ZASM - The RML Z80 Assembler

©Research Machines

Distributed by Lifeboat Associates
164 West 83rd Street
New York, NY, 10024

RESEARCH MACHINES RML. Z80 ASSEMBLER

RML ABSOLUTE ASSEMBELER

SUMMARY

The RML Assembler, written for the 3802Z/280Z, is a program which
translates instructions written in Zilog's machine code mnemonics
into the equivalent binary codes which actuslly run on the
machine. This resultaot "object" code is absolute, that is, it

is assembled to run in a predefined area of memory.

Like most assemblers, the translation is a two-pass process; the
"source" program which forms the inmput to the assembler is
presented twice. During the first pass, only errorvmessages are
output; the assembler constructs 2 table of user-defined

symbols and labels. During the second pass, values from this
table are combined with- the ipcoming source text to form the
object-output. At the same time the source program can be listed
and a table of symbols can be produced. The assembler outputs

a message for each error that is detected, indicating the type

of error and the line number and context in which it occurred.

A cumulative error count is also available.

The assembler includes a oumber of special features which are
intended to streamline the task of preparing machine language
programs on cassette-based systems. Such progrems cao be
readily produced on a system consisting only of a CPU with 16K
memory, Video Terminal, Reyboard and two Cassette Recorders, vet
optional devices such as a printer are used if available and the

assembly of large programs is straight forward.

One such feature is that the assembler reads the source Text izto

11-3.1

RESEARCE MACHINES RML Z80 ASSEMBLER

memory during the first pass. If enough storage is available,
subsequent passes can be made using this stored copy, thus
bypassing the relatively slow process of re-reading the source
rom cassette, If the program is too large for it all to be
stored in memory it can be assembled on a line by line basis in
the conventional manner. With a 18K system, approximately 8K

bytes are available for the storage of source text.

The "second pass" can be made any number of times, allowing
the various outputs to be stored as required. Thus one might
first perform Pass 2 with output directed to the screen to
check for errors, then again with object directed to cassette
(and the listing suppressed) to obtain a copy of the binary
output, and fipally with listing directed to the printer (and
the object output suppressed) to obtain a "hard copy” of the

source text and symbols table.

The assembler contains its own text editor, allowing source
programs held in memory to be corrected or modified. This
enables the user to put right typing errors and omissions

during the course of assembly without the necessity of reloading
the full Text Editor. The corrected source can be saved. The
assembler's editor employs a subset of the commands available

in RML's full Text Editor (TXED), allowing the user to switch
between the two without confusion. Where large programs are
being assembled, the source can be corrected during Pass 1 if
necessary. The resident editor greatly speeds up the process

of program development on a small system.

The distributed version of the assembler interfaces to the COS
Monitor and Cassette File System, Provision has been made for
the user to incorporate his own non-standard device driver
routines; these cap range from & simple teletypewriter handler
to a full two-way link allowing the assembly of source held

11-38.2

RESEARCH MACET§E§ L 200 AooCIDLIR

on files in a larger host machine.

Source program syntax is virtually identical to that definmed in
the Z80 Assembly ZLanguage Programming Manual. Significant
extensions include the ability to enter data in 'free format®,
which considerably simplifies the process of defining data tables,
and allowing 8 bit arithmetic operators to be followed by one

or two operands (e.g. ADD A,B and ADD B are equivalent). The
expression analyser allows a full range of arithmetic and

logical operators. Note, however, that neither macros nor

conditional assembly are supported at present.

RESEARCH MACHINES RML Z80 ASSEMBLER

PAGE LETFT INTENTIONALLY BLANK

1=
[y
i
w
S

RESEARCE MACHINES RML Z80 ASSEMBLER

INTRODUCTION

The RML 280 Assembler (ZAS) makes use of the normal Zilog
mnemonic conventions. Any program written for the 280
instruction set should assemble with little or no modification.

The user is referred to the Zilog publication:
'Z80 Assembly Language Programming Manual'.

This describes the syntax of the assembler in detail and gives
a comprehensive description of each imstructiom. The following
notes are intended to supplement this manual; any differences
between ZAS and Zilog's Assembler (on which the mapual is based)

are described in the following sections.

An assembler is a pregram which translates instructions written
in machine code mnemonics into the equivalent binary codes
which actually run on the machine. The text which forms the
input to the assembler is usually referred to as the 'source’
program and the machine codes that are output are called the
'object' code. ZAS assembles absclute object code, that is,
the areas of memory in which this object code will run are
defined by the user by special instructions embedded within the
source text. Since the areas of msmory in which the object
code is intended to run usually overlap the memory locations
used by the assembler, it is necessary tc save the object

on ap intermediate medium, such as cassette tape; when assembly
is complete the object code can be loaded into memory ready to

run. 'With some assemblers the decision as to where in memory

11-4.1

the resultant object code will reside can be postponad umtil
the loading phase; in such a case the assembler is said to
produce relocatable code. ZAS does not produce relocatable

code at present.

Like most assemblers, ZAS carries out the translation from
source to object by means of 2 'passes’'., During a pass an
assembler reads the whole of the source text; thus a 2 pasé
assembler such as ZAS reads the soﬁrce text twice. Operationms

carried out during the two passes are as follows:
Pass 1

The source text is read and a table is constructed containing
the values of all user defined symbols. Error messages may be

generated but there is no other output.

Pass 2

The source text is read again to produce three types of output:
1. Listing file

2. Object code

3. Error messages

The listing file copsists of the original source text alongside

the generated code. The format is

noon bbbb... 11l1l.pp source text

where

nnon = Hexadecimal mdress at which generated code will
be loaded.

bbbb... : = Instruction coding generated for current line

of source text.
11-4.2

RESEARCH MACHINES RMI. Z80 ASSEMBLER

1111 = Line number

PP = Page number

source text = One line of source text copied exactly from
the input.

The object code can be selected either to be in iodustry standard
format (the 'Intel' format) or to be inm RML binary format ready
to be loaded with the COS 1L command.

The error messages are described in detail later in this manual.

The assembler may be used in the conventional maunner where source
text is read directly from an input device., Alternatively text
may be loaded into memory and then assembled, 1If enough storage
is available to hold the whole of the source text, the second
pass can be made using this stored copy in memory, thus bypassing
the relatively slow process of rereading the scurce from a
cassette file. Should errors occur, there is a built-in editing
facility, allowing corrections to be made to the stored copy

of the source program. The program may then be reassembled.

The corrected source text can be saved.

Programs to large to fit into memory in their entirety may be
read in on a page by page basis, where a page is a number of
lines of source text delimited by a form feed character. The
input device or file can be reselected at any stage during
this process allowing text modules to be combined. Errors
encountered during pass one may be corrected and the source
reassembled page by page without the need to restart assembly.
Again these features are intended to speed up the process of
program development for users whose systems have limited inmput/
output capability, such as audio cassettes, where ccntinual
loading of assembler and editor and the creation of updatad

files can prove a2 very time consuming proc

[(0]

sS.

11-2.3

RESEARCH MACHINES RML Z80 ASSEMBLER

Using a machine with 16K bytes of memory, about half is available
for storing source text.

-4

yo
1

1=
i

RESEARCH MACHINES RML 280 ASSEMBLER

INPUT/OQUTPUT

ZAS accepts source text from one input stream. Output is sent
to three output streams, identified by the numbers 1 to 3.
Output streams are associated with the following information:

STREAM 1 Listing file (pass 2 oanly)
Symbol table listing.
Output of source text from memory (see SAVE option).

STREAM 2 Error messages produced on pass 1 or 2.
STREAM 3 Hexadecimal object code (pass 2 only).

Input and output sStreams can be connected to any of the I/O
devices associated with the system. ZAS can cope with up to
eight input and eight output devices which are associated with

the numbers 0 to 7. About half the I/0 devices have been alloca-
ted within ZAS; users may add their own device handlers if they
wish.

Input Device Codes

Code o Device
Memory
Keyboard
2% Cassette File System
3* Teletype (using RML SIC2 or SIOS3

interface)
4 - 7 Unallocated

RESEARCH MACHINES RMI, Z80 ASSEMBLER

* Ipput from these devices i1s automatically copied into

memory during pass 1 until the available storage is exhausted.

It is possible to assemble a program typed directly in from the
keyboard; however this is not recommended (and such ipput is
not copied into memory). Users are advised to use the resident
editor to create such programs and then to assemble them using

input from memory.

Output Device Codes

Code Device

Null device

VT screen

Cassette File System

Teletype (using RML SIO02 or SIO3
interface)

4 -7 Unallocated

w N = O

The ‘'oull' device is provided as a convenient way of suppressing

unwanted output.

Whenever the assembler is restarted at its cold start address,
it is set up to read from memory and all output is directed to

the VT screen.

ASSEMBLER SYNTAX

Various versions of 280 assemblers have had somewhat differing

conventions regarding the format of instructions. The

following sections are intended to clarify any differences
11-5.2

RESEARCH MACHINES RML Z80 ASSEMBLER

between the RML assembler and the Zilog (or Mostek) manual:

Instruction Format

The only delimiter allowed between the two narametets of an
instruction is a comma. Thus

LD A,B

is correct, whilst

LD A B

will result in an error message.

8 bit Arithmetic and Logical Group

ZAS accepts either a one parameter form of these instructions
where the destination is assumed by context to be the A register,
or a two parameter form where 'A' is explicitly included. All
the following examples are accentable:

ADD 4,C or ADD C
ADD 4,24 ADD 24
CP 4,20 CP 20
XOR 4,C XOR C

Relative Jumns

Examples of these are:

JR LABEL
JR Z,LABEL
DJNZ LABEL

RESEARCH MACHINES RML Z80 ASSEMBLER

The assembler constructs the relative offset jump of
LABEL -($ + 2)

Note that Decrement and Jump if non zero is written as above and

not as DJ NZ,LABEL.

Interrupt Mode Instructions

These are written IMO, IMl and IM2, without spaces preceding
the digit.

Additional Instruction Names

Two additional names have been intvoduced to exploit features

inherent in the COS Monitor:

Relative Procedure Call:

CALR LABEL

This effectively performs a procedure call to LABEL, where
LABEL is within +129 to -126 locations of the call (the same
construction as with a JR imstruction). This form of procedure
call may be exploited in writing position independent code, It

is equivalent to

RST 20H
LABEL=-$-1

Emulator Trap:

EMT VALUE

11-5.

[¢])
'

RESEARCH MACEHINES RML Z80 ASSEMBLER

This is equivalent to

RST 38H
VALUE

Label

A label is composed of a2 string of one or more characters of
which the first six must be unique. The pemitted characters

are

Letters, Digits and Period (.).

The first character must not be a digit. The assembler will
distinguish between upper and lower case letters. The reserved

system defined names use only upper case letters.

Labels must be followed by a colon (:).

Multiple labels at a givel statement are allowed.

Assignments

A user defined symbol can be given a value by assignment of the

form:

NAME EQU expressiocn ot
NAME = expression

where NAME satisfies the above conditions for a label but does
not have a terminating colon. The expression on the right

hand side is evaluated during Pass 1 and thus cannot include
any forward references. It is worth noting that short names

space in the symbol table than long names; this mey

n

use les

®

become significant where space is a2t 2 premium.

11-3.53

RESEARCH MACHINES RML Z80 ASSEMBLER

Number Bases

The assembler will accept numbers in several bases viz. bipary,
octal, decimal and hexadecimal. Numbers must always start with
a digit (leading zeroes are sufficient) and may be followed
by a single character to signify the base of the number, as

‘follows:

B Binary

0 or Q Octal

D.or . Decimal

H Hexadecimal

If no base is specified, the current default will be used, This
is initially set as Decimal at the start of each pass. The
default radix may be changed to Octal by the pseudo-op
instfuctionr .

RADO ; change default radix to Octal.

The default may be changed back to decimal by a pseudo-op call

of the form:
RADD ; change default radix toc Decimal.

For example

DEFB 44 ; 44 decimal

RADO

DEFB 44 ; 36 decimal = 44 octal
RADD

DEFB 44 H 44 decimal

RESEARCH MACHINES RML 280 ASSEMBLER

Comments

The occurrence of a semi-colon (;) indicates that the remainder
of the line is to be treated as a comment, to be igmored by the
assembler. The only exception is when a semi-colon occurs in

the cootext of a2 text string.

Expressions

An expression may consist of either a single term (unary) or

a combination of terms (binary). It consists of a series of
valid arguments connected by operator symbols. The expression
is evaluated from left to right ipn an order determined by the
priorities of the operator concerned. Parentheses can be used
to ensure correct grouping of terms MNote however that as a
parameter to an instruction, an expression wholly enclosed

in parentheses will be interpreted as a memory address. The

arguments of an expression may De

1. A constant (eg. OAH)

2. A user defined value, appearing elsewhere on the left
hand side of an assignment.

3. The current location counter, denoted by the symbol 3

4. An ASCII character (eg. 'A').
The operators are
Svmbol Cperation Prioritv

- §)
; Unary plus Yighest priority

P
—

- Unary minous

RESEARCH MACEINES RUL 280 ASSEUBLER

Symbol Operation Priority

% Modulo 3

+ Addition 2

- Subtraction 2

& Logical AND 1

! Logical OR 1 Lowest priority
? Logical XOR 1

Expressions are evaluated using 16 bit arithmetic with no

check for overflow except for the case of division by zero,
which generates an error message. ANy undefined user name
encountered is given the value zero. An expression may be
used in any context in which & pumeric result is expected.
The fipal value of an expression will be checked in context

to determine its wvalidity.

Origin Settings

Two pseudo-op instructions are available for this purpose:
1. CORG expr

sets the current location counter to tﬁg value 'expr'.

2. DEFS expr

reserves 'expr' bytes, that is, advances the current locatiocn

counter by 'expr'.

Remember that expressicrs are evaluated during Pass 1 and thus

may not meke forward references.

[
o
i
O
w

RESEARCH MACHINES RML Z80 ASSEMBLER

Text Strings

A string of text may be assembled using the pseudo-op

instruction:
DEFM 'string'

The characters enclosed between string quotes (') are assembled
as a series of bytes of the corresponding ASCII values. The
character uparrow (#) has a special significance within a

text string and should always be considered together with the

following character as a single entity.

An uparrow followed by a single quote will assemble the single

quote character, For example
DEFM 'donA't! ; = don't

Two uparrows in sequence assemble & single uparrow. For example
DEFM 'xPh2+yM2t ;= x42 + yA2

in all-other cases the effect of the uparrow is to force the
most significant bit of the byte to be set., For example
DEFM 'a' ; = 4lH
DEFM "MA' ; = 41H + 30H = OClH

Assembling 8 bit Constants

8 bit coostants can be defined using the pseudo-op

This differs from the Zilog definition in that multiple
values are permitted. An item terminated by & comma prompts
the assembler to look for a further item. Spaces or tab
characters may be included after the comma and before the

next item.

Assembling 16 bit Conmstants

16 bit constants can be assembled using the pseudo-op:
DEFW Al1+30,8+6,...

Each item will occupy 16 bits (2 bytes) of memory. As in the
case of 8 bit constants, a comma is used to separate items in

the list.
Free Format '

To aid ip the conmstruction of data tables, a2 'Free Format' mode
is available. This effectively combines any of the terms
associated with the pseudo-ops DEFB, DEFW and DEFM. The
assembler recognises that a given line is to be interpreted in
free format by the first significant character following any
label specifications. These characters are:

Digits + -3 (and '

The free format lines may consist of any number of terms each

separated by a comma. Terms are assigned a data type according

to the following rules:

- Expressions are regarded as bvte (8 bit) values.
- 1 Li
- Expressions presceded dy a hash (#=) are assembled as word

(16 bit) values.

RESEARCE MACHINES RMI. Z80 ASSEMBLER

-~ Items starting with a single quote (') are assembled as
text strings. '

Thus
10,20 is equivalent to DEFB 10,20
410420 DEFW 10,20

"text' DEFM 'text'.

An example of using free format to construct a table follows:

; NAME AGE ADDRESS
TABLE:
'JOHN', 25, #1234
‘s, 18, $6666

Note that the hash character will echo as &£ on the VT screen.

Byte and word entries may contain any valid expressioo. In
the case of byte entries the result must yield a valid 8 bit
result. Care should be taken in free format with expressions

involving character values. For example
'A'+3 (which should yield the value of 44H)

In this context the opeming text quote will cause the assembler
to attempt to interpret the remaining characters as a text string
and it will generate an error message on encountering the

illegal plus sign following the string. The problem can be
avoided by ensuring that the text quote is never the first

character. The following examples are all valid:

+'A'+3 ;= G4H
34140 ;o= L4H
E'a'+3 5 = 0064H

RESEARCH MACHINES RML Z80 ASSEMBLER

END Statement
The final statement of the source text should be of the form
END on

Any text following this statement is ignored by the assembler.
On Pass 2 the assembler will generate coding on the object
output stream which allows the loader program to perform an

automatic start at the memory location definmed by the

? 1

on'., If 'on'

expression is not specified, a value of zero

is assumed. Note that this may be undesirable as a jump to
location zero has a similar effect to pressing the reset
button (for example transfer vectors im RAM are reset to their
default values). 1In the situation where an automatic start is

‘on' may be

not desired but it is wished to avoid a reset,
specified to yield the value 3; this will start COS at its

restart address and is equivalent to typing control-C.
The message 'END OF PASS' is generated at the end of each Pass.
Restrictions
The following are not available at present:
. Macro facilites
. Conditional assembly directives

1
2
3. Object code is not relocatable
4

. Symbols may not be redefined.

