

&

PLEIAUES IMCROWARE
-- 30RLCERER -

A DISASSEMBLEA PROGRAAM FOR A0SO BASED MICAOCOMPUTERS |

C

COPYRIGHT © BY GEORGE GILBERT; PLEIADES MICROWARE

. (; 977
v

ALTAIR 8800 MACHINE/ASSEMBLY LANGUAGE PROGRAM CODING SHEET

Page

10f

(ruetirammers:, Christopher J. Flynn

Prorranm Name: BASIC Keyboard-ACR Input Routine, #3_12.763

Date: 3/3/76

&ﬁﬂress:

Program Length in Bytes: 64

Other Information:

Language: x Machine

Asse

TAG MNEMONIC | ADDRESS |. e EXPLANATEON
START PUSHH XXX, 300 345 Save H,L
PUSHB 301 305 Save B,C
" LXIH 302 o4l Point to "locate CR™ switch
303 334
304 XXX
- SENSE IN 305 333 Read sense switch
C 306 377]
RAL 307 027 Bit 7 to Carry - test AlS
Jc 310 332 Al5 is set. GO TO ACRIN
311 335
312 XXX
KBDIN MVIA 313 076 Set ACC to 1
314 001
MoV 315 167 Set "locate CR" switch to 1
KBDCSW IN 316 333 Read keyboard status word '
317 000 !
ANI 320 346 examine data ready bit !
321 002
. (-/ Jz 322 312 Not ready. Go to KBDCSW
323 316

Program Name: BASIC Keyboard-ACR Input Routine #3-12-763 Page 2 of 10
. TAs MNEMONIC | ADDRESS i EXPLANATION
.
XXX, 324 XXX
N 325 333 Read keyboard data
326 001
ANI 327 b Select bits 0-6~
330 177
POP3 331 301 Restore B,C
POFH 332 I}l Restore H,L
RET 333 311 Pass kbd character to BASIC
SWITCH' 334 001 If switch is 1, search for CR
ACRIN CALL 335 315 Obtain data word from ACR
336 367
(. 337 XXX
MOVBA 30 107 Save ACR data word in Reg B
MOVAM 341 176 Load “locate CR" switch
RAR W2 93? Bit 0 to carry ~test for seek or read
JINC - 343 332 Bit 0 is O go to read mode
Juk 361
345 XXX
ACRSEEK MOVAB 36 170 Restore ACC from Reg B
CPI 347 376 Does ACC contain a CR
350 015
JNZ 351 302 No, kesp lonking for the lst CR *
o 3 | 35
353 Xxx
L SUBA 354 227 | Yes, set "locate CR® switch to 0
MOVMA 355 167
JMP 356 303 Now go read data

rogram Name: BASIC Keyboard-ACR Tnput Routine #3-12-763 Page 3 of_l(L
-LT/AG MNEMONIC | AppREss | SOTAL EXPLANATION
XXX, 360 XXX
ACRREAD MOVAB 361 170 Restore ACC from Reg B
ANI 362 ‘ U6 Select bits 0-6
363 177
POPB 364 301 Restore B,C
PO?H 365 341 Restore ‘H,L
) RET 366 311 Pass ACR character to BASIC
ACRCSW IN 367 333 Read ACR status wora
370 006
RRC' 371 017 Bit O to carry -~ te t for data ready
Jc 372 332 Not ready. GOTO ACRCSW
373 367
~ | ox
IN - 375 333 Ready. Read ACR character
376 007
RET 377 311 Pass character to caller

ALTAIR 8800 MACHINE/ASSEMBLY LANGUAGE PROGRAM CODING SHEET

Page 4 of

——

#3-12-763

Prorram Naine: Modified BASIC Output Routine #1

(rosrammer:, Christopher J; Flynn Date: 3/3/76
(»(ddrzss: 2601 Claxton Drive, Herndon, VA 22070
Program Length in Bytes: 13 Language: X Machine Asg

Other Information: Assumes output device baud rate is less than ACR baud rate.

Code applies to unmodified 88-SIO board.

'Tae | mnEMoNIC | ADDREss |.QGTAL EXPLANATION
TTYCSW N XXX, 260 333 Read output device CSW
261 000
ANI 262 6 Select device ready bit
263 001
Jz 264 312 Not ready. GOTO TTYCSW
265 | 260
O 266 | xxx ,
POPA 267 | .36 Restore ACC
ouT 270 © 323 Send contents of ACC to output device
2n 001
ouT 272 323 Send contents of ACC to ACR
273 007
RET 27 311 Back to caller
e

[N

ALTAIR 8800 MACHINE/ASSEMBLY LANGUAGE PROGRAM CODING SHEET

Page 5

Program Name: Modified BASIC Outmut Routine §2 #3-12-763 of 1
A_srammers Christopher J. Flynn ‘Date: .3/3/76

Address: 2601 Claxton Drive, Herndon, VA 22070

Program Length in Bytes: 12 Lanzuaﬁe:_f__Machine ____Assen

Other Information:

Assumes output device baud rate is greater than or equal to ACR

baud rate.
TAG MNEMONIC | ADDRESS |. P EXPLANATION
BEGIN IN XXX, 260 333 Read ACR Astatus
261 006
RLC 262 007 Move device ready bit to carry
JC 263 332 Not ready. GOTO BEGIN
26l 260
C 265 |
POPA 266 361 Restore ACC.
our 267 ' 323 Send contents of ACC to ACR
270 007
ouT 271 323 Send contents of ACC to output device
272 001
RET 273 311 Back to caller
@

#3-12~763 . ST T A - Page 6 of 10
Saving BASIC Programs with the ACR

Introduction

Users of the cassette versions of BASIC and users lacking paper tape
L)quipment have only limited capability to save debugged BASIC programs for
later use. 4K users are in a peculiar situation in that there is no pro-
vision at all for saving programs short of investing in a paper tape reader/
punch. 1In 8K BASIC ‘(cassette version) there is the capability to save progy
(the CSAVE command) on cassette tape and to later reload programs (CLOAD).
When programs are stored in this manner, they are written to tape in interng
form rather than in source (ASCII character) form. This method may impose &
release dependency on stored programs. That is, programs CSAVEd in one ver-
sion of BASIC may orx may not CLOAD in a different version of BASIC. Anothexr
difficulty with CSAVE and CLOAD is the potential problem in merging program
segments from multiple tapes to create a composite program. Finally, BASIC

compatible tapes are not easily created or listed off-line.

This article describes a method of using the ACR cassette interface
together with patches to BASIC's input and output subroutines in order to si
ulate a paper tape reader and punch. Thus, any infoxmation which can be dig !
played on the terminal (programs, subroutines, comments, DATA statements, an
so on) can be stored on cassette tape and retrieved at some point later in LB

Since the system described herein stores data in source form, several
advantages in operational flexibility are immediately obtained. Barring any
changes in BASIC syntax, release dependency is minimized. Programs saved
under 4K 3.2 BASIC should load and execute properly under future releases.
BASIC statements may be loaded from several tapes to create a larger prograﬁ‘

or example, a main program may be loaded from one tape, any required sub- |
routines may be loaded from a tape containing a subroutine library, and 3
finally, DATA statements may be read from yet another tape. Using the pro
system, it is also possible to create and list BASIC tapes without bringing
BASIC. Some of the text editting systems now available can be useful for o
line data preparation.

The proposed system does have a few disadvantages. At the present timq
it is not possible to name files stored on tape. The tape recorder index |
counter readings must be used to locate files. As will be shown later, the‘
proposed system does not pack characters on the tape as closely as possible.
Normally, this will not be of too great significance. The most severe
criticism of the proposed method is that there is some question as to the
transferability of tapes made in this manner to users with other terminal
confiqurations.

Method

BASIC handles input and output to the terminal by means of input and
ourput subroutines which are tailored to the particular I/0 interface board
supporting the terminal. These subroutines provide a logical starting plac
for any attempt to develop effective cassette software.

One subroutine in BASIC is responsible for terminal output. Whenever
BASIC attempts to print a character, the output subroutine is invoked. The |
utput subroutine checks the output device status and outputs a character |
en the device is ready. A simple modification to this subroutine causes
character to be written to the ACR every time a character is printed on the
terminal. Thus, if the tape recorder is in the record mode all information
(whether typed by the user or printed by BASIC) will be stored on the casse

B U S

#3-12-763

Page 8 of 10

Operation . . ;
Once BASIC has been loaded and the new input and output routines established

saving and retrieving programs becomes very straightforward.

A. Saving a BASIC program

To

store a program on tape follow the steps enumerated below:

Type in the program. Test it to make sure it is fully operationall
Add a dummy line at the end of the program (e.g. 999 REM. . .).
Type LIST, but do not hit RETURN.

Set up the recorder in the record mode. Write down the footage
meter reading.

Record at least 10-15 seconds of leader.

Now type RETURN. The program will be printed on the terminal and
recorded on the tape recorder. Note that carriage return marks
the beginning of the tape file.

After the program has finished printing, allow the ACR to write at
least 10-15 seconds of trailer.

Stop the tape recorder.

Write down the final footage meter reading.

Retrieving a BASI C program from tape

access a program which is stored on tape, perform the following steﬂ

Prepare the tepe recorder for playback operation.

Using the footage meter, locate the desired file and stop the
recorder in the leader.

At this point you may wish to type NEW at the terminal if you are |
loading a main program. Otherwise, the program statements read frd
tape will be merged with the BASIC program currently in memory. i
Turn on the Al5 sense switch to signify that system input will comd
from the ACR.

Type RETURN on the keyboard - this completes the changeover from th
keyboard read routine to the ACR read routine.

The keyboard should now be insensitive to further input. Furthermo|
the INP console light should be on indicating that BASIC is expect-
ing ACR input.

Start the tape recorder making sure that the tape is positioned in
leader. BASIC will scan the tape until the first carriage return
is encountered which signifies the beginning of the tape file.
After the beginning of the file has been located, BASIC statements
will be read from tape and printed or displayed on the output ter-
minal.

Watch for the dummy statement (999REM...) at the end of the program
When this is encountered, turn off Al5 as soon as possible in order
switch BASIC back to keyboard entry.

If Al5 is not turned off in time, BASIC will be "stuck" in the ACR
read mode. If this should happen, keep Al5 in the off posistion,

;

K,»ACR adjustments; the ACR remains sef at 300 baud. If the output device is|

Ty ————— T G Page 7 of 10'

Saving BASIC programs is then a matter of selectively (and manually) turn-
ing on and off the tap recorder.
The modification to the output subroutine presumes no alteration of-

"teletype machine operation at less than 300 baud, the extra write instructi
in the output subroutine will not.substantially degrade printing speed.
Indeed, the mismatch in baud rates is the reason that this method does not
achieve optimum packing of characters on the cassette tape. Depending on
the exact baud rates, there will be a delay of several milliseconds after §
ACR character has been written and before the Teletype has finished printin
the character. This delay, however, insures that during playback the ACR W |
not overrun the Teletype. If, on the other hand, an output device is used
which is significantly faster than 300 baud (e.g.a TV typewriter using a p
I1/0 board), then the output routine, modified as above, will limit the dat
transfer rate from the computer to the output device. If the degradation i
too severe, it may be possible to selectively enable and disable the ACR ou
put logic in a manner similar to the input routine discussed below. -

Depending on the version of BASIC, there may be several places in the
interpreter where a check for terminal- input' is made. ‘Only one of these
routines, however, is used for accepting terminal data. The other routines
Control C checks used to interrupt a running program.

BASIC's input routine is similar to the output routine. The device st
is checked. If the device is ready, a character is read from the device an
passed to BASIC for processing. Otherwise, BASIC waits until an input sign
is sensed.

The modifications to BASIC's input routine are more involved that the
output routine. Essentially, however, the modifications consist of checking
a sense switch on the CPU front panel ‘and then reading from the keyboard or |
ACR depending on the sense switch setting. To retrieve data from tape then,
the only action that is required is to turn on the sense switch and to starf
the tape recorder. Note that since the ACR has replaced the keyboard as
the input device (as long as the sense switch is set) all characters stored
on tape will apear on the output device as though they were input.from the
keyboard. o

The timing considerations discussed earlier also apply during playback.
Tapes recorded and played back on the same System should be processed propexr
ly. A potential problem exists, however, with trying to play back a tape
created on another user's system if the other user employs a different speed
terminal. For example, a tape made on parallel I/0 board TV typewriter sysH
will most likely not have the several millisecond delay between ASCII charad
Attempting to print such a tape on a slower Teletype will cause the ACR to
overrun the Teletype. To remedy such a situation where there is a timing
mismatch, simply NOP the output device status checking code, read in the prol
tape, ignore the gibberish that is printed, and restore the output routine.
Most probably, BASIC will have read the tape properly even though the charac
could not be printed. ’

(y,

F3-12-763 Page 9 of 10
rewind the tape back slightly into the data, and play the tape again.
As soon as one character is read from the tape, BASIC will revert back ¢
(/' the keyboard entry mode. :

Modifving BASIC

The modification required to BASIC consist of adding a new input subroy
tine and a new output subroutine and modifying BASIC's existing I/O routineq
to CALL these new routines. Accompanying sheets contain the machine languag
code for the new routines and patches for the cassette version of 3.2 4K
BASIC.

Refer to the code for new I/0 routines. The sections of code labelled |
KBDCSW and TTYCSW handle the terminal input and output devices respectively.
In the example shown, keyboard input is accepted via an 88-PIO parallel I/0

. board. Terminal output, on the other hand, is performed via an early versid |
serial board. The important point is that the KBDCSW and TTYCSW xroutines
must be tailored to the specific devices being used. Any doubt about the I/
programming can be resolved by loading BASIC and examining its terminal I/0
routines.

Note that two output routines have been included in the documentation.
Choose one of them according to the baud rate of the output terminal device.
The new output routine is designed to capitalize on speed difference betweeyq
the ACR and terminal. By outputting to the slower device first and by per-
forming status checking on the slower device, the assumption can be made thq

(vjhe faster device will always be ready to output. Therefore, status checkiy
code for the faster device can be eliminated. If, for some reason, satis-
factory results are not achieved, modify the new output routine to check thd
status of both the ACR and the terminal before writing.

As shown on the accompanying documentation, BASIC's I/0O routines are
replaced with CALL instructions to the new routines. Teh locations shown
are applicable to 4K BASIC Version 3.2. A recent issue of "Computer Notes"
suggested a method for locating these I/O routines. An easy way to find
BASIC's I/O routines consists of loading BASIC and then stopping BASIC whilg
it is printing and stopping it again while it is waiting for terminal input.
In each case, note the locations and memory contents when BASIC is stopped.
Then, using the EXAMINE switch, find the device status checking IN instructi
for each routine. These are the locations that will be replaced by CALLs
to the new routines.

Listed below are stops to be followed in order to bring up BASIC and
apply the necessary modifications:

1. Toggle in or load from tape the new I/0O routines. Locate these
routines in a high page of memory and above the area used by the bootstrép
loaderx.

2. Load BASIC according to normal procedure.

3. Stop BASIC as soon as the initialization dialogue begins.

(J, Note the location where BASIC was stopped.

4. Replace BASIC's I/0 routines with CALLs to the new I/0 routines

just loaded.

5. Restart BASIC from the location where it was stopped. If BASIC waf

*in the old output routine, restart it from the newly inserted CALL.

T . : Page 10 of 10

statement. .
6. Complete the initialization dialogue. Do not allocate all of the
(J, memory to BASIC or the new I/0O routines will be overlaid.
Conclusion

This article has described a simple software interface to BASIC which
effectively simulates a paper tape reader and punch with the result that
capability in the area of off=line data storage is greatly enhanced.

Although the system was originally intended to provide a source prograd
storage facility, other applications suggest themselves since any data that
can be entered via a keyboard can also be entered via tape. Consider the
following BASIC program.

10 FOR I = 1 to 10
15 PRINT 900 + I; "DATA"; 3.14159*I
20 .. NEXT I

This program prints a series of DATA statements. If the DATA statement
are stored on cassette tape, they can be accessed later by another BASIC pra
The ACR, then, may serve as a convenient work file for communicating tempora
results between programs.

An advanced user may carry the work file principle a step further. Wit
*he string capabilities of 8K BASIC, it is possible to write a single com-

ler. Instead of generating machine code, the compiler could generate BAST
statements and save them on tape for later execution.

There are, in the end, a potentially unlimited number of uses for the
ACR data storage system presented in this article.

MODIFICATIONS TO 4K 3.2 BASIC

The following patches to BASIC are made after BASIC has been loaded and
started and before the initialization dialogue has been completed. Do not
apply these patches and then start BASIC from location zero or the patches

will be overlaid.

Output Routine

Location 0l1d Contents New Contents

003, 167 333 315 Call new output rtf
, 170 000 260 - '
. 171 346 XXX

. 172 001 311 Back to BASIC

(ngut Routine

Location 0l1d Contents New Contents

003, 202 333 315 Call new input xti
, 203 000 300 :
., 204 346 XXX

7NK nn" LE R - @ 4 e

A A KK A AK K KKK KK KAk TN TRO DUC T T ON sk sk ok ok ok ok 3 ok ok o o ok o o o ok e o o o oK ok ok oo

SORCERER 15 A DISASSEMBLER WHICH RUNS ON 8@8@ BASED
MICROCOMPUTERS, IS WRITTEN IN ASSEMBLY LANGUAGE, COMES COMPLETE
WITH A FULLY COMMENTED ASSEMBLED SOURCE LISTING AND AN OBJECT
TAPE RECORDED IN "TARBELL FORMAT". A UNIQUE FEATURE OF SORCERER
IS THAT IT COMES WITH THREE DIFFERENT OBJECT ASSEMBLIES ON THE
CASSETTE TAPE. THIS MEANS THE PROGRAM CAN BE LOADED AND RUN AT
2000 HEX, 2000 HEX OR 4000 HEX. THE USER CAN SELECT A VERSION
OF THE DISASSEMBLER (WHICH WILL LEAVE THE AREA OF MEMORY THAT
WILL CONTAIN THE PROGRAM TO BE DISASSEMBLED FREE) THAT BEST
SUITS HIS NEEDS. BINARY PUNCHED PAPER TAPES OF THE DISASSEMBLER
ARE AVAILABLE FROM PLEIADES MICROWARE AND CAN BE ORDERED BY
USING THE FORM ON THE LAST PAGE OF THE OPERATORS MANUAL.

SORCERER WILL TAKE ANOTHER PROGRAM WHICH 1S LOADED IN
MEMORY AND PRODUCE A "DISASSEMBLY' OF THE CODE RESIDING THERE,
STARTING AND ENDING AT THE ADDRESSES THE OPERATOR SPECIFIES.

THE DISASSEMBLY WILL INCLUDE IN ORDER FROM LEFT TO RIGHT, THE
THE HEX ADDRESS OF THE CODE, THE HEX DATA CONTAINED AT THAT
ADDRESS, THE INSTRUCTION MNEMONIC AND THE ASSOCIATED HEX LABEL
OR REGISTER NAME IF APPLICAPABLE. ALSO BY PROPER SETTING OF THE
SENSE SWITCHES, THE USER CAN SELECT PRINTING OF THE ASCII
CHARACTER EQUIVALENTS AND THE OCTAL ADDRESSES AND DATA CONTAINED
IN THE MEMORY LOCATIONS PREVIOUSLY REFERENCED IN HEX. THE ASCII
DATA 1S USEFUL FOR DETERMINING IF CHARACTER MESSAGES OR DATA

ARE EMBEDDED IN THE PROGRAM BEING DISASSEMBLED. DURING PRINTING
OF THE ASCII DATA, AN ASTERISK WILL BE PRINTED PRECEDING THE
CHARACTER IF THE SIGN BIT 1S SET AT THE REFERENCED LOCATION AND
A PERIOD WILL BE PRINTED AFTER THE CHARACTER IF IT IS A CONTROL
CHARACTER. THE SIGN BIT IS OFTEN USED TO "MARK" THE END OF AN
ASCII CHARACTER STRING IN SOME PROGRAMS.

THE SORCERER OBJECT PROGRAM 1S RECORDED IN TARBELL FORMAT
ON CASSETTE TAPE AND THE RECORDED LOCATION OF THE THREE VERSIONS
ARE GIVEN ON THE TAPE LABEL. HOWEVER, DUE TO VARIATIONS IN
COUNTERS OF DIFFERENT RECORDERS, IT IS RECOMMENDED THAT THE
TONES ON THE TAPE BE USED TO VERIFY THE ACTUAL LOCATION. IF THE
USER IS NOT FAMILIAR WITH THESE SOUNDS, LISTEN FOR A PURE SYNC
TONE WHICH PRECEDES EACH RECORD ON THE TAPE. WHEN THE DATA
BEGINS A VERY DISTINCT CHANGE CAN BE HEARD IN THE TONE. THE
SOUND WILL CHANGE FROM A RATHER PURE CONTINUOUS TONE TO A SOUND
WHICH CONSISTS OF ALMOST PURE NOISE. THIS "NOISE" TONE MARKS
THE BEGINNING OF THE DATA FOR EACH VERSION OF THE DISASSEMBLER.
AS SOON AS THIS TONE 1S HEARD, IMMEDIATLY STOP THE RECORDER AND
REWIND JUST FAR ENOUGH TO GET BACK INTO THE "PURE SYNC TONE"
AREA. THE USER VILL THEN BE READY TO LOAD THE DATA FROM THE
CASSETTE TAPE INTO THE COMPUTER. USE THIS PROCEDURE TO FIND
THE BEGINNING OF EACH OF THE THREE VERSIONS OF THE DISASSEMBLER
WHICH ARE RECORDED ON THE TAPE. :

3 6 e 3 e o 2 2k 3k A K ok 3 3 3 ok 3k k3 k3 3 ok 3k e ok ok ok o ok ak ok ok ok K ok ok ok o oK 3 ok oK ok 3 koK ok 3k ok ok ok 3K ok ok koK ok ok kK oK
PAGE @1

Aok ok ok ok Kk ok kK ok ok ok ok kk ok INTRODUCTION CON TINUED3 sk k ok ok o o 3ok o ok 3 ok ok o ok ok ok ok

IT 1S SUGGESTED THAT THE ACTUAL LOCATIONS AS SHOWN ON YOUR
TAPE COUNTER BE MARKED ON THE TAPE LABEL FOR SUBSEQUENT USE SO
THAT THE ABOVE PROCEDURE NEED NOT BE REPEATED EACH TIME THE
DISASSEMBLER 1S RELOADED. IT IS ALSO HIGHLY RECOMMENDED THAT
THE SMALL PLASTIC TABS ON THE CASSETTE TAPE (LOOK ON THE
OPPOSITE EDGE FROM THE EDGE WHERE THE TAPE IS EXPOSED) BE
BROKEN OUT USING A SMALL TIPPED SCREVW DRIVER. THIS WILL
PREVENT ACCIDENTAL ERASURE OF THE TAPE SINCE MOST RECORDERS
DISABLE ENGAGEMENT OF THE RECORD HEAD WHEN THESE TABS ARE
REMOVED. PLEIADES MICROWARE CAN NOT BE RESPONSIBLE FOR
REPLACING TAPES WHICH HAVE BEEN ACCIDENTALLY RECORDED OVER,
ERRASED, OR HAVE HAD OTHER PROGRAMS RECORDED ON THEM.

FOR THE OPERATORS CONVENIENCE, PAGES OF THE SOURCE LISTING
HAVE BEEN NUMBERED | THRU 26 AND PAGES OF THE OPERATORS MANUAL
HAVE BEEN NUMBERED ¢! THRU @09. ON THE FOLLOWING PAGE, BRIEF
INSTRUCTIONS ARE.GIVEN ON HOW TO USE SORCERER, EACH STEP MAY.
REFER THE USER TO ANOTHEE PAGE WHICH WILL GIVE MORE DETAILS
PERTAINING TO THAT STEP. AFTER READING THE INDICATED PAGE,
ALVAYS RETURN TO PAGE @3 AND PROCEED WITH THE NEXT STEP. *
SEVERAL REFERENCES ARE MADE ON ‘PATCHING THE INPUT/0UTPUT
ROUTINES TO CONFORM TO YOUR SYSTEMS CONFIGURATION. TERMS LIKE
“TRANSMITTER BUFFER EMPTY" AND “DATA AVAILABLE FLAG" ARE USED
IN THESE REFERENCES. IF THE USER 1S UNFAMILIAR WITH THESE
TERMS, HE SHOULD CONTACT THE STORE WHERE HIS SYSTEM WAS
PURCHASED OR A LOCAL HOBBIEST GROUP TO FIND OUT EXACTLY HOW
THEY APPLY TO HIS SYSTEM. IT CAN ONLY BENEFIT THE USER TO
BECOME INTIMATELY FAMILIAR WITH THESE COMMON 1/0 TERMS.

ONLY ONE SOURCE LISTING IS PROVIDED, ASSEMBLED TO 4Q00H
ALTHOUGH THREE OBJECT ASSEMBLIES ARE RECORDED ON THE TAPE.

T0 APPLY THE SOURCE LISTING TO THE OTHER VERSIONS OF THE
DISASSEMBLER, MENTALLY REPLACE THE FIRST NUMBER OF EACH ADDRESS
GIVEN ON THE 48@¢fH LISTING WITH A “2" FOR THE (2)0@0H VERSION
OR A "¢ FOR THE (@)@@@H VERSION. ONE OF THE FIRST USES OF
SORCERER, SHOULD BE TO TURN THE DISASSEMBLER ON ITSELF TO
PRODUCE USEFUL LISTINGS OF THE @@@0H AND 2000H VERSIONS.

THIS SOFTWARE HAS BEEN THOROUGHLY TESTED AND IS BELIEVED
T0 BE FREE OF ERRORSe. HOWEVER, NO WARRANTIES ARE EXPRESSED OR
IMPLIED AND THE USER MUST DETERMINE THE SUITABLITY OF THIS
PRODUCT FOR ITS INTENDED USE. PLEIADES MICROVARE RESERVES THE
RIGHT TO MAKE CHANGES», CORRECTIONS AND IMPROVEMENTS IN FUTURE
EDITIONS.

THE AUTHOR WISHES TO THANK THE FOLLOVWING PERSONSS

DAN MAC LEAN: FOR INSPIRATION, SUGGESTIONS,» AND ASSISTANCE IN
THE FINAL PREPARATION OF THIS DOCUMENT.

CORINNE BROEKER: FOR PROOF READING THE OPERATORS MANUAL AND FOR
“ASSISTANCE" WHICH WILL ALWAYS BE REMEMBERED.

DENNIS BURKE: FOR ISOLATING A SOFTWARE BUG.

ok ok o oo o ok ok ok oKk o ok ok ok ok ok o ok ok 36 ok K o sk o ok o 3 o sk ok oK ok KR oK Ok K K ok koK ok sk ok ok ok ok ok sk koK kK
PAGE @2

Q.

2¢

3.

4.

Se

6e

T.

kR Ak Rk Kk kR Rk Rk XX USING THE DI SASSEMBLER* KKk ok sk okokdokok ok kk kok ok ok ok Xk

KEY IN THE TARBELL FORMAT LOADER SHOWN ON PAGE 0B4.
(IF YOU HAVE A TARBELL LOADER IN PROM OR ON PAPER
TAPE OMIT STEP 1)

LOAD THE DISASSEMBLER FOLLOVING THE INSTRUCTIONS ON PAGE 95.

THE PROGRAM IS DELIVERED VITH PROCESSOR TECH. STANDARD
TELETYPE 1/0, THAT 1S5

PORT @ FOR THE STATUS PORT.

BIT 6 FOR THE DATA AVAILABLE FLAG.

BIT 7 FOR THE TRANSMITTER BUFFER EMPTY FLAG.
PORT | FOR THE DATA PORT.

BOTH OF THE FLAG BITS ARE ACTIVE HIGH, IE. USE A JZ IN A WAIT
LOOP UNTIL READY.

1F YOUR SYSTEM USES A DIFFERENT 1/0 FORMAT THAN THE ONE
DESCRIBED ABOVE THEN MAKE THE CHANGES SHOWN ON PAGE 26
T0 THE DISASSEMBLER USING THE SOURCE LISTING TO AID YoU.

MAKE THE FOLLOVWING PROGRAM TERMINATION PATCH ONLY IF
YOUR SYSTEM HAS A PERMANENT MONITOR IN ROM OR PROM.
OTHERWISE, LEAVE ADDRESS 4294 AND 4295 AS THEY ARE.
SEE THE RUNNING INSTRUCTIONS ON PAGE 87 FOR DETAILS.

AT LINE NO. 2888, PATCH ADDRESS 4294, TO THE LOV ADDRESS
OF YOUR SYSTEM
PROM MONITOR.

AT LINE NO. 2888, PATCH ADDERESS 4295, TO THE HIGH ADDRESS
OF YOUR SYSTEM
PROM MONITOR.

THE DISASSEMBLER RUNS FROM ©8800H, 2p@@H OR 40¢CH (DEPENDING
ON WHICH VERSION YOU LOAD) EXAMINE THAT ADDRESS.

DECIDE WHAT DATA YOU WANT PRINTED ON THE DISASSEMBLY.
SENSE SWITCH 8 CONTROLS PRINTING OF THE ASCII DATA AND
SENSE SWITCH 9 CONTROLS PRINTING OF THE 0CTAL DATA.

SET SENSE SWITCH 8: UP TO PRINT ASCI1 DATA
DOWN TO OMIT PRINTING OF THE ASCII DATA

SET SENSE SWITCH 9: UP TO PRINT OCTAL DATA
DOWN TO OMIT PRINTING OF THE OCTAL DATA

FOLLOW THE RUNNING INSTRUCTIONS ON PAGE @7.

P E e P DL L L1 LLE LD EL L LS LSS Sk tuiahs

PAGE ©3

| | STAQT SYNCIR STREAM

I Y]

1 ST P
14 STRRT Tonl € MACLO D
_ 18 :
1Sk STAkT pATA CASSETTE ‘
"(‘b Tomg AETIRNS
29 sTART DPaTA 2
24 TiwE KETUANS
26 START pPaTa 2
30 TonE KETVRNS
I Enp
! START Tomp
3% STRRRT pARTA
3| ToNE ReTVANS
€% START PAR7TA S0RCEREX.
g% Towe Rervans CASSETTE

Jo | €TART PATA
12| Toye RETIRNS

134 END

W

KokkAK Kk KkkkkkkkkkkKkKkLOADING THE PRO GRAM 5 3 5k 3k 3k 5k % 3 3k 5k 5 3k ok 3k ok 3k 3 3 ok 3k 3K 5 ok % %

THE DISASSEMBLER 1S5 SUPPLIED ON A PHILLIPS TYPE CASSETTE
TAPE AND 15 RECORDED IN STANDARD "TARBELL"™ FORMAT. IT IS
ASSUMED THAT THE COMPUTER 1S EQUIPPED WITH A “TARBELL CASSETTE
INTERFACE" AND THAT THE INTERFACE 1S CONNECTED TO A RECORDER
CAPABLE OF RECOVERING AUDIO ENCODED DIGITAL DATA. :

PROPER OPERATION OF THE TARBELL INTERFACE SHOULD HAVE
ALREADY BEEN VERIFIEDe IF DIFFICULTIES ARE ENCOUNTERED, CHECK
THAT THE RECORDER VOLUME 1S SET AT APPROXIMATELY MID-RANGE AND
THAT THE TONE IS SET TO FULL TREBLE FOR MAXIMUM FREQUENCY
RESPONSE. TURN THE COMPUTER ON AND PLAY THE SYNC STREAM TAPE
PROVIDED WITH THE CASSETTE INTERFACE», VERIFY THAT THE SYNC LIGHT
(ON THE TARBELL) IS ON CONTINUOUSLY DURING PLAYBACK OF THE SYNC
STREAM. IF THE SYNC LIGHT FLICKERS OR DOESN'T LIGHT, AND CAN'T
BE ADJUSTED TO REMAIN ON., THE TARBELL INTERFACE SHOULD BE
SERVICEDe IF IT IS CERTAIN THAT THE INTERFACE IS WORKING
PROPERLY AND DATA STILL CAN NOT BE RECOVERED FROM THE TAPE,
RETURN IT TO PLEIADES MICROWARE FOR A CHECK READ TEST.

A CASSETTE LOADER PROGRAM MUST BE USED TO RECOVER THE
DISASSEMBLER PROGRAM FROM THE CASSETTE. IF A "STANDARD TARBELL
LOADER" WITH PROVISIONS FOR KEYBOARD ENTRY IS NOT AVAILABLE
IN PROM OR ROM IN YOUR SYSTEM» THEN THE LOADER SHOWN ON PAGE @2
OF THIS MANUAL MUST BE KEYED IN. 1IT MUST BE RE-EMPHASIZED
THAT THIS IS A STANDARD FORMAT WHICH REQUIRES THE H & L
REGISTERS TO POINT TO THE START ADDRESS OF THE LOAD AND THE
D & E REGISTERS TO CONTAIN THE BLOCK LENGTH OF THE LOAD.

IF YOU NORMALLY USE A SPECIAL PREAMBLE FORMAT FOR DATA RECOVERY
THEN YOU MUST LOAD THE "STANDARD LOADER SHOWN ON PAGE @2", LOAD
THE PROGRAM INTO MEMORY AND RE-SAVE THE PROGRAM ON ANOTHER
BLANK TAPE IN YOUR OWN FORMAT.

THE DISASSEMBLER CAN BE LOADED INTO THREE DIFFERENT
LOCATIONS @0@0H, 2000H OR 400@FH. AFTER KEYING IN THE LOADER ON
PAGE @2, BE CERTAIN TO CHECK THAT ADDRESS @909H IS PATCHED TO
CONTAIN THE CORRECT STARTING ADDRESS OF THE VERSION OF THE
DISASSEMBLER TO BE LOADED. EXAMINE ADDRESS @000H, 2000H OR
4000H (DEPENDING ON WHICH VERSION IS TO BE LOADED) AND VERIFY
THAT THE MEMORY THERE IS UNPROTECTED. AT LEAST 2K OF MEMORY
SHOULD BE AVAILABLE FOR THE DISASSEMBLER TO RESIDE IN STARTING
AT ADDRESS @000H, 2000H OR 4000H (DEPENDING ON WHICH VERSION).

EXAMINE THE START ADDRESS OF THE LOADER, @980H. LOAD
THE DISASSEMBLER CASSETTE INTO THE RECORDER AND REWIND IT
TO ZERO. RESET THE TAPE COUNTER ON THE RECORDER TO ZERQ.

IF THE 2006¢H OR 4000H VERSION IS TO BE LOADED, FAST FORWARD

TO THE COUNTER LOCATION RECORDED ON THE TAPE LABEL FOR THE
VERSION YOU WISH TO LOAD OR VERIFY THE RECORDED LOCATION AS
DESCRIBED ON PAGE @l. PUT THE RECORDER IN THE PLAY MODE AND
IMMEDIATLY PRESS "RUN" ON THE COMPUTER. WHEN THE PRO GRAM
FINISHES LOADING, A “G" SHOULD BE PRINTED ON THE TELETYPE OR
VIDEQO DISPLAY INDICATING THAT A GOOD LOAD HAS OCCURRED WITHOUT
A CHECKSUM ERRORe IF AN “E" IS PRINTED INSTEAD, IT INDICATES
THAT A CHECKSUM ERROR OCCURRED DURING LOADING AND THE PROGRAM
SHOULD BE RELQADED.

e e ok o oK ok 3k ok o ook oK ok K oK o oK o K ok ok oK ok ok 3 Sk 3k oK ok ok ok o ok ok K ok ok oK oK ok ok ok Rk ok ek Kok K kR Rk
PAGE @5

aL

kkkkkkkkxkkkkk%x%I1/0 PATCHES TO THE DISASSEMBL ERskakokokok %k k% ok 3k ok kk

AT LINE NO-.

AT

AT

AT

AT

AT

AT

AT

AT

AT

AT

LINE

LINE

LINE

LINE

LINE

LINE

LINE

LINE

LINE

LINE

NO.

NO.

NO.

NO.

NQ.

NO.

NO.

NO.

NO.

6820,

6830,

6848,

68640,

6870,

6880,

6890,

69182,

6920,

6930,

6940,

PATCH ADDRESS 44C4.,

PATCH ADDRESS 44C6.

PATCH ADDRESS 44C7.

PATCH ADDRESS 44CC.
PATCH ADDRESS 44CE,

PATCH ADDRESS 44D@,

PATCH ADDRESS 44Dl.

PATCH ADDRESS 44D6.

PATCH ADDRESS 44D8.,

PATCH ADDRESS 44D9.

PATCH ADDRESS 44DD.

TO YOUR SYSTEMS
OUTPUT STATUS PORT.

TO YOUR SYSTEMS
OUTPUT TRANSMITTER
BUFFER EMPTY FLAG.

TO A JNZ, (C2)

ONLY IF YOUR SYSTEM
TRANSMITTER BUFFER
EMPTY FLAG 1S ACTIVE
LOVW. OTHERWISE LEAVE
THIS ADDRESS AS IT IS

TO YOUR SYSTEMS
OUTPUT DATA PORT.

TO YOUR SYSTEMS

~INPUT STATUS PORT.

TO YOUR SYSTEMS
INPUT DATA AVAILABLE
FLAG.

T0 A JZ (CA)

ONLY IF YOUR SYSTEMS
INPUT DATA AVAILABLE
FLAG IS ACTIVE LOV.
OTHERWISE LEAVE
ADDRESS 44Dl AS IT IS

TO YOUR SYSTEMS
INPUT STATUS PORT

TO YOUR SYSTEMS
INPUT DATA AVAILABLE
FLAG.

TO A JNZ (C2)

ONLY IF YOUR SYSTEM
INPUT DATA AVAILABLE
FLAG IS ACTIVE LOW,
OTHERWVISE LEAVE
ADDRESS 44D9 AS IT IS

TO YOUR SYSTEMS
INPUT DATA PORT.

o3 e K ok ok o oK oK o oK o oK 3 oK o oK o K oK 3 oK o 3 o oK o ok o oK ok K KoK S ok o oK o ok oK o oK ok K oK 3k 3 oK oK K ok o ok o Kk K

PAGE 06

305k % K oK K ok Kk Kk Rk kK kkkx kRUNN ING INSTRUCTION Sk ak ko ok 3k 3k ok 3k sk ok o 3k ok 3 3 3k 3 %k ok % ok % K

PRESS "RUN' ON THE COMPUTER, THE DISASSEMBLER WILL PROMPT
BY PRINTING “START ADDRESS?". AT THIS POINT TYPE IN THE
HEXADECIMAL START ADDRESS OF THE PROGRAM TO BE DISASSEMBLED.
TYPE IN THE ABSOLUTE ADDRESS, HIGH ORDER FIRST», 1E; TO
DISASSEMBLE A PROGRAM AT 5@00@0H, TYPE 5@@® (CARRIAGE RETURN).
i1IF AT ANY TIME DURING ENTRY YOU TYPE ANY CHARACTER OTHER THAN
A VALID HEXADECIMAL CHARACTER, THE DISASSEMBLER WILL PRINT
*NON HEX DATA" AND JMP TO YOUR SYSTEM MONITOR (PROVIDED THE
PATCHES LISTED IN STEP 4 ON PAGE 83 HAVE BEIN MADE) OTHERWISE
THE PROGRAM WILL JMP TO THE START OF THE DISASSEMBLER AND ASK
FOR "START ADDRESS?" AGAIN.

AFTER PRESSING CARRIAGE RETURN, THE DISASSEMBLER VWILL ASK
FOR “END ADDRESS?". NOW TYPE IN THE HEXIDECIMAL END ADDRESS OF
THE PROGRAM TO BE DISASSEMBLED. DO NOT PRESS CARRIAGE RETURN
YET. THE SAME CONVENTION FOR HEX DATA ENTRY APPLIES AS .
DESCRIBED ABOVE AND THE SAME ERROR ROUTINE WILL BE EXECUTED
1F AN INVALID HEXIDECIMAL CHARACTER IS TYPED. IF THE SENSE
SWITCHES HAVEN'T ALREADY BEEN SET AS DESCRIBED ON PAGE @3 STEP
6, DO SO NOV. PRESS CARRIAGE RETURN. THE DISASSEMBLER VILL
TYPE A LINE OF DASHES SEPARATING THE FIRST PAGE OF THE
DISASSEMBLY», FOLLOWED BY SEVERAL CARRIAGE RETURN/LINE FEEDS
AND TWO LINES OF HEADER MESSAGES. THE PROGRAM WILL THEN BEGIN
PRINTING THE DISASSEMBLY, PRINTING ONLY THE DATA SELECTED BY
THE SENSE SWITCHES. AFTER 45 LINES OF DISASSEMBLY HAVE BEEN
PRINTED, THE DISASSEMBLER WILL PAGE. SEPARATE THE NEXT PAGE
VITH ANOTHER LINE OF DASHES, PRINT NEW HEADER LINES AND
CONTINUE THE DISASSEMBLY AS BEFORE.

1F AT AaNY TIME DURING THE DISASSEMBLY. 1T BECOMES
NECESSARY TO CHANGE WHAT DATA 1S BEING PRINTED, SIMPLY CHANGE
THE SENSE SWITCHES (AS DESCRIBED ON PAGE @3 STEP 6) TO THE
DESIRED DATA. IF AT ANY TIME DURING THE DISASSEMBLY IT IS
DESIRED TO STOP THE DISASSEMBLY» PRESS ANY PRINTING CHARACTER
ON THE TELETYPE OR SYSTEM KEYBOARD. THE DISASSEMBLER WILL
THEN START OVER AGAIN AND ASK FOR "START ADDRESS?*

AT THIS POINT» THE DISASSEMBLY CAN BE STARTED AGAIN.,

BY TYPING IN A NEW START ADDRESS AND END ADDRESS EXACTLY AS
ABOVE. ALTERNATELY TYPE AN INVALID HEXIDECIMAL CHARACTER.»
FOR EXAMPLE THE SPACE BARs AND THE DISASSEMBLER WILL PRINT
"NON HEX DATA"™ AND JMP TO YOUR SYSTEM MOMNITOR (PROVIDED

THE PATCHES HAVE BEEN MADE), THIS PROVIDES A CONVENIENT MEANS
OF EXITING THE DISASSEMBLER PROGRAM AND ENTERING A PROGRAM
WHICH HAS DIRECTED CONTROL OF PROGRAM EXECUTION SUCH AS A
SYSTEM MONITOR. -)

BE CAREFUL WHILE THE DISASSEMBLER 1S RUNNING NOT TO
ACCIDENTALLY TYPE SOMETHING ON THE SYSTHM KEYBOARD AS THIS WILL
BE INTERPRETED AS A DISASSEMBLY STOP COMMAND. ALSQO BE CAREFUL
NOT TO ENTER AN INVALID HEX CARACTER (SUCH AS PRESSING THE
SPACE BAR TWICE ACCIDENTALLY DURING A STOP COMMAND) AS THIS WILL
CAUSE THE DISASSEMBLER TO JMP OUT TO THE MONITORe. CHANGING THE
SENSE SWITCHES DURING ACTIVE DISASSEMBLY WILL NOT HAVE AN
IMMEDIATE EFFECT, (SINCE THE OUTPUT BUFFER IS ALREADY FULL
DURING PRINTING)> THE CHANGE WILL BE REFLECTED IN THE NEXT
LINE OF THE DISASSEMBLY.

oo o sk o ok ok o o ok oK o 3K Kk oKk oK ok ok oK 3 ok o sk o ok 3 sk ke ok ok o ok o ok ok sk ok o ok ok oK Rk ok ok ok ok ok ok ok ok Kok ok
PAGE 07

HEX
ADDR

4000
4083
40085
4008
4208
400E
4011
4013
4016
4619
401C
481F
4022
4025
4927
40824
402D
4030

4833 -

4036
4039
463C
483F
4042
4045
4948
424B
494C
424D
4950
4851
4052
4054
40856
4059
4@SB
425D
4060
4062
4064
4865
4066
4068
40869
406A

THIS 1S A SAMPLE OF AN ACTUAL DISASSEMBLY PAGE
WITH THE EXCEPTION THAT THE DASHED LINES ARE
SPACED CLOSER HERE TO ALLOW THIS PAGE TO FIT IN
11 INCHES. THE ACTUAL PAGES ARE SEPARATED EVERY
11 INCHES TO ALLOW THEM TO BE CUT APART AND PUT
IN AN 8 AND 172 BY 11 INCH NOTEBOOK.

HEX LABEL ASCII " OCTAL DATA
DATA INST HILO 1 2 3 ADDRESS 1 2
31 LXI SP, 46BD 1 %= F 100 208 @61 275
DB IN a1 *(A. 108 603 333 gol
CcD CALL 44F7 xM W D 186 065 315 367
21 LXI H, 4525 ! 4 E 120 018 241 045
Cch CALL 4519 *M Y. E 106 013 315 @31
CD CALL 45B4 *M *4 E 160 216 315 264
FE CP1 [%)¢] *t Me 160 021 376 @15
c2 JNZ 4287 *B *G. B 16¢ 823 382 287
22 SHLD 44EE TN D 180 826 042 356
CD CALL 44F7 *M W D 160 631 315 367
21 LXI H, 4535 ! S E 1800 €34 Q41 065
CD CALL 4519 *M Y. E 166 637 315 831
cD CALL 45B4 *M x4 E 186 042 315 264
FE CP1 oD *t M. 196 045 376 @15
c2 JNZ 4287 *B *G. B 180 847 302 287
c3 JMP 4684 *C *De. F 180 @52 303 204
21 LX1 H, 4543 ! C E 100 655 0241 183
cD CALL 44F7 M *W D 1686 8668 315 367
CD CALL 44F7 *M *W D 188 063 315 367
CD CALL 4519 *M Y. E 1868 666 315 B31
CD CALL 44F7 *M *W D 180 671 315 367
21 LXI H» 4579 ! Y E 100 674 241 171
CcD CALL 4519 *M Y. E 166 877 315 @31
CD CAaLL 44F17 *M *W D 180 162 315 367
Cc3 JMP 464C *C L F 169 185 303 114
2A LHLD 44EE * kN D 180 11¢ @S2 3S6
7E MOV A,M * 186 113 176

23 INX H + 180 114 043

22 SHLD 44EE " XN D 180 115 @42 356
c9 RET *3 180 126 311

3C INR A < 18¢ 121 @74

E6 AN1 87 *F G. 186 122 346 007
FE CPI 26 *t Fe 18606 124 376 086
DA Je 495SB *Z 4 @ 180 126 332 133
Ccé ADI 23 *F C. 186 131 306 063
FE CP1 as *t E. 166 133 376 @65
DA JC 4062 *Z B @ 1860 135 332 142
Cé ADI1 g2 *F B. 180 148 306 @02
cé ADI 41 *F A - 168 la2 306 101
12 STAX D Re 100 144 @22

c9 RET *] 100 145 311

g6 MVI B, @4 F. D. 190 146 006 @04
7E MOV A.M 14 108 156 176

12 STAX D Re 198 151 @22

23 INX H 4 180 152 043

166
104
185
165
105

tg2

100

100

- 4 - - - - = - " = - - . " - " - > - e = -

PAGE @8

40090
4203
4085
4008
4008
400E
ag1l
4813
4016
4819
201C
401F
4022
4025
2027
4824
482D
4830
4833
4036
4039

483C

403F
4042
ag4s
4048
AQ4B
484C
484D
4050
40851
4952
4054
4856
4859
405B
495D
4068
4062
4064
4865
4066
4P 68
4069
406A
40 6B
406C
486D
4679

EE 44

817
g6
SB 48
a3
@5
62 40
g2
41

24

68 40

0010
9020
0838
2040
2058
00 60
2870
2080
2098
0108
glio
6120
21306
2140
21508
2160
2170
2188
2190
2200
0218
@228
2230
8240
2258
@260
8270
8280
22990
2300
@318
8328
2338
8340
6358
9368
83178
8388
8390
2400
2410
g420
G439
440
@458
0460
2479
0480
0490

START LXI SP,STACK /SET STACK POINTER

IN 1 /CLEAR TTY DAV FLAG
CALL CRLF /PRINT A CRLF
LXI H.,STADD /POINT TO MESSAGE ONE
CALL MSG /PRINT "START ADDRESS?"
CALL HEX /INPUT 4 VALID HEX CHARACTERS
CP1 13 /WAS LAST CHAR. A CR?

JNZ BAD /NO, “NON HEX DATA", JMP MONITOR
SHLD PGMCT /SAVE THE BEG. PROGRAM COUNTER

CALL GRLF /PRINT A CRLF
LXI H, ENADD /POINT TO MESSAGE TWO0
CALL MSG /PRINT "END ADDRESS?"
CALL HEX /INPUT 4 VALID HEX CHARACTERS
CPI 13 /WAS LAST CHAR. ENTERED A CR?

JNZ BAD /NO., "NON HEX DATA", JMP MONITOR
JMP STORE 7SAVE END ADDRES & PGe DIVIDE
HEADR LX! H,LNONE /POINT TO MESSAGE THREE

CALL CRLF ~ /PRINT A CRLF
CALL CRLF /PRINT A CRLF
CALL MSG /PRINT LINE 1 OF HEADER MESSAGE
CALL CRLF /PRINT A CRLF

LXI H,LNTWO /POINT TO MESSAGE FOUR
CALL MSG /PRINT LINE 2 OF HEADER MESSAGE

CALL CRLF /PRINT A CRLF
JMP SET /G0 SET PAGE LENGTH
FETCH«LHLD PGMCT /LOAD THE CURRENT ADDRESS
MOV AsM /FETCH THE BYTE REFERENCED
INX H /POINT TO THE NEXT BYTE
SHLD PGMCT /STORE THE NEW REFERENCE
RET /CONTINUE. ..

REGLD INR A /INCREMENT THE MASKED BYTE
ANI 87 /STRIP OFF THE CARRY INTO BIT 3

CP1 @6 /WAS VALUE IN MASKED BYTE S
JC RELI /1IF <5 SKIP NEXT INSTRUCTION
ADI 83 /ADD THREE TO THE VALUE
REL1 CPI S /1S NEV VALUE EQUAL T0 S
JC REL2 /IF <5 SKIP NEXT INSTRUCTION

ADI 22 /ADD TWO TO THE CALCULATED VALUE
REL2 ADl ‘A’ /ADD 41H TO CALC. VALUE
STAX D "/WRITE CALC. REGISTER IN QUTBUF
RET /CONTINUE...
PRINT MVI B,4 /SET NO. OF CHARS. TO LOAD
SPRN MOV A,M /FETCH CHAR. FROM TABLE

STAX D " /WRITE CHAR. IN OUTPUT BUFFER
INX H /POINT TO NEXT CHARe. IN TABLE
INX D /POINT TO NEXT SLOT IN OUTBUF
DCR B /DECREMENT CHAR. COUNT
JNZ SPEN /1F MORE CHARS. CONT. LOADING
RET /CONTINUEs .
PAGE 1

O

49171
4874
48176
48717
4078
4879
487A
407D
407E
A8 7F
4082
4083
4084
4085
4086
4087
4088

- 4089

4g8A
488D
AQ8F
4091

4094
4096
4097
4098
409Aa
409B
489C
409F
48A2
408A5
40A8
48AB
4C0AE
4881

49B4
49BS
40B8
40BB
4A@BE
40C1

apc2
48C5
406C6
A6C7
48CA
46CC
48CD
49D@

ED
38

71

52

71
a6
@6
Sl
53

S0

c1
gA

s9

44

40

44

a0

40-

49

42

0500
2510
252@
2530
8540
@550
2560
2570
esse
@59¢
2600
g612
2620
2630
8640
2650
0668
26790
2682
2699
8700
0718
0720
8738
9748
0758
6762
67708
0780
a79@
2800
es8lo
2829
2830
8840
2850
2860
2817@
gg8ge
0899
8900
2910
0922
0939
@940
9950
2968
29178
2980
0993

MASK LDA SAVE /LOAD THE CURRENT BYTE

ANI 38H /MASK FOR THE MIDDLE BITS
RRC /PUT THE MIDDLE BITS INTO THE-
RRC /THREE LEAST SIGNIFICANT-
RRC /BITS IN THE ACCUMULATOR
RET /CONTINUE. ..
CONDL CALL MASK /GET BITS 3,4,5 INTO 1.2,3
ADD A /DOUBLE CONDITION BITS
MOV C.A /PUT OFFSET VALUE IN REG. C

LXI H.CONDN /POINT TO CONDITION TABLE
DAD B /ADD OFFSET TO COND. TABLE POINTER

MOV ALM /FETCH CONDITION DIGIT
STAX D /WRITE CONDITION DIGIT IN OUTBUF
INX H /POINT TO NEXT DIGIT IN TABLE
INX D /POINT TO NEXT SLOT IN OUTBUF
MOV A.,M /FETCH NEXT COND. DIGIT FROM TBL.
STAX D /WRITE IT IN OUTPUT BUFFER
RET . /CONTINUE.. .
LXI1CD CALL MASK /GET BITS 3,4,5 INTO 0,1,2
ANI @6 /MASK FOR BITS 1,2
CPl1 @6 JARE BOTH BITS 1 & 2 SET?

JNZ REGLD /NO, GO LOAD A REGISTER NAME
MVI A,'S*' /YES, MUST BE LXI SP. LOAD AN S
STAX D /VWRITE AN °'S' IN THE OUTPUT BUFF.
INX D /POINT TO NEXT SPACE IN QUTBUF

MVl A, 'P* /LOAD AN ASCII °'P°
STAX D /WRITE A 'P' IN THE OUTPUT BUFF.
RET /CONTINUE«+ .
DISAS CALL CRLF /PRINT A CRLF

CALL CLRBUF /CLEAR THE OUTPUT BUFFER
LHLD PGMCT /GET CURRENT PROGRAM COUNTER
SHLD OSAVE /SAVE PGMCT FOR OCTAL ROUTINE
CALL HEXOT /VRITE HEX ADDRESS IN OUTBUF
CALL FETCH /GET REFERENCED BYTE FROM MEM.
STA CHARl /SAVE BYTE IN 1ST. ASCI1 BUFFER
STA SAVE /SAVE BYTE FOR LATER USE
MOV H,A /PUT BYTE IN REGISTER H
LX1 D,OUTBUF+2 /POINT TO DATA COLUMN
CALL XCODE /WRITE HEX BYTE IN OUTBUF
LXI H,OPCODES /POINT TO OPCODE TABLE
LXI B»17 /CLR B AND SET C TO NO. OF CODES
ONE CMP M /DOES DATA BYTE MATCH TABLE?
JZ BYTEl /YES, GO PROCESS ONE BYTE INST.
INX H /NO, POINT TO NEXT INST. IN TABLE
DCR © /DECREMENT ONE BYTE TABLE COUNT
JNZ ONE /IF MORE ONE BYTE INSTS GO. TEST
MVI C,0AH /SET C TO NO. OF TWO BYTE INSTS
TWO CMP M /DOES DATA BYTE MATCH TABLE?
JZ BYTE2 /YES, GO PROCESS A 2 BYTE INST.
INX H /NO, POINT TO NEXT INSTe IN TABLE

PAGE 2

40D1

40D2
©@eDs
40D7
40D8
40DB
48DC
48DD
40EQ
40E2
40E4
40E7
4QE9
4QEC
AQEF
40F1

48F3
40F6
40F7
40FA
40FB
40FE
4101}

4103
4106
4109
410B
416D
a11g
4112
@115
4117
a11A
411cC
AllF
4122
4124
4125
4128
4129
412C
412F
4132
4134
4137
413A
413D
4140
4143
8146

cC
26

2D

49

6D
66
71
@6

46
72
66
AS
42
6D

49

42

4g

42

41

41

41

41
44

41
a4

41

41

41

41

44

a4
40
40

41
44
a4
ag
42
44
44

1060
1010
1820
1830
1040
1650
1960
1678
1080
109¢
1100
1118
1120
1130
1149
1158
1160
1170
1180
1190
1200
1210
1220
1238
1240
1250
1268
1270
1280
1290
1300
1318
1320
1338
1348
1350
1368
1378
1380
1390
1408
1412
1428
1438
1448
1450
1460
1470
1480
1498

DCR C

JNZ TWO
MVI C,6
THREE CMP M
JZ BYTES3
INX H

DCR C

JNZ THREE /IF MORE 3 BYTE INSTS.

AN1 OCGH

CPl 4@H

JZ MOV /YES.
CP1 88H

JZ ADD

LDA SAVE
AN1 OCT7H

SUI 04

JZ INR /YES,
DCR A

JZ DCR /YES,
DCR A

JZ MVI /YES,
LDA SAVE
AN1 QCO@H

JZ LXI /YES,
LDA SAVE
AN1 @C7H

SUL OCOH

“JZ RET /YES,
Sul @2

JZ JMP /YES,
SUl @2

JZ CALL /YES,

Sul 63

JZ RST /YES,
LDA SAVE
ANI 87

MOV C,A

LXI H,LPOP

DAD B /OFFSET,

/YES,
/POINT TO NEXT INST.
/DECEFMENT 3 BYTE TABLE COUNT

/YES,

/DECREMENT TWO BYTE TABLE COUNT
/1F MORE 2 BYTE INSTS.
/SET C TO NO.

GO TEST
OF 3 BYTE INSTS.
/DOES DATA BYTE MATCH TABLE?
GO PROCESS A 3 BYTE INST?
IN TAELE

GO TEST
/MASK FOR BITS 6 & 7

/WAS BIT 6 SET?

GO PROCESS A MOV INSTRUCTION
/VAS BIT 7 SET?

GO PROCESS AN ADD INST.
/RESTORE ORIGINAL BYTE
/MASK FOR BITS 0,1,2,657
/1S BIT 2 SET?

GO PROCESS A INR INSTRUCTION
/WERE BITS © AND 2 SET?

GO PROCESS A DCR INSTRUCTION
/WERE BITS 1| AND 2 SET?

GO PROCESS A MVI INSTRUCTION
/RESTORE ORIGINAL DATA BYTE
/ARE BOTH BITS 6 AND 7 SET?
GO PROCESS A LX! INSTRUCTION
/RESTORE ORIGINAL DATA BYTE
/MASK FOR BITS 0,152, 6,7
/WERE BITS 6 AND 7 SET?

GO PROCESS A RET INSTRUCTION
/WERE BITS 1,603 SET?

GO PROCESS A JMP INSTRUCTION
_/WERE BITS 2,6,7 SET?

GO PROCESS CALL INSTRUCTION
/WERE BITS 0,1,2,6,7 SET?

GO PROCESS A RST INSTRUCTION
/RESTORE ORIGINAL DATA BYTE
/MASK FOR BITS ©2,1.,2
/STORE REGISTER CODE IN C
/POINT TO 'POP' IN TABLE
POINT TO CORRECT MNEMONIC

LX1 D,OUTBUF+7 /POINT TO MNEMONIC COLUMN

CALL PRINT

/VRITE MNEMONIC IN OUTBUF

CALL MASK /GET BITS 3,4,5 INTO BITS @,1,2

CP1 86

JNZ INR3 /YES,

LXI H,LPSW

LXI D,OUTBUF+l12

CAHH PRINT

JMP FINISH /PROCESS ASCI1 & OCT.
RST LXI HLLRST
LXI DsOUTBUF+7

/WERE BITS 4,5 SET?

GO PROCESS INR INSTRUCTION
/POINT TO °'PSW*' IN TAELE
/POINT TO REGISTER AREA
/VRITE 'PSW' IN OUTBUF

& PRINT
/POINT TO RST MNEMONIC
/POINT TO MNEMONIC SLOT

PAGE 3

4149
414C
414F
4152
4155
4158
415A
415D
415E
415F
4162
4165
4167
416A
4168
416C
41 6F
41172
4174
a177
4178
4179
417C
417F
4182
4185
4187
4188
418B
418D
4190
4192
4193
4194
4195
4196
4199
419C
419F
41A2
41A5
41A7
alAaA
41AD
41B0
41B3
41B6
41B9%
41BB
41BC

66
71
75
E7
AS
43
6D

6D
66
72
8A
ED
20
39
A5
6D
66
71
8A
2C

40
40
K4
42
42

44

48
42

44

44
49
a4

44
46
42
44
40

a8

1589
1519
1520
1530
1548
15508
1560
1578
1580
1590
1620
1610
1620
1630
1640
1650
1668
1670
1680
1698
1708
1718
1720
1738
1748
1750
1760
177@
1788
1798
1§:11]
1813
1820
1830
1849
1850
1860
1870
1889
18908
1908
191¢
1920
1930
1940
1959
1960
1970
1988
19908

CALL PRINT /WVRITE MNEMONIC IN OUTBUF
CALL MASK /GET BITS 3,4,5 INTO BITS @,1.2
LXI D,OUTBUF+1S /POINT TO RST NUMERIC
CALL XCODE /WRITE HEX NUMERIC IN OUTBUF
JMP FINISH /WRITE ASCli, OCTAL AND PRINT
CALL MV1 A,'C"® /LOAD AN ASCII °‘C°
LXl D,OUTBUF+7 /POINT TO MNEMONIC COLUMN
STAX D /WRITE °'C' IN OUTPUT BUFFER
INX D /POINT TO NEXT SLOT IN OQUTBUF
CALL CONDL /VWRITE REST OF CALL CONDITION
JMP BYT3 /G0 FINISH A THREE BYTE INST.
JMP MVI A,'J"* /LOAD AN ASCII ‘J'
LXI D,OUTBUF+7 /POINT TO MNEMONIC COLUMN
STAX D /WVRITE A 'J* IN OUTBUF
INX D /POINT TO NEXT SLOT IN OUTBUF
CALL CONDL /VRITE REST OF JMP CONDITION
JMP BYT3 /G0 FINISH A THREE BYTE INST.
RET MVI A, 'R’ /LOAD AN ASCII °'R*
LX! D,OUTBUF+7 /POINT TO MNEMONIC COLUMN

STAX D /WRITE °'R' IN OUTPUT BUFFER
INX D /POINT TO NEXT SLOT IN QUTBUF
CALL CONDL /WRITE REST OF RET INST.

JMP FINISH /WRITE ASCII, OCTAL & PRINT
LX1 LXI H,LLXI /POINT TO LXI MNEMONIC

LDA SAVE /RESTORE ORIGINAL DATA BYTE
ANI OFH /MASK FOR BITS 9,1,2,3
DCR A /WAS BIT @ SET?
JZ LXIP /YES, GO LOAD LXI MNEMONIC
CP1 24 /WVAS BYTE LESS THAN 57
JC LX2 /YES, GO JUSTIFY POINTER
SuUl @5 1F BYTE WAS >5 SUBTRACT BIAS
LX2 ADD A /DOUBLE MNEMONIC POINTER
ADD A /DOUBLE MNEMONIC POINTER
MOV C,A /PUT CALCULATED JUSTIFY IN REG. C
DAD B /ADD JUSTIFY TO MNEMONIC POINTER
LXI D,OUTBUF+7 /POINT TO MNEMONIC SLOT
CALL PRINT /WVRITE MNEMONIC IN OUTBUF
LXI D,OUTBUF+l12 /POINT TO LXI REGe. SLOT
CALL LXICD /WRITE REGe OR 'SP' IN OUTBUF
LDA SAVE /RESTORE ORIGINAL DATA BYTE
cPr ' °* /WAS IT A 20H?
CZ INVAL /YES, GO INVALIDATE MNEMONIC
JMP FINISH /WRITE ASCII, OCTAL & PRINT
LXIP LXI D,OUTBU+7 /POINT TO MNEMONIC SLOT

CALL PRINT /WVRITE MNEMONIC IN OUTBUF
LX1 D.,OUTBUF+11 /POINT TO REG. SLOT
CALL LXICD /VRITE REGs NAME IN OUTBUF
MVI A,2CH /LOAD A COMMA
INX D /POINT TO NEXT SLOT IN OUTBUF
STAX D /VRITE A COMMA IN OUTBUF

PAGE 4

41BD
41C0
41C3
41C6
41C9
41CC
41CF
41D2
41Da
41DS
41D6
41D9
41DC
41DF
41E2
41ES
41E8
41EB
4lEE
41F1

4lF4
41F7
4l1FA
41FC
41FD
41FE
4201

4202
4285
4208
420B
420E
4211

4214
4217
421A
421D
421F
4220
4221

4224
4226
4227
422A
422D
422E
422F
4238
4231

4234

FE

6D
66
21
FA
6D
66
71
71
Sl
2c

ED
87

Si1
AS

DE

42
44
44

49
44
48

43

44
a9
42

44
49
49
a4
40

44

49
42

43

2000
2010
2020
2830
2040
2050
2060
2079
2080
2098
2108
2118
2128
2130
2140
2150
2160
2170
2180
2198
2208
221¢
2220
2230
2248
2250
2262
2270
2280
2298
2302
2310
2329
2338
2348
2358
2368
2378
2388
2399
2408
2416
2420
2430
2440
2459
2468
2479
2480
2499

JMP BYT3 /G0 WRITE THE LABEL IN OUTBUF
MVI LXI H,LMVI /POINT TO MVI MNEMONIC
LXI D,OUTBUF+7 /POINT TO MNEMONIC SLOT
CALL PRINT /WRITE MNEMONIC IN OUTBUF
CALL MASK /GET BITS 3,4,5 IN BITS 1,2,3
LX1 D,OUTBUF+11 /POINT TO REG. SLOT

CALL REGLD /VRITE REGISTER IN OUTBUF
MVI A,2CH /LOAD A COMMA
INX D /POINT TO NEXT SLOT IN OUTBUF
STAX D /VRITE A COMMA IN OUTBUF
JMP BYT2 /G0 WRITE VALUE IN OUTBUF

DCR LXI H,LDCR /POINT TO DCR MNEMONIC
LX1 D,OUTBUF+7 /POINT TO MNEMONIC SLOT
JMP INR2 /G0 FINISH DCR INSTRUCTION

INR LXI H,LINR /POINT TO INR INSTRUCTION
LXI D,OUTBUF+7 /POINT TO MNEMONIC SLOT

INR2 CALL PRINT /VRITE MNEMONIC IN OUTBUF
CALL MASK /GET BITS 3,4,5 IN BITS 1,2,3

INR3 LX1 D,OUTBUF+12 /POINT TO REGe SLOT
CALL REGLD /VRITE REGISTER IN OUTBUF
JMP FINISH /WRITE ASCIl, OCTAL & PRINT

ADD LDA SAVE /RESTQRE ORIGINAL BYTE

ANI 38H /MASK FOR BITS 3,4,5
RRC /CALCULATE OFFSET
MOV C,A /PUT OFFSET IN REGe C
LXI H,LADD /POINT TO ADD MNEMONIC
DAD B /ADD OFFSET TO MNEMONIC POINTER

LXI D,OUTBUF+7 /POINT TO MNEMONIC SLOT
CALL PRINT /WRITE MNEMONIC IN OUTBUF
JMP MOV2 /G0 FINISH ADD INSTRUCTION
MOV LXI H,LMOV /POINT TO MOV MNEMONIC
LXI D,OUTBUF+7 /POINT TO MNEMONIC SLOT
CALL PRINT /VRITE MNEMONIC IN QUTBUF
CALL MASK /GET BITS 3,4,5.IN BITS 1,2,3
LX1 D,OUTBUF+11 /POINT TO REGISTER SLOT

CALL REGLD /WRITE REGISTER IN OUTBUF
MVI A,2CH /LOAD A COMMA
INX D /POINT TO NEXT SLOT IN OUTBUF
STAX D /WRITE A COMMA IN OUTBUF
MOV2 LDA SAVE /RESTORE ORIGINAL BYTE
ANI @87 /MASK FOR BITS @.1.,2
INX D /POINT TO NEXT SLOT IN OUTBUF
CALL REGLD /VRITE REG. NAME IN OUTBUF
JMP FINISH /WRITE ASCII,OCTAL & PRINT
BYTE3 MOV A,C /GET MNEMONIC COUNT IN REG.A
ADD A ’ /CALCULATE-
ADD A /0FFSET
MOV C,A /PUT OFFSET IN REG. C
LX1 H,NEM3 /POINT TO MNEMONIC TAB 3
DAD B /ADD QFFSET TO MNEMONIC TAB 3

PAGE §

4235
4238
423B
423E
4241
4244
4247
424A
424D
4250
4253
4256
4259
425A
425B
425C
425D
4260
4261
4264

4267

426A
426D
42792
4273
42176
4277
4278
4279
427A
427D
427E
4281

4284
4287
428A
428D
4290
4293
4296
4297
4298
4299
429C
429E
42a1

4242
42A3
4244
42A5

Bé

6D
66
48
F3
15
E7
A5

72

6D
66
AS
@c
F7
19
F7
1%

62
24

FF

44

44

2508
2518
2522
2538
2540
2558
2560
2578
2580
2598
2600
26190
2628
2630
2640
2658
2668
2670
2680
2690
270@
2718
2728
2730
2740
2750
2760
2770
2780
2790
28060
2818
2829
2830
2840
2850
2860
2870
2880
2899
2909
2919
2920
2930
2940
2958
2960
29170
298¢
2998

LXI D,OUTBUF+7 /POINT TO MNEMONIC SLOT
CALL PRINT /VRITE MNEMONIC IN OUTBUF
BYT3 CALL FETCH /GET BITS 3,4,5 IN 1,2,3
STA CHAR2 /SAVE SECOND ASCI1 CHAR.
STA SAVE /SAVE SECOND BYTE
CALL FETCH /GET BITS 3,4.,5 IN BITS 1,2,3

STA CHAR3 /SAVE THIRD BYTE
LXI D,OUTBUF+15 /POINT TO LABEL SLOT
CALL XCODE /VRITE HIGH ORDER IN OUTBUF
LDA SAVE /RESTORE SECOND BYTE
CALL XCODE /VRITE LOW ORDER IN OUTBUF
JMP FINISH /WRITE ASCII, OCTAL & PRINT
BYTE2 MOV A,C /GET MNEMONIC COUNT IN REG.A
ADD A : /CALCULATE-
ADD A , - /OFFSET
MOV C,A /PUT OFFSET IN REG. C
LXI H,NEM2 /POINT TO MNEMONIC TAB 2
DAD B /ADD OFFSET TO MNEMONIC POINTER

LX1 D,OUTBUF+7 /POINT TO MNEMONIC SLOT
CALL PRINT /VRITE MNEMONIC IN OUTBUF
BYT2 CALL FETCH /GET BITS 3,4,5 IN 1,2,3

STA CHAR2 /SAVE SECOND ASCII CHAR.
LX1 D,OUTBUF+1S /POINT TO LABEL SLOT
CALL XCODE /WRITE LABEL IN OUTBUF
JMP FINISH /WRITE ASCIl, OCTAL & PRINT
BYTEl MOV A,C /GET MNEMONIC COUNT IN REG.A
ADD A ’ /CALCULATE-
ADD A /0FFSET
MOV C.,A /PUT OFFSET IN REG. C
LX1I H,NEMON /POINT TO MNEMONIC TABLE
DAD B’ /ADD OFFSET TO MNEMONIC POINTER

LX1 D,OUTBUF+7 /POINT TO MNEMONIC SLOT

CALL PRINT /VRITE MNEMONIC IN QUTBUF
JMP FINISH /WRITE ASCII, OCTAL & PRINT
BAD LXI H,DATA /POINT TO "NON HEX DATA"
CALL CRLF /PRINT A CRLF
CALL MSG /PRINT "NON HEX DATA"
CALL CRLF /PRINT A CRLF
JMP QECOOH /JMP TO SYSTEM MONITOR
HEXOT PUSKE H /SAVE REGISTERS H & L
PUSH B /SAVE REGISTERS B & C
PUSH D /SAVE REGISTERS D & E
LX1 D,ADDBUF /POINT TO ADDRESS BUFFER
MVI C,4 /SET NO. OF CHARS. TO LOAD
CALL XLOAD /LOAD ASCI1 NUMERICS IN ADDBUF
POP D /RESTORE REGISTERS D & E
POP B /RESTORE REGISTERS B & C
POP H /RESTORE REGISTERS H & L
RET /CONTINUE««.

FINISH IN OFFH /INPUT THE SENSE SWITCHS

PAGE 6

4287
42A9

42AC
42AF
42B2
42BS
4288
42BB
42BE
42C1

42C4
42C7
42CA
42CD
42D6
42D1

42D4
42DS
42D6
42D9
42DC
42DD
42DE
42E1

42E4
42E7
A2E8
42ES
42EA
42EC
42ED
42F8
42F1

42F2
42F3
42F4
42F7
42FA
42FC
42FD
42FE
4301

4302
4385
43028
438A
4398
430C
430D
436E

o1

7E
F2

82
F3
11
86
Fa4
11
El

F@

44
66
28
25
FC

83

gA

3000
3010
3020
30382
3040
3050
3068
3078
3080
3090
3108
3110
3128
3138

3140

3150
3168
3178
3180
3190
3200
3210
3220
3238
3240
325@
3268
3270
3288
3298
33008
3310
33208
3330
3340
3350
3360
3378
3380
3390
3400
3418
3420
3430
3440
3458
3468
3478
3480
349¢

ANI 1 /WAS SENSE SWITCH 8 SET?
JZ OVER /YES, SKIP THE ASClI BUFFER LOAD
LX1 D,OUTBUF+24 /POINT TO IST ASCII SLOT

LDA CHAR! /LOAD THE FIRST ASCII BYTE
CALL ASCII /G0 WRITE THE ASCI1 CHAR.
LXI D,OUTBUF+28 /POINT TO 2ND ASCII SLOT
LDA CHAR2 /LOAD THE SECOND ASCII BYTE
CALL ASCl1l /G0 WRITE THE ASCI1I1 CHAR.
LXI D,OUTBUF+32 /POINT TO 3RD ASCII SLOT
LDA CHARS3 /LOAD THE THIRD ASCII BYTE
CALL ASCII /G0 WRITE THE ASCII CHAR.
OVER CALL OCTAL /G0 TRY TO WRITE OCTAL
CALL BUFPNT /DONE. PRINT THE OUTPUT BUF.
LHLD DONE /LOAD THE ENDING POINTER
XCHG /PUT END POINTER IN REGe D & E

CALL FETC2 /LOAD THE CURRENT INST ADDR.
MOV AsH /PUT LOW ORDER CURRENT IN REG. A
CMP D' /COMPARE LOW ORDER CURRENT TO END
JZ LOW /IF LOW ORDERS EQUAL, GO TEST HIGH
JMP PAGE /G0 PROCESS NEXT INSTRUCTION!
LOW MOV A.L /PUT HIGH ORDER CURRENT IN A
CMP E 7COMPARE HIGH CURRENT TO HIGH END

JNC START /1F LESS THAN BEGIN AGAIN
JZ START /1F EQUAL TO BEGIN AGAIN
JMP PAGE /G0 PROCESS NEXT INSTRUCTION
XCODE PUSH H /SAVE REGISTERS K & L -
PUSH B /SAVE REGISTERS B & C
PUSH PSW /SAVE A AND FLAGS
MVI C,2 /SET NUMBER OF CHARSe TO LOAD

MOV H,A /MOVE BYTE TO ENCODE TO REG. A
CALL XLOAD /VWVRITE ASCI1 BYTES IN OUTBUF

POP PSVW /RESTORE A AND FLAGS
POP B /RESTORE REGISTERS B & C
POP H /RESTORE REGISTERS H & L
RET /CONTINUE.«. .«
CLRBUF LXI D,68 /SET NO. OF CHAR. TO CLEAR
LX1 H,O0UTBUF /POINT TO OUTPUT BUFFER
MVI Ab' °* /LOAD A SPACE
MORE MOV M-A /INSERT SPACE IN OUTBUF
DCR E ’ /DECREMENT CHARe. COUNT
JZ CLRCHAR /IF DONE CLEAR ASCII CHAR. BUF
INX H /POINT TO NEXT SLOT IN OUTBUF
JMP MORE /G0 CLEAR MOREe«e.

CLRCHAR LX! H,CHARI /POINT TO ASCIl BUFI1
MVI C,3 /SET NUMBER OF CHARSe TO CLEAR
MRE2 MOV M.,A /WRITE A SPACE IN ASCI1 BUF.

DCR C /DECREMENT BUFFER COUNT
RZ /1F DONE, CONTINUE...
INX H /POINT TO NEXT ASCIlI BUFFER
JMP MRE2 /CLEAR NEXT ASCI! BUFFER

PAGE 7

4311
4313
4316
4318
431A
431B
431D
431E
4320
4321
4323
4326
4327
4328
432B
432E
432F
4330
4331
4333
4336
4339
433A
433D
433E
433F
4340
4343
4345
4346
4347
4349
434A
434B
434C
434D
434E
43508
4351
4352
4353
4354
4355
4356
4357
4358
4359
4354
4358
435C

e
7F
20
43

A9
49

20
62

Cc3

39

40

2E

2A

43

43
44

00

a3
44

44

43

3508
3510
3520
35308
3540
3550
3568

3570

3589
35960
3600
3618
3620
3630
3640
3650
3660
3670
3688
3690
3700
3718
37206
37309
3740
3758
3760
3779
3780
3798
38060
3810
3820
3830
3840
3858
3860
3870
3880
3890
39080
3910
3920
3930
3940
3950
3960
3978
3980
3998

ASCII CPI 7FH /TEST IF SIGN BIT IS SET
CNC SIGN /SET? GO WRITE "*" BEFORE CHAR.
ANI 7FH /STRIP SIGN BIT FROM CHAR.
CcP1 * °* /TEST FOR ASCI11 SPACE
RZ /1F EQUAL, DON'T BOTHER WITH REST
CPl © : /TEST FOR NULL CHAR.
RZ /1F EQUAL, DON'T BOTHER WITH REST
CP1 7FH "/TEST FOR RUB OUT CHAR.
RZ /1F EQUAL., DON'T BOTHER WITH REST
cpPr ' i /TEST FOR 2@H
CC CONT /1F LESS THAN 20H DO CONTROL CHAR
STAX D /VRITE ASCII CHARe. IN OUTBUF
RET /CONTINUEeso»

BUFPNT LXI H,BUFEND-l /POINT TO END OF BUF
LXI D, 73 /SET NO. OF CHARe. IN BUFFER +1

LESS DCX D /DECREMENT CHAR. COUNT
MOV ALM /FETCH CHAR. FROM END OF BUF.
DCX H /DECREMENT BUFFER POINTER
CPI * °* /FOUND A VALID CHARe YET?
JZ LESS /NO, KEEP DECREASING BUF. LENGTH
LXI H,ADDBUF /OTHERWISE POINT BEG OF LINE

GET MOV C.M /MOVE CHAR. FROM OUTBUF TO C
CALL HISPD /PRINT CHAR. ON OUTPUT DEVICE
DCR E /DECREMENT CHAR. COUNT
RZ /WHEN DONE WITH LINE, CONTINUE...
INX H /POINT TO NEXT CHAR. TO PRINT
JMP GET /G0 PRINT NEXT CHAR.

CONT ADI 'e'/MAKE A PRINTING CHARe OF CONT
MOV C,A /SAVE THE PRINTING CHAR.
INX D’ /POINT TO NEXT SLOT IN OUTBUF
MVI A,'.' /LOAD A CONTROL CHARe INDICATOR
STAX D °~ /WRITE CONTROL INDICATOR IN BUF.
DCX D - /POINT TO ASCI1 SLOT IN OUTBUF
MOV A,C /RESTORE PRINTING CHAR.
RET . /CONTINUEsee

SIGN MOV C,A /SAVE ASCII CHARe.
MVI A, '** /LOAD A SIGN BIT INDICATOR
DCX D /POINT AHEAD OF ASCII CHAR.
STAX D /WRITE SIGN INDICATOR IN QUTBUF
INX D /RESTORE ASCII POINTER TO CHAR.
MOV A,C /RESTORE ASCI1 CHAR.
RET /CONTINUE«s

OPCODES NOP /THE FOLOWING IS A /NOP
DB 987H /15 A TABLE OF 8080 /RLC
DB OOFH /0PCODES USED BY- /RRC
DB g17H /THIS PROGRAM TO~- /RAL
DB B1FH /COMPARE AGAINST=- /RAR
DB 027H /THE BYTE FETCHED- /DAA
DB @2FH /FROM MEMORY /CMA
DB 837H /S8TC

PAGE 8

435D
435E
43SF
4360
4361

4362
4363
4364
4365
4366
4367
4368
4369
436A
436B
A36C
436D
436E
436F
4378
4371

43172
4373
4374
4375
4376
4378
437A
437C
437E

- 4388

4382
4384
4386
4388
438A
438C
438E
4390
4392
4394
4396
4398
439A
439C
439E
43A0
A3A2
43A4
4A3A6

4000
408108
4020
4838
4040
4958
AG 60
40170
4088
4090
4100
al1e
4120
4130
4140
4150
4160
4178
4180
4198
4220
4210
4220
4230
4248
4250
4260
4270
4280
42990
4308
4310
43208
4330
4340
4350
4369
43706
4380
4350
4409
441¢
4420
4430
4449
4450
K460
4479
4480
4490

/CMC
/HLT
/RET
/XTHL
/PCHL
/XCHG
/D1
/SPHL
/E1
/HERE STARTS THE- /ADI1
/TW0 BYTE OPCODES /ACI
/0UT
/SUl
/1IN
/SB1
/AN1
/XR1
/0R1
/CP1
/HERE STARTS THE- / SHLD
/THREE BYTE OPCODES /LHLD
/STA
/LDA
/JMP
/CALL
/THE FOLOWING ARE TABLES OF-
/ASCII MNEMONICS USED BY THE-
/DISASSEMBLER TO LOAD THE-
/0UTPUT BUFFER WITH THE-
/INSTRUCTION MNEMONICS

PAGE 9

43A8
43AA
43AC
43AE
4388
43B2
43B4
A3B6
43B8
43BA
43BB
43BC
43BD

" 43BE

43BF
43C0
43C1
43C2
43C3
43C4
43CS
43C6
43C7
43C8
43C9

- a3ca

43CB
43CC
43CD
43CE
A3CF
43D0
43Dl

43D2
43D3
43D4
43DS
43D6
43D7
43D8
43D9

43DA
43DB
43DC
43DD
43DE
A3DF
43ED
43E1

43E2

28
41

52
20
4c
20
4F
20

4588
4518
4529
4530
4540
4550
4560
4579
45889
4590
4600
4610
4620
4630
4640
4650
4660
4670
4680
4690
4700
4710
4728
4730
47490
47508
476
4778
4780
4790
4800
4818
4828
4830
4848
4850
4860
48170
4880
4890
4900
4910
4920
4930
4940
49508
4968
4978
4988
4990

DwW

NEM2 DV 'ON’

* R
'AR'
L Ll
'RRI
L} cl
'LR.
1] cl

Dw * P'

DB

43H°
SGH
49H
28H
4FH
S2H
49H
20H
S58H
S2H
49H
20H
41H
4EH
49H
20H
S3H
42H
49H
2¢H
49H
4EH
20H
20H
53H
S5H
49H
20H
4FH
SSH
S4H
28H
41H
43H
49H
20H

NEM3 DB

DB
DB
DB
DB

44H
49H
2¢H
43H

41H

/C
/P
/1
/70
/R
/1
/X
/71
/A
/1
/8
/1
/1
/N
/S
/1
/0
/T
/A
/C
/71
/A
/1

/C

PAGE 10

43E3
43E4
43ES
43E6
43E7
43E8
43E9
43EA
43EB
43EC
43ED
43EE
43EF
43F8
43F1
43F2
43F3
43F4

43FS

43F6
43F17
43F8
43F9
43FA
43FB
43FC
43FD
43FE
43FF
4400
4481
4402
4403
4404
4485
4406
4407
4408
44089
440A
4408
440C
440D
440E
440F
4418
a4l
4412
4413
a414

50060
5010
Sg2e
5030
SP40
S50
5060
5070
5880
S890
5100
S11@
5120
5130
5140
5150
5160
S172
5180
5190
$208
5219
5220
5230
5240
5250
5260
s27¢
5289
5290
$308
S310
5320
5330
5340
5358
5360
53179
5380
5398
S400
salo
5420
5430
5448
5458
5460
5470
5480
5490

41H
20H
S8H
S2H
41H

41H

PAGE 11

5500
5510
5520
553¢
5540
$550
5560
5570
5588
5590
5620
5618
56208
5630
5640
5650
5660
$670
5680
5690
5708
$718
5720
$730
5740
5750
5760
5770
5780
5790
5800
818
5820
5830
5848
5858
5860
5870
5880
5890
59009
5910
5920
5932
5940
$950
5968
5978
5988

DB 20H
LMVI DB
DB S6H
DB 49H
DB 20H
LLXI bB
DB S8H
DB 49H
DB 20H
DB S3H
DB S4H
DB 4lH
DB S8H
DB 49H
DB 4EH
DB 58H
DB 20H
DB 44H
DB 41H
DB 44H
DB 20H
DB 4CH
DB 44H
DB 4lH
DB S8H
DB 44H
DB 43H
DB S8H
DB 28H
LRST DB
DB S3H
DB S4H
DB 2@H

49H

44K

4DH

4CH

S2H

5998 LPSW DB S@H

PAGE 12

4447
4448
4449
444A
444B
4446
444D
444E
A44F
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
445Aa
4458
445C
445D
44SE
445F
4460
4461
4462
4464
4466
4468
446A
446C
A46E
4470
4472
4474
4476
4478
447A
447C
447E
4480
4482
4484
4486
4488
448A
448C
448E

6000
6010
6020
6030
6040
6050
6060
6070
6080
6290
6100
6110
6120
6130
6140
6150
6160
6170
6180
6190
6280
6210
6220
6230
6240
6250
6260
6270
6280
6290
6300
6310
6320
6330
6340
6350
63 60
6370
6380
6390
6400
6410
6420
6430
6440
6458
6460
6470
6480
6490

DB S53H /S
DB ST7H /v
LPOP DB 20H
DB S@H /P
DB 4FH /0
DB S¢H /P
DB 2¢H
DB SOH /P
DB SSH /U
DB 53H /5
DB 48H /H
CONDN DB 4EH /THIS 1S A TABLE- /N
DB SAH /0F ENDINGS FOR- /Z
DB 5AH /CONDITIONAL CALLS- /2
DB 20H /JUMPS AND RET'S.
DB 4EH /N
DB 43H /C
DB 43H /C
DB 20H
DB 5@H /P
DB 4FH /0
DB SOH /P
DB 45H /E
DB SOH) /P
DB 28H
DB 4DH /M
DB 20H -
ADDBUF DV © /THIS BUFFER STORES THE-
DW @ /HEX ADDRESS FOR PRINTING.
QUTBUF DW @ /HERE BEGINS THE QUTPUT-
DV O /BUFFER WHICH HOLDS THE-
DV © /ENTIRE LINE OF DATA TO BE-
DV @ /PRINTEDes AFTER THIS BUFFER-
bV @ /15 LOADED WITH ASCI1l DATA-
DW @ /THE ROUTINE CALLED BUFPNT-
DW @ /POINTS TO THE BEGINNING OF-
bW 0 /ADDBUF AND OUTPUTS THE CHAR'S-
DV @ /FROM THERE TO BUFEND-1. THAT-
DV @ /ROUTINE ALSO CALCULATES THE-
DV @& /ACTUAL LENGTH OF THIS BUFFER-
bW @2 /EACH TIME A LINE IS PRINTED.
DV @
DV @
DV @
Dw @
DV @
DV @
Dw @
Dw @
bW @

PAGE 13

4490
a492
4494
4496
4498
449A
449C
449E
4400
44A2
4444
A44A6
44A8

’ 44AA

44AB
44AC
44AD
44AE
A4AF
4480
44B1

44B2
44B3
44BS
44B8
44BA
44BC
44BD
44BE

44C2
44C3
44CS
44C7
44CA
44CB
44CD
44CF
44D1

44D4
44DS
44D7
a4Dp9
44DC
44DE
44EQ
44E1

44E2
44E4

17

8A

87
30

44

44

44

49

44

6500
6510
6520
6530
6540
6558
6560
6578
6588
6598
6600
6610
6620
6630
6640
6650
6668
6670
6680
6690
6700
6718
6720
6730
6740
6758
6760
6770
6780
679¢
6800
6810
6820
6830
6840
6850
6860
6878
6880
6890
6900
6918
6929
6930
6948
6950
6960
6970
6988
6998

(=]
>4
[SECECRSRORORCRSESE SN SN

BUFEND EQU §
XLOAD XRA A /THIS ROUTINE LOADS THE-
DAD H /0UTPUT BUFFER WITH HEX-
RAL /CHAR'S. UPON ENTRY REG.-
DAD H /G CONTAINS THE NUMBER OF-
RAL /CHARACTERS TO BE LOADED.
DAD H /UPON ENTRY REGe D & E -
RAL /POINT TO THE SLOT IN THE-
DAD H /0UTPUT BUFFER WHICH IS TO-
RAL /BE LOADED WITH HEX CHAR'S.
CPI 10 /THE ROUTINE TERMINATES WHEN-
JC ASCOUT /REG. C REACHES 8.
ADI 7
ASCOUT ADI '@’
STAX D
INX D
DCR C
JNZ XLOAD
RET
HISPD IN o /INPUT THE STATUS PORT
AN1 8BH /TEST FOR TRANSMITTER BUF. EMPTY
JZ HISPD /1F NOT READY, TRY AGAIN
MOV A,C /GET THE CHAR. TO PRINT IN ACC.
ouT I’ /O0UTPUT IT TO THE DATA PORT
IN @ /INPUT THE STATUS PORT
ANI agH /1S DATA AVAILABLE FLAG SET?
JNZ START /YES, THEN STOP & START OVER
RET ° /OTHERVISE CONTINUE...
INPUT IN @ /INPUT THE STATUS PORT
AN1 4@H /TEST FOR DAV FLAG
JZ INPUT /NOT READY? TRY AGAIN
IN 1 7/INPUT THE DATA PORT
AN1 7FH _ /STRIP PARITY
MOV C,A /SAVE DATA IN REG. C
RET ~ /CONTINUEe..
CPRINT IN @ /INPUT THE STATUS PORT
ANI 8@H /TEST FOR TRANSMITTER BUF. EMPTY

PAGE la

44E6
44E9
44EA
44EC
44ED
44EE
44F0
44F2
44F3
A4F4
44F5
44F17
A4F9
44FC
44FE
4501

4583
4506
4509
458C
AS8E
4510
4512
4514
4516
4518
4519
451A
451D
451E
4520
4521

4522
4525
4527
4529
452B
452D
AS52F
4531

4533
4535
4537
4539
453B
453D
453F
4541

4543
4545

E2

g1

]’}
o8

-]]
@D
c3
gA
c3
]
c3
c3
c3
4F
20
45
20
41
a4l

C3

44

a4

44

44

44

44

45

7000
7010
7920
7036
7640
78586
7969
78
7988
7890
7100
7110
7120
7138
7140
7150
7160
7179
7180
7198
7200
7210
7228
7238
7240
7258
7260
7278
7280
72908
7300
7310
7320
7338
7340
7350
7360
7376
7388
7398
74030
7410
7428
7430
7440
7450
7460
7470
7480
7498

JZ CPRINT /NOT READY? THEN TRY AGAIN
MOV A.C /GET CHAR TO PRINT IN ACC.
ouT 1 /PRINT CHARACTER
RET /CONTINUE. « »
SAVE DB @ /FETCHED BYTE STORAGE
PGMCT DV @ /PROGRAM COUNTER STORAGE

DONE DW @ /ENDING PROGRAM COUNTER STORAGE

CHAR! DB @ /FIRST BYTE, ASCII STORAGE
CHAR2 DB @ /SECOND BYTE, ASCII STORAGE
CHAR3 DB ¢ /THRID BYTE, ASCII STORAGE
OSAVE DV 2 /CURRENT INSTRUCTION ADDRESS
CRLF MVl C,0DH /LOAD A CARRIAGE RETURN
CALL HISPD /PRINT A CR
MV1I C,8aH /LOAD A LINE FEED
CALL HISPD /PRINT A LINE FEED

MVI C.@ /LOAD A NULL

CALL HISPD /PRINT A NULL

CALL HISPD /PRINT A NULL
JMP HISPD /PRINT A NULL AND CONTINUE«s.
DATA DW 'ON' /ASC11 STORAGE FOR-

DW " N°* /"NON HEX DATA"

DV 'EH'

bW * X'

DW ‘ap*

DV 'AT' ’

DB @ /MESSAGE TERMINATOR
MSG MOV C,M /FETCH A STORED CHAR. FROM MEM

CALL HISPD /PRINT THAT CHARACTER
MOV A,C /RESTORE THE CHARACTER
CP1 @& /WAS 1T A MESSAGE TERMINATOR?
RZ /YES, THEN QUIT AND CONTINUE...
INX H /POINT TO NEXT STORED CHAR.
JMP MSG /PRINT MORE
STADD DW °'TS* /ASCI1 STORAGE FOR-
DW ‘RA°*) /"START ADDRESS?"™
v ' T'
DV ‘DA’
DV 'RD'
DW °'SE’
bW '?s°*
DW Q@20H /SPACE AND MESSAGE TERMINATOR
ENADD DW °'NE° /ASCI1 STORAGE FOR-
pw * D* /“END ADDRESS?"™
DV ‘DA’
DW °‘RD'
DV ‘'SE*
Dw '?S°
DW 0028H /SPACE AND MESSAGE TERMINATOR

LNONE DW ‘EH’ /ASC11 STORAGE FOR-
pw * X* /LINE 1 OF HEADER MESSAGE

PAGE 1S

4547
4549
454B
454D
454F
4551

4583
4555
4557
4559
455B
455D
455F
4561

4563
4565
4567
4569
456B
456D
456F
45171

4573
4575
4577
4579
457B
457D
457E
4588
4582
4584
4586
4588
458A
458C
458E
4590
4592
4594
4596
4598
45%A
459C
459E
45A0
45A2
45A4
45A6
45A8

7500
75140
7528
7530
75486
7550
7560
7579
7580
7598
7608
7610
7620
7630
7648
7650
7668
7670
7680
7690
7700
7710
7720
7738
1748
7750
7760
7770
77808
7798
7800
78190
7828
7830
7848
7858
7868
7879
7888
78990
7980
791606
7920
7938
7940
7958
7960
7978
7980
7990

'TA'
g641H

LNTWO DW

‘RD*
. ’
ID "
.TA'
. A!
'NI'
'Tsl
L] .
* .
'IH'
‘oL*
.

‘1

'2

'3

.A \]
'DD'
'ER'
lssl
. 1

QDA'

/ASCII STORAGE FOR~
/LINE 2 OF HEADER MESSAGE

FAGE |f

4664
4666
4669
466B
466D
4679
4671
4674
46717
4674
467C
467F
4680
4681
4684

4687

468A
468D
46BD
46BD

a9
7C

48
c3

6D
7A
2D
67
F7

- 7C

FO
F7

69 .

46

44
46
46
48

a4

9000
9010
9020
9930
9040
9650
9060
9670
9080
9090
9100
9119
9120
9130
9140
9150
9160
9170
9180
9190

SKIP MV1 B.9 /LOAD NOe OF CR'S TO PRINT

CALL SK3 /PRINT 9 CRLF'S
SET2 MVl C,'~"* /LOAD PAGE DIVIDER CHAR.
MVI B, 72 /LOAD TERMINAL WIDTH
SETA CALL HISPD /PRINT A '-"
DCR B /DECREMENT TERMINAL WIDTH COUNT
JNZ SETA /NOT DONE THEN PRINT MORE

SET3 CALL SK2 /PRINT 7 CRLF'S
JMP HEADR /PRINT HEADER MESSAGE
SK2 MVI B,7 /LOAD NO. OF CRLF'S TO PRINT
SK3 CALL CRLF /PRINT A CRLF

DCR B /DECREMENT CRLF COUNT
RZ ‘ /1F DONE CONTINUEee.
JMP SK3 /PRINT MORE CRLF'S

STORE SHLD DONE /SAVE ENDING PGM. COUNT

CALL CRLF /PRINT A CRLF
JMP SET2 /G0 PRINT SPACE AND HEADER
DS 3@6H /ALLOW SPACE FOR STACK
STACK EQU $ /STACK POINTER SET HERE
END EQU $ /MODIFICATIONS GO HERE

PAGE 19

‘./‘

SYMBOL TABLE

L0006
4862
408A
4143
4192
41E8
422D
4287
42E7
4311

434D
43FA
442A
4462
44C3
44F0

. 44F17

4543
45D9
4629
4654
4674
46BD

HEADR
PRINT
DISAS

LX1P
INR3
BYT3
HEXOT
CLRBU
BUFPN
OPCOD
LADD
LRST
OUTBU
INPUT
CHARI
DATA
LNTWO
OCTAL
INVAL
PAGE
SK2

482D
4066
409C
4158
41AD
41EE
423B
4296
42F4
4328
4355
43FE
4442
4466
44D5S
44F2
458C
4579
4SE1

4639
4655
467A

FETCH
SPRN
ONE
JMP
MVI
ADD

. BYTE2

FINIS
MORE
LESS

© NEMON

LINR
LPSW
BUFEN
CPRIN
CHAR2
MSG
HEX
0T3
INV2
SKIP

 SK3

4048
4068
4ecl1
4165
41ce
41F7
4259
4245
42FC
432E
4372
441E
4446
A4AA
44E2
44F3
4519
45B4
4614
4648
4664
467C

REGLD
MASK
TWO
RET
DCR
MOV
BYT2
OVER
CLRCH
GET
NEM2
LDCR
LPOP
XLOAD
SAVE
CHAR3
STADD
NXT
ocTCo
FETC2
SET2
STORE

4g51
a4g71
4@CC
4172
41D9
420B
4267
42C7
4385
4339
43B6
4422
4449
44AA
44ED
44F4
4528
45B7
4621
4647
4669
4684

REL!
CONDL
THREE
LX1
INR
Mova
BYTEIL
Low
MRE2
CONT
NEM3
LMVI
CONDN
ASCOU
PGMCT
0SAVE
ENADD

ONXT
SET
SETA
STACK

485B
407A
40D7
417F
41E2
4221
4276
42DC
430A
4343
43DE
4426
4452,
44BA
44EE
44F5
4535
45CA
4628
464C
466D
46BD

PAGE 20

