /ASCII STORAGE FOR-
7490 DW 'X' /LINE 1 OF HEADER MESSAGE
 4541 20 00
 4543 48 45
                   7490 DW ' X'
 4545 58 20
```

```
4547 20 20
                          7500
                               DW ' '
a
       4549 48 45
                                DW 'EH'
                          751Ø
       454B 58 2Ø
                          752Ø
                                DW ' X'
       454D 2Ø 2Ø
                          7530
                                DW
       454F 20 20
4551 20 20
                                DW
                          7540
                          755Ø
                                DW .
       4553 20 20
                          7560
                                DW .
       4555 2Ø 4C
                          7570
                                DW 'L '
       4557 41 42
                          758Ø
                                DW 'BA'
       4559 4C 45
                          7590
                                DW 'EL'
                                DW '
       455B 2Ø 2Ø
                          7600
                                DW '
       455D 20 20
                          7610
       455F 41 53
                          762Ø
                                DW 'SA'
       4561 43 49
                                DW 'IC'
                          7630
       4563 49 20
                                DW ' I'
                         7640
       4565 20 20
                          7650
                                DW
       4567 20 20
                          7660
                                DW
       4569 20 20
                          7670
                                DW
       456B 4F 43
                          768Ø
                                DW 'CO'
       456D 54 41
                          769Ø
                                DW
                                   'AT'
       456F 4C 2Ø
                                DW . L.
                          7700
                                DW '
       4571 20 20
                          771Ø
       4573 20 44
                         7720
                                DW 'D '
                                DW 'TA'
       4575 41 54
                         773Ø
       4577 41 00
                         7740
                               DW 0041H
       4579 41 44
                         775Ø LNTWO DW 'DA'
                                                        /ASCII STORAGE FOR-
a
       457B 44 52
                         776Ø
                                DW 'RD'
                                                 /LINE 2 OF HEADER MESSAGE
                                DB · ·
       457D 2Ø
                         777Ø
       457E 2Ø 44
                         778Ø
                                DW 'D '
                                DW 'TA'
       4580 41 54
                         779Ø
                                DW ' A'
                         7800
       4582 41 20
       4584 49 4E
                         781Ø
                                DW
                                   'NI'
                                DW 'TS'
       4586 53 54
                         782Ø
                                DW '
                         783Ø
       4588 20 20
       458A 2Ø 2Ø
                         7840
                                DW
                                DW 'IH'
       458C 48 49
                         785Ø
                                DW 'OL'
       458E 4C 4F
                         786Ø
       4590 20 20
                         787Ø
                                DW
                                DW .
       4592 20 20
                         788Ø
                                DW '1
       4594 20 31
                         789Ø
       4596 20 20
                         79ØØ
                                DW .
       4598 20 32
                         791Ø
                                DW '2
                                DW .
       459A 2Ø 2Ø
                         7920
       459C 2Ø 33
                         793Ø
                                DW '3
                                DW .
       459E 2Ø 2Ø
                         7940
                         79 5Ø
                                DW 'A '
       45AØ 2Ø 41
       45A2 44 44
                         79 6Ø
                                DW 'DD'
       45A4 52 45
                         79 7Ø
                               DW 'ER'
       45A6 53 53
45A8 20 20
                               DW 'SS'
                         798Ø
                         799Ø
                               DW .
```

```
9000 SKIP MVI B.9 /LOAD NO. OF CR'S TO PRINT
4664 Ø6 Ø9
                 9010 CALL SK3
4666 CD 7C 46
                                                   /PRINT 9 CRLF'S
                 9020 SET2 MVI C.'-'
4669 ØE 2D
                                          /LOAD PAGE DIVIDER CHAR.
466B Ø6 48
                 9030 MVI B, 72
                                            /LOAD TERMINAL WIDTH
466D CD C3 44
                 9040 SETA CALL HISPD
                                                      /PRINT A '-'
                 9050 DCR B
4670 Ø5
                                 /DECREMENT TERMINAL WIDTH COUNT
4671 C2 6D 46
                 9Ø6Ø
                      JNZ SETA
                                    /NOT DONE THEN PRINT MORE
                 9070 SET3 CALL SK2
4674 CD 7A 46
                                                  /PRINT 7 CRLF'S
                 9080 JMP HEADR /PRINT HEADER MESSAGE
9090 SK2 MVI B.7 /LOAD NO. OF CRLF'S TO PRINT
9100 SK3 CALL CRLF /PRINT A CRLF
4677 C3 2D 4Ø
467A Ø6 Ø7
467C CD F7 44
                      DCR B
                                             /DECREMENT CRLF COUNT
467F Ø5
                 911Ø
468Ø C8
                 9120
                       RZ
                                             /IF DONE CONTINUE...
4681 C3 7C 46
                 9130
                      JMP SK3
                                               /PRINT MORE CRLF'S
                 9140 STORE SHLD DONE /SAVE ENDING PGM. COUNT
4684 22 FØ 44
4687 CD F7 44
                 9150 CALL CRLF
                                                     /PRINT A CRLF
468A C3 69.46
                 9160
                      JMP SET2
                                       /GO PRINT SPACE AND HEADER
468D
                 9170 DS 30H
                                          /ALLOW SPACE FOR STACK
                 9180 STACK EQU $
46BD
                                          /STACK POINTER SET HERE
46BD
                 919Ø END EQU S
                                          /MODIFICATIONS GO HERE
```

SYMBOL TABLE

START	4000	HEADR	4Ø2D	FETCH	4048	REGLD	4051	RELI	405B
REL2	4062	PRINT	4066	SPRN	4068	MASK	4071	CONDL	407A
LXICD	4Ø8A	DISAS	4Ø9C	ONE	4ØC1	TWO	4ØCC	THREE	40D7
RST	4143	CALL	4158	JMP	4165	RET	4172	LXI	417F
		LXIP	41AD	MVI	4100	DCR	41D9	INR	41E2
LX2	4192						42ØB	MO V2	4221
INR2	41 E8	INR3	41EE	ADD	41F7	MOV			
BYTE3	422D	BYT3	423B	BYTE2	4259	BYT2	4267	BYTEI	4276
BAD	4287	HEXOT	4296	FINIS	42A5	OVER	4207	LOW	42DC
XCO DE	42E7	CLRBU	42F4	MORE	42FC	CLRCH	4305	MRE2	43ØA
ASCII	4311	BUFPN	4328	LESS	432E	GET	4339	CONT	4343
SIGN	434D	OPCOD	4355	N EMON	4372	N EM2	43B6	NEM3	43DE
				LINR	441E	LDCR	4422	LMVI	4426
LMOV	43FA	LADD	43FE						
LLXI	442A	LRST	4442	LPSW	4446	LPOP	4449	CONDN	4452.
ADDBU	4462	OUTBU	4466	BUFEN	44AA	XLOAD	44AA	ASCO U	44BA
HISPD	44C3	INPUT	44D5	CPRIN	44E2	SAVE	44ED	PGMCT	44EE
DONE	44FØ	CHARI	44F2	CHAR2	44F3	CHAR3	44F4	OSAVE	44F5
CRLF		DATA	45ØC	MSG	4519	STADD	4525	ENADD	4535
LNONE	4543	LNTWO	4579	HEX	45B4	NXT	45B7	NUM	45CA
					4614	OCTCO	4621	ONXT	4628
REP	45D9	OCTAL	45E1	0 T3					
RO T	4629	INVAL	4639	INV2	4640	FETC2	4647	SET	464C
CO UN T	4654	PAGE	4655	SKIP	4664	SET2	4669	SETA	466D
SET3	4674	SK2	467A	SK3	467C	STORE	4684	STACK	4 6BD
END	46BD		•						