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Introduction

THE ADVENTURE AND EXCITEMENT OF PERSONAL COMPUTING

Bob Adams sits down in front of the computer terminal. He presses some
keys on the keyboard and a message appears on the screen:

HELLO BOB

TODAY IS WEDNESDAY

TIME IS 12:30 P.M,

OUTSIDE TEMPERATURE IS 10°C

INSIDE TEMPERATURE 1S 20°C

ALL SYSTEMS ARE OPERATING CORRECTLY

Bob hits another key. A new message appears on the screen.

THE FOLLOWING PROGRAMS ARE ON-LINE:
CHESS

CAl
QPTIONS
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Bob types ‘‘chess” on the keyboard. Immediately a chess board appears
on the screen with a full array of chessmen and the message:

DO YOU WISH ME TO OPEN?

Bob types ‘‘yes’” and the game is under way. Bob is playing chess with the
computer.

Bob is doing all this at home. In his own study, with his own home-built
computer. It may sound like science fiction from the year 2000, but it isn’t. It’s
today and Bob is not unique. He is one of thousands of computer hobbyists who
have built their own home personal computer systems. In fact, Bob found that
building his computer was as exciting as using it.

Two years ago Bob was very ignorant about computers. Quite by chance
one day, he passed a computer store. Being curious he went in and he found it to
be a fascinating place. He spent 2 hours playing with several demonstration
systems that were in operation. Bob learned of the kits that were available, and he
bought some books on computer basics. He also went to some meetings of a local
amateur computer club. He learned from his reading and from other hobbyists
that computers, although very powerful machines, are not really that compli-
cated.

As he came to know more about computers he realized that a computer is
really nothing more than a machine, but it is the ultimate machine. Machines are
designed and built by man to perform operations previously done by man him-
self. Machines can usually do these tasks better and faster. For example, the
automobile performs the job of transporting us from one place to another, which
was previously done only by our legs. But, in many cases, the automobile does it
better and faster.

The computer is taking over operations previously done only by our brain.
We could say that a computer is man’s attempt to emulate the human mind. The
mind is the central control center of our bodies. The computer is also a control
center. Today’s computers can perform many tasks performed previously by
human minds. As such, it becomes an extension of the human mind, enabling us
to do things better and faster.
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It is these realizations that so excited Bob. Finally, Bob decided to build
his own computer.

IT'S EASY TO BUILD A HOME COMPUTER SYSTEM

Bob consuited some of the computer club members and he got advice on
which kits to buy for his intended system. Bob already had experience in assem-
bling a kit—a Heathkit hi-fi receiver.

Much to his amazement he found that the computer kits were simpler than
that of the hi-fi receiver. However, the instructions were not always clear and
there were a great many unfamiliar terms. He proceeded slowly, consulting his
computer club friends and the computer store owner. He found that many of the
components were similar to his hi-fi kit, and assembling the electronics required
basically the same tools he had used for his hi-fi kit.

He built one unit at a time. First he assembled the TV terminal and then
the keyboard. He connected it to his TV receiver and was delighted when he saw
the screen fill up with alphanumeric characters. Following the checkout proce-
dure in the manual, he found that he could type on the keyboard and the charac-
ters appeared on the TV screen. He had, in effect, assembled a *“TV typewriter.”’

He was eager now. He proceeded to assemble the central processor unit,
called a CPU for short. Following the manual, he performed some simple electri-
cal tests with an inexpensive voltmeter. It passed the electrical tests.

Now the day came. Bob connected the TV terminal to the CPU. He turned
on power and pressed the reset switch. The computer responded by typing
“‘ready’’ on the screen. Bob jumped for joy. The computer was communicating
with him, telling him it was ready to be programmed.

Bob was now over the hardware phase of building his system, and he had
done it in only a few weeks of spare-time activity. He felt a sense of accom-
plishment.

WHAT DO PEOPLE DO WITH HOME COMPUTERS

Now that Bob had his computer system working—or, as the pro’s say,
“*his hardware was operational”’—Bob found that a lot more work was required
to make his computer really work. This is what the pro’s called the software
phase. Software is the program—the instructions, to tell the computer what to do
and how to do it.

The computer brain, as created, is essentially empty . . . like a newborn
baby. Just as it is the responsibility of parents to teach an infant what to do and
how to do it, the computer must be trained for its tasks. This training is called

programming.
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Bob attended some classes in programming run by his computer club and a
nearby college. He found that the computer understood a limited set of instruc-
tions, and that with these, a language could be constructed to make it easier to
communicate with the computer.

Bob learned that there was a simple computer language, called BASIC,
already available for his computer system. He soon learned how to educate his
computer quickly by loading the BASIC language into the memory of his com-
puter, using an ordinary audio cassette recorder. The entire process took only a
few minutes, and Bob now had an intelligent computer system. He could now
communicate with the computer by using ordinary English words like ‘‘let’” and
“‘print.””

Soon Bob found that he could instruct the computer—in the BASIC
language—to maintain his financial records, calculate things like interest and
depreciation, and even help prepare his income tax return. As Bob came to have
a better understanding of hardware and software, he found that his system was
extremely versatile and could be expanded to handle the storage of records,
control the operation of appliances, and even work as an intelligent typewriter
(the pro’s call this word processing). At computer club meetings he heard about
other applications for which home computers are being used. He saw both a
computer-controlled robot built by a young high school student and a computer-
controlled amateur radio station. He learned of how one amateur uses his com-
puter to assist him in playing the stock market; and he discovered many of the
marvelously sophisticated games that could be played with computers.

WHAT THIS BOOK IS ABOUT

This book is intended to be a handbook and primer for those new to the
field of personal home computers. It provides the necessary background in digital
logic fundamentals, number systems, computer hardware, and software basics.
Only a minimal knowledge of electronics is required. The theory is presented in a
straightforward manner without need to resort to complex theorems. The em-
phasis is on the important practical knowledge that the home computer user
should have to be able to purchase components intelligently, assemble them, and
interconnect them.

The material contained in this book has been organized into four basic
sections: background information (Chapters 1 through 4), personal computer hard-
ware (Chapters 5 through 9), personal computer software (Chapters 10 through
13), and personal computer applications (Chapter 14).

Further, it provides an introduction to the area of programming on both the
lower machine level and the use of higher-level languages such as BASIC. This
book will also serve as a reference handbook. Hence the reader can keep it handy
to look up facts and definitions, as required, when reading other books.
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This book is esentially an overview of the entire subject. The subject is far
too extensive to be covered thoroughly in such a short book. Hence, many
references are given, at the end of each chapter, for further in-depth reading. Addi-
tionally, the reader might also wish to study the author’s other texts—one
entitled Fundamentals and Applications of Digital Logic Circuits, also published
by Hayden Book Company, Inc.; the other on microcomputer interfacing, which
is now in preparation.

The author at work on a typical home personal computer system.




1.

Computer Codes,
Bits, Bytes, and Arithmetic

When we count, we are using a code. We use a code based on the number
10. This code was adopted by man thousands of years ago, probably because
man has ten fingers on his two hands. Thus we count 0, 1,2,3,4,5,6,7,8,9,
10, etc. We call this “‘base 10.”’

A computer uses only switches. Actually, transistors are used as electronic
switches. A switch has two positions, open and closed. Hence, it has only two
states and we say that it can count by two. Fig. 1-1A illustrates a simple switch-
ing circuit consisting of a switch, lamp, and power source. When the switch is
open, the lamp is unlit, and when it is closed the lamp is lit.

A
SWITCH

B

power L+
SOURCE - Lap

Fig. 1-1. Simple switch-lamp binary counting circuit.

BINARY NUMBERS

When the lamp is unlit we consider this a count of zero (0) and when it is
lit, itis a count of one (1). There are only these two counts (or states) and hence it

6
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is called a binary system, meaning two states. Therefore, computers that use
switching circuits are called binary computers.

To count to higher numbers we can add switches and lamps, as shown in
Fig. 1-1. Two switches (Fig. 1-1B) allow us to count four states:

Binary

B

4200

A

Sa0 a0

Decimal

WN = O

Three switches (Fig. 1-1C) permit us to count eight states.

aaaaw0000 | O

G = Y . I Y

Binary
B

“~0-0=20—0 |3

Decimal

~No oA~ = O

We are actually counting to the base 2. Hence the A column has a value of
1 (2%, the B column is 2 (2%), and the C column is 4 2%.

If we added a fourth switch and lamp, it would have a value of 8 (2%), and
we could count 16 states. (28 + 22 + 2! + 2° =8 + 4 + 2 + 1 = 15, which
when added to the zero state gives us the 16 states.)

Binary

(o}

w©
>

Decimal

4adabaamaaasawno0oc00000 |O

e 1210000 244220000

A e 00 A 2002002200

L0 010204020 =0=0O

CENOUN AW =O
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We could continue increasing the number of switches to count to larger
numbers. Our binary numbers use only the digits 0 and 1. Each digit is called a
binary bit, and a group of bits is called a binary word. We usually group the bits
into groups of 8 bits and refer to such a grouping as a byte. The A-bit would be
called the LSB (least significant bit) and the D-bit would be called the MSB (most
significant bit).

Converting from Binary to Decimal and Vice Versa

To convert from binary-to-decimal we sum the place values of the 1-bits.
For example, convert the binary number 10010111 to decimal, as follows:
27 28 25 2t 28 22 2! 20 «Base-2 values

128 }( }( 16 X 4 2 1 <Decimal place values
1 0 0 1 0 1 1 1 <«Binary value

128+ 16+ 4 +2+ 1= 151

Notice that we have summed the decimal place values for all the 1-bits.
The decimal place values for the 0-bits are ignored.

Now to convert from decimal-to-binary. This is done by subtracting the
largest base-2 value from the decimal number, then subtracting the next largest
subtractable base-2 number from the remainder. A 1 is used for each base-2 value
subtracted and a O for each value not subtractable. Here is an example—convert
decimal 182 to binary as follows:

182 decimal number
-128 27(128) —————1
54 25(64) not used—0

-32  253)———1
22

-16  2416)—————1

6 2%8) not used—0

-4 24—
2

[ I v E—

0 2%1) not used—0
1824, = 10110110, —

OCTAL AND HEX NUMBERS

The computer works with binary words. However, humans have difficulty
working with larger binary numbers and have adopted other codes to simplify
computer work. The two most used codes are the octal and hexidecimal (called
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hex for short) codes. The octal code is based on grouping the bits into groups of
threes. For example:

011 000 101 110 binary

! J { I
3 0 5 6  octal

It is much easier to remember octal 3056 than its binary equivalent of
011000101110. Thus, to convert from binary to octal, group the bits into groups
of three each and convert each 3-bit group to its octal number. It is called
octal since only eight numbers, 0-7, are used.

Here is another example: Convert 1234 (octal) to binary:

1 2 3 4q

4 l ¥ \
001 010 011 100,

Notice the subscripts 8 and 2 are used to indicate the octal and binary numbers.

Hex code is also very popular because it is even easier to remember than
octal. To convert from binary to hex, group the bits into groups of four. Note that
to represent 16 states it is necessary to use letters as well as numbers as follows:

Hex Decimal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 1" 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

To convert from binary to hex, group and convert as follows:

0110 0010 1110,

I J {
6 2 Ey

This is the same number we converted originally into octal 3056. Note now
that only three hex digits are needed compared to the four octal digits. Fewer
digits make the number easier to remember and cut down the chance for errors to
be made. Observe that a subscript H is used to denote the hex number.
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If we wish to convert from octal to hex or vice versa, an easy way to do it is
to convert to binary first. For example, to convert from 5Fy to octal:

5 ™ +—Hex
'l N
oioT 1111}  +—Binary
| — | -
1 3 7 «—Qctal

Several other computer codes are used, but octal and hex are the most
popular. When communicating between the computer and a terminal, such as a
Teletype*, an expanded code which can be used to denote all the printable charac-
ters and control codes is required. For this purpose the computer industry has
standardized on the ASCII code (American Society for Communications Interface
and Interchange). The ASCII (pronounced as-key) code uses an 8-bit byte and is
included in Appendix A.

BINARY ARITHMETIC

We can add binary numbers in a manner similar to adding decimal num-
bers. Here are the four basic rules:

Rule 1, Rule 2, Rule 3, ) e— Rule 4, D @
0 1 O1 carry 11 carry

+0 +0 +1 +11

0 1 10 110

In Rules 3 and 4 note that a carry is generated from the previous column to
the next column. Here are two examples:

Decimal Binary
1y <« carry
5 — 101
+6 +110
11 1011
111 <« carry
Ay
23 10111
+ 7 > +00111
30 11110

Binary Subtraction

Most microprocessors use a technique called 2’s complement subtraction.
In this way the basic adder circuit can also be used to perform subtraction. The
technique requires that the number being subtracted be complemented and a 1
added to it. To complement a binary number means to change each 1 to 0 and

*Registered trademark of the Teletype Corp.
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each O to a 1. Then adding a 1 to the complemented binary word makes ita2’s
complement. For example:

Binary number Complement 2's Complement
101 —— 010 +1= ot1
0001 —— 1110 +1= 1111

Subtraction is performed by adding the 2°s complement of the number
being subtracted to the number from which it is being subtracted and disregarding
the last carry. Example:

Decimal  Binary 2's Complement

10 1010 ——— 1010 (no change)
-6 ~0110 — 1001+1->+1010 (2's complement)
4 @0100

. disregard last carry

Another example:

14 1110 —— 1110
— 9 —1001—0110+1—> +0111
5 30701

disregard last carry

When the last carry = 1, the answer is positive. When the carry = 0 (no carry),
the answer is negative and is the 2’s complement of the result.

Binary Multiplication

Binary multiplication is similar to decimal multiplication. The technique is
called summing partial products. The following rules apply:

Rule 1, © Rule 2, 0O Rule 3, 1 Rule 4, 1
X0 x1 x0 x1
0 0 0 1

To multiply we find all the partial products, shifting each to the left one
place and summing the partial products. In this way the operation can be done by
the adder circuit in the computer. For example:

9 1001
x5 x 101
45 1001
0000  <>partial products
1001

101101 <final product

BCD NUMBERS

Most calculators and some computers use a BCD code (binary-coded-
decimal). Although this code uses more bits it is easier to handle. The code
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consists of using 4-bit binary groups to represent the decimal digits O through 9.
Hence, there will be a 4-bit binary group for each decimal digit. For example, the
decimal number 185 would be represented as follows:

185

SN

0001 1000 0101

BCD arithmetic is performed somewhat differently than binary arithmetic.
For example, each 4-bit group is added in standard binary fashion. However, if
the sum is greater than 10015(9,), then a carry is generated to the next group,
and 1010,(10,) is subtracted from the group. Here is an example.

1 1 11 <—carrys
152 0001 0101 0010
+ 97 +0000 1001 0111
249 0010 1110 1001
-1010

0010 0100 1001
Most microprocessors have instructions which facilitate BCD arithmetic
operations.

Recommended Further Reading

1. Sol Libes, Fundamentals and Applications of Digital Logic Circuits, Revised Second
Edition, Hayden Book Co., Inc., Rochelle Park, N.J., 1978.




2.
Digital Logic

The circuitry of a computer consists of millions of electronic switches.
These switches are arranged to perform operations and make decisions and hence
are called logic circuits. Present technology can house thousands of switching
circuits in one case called an integrated circuit (Fig. 2-1).

Fig. 2-1. Typical integrated circuit.

The switches are actually transistors which are caused to tum on or off. For
shart, we call an integrated circuit an IC.

LOGIC STATES

In our simple logic circuit (Fig. 2-2) we indicate that the switch is ON by a
1 and OFF by a 0. Often a +5 V (actually between +2.4 and +5 V) is usually
taken to be a 1-logic level and 0 V (actually 0 to 0.4 V) a 0-logic level. We may
also say that a 1 is a high or hi logic level and a O is a low or lo logic level.

Fig. 2-2. Simple logic circuit.
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DIGITAL LOGIC GATES

Logic circuits are electronic circuits that switch between logic-0 and 1
states. They are like switches that open and close and are, therefore, referred to
as gates. A gate has two or more inputs and one output. This output occurs when
certain conditions are met. The gate’s operation is analyzed with a truth table
which shows all input and output possibilities of the gate.

The very earliest gate circuits used relays. Later, vacuum tubes, diodes,
and transistors were used. Today, gates are made from integrated circuits (ICs)
almost exclusively. The IC is a plastic or ceramic package which contains tran-
sistors, diodes, and resistors assembled to form gates. Therefore, it will be better
to concern ourselves with the gate as a functional block rather than the inner
workings of the circuit.

There are three basic logic circuits. They are the AND, OR, and NOT
(inverter). All other logic circuits are built from these basic logic circuits.

The AND Gate

The AND gate (Fig. 2-3A) has two inputs. When one or both inputs = 0,
the output is 0. Only when both inputs = 1 will.the output = 1. It operates in the
same way as two switches connected in series (Fig. 2-3B). Only when switches
A and B are closed (1 position) will the lamp light (1).

[_—0/' [N g

A Y

INPUT Y pOUTPUT v I=LIT

{BD— } i 5 0= UNLIT
(a) (8}

Fig. 2-3. A 2-input AND gate (A) and equivalent switch circuit (B).

Only when A and B are 1 will Y (output) be 1, hence the name AND gate.
If either or both switches are open, or 0, no current will flow through the
switches and there will be a 0 output (Y).

We can construct a truth table (Table 2-1) which describes the output Y of
the AND gate. It shows that there are four possible combinations of input states

Table 2-1. 2-Input AND Gate

Inputs Output
B A Y

~ 0o
—ocoo

o]
1
0
1
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giving 1 and 0 at the output. In three of the combinations Y = 0. Only if A and B
are 1 willY = 1.

The number of gate inputs can be increased, just as the number of switches
can be increased. Figure 2-4 is a 3-input AND gate with its switch equivalent
circuit. The truth table is shown in Table 2-2. Notice that the 3-input gate has eight
possible states, but again only when all inputs = 1 will the output = 1. Figure
2-5 shows the pin-out diagrams for three popular IC AND gates.

Table 2-2. 3-Input AND Gate

A
=Dy
Inputs Output
() cC B A Y
000 0
ho B Coo 001 0
IR VI iV 010 0
01 1 0
v Y 1t 00 0
T 1.0 1 0
110 0
8 111 1
Fig. 2-4. A 3-input AND gate (A) and
equivalent switch circuit.
|—2 5V [-14 |12 +5V —14 | — +5V—14
3— @—lz 3 12 3~ — 12
4— = ) 1 4 — =1
5—@ 10 5— —10 5 — +—10
6— —9 6— —9 6 — —9
7— GND —8 7— 6ND —8 7— 6ND —8
7408 7411 7421
QUAD TRIPLE DUAL
2-IN AND 3-IN AND 4-IN AND

Fig. 2-5. Popular AND gate IC packages.

The diagram shows the pin connections within the IC. Note that a dot on
the IC case usually indicates pin #1. On a 14-pin IC pins 7 and 14 are often used
for the ground and +5 V connections, respectively.

Frequently when constructing circuits it is necessary to convert a gate with
many inputs to one with fewer inputs. Two methods for doing this are shown in
Fig. 2-6; in both, the 3-input AND gate will function as a 2-input AND gate.
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5V Fig. 2-6. Two methods of converting a
3-input AND gate to a 2-input !
AS g ST o SRR < 1
The OR Gate

The schematic symbol for an OR gate is illustrated in Fig. 2-7A. The
2-input OR gate will have a 1 output when A or B = 1, hence the name OR
gate. The equivalent switch circuit is shown in Fig. 2-7B. Note that the two |
switches are in parallel so that if switch A or B is closed, current flows and lights !
the lamp. The truth table is shown in Fig. 2-7C. The logic symbol, equivalent

Fig. 2-7. The 2-input OR gate. A

@
— o[- e

A

s:D_Y
Y

(a) T I=L

(8) (c)
Fig. 2-8. The 3-input OR gate. A g
1
B 0 INPUTS [ OUTPUT
| CBA Y
c 000 0
A 0 001 [
8 010 ]
100 [ i
) Y 101 [
I=LIT 110 I
I 1
(8) (c} |
!
|
Fig. 2-9. Pin-out diagram for the 7432 quad ) sy l—14
2-input OR gate IC.
2 3
3 12 |
4 1l
5— —10
6— —9
7— GND —8 :
|
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switch circuit, and truth table for a 3-input OR gate are shown in Fig. 2-8.
Figure 2-9 shows the pin-out diagram for a popular IC OR gate.

The NOT (Inverter) Gate

The NOT circuit, usually called an inverter (Fig. 2-10), inverts a logic
level. This is indicated by a circle, usually called a bubble, at the gate’s input or
output. A bar is placed above the input or output letter (A) to represent the
opposite (inverted) logic state. It is said that the circle and bar indicate the action
of complementing and negating. Hence, if the inverter input = 0, the output = 1;
and if the input = 1, the output = O (Fig. 2-10A and B).

INPUT ouTPUT INPUT ouTPUT
A i R A

(A) (8)

R
o i INPUT [ OUTPUT
L 3 0 ]
r v i 0
(c)

(D)

Fig. 2-10. The inverter or NOT gate.

In other words, the output is always the opposite state or complement of
the input and hence, NOT the input. The equivalent switch circuit and the truth
table are shown in Fig. 2-10C and D, respectively. Note that a resistor is used in
the switch circuit in order to prevent the power source from being short-circuited
when the switch is in the 1 position. Figure 2-11 illustrates the pin-out diagram
for a popular IC inverter.

45V 15

14

—I13

Gy
DI

Fig. 2-11. Pin-out diagram for the 7404 hex-inverter IC.
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The NAND and NOR Gates

The NAND and NOR gates are the most widely used logic gates, because
any type of gate can be made from them. There have been entire systems built
exclusively with NAND or NOR gates. Hence, they are considered to be univer-
sal gates.

The NAND is basically an AND gate followed by an inverter (Fig. 2-12A).
Hence, the logic symbol is an AND gate symbol with a bubble on the output
(Fig. 2-12B). The equivalent switch circuit and truth table for the NAND gate are
shown in Fig. 2-12C and D. Only when A and B = 1 will the output = 0.

() (8)
R
o li
A INPUTS[OUTPUT
-4 M B A ¥
T 04! 00 ]
8 or | 1
|10 I
R
(c) (0)

Fig. 2-12. The NAND gate.

The NOR gate is essentially an OR gate followed by an inverter (Fig.
2-13A). The logic symbol is, therefore, an OR gate symbol with a bubble at the
output (Fig. 2-13B). The equivalent switch circuit and truth table are shown in
Fig. 2-13C and D. When A or B = 1 the output Y = 0.

coco-

Fig. 2-13. The NOR gate.
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It is possible using only NAND or only NOR gates to perform any type of
gate operation. Figure 2-14 shows how NAND and NOR gates can be used to
build all other types of logic gates. Figure 2-15 shows the pin-out diagrams of
several popular NAND and NOR gate ICs.

The X-OR and X-NOR Gates

The exclusive-OR, popularly called X-OR, and the exclusive-NOR, or
X-NOR, gates are widely used gates actually made from the previous gates. They
compare inputs and are often called comparators.

The X-OR gate symbol is shown in Fig. 2-16A with its equivalent switch
circuit (B) and truth table (C). The circuit compares switches A and B (inputs).
When the input states are opposite, current flows through the lamp and it will
light (=1); when the inputs are the same the lamp will not light. The X-OR gate
can thus be considered an inequality detector.

The X-NOR gate symbol is shown in Fig. 2-17A with its equivalent switch
circuit (B) and truth table (C). The circuit compares input A and B and when they

USING NAND GATES USING NOR GATES

A A
INVERTER
A
AND A
]

A
NAND
B

EXCLUSIVE
OR

[:1

Fig. 2-14. Using NAND and NOR gates to perform basic logic functions.
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Fig. 2-18. Building X-OR gates using basic gates and the 7486 quad X-OR
gate IC

are identical Y = 1. The X-NOR gate can thus be considered an equality detec-
tor.

The X-OR gate can be built using basic gates (Fig. 2-18A and B), and an
IC X-OR gate is shown in Fig. 2-18C.

THE PARITY-BIT AND ERROR-CHECKING

The X-OR and X-NOR gates find wide application in computer data
transmission systems. Binary words are often checked as they are sent from one
point to another to see that no error has occurred due to noise or equipment
failure. This is done using X-NOR gates to generate a parity-bit.

The parity-bit is added to the data word and is used to check for errors.
Even-and odd-parity systems are used. In the even-parity method, a 1-bit is added
to the word if the number of 1-bits in the word is odd. In the odd-parity method,
the 1-bit is added if an even number of 1-bits exist in the data word.

Figure 2-19 shows a system utilizing a 5-bit receiver input, where 4 bits
are used for data and 1 bit is the parity-bit. The parity-bit generator circuit
compares the 4-bit data word and generates the parity bit, so that the transmitted
word consists of 5 bits. The parity-bit generator output = 0 for an odd number
of s in the data word and the output = 1 for an even number of 1s in the data word.
At the receiving point a parity-bit detector is used to compare the received word
to the parity-bit. An error output is generated if they are not consistent.
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Fig. 2-19. Parity-bit method used in data transmission system.

ARITHMETIC CIRCUITS

Binary addition (discussed earlier) is accomplished using half-adder and
full-adder circuits. The half-adder circuit (Fig. 2-20A) sums two binary bits and
produces the sum and carry. The functional block symbol for the half-adder (HA)
is shown in Fig. 2-20B.

:_:)D— SUM 2]

—SUM
INPUTS HA OUTPUTS
CARRY B — o | CARRY

(A) (8)
Fig. 2-20. The half-adder circuit.

>
[

@
o

The full-adder (FA) is shown in Fig. 2-21A. The FA sums two binary bits
and the carry from a previous HA or FA. It produces a sum and carry. The
functional symbol for the FA is shown in Fig. 2-21B.

Cin A s s
HA A—A  S—SUM
A—A S8 ¢, 8—B FA
Ha 5:: c Cin—1Ci  Cof—CARRY
88 G 0
(A) (8)

Fig. 2-21. The full-adder circuit.

A circuit to add binary words (Fig. 2-22) is called a parallel-adder circuit
since it adds all bits at one time. The circuit will sum two 4-bit words. It consists
of aHA and 3 FAs. The LSB (least significant bit) requires only a HA since there
is no carry-in.
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Fig. 2-22. A circuit to add two 4-bit words.

DEMORGAN’S THEOREMS

A very important facet of working with logic gates is referred to as De-
Morgan’s Theorems. These theorems are as follows:

1. A NAND gate performs the same logic function as an OR gate with negated
inputs. This is shown in Fig. 2-23A and B. Fig. 2-23C shows the truth
table which applies to both circuits.

2. A NOR gate performs the same logic function as an AND gate with negated
inputs. This is shown in Fig. 2-24A, B, and C.

A:D__{>°_ y = v INPUTS | OUTPUT
8 B A| Y
8 LY
00 |
o1l
A A o
. v=; ¥ VY e
(a) () (c)

Fig. 2-23. The equivaiency of NAND and negated input-OR gates.
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Fig. 2-24. The equivalency of NOR and negated input-AND gates.
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The equivalency of these gates enable the use of NAND gates to be used as
OR gates and the use of NOR gates to perform AND operations.

It is, therefore, very important to note where the bubbles appear on logic
gate symbols. For example, a bubble at an input and no bubble at the output
indicates that O-logic levels at the input will produce a 1-logic at the output. The
showing of a NAND gate on a schematic as a negated-input-OR gate often better
describes to the reader the logic operation being performed.

BUILDING INVERTERS FROM OTHER GATES

Frequently inverters are made using NAND, NOR, and X-OR gates. This
usually occurs because of unused gates in IC packages and the desire to use as
few ICs as possible in a system. Figure 2-25 shows how an inverter is built using
these gates. Note that the X-OR and X-NOR gates may also be used as controlled
inverters if the input, which is shown = 0 (X-OR) or 1 (X-NOR), is used as an
enable input. Note also that the arrangements shown in Fig. 2-25A and C are
preferred to B and D since this method presents less of a load to the driving

circuit.
|
- A - A _
O D D

(A) () , 8
(8) (0) * (F)

Fig. 2-25. Using NAND, NOR, X-NOR, and X-OR gates as inverters.

ENCODER AND DECODER CIRCUITS

Logic gates are employed to perform logic functions. In this introductory
book it is not feasible to discuss all possible applications. One of the most
common applications of logic gates is that of code conversion—converting from
decimal-to-binary and from binary-to-decimal. The former is called encoding and
the latter decoding.

A typical decimal-to-binary encoder circuit is shown in Fig. 2-26. It is
typical of the circuit used to convert decimal keyboard output to binary. In other
words, when a particular decimal switch is closed on the keyboard, the encoder
circuit will develop the correct binary code for the computer.

Note that closing a keyboard switch places a O at the particular gate inputs
to produce the desired 1 outputs. Hence, the bubbles appear at the inputs. In
actuality the circuit is built using NAND gates but the logic functions performed
are those of negated-input OR gates.
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Fig. 2-26. A decimal-to-binary encoder circuit (10-line to 4-line).
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A popular decimal-to-binary encoder IC, also called a 10-line to 4-line
encoder, is shown in Fig. 2-27A and its truth table in 2-27B. Note that the
desired inputs and outputs are 0-logic levels and, hence, bubbles are shown at
both inputs and outputs. In the truth table the X indicates a ‘‘don’t-care’” state; in
other words, it does not matter whether the input is 1 or 0 to achieve the desired

output.
°
i — !—_0| ° +5vi—16
2 2 15
3 s
3 lo— 14 INPUTS OUTPUTS
4 4 ¢ | 3 I 2 345678 9(DBCA
5 N
5 L— s Blo—h 12 X X X XX XX Xo0/[0 1 10
6 X X X X XXX 01 [0 1 11
—97 L XX XX XX0 1 1[Il ooo
7 8 0 XX XX X0 1 I t|l1 oo
A XX X X0 1 1 b 1|lio1o0
8—{GND 9 9 XX X0 4 1 1 11|10
XX 01 I 141 t|r oo
X0 I 1 1t tlrro
(-2 T T T T I I O B
(A) (8)

Fig. 2-27. The 74147 10-line to 4-line encoder IC.
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Fig. 2-28. A binary-to-decimal decoder circuit.

The decoder is the opposite of an encoder. For example, the circuit shown
in Fig. 2-28 is a binary-to-decimal decoder circuit performing just the opposite
code conversion of the previous circuit. Notice that the 4-bit binary word can
produce up to 16 distinct outputs.

A popular binary-to-decimal decoder IC is shown in Fig. 2-29.

TTL, CMOS, AND MOS

So far, we have avoided any discussion of the internal circuitry of ICs.
However, a few words are needed here to distinguish between the different types
of ICs. Currently there are three basic technologies in use—TTL, CMOS, and
MOS.
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Fig. 2-28. The 7442 binary-to-decimal decoder IC.

TTL, as it is more commonly called, stands for transistor-transistor logic.
For a detailed description of the circuit operation the reader is referred to the
author’s book Fundamentals and Applications of Digital Logic Circuits. TTL is
very popular because of its low cost and good performance. All the ICs we have
referred to previously are TTL ICs. TTL ICs always start with the designation 74
followed by two or three numbers designating the function. For example, the
7400 is a quad 2-input NAND IC. The 74xx family of ICs is furnished in plastic
DIP cases and rated for operation from 0 to +70°C. The 54xx family is the
same as the 74xx with the exception that it is furnished in ceramic and rated for
—55 to +125°C operation.

Each TTL gate input presents a unit load and the gate output can drive up
to 10 unit loads. TTL gates are available with high current outputs. They are
called buffers and can drive 20 to 30 unit loads.

All TTL gates operate from a +5 V power supply, dissipate 10 MW per
gate, and have a typical delay of 10 ns (nanoseconds). This means a maximum
operating frequency of 35 MHz. High-speed TTL logic designated, with the letter
H (i.e., 74H00), has only a 6-ns delay (maximum frequency = 50 MHz) but has
an increased power dissipation of 22 MW/gate.

Low-power TTL, designated with the letter L (i.e., 74L00), has a power
dissipation of only 1 MW/gate but is much slower (33-ns delay, 10-MHz
maximum frequency). Higher frequencies are obtained using Schottky diodes
with each transistor. These ICs are designated with the letter S (i.e., 74S00).
They have a typical delay of only 3 ns (maximum frequency = 125 MHz).

It is also possible to obtain a low-power Schottky type TTL IC. This would
be designated with the letters LS (i.e., 74LS00).
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CMOS stands for complementary metal-oxide-silicon transistor. This is a
newer technology than TTL and offers several advantages. It has very low power
dissipation (2-3 MW/gate), very high noise immunity, draws very low current
from the driving gate, and can drive up to 50 CMOS loads. However, it has a
high delay time (25 ns).

MOS stands for metal-oxide-silicon transistor. ICs using this technology
permit a very high density of electronic circuitry in a small piece of silicon. Most
microprocessors and memory ICs are built using this technique. MOS ICs are
limited in speed and power handling ability.

TRI-STATE AND OPEN-COLLECTOR iCs

Logic gates which are connected to a common line (we will discuss this in
more detail later) usually employ a tri-state output circuit. This means that in
addition to the 0- and 1-logic levels appearing at the output, a third state of infinite
resistance (like an open switch) can exist. This is particularly useful when many
gate outputs are connected to a common line called a bus.

The third state is controlled by a special input to the IC which in effect
turns the buffer off. For example Fig. 2-30 shows a buffer IC with tri-state
outputs. Each buffer has a control input which when 0 allows the buffer to
function as a noninverting logic gate. When the control input = 1 the buffer turns
off and the gate is effectively disconnected from the output.

— +5Vi—14
2_§ .
3— @—m

o INPUT ouTPUT

4

T ;Zt] ' CONTROL

6 — 9

7L_ 8 Fig. 2-30. The 74125 buffer
with tri-state output.

Prior to the introduction of tri-state gates, bussing was accomplished using
open-collector type gates. These gates are slower, less expensive, and more
affected by noise than tri-state gates. However, they are in common use. In an
open-collector type gate, a resistor which is normally internal to the IC-gate is
omitted and instead is connected external to the gate. Using the external resistor
permits wiring several open-collector type gate outputs together to share this
resistor (Fig. 2-31).
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Fig. 2-31. The 7405 hex inverter with open collectors functioning as a NOR
gate.

Notice that the output = 1 only when all inputs = 0 and that if any input =
1 the output = 0. Hence, the inverters have been wired to perform the function of
a 6-input NOR gate.

Unfortunately, most schematic diagrams do not distinguish between an
open-collector and standard gate. However, sometimes the letters o.c. or a slash
are used (Fig. 2-32).

Fig..2-32. Different ways of indicating an open-collector type gate on
schematics.
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More about
Digital Logic

Flip-flops are circuits made up of gates which have the ability to store data
and to count. As such they are the basic building blocks of memory and control/
timing systems.

THE BASIC FLIP-FLOP (R-S)

A simple flip-flop can be constructed from two NAND or NOR gates (Fig.
3-1). In Fig. 3-1A the resistors are called pull-up resistors since, when the gate
input is not grounded (0 logic level) through the switch, the gate input is
*‘pulled-up’’ to a logic-1 level through the resistor. On the other hand, in Fig.
3-1B, when NOR gates are used, the resistors pull the input down to ground
(0-logic level) when the switch is open. Hence, the resistors are called pull-down
resistors. Notice a pull-up resistor is connected from a gate input to +5 V (1) and
a pull-down resistor is connected from a gate input to ground (0).

Since the gate inputs and outputs are cross-connected, one gate will always
have a 1 output while the other will always have a 0 output. The outputs are
labeled Q and (—2 The line above the Q indicates that it is the opposite logic state
of Q. Hence if Q = O then 6 = 1 and vice versa.

If Q = 0O and Q = 1 we call this the resef state. Q= 1and (_) = 0 this is

Fig. 3-1. The basic flip-flop using +sv
NAND and NOR gates. (a) {B)

30
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called the set state. In Fig. 3-1A, if the flip-flop is reset, then moving the switch
up will cause the flip-flop to set. This occurs because gate A has O inputs and
output = 1 while gate B has 0 and 1 inputs and output = 0. Notice that the switch
is labeled S on the side which will cause the flip-flop to set.

Moving the switch down to the R, or reset position, causes gate A to have
1 and O inputs and output = 0 and gate B to have 0 inputs and output = 1. Hence,
the flip-flop resets.

Notice, that when the switch is between the S and R contacts no change
occurs. The flip-flop remains in the same state it was in previously. The flip-flop
“‘remembers’’ its last logic state. This is the way a memory stores logic state
data.

There are only two logic states. If the switch should bounce as the contacts
close or open, no change, other than the first change, will occur. Hence, no noise
is generated. For this reason, this circuit is often employed to de-bounce switch
contacts.

The circuit is commonly referred to as a reset-set flip-flop (R-S flip-flop).
Although the circuit is usually constructed with 2-input NAND gates, it is often
shown schematically as negated-input OR gates (Fig. 3-2A). This is because,
although NAND gates are used, they are functioning as negated-input OR gates.
Occasionally, the flip-flop will be shown as a functional logic block (Fig. 3-2C).
In this case the bubbles at the R and S inputs indicate that a 0-logic level causes
setting and resetting of the flip-flop. Notice that the R and S inputs are never both
= 0. This is prohibited since it would cause the Q and 6 outputs to = 1.

{c)

Fig. 3-2. The R-S flip-flop constructed with NAND gates is often shown
functionally (B and C).

THE T FLIP-FLOP AND THE COUNTER

The toggling flip-flop (T-flip-flop) is shown in Fig. 3-3. It consists of a
basic R-S flip-flop (gates C and D) and a set of control gates (A and B) which
steer a pulse from the T input to the flip-flop to cause it to switch states, i.e., to
toggle.




32 Computer Systems Handbook

(8)
Fig. 3-3. The T flip-flop.

For example, if the flip-flop is reset, a positive pulse (1) at the T input will
cause gate A’s output to go to 0, setting the flip-flop. If the flip-flop is set, then
gate B’s output goes to O when a 1 occurs at the T input.

We can observe the action of the circuit with an oscilloscope, when a
recurring pulse is fed to the T input. In this case we would observe the
waveforms shown in Fig. 3-4. Notice that every time T goes to a 1 the flip-flop

Fig. 3-4. Waveforms generated by a
T flip-flop.

toggles. Further, the frequency of the Q and Q outputs is one-half that of the T
input. In other words, the flip-flop divides the input frequency by 2. Note that
the pulse duration time (1) must be very short for this circuit to operate properly.

If we connect two T flip-flops in series (Fig. 3-5) then we can divide the
frequency by 4 (Fig. 3-6). We can continue to add flip-flops to increase the
frequency division. For each flip-flop added, we divide the previous frequency
by 2. Thus, three flip-flops divide by 8, four divide by 16, and so on.

Fig. 3-5. Input freq + 4 counter

=

Q Q0
INPUT __| |. 7
FREQ

o T f—
UL L
@ 0] 1 0 [ 0
Fig. 3-6. Waveforms at Q outputs
Qoj! ! 0 0 of a + 4 counter.

A 5-flip-flop circuit will produce one output pulse for every 32 input
pulses. Hence, we say that it counts 32 pulses. Thus, these circuits are more
often referred to as counters.
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THE CLOCKED R-S FLIP-FLOP

Most digital logic systems operate in a step-by-step manner. In other
words, operations must be synchronized with one another. This method of opera-
tion is called clocked or synchronous logic. Nothing happens until the syn-
chronizing clock pulse occurs.

An R-S flip-flop (Fig. 3-7) can be controlled by a clock pulse input to
synchronize its operation with other activities occurring in the logic system.

Fig. 3-7. The clocked R-S flip-flop.

|
TI

(8)

Gates C and D form the R-S flip-flop. Gates A and B are clock control gates.
When the C (clock) input is 1, the control gates are enabled and the gate is set or
reset, depending on the S and R logic levels.

Figure 3-8 illustrates the operation of the clocked R-S flip-flop. Notice that
if Sand R = 1 both Q and Q = 1, and after the clock pulse we do not know what
logic state will occur. This is called an indeterminate condition. It is undesirable
and measures are usually taken to avoid this condition (usually using a J-K
flip-flop, to be discussed shortly).

Notice that the Q and Q outputs do not change until the clock = 1. For this
reason the clock pulse is made very narrow to avoid changing Q and Q levels,
due to changing R and S control levels.

3
i

|
‘ T
S
; u ‘.‘;

L Fig. 3-8. Waveforms generated
*INDETERMINATE by a clocked R-S flip-flop.
THE D FLIP-FLOP

The data flip-flop (D flip-flop), frequently referred to as a latch, is shown
in Fig. 3-9. The D flip-flop is used to temporarily store data. Gates C and D form
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*SOMETIMES
OMITTED

Fig. 3-9. The D flip-flop.

an R-S flip-flop, while gates A and B control the flip-flop. When the C (clock)
input = 1, the control gates are enabled and the logic level at the D-input will
cause the flip-flop to set or reset. When D = 1, the flip-flop will set (A = 1) with
the occurrence of the clock pulse. When D = 0, the flip-flop will reset (Q = 0)
with the clock pulse. This is shown in the timing diagram of Fig. 3-10.
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[ Fig. 3-10. Waveforms generated
(I I I L by a D flip-flop.
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Again, the D flip-flop temporarily stores data. For example, it is used at
the input-output port of a computer to latch data from the bus to the port. Two
widely used ICs for this purpose are the 7475 quad latch and 74174 hex D
flip-flop (edge-triggered). The latter is often used in computer data bus applica-
tions. The reason for this will be discussed shortly. The pin-out diagrams are
shown in Fig. 3-11.

_ Note that a D flip-flop is sometimes used as a T flip-flop by connecting the
Q output back to the D input. This is shown in Fig. 3-12A; and a controllable T

ouTPUT

CLK c )

Fig. 3-12. Converting a D to
(a) (8) a T flip-flop (A) and
a controtlable T (B).

flip-flop is shown in Fig. 3-12B. When the enable input = 1 the flip-flop will
toggle on each clock pulse. When enable = 0 the flip-flop cannot get its feedback
signal and hence cannot toggle.

THE J-K FLIP-FLOP

The J-K flip-flop is the most versatile and, hence, the most widely used
type flip-flop. It has no indeterminate states and can be made to perform the
functions of all the flip-flops already mentioned. A simple J-K flip-flop is shown
in Fig. 3-13A.-When J = 1 and K = 0 the flip-flop will set on the clock pulse.

1
J | s Q l Q —y o
¢ l e
K R Q ' Q —K A
| |
L -
(A) (8)

Fig. 3-13. The simple J-K flip-flop.

When J = 0 and K = 1 the flip-flop will reset on the clock pulse. When J and K
= 1 it will toggle and when J and K = 0 it will not change. The functional
symbol for a J-K flip-flop is shown in Fig. 3-13B.

The simple J-K flip-flop requires a very short clock pulse to prevent
triggering problems and, hence, a more complex circuit is often used to prevent
these problems. It is called the Master-Slave J-K flip-flop and is sometimes called
an M-S J-K flip-flop (Fig. 3-14). ’
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Pp
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K — R Q@ R Q Q

< J > cIL Fig. 3-14. The master-slave

type J-K flip-flop.

The master-slave type has two R-S flip-flops coupled together. The con-

trolling flip-flop is called the master and the controlled flip-flop is the slave. The

master remembers the input control logic levels and, therefore, timing is not
critical.

The J and K inputs are directly coupled to the master R-S flip-flop through
AND gates. Therefore, when the clock goes from 0 to 1, the J-K control levels
are transferred to the Q and Q of the master. The slave is inhibited (prevented
from operating). The slave is enabled when the clock goes from 1 to 0 and the
master now controls the slave. Hence, the flip-flop changes states only on the
negative-going edge of the clock pulse.

In addition, the slave can be controlled by direct inputs to the slave which
are not clocked. These inputs are labeled Py, (Preset data) and C,, (Clear). These
inputs must = 0 for normal J-K operation.

The Pp and C, inputs operate as follows: when P, = 1 and C, = 0 the
flip-flop will set (Q = 1, Q = 0). When P, = 0 and C;, = 1 the flip-flop will reset
(Q = 0, Q = 1). These control inputs are not clocked and in fact override the J
and K inputs. When Py, and Cy, & 0 we get normal J-K operation. Py, and C;, = 1
is a prohibited condition and, therefore, must be avoided since it will cause
indeterminate operation.

EDGE-TRIGGERED FLIP-FLOPS

Edge-triggered flip-flops operate on. the rising or falling edge of a clock
pulse (Fig. 3-15). The leading edge is often called the positive edge and the
falling edge is often called the trailing or negative edge of the clock pulse. The
upper Q output in Fig. 3-15 is produced by a positive edge-triggered flip-flop,
while the lower Q output is produced by a negative edge-triggered flip-flop.

LEADING EDGE
TRAILING EDGE

T
LK f{f%}%

[ |
’ LEADING EDGE OPERATED
Fig. 3-15. Comparison of Q outputs from ’

Q
. : . il
ﬂlp-flop's. operating on leading Q ‘ l_ll | |_' TRAILING EOGE OPERATED
and trailing edges.
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Fig. 3-16. Schematic symbols for edge- and level-operated flip-flops.

Edge triggering is indicated by a small arrow at the clock input (Fig. 3-16).
A bubble and arrow indicates a flip-flop whose outputs change on the negative
edge of the clock pulse. The arrow only indicates positive-edge operation; a
bubble only indicates low-level operation; and neither bubble nor arrow indicates
high-level operation.

Figure 3-17 illustrates some of the popular J-K flip-flops in current use.
Note that J-K flip-flops are available with multiple J and K inputs and negated J
or K inputs.

J2
J|3:> Po o— — o —{s Po o|—
J

(4

K
=1 O S T S TS
“ 7 i
7470 7473 7476
Fig. 3-17. Three widely used DUAL M-S DUAL M-S
J-K type tlip-flops.

L
L

USING J-K FLIP-FLOPS AS D AND T FLIP-FLOPS

The J-K flip-flop can be used as a D or T type flip-flop as shown in Fig.
3-18. The D flip-flop is accomplished by feeding complemented data to the J and
K inputs. The T is accomplished by keeping the J and K inputs always = 1.

DATA J e J Q
CLOCK c CLOCK c .
; K q «x @& Fig.3-18. Wiring J-K flip-flop to
operate as Dand T

D-FLIP-FLOP T-FLIP-FLOP flip-flops.

ONE-SHOTS

The one-shot (0S) is really a flip-flop. However, it has only one stable
state. It can be triggered into its opposite state but remains there only for a
limited time, and then returns to its initial stable state. It is used primarily to
create pulses of a known duration from pulses of an unknown duration.
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+5V
¢
T e |7 4 |8 M
] P Bty
puLse LI 2 555
INPUT 22
] 5
£
Fig. 3-19. 555 timer used as a one-shot. = =  *OPTIONAL BYPASS CAPACITOR

The 74121, 74122, and 74123 are the most widely used OS ICs. Also, the
555 timer is often used as an OS. The 555 and 556 (a dual 555 IC) are used to devel-
op pulse widths of microseconds to hours. The 74121, 74122, and 74123 are used
for developing pulses of nanoseconds to microseconds.

Figure 3-19 shows the 555 wired as an OS. The output pulse width is
determined by the values of R and C. The time of the output pulse = 1.1 X R X
C. Thus a 1-M$) (megohm) resistor and 1-uF (microfarad) capacitor will cause a
pulse width to be developed which is 1.1 seconds. This output pulse will be
produced by a negative pulse at the input. The 555 is not suitable for developing
short pulses because the triggering pulse must be significantly narrower than the
output pulse for proper operation of the circuit. The 74121, 74122, and 74123
ICs are specifically designed to be used as OS devices. Figure 3-20 illustrates
how each is wired to operate as a simple OS. The output pulse width = 0.7 X R

¢ R

+5V
10 1 35 |46 M
R N
INPUT 74121 ety OUPUT
T——
I
¢ R
+5v
I 13 “i2f3lejr
8
R N
74122 ouTPUT
INPUT e —\_[—
CLR Q=
Te T
¢ R =
+5V
14 15 16 2 I
EE ¢
412 OUTPUT
INPUT 74123 | r
CLR L
Fig. 3-20. The 74121, 74122, and T3 ‘ﬂ_
74123 TTL one-shot ICs.
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% C. Thus a 1-uF capacitor and 10-K  (kilohm) resistor will provide a pulse = 7
ms (milliseconds). The 74121 and 74122 are single OS devices and the 74123 is
a dual OS device. The 74122 and 74123 are retriggerable, before the output pulse
ends, to extend the duration of the pulse.

CLOCK CIRCUITS

A clock circuit is actually an oscillator providing a continuous pulse signal.
It is used to synchronize the operation of a computer or logic system. It sees that
things happen at the right time, hence the name clock. It is usually afree-running
type flip-flop in which feedback of an in-phase signal occurs from output to
input.

An example is the clock circuit employed in the popular Altair 8800 CPU
(Central Processor Unit) shown in Fig. 3-21. The clock oscillator is made up
————— CLOCK———— —— BUFFER— — ¢/ 0.5.— ,——¢zso,s,——\

5 +5V

+5V +5v
10

I ol $2
$2
CLOCK
330 SIGNALS
= ICA,B,C,0D= 7404
ICE,F = 74123 ¢!
2 MHz [
CRYSTAL

| je60ns

iy

80 ns | [e— 220ns — f*=T70ns

oL LI

CLOCK SIGNALS

Rn

Fig. 3-21. The clock circuit used in the Altair-8800 central processor unit.

of two inverters (A and B) with the output of B fed back to A. Notice that B’s
output will be in phase with A’s input; hence positive feedback occurs to sustain
oscillation. A crystal, cut to resonate at 2 MHz, is in the feedback path and hence
oscillation occurs only at this frequency. A crystal has excellent frequency stabil-
ity under varying conditions of temperature and humidity. It ensures a constant
clock frequency for the timing of the CPU. The resistors at the input of each
inverter make the crystal operate like an amplifier instead of a gate, which is
necessary for oscillation to occur.
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Inverters C and D act as buffers for the oscillator so that a constant load
always exist on the oscillator. This prevents frequency shifting due to varying
loads.

Two one-shots (E and F) are used to develop the proper width of output
clock signals. The microprocessor IC (8080) requires two clock signals (§1 and
2) which are of different pulse widths and spacing. OS-E develops a 60-ns pulse
(91) and triggers OS-F through a small resistor—capacitor delay circuit. OS-F
produces a 220-ns pulse (§2).

The 555 timer is frequently used as a clock. A typical 555 clock circuit is
shown in Fig. 3-22. The frequency of the clock is determined by the equation:

‘= 1.44
Ra + 2Rg) X C

The 555 clock is used in applications where frequency stability is not
critical. It is capable of driving a heavy load.

+v +V 4V
S T
1 Q OUTPUT
Rg 555
[
2 Fig. 3-22. A 555 timer used as a clock generator.
Y
I 1 I

COUNTERS

Counters are circuits made up of flip-flops that are used to count pulses.
The most widely used counter ICs are the 7490, 7492, and 7493. All consist of
four flip-flops which are wired internally to count 10, 12, or 16 pulses. The 7490

A By ] ¢ 0

| J
QJ J Q Q )

Ain—"’c® c >C©

Ly
Cyy Pog L Gy [ _D"Kc,_

o

Fig. 3-23. The internal circuit of
Ro, Ro, the 7490 counter IC. Ro, Re,
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Fig. 3-24. Block diagram of 7490 circuit.
RESET RESET
%] ]
RO; RO, RO R9p

is shown in Fig. 3-23. A simplified block diagram of the circuit is shown in Fig.
3-24. Flip-flop A is a simple J-K flip-flop which divides the signal by 2. Flip-
flops B, C, and D divide the By, signal by 5. If the A output is connected to the
By (Fig. 3-25), the 7490 will divide the Ay signal by 10. The 7490 is, therefore,
referred to as a divide-by-ten or decade counter. For every 10 input pulses there
will be one output pulse. A BCD count is produced at the ABCD outputs.

The R, and Ry inputs are reset inputs. When both R, inputs = 1 the counter
resets to a decimal count of 0 (0000 binary). When both Ry inputs = 1 the
counter resets to a decimal count of 9 (binary 1001).

The 7492 and 7493 are similar to the 7490 except that they provide counts
of 12 and 16, respectively.

Fig. 3-25. Using the 7490 as BCD oUTPUT
a decade counter. ] L
L__' ' t ’——’ ouTPUT
A B 8 C D
INPUT A 7490
Ro, Rop Rey Rg,
I T I I
SHIFT REGISTERS

Shift registers (SR) are flip-flop circuits used for a wide variety of logic
operations. They are used most frequently in computer systems for storing data,
converting serial data to parallel data, and vice versa. A simple shift register
using D flip-flops is shown in Fig. 3-26A. Data is shifted from one flip-flop to
the next with each clock pulse. The shifting of pulses is shown in Fig. 3-26B. A
reset input serves to clear the register (set all Qs = 0).

Notice that in Fig. 3-26 it takes four clock pulses to clock the serial word
into the register. When the word is in the register, we may read it as a parallel
word at the ABCD outputs. Likewise, it will take four clock pulses to clock the
word out of the register. The serial output will be taken at the D output. Figure
3-26C shows the functional symbol for the shift register.
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B 4 D
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Fig. 3-26. A 4-bit shift register.

Shift registers that can be loaded in parallel, and hence can be used for
parallel-to-serial conversion, are available (Fig. 3-27). Further, shift registers are
available to store up to several thousand bits. These large shift registers are used
as buffer (temporary) storage circuits when converting from one transmission rate

to another.
™~
PARALLEL DATA OUTPUTS
A B C [)
— i i !
ccnn, Tl 5
[ ¢ ¢ 9

DATA IN ; L qf L a "L b L og SERIAL OUT

K pp E—FK P 6~FK Pp 5—FK pp Qe SERIAL 0UT
cLock 7 it

A 8 ¢ D
PARALLEL DATA INPUTS
Fig. 3-27. Shift register with paralle! /O and serial /0.
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Recommended Further Reading
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2. Donald E. Lancaster, TTL Cookbook, Howard W. Sams & Co., Inc., Indianapolis,
Ind., 1974.
3. Donald E. Lancaster, CMOS Cookbook, Howard W. Sams & Co., Inc., Indianapolis,
Ind., 1977.
4. Digital, Linear, MOS Data Book, Signetics Corp., Sunnyvale, Calif., 1976.




4.

An Introduction to
Computer Systems

THE CPU—THE SYSTEM CONTROL CENTER

A computer is really a computing and processing system. It contains the
basic components shown in Fig. 4-1. There is input and output, which permits
instructions and data to enter the system and allows data and control to exit from
the system. The central processor (CPU) is entirely electronic. It does arithme-
tic and logic operations on the data and controls the operation of the system.
Storage is where we can store data and/or instructions when the computer is not
being used.

CENTRAL
INPUT PROCESSOR ouTpuT
(cpu)
STORAGE .
Fig. 4-1. Basic computer
system—block diagram
INPUT OUTPUT

CENTRAL
PROCESSOR
UNIT

AUDIO
CASSETTE
RECOROER

Fig. 4-2. Typical home
computer system. STORAGE

44
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Figure 4-2 illustrates a typical home computer system. The input is from a
typewriter style electronic keyboard. The output can go to either a TV display or
printer. The storage is an audio cassette type tape recorder. The CPU is micro-
processor based. In this chapter we examine the basic principles of the CPU. Later
chapters will go into input-output and storage.

What Is a CPU?

The CPU is the electronic heart of a computer system. Most of the other
parts of a computer system are electro-mechanical and are dependent on the
CPU. The CPU processes data. In other words, it performs arithmetic and logic
operations on data presented to it. In this book we are concerned with
microprocessor-based CPUs. Microprocessors are called MPUs for short.

A basic MPU-based CPU is shown in Fig. 4-3. An MPU is a single IC
which contains most of the circuitry of a CPU. Referring to the illustration,
notice that the MPU has four basic sections: the ALU (arithmetic logic unit), the
registers, the instruction decoder/timing unit, and the clock. The MPU com-
municates with memory (RAM, random-access memory, and ROM, read-only
memory) and 1/O interface circuits via data and address buses and control lines
(R/W and interrupt).

Notice that the various sections communicate with one another via three
paths, usually called buses. The three buses are the data, address, and control
buses. Each bus consists of a set of parallel lines and signals that are transmitted
on these buses in parallel fashion. Arrows are used to denote the direction of
signal flow. In many systems, signals flow in both directions on the data bus but
not at the same time.

The data bus transmits data and instructions. The address bus transmits
addressing information from the MPU to memory (RAM and ROM) and 1/0 to
select memory locations or input-output devices. The control bus in its very
simplest form consists of lines which control memory and /O transfers, inter-
rupts (more of this in a later chapter), and resetting of the system.

Signals on the data bus may be either an instruction or data. The instruction
decoder-timing section decides which it is. If it is an instruction, it controls the
registers and ALU, routing the data to and from them, and causing the desired
arithmetic or logic operation to be performed. A clock circuit, which is usually
internal to the MPU, enables the timing circuit to synchronize the operation of
the various sections.

The data and instructions on the data bus enter the MPU and are latched
into a buffer register. From this register they are transferred to other registers in the
MPU or processed through the ALU. A typical set of MPU registers is shown in
Fig. 4-4.

Depending upon whether it is a data or instruction signal, data coming into
the MPU is either directed into the data bus buffer or instruction registers. For
example, data transferred from memory to the accumulator register will first
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enter the input data latch and from there be transferred to the accumulator
register. If an arithmetic or logic operation is to be performed using data from
memory and the accumulator register, data is first transferred into the input data
latch and from there to one input of the ALU. At the same time, the contents of
the accumulator are transferred, via the bus, to the second input of the ALU. The
results of the arithmetic or logic operation performed in the ALU are transferred
back to the accumulator, via the data bus.

The program counter (PC) register provides the addresses which step the
MPU through sequential instructions in the program stored in memory. Each
time the MPU fetches an instruction from program memory, the contents of the
PC register are placed on the address bus. This PC register is incremented each
time an instruction is fetched from memory.

The accumulator (A) register is a general purpose register which stores the
results of most arithmetic and logic operations. In addition, the accumulator
usually contains one of the two words used in these operations.

Most logic and arithmetic operations take place in the ALU, which has two
inputs (Fig. 4-5). These inputs come from internal registers or memory via an

PN
A
STATUS
N
Fig. 4-5. ALU section—block diagram.
A
. TEMP REG.
DATA
BUS ALU
A
l_'} ACCUMULATOR

internal register and the output usually goes to the A register. The ALU performs
arithmetic (addition and subtraction) or logic (AND, OR, NOT, X-OR, etc.)
functions on all the bits at each input. For example, if the words at the input to
the ALU are 01010101 and 00110011 and the ALU is instructed to perform the
AND operation, the operation will be as shown in Fig. 4-6.

Notice in this hypothetical example that each register contains an 8-bit
word and the status register contains a 5-bit word. The respective bits in the two

TEMPREG —= 0 |
ACCUM .LATOR —= 0 0
00

87 Bg B5 By B3 By By By
01
[

[ 0 | —= ACCUMULATOR

cacC P Sz
STATUS—= 0 0 | O O
Fig. 4-6. Example of ALU performing an AND operation
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registers are ANDed together and the result returned to the accumulator. For
example B, (shorthand notation for bit 0) is the ANDing of 1 and 1 = 1, B, is the
ANDing of 0 and 1 = 0, and so on.

The status register is affected by the ALU operations. Typically the status
register has five bits associated with ALU operations. They are zero, sign, parity,
carry, and half carry, and are each represented by 1 bit in the status register.
These bits are often called flag bits and are either set (1) or reset (0) as the result
of ALU operations. They operate typically as follows:

Zero (Z): If ALU operation results in 0 in the accumulator, 0 flag is set,
otherwise it is reset.

Sign (S): If ALU operation causes B; = 1, sign flag is set, otherwise it is
reset.

Parity (P): If ALU result has even number of 1s in word, parity flag is set
(even parity), otherwise it is reset (odd parity).

Carry (C): 1f ALU operation results in a carry or borrow out of B, carry
flag is set, otherwise it is reset.

Half Carry (C4): Sometimes called the auxiliary carry. If ALU operation
causes a carry between bits B; and By, half carry flag is set, otherwise it is
reset.

The stack pointer (SP) and index (I) registers store data used in calculating
addresses in memory. The operation of these registers will be discussed later.

CPU Memory

The CPU contains memory to store program instructions and data. The
memory is either a read-only memory (ROM) or read-write memory, usually
referred to as random-access memory (RAM). In point of fact, both ROM and
RAM can be randomly accessed and the misnomer RAM was given in the early
days of computers and now it is too late to change.

ROM and RAM are electronic circuits that store data or instruction words
(Fig. 4-7). The ROM is programmed permanently and cannot be changed (some

S T T )

RAM ROM Fig. 4-7. The memory
section of the CPU.

R/W_CLK R/W_CLK
ADDRESS TT TT
BUS
l )
R/W
CLOCK
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can, but not easily). Hence, we only read instruction words from ROM. RAM is
easily changed by writing a new word into a specific memory location called an
address. When communicating with ROM or RAM, the MPU addresses the
memory via the address bus, indicates a read or write command via the R/W line,
and sets the R/W time period via the clock line.

The data is transferred to and from the memory via the data bus. In most
MPU-based CPU systems the data bus is 8 lines and the address bus is 16 lines.
We will examine memory in greater detail later.

Input/Output

The CPU communicates with peripheral units such as a keyboard and
display via appropriate interface circuits. These circuits match the characteristics
of the CPU and /O unit. For example, a Teletype (TTY) is a popular terminal for
use with computer systems. The CPU operates in a parallel fashion, outputting
and inputting all the bits in a word at the same time. A TTY operates in serial
fashion, outputting and inputting one bit at a time. Further, the TTY operates at a
fixed speed which is much slower than the CPU. These differences, as well as
some others, which we will discuss in detail later, necessitate an interface circuit
between the CPU and I/O unit.

As shown in Fig. 4-8, the I/O interface section contains addressing to
select one I/O device and data bus communication. The R/W line is usually used
to indicate input (read) or output (write).

Further, an interrupt circuit, which permits an I/O device to interrupt the
operation of the CPU, is often provided. When an 1/0 device initiates an inter-
rupt, the CPU finishes the instruction it was working on, saves the data in the
MPU registers in a special area in memory (called the ‘stack’ area), executes an
interrupt program, and then returns to the original program. We discuss inter-
rupts in more detail later.

4_DATA BUS
( )

R
[~— L INPUT/

1/0
INTERFACE [————sm [ OUTPUT

T0 CPU R
ADDRESS BUS \
— 1 4
R/IW
CLOCK
INTERRUPT

Fig. 4-8. The /O section of the CPU.
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HARDWARE VERSUS SOFTWARE

A computer, no matter how sophisticated, can only do what it is zold to do.
You tell the computer what to do via a series of coded instructions referred to as a
program. The realm of the programmer is the writing of these coded instructions,
referred to as software.

In contrast, hardware is the actual physical computer equipment, the CPU
and associated peripheral devices such as terminals. The CPU has designed into
it the ability to perform a particular set of operations. The CPU is designed such
that a specific operation is performed when the CPU control logic decodes a
particular instruction. Consequently, the operations that can be performed by a
CPU define the computer’s instruction set.

THE CPU INSTRUCTION SET

Each computer instruction allows the programmer to initiate the perfor-
mance of a specific operation. All computers implement certain arithmetic oper-
ations in their instruction set, such as an instruction to add the contents of two
registers. Often logic operations (e.g., ORing the contents of two registers) and
register operation instructions (e.g., increment a register) are included in the in-
struction set. A computer’s instruction set will also have instructions that move
data between registers, between a register and memory, and between a register
and an I/O device. Most instruction sets also provide conditional instructions. A
conditional instruction specifies an operation to be performed only if certain
conditions have been met, e.g., jump to a particular instruction if the result
of the last operation was zero. Conditional intructions provide a computer
with a decision-making capability.

COMPUTER PROGRAMMING

By logically organizing a sequence of instructions into a coherent program,
the programmer can tell the computer to perform a very specific and useful
function.

The computer, however, can only execute programs whose instructions are
in a binary coded form (i.e., a series of 1s and Os) that is called machine code.
Because it would be extremely cumbersome to program in machine code, pro-
gramming languages have been developed. There are programs available which
convert the programming language instructions into machine code that can be
understood by the processor.

One type of programming 1 ge is a bly language. A unique as-
sembly language mnemonic is assigned to each of the computer’s instructions.
The programmer can write a program (called the source program) using these
mnemonics and certain operands; the source program is then converted into
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machine instructions (called the object code). Each assembly language instruc-
tion is converted into one machine code instruction (1 or more bytes) by an
assembler program. Assembly languages are usually machine dependent (i.e.,
they are usually able to run on only one type of computer).

Higher level languages are available which enable the computer user to
communicate with the computer with words very similar to spoken commands.
The most popular such language is called BASIC. This language is machine
independent; in other words it is essentially the same on all computer systems.

MICROCOMPUTERS VERSUS LARGE COMPUTERS

A micro is very small in physical size. In most respects it compares quite
favorably with mini and large computer systems. Today’s microcomputers are
more powerful and faster than many of the large-scale computers that existed just
a few years ago. In fact, some microprocessor-based computer systems are more
powerful than some large computer systems. A single user may notice little, if
any, difference when communicating with a micro, mini, or large computer
system. The difference lies in the fact that large computers can handle many
users while micro systems are seldom worthwhile for more than one or two users.

Table 4-1 gives a brief comparison between the 8080 microprocessor and
an IBM-370 CPU.

Table 4-1.
808078085 1BM-370
PC Register: 16 bit 24 bit
Op Code Register: 8 bit 48 bit
Accumuiator: 8 bit 4-64 bit (floating point)
SP Register: 16 bit —
Status Register: 5 bit 64 bit
General Purpose Registers: 6-8 bit byte 16-32 bit byte
Basic Word Size: 8 bit 8 bit
Op Code Format: 1, 2, or 3 bytes 2, 4, or 6 bytes
Maximum Memory Size: 65, 536 bytes 16,772,216 bytes
Memory Addressing: Direct Register Direct
Register Indirect Indexed
Immediate Relative
Register Indirect
Instructions (basic): 78 143
Unique Op Codes: 244 Over 50,000 possible

1/0:

Interrupts:

Up to 256 I/O ports

One mode
upto8
direct levels

Up to 256 1/0 channels
with up to 256 devices
per channel

Multiple mode
priority direct
vector to any
location
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large, medium, mini, and microcomputer CPUs. Here is such a comparison.

|

|

|

It is also interesting to compare some of the characteristics of very large, |
i

|

1

Very Large Medium Micro
Large 1BM IBM Mini Micro-Mini Altair |
CRAY-1 370/168 370/115 PDP-11/70 PDP-11/03 8800 !
No. of ICs: 278,000 20,000 1,800 600 400 200 S
Cycle time: 12% ns 8ns 480 ns 300 ns 750 ns 500 ns ‘
RAM/ROM .
max words: 1,048,576 8,388,608 393,216 4,096,000 57,344 65,536 t
Word size: 84 bits 8-64 bits 8-64 bits 16 bits 16 bits 8 bits !
Physical size: i
Width— 9 ft 13 ft 2Va ft 21in. 19in. 19 in. }
Depth— ave ft 10 ft 5 ft 31in. 13% in. 17in. |
Height— 6% ft 6% ft 5ft 6 ft 3%in 7in. |
Weight: 5% tons 5,100 Ib 1,800 b 500 Ib 35 1b 22 1b E
Cost (typ.): $8,000,000 $4,500,000 $175,000 $63,000 $2,000 $1,600 ‘|
3
|

Recommended Further Reading

1. Adam Osborne, An Introduction to Microcomputers, Adam Osborne & Assoc., I
Berkeley, Calif., 1975.

c.,




5.

To and From
RAM and ROM

In the last chapter we learned that a computer cannot operate without a
memory. The memory is that section of the CPU where we store data and
instructions. The memory is basically an array of bi-stable storage elements. The
elements can store either logic-0 or logic-1 states.

Earlier computers employed magnetic core read/write type memories.
These have the advantage of retaining their states when power is shut down.
These memories are, therefore, said to be nonvolatile. However, most computer
systems today employ semiconductor memories, which unfortunately lose their
stored data when the electric power is turned off. These memories are said to be
volatile. This is true of RAMs; however, ROMs do not lose data when power
is lost.

The semiconductor type memory offers the advantages of lower cost,
smaller size, and lower power consumption. Hence, the likelihood is that
semiconductor memories will eventually replace core memories entirely. There-
fore, we will concentrate on semiconductor memories.

MEMORY BASICS

Memory may be either RAM or ROM. The ROM (read only memory) is
permanently encoded and cannot be changed. It is used to store program instruc-
tions. The RAM (random access memory) can be changed. It is possible to write
into any RAM location or to read what is in any RAM location. The RAM is used
for storage of either program instructions or data.

In a memory, every binary word, consisting of a group of bits, has a
unique address. Most microprocessor-based systems use an 8-bit word size. This
8-bit data unit is also referred to as a byte. If a word consists of 16 bits, it is said
to contain 2 bytes.

53
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MEMORY ADDRESSING

Each data byte stored in memory has a unique address. For example, a
popular semiconductor memory IC is the 2102. The 2102 can store 1,024 bits.
Therefore, a memory to store 1,024 8-bit words would require eight 2102s (Fig.
5-1). If the first word in the memory were selected, it would be at location 0, as
shown in Fig. 5-1. Notice that there are 8 planes in the memory system with
1,024 bits per plane. When we address location 0 in the memory, we are address-
ing location O on each plane. The memory plane at the extreme right contains the
B, data bits; the next plane contains the B, data bits, etc., until the highest order

bit, B, is on the extreme left. Hence, there are 1,024 addressable locations of 8
bits each.

LOCATION _,
0

LOCATION
io2a —*[&2

Fig. 5-1. A 1,024-word memory using 2102 ICs.

A 2102 IC is shown in Fig. 5-2. It is a 16-pin IC: 10 pins are used for
addressing the 1,024 locations, 2 pins are used for data in and out, 1 pin is used
for read/write control, and 1 pin is used for enabling the chip (CE). The CE
permits expansion of the memory system beyond the 1,024-bit size.

An example of a 4 K-RAM memory using the 2102 RAM IC is given in
Figs. 5-3 through 5-6. This is a RAM board kit manufactured by Southwest
Technical Products Co. for their 6800 microcomputer. The board is organized
into four pages containing 1K words, hence 4K words total. As illustrated in
Figs. 5-4 and 5-5, the 10 address lines Ap~Ay and R/W, via buffers, go to all
RAM ICs in parallel. The buffers are used to reduce the effects of capacitance
paralleling so many ICs, allowing the memory to operate at its rated speed.

The page addressing (one of four) is done by IC-23 (2- to 4- line decoder)
decoding address bits A;p-A,y. Hence when A;-A,; =00 the first page of 1,024
words is selected.

Address bits A;,~A 5 are decoded by IC-22 to select RAM boards. There-
fore, up to eight 4K-RAM boards may be used in the computer with a maximum
memory of 32K. Notice that only the lower two pages are shown on the schema-
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tic. The upper two pages are the same as the bottom two with the control lines as
indicated.

Since the 8-bit data bus for the computer system is bi-directional,
bi-directional transceiver/bufers IC-20 and IC-21 buffer the incoming and outgo-
ing data to and from the memory board to the data bus. NOR gates IC-24 B, C,
and D enable the outgoing sections of the bi-directional transceivers IC-20 and
IC-21 at the appropriate times. The incoming sections of the bi-directional
transceivers are enabled at all times since the memory ICs have separate input/
output lines.

PIN LOGIC
CONFIGURATION SYNBOL BLOCK DIAGRAM
21024 21024 .
:o 0 Ao +—0vc
B ® =0 GND
=3 o
jun [
=& A ® ROW CELL ARRAY
o (4 2 SELECTOR 32 ROW!
)48 Dout ® 32 COLUMNS
=
R/W CE A3
Aq
[t}
R/W INPUT COLUMN 1/0 CIRCUITS
DATA
PIN NAMES DATA
CONTROL
DATA IN COLUMN SELECTOR out

ADDRESS INPUTS TTT1T 1

_®
READ/WRITE INPUT CE °‘{;——J
CHIP ENABLE
DATA QUTPUT (O = PIN NUMBERS @O ® O
POWER (+5 V1
A Ag A7 dg Ay

Fig. 5-3. SWTP MP 4K RAM board.
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2o 1
il A 7
VA
0
PAGES
283
/
pace | | pace
2 3
Ce Ce
0 -0
PR LR =&
. %] s ¢ 3
DECODER 3] becoder (3P ﬂ: &
a8 M e c e 2P ap e~ g c % ]
! [] } A
TMA M
Ajp { 2 $2
Ayl
Aiz T0
A3 PAGES
Al 283
Als
&
N

Fig. 5-4. Memory addressing by pages for the SWTP-6800 system.

Hex Memory Addressing

Most microcomputer systems employ a hex code for addressing (there are
a few that use octal code). Table 5-1 can be used to convert from a
decimal address to a hex address and vice versa; it shows the decimal
equivalent for each hex number by place value. Most microcomputers can ad-
dress up to 65,535 words using a 16-bit address word. Hence, four hex characters
are used to represent the memory addresses.

The lowest address in memory would be:

Binary Hex Decimal
0000 0000 0000 0000 00 00 0

The highest address in memory would be:

Binary Hex Decimal
1111 1111 1111 1111 FF FF 65,535

Notice that the right-most hex digit indicates 1 of 16 possible memory
locations. The next higher hex digit indicates 1 of 16 possible groups of 16
locations. The next higher hex digit indicates 1 of 16 possible groups of 256

locations. The highest hex digit indicates 1 of 16 possible groups of 4,096
locations.
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Table 5-1. Hex-Decimal Memory Address Conversion Table

Hex = Dec Hex = Dec Hex = Dec Hex = Dec
0 0 0 ] 0 0 0o 0
1 4,096 1 256 1 16 1 1
2 8,192 2 512 2 32 2 2
3 12,288 3 768 3 48 3 3
4 16,384 4 1,024 4 64 4 4
5 20,480 5 1,280 5 80 5 5
6 24,576 6 1,536 6 96 6 6
7 28,672 7 1792 7 112 77
8 32768 8 2,048 8 128 8 8
9 36864 9 2304 9 144 9 9
A 40,960 A 2,560 A 160 A 10
B 45,056 8 2816 B 176 B 11
C 49,152 C 3,072 c 192 Cc 12
D 53,248 D 3328 D 208 D 13
£ 57,344 E 3,584 E 224 E 14
F 61440 F 3840 F 240 F 15

To find the decimal equivalent of a hex address, sum the decimal equiva-
lents of each hex digit (from Table 5-1). For example, to find the decimal
equivalent of C31By:

Hex

Cy = 49,1524

34 = 7680

ly = 1649

By = 11y
49,947,

Hence C31By = 49,947 .

To find the hex equivalent of a decimal address, subtract the decimal
equivalent of highest hex value from the decimal number. Repeat the process for
the decimal remainder. For example, to find the hex equivalent of 43,390y

Hex
43,3904
—40,960,0>A
2,430,
—2,304,<9
12644
— 112,07
14,,<E

Hence, 43,390, = A97E4.
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A7 ADDRESS
BUS

4-K RAM BOARD Fig. 5-6. Bus structure for SWTP CPU.

g DATA BUS

R/W
VNA CONTROL BUS

MEMORY TIMING

The signals on the address and data buses and control lines are not constant
for the SWTP-4K RAM. There are 16 address lines, 8 data lines, and 3 control
lines.

Figure 5-7 shows the signals that appear on the SWTP bus and control lines
during a memory-read operation. Notice that the address word is placed on the
address bus lines. In this example the memory address is 7E2Fy—the 32,303rd
decimal address in memory. At the same time, the control line logic levels are set
up for the read operation (R/W = 1, VMA = 0 and §2 = 1). Observe that the §2
clock signal is much shorter than all the other signals. It is only when §2
= 1 that the data from the RAM appears on the data bus. This is done to
eliminate any critical timing which would otherwise occur. In other words, all
the address and control signals have an adequate opportunity to settle down
before the read or write operation occurs.

STATIC VERSUS DYNAMIC RAMS

The 2102 RAM IC cited previously is an example of a static type RAM
IC. In other words, the storage element consists of a flip-flop type storage
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Ao } Fig. 5-7. Memory timing signais.
F

ADDRESS =7EZF

Ag I

Ais

o F L

D, | |

(A 1 0

D3 1

Dgq | | DATA=4D

[ ] I

Dg 1 4

D7 | |

R/W . ~=—READ/WRITE
wh 1 \ [ —=—VALID MEMORY AVAILABLE
é2 — ~=— CLOCK {PHASE 2)

| |=—READTIME

element. It is called static because it retains its 1 or O state, so long as power is
applied.

Dynamic type RAM ICs store the logic state as an electrical charge be-
tween the gate and channel of a MOS-type transistor. This is a much simpler
circuit requiring many fewer components than the static RAM. Therefore, it is
possible to make much larger memories with fewer ICs using dynamic ICs. The
disadvantage is that the charge leaks off and, hence, it is necessary to refresh the
charge periodically (typically every 200 ms). In order to perform this task refresh
circuitry is required. The newer dynamic RAM ICs include the refresh circuit on
the chip and hence, as far as the user is concerned, there is little difference
between the static and dynamic ICs. However, the older dynamic ICs require an
external refresh circuit. These have been known to be critical and to sometimes
create timing problems in the memory system.

ROMS AND PROMS

ROM (read-only memory) contains binary codes which cannot be altered.
It is encoded during the manufacturing process. For example, a keyboard-to-
ASCII code converter is actually a ROM. When a key is depressed it addresses
one memory location which contains the ASCII coded word for the depressed
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key. The ASCII code is then read out of the IC. The ROM is nonvolatile; it never
loses the data placed in it.

A ROM is an array of selectively open and closed uni-directional circuits
(diodes). A 16-bit ROM is depicted in Fig. 5-8. The address lines are decoded to
select a pair of row and column select lines. Each diode has an open or closed
contact. Hence, when a diode is addressed it passes current if there is a contact, or
it does not pass current if there is no contact. These contacts are set selectively

during the final phase of manufacture.
betoeR L ha L Lo"j
Ao | OF 4 —J i—o«)—t L o4 *—o o4
AI 1 LO o4 i—o Oty *—o O—¢
ADDRESSING COLUMN I
el [ 7 c
Ay— N S
Y
ouT

DECODER
tooltoo]
DECODER i
Fig. 5-8. A 16-bit ROM circuit.

“ryrr

1%

Ap—a]

PROMs (programmable ROMs) are made with a contact material that can

be opened after manufacture by the user. The contacts are actually tiny fuses that
are ‘‘blown’’ open selectively when programmed. The user can thus program the
PROM. Once programmed, the PROM cannot be reprogrammed.
EPROMs (erasable PROMs) can be programmed by the user and then, if desired,
the program can be erased and the EPROM reprogrammed. EPROMs (Fig.5-9)
have a quartz lid to allow erasure by a high intensity ultraviolet light of
the correct wavelength. An EPROM eraser unit is shown in Fig. 5-10.

ROMs, PROMs, and EPROMs are currently available in 1K, 2K, 4K,
8K, 16K, 32K, and 64K sizes. Many are packaged in 8-bit configurations. For
example, the popular 2708 8K EPROM is configured as 1K words of 8 bits
each. Hence, one 2708 will provide 1K of programmed memory.

A typical ROM memory is shown in Fig. 5-11. This unit, manufactured by
Cromenco, is called the Bytesaver. It is a combination 8K EPROM memory and
programmer. It can program either 2704 (512 X 8) or 2708 (1,024 X 8) EPROMs
under control of the computer into which it is installed (uses S-100 bus).
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Fig. 5-9. Typical EPROM. Notice quartz lid.

Fig. 5-10. An EPROM eraser unit.

Fig. 5-11. The Cromenco ROM Bytesaver board.
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MEMORY MAPPING

Memory space is allocated to RAM, ROM, and often I/0 addressing. Note
that microprocessors such as the 6800 and 6502 address 1/O as if they were
memory locations. These I/O addresses are called *‘ports.”

An example of how memory space is allocated in a typical computer
system is given in Fig. 5-12. This diagram shows where things are located in
memory; hence it is called a memory map. The example shown is the memory
map for the SWTP CPU. Notice that the memory is divided basically into 4K
memory blocks. The first hex digit in the address word defines the block. Up to
64K of RAM space available. 32K is located from 0000 to 7FFF 8K is located
from 8020 to 9FFF, 4K is located from A000 to A999, 16K is located from
B000 to DFFF, and 4K from F000 to FFFF.

ROM is located in a 1K area from E00O to E3FF. This ROM contains two
special programs which permit operation of the CPU with a terminal and does
away with the need for a front panel (we discuss this later in detail). The program
is referred to as a debug or monitor program. SWTP calls it Mikbug/Minibug.

FFFF —
4K RAM 12 —
Fooo - < B
/7 200 _ ROM
E400 - 7 ERE
£000~ __ _Fooo0-
4K RAMZ 11
0000 -
4K RAMZ 10
€000 -
4KRAM 29
- _ /80IC PORT 7
8000 7 mixeus * 20TC |0
‘,}%3?,: /8014 [ POR :
b
aranzs V| S So0 LR 1/0 PORTS
9000 / 8008 [ pORT
/ 8004 PORT
8000 - 8000[ PORT
4K RAM #'7
7000~
4K RAM#6
6000~
4K RAMZ' 5
§000-
4K RAM %4
4000-
4K RAMZ3
3000-
4K RAM %2
2000-
4K RAM Z2 |
1000~
4K RAM 20
0000- Fig. 5-12. Memory map of SWTP-6800 CPU.
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Notice that the Mikbug program has a small, 128-byte RAM that it uses, which is
located at A00O to AO7F.

Lastly, the 1/O ports are located at memory addresses 8000 to 801F. Each
port uses four addresses, and, therefore, there are eight addressable 1/O ports.




6.

Microprocessors

There are several dozen microcomputer systems sold in the personal com-
puting area. With only minor exceptions, they are based on one of four MPUs
(microprocessors)—the 8080/8085, Z-80, 6800, and 6502. In this chapter we
examine these four microprocessors.

MICROPROCESSOR ARCHITECTURE

A typical microprocessor (Fig. 6-1) consists of three interconnected sec-
tions. They are registers, arithmetic logic unit (ALU), and control circuitry.

INPUT ——|
REGISTERS ALU

i

Fig. 6-1. The basic architecture of a microprocessor.

OQUTPUT ~wa——f

CONTROL

Registers

Registers are temporary storage circuits. All MPUs contain accumulator,
program counter, stack pointer, and instruction registers. Some MPUs also con-
tain additional general purpose registers.

The accumulator (the A-Register) stores one of the operands for the ALU.
For example, an instruction might require the ALU to add the contents of some
register to the accumulator and store the result in the accumulator (Fig. 6-2). The
accumulator is both a source (operand) and destination register.

66
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ACCUMULATOR

TEMPORARY
REGISTER

67

Fig. 6-2. Accumulator is both a source and destination register.

Fig. 6-3. The 8080/8085
registers.

Fig. 6-4. The 6800 registers.

Fig. 6-5. The 6502 registers.

STATUS (5)
ACCUMULATOR  (8)

8 (8) 3 (8)
[} (8) E {8}
H (8) L (8)
sp 16)

pC (16)

STATUS (6)
ACCUMULATOR A {8)
ACCUMULATOR B {8)

INDEX (16)
SP {18
PC {16)

STATUS (7
ACCUMULATOR  (8)
INDEX X 8)
INDEX Y (8)
PC (16)
P (8)

FLAG BITS

GENERAL

PURPOSE

REGISTERS
STACK PQINTER
PROGRAM COUNTER

Often an MPU will include a number of additional general purpose reg-
isters to store operands or intermediate data. Other MPUs may use memory
locations as registers. The 8080/8085 MPU has an accumulator and six general
purpose registers (B, C, D, E, H, and L) (Fig. 6-3); the 6800 has two ac-
cumulator registers (Fig. 6-4); and the 6502 has one accumulator (Fig. 6-5) The
6800 and 6502 use memory locations as registers.

Program Counter and Stack Pointer Registers

The PC (program counter register) contains the memory address (MA) of
the next program instruction. The MPU increments the PC every time it fetches
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an instruction from memory. The program is placed in memory in sequential
addresses. In this way the MPU sequentially fetches instructions from memory.

The exception to this procedure is a jump instruction. A jump instruction
contains the MA of the next instruction to be fetched. When a jump instruction is
executed, the MPU replaces the current MA with the MA in the jump instruction.

A special kind of jump occurs when a subroutine is called. A subroutine is
an instruction sequence, located elsewhere in memory, which is accessed (used)
a number of times. A call instruction is used to reference the subroutine. Most
programs are nothing more than a sequence of calls to subroutines. The MPU
handles the subroutine as follows:

1. Increments the PC and stores the PC word in a reserved memory area
known as the stack. This saves the MA of the next instruction to be fetched
after the subroutine is completed.

2. MPU loads the call MA into the PC. The next instruction will now be the
first step in the subroutine.

3. The MPU now proceeds with the subroutine.

4. The last instruction in the subroutine must be a Return instruction. This
causes the MPU to replace the MA from the stack into the PC and continue
executing from that MA.

Subroutines can be nested, so that one subroutine calls another subroutine.
The only requirement is that the stack area in memory must have enough space to
store the return addresses.

The stack area in memory is referenced by the stack pointer (SP) register,
which contains the MA of the most recent stack entry. The stack is also used
when an MPU interrrupt occurs. In this case the contents of the accumulator and
other general purpose registers are pushed onto the stack or popped off the stack
via the MA stored in the SP.

Addressing Register

The MPU uses one or more registers to hold the MA that is to be accessed
for data. For example, the 8080/8085 uses the H-L register pair as a 16-bit refer-
enced MA register. Hence, an 8080/8085 instruction to move data from memory to
the accumulator will move the data from the MA referenced by the H-L register
pair. The H register contains the high part of the address and the L register
the low part of the address.

The 6800 and 6502 use an/R (index register); the 6502 has two index reg-
isters. The second byte of an indexed addressing instruction is added to the
contents of the IR to give the MA reference.

Status Register

The status register, often called the flags or flag bits, operates in conjunc-
tion with the ALU and specifies conditions that occur as arithmetic and logic
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operations are performed. The typical flags (flag bits or status bits) are: carry,
zero, sign, parity, and auxiliary carry. Program jumps are made conditionally
dependent on one or more status flags. For example, a jump to a subroutine may
be made if the carry bit is set by an addition operation.

SIGN

ZERO

AUX CARRY
PARITY

/W CARRY
<]

Fig. 6-6. The 8080/8085 status flag register.

The 8080/8085 status flag register is shown in Fig. 6-6. Notice that it is an
8-bit register with 3 bits unused. The status bits operate as follows:

Zero: Set (1) if result of ALU operation is zero, otherwise it is reset (0).
Sign: Set if in the result of ALU operation the most significant bit = 1,
otherwise reset. The most significant bit is used, in signed binary arithme-
tic, to indicate a negative number.

Parity: Set if result of ALU operation has even number of Is in word,
otherwise reset.

Carry: Setif result of addition or subtraction operation results in a carry or
borrow out of the highest order bit, otherwise reset.

Auxiliary Carry: Set if a carry out results from By into 4 otherwise
reset. This is affected by the operations of addition, subtraction, incre-
ments, decrements, comparisons, and logic operations. This is used most
for decimal adjusting operations.

The 6800 status flag register shown in Fig. 6-7 is very similar to the
8080/8085. However, there are two differences:

Overflow: Set when2’s complement arithmetic operation results inacarry,
otherwise reset.

Interrupt: Set when it is desired that the MPU not respond to an interrupt
request.

AUX CARRY
INTERRUPT
SIGN

ZERO
OVERFLOW
CARRY

Fig. 6-7. The 6800 status flag register.

ALWAYS =1 —L’




70 Computer Systems Handbook

The 6502 is different from the 6800 and 8080/8085 in two status bits:

Decimal Mode: When this flag bit is set the MPU performs BCD arithme-
tic operations.
Break: Set when a software interrupt is executed.

Also note that the overflow status flag can also be used for control. The
6502 status flag register is shown in Fig. 6-8.

Fig. 6-8. The 6502 status flag register. SIGN
OVERFLOW
BREAK
DECIMAL MODE
INTERRUPT
ZERO

CARRY

The Arithmetic Logic Unit (ALU)

The ALU is the section of the MPU which performs arithmetic and logic
operations. It contains a parallel adder circuit which combines the contents of the
accumulator and another register or memory location. The ALU can add, sub-
tract, do Boolean logic operations (AND, OR, X-OR, NOT, compares), and
shift operations. Figure 6-2 shows the relationship between the ALU and the
registers.

The Control Section

The MPU. performs operations identified by an 8-bit instruction word
known as an operation code (Op code). Using 8 bits, it is possible to have as
many as 256 distinct Op Codes.

The MPU fetches the Op Code from memory. The MA of the Op Code is
in the PC. The Op Code is placed in the instruction register and decoded by the
instruction decoder to control the activities of the registers, ALU, and peripheral
ICs. The block diagram of the control section of the 8080/8085 is shown in
Fig. 6-9.

The control section can respond to an Interrupt request which causes the
control circuitry to temporarily interrupt the main program’s execution, jump to a
special routine to service the interrupting device, then return automatically to the
main program. The control section can also respond to a Wait request from
memory or a peripheral which causes the MPU to idle a specific period of time
until the memory or peripheral is ready.
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DATA BUS

INSTRUCTION
REGI
STER (8)

INSTRUCTION
DECODER
CLOCK ~——am TIMING & CONTROL CIRCUIL}.—» REGISTERS

ST

RESET INT HOLD RDY R/W DBIN INTE HOLD WAIT SYNC
ACK  ACK

ALU

Fig. 6-9. 8080 control section.

The reset signal allows an external device to set the PC to zero and clears
the registers.

COMPUTER OPERATIONS

Timing

An MPU goes through a cycle of events. It fetches an instruction, does the
indicated operation, then fetches the next instruction, etc. These sequenced oper-
ations require synchronization of all circuits involved. This is accomplished by a
free-running oscillator clock. All operations are synchronized to this clock and
timing signals.

A complete fetch and execution of a single instruction is called an instruc-
tion cycle. It in turn is made up of states of clearly defined activity. Each state
requires one or more clock periods.

Instruction Fetch

The MPU’s first state(s) of the instruction cycle is an instruction fetch. The
contents of the PC are placed on the address bus and the R/W line is set to read
from memory. The memory responds by placing the contents of the selected MA
on the data bus.

The MPU then inputs the data word on data bus into the instruction reg-
ister. If the instruction is more than 1 byte long, the fetch state(s) is repeated
with the PC incremented and the instruction decoded. The MPU then executes
the operation in the remaining states of the instruction cycle.
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Memory Read/Write

A memory read operation is similar to the instruction fetch with the excep-
tion that the data word transferred from the selected MA to the data bus is
inputted to the accumulator. A memory write operation is the same as a memory
read operation, except that the data word in the accumulator is placed on the data
bus and then transferred to the selected MA.

Wait States

Some memories cannot supply data to the data bus during the short read
time of the MPU. The speed with which the memory can output data is called the
memory’s access time. If a memory’s access time is greater than the MPU read
time, then the memory circuit can be designed to place a request signal at the
MPU’s ready input, causing the MPU to idle temporarily. Then the MPU frees
the ready line and the instruction cycle continues.

INPUT/OUTPUT (1/0)

An input or output operation is similar to a memory read or write except
that a peripheral device is addressed. The 8080/8085 can address up to 256
separate input and 256 separate output ports. The 8080/8085 issues separate I/O
control signals. The 6800 and 6502 treat input/output in the exact same manner
as memory read/write. Hence, the MPU does not distinguish between the two.
The programmer writing the control program must be aware that certain memory
addresses are really I/O addresses.

INTERRUPTS

In most applications the MPU is idle, waiting for an event to occur.
Therefore, the MPU can handle more than one processing task in a given space of
time. This is accomplished via an interrupt line(s). When an I/O device signals an
interrupt, the MPU acknowledges the interrupt, suspends program execution,
and branches to a routine which services the interrupt. When the interrupt service
routine is completed the MPU returns to the previously interrupted program,

It is also possible to set up levels of interrupt where more than one device
can initiate an interrupt. Such a system is called a priority interrupt.

DIRECT MEMORY ACCESS (DMA)

In normal operation, all data transfers to and from memory must pass
through the MPU and the operation is controlled by the MPU. Memory transfers
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may be performed at a much faster rate by using a DMA technique. This is
accomplished via the hold line of the MPU. When the MPU hold line is enabled,
the MPU suspends control over memory read/write operations and control is
turned over to a special DMA controller circuit that performs memory read/write
operations more quickly. The basic DMA configuration is shown in Fig. 6-10.

DATA
MPU
p=
CONTROL RAM
DATA
FLOPPY A—N DMA
DISC \——/| CONTROLLER

Fig. 6-10. DMA basic configuration.

THE 8080/8085

Intel was the first manufacturer to develop a microprocessor (the 8008
introduced in 1971). The 8080 MPU, introduced in 1973, became the most
widely adopted MPU in the industry. In 1977 Intel introduced the 8085, an
enhanced version of the 8080 (called the 8080A). In addition, Zilog manufac-
tures the Z-80 which is also an 8080 enhancement (to be discussed later).

The 8080 and 8085 are similar yet they have the following differences. The
8085 has an on-chip clock circuit, operates from one +5 V source, is TTL
compatible, has 4 vectored interrupts, and a serial-in/serial-out port. The 8080
lacks these features and requires separate power sources (+5V, =5V, + 12V),
a separate clock circuit, system controller, and data bus buffers. Therefore, it is
evident that the 8085 hardware is simpler than the 8080. All software for the
8080 will operate on the 8085.

The functional block diagram of the 8085 is shown in Fig. 6-11. Notice
that this block diagram is very similar to the 8080, shown in Figs. 6-2, 6-3, and
6-9.

One additional difference between the 8080 and 8085 should be pointed
out. At the begining of an instruction cycle the 8080 outputs a pulse on the
sync line to indicate the beginning of the cycle. Also, the status control signals
are outputted on the eight data lines. Hence, it is necessary to latch these signals
and decode them to develop the CPU control signals. This is most often accom-
plished by a peripheral IC, the 8228. The 8228 also provides bi-directional data
bus drivers. A typical 8080 system using the 8228 and also the 8224 clock
generator-driver IC is shown in Fig. 6-12. These three ICs now make up a
complete 8080 MPU system.
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Fig. 6-12. 8080 typical CPU circuit.

The 8085 contains the clock, data bus drivers, and CPU control circuit
and, hence, does not require any support ICs. However, it does multiplex the
lower MA bits with the data bits on the eight data lines. Hence, it is necessary to
provide a latch (eight D type flip-flops) to latch (temporarily store) the lower MA
bits. Intel provides several memory-1/O ICs with this feature. Figure 6-13 shows
a typical system using these ICs.

The system has one I/O port for a terminal, 5 parallel VO ports, 2K bytes
of ROM, and 256 bytes of RAM. The peripheral ICs are made by Intel specifi-
cally to work with the 8085. The 8155 IC contains 256 bytes of RAM, three
parallel /O ports, and a special timer circuit. It also contains an address latch to
catch the MA word from the multiplexed address/data bus. The IO/M control line
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selects either I/O or memory. The WR and RD lines determine whether data
moves to or from the MPU to memory or I/O. ALE enables the address latch to
catch the high order address word from the data bus.

The timer, under program control, divides the clock signal. It is used here
to set the baud rate (to be discussed later) for the terminal. The MPU clock uses a
6.144 MHz crystal. The MPU clock out signal is one-half this, 3.072 MHz. The
timer then divides this signal down to the desired rate and feeds it back to the
MPU (RST-C) to operate the serial data input and output circuits (SDI and SDO)
going to the terminal. Transistor interface circuits provide the terminal in and out
circuits with a current loop signaling circuit.

The 8355/8755 (EPROM/ROM) provides the program to operate the ter-
minal and the operating system program (to be discussed later). This does away
with the need for a front panel on the CPU. All that is required is a reset switch
which sets the PC to the first address in the operating system program and
effectively restarts the CPU.

THE 6800

The 6800 was introduced by Motorola in 1973 at the same time that Intel
introduced the 8080. The 6800 is a much simpler device than the 8080. It has
simpler timing in which an instruction cycle takes only one clock period. The
6800 includes memory and I/O in one address space. Hence, all I/O is addressed
as memory locations. The 6800 does not multiplex data and control signals on
address lines; therefore the CPU control signals are simpler. Moreover, the 6800
operates from a single +5 V supply.

A typical 6800 CPU system is shown in Figs. 6-14, 6-16, and 6-17. This is
the circuit for the popular SWTP-6800 CPU manufactured by Southwest Techni-
cal Products. Figure 6-14 shows the 2-phase clock circuit. IC-4 is an oscillator-
counter IC. It functions as a crystal-controlled oscillator and counter to develop
lower frequency clock signals used in the interface circuits, to be discussed later.
The 2-phase clock signals are developed by inverting the clock signal. Two
power amplifier circuits provide the drive to the MPU. The clock signals are
shown in Fig. 6-15. Note that it takes two to eight machine cycles to execute
instructions.

The CPU (Fig. 6-16) drives a bi-directional data bus thru bi-directional bus
drivers. The bus has the following control signals.

Halt: When =0, CPU ceases execution and floats MPU address and data
lines.

R/W: When =1, MPU reads data from data bus; when =0, MPU is output-
ting data to data bus.

VMA: (Valid memory address) =1 when a valid address is placed on
address bus.
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Fig. 6-14. SWTP-6800 CPU clock circuit.
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Fig. 6-16. SWTP-6800 CPU circuit.
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FROM
CKT

IRQ: (Interrupt request) when =0, and MPU is not in halt state and
interrupts have been enabled, will initiate an interrupt.
NMI: (Nonmaskable interrupt) same as IRQ but cannot be inhibited.
RESET: Resets MPU.
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Notice that many buffering circuits are used since the 6800 can drive only
one TTL load.

The memory circuits shown in Fig. 6-17 are on the same printed circuit
board as the clock and MPU circuits. The ROM (1K bytes) contains a monitor-
debug program (to be discussed later) and, hence, the only operating control
necessary is a reset switch. The program allows a terminal to operate the CPU
directly. The ROM program called Mikbug is in ROM IC No. 6830L7 and resides
at memory location EO00y to E1FFy (512 bytes). The Mikbug (Fig. 5-12) program
utilizes a small RAM (128 bytes) area for location of the stack. This is provided by
the 6810L-1 RAM also located on the CPU printed circuit board. This RAM
resides at MA A000y to AO7Fy (Fig. 5-12).

LA

I to- poness
U 0 —Ag 0 — A
(ho —Ag) 6830L-7 6810L-I (89 —Ae)
ROM RAN
DATA (1Kx8) (128x8) DATA
Dy - D
BUS (8} |pg—0g ww o~07 BUS

cs __ s
3210 533210

I | TTRET

R/W

VMA
#, FROM
CLK CKT
CE FROM )
CPU CKT Fig. 6-17. SWTP-6800 ROM/RAM circuit.

THE 6502

The 6502 is just as popular as the 6800 in personal computing system
use. Its popularity results from the fact that it is even easier to implement a 6502
hardware system than the 6800 (which is much simpler than the 8080). Also the
6502 offers some enhanced features over the 6800. They are: simpler control bus
(only 9 control lines); on-chip clock (external crystal or R-C circuit required);
operation at higher speeds (clock frequencies up to 4MHz); capability of
performing BCD arithmetic directly. The functional block diagram of the 6502 is
shown in Fig. 6-18.

The 6502 is the most widely used MPU among those who homebrew their
own CPU systems. This is because the bus system and interfacing (to be dis-
cussed later) are so simple. Furthermore, MOS Technology, the manufacturer of
the 6502, provides excellent, simple to use, and very powerful supporting ICs. For
example, there is the 6530 IC which provides 1K bytes ROM, 64 bytes RAM, a




Microprocessors 81

R — ——— REGISTER SECTION ‘ CONTROL SECTION - i
RES IRQ NMT j
|
LOGIC
— T — |
A~ REGRTER :
Y i
Al - Ro¥ !
i
Az =— INDEX K= H
REGISTER |
A3 ] X i
aBL (——=,
aq ~—-— C
= &5 2
AS == € (s) INSTRUCTION
| DECODE
| A6 -]
| =] =
ERFSEES! " ALY
3 G
2 L
5 =2
£ -]
2 1‘\5 —-— ACCUMzLATOR | ] cg:ﬁg&
|
AS  —-m—
210 ~—| = PcL = 4
Al ] G PCH (=D T s
agn K= 2
| A2 —~—-—
= o N
Al3 —-— i oS 1 C C:D\ REGPS El GENERATOR INPUT
A14 ———rf | T
DATA K= @, 0UT
BUS
A5~ BUFFER oy
U -
INTERNAL INTERNAL INSTRUCTION
ADH ADL REGISTER
. ’ l o8g
LEGEND: T o8l
9 =ssrume 082
De3 DATA
‘ = 1B8IT LINE 333 8
0B6
DB7
Fig. 6-18. 6502 functional block diagram. (Courtesy MOS Technology)
programmable timer, and two parallel I/O ports. The 6530 is available pre-
programmed with a very good debug-monitor called TIM for terminal interface
monitor (IC No. 6530-004). This same IC, with a different ROM program is
employed in the popular KIM-1 CPU system to control a keyboard, 6-digit LED
display, and cassette tape interface.
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The TIM system is very popular among homebrewers. The reason why is
seen in the example of a typical TIM CPU shown in Figs. 6-19 and 6-20. Using
only 10 ICs, it provides a complete CPU system with 1K bytes ROM, 576
bytes RAM (directly expandable to SK bytes RAM), one parallel I/O port, and
one terminal interface circuit.

Four 2111 RAMICs (256 X 4 bits each) provide 512 bytes of RAM which
together with the 64 bytes in the 6530 provide a total of 576 bytes of RAM. The
7442 IC decodes the addressing to select either of two pairs of 2111 RAM ICs.
Each pair provides 256 bytes of RAM. The control lines are very simple; only 2
are used, R/W and §2. The 2111 RAM is addressed at 0000y to O01FFy. Note that
the 2111 ICs contain their own bi-directional bus drivers making interfacing to
the data bus extremely simple.

The 6530-004 IC containing 1K bytes ROM, 64 bytes RAM, and /O is
addressed as follows: 6300y to 630Fy, for I/O, 7000y to 73FFy for ROM, and
7TFAOy to 7FFFy for RAM. The 6530 actually has two parallel ports. Port A is used
as a standard parallel port with 2 lines of Port B (PB2 and PB3) providing
handshaking signals (see Chapter 7). Another 2 Port B lines are used to interface
a serially operated terminal (PB1 and PB0). PB4 is fed back to control initial
addressing of the ROM (CS1) so the system can be initialized by the terminal.

A manual reset switch, shown at the lower left of Fig. 6-20, is debounced by
an R-S flip-flop circuit. It is used to reset the MPU and TIM ICs. The MPU clock is
crystal controlled by the external crystal (1 MHz) connected between pins 37
and 39.

Fig. 6-19. TIM CPU system—block diagram.
(Courtesy MOS Technology)

6502
MICROPROCESSOR

RAM MEMORY
(PAGE O

I
D
=1 a5 Miniwow
=
:>|

6530-004
TIM PROGRAM

2]

ADDRESS BUS
AO-AIS Vd

DATA BUS @

D0-07

TTY,ElIA TO PRINTER,
INTERFACE i KEYBOARD




83

Microprocessors

(ABojouyoa) SOW AsauUn0)) -onewsyos—weisAs NdD WIL "02-9 Bl

313130 M/ Wei = 4310 - 0000 Ao+
'S8 vLve 'SNG SS34AQY 31 INIST ANORIN ONY O/ 1 4UN AHONIN WIISAS 2 yeg
TWNOILIGOY HLIM CIONVAX2 IBNVIMILSAS IHL 'E gy ,y gy-6v.250-1S3-5H = O/ 00w
10482 ONY 462) WOH WIL 3RL WS KL= 3431 - OV3L 9Y-1v-8Y-6V-253-150 S = WVH ASH
Wou3 03KD134 36 O1¥0193A 1353 3 HOY WIL = 5381 - 00CL 25315354 = HOY -
SMOTIY NMOMS SV $8d 30 NOIYZ Thin o 0/3 WIL = 409 - 0053 SNOILYNDI 123135 dIKI WL 1 age oJ

T STION

o1 vinG ATH
onmgs oLy

LA
P N — —

[
90b] Tﬂ 1100 2

081534

1 1060 1800
b0bL 96N
N3
» - ,
n e
IOA o
)
—!
| 0w,
|
Ni 4007
¥
JUErS nee -
vz
110 ¢ AM~ A 0i— 25 0082
AOSA: 027
JrEt i g
o
av
T
no y ! g8 T
0T
i T 1. T
T - iR
1 L 1
EETRED PDEEEERELEE FEREERE
186 o !
Niib0o 20z 2wz
e OIS | o, |
raly  Ge—
sExBAM WIWI VIV 7 | 9§ v
wasswel N w5 —— T
i DU
b 703 ul
1404 5 e
1ndt 54
Wysd0ugd T 30a
40 Yiv0 €04
RER 20
0
964

AS+

L

2




84 Computer Systems Handbook

As this book is being written, MOS Technology has announced the
planned introduction of the 6509 IC which will combine the 6502 and 6530. This
would reduce the IC count for the TIM system to only eight ICs. How simple can
you get?

THE Z-80

Another MPU often used in personal computer systems is the Z-80. Intro-
duced by Zilog in 1976, it is an enhanced version of the very popular Intel 8080
MPU. The Z-80 offers the following enhancements:

1. Clock and control circuitry on MPU chip. This does away with the 8224
clock and 8228 system controller ICs required with the 8080.

2. Operates from a single +5 V power supply.

3. Has additional interrupt input and clocking to refresh dynamic memories.

4. Can operate at higher clock rate (up to 4 MHz compared to 2 MHz for
8080A).

5. It has more than twice as many registers as the 8080. Figure 6-21 shows a
comparison between the Z-80 and 8080 registers.

6. Has two index registers for indexed addressing (used in 6800 and 6502)

. Has a greatly expanded instruction set.

~J

Z-80 REGISTERS 8080 REGISTERS
STATUS (8) STATUS (8) STATUS (8)
ACCUMULATOR (8) ACCUMULATOR' (8) ACCUMULATOR (8)
8 (8) ¢ (8) 8 (8) [ (8)
L) ¢ @ ° @ E
L)) £ ) H (8) L (8)
LR T s (is)
H (8) L (8) PC (16)
R ) Y
P {16)
PC (i6)
INDEX-X (16)
INDEX-Y (16)
INTERRUPT
VECTOR (8)
MEM REFRESH
COUNTER (8)

Fig. 6-21. Comparison of Z-80 and 8080 registers.
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7.

The Ins and Outs
of Interfacing

The interface section of a CPU is the circuitry necessary to select the
peripheral devices outside the CPU and make the signals between the CPU and
the peripheral compatible. The basic scheme is shown in Fig. 7-1. This interfac-

PERIPHERAL PERIPHERAL
DEVICE DEVICE
ﬁ@ ]
I = -1
|
1/0 1/0
gngOL cPy MEMORY INTERFACE INTERFACE ||
NO. I NO.2

) N
A

[ETICE T T TS
T4 /I T T 11 l[ !
J JL / 1 / dL JL |

]
7 |
L DATA BUS ADDRESS BUS CONTROL BUS 3

NA

THE CPU BUS

Fig. 7-1. CPU and peripherals.

ing task may be very complex. We may handle the signals between units one
bit at a time—serial 1/0, or transfer all bits at the same time—parallel 1/0.
Each separate grouping of input or output lines is called a port, and each has an
address just like memory cells. We cover interfacing basics in this chapter with
some additional points to be made in Chapters 8 and 9.

86
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THE CPU BUS (S-100)

The CPU bus comprises the data transfer, addressing, and control lines.
There is no standard CPU bus. However, the bus structure used on the Altair-
8800 (manufactured by MITS) has also been adopted by several other manufac-
turers and is the most widely used in personal computers. The bus is also known
as the S-100 bus. There are presently at least 15 manufacturers making CPU and
other circuits on printed circuit boards (PCBs) that plug directly into the S-100
bus. Therefore, the S-100 bus may be considered as the de facto standard.

The Altair 8800 CPU uses the Intel 8080 MPU and, hence, most of the bus
definitions come from the 8080 data sheet. Despite this, there are at least three
Z-80, one 6800, and one 6502 CPU PCB:s for the S-100 bus. It should be noted,
however, that the Z-80, 6800, and 6502 have fewer control lines, more simple
and straightforward timing sequences, and could easily operate with less than the
number of bus lines of the S-100 bus. These manufacturers do utilize the S-100
bus so that their CPUs can be easily interfaced to the more than 100 S-100
compatible peripheral PCBs containing memory, I/O interface, etc.

The S-100 bus uses a 100-pin PCB edge connector with the pins allocated
as follows:

TSL = Tri-State Logic
N.C. = No Connection
. +8 V unregulated
. +16 V unregulated
. XRDY-1; ANDed with PRDY and goes to 8080 RDY; also used to cause MPU to enter a
wait state.

W=

VI-0
VI-1
VI-2
VI-3
VI-4
Vi-5

. VI-6

11. VI-7

12. XRDY-2; see pin # 3

13. N.C.

14. N.C.

15. N.C.

16. N.C.

17. N.C.

18. STA DSB  Status buffer disable (TSL)

19. C/CDSB  Command/control buffer disable (TSL)

20. UNPROT  Input top memory unprotect circuit on selected RAM PCB

21. S§; Indicates machine is in single step mode

22. ADD DSB Address buffer disable (TSL)

23. DO DSB Phase out (from CPU) buffer disable (TSL)

24. ¢2 Phase two clock, TTL levels

25. ¢1 Phase one clock, TTL levels

Vectored Interrupt Request

CWOND O~
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26.
27.
28.
29.
30.

31.
32.

33.
34.

35.
36.

37.
38.
39.
40.
.
42.

43

44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
. §TST8
57.
. FRDY
59.
60.
61.
62.
63.
64.
65.
66.
67. X
. MWRT

PHILDA
PWAIT
PINTE
A5
A4

A3
A15

A12

A9
DO4%
DO-0
A10
DC}A‘
DO-5
DO-6
DI-2
D|-37
DL7S
SM1
souT
SINP
SMEMR
SHLTA
CLOCK
GND
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Hold acknowledge, buffered 8080 output
Wait acknowledge, buffered 8080 output
Interrupt enable, buffered 8080 output

Buffered address lines

Buffered data out lines
Buffered address line
Buffered data out lines

Buffered data out line
Data Input lines

Latched 8080 M status (MPU in fetch cycle)

Latched 8080 OUT status (MPU outputting in /O port)
Latched 8080 INP status (MPU inputting from 1/O port)
Latched 8080 MEMR status (MPU doing memory read)
Latched 8080 HLTA status (acknowledges Halt)

2-MHz clock

Circuit ground

+8 V unregulated
—16 V unregulated

SSWOSB

EXTCLR
RTC

DIG-1

N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C

69. P3

70.
71.
72.
73.
74.
75.
76.
77.

PROT
RUN
PRDY
PINT
PHOLD
PRESET
PSYNC
PWR

Sense switch disable (MPU inputs data from sense switches)
Clear signal for I/O devices from front panel switch

Real time clock

Strobe signal (8800B only)

Enable signal for CPU DI drivers (8800B only)

Front panel ready signal (8800B only)

Write enable signal for memory

indicates if addressed memory is protected

Input to memory protect circuit on RAM PCB

Indicates machine is in run mode

see XRDY

Input to 8080 interrupt request

Input to 8080 hold request

Clear signal for CPU

Buffered 8080 SYNC signal (indicates beginning of machine cycle)
Buffered 8080 write enable signal
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78. PDBIN Buffered 8080 BDIN signal (MPU data bus is in input mode)
79. AO

80. At

81. A2

82. A6

83. A7 Buffered Address lines

84. A8

85. A13

86. A14

87. A1

88. DO-2

89. DO-3 Buffered Data Out lines

90. DO-7

91. DI-4

92. DI-6

93. DI-6 Buffered Data Input lines

94. DI-1

95. DI-O

96. SINTA Latched 8080 INTA status (acknowledges interrupt)

97. SWO Latched 8080 WO status (indicates memory write cycle)
98. SSTACK Latched 8080 STACK status (stack address is on address bus)
99. POC Clear signal during power up

100. GND Circuit ground

5-100 BUS
Ag—Als (I6Jl> ADDRESS BUS

0y=07 —j }m DATA OUT BUS

‘m DATA IN BUS
8228

8080 ——{ :: > souT
M
-

é2 8224 {2 >4, conTROL
cLocK
# {2 >4 s

RESET 75 | RESET

0BIN DBIN

Fig. 7-2. Simplified diagram ot 8080 and S-100 bus.
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The S-100 bus structure is related to the MPU as shown in Fig. 7-2. SINP
and SOUT differentiate /O and memory operations. When either = 1, memory
PCBs are disabled and I/O ports are enabled. An example of an S-100 compatible
RAM is shown in Fig. 7-3.

The RAM has a memory protect R-S type flip-flop controlled by the
Memory Protect (70) and Memory Unprotect (20) lines. A 1-level pulse will

>
A
[
D0—4
L
[ 00-2
B>l
[E 000

SINP.

3 DECODER
@_‘Z_ CIRCUIT

DBIN

MEMORY
PROTECT

MEMORY TRI-STATE
+5v4— PROTECT BUFFERS
CIRCUIT

J

MEMORY
UNPROTECT

&

SLOW
MEMORY
DELAY
CIRCUIT

3

at

£l

Fig. 7-3. S-100 compatible 1K x 8 RAM.
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either set (pin 70) or reset (pin 20) the flip-flop. When the flip-flop is set the
RAM cannot be written into.

If SINP or SINO (I/O in and out status lines) =1 the memory is disabled.
This occurs during 1/0 transfers. Notice that the MPU ready line (3) can be used
to halt the MPU for a short period if slow memory ICs are used. The circuit
shown generates a 1-cycle delay.

The data input (to MPU) bus has tri-state buffers controlled by the DBIN
(data bus input) control lines.

TRI-STATE BUSING (TSL)

Tri-state logic (TSL) gates are presently the most widely used gates for
bus structuring. TTL gates cannot be used since a short circuit condition is
created when one TTL bus gate is on and another is off. Figure 7-4 shows the
TTL equivalent output circuit. In order to maintain the high switching speeds of
TTL logic, TSL was created. The TSL gate has an added control input. This
control input effectively opens both switches at the output of the TSL gate
causing the output to float in a high impedance condition (Fig. 7-5).

GATE | GATE 2
+5v +5v +5V

! IS

+5v
! 0
\
00UTPUT 10UTRUT N 8US
\

LOGIC =0 LoGIC =1 Losic=1  LOGIC=0
(A) (8) (9]

Fig. 7-4. (A and B) TTL equivalent output circuit; (C) short created by busing;
TTL gates.

1 i
Y-
) _

LOG—IC=0 LOGIC= OFF Fig. 7-5. (A) TSL gate shown in
(4) (B) OFF state; (B) TSL bus.
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When the control input = 1 or is disconnected, the TSL gates’ output floats.
When the control input =0, the TSL gate operates as a standard TTL gate. Two
typical TSL ICs are shown in Fig. 7-6.

8797/8097
N
N out,
8796 ! o
N N N ouT,
Ny 10 out, 2 1%
N N > ouT:
Ny 1] ouT, 3 C 3
N
N our,
IN3 1 ouTy 4 4
INg ——k outy 0st—
N
N ouTt
INg ——L\L. 0uTs 5 e 5
INg — ouTg INg 0UTg
51— 052 —|
Ds2—
{ I I
Vee Vee

Fig. 7-6. Two typical TSL ICs

MULTIPLEXING AND DEMULTIPLEXING

It is impractical to run separate lines for all signals present in a CPU.
Frequently, two or more signals may be run on a given line. This is called

MULTIPLEXER DEMULTIPLEXER
SIGA -mt——o0 BUS O— = SIG A
SIGB =t—o \ LINE ot SIGB
INPUTS ! !
SIGC wt—o ! ! o—tesigc [OUTPUTS
§160 =+—o | | o——teSIGD
!
i :f
DECODER/ DECODER/
CONTROLLER CONTROLLER
$p —m—oi |
SELECT {s" :"} SELECT
| —— | o )

Fig. 7-7. Signal multiplexing.
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multiplexing and the circuit that accomplishes this is known as a multiplexer
(mux). The mux is used at the transmitting point (Fig. 7-7) and a demultiplexer
(demux) is used at the receiving end.

The multiplexing and demultiplexing circuits are basically selectors with a
decoder/controller circuit to determine which signal is on the line. Only one
signal is on the line at a time. The select signals determine which signal is on the
line, as follows:

S, S, Signal on Bus

0 0
0
1
1

oo m>

1
0
1

The basic circuits of the mux and demux are shown in Fig. 7-8. The So-S4
signals are decoded to enable one of the four AND gates routing one of the
signals on to the bus. A typical mux IC is the 74151 shown in Fig. 7-9. It will

select 1 of 8 signals and place the signal on the output (both true and com-
plemented outputs available) when the strobe enable =1.

A
" T

B,
i _:IJD_ Bour
¢ oUTPUT
N —1 INPUT _D—— Cout
OiN
STROBE - Doyt
ENABLE
DECODER
DECODER
L So
S
(8)

Fig. 7-8. (A) Basic multiplexer and (B) demultiplexer.




94 Computer Systems Handbook

7415|
Do
—, f——— ouTPUT
— D2 —
DATA — 03 o———= QUTPUT
INPUTS | ——— D4
—— D5
ey DS
— 0
Sy —
SELECT < Sp —
S3 —
STROBE ——9 Fig. 7-9. The 74151 IC multiplexer.

SERIAL INTERFACING

The CPU bus operates in parallel. All data, address, and control signals
appear on the bus lines at the same time. To economize on bus lines, data is often
sent over only a single pair of lines, 1 bit at a time. In other words, the data
is transmitted serially. The 74151 mux IC shown in Fig. 7-9 can be used to
convert an 8-bit parallel data word to a serial word. If each input is selected in
succession, then the data bits will appear at the output in succession (serially),
1 bit at a time. A typical serial transmission appears as shown in Fig. 7-10. A
clock input determines the rate at which bits are transmitted and received. The
number of bits per second transmitted is referred to as the baud rate. For exam-
ple, 300 bits per second is equivalent to 300 baud.

A protocol has been adopted so that the receiving device will know when a
serial word starts and ends. The word begins with a start bit (=0) followed by the
data bits, a parity bit, and one or two stop bits (=1), as shown in Fig. 7-11. For
example, if the data word is 0110101 (7 bits) and even parity is sent, the
transmitted word will be 00110101111 and appear as shown in Fig. 7-12.

A Teletype, which uses 1 start bit, 7 data bits, 1 parity bit, and 2 stop
bits, uses 11 bits to transmit each character. It operates at 10 characters per
second (cps) and hence 110 baud. Most higher speed terminals use only 1 stop
bit. Hence, a 30-cps terminal transmits at 300 baud.

PARALLEL DATA IN PARALLEL DATA OUT
/—A—"_“\ /—A—'\
H“H” SERIAL DATA SIGNAL “HHH
TRANSMITTING U—UUUL‘—TUU RECEIVING
CLK= pEVICE DEVICE [=-CLK

Fig. 7-10. Serial data transmission.
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=TT T T T T T T 1 1
| | | | ! 1 ! | | 1
|1:z1|3:4:5:s:7:v 1 |

] |
SRS DASU ISR IOMEURS NN DN SN DU | [

DATA BITS STOP BITS
START -PARITY
BIT BIT

Fig. 7-11. Format for serial transmission.

TRANSMITTED WORD NEXT WORD
: : T T
pofvpvfoyrfjoled o0 | o
— P2 -
DATA WORD STOP BITS
START PARITY START
BIT BIT BIT

Fig. 7-12. Transmission of the word 0110101.

The UART

An IC has been developed to handle serial-to-parallel (and vice versa) data
transmission and reception, and provide the proper protocol and interfacing
signals to the CPU. This IC is called a UART (universal asynchronous receiver/
transmitter). Asynchronous transmission means that the transmitter and receiver
are not synchronized to the CPU. Instead, handshaking signals are used to indi-
cate I/O operations.

A widely used UART IC is the AY-5-1013 shown in Fig. 7-13. It contains
both a transmitter (parallel-to-serial shift register) and a receiver (serial-to-
parallel shift register). Each is clocked separately and may be at different rates,
although usually they are the same. The transmitter has a buffer register to latch
the parallel input word and control logic to add start, stop, and parity bits. The
UART is programmable for the number of data and stop bits and odd/even parity.
In addition, there are handshaking signals: TBMT indicates that the input buffer
is empty (ready to receive a new word) and TEDC indicates that the UART has
completed transmitting a word.

The receiver has an output buffer register to hold the received word until
the CPU is ready to take it. The receiver handshaking signals are ODA (output
data available) and RDA (reset data available). In addition, the receiver can
detect a framing error (improper start or stop bits), parity error (improper data),
and overrun (character previously received has not been read by the CPU). These
error outputs are labeled RFE, RPE, and ROR.
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Fig. 7-13. Block diagram of a
UART (AY-5-1013)

CONTROL STROBE
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OB | Losic
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RPE QUTPUT
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00A
RDA
RECEIVER
(8)
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The ACIA (asynchronous communications interface adapter 1C) is very
similar to the UART. It differs in that it incorporates the multiplexing circuitry
necessary for connection to a bi-directional data bus and a control bus. In other
words it has the interface circuitry to make it directly compatible with a CPU bus.

A very popular ACIA is the Motorola 6850 (Fig. 7-14). It also features
control circuitry that can be programmed by the CPU via the data bus during
system initialization. This includes setting of word length, clock division ratio,
and transmit, receive, and interrupt control.

The 6850 has four registers which may be addressed by the MPU. The
MPU can read the contents of the status and receive data registers and can write
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|
|
|
|
1
|
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|
|
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| es 8)

10
CHIP SELECT | Csi |
FROM MA BUS — ;

52 |

OATA CARRIER DETECT | 000 | RECEIVE pata SERIAL
FROM MODEM L_ SHIFT REGISTER _J DATA IN
81-DIRECTIONAL

DATA BUS
Fig. 7-14. The 6850 ACIA functional block diagram.

into the transmit and control registers. The 6850 has the additional feature of
handshaking lines for direct connection to a Modem (to be discussed later).

RS-232 INTERFACE

The serial in and out logic levels of the UART and ACIA are TTL logic
levels, i.e., a logic-0 is between 0 and +0.8 V and a logic-1 is between +2.4 and
+5 V. The maximum noise possible before interference occurs is 1.2 V (2.4— 5
0.8 V). This generally limits line lengths between TTL devices to a few feet. This |
presents a serious problem when connecting to a printer or terminal where lines
may be up to 50 ft or more. |
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Furthermore, there are the problems of line capacitance and induced surges
from motors, lighting circuits, etc. It was for this reason that manufacturers got
together through the EIA (Electrical Industries Association) and developed a
standard, commonly referred to as RS-232, to define interconnect signals, vol-
tages, and connectors. The latest version of this specification is RS-232C. It is
the intent of RS-232 to allow line lengths of up to 50 ft without the use of a
modem under any conditions of noise.

A control signal (e.g., request to send, data carrier detect, etc.) is defined
as between +3 and +25 V in the one (1) state and between —3 and —25 V in the
zero (0) state. Data is just the opposite: a logic-1 (called a MARK) is between —3
and —25 V and a logic-0 (called aSPACE) is between +3 and +25 V. Therefore,
noise must swing at least 6 V before it will cause trouble. In fact, most manufac-
turers use output signals of +12 and —12 V, providing up to 24 V of noise
immunity.

As a further aid to standardization, RS-232 specifies a connector type (the
25-pin D-connector made by Cinch and others) but also specifies pin assignment
as shown in Fig. 7-15. Although not shown, all pins are assigned, and if you are

I 2 3 4 5 6 7 8 9 {0 H 1213
0O o0 o 0o 0 0 0 0O 0O 0 0 0 0O
14 15 16 1
ot d 06 o7 OIB 0'9 02() 02| c>22 023 024 025 g:!%v':‘f-:n
WIRING
SIDE

. FRAME GND

. TRANSMITTED DATA

. RECEIVED DATA

. REQUEST TO SEND (FROM TERMINAL/COMPUTER)
. CLEAR TO SEND (FROM MODEM)

. DATA SET READY (=1 WITH MODEM POWER)

. SIGNAL GND

- DATA CARRIER DETECT (FROM MODEM)

. DATA TERMINAL READY (TO MODEM)

GN NG D woN—

Fig. 7-15. RS-232 connector pin assignments.

connecting to an unknown peripheral or modem, it is best to check which pins are
used. Also, these pin assignments assume that send and receive are from a line
that has a modem at each end; i.e., at each end of the line, the send data line of
the data terminal goes to the send data terminal of the modem. However, when
not using a modem and making direct connections between a CPU and a
peripheral, the send data line of the CPU must be connected to the receive data
line of the peripheral and vice versa (Fig. 7-16).

The conversion from TTL to RS-232 voltage levels, and vice versa, is
easily accomplished with ICs. Most common are the 1488 (TTL-to-RS-232 quad
driver) and 1489 (RS-232-to-TTL quad receiver) (Fig. 7-17).
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TELEPHONE LINE

TERMINAL MODEM MODEM o CPY
SEND DATA SEND DATA 2
3 3 303
RECEIVED DATA RECEIVED DATA
GND el GND LA
(A)
TERMINAL ,CPu
SEND DATA SEND DATA
3 >< 3
RECEIVED DATA RECEIVED DATA NOTE: PIN NUMBERS ARE FOR
GND L% GND DB-25 TYPE CONNECTORS.

(8)

Fig. 7-16. Terminal/modem versus terminal/CPU RS-232 connections.

+12v
+5v +5V
o L ov - I,

1488 1489

m -2V SIGNAL L
GND

Fig. 7-17. RS-232 line
connections.

—
e

CURRENT LOOP INTERFACE

The receive data line of a Teletype (TTY) is normally connected to the
selector magnet through a resistor and draws either 20 mA (milliamperes) (330-£}
resistor) or 60 mA (160-(} resistor) from the line. Likewise, the Teletype send
data line expects the device at the far end to draw either 20 mA or 60 mA
from the line. For this reason, most interface boards have a set of discrete tran-
sistors and resistors arranged in a configuration which will source 20 mA (send) or
sink 20 mA (receive). The TTY should be checked to determine whether 20 or
60 mA is required. Most CPU circuits provide only 20-mA capability which a
60-mA TTY will not receive. Furthermore, the send circuit may burn out the
receive circuit in the CPU interface.

A typical TTY (20-mA) interface circuit is shown in Fig. 7-18. Notice that
an opto-coupler (LED and photo-transistor in one case) is used to completely
isolate the TTL and 20-mA circuits. When the send switch of the TTY is closed,
20 mA flows from —12 to +12 V through the LED, causing it to light. The LED
light turns on the photo-transistor, causing a TTL O-logic level. When the send
switch is open, the photo-transistor is off and the TTL logic level =1 (+5 V).
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Fig. 7-18. A TTY 20-mA locp interface circuit. H

present, and no current to flow when a 1-level is present. The two diodes protect

The CPU send circuit causes 20 mA to flow when a TTL 0-logic level is “
i
the photo-transistor from current spikes induced by the selector magnet. ,

|

MODEMS

In noisy environments and where the distance between the CPU and termi- |
nal is great, modems must be used. Modem is a contraction of modulator- |
demodulator, a circuit which allows communication of digital data signals over J
telephone, radio, and other limited-bandwidth communications channels.
Modems can operate half-duplex (one direction at a time) or full-duplex (both
directions simultaneously). Modems can operate up to 9,600 baud over tele-
phone circuits, although half-duplex usually limits maximum speed to 300 baud.

ORIGINATE ANSWER
MODULATOR MoogLﬁrZ%m |
o - X
g uarr| | {1070-1270 ha) {202 /g - B
t N
w ACIA | loemoouLator pemobuLaToR [ | A
(2025-2225 Ha) (1070- 1270 Hz)

COMMUNICATION LINK
(e.g. TELEPHONE CIRCUIT}

Fig. 7-19. A basic modem data communication system.
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Modems in this speed range usually use an FSK (frequency shift keying)
technique using four frequencies in two bands. The low band (1,070 to 1,270 Hz)
is used for the originate (the terminal) modem, and the high band (2,025 to 2,225
Hz) is used for the answer (CPU) modem. The basic setup is shown in Fig. 7-19.

The originate modem generates a 1,270-Hz mark (1) or 1,070-Hz space (0)
frequency. The answer modem generates a 2,225-Hz mark (1) or 2,025-Hz space
(0) frequency.

Modems use either acoustical couplers (Fig. 7-20) to the telephone hand-
set or direct-wire connection to the telephone line. The acoustical coupler avoids
the necessity for the installation and rental charges for the special DAA (data
access arrangements) which the phone company insists upon when a direct
connection is made. Acoustic couplers do, however, have noise and distortion
problems which can cause errors.

Fig. 7-20. A typical modem using an acoustical coupler.

The modem interfaces to the UART or ACIA of the terminal or CPU. The
block diagram of the M & R Enterprises Pennywhistle 103 acoustical coupler
type modem is shown in Fig. 7-21 and the schematic in Fig. 7-22. The receiver
contains a phase-locked loop (PLL) IC (A3) which contains a variable frequency
oscillator and comparator. The IC is always trying to match the oscillator fre-
quency to the incoming frequency. A correction voltage fed by the comparator to
the oscillator is a measure of the difference between the incoming frequency and
the preset center frequency. A three-stage active filter (A1-A2) ahead of the PLL
prevents noise and harmonics from getting through.
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R10 sets the center frequency of the PLL. A floating reference circuit (Q1
and A4) stabilizes the circuit to prevent drift due to temperature changes. The
reference voltage is fed to a Schmitt trigger (A5) to eliminate any noise and then
to EIA and 20-mA loop output circuits. A4 detects when sufficient signal level
exists for reliable operation and provides an EIA carrier detect signal to the
terminals and holds the data at a mark when insufficient signal is present.

Two LEDs (one amber and the other red) are driven by AS to indicate the
data logic levels (1 = amber, O = red). The carrier detect signal turns on the
transmitting oscillator through R59. Data is looped back from the transmitter to
the receiver when the half-full duplex switch is in the half position. This provides
an echo of the data originated at the terminal.

The transmitter uses a 555 IC (A7) oscillator followed by a filter/driver
(A8) to reduce harmonics and provide the power to drive the small speaker in the
acoustic coupler. The frequency is controlled by the voltage at the base of Q6.
Q3 and Q4 form a Schmitt trigger circuit which takes data in from either an EIA
or 20-mA current loop via an opto-isolator.

PARALLEL INTERFACING

The CPU can output or input all the data bits at one time via a parallel
port. It is the job of the parallel interface to translate signal levels, synchronize
signals, store data temporarily, and isolate the CPU from unwanted data. Figure
7-23 shows a simple parallel input port with TSL outputs. When the port is
addressed and an in signal is given by the MPU, the input data word is placed on
the data bus and inputted to the CPU.

A simple parallel output port is shown in Fig. 7-24. It consists of an 8-bit
latch that latches the data on the CPU bus when the port is addressed and an out
signal is given by the MPU.

Parallel Port ICs

A very popular IC for parallel ports is the Intel 8212. It can be used for
input or output ports. As shown in Fig. 7-25 it consists of an 8-bit data latch with
Q outputs connected to TSL buffers. Data flow is controlled by the MD, STB,
DS1, and DS2 inputs. If MD = 1, the DS1/DS2 inputs will clock the latch and
the buffers are enabled to provide output port operation. If MD = 0, the STB
input clocks the latch to load data. DS1/DS2 then enable the buffers to transfer
data to the CPU bus for input port operation. The 8212 may be used to initiate an
interrupt (when INT output is connected to INT input of MPU). The INT output
signals the MPU that data has been loaded into the data latch. Reading the port
resets the INT output.
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Fig. 7-22. Schematic diagram—Pennywhistle 103 modem
(Courtesy M & R Enterprises)
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Fig. 7-27. 8212 used as an output port.

The use of the 8212 as an input port is shown in Fig. 7-26, and its use as an
output port is shown in Fig. 7-27. Intel also makes a dual programmable
peripheral interface (PPI) IC, the 8255. It may be configured as one, two, or
three 1/O ports.

A more popular programmable IC is the Motorola 6820 PIA (peripheral
interface adapter). The 6820 (Fig. 7-28), has two 8-bit bi-directional data reg-
isters to provide two 1/0 ports: Each port is programmable, via two control and
data direction registers. Therefore the MPU during initialization may program
the two ports as to their data direction, handshaking, and interrupt processing.

DATA BUS < (8} ><(sl

PO——
INTERRUPT A IRQ A CONTROL CONTROL
INTERRUPT B ~=——————1 IRQ B REGISTER A REGISTER B
RESET RS
READ/WRITE ———————————= R/W .
DATA DIRECTION DATA DIRECTION
[ RSi REGISTER A REGISTER B
— RSZ
ADDRESS
aooREsS DECODER [~™*| (S0
—=| cs, DATA DATA.
& REGISTER A REGISTER 8
= 652 CAl ¢ CB2

$p———————— == ENABLE 1/\I'
(8) 1 1 (8)

DATA  CONTROL CONTROL  DATA

PORT A PORT 8
Fig. 7-28. The 6820 dual peripheral interface adapter (PIA) IC. |
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THE IEEE STD 488 BUS

In 1973 Hewlett-Packard standardized on a communications data bus to be
used between their test instruments. In 1976 the IEEE (Institute for Electrical &
Electronics Engineers) adopted it as a standard, labeling it Std-488. It permits the
interfacing of five categories of instruments: stimulus, measurement, storage,
displays, and control. As shown in Fig. 7-29, it contains 16 signal lines—8
bi-directional data lines, 5 general interface-management lines, and 3 byte-
transfer-control lines.

Each station on the bus can work as a controller, a talker, or a listener.
Some devices can assume multiple roles, such as a CPU (control, talk, and listen)
or a digital multimeter (talk and listen). Other instruments, like counters and
signal generators, are not as versatile.

Up to 15 stations are permitted on the bus and many stations may listen at
the same time. One byte is transferred at a time, asynchronously, without
strobes. First the control station sets the attention line =1, and sends out the
addresses of all the stations to be involved in the upcoming data transfer. In turn,
each station recognizes its address on the data bus and prepares to listen or talk.
However, only one station may talk at a time. The byte-transfer control lines then
support the per-byte handshake protocol.

ANALOG-TO-DIGITAL AND DIGITAL-TO-ANALOG CONVERSION

A digital signal has only two voltage levels. The industry has standardized
on 0 V and +5 V. Ideally, there are no other voltage levels used in digital
circuits. When we deal with non-digital circuits, e.g., varying the volume of an
amplifier, we are dealing with analog signals that vary between a set of limits.
For example, an analog signal may be 0V, +5V, —5V or any voltage between
the limits of +5 V and —5 V. A sine-wave signal is another very common
example of an analog signal.

Very often we wish to interface analog devices and digital computers. For
example, we may wish to connect a ‘‘joy-stick”’ (two-potentiometer X-Y position
controller) to the input of the computer. Or, in another case, we might input the
analog signal of a temperature transducer to the computer. In both of these cases
we are inputting analog signals to the computer. This is accomplished by means
of an analog-to-digital converter interface circuit, which is called an ADC for
short.

On the other hand, we have digital-to-analog conversion, called DAC for
short. For example, when the digital signals of the computer are used to generate
music, we use DACs. Other examples include display of signals on an oscillo-
scope and the control of a motor.
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Fig. 7-30. An IC-DAC used with a +5v
microcomputer system. 41K
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Digital-to-Analog Conversion

Low-cost DACs are available in IC form. A very popular IC DAC is the
Motorola MC1408L-8. This device is shown in Fig. 7-30. The DAC is driven
from a standard output port latch such as the 8212 IC.

Analog-to-Digital Conversion

ADC circuits, in module form, are readily available which convert analog
signals rapidly and accurately and require little or no programming in the mi-
crocomputer system. Unfortunately, these units tend to be expensive. In cases
where speed and accuracy are needed they should be used. If conversion speed is
not important, simpler ADCs can be used, which require program instructions in
the CPU.

A simple ADC circuit is shown in Fig. 7-31. Itis used to sense the position
of a potentiometer (R1). It uses a 555 timer IC operating as a one-shot. The

+5Vv +5v
TO ONE
DATA BIT
OF INPUT POT.
PORT

R2 R

1K 4 8 10K

3 7,

ADDRESS ADDRESS L,
DECODER 555 T o
CIRCUIT | >

2 (] =

out E —

Fig. 7-31. Simple ADC to input potentiometer
position (voltage) to CPU.
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duration of the output pulses is controlled by R1 and capacitor C1 (T=1.1RC).
The one-shot is triggered by an output pulse from the CPU. The CPU then
executes a delay loop until the one-shot pulse ends. The CPU counts the number
of cycles occurring during the delay loop and uses this as an indication of the
position of R1. If R1 is a small resistance, the count will be low, and vice versa.

A more typical ADC circuit is shown in Fig. 7-32. It employs a DAC and
comparator (form of operational amplifier) to make up a successive-
approximation type ADC. The circuit uses a parallel output port and a serial
input port.

FROM

PARALLEL

OUTPUT DAC

PORT .

OF CPU Fig. 7-32. A minimum component

COMPARATOR ADC system

T V2
SERIAL A~
INPUT v
PORT e ANALOG INPUT
OF CPU

01F VI=V2

LIEVI<V2

The CPU executes a program that successively approximates the analog
input voltage. The DAC converts the digital output to an analog voltage (V2) and
the comparator compares the DAC output to the analog input voltage (V1). The
comparator output indicates if the binary approximation is too high or too low.
The first approximation will be 1000 0000. If this is too low (comparator output
= 1), the next binary approximation will be 1100 0000, and if too high (com-
parator output = 0), the next binary approximation will be 0100 0000. In this
way nine successive approximations are needed to arrive at the correct binary
value for the analog input.

A popular ADC/DAC for S-100 type CPUs is made by Cromenco Inc.
It multiplexes seven analog inputs under CPU control to one ADC and also
provides seven analog outputs. The ADC is a hardware type successive ap-
proximation circuit. A 2502 successive approximation register (SAR) together
with the MC1408L-8 DAC and 710 comparator form the heart of the circuit.
This is about 100 times faster than the software method described earlier.

Recommended Further Reading

1. Jean Daniel Nicoud, ‘‘Peripheral Interface Standards for Microprocessors,”” Proceed-
ings of the IEEE, Vol. 64, No. 6, June 1976.
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Mass Storage Systems

The RAM of the CPU holds the program and data that is being worked on
by the CPU. When not in the CPU, the program and/or data is stored in a mass
storage medium. The long time-honored IBM punched card has been around for
many years and was very low cost as a mass storage medium. However, the card
readers and punches are expensive and very slow. Magnetic tape drives (mag
tape) greatly improved the access time but increased the cost significantly. Tele-
types with their paper tape reader/punch units also made possible very low cost,
but slow, mass storage.

Presently, the fastest access mass storage medium is the magnetic disc.
However, the cost is extremely high. A lower cost, but still expensive magnetic
disc system has recently been introduced using floppy discs.

Personal computer users in nearly all cases use either paper tape, magnetic
cassette tape, or floppy disc storage mediums. Also, a very new technology
called bubble memories is being introduced for mass storage.

PAPER TAPE

Paper tape program storage is very popular among personal system users
for several reasons. First, it is the only medium which is standardized. This
means that a paper tape generated on one system can be used directly on virtually
all other systems. This is not true for magnetic tape or disc.

Paper tape is low in cost. However, the machines for reading and generat-
ing paper tape can be expensive. An economical solution is the use of the
Teletype (Fig. 8-1) which, as an adjunct, contains a paper tape reader and punch.
Its disadvantage is that it is very slow, 10 cps (characters per second). This is
because it is an electro-mechanical machine. There are high-speed readers and
punches operating up to 400 cps, but they are very expensive.

Very low cost paper tape readers are available and one is shown in Fig.
8-2. To operate this unit a light source is provided directly over the reader (it uses
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Fig. 8-1. Paper tape reader and punch on a model ASR-33 TTY.

photo-transistors to sense the holes in the tape) and the tape is pulled through the
reader. It can read at high speeds.

A typical manually operated paper tape reader circuit is shown in Fig. 8-3.
It uses a nine-photo-transistor sensing array to detect the 8 data holes and
sprocket feed hole. The output of each sensor is fed to one-shot ICs to lengthen
the pulse. A D flip-flop provides a read data available (RDA) signal to the CPU.
This signal is derived from the sprocket-hole signal. The CPU’s acknowledge
(ACK) signal controls the RDA flip-flop so that no RDA signal will be provided
unless an ACK signal has been provided by the CPU. The reader’s output is
connected to a parallel input port.

Paper tape can be corrected or edited with correction seals and splicing
patches. A tape can be prepared or copied, off line, on a TTY without use of a
computer. Also, the tape can be fan-folded and stored easily in a folder or book.
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Fig. 8-2. Economical hand-operated paper tape reader
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Fig. 8-3. Manual paper tape reader—schematic diagram. (Courtesy Oliver Audio Eng.)
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The tape is 1 in. wide, usually oiled, and available in either 950-ft rolls or
fan-folded 1,000-ft lengths. These will hold about 100,000 bytes of data. A
typical tape punched with the standard 7-hole code is shown in Fig. 8-4.

The data on the tape is either formatted or unformatted. Unformatted tape
contains only the program code characters. A formatted tape is structured in
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either a binary or hex format which provides a means of loading into memory
with error checking.

For example, the Motorola 6800 (Mikbug) system employs a formatted
binary tape (Fig. 8-5). The code is punched in blocks. Three different types of
blocks can be recorded: header (program), data, and end-of-file. Each block
starts with a hex 53 (ASCII S), followed by a hex character to indicate the type of
record: header, data, or end-of-file. This is followed by a 2-binary-character byte
count and a 4-binary-character loading address (tells CPU where in memory to
load this block). Next the actual code to be loaded is given. The block is
completed with a 2-binary-character checksum.

Using a formatted tape enables loading to be started and stopped and errors
to be caught and easily and quickly corrected. For example, if an error is detected
during loading, the tape can be stopped, backed up, and loading resumed. It is
not necessary to load the tape from the beginning since each block has its own
loading address.

Paper tape punches, outside of the punch included on a TTY, are very
expensive pieces of equipment and are generally beyond the pocketbook of a
home user.

TAPE CASSETTE

The use of an ordinary audio type cassette recorder is very popular with
personal system users. At a low cost it affords an easy to use, high speed, and
high density mass storage system. The disadvantage is that no standard recording
technique has been adopted. This, together with varying recorder characteristics,
makes exchange of tapes much more difficult than with paper tape.

The data is most usually recorded on the tape in serial form as an FSK
(frequency shift keying) modulated audio tone. Other recording techniques are
used, but this is the most popular. This means that the recorder requires a serial
interface to the CPU. The most popular recording system in use is the Kansas
City standard (FSK) recorded at 300 baud. Using the KC standard about 100,000
bytes can be put on a C-30 tape cassette and the loading of an 8K program
(formatted) would take about 5 minutes. This is three times the speed of 2 TTY
using paper tape.

Another popular recording technique, developed by Don Tarbell, is the
Tarbell standard. It uses a phase encoding technique and can be operated at
speeds up to 1,800 baud. This reduces the loading time of an 8K program to
under 1 minute. A third system, made by National Multiplex, uses a direct
recording technique called NRZ (nonreturn-to-zero). This permits recording at
rates up to 9,600 baud and can load an 8K program in less than 10 seconds. The
disadvantage is that a special cassette recorder and cassettes are required, and
thus the cost increases.
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Frames 3 through N are hexadecimal digits (in 7-bit ASCil) which are converted
to BCD. Two BCD digits are combined to make one 8-bit byte.

The checksum is the one's complement of the summation of 8-bit bytes.

CcC=30 cc=3 CcC=39
Header Data End-of -File
Frame Record Record Record
1. Start-of-Record ___ 53 S 53 S 53 S
2. Type of Record ___ 30 ] 31 1 39 9
3. 31 31 30
a. Byte Count 32 12 36 16 13 83
5. 30 31 30 i
6. Address/Size 30 31 1100 30 o000 |
7. 30 0000 30 30 E
8. 30 30 30 ‘;
9. 34 39 B 46 FC
10. Data 18 48-11 38 98 a3 {
. 1
: g: 44D gg 32 {Checksum) !
—_— i
35 | f
. 32 52R a1 ‘*
. _— _ A8 !
LA 38
39 :
N. Checksum 45 9 /I\ |
- - '
|

Fig. 8-5. Typical paper tape format. (Courtesy Motorola) ;
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The Kansas City Standard

In November 1975, when personal computing was still very young, a
number of manufacturers met in Kansas City, Kansas, and adopted a standard for
exchange of programs on audio type cassettes. (The details of the KC standard
can be found in the February 1976 issue of Byte magazine.)

The KC standard basically required the data to be recorded serially, using a
standard UART format (1 start bit, 8 data bits, and 2 stop bits) at 300 baud. A
logic-1 = 2,400-Hz sine-wave tone and a logic-0 = 1,200-Hz sine-wave tone;
the clock pulses, are recorded on the tape with the data. The signal is then read
from the tape and converted into a self-clocking signal that can tolerate 30%
recorder speed variations.

A popular cassette interface unit using the KC standard is the SWTP model
AC-30 shown in Fig. 8-6; a partial schematic is diagrammed in Fig. 8-7. It
consists of an FSK modulator and demodulator. A 4,800-Hz clock is fed to the
modulator which can be turned on or off by the carrier enable input controlling
IC-5B. IC-5B divides the signal by 2 down to 2,400 Hz. IC-5A divides the clock
signal by 2, reducing it to 1,200 Hz if data =1 or leaving it at 2,400 Hz if data
=0. IC-4A is an active filter to reduce the harmonics of the signal so that it
approximates a sine wave.

Fig. 8-6. A KC standard type tape cassette recording system.

The signal from the recorder is passed through a high-pass filter circuit to
comparator IC-4B, which introduces hysteresis (delay) and eliminates false trig-
gering. IC-3C/D generates a pulse every time the comparator changes states.
Q2 and IC2B detect whenever several cycles of audio carrier are missing, and Q1
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and IC-3B detect whether any data pulse is missing (times out when 1,200-Hz
data exists). IC-2D synthesizes the clock pulse and IC-1A detects the logic levels
of the data.

The AC-30 includes a basic controller circuit that permits starting and
stopping of one or two recorders automatically. The unit is designed to work with
the SWTP-6800 system.

The Tarbell System

The Tarbell system is designed to interface directly to the S-100 bus. It
uses a sophisticated phase-encoding technique (used in many large scale com-
puters) to encode the data on most standard audio cassette recorders. It can
operate at up to 1,800 baud and, hence, is considerably faster than the KC
standard. The interface unit is available on one PCB that plugs directly into any
S/100 bus type CPU. In addition, it contains control circuitry to start and stop the
recorder.

Cassette Recorders

The KC and Tarbell circuits will operate with most standard audio cassette
recorders. However, for optimum, reliable performance, the cassette recorder
should have a good high-end frequency response (e.g., 8,000 Hz), minimum
speed fluctuation, and a good tape handling system to minimize tape wear. For
example, Don Tarbell recommends a J.C.Penny recorder that costs about $40.
The unit should also have a control input to start and stop the motor so that tape

Fig. 8-8. A controllable cassette recorder. (Courtesy Economy Co.)
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can be controlled via software. If planning to operate at high baud rates, it is
recommended that a good quality recorder be used.

A fully controllable recorder, such as the popular Phi-deck unit (Fig. 8-8),
is needed if data processing is to be done. This will allow block data to be read
into the CPU. When used in conjunction with a sophisticated controller, and
operating system software, it is possible to search the tape for blocks of data,
update the data and hence handle applications such as mailing list maintenance,
inventory control, etc. In fact, a system using multiple controllable recorders can
be made to operate as well as a disc system but at lower speeds.

FLOPPY DISCS

The disadvantage of cassette tape storage is that of slow access time. The
fast audio cassette units will take approximately 1 minute to load an 8K program,
and added to this is the time to find the program; this can take many minutes.
Controllable digital type recorders can search at high speeds and load quickly,
reducing the search and load process to a matter of no more than 1 minute or so.
To overcome this slow access time, the disc storage system was developed.
However, it has the disadvantages of high cost and complexity. The recent
introduction of floppy discs has reduced this significantly, but it is still
considerably more costly than cassette storage.

The floppy disc permits having an immediately accessible program library,
since a standard floppy can store up to 256K bytes and access any block of
program in less than 1 second. Recently, a double-density floppy disc system has
been introduced.

One of the biggest uses of disc storage is for information storage and
retrieval. For example, a business may keep customer records, for direct access,
on a disc. If each customer’s data was 300 bytes and there were 800 customers,
240,000 bytes of storage would be required. This is easily handled on a floppy
disc system.

The storage medium is a large round piece of Mylar 0.003 in. thick,
covered with a thin layer of magnetic oxides. It is housed in an 8-in. square
protective envelope (Fig. 8-9) with cutouts for the drive spindle, recording head,
and index position hole. Two types of discs are used: a soft-sectored and a
hard-sectored type. The soft-sectored, which is the standard, uses a single index
hole and sectoring format information pre-recorded on the disc. The hard-
sectored disc (Fig. 8-10) contains an index hole and holes to define the 32 sectors
on the disc.

A typical floppy disc drive unit is shown in Fig. 8-11, and its internal
construction in Fig. 8-12. The disc is inserted into the drive through a door.
When the door closes, the disc is moved against a cone shaped spindle which
pokes through the large center hole and clamps the disc. The spindle is driven ata
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O"/ WRITE PROTECT HOLE

RECORDING HEAD HOLE

I~ DRIVE SPINDLE HOLE

[~ INDEX POSITION HOLE

Fig. 8-9. Typical floppy disc
in its envelope.

constant speed of 360 rpm by a synchronous motor and the disc rotates inside the
felt-lined envelope.

The head is on a carriage, which moves radially in or out from the center of
the disc by a stepping motor. The head can be positioned at any one of 77 points
(tracks), with track O being the outermost track. The stepping ranges from 100 to
400 steps per second.

The soft-sectored disc contains 26 sectors and 73 tracks of data. Each
sector contains 128 bytes. Hence, a total of 242,944 bytes can be stored on the
disc. The hard-sectored disc contains 32 sectors (128 bytes per sector) and 77
tracks and thus 315,392 bytes can be stored.

The recording head protrudes through the slot in the envelope. When
reading or writing occurs a pressure pad on the other side of the disc presses the

INDEX
HOLE

SECTOR
HOLES

Flg. 8-10. Hard sectored disc.
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Fig. 8-11. A typical floppy disc drive unit.

disc against the head. A photo cell and lamp detect the index and sector holes.
The record format on the disc consists of some leading zeros, a data ID pattern,
the data (128 bytes), CRC characters, and some trailing zeros. The CRC (cyclic
redundancy check) characters are used for error detection (to be explained later).
The ID contains the track and sector addresses so that if the drive were to stop in
the wrong position the controller could correct the error.

The disc unit contains the drive, controller, and interface electronics. They
may be on one PCB, but are generally placed on separate PCBs to allow mating
of different drives to controllers. The single PCB approach limits the user to the
specific drive. The drive electronics contains the read, write, motor control, head
positioning, and loading circuitry. The controller recognizes the CPU commands
and data and provides the proper signals to the drive circuitry. Step counts are
computed, sectors counted and recognized, data IDs recognized, CRCs com-
puted and checked, data serialized and deserialized, and memory addresses
counted. Also, circuitry for handling multiple drives may be included. The
controller may contain as many as 200 ICs or use an MPU.

The interface circuitry provides for interfacing to two parallel CPU output
ports and two or three input ports. Some of the faster units employ direct memory
access (DMA, see Fig. 6-10) to read and write to the CPU’s memory directly.
Transfer rates of 30,000 bytes per second are typical.

Crucial to the optimal operation of the system is the supporting software to
manage the operations. The software for this is referred to as FDOS (floppy disc
operating system). FDOS keeps track of what is stored on the disc, and permits
the user to call programs or data by name. A good FDOS will also enable the user
to move programs from device to device. This is important when using an
assembler or high level languages such as BASIC.
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BUBBLE MEMORY

A new mass storage device is presently in the initial stages of reaching the
personal computer market. It is bubble memory. It promises to be stiff competi-
tion for the floppy disc system. It is an all electronic system, compared to the
electromechanical, motor-driven floppy disc system. It should prove to be more
compact, require less power, be faster, quieter, and in the long run more eco-
nomical.

Bubble memories consist of a thin orthoferrite film in which magnetic
domains (bubbles) carry the digital data. Millions of bubbles can be contained in
a square inch, and the memory contained in an IC package. It promises to be the
next technological breakthrough in the computer field.

ERROR-CHECKING

When transferring data from one device to another, it is possible to intro-
duce errors, e.g., a dropped bit. Hence, error-checking is performed as part of a
data transfer to ensure that it is error free, relatively speaking. Three techniques
are in wide use in personal computing systems. They are as follows:

The Parity-Bit: This consists of the addition of a parity-bit to the data word.
Both even and odd parity are employed. In odd parity a 1 is added to the word if
an even number of 1s is in the data word, and a 0 is added if an odd number of 1s
is in the word. This system is widely used in serial data transmission between a
CPU and a terminal. Here is an example (odd parity); note that it uses a vertical
redundancy check.

1011001 Parity-Bit
141411111 B;

ojtjo 1101

110]1 0001
ofojooo010 Data Bits
of1fo 0011
0jojoo100
Hyr1111

i1 1111 B,

The Checksum: Here a block of data is checked horizontally for the
number of 1s and Os, and a data word is added to a block of data bytes. This
technique is widely used when storing data on paper or cassette tape.

In the following example there are 17 data words and an 18th word (the
checksum) is added to the block of data. The checksum word is derived by
summing the 1s horizontally. A 1 is put in the appropriate bit position of the
checksum word if there is an even number of 1s counted. Note that the format
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used by Motorola (shown in Fig. 8-5) is based on summing hex digits and
expressing the checksum word in the 1’s complement.

Checksum

Data block word

P, NG

<5

—_ O O = O —

—_——0 © O|—|O|—
—— O = OO =] —=
_— O O OO
- — 0 © o|o|~|~
_——— O OO ==
N - = =l
—_— O - Of=|—={—
_——0 = OO~
_——— e OO O
—_—0 O OO =
o~ o o o|ojolo
- — 0 o o|—lole
—_—0 O OO~
—_——0 oo~
- — 0 o —|olol—
—_—_— O O|=|=j—
_—O - oYYy

o

The Cyclical Redundancy Check (CRC): This error check is much more
rigorous than the preceding two. In addition it requires more circuitry to be
accomplished. It is widely used in disc storage memory systems. It involves
checking the data bits diagonally. Actually, it is an arithmetic operation per-
formed on the data in a wraparound fashion. The check is performed as follows:

CRC
Data Block characlter

N\A
B, 1 1 1[11 1Jo !l 1 1|0
01 0[|1/1 0 K01 0]0

1 0 1/0]0 L0 0 I\ 1[0
0.0 0]0]0 00 1,0, 00
00 |0]0 0[0 0 0\1‘0
00001 o1 0 0 0™
[ERNENNNE 11111 1M
B, 1 1 1J1 M1 J1 11 11




9.
Input/Output Devices

Input/output devices, often called peripherals, are the means by which the
user communicates with the CPU. The most widely used I/O devices among
personal systems users are the Teletype (TTY) and TV display/keyboard. CRT-
type terminals and printers are also used frequently, but because of higher prices
they are not as popular.

Terminals are usually divided into two classifications, the hardcopy and
softcopy terminals. A hardcopy terminal is one which types characters on paper
and, hence, leaves a permanent hard copy of the computer output. A softcopy
terminal usually uses a TV display for output. Once the computer output to the
TV screen passes from the screen, it is lost for all time and hence the designation

softcopy.

TELETYPES

Teletypes, most affectionately called 77Ys, predate the introduction of
computers by more than 30 years. These machines were first produced for the
transmission of messages via telephone lines. Their ready availability, when
computers were born, made them a natural for computer I/O use.

Teletype is a trade name for teletypewriters manufactured by the Teletype
Corp., Skokie, Hllinois, the leading producer of these machines. A number of
other manufacturers have made competitive machines but most of them have
dropped out of the business.

Most personal computer users purchase their TTYs used, since there are
large numbers of these machines available on the surplus market. The earliest
models (11, 12, and 14) were manufactured in the 1920s and many are still in
use, even though they could be classified as antiques. The models 15, 19, 28,
and 32 followed the earlier models and some are still being manufactured. They
are widely available used, for prices ranging from $25 to $400 depending on
condition. They use the 5-level Baudot code and require the addition of interfac-
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ing circuits. (Two excellent articles on interfacing these machines will be found
in Byte magazine, April and May 1977, and The Computer Hobbyist, December
1974).

The models 33, 35, and 40 are ASCII-coded machines which can be
directly interfaced to most CPUs, via 20-mA loop circuits with no modifications
required. The model 33 (Fig. 9-1) is the most popular and is normally the
machine referred to when one speaks of a TTY. It is still in current manufacture
and more than 600,000 have reportedly been built. The machine is available in
the following forms:

RO: Receive Only—consists of only a printer.

KSR: Send/Receive—includes a keyboard and a printer.

ASR: Automatic Send/Receive—includes keyboard, printer, tape reader,
and punch.

The ASR-33 sells new for approximately $1,100 and used for $300-$900,
depending on condition. It is the most popular hardcopy terminal in use by
personal computer users.

The model 33 and its relatives, the 35 and 40, use the 8-level ASCII code
shown in Fig. 8-4. Most personal computer users consider this tape format a
standard for exchange of software. Also, most CPU serial I/O interfaces include
the 20-mA current loop drive required by these machines.

The ASR-33 consists of five basic components within one enclosure (Fig.
9-2 and Fig. 9-3). The keyboard is the sending component of the TTY. Each of
its keys controls a set of levers which position a set of electrical contacts to set up
a parallel code (ASCII) for the character. This parallel output is fed to a motor
driven distributor in the printer unit, which serializes the coded word and sends it
to a selector magnet drive circuit in the call control unit from which it is sent to
the CPU.

Fig. 9-1. The model ASR-33 TTY.
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Fig. 9-2. Block diagram of a TTY (ASR).

Fig. 9-3. Interior view of ASR-33 TTY.

The printer receives the serial word from the call control interface unit and
translates the signal into a mechanical arrangement of codebars. The positions of
these codebars determine the position of the type wheel, on which characters are
embossed, and the selection of functions such as carriage return (CR) and line
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feed. A motor coupled to a main shaft drives all the printer functions. A standard
friction feed (pin-fed option is available) advances the paper. The printer
operates at 10 cps.

The tape reader has sensing pins which are driven upward for every cycle.
Holes in the tape cause the sensing pins to close or not close a set of contacts
which set up the parallel coded word. This is sent to the call control unit in the
same manner as the keyboard input.

The punch is mechanically slaved off the printer codebars to set up the
punch pins. The paper tape is advanced and punch pins are dtiven from the main
shaft of the printer drive.

Model 33 comes supplied with an excellent set of maintenance manuals so
that interested users can easily maintain their own machines. Replacement parts
are readily available direct from Teletype and from numerous TTY repair shops
around the country.

The most widely used model is the ASR-33, number 3320, 3JA. Also
popular is the 5JA version with automatic tape reader (reader can be started and
stopped under program control). A 3JA can be easily converted to a 5JA.

The ASR-33 operates at 10 cps with an 11 bit word (110 baud). The TTY’s
transmitted word consists of 1 start bit, 2 stop bits, and 8 data bits (8th bit is an
even parity-bit).

TELETYPEWRITERS

TTYs are slow (10 cps), noisy, heavy, and yield only upper-case type.
Where high quality typewritten copy is needed (e.g., word processing), type-
writer type terminals can be used; they can operate at speeds of 1545 cps.

It is possible to convert an office type IBM Selectric typewriter to serve as
a printer output. It is usually not worthwhile to convert the keyboard for input.
The conversion requires the addition of 5 solenoids to push the necessary levers
in the Selectric mechanism. The conversion has been detailed in a number of
computer hobbyist publications. However, be warned that the job is not easy.
The IBM Selectric operates at 15 cps.

Many terminals employing the Selectric mechanism are available on the
surplus market at prices ranging from $100 to $900. A typical surplus unit is
shown in Fig. 9-4. These machines include the controls and often, but not
always, the interfaces. The cheapest are the models 73, 731, 735, etc., which
range in price from $250 to $900. These machines also require interfacing
modifications, but they are considerably easier to interface than are the office
Selectric (a typical conversion is described in Byte magazine, June 1977).

1t should be pointed out that these machines do not use the standard ASCII
code and, hence, code conversion software in the CPU is required. IBM uses
either the Correspondence or BCD codes. The correspondence code permits
selection of all the Selectric printable characters. However, the BCD code per-
mits selection of only 48 characters and, hence, is limited to upper case only.
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Fig. 9-4. A surplus terminal using an IBM Selectric printer mechanism.

Regretfully, most of the Selectrics available on the surplus market are BCD
machines. It is possible to convert a BCD to a correspondence coded machine—
refer to a Byte article June 1977.

For those not wishing to go through the conversion-interfacing problems
of Selectrics, there are available hardcopy terminals which are ASCII-coded and
include either RS-232 or 20-mA loop interfaces. They are, however, consider-
ably more expensive. One can find terminals using Diablo and Queme printing
mechanisms on the surplus market; their prices start at about $1,200. These
machines are multispeed machines working at speeds of 10, 15, or 30 cps. Often
the print mechanism alone is available. A typical unit is shown in Fig. 9-5. The
newer versions of these printer mechanisms operate at 45 and 60 cps, but units
will be extremely rare on the surplus scene for some time to come.

DOT MATRIX PRINTERS

In an attempt to increase the speed and reduce the cost, noise, and weight
of typewriter type printers, a number of manufacturers have introduced dot
matrix type printers of the thermal and impact type. A thermal printer employs a
print head composed of an array of solid-state heating elements (actually tran-
sistors). A typical array is shown in Fig. 9-6. Each transistor is selectively
energized so that the top surface becomes hot, producing a dot on the thermally
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Fig. 9-5. A surplus printer using a Diablo printer mechanism.

Fig. 9-6. Dot matrix print head energized to print E.

Fig. 9-7. Construction of a typical DECODE LOGIC
dot matrix print head HEATER ELEMENTS
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Fig. 9-8. Typical dot matrix type printer. (Courtesy Centronics)

sensitive paper pressed against it. Figure 9-6 illustrates the selection of elements
in the array necessary to print the letter E (shaded). Note that special thermo-
graphic paper is required.

The print head (Fig. 9-7) usually includes the decoding and drive circuitry
and, hence, the printer mechanism and electronics are simpler than an impact
printer. Also, no ribbon is required.

An impact type dot-matrix printer uses solenoid actuate hammers that
strike an inked ribbon against the paper. These printers operate at speeds up to
120 cps. A typical terminal using a dot matrix nonthermal printer is shown in
Fig. 9-8. These units are often found on the surplus market starting at prices of
$200 and up. New terminals start at about $400. Teletype recently introduced a
terminal, model 43, using a nonthermal dot matrix printer which sells for
approximately $1,100.

Note that the terminals described here are all KSR type machines. In other
words, they do not include paper tape readers and punches. However, most
operate at 10, 15, and 30 cps.

KEYBOARDS

Although often included in the same enclosure as the printer, a keyboard is
usually electrically separate from the printer. A typical surplus keyboard is
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Fig. 9-9. A typical surpius keyboard.

shown in Fig. 9-9. The keyboard generates a parallel ASClII-coded word (7 bits)
and a keypressed pulse which may be sent to a parallel input port of the CPU or
serialized by a UART and sent to the CPU.

A typical keyboard circuit is shown in Fig. 9-10. Most keyboards employ
an encoder IC. This IC scans an array of crossing lines (X and Y matrix). The
keyboard utilizes keyswitches at all the intersections of the matrix. In scanning
the lines, the encoder enables one X and one Y line at a time. A pressed key
causes a short between a given pair of X and Y lines. The keyboard encoder IC
senses this contact closure and selects a code from a ROM in the IC. This code is
placed on the seven output lines and a short pulse is generated as the keypressed
output (sometimes called a strobe).

The scanning approach allows for more than one key to be pressed simul-
taneously and still be encoded properly as they are released. This is called n-key
rollover. If no key is depressed, no keypressed pulse is generated.

THE TVT AND VDM

The lowest cost data output system from a CPU is the TVT, also known as
a TV typewriter. This unit may also be called a VDM (video display module).
The purpose is to display the alpha-numeric output on a TV screen in the same
essential format as would appear on a TTY or teletypewriter. A typical TVT/
VDM display is shown in Fig. 9-11.
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Fig. 9-10. Typical keyboard circuit.

Fig. 9-11. A TVT/VDM display output. {
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The heart of the TVI/VDM is a ROM character generator (CG) IC. The IC
is used to generate a dot mairix type character on the screen by outputting a
horizontal line code. For example, the 2560 CG IC formats the 64-7X5 dot
matrix characters shown in Fig. 9-12. The 2560 outputs a 5-bit line dot code
when addressed by a 6-bit ASCII character code and a 3-bit line address code.

A typical TVT/VDM system block diagram is shown in Fig. 9-13. The unit
is controlled by a master clock circuit which develops the horizontal and vertical
sync pulses for the TV. The clock also drives a series of counters to derive the
addressing for the CG and the RAM memory. The RAM stores the ASCII codes
for every character displayed. The contents of the RAM are scanned by the
address counters (Ay-Ag). The RAM output is then converted to a dot matrix
output by the CG. The parallel CG output is serialized by a shift register and
combined with the sync signals to form the composite video to drive the TV.

The data from the CPU is latched and then fed to the RAM. At the same
time, a cursor circuit keeps tract of every character position on the screen. It
permits changing character locations and moving of blocks of data (e.g., lines).
The cursor may thus be under the control of the user or the CPU.

A typical TVT/VDM will display either 32 or 64 characters per line and
typically 16 lines on a standard video monitor or modified TV. Caution: Trans-
formerless type TV receivers should not be used as they can damage low-voltage
CPU circuits. The displaying of 64 x 16 characters requires a TV display with
good bandwidth characteristics (typically 6 MHz or better). TVT/VDM units
vary in characteristics and features. For example, they may have as few as 6 and
as many as 50 ICs. The fewer ICs employed, the more the TVT/VDM depends
on the CPU to provide the hardware and software to store and control the display.
This takes processing time and memory space away from the CPU. It also means
that sophisticated driver software is required in the CPU.

CRT TERMINALS

A CRT terminal (Fig. 9-14) combines in one enclosure the display, TVT,
keyboard, UART, and interface circuits. Hence, it connects to the CPU via an
RS-232 or 20-mA loop circuit. A very popular CRT terminal is the ADM-3
(manufactured by Lear Siegler, Inc.) shown in Fig. 9-15. It displays up to 24
lines of 80 characters on a 12-in. TV screen. It has a 55-key keyboard and
transmits and receives at baud rates from 75 up to 19,200.

The ADM-3 is known as a dumb terminal. This is because it is completely
dependent upon the CPU to tell it what to do. An intelligent or smart terminal
contains additional circuitry, often an MPU, to permit formatting and editing
functions to be performed by the terminal. This reduces the programming load on
the CPU. However, smart terminals are very expensive.

Used CRT terminals, usually the dumb type, are available on the surplus
market. When purchasing a used CRT terminal, check to be sure that it uses the
ASCII code and has either a standard 20-mA loop or RS-232 interface.
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Fig. 9-14. Block diagram of a CRT terminal
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Fig. 8-15. The ADM-3 CRT terminal.

LINE PRINTERS

For those wishing hard copy output at a faster speed than that provided by
teletypewriters, it is necessary to obtain a line printer. A typical line printer is
shown in Fig. 9-16. These units are only output devices and are connected to the
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Fig. 9-16. An Oki-data line printer.

CPU via a serial (RS-232 or 20-mA loop) or parallel interface. These units print
at speeds ranging from 45 cps on up. Most 45-cps printers employ a daisy wheel
print head with each character on the petals of the head. Higher speed printers
use a dot matrix type head made up of an array of solenoid operated pins which
hit the ink ribbon against the paper. In order to save time line printers usually
print in both directions. They may also calculate the most rapid way to print each
line to avoid unnecessary carriage returns. Line printers also use special form
paper with sprocket holes on both sides. A special tractor pin type feed
mechanism is used to advance the paper at high speeds. Needless to say, line
printers are considerably more expensive than character printers.

Recommended Further Reading

1. Donald Lancaster, TV Typewriter Cookbook, Howard W. Sams & Co., Inc.,
Indianapolis, Ind., 1976.




10.

Computer Software

WHAT IS SOFTWARE AND PROGRAMMING

Up until now we have been concerned with the computer’s hardware. We
will now turn our attention to the computer’s software. Software refers to
instructions to the CPU to tell it what to do and how to do it. It is also called
programming and we tell the computer what to do by writing a computer
program, placing it in the computer’s memory, and then causing the computer to
execute the program step by step.

When we use hardware to do a job we use gates, flip-flops, registers, and
other IC logic elements. When we write programs we use instructions, sub-
routines, tables, and other standard software modules. A program can be defined
as a means by which a computer is instructed to perform a given task. The
program is written in a specific language which is designed to run on a specific
computer.

Programming starts with a specific algorithm which turns the computer
into an accountant, a game opponent, a process controller, and lots more. The
algorithm is a precisely defined procedure which converts raw data input into
processed data output.

PROGRAM CODES—FROM THE LOWEST TO HIGHEST LEVELS

We program a computer by entering a sequence of codes into the CPU’s
memory and then sequencing through these codes. The codes in turn cause the
CPU to execute specific operations.

We may enter the code via a set of data and address switches and load the
code into specific addresses of RAM. This method is called machine level pro-
gramming and the codes are binary codes.

142
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For example, the following machine level program, using 8080 instruc-
tions, adds two numbers:

Memory Address Instructions
0000 0000 0011 1010
0000 0001 1000 0000
0000 0010 0000 0000
0000 0011 0100 0111
0000 0100 0011 1010
0000 0101 1000 0001
0000 0110 0000 0000
0000 0111 1000 0000
0000 1000 0011 0010
0000 1001 1000 0010
0000 1010 0000 0000
0000 1011 0111 0110

Notice that each instruction is shown as the 8-bit binary code that is stored
at the memory addresses shown on the left. This is the program as the machine
(CPU) works with it.

It is very difficult to write programs in binary code. It is very tedious and
very prone to errors. Hence, programmers quickly devised simpler codes. The
octal and hex codes, discussed in an earlier chapter, are both used; hex code is
the preferred. Here is that same program written in hex code.

Memory Address Instructions
00 00 3A
00 01 80
00 02 00
00 03 47
00 04 3A
00 05 81
00 06 00
00 07 80
00 08 32
00 09 82
00 0A 00
00 0B 76

As you can see, it is much easier to write and considerably less prone to
errors. However, even hex is tedious and error prone for writing long programs.
Therefore, programmers use hex coding only for short programs. Longer pro-
grams are written using special programs which are first loaded into the com-
puter’s memory. These programs are called an editor and an assembler. The
editor permits the programmer to write the program in a mnemonic code which is
close to the English instruction. The assembler can then translate the mnemonic
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Fig. 10-1. Operation steps of an assembler program.

code into the machine level binary code for actual running on the computer or to
produce a listing (print out) of the program (Fig. 10-1). Remember, the program
in memory must be in binary form. Here is what the add program looks like in the
mnemonic code understood by the assembler. Also note the comment statements
which explain the operation of the program.

Instructions Comments

LDA 0080H Move contents of MA 0080y to accumulator
MOV BA Move contents of accumulator to register B
LDA 0081H Move contents of MA 0081y to accumulator
ADD B Add contents of register B to accumulator
STA 0082H Store contents of accumulator in MA 0082,
HLT Halt

Observe that the mnemonic terms succinctly describe the machine opera-
tion to be performed. For example, LDA-0080 literally means LoaD A register
from memory address 0080.

An assembler frees the programmer from the tedious mechanical details of
machine-language programming. Besides freeing the programmer from the task
of remembering all the machine codes, the assembler also keeps track of storage
locations. Labels are used for symbolic addressing, and the assembler assigns a
memory location to each label, where that label is defined.

For example, the label DELAY could be used to denote the memory
address of a subroutine providing a time delay. Every time the instruction JMP
DELAY (meaning ‘‘jump to delay”) is given, the assembler assigns the MA
where the delay subroutine is located. Thus if DELAY began at MA 0100, then
the assembler would translate this instruction—*‘jump to MA 0100”’.

Symbols can also be used to define data constants. For example, the
programmer can assign the symbol DATAOUT to port 10. When the program is
assembled, all references to DATAOUT are assigned the instruction *‘data out to
port 10”°.

Many computer systems have more powerful assembler programs, called
macroassemblers. The macroassembler permits a single symbol to represent a
group of machine instructions called a macro instruction. When a macroassem-
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bler encounters such a symbol, it automatically inserts the proper group of
instructions into the program.

Programming can be made even easier by using a language processor
program that translates a more conversational language into machine code. Such
programs are called high-level languages. The input to a language processor is
called a source program and the translated program (actually run by the com-
puter) is called an object program. The source program consists of statements
that enable you to specify the program in a form you can easily understand. The
object code is the machine language which the computer understands, and from
which it executes the program.

High-level languages permit the programmer to use more natural instruc-
tions. For example, the high-level language called BASIC, which is the most
popular with personal computerists, would require only a 1-line instruction to
perform the addition operation shown previously in machine and assembler level
forms. It would be the following:

10 LET C=A+B

Notice, that you now need not worry about instruction codes or memory
locations. The language processor program takes care of all that. The disadvan-
tage of this system is that the CPU’s memory must be much larger to contain the
language processor program as well as the instructions.

Higher level language processors are either compilers or interpreters. A
compiler (Fig. 10-2) translates the entire source program at once to produce the
entire object code. An interpreter (Fig. 10-3) translates each statement as it is
encountered during program execution. Any high-level language can be im-
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plemented as either a compiler or an interpreter. Compilers produce a more
efficient code (program runs faster due to less program steps); however, they are
harder to develop and require more memory storage areas. Interpreters have
slower program execution time but require less memory and are easier to imple-
ment.

HIGH-LEVEL. COMPUTER LANGUAGES

Many of the more popular high-level languages are available for
microprocessor-based computer systems. Presently, the following are available:

BASIC (Beginners All-purpose Symbolic Instruction Code): BASIC is an
algebraic programming language intended to make it easier for beginning pro-
grammers to use a computer. It is less extensive than FORTRAN, easier to learn,
and has fewer error-prone factures. It is similar to FORTRAN but limited in
scope.

FORTRAN (FORmula TRANslator): FORTRAN is used widely for
mathematical type problems. It is very powerful in terms of handling formulas
and mathematical procedures. Although most often used with IBM card input
(batch) which is slow and tedious, there are some versions which use terminals
(interactive).

COBOL (Common Business Oriented Language): COBOL is a procedure-
oriented language designed for coding business data processing problems, i.e.,
those that use large files, a high volume of input and output, and production of
reports requiring editing and formatting of output data.

FOCAL (Formulating On-line Calculations in Algebraic Language):
FOCAL is an interactive language for performing mathematical calculations. It
also has a powerful desk calculator operating mode. However, it is not as ver-
satile as BASIC and very limited when compared to FORTRAN.

APL (A Programming Language): APL is a very powerful general purpose
language which lends itself to complex mathematical programming. It employs
conventional mathematical notation with a large set of unique symbols to form a
kind of shorthand. Thus, it makes possible single line statements which process
complex data manipulations.

In summary, machine level programs are more difficult to write, but take
fewer steps, require a small fraction of memory, and run faster. In contrast,
machine level programs cannot be transformed directly from one type of com-
puter to another. Programs written in a high-level language are easier to under-
stand and write, and can be run with little or no rewrite on all machines having
the language process interpreter or compiler.
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SYSTEMS SOFTWARE

The foregoing discussion covered the software used to execute a given
application or solve a problem. Software is also needed to control the actual
operation of the computer system. This type of software is called systems
software. Actually, the editor program, discussed earlier, is a systems program.
The following are the more common types of systems programs and their
functions:

Monitor Programs: Also called supervisors, executives, and operating
systems (OS), they enable the user to communicate with all of the system
hardware and software. They allocate available resources as efficiently as possi-
ble, and range from simple single terminal monitors to complex multi-user,
multi-task time-sharing systems.

1/0 Driver Programs: They control the data transfer between the computer
and its peripheral devices.

Data Management Programs: Also known as file systems, they enable the
computer system to identify and organize individual blocks of data within the
computer’s memory. Few microprocessor-based computer systems have this
software. Hence, the user must keep track of memory allocations.

Debugger Programs: Actually a type of monitor program, they are widely
used to write machine level programs in hex or octal code and have features
useful in tracking down errors in the program.

Simulator Programs: Help to evaluate a microprocessor’s operation by
simulating all the MPU’s operations within the software of another computer.
Hence a programmer may enter a program in 8080 code on an IBM-370 system
and simulate the running of the 8080 program using the simulator program.
Some microprocessor systems have resident simulators.

OTHER FORMS OF ASSEMBLERS AND DISASSEMBLERS

An assembler program is intended to translate a program written in
mnemonic code into a machine coded program. The assembler program may run
on the same system for which the software is intended. In this case the assembler
program is called a resident assembler. When the program assembly is done on
another computer, the program is called a cross-assembler. For example, cross-
assemblers exist for assembling 6800 code on a DEC PDP-11 system.

Disassemblers do the opposite of assemblers. Given a machine-code pro-
gram listing, they convert it into a mnemonic program listing. This is used for
troubleshooting programs.




11.

The Computer’s
Instruction Set

MPUs differ in architecture and instruction sets. These are fixed in the
MPU and the user must learn what they are and how to use them. An MPU’s
architecture consists of the functional blocks and the interaction between these
blocks. In other words, it is hardware.

The computer’s instruction set, on the other hand, is composed of the
binary codes (octal or hex equivalents, can be used instead) which cause the
MPU to execute specific operations.

In this chapter we discuss the more popular MPUs. In particular, we
concentrate our attention on the most popular MPU, viz., the Intel 8080/8085.

MPU ARCHITECTURE

Figure 11-1 illustrates the architecture of the 8080/8085. It is characterized
by a large number of registers within the MPU: accumulator, status, SP (stack
pointer), PC (program counter), and six general purpose registers (B, C, D, E,
H, and L). The Z-80, being an enhancement of the 8080, contains the same basic
architecture with additional registers. The architecture of the Z-80 is shown in
Fig. 11-2. In addition to all the registers of the 8080, the Z-80 contains a second
accumulator, second set of general purpose registers, and two index registers.

The 6800 and 6502 MPUs are characterized by a minimum of general
purpose registers. Instead, they have addressing registers (index) which facilitate
the use of memory locations for register functions and I/O transfers. The architec-
ture of the 6800 and 6502 is shown in Figs. 11-3 and 11-4,respectively.

When comparing MPUs note that extra registers permit complex oper-
ations with a minimum number of memory and register interchanges. General
purpose registers are particularly valuable since they can be used to hold tempor-
ary results, addresses, and other data, without reference to memory, and so speed
up program execution.
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The ALU performs add, subtract, and logic operations. The ALU has two
operands—one held in the accumulator and the other in one of the registers or
memory. The result ends up in the accumulator. Note that the 6502 can also do
BCD arithmetic directly.

The results of ALU operations are often indicated by the flag bits of the
status register. The status register was discussed in Chapter 6 and shown in Figs.
6-6, 6-7, and 6-8. The flag bits can be tested to determine subsequent operations.
Commonly used flags include carry, zero, sign, parity, interrupt status, cycle
status, and I/O status. For example, the 8080 has five status flags. They are:

Zero: If the result of an operation = 0, then Z = 1; otherwise, Z = 0.
Sign: If the most significant bit of result of an operation = 1, then S = 1;
otherwise, S = 0.

Parity: If there is an even number of 1s in result of an operation, P = 1;
otherwise, P = 0.

Carry: If operation results in a carry or borrow out of bit B;, C = 1;
otherwise, C = 0.

Auxiliary Carry: If operation causes carry between bits B; and By, then
AC = 1, otherwise, AC = 0.

MPU INSTRUCTIONS

MPU instruction words (bytes) are composed of 8 bits, the same as
data words. The bits are B, through B; with the least significant bit (LSB) shown
on the right and the most significant bit (MSB) shown on the left.

B; Bg By By By B; B; By
MSB LSB

The instruction may consist of 1, 2, or 3 bytes. The first byte is always the
operation code (Op Code). For example, the 8080 instruction MOV A,B (784) is
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a 1-byte instruction directing the MPU to move the contents of the B-register to
the A-register (accumulator). The hex code for this instruction is shown in
parenthesis.

A 2-byte instruction has the first byte as the Op Code and the second byte
as data or address. The second byte is called an operand. For example:

Hex Code Mnemonic Code
06y MVI-B
00y 004

This 2-byte instruction directs the MPU to move the operand 00y into the
B register. Here is another example:

Hex Code Mnemonic Code
D3y ouT
0ly Oly

This 2-byte instruction directs the MPU to output the contents of the
accumulator to port O1.

A 3-byte instruction has its first byte as the Op Code and the second and
third bytes as either an address or data operand. Here are two examples:

3Ay LDA
W00 204
31y 3ly
21y LXIH
20y 204
31y 3ly

The first instruction directs the CPU to load into the A register the contents
of MA 3120. (Note that the 8080/8085 uses an MA format of low byte-high byte,
and the 6800 and 6502 are just the opposite.) The second instruction directs the
MPU to place the following 2 bytes (314 and 20y) into the H-L register pair.

ADDRESSING MODES
Memory addressing instructions can be of several types.

Direct Addressing: The memory address of the operand (data to be used by
the op code when executing an instruction) is included as part of the instruction.
For example, the program in Chapter 10 used direct addressing.

Immediate Addressing: The instruction contains the operand and the MAis
contained in a register. For example, the following 8080 instruction moves the
data (FFy) to the MA contained in the H-L. register pair.
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36u MVI-M
FFy FFy

Register Direct: The instruction specifies the register, or register-pair, in
which the data is located.

Register Indirect: The instruction specifies a register-pair which contains
the MA where the data is located.

Relative Addressing: Similar to indirect addressing, except that the address
of the operand’s MA is computed by adding the contents of the PC to the data in
the next instruction. The 8080 does not have this addressing mode.

Indexed Addressing: Similar to relative addressing, except that an index
register takes the place of the PC. This addressing mode is excellent for handling
tables and arrays. The 8080 does not have this addressing mode.

Stack Addressing: The SP register contains the address of the stack. The
stack is an area in memory used for temporary storage of the contents of the
registers (i.e., when an interrupt is serviced, the contents of the registers are
saved in the stack). The stack is a last-in, first-out memory (LIFO). Each time
the MPU places data in or removes data from the stack, it increments or
decrements the SP register. For example, the following 8080 instruction moves
the contents of the accumulator to the MA that is 1 less than the SP. Also, the
status flags are assembled into a word and moved to the MA that is 2 less than the
SP. The contents of the SP is decremented by 2.

F5 PUSH-PSW

No single addressing method solves all programming tasks. Several
methods are usually used in a given program. Direct addressing is convenient for
single data items. Indirect, indexed, and stack addressing are used for arrays,
lists, or tables. Immediate addressing is useful for constants, while relative
addressing makes programs shorter and easier to move.

The 8080/8085 has direct, immediate, stack, register direct, and register
indirect addressing. The 6800 and 6502 have direct, immediate, indexed, rela-
tive, and stack addressing. The Z-80 offers all these addressing methods.

1/O ADDRESSING

In some computers, such as the 6800 and 6502, the I/O devices are ad-
dressed in the same manner as memory locations. The I/O devices are then
actually part of the system memory space and all the various memory addressing
modes can be used for 1/O transfers as well. Such memory mapped 1/0 systems
offer significant advantages because memory addressing is more versatile than
I/O addressing.

An example of this I/O addressing is seen in the SWTP-6800 CPU. Ad-
dresses 8000 to 801Fy are used to address eight 1/O ports (Fig. 11-5). Each port
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%

80IF

PORT #7
80I1C
80IB

PORT %6
8018
8017

PORT #5
8014
8013

PORT #4
8010
800F

PORT %3
800C
8008

PORT #2
8008
8007

PORT Z1
8004
8003

PORT #0
8000

Fig. 11-5. Memory-map of /O ports in SWTP-6800 CPU. —L\/‘——‘

uses four MAs. If the 6820 PIA IC is used, then MA 8000 selects interface
register A, MA 8001 selects control register A, MA 8002 selects interface
register B, and MA 8003 selects control register B.

The 8080/8085 and Z-80 MPUs have separate addressing of 1/O ports.
Hence, an IN or OUT instruction, followed by a second byte for the port address,
is used. This limits the MPU to a maximum of 256 input and 256 output ports.

THE INSTRUCTION SET

Computer program execution is a sequence of instruction executions.
These instructions fall into four groups:

data-transfer
arithemtic/logic
control

transfer of control

The following is a brief description of these four groups of instructions and how
they apply to the 8080/8085 MPU.

Data-transfer instructions move data from one location to another in the
computer system. There are four types of transfer instructions: (1) move data to
or from memory; (2) move data to or from I/O devices; (3) move data from one
register to another; and (4) move data to or from the stack in memory (updating
the SP).
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Table 11-1. 8080/8085 Data Transfer instructions

Instruction Operation Bytes
MDVry, r, Move register 2 to register 1 (e.g., MOV A,B) 1
MOV M,r Move register to memory 1
MOV rM Move memory to register 1
MVIr Move immediate to register 2
MVI M Move immediate to memory 2
LXi rp Load register pair immediate 3
LXI SP Load SP register immediate 3
LDA Load A direct 3
STA Store A direct 3
LHLD Load H-L direct 3
SHLD Store H-L direct 3
LDAX Load A indirect 1
STAX Store A indirect 1
XCHG Exchange H-L and D-E 1
PUSH p Move register pair to stack 1
PUSH PSW Move A and status register to stack 1
POP rp Move data from stack to register pair 1
POP PSW Move data from stack to A and status registers 1
XTHL Exchange H-L register with stack 1
SPHL Move H-L contents to SP register 1
IN Input from port to A register direct 2
ouT Output from A register to port direct 2

Table 11-1 lists the 8080/8085 data transfer instructions. Note that *‘r”’
denotes a register. The registers can be A, B, C, D, E, H, and L. Then “‘rp”’ is a
register pair (B-C, D-E, H-L). And ‘““M’’ denotes an MA pointed to by H-L
register pair.

Arithmeticllogic instructions modify the contents of an internal register or
flag with an arithmetic or logic operation. The following types of operations are
performed:

arithmetic

logic

shift
comparison
special purpose

All the instructions in this class affect the status bits, so these instructions may be
used together with the transfer of control instructions to make decisions.

Table 11-2 gives the 8080/8085 arithmetic and logic instructions. Noted
are the flag bits affected and the number of bytes.

Arithmetic instructions are straightforward. Note that SUB can also be
used to determine if two quantities are equal. We subtract one from the other—if
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Table 11-2. 8080/8085 Arithmetic and Logic Instructions
Affected

Instruction Operation Flags Bytes
ADD r Add register to A All 1
ADD M Add memory to A All 1
ADI Add to A immediate All 2
ADCr Add register to A with carry All 1
ADC M Add memory to A with carry All 1
ACl Add to A immediate with carry All 2
SUBr Subtract register from A All 1
suB M Subtract memory from A Al 1
Sul Subtract from A immediate All 2 |
SBBr Subtract register from A with borrow All 1 H
SBBM Subtract memory from A with borrow All 1 |
SBI Subtract from A immediate with borrow All 2
INR 1 Increment register Z,8,P,AC 1 |
INR M Increment memory Z,5,P,AC 1 f
DCR r Decrement register Z,S,P,AC 1 !
DCR M Decrement memory Z,8,P,AC 1 |
INX rp Increment register pair None 1 |
DCX rp Decrement register pair None 1 |
DAD rp Add register pair to H-L C 1
DAA Decimal adjust accumulator All 1
ANA 1 AND register with A All 1
ANA M AND memory with A All 1
ANI AND immediate with A All 1
XRA r Exclusive OR register with A All 1
XRA M Exclusive OR memory with A All 1
XRI Exclusive OR immediate with A All 1
ORA T OR register with A All 1
ORAm OR memory with A All 1
ORI OR immediate with A All 1
CMP 1 Compare register with A All 1
CMP M Compare memory with A All 1
CPI Compare immediate with A All 1
RLC Rotate A left C 1
RRC Rotate A right C 1
RAL Rotate A left through carry o] 1
RAR Rotate A right through carry C 1
CMA Complement A None 1
CMC Complement carry C 1
STC Set carry C 1
the result is zero, the two are equal. ADC and SBB allow us to perform multiple-
word arithmetic using the carry ar borrow to transfer information between
words. INR and DCR are used to increment and decrement counters, indexes, or
indirect addresses. DAA is used to perform BCD rather than binary add
operations.
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The logic AND is used to mask bits, i.e., to remove one or more bits from
a word. For example, assume that we want to see if a switch attached to line #3
of an input port is closed (0) or open (1). The procedure is to fetch the switch data
from the port and AND it with a mask which has a 1 in bit position 3 and zeros
elsewhere. Since anything ANDed with zero is zero, the result depends only on
the status of the one switch; the result is zero if, and only if, that switch is closed.
Logical OR can be used to combine fields and to set bits (i.e., by ORing with a 1
bit); logical Exclusive-OR can reverse bits; and complement is necessary for
subtraction and for handling peripherals.

Shift operations allow the placement of bits or groups of bits where they
can be easily handled. They are also used for multiplication and division, scal-
ing, serial-to-parallel and parallel-to-serial conversions, and many mathematical
functions. RLC and RRC move the data left or right and fill the empty bit with a

Table 11-3. 8080 Transfer Instructions

Instruction Operation Bytes
JMP Jump direct 3
JNZ Jump directif Z = 0 3
JZ Jump direct if Z = 1 3
JINC Jump directif C = 0 3
JC Jump direct if C = 1 3
JPO Jump direct if P = 0 3
JPE Jump direct if P = 1 3
JP Jump direct if S = 0 3
JM Jump direct if S = 1 3
CALL Call subroutine direct 3
CNZ Call subroutine directif Z = 0 3
cz Call subroutine direct if Z = 1 3
CNC Call subroutine direct if C = 0 3
cc Call subroutine direct if C = 1 3
CPO Cali subroutine direct if P = 0 3
CPE Call subroutine direct if P = 1 3
CP Call subroutine direct if S = 0 3
CM Call subroutine direct if S = 1 3
RET Return from subroutine 1
RNZ Return from subroutine if Z = 0 1
RZ Return from subroutine if Z = 1 1
RNC Return from subroutine if C = 0 1
RC Return from subroutine if C = 1 1
RPO Return from subroutine if P = 0 1
RPE Return from subroutine if P = 1 1
RP Return from subroutine if S = 0 1
RM Return from subroutine if S = 1 1
RSTn Restart at MA=8 x n 1
PCHL Jump H-L indirect 1
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zero. They are equivalent to multiplying by 2 (left) or dividing by 2 (right). RAL
and RAR preserves the sign bit.

Transfer instructions are used to transfer the program execution from the
current PC location to some other location in memory. These instructions are
either returning (call) or nonreturning (jump). A returning transfer saves the
address from which it transfers; a nonreturning transfer does not. These instruc-
tions are available in conditional and unconditional forms, and all flags may be
tested to determine if a transfer is to be made.

Subroutine calls are constructed as returning transfers. When the main
program calls a subroutine, the processor saves (on the stack) the main program
address where execution is to continue and transfers control to the subroutine.
The subroutine performs its operation and its final instruction returns to the main
program, using the saved address. Execution then continues.

Table 11-3 gives the 8080 transfer instructions. Note the flags are not
affected.

Control instructions are usually used for enabling and disabling all or part
of the I/O structure, conditioning the response to interrupts, and halting program
execution. The kalt instruction stops the PC from incrementing and allows the
MPU to wait for an external signal. The no operation does nothing except
increment the PC. It can provide a delay, equalize the execution time of alternate
instruction sequences, replace erroneous instructions, or leave space for correc-
tions or additions.

Table 11-4 gives the 8080 control instructions. Note the flags are not
affected.

Table 11-4. 8080 Control Instructions

Instruction Operation Bytes
El Enable interrupts 1
DI Disable interrupts 1
HLT Halt 1
NOP No operation 1

The appendix includes a complete list of all 8080 Op Codes and their
respective hex codes.

IN CONCLUSION

Microprocessors have relatively small (typically 40-80) and simple in-
struction sets compared to minicomputers and large scale computers. Most lack
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instructions for multiplication and division, floating point operations, multiword
operations, bit manipulations, complex comparisons and conditional jumps, and
block transfer I/O. However, today’s MPUs do have more sophisticated instruc-
tion sets than older minicomputers (e.g., PDP-8) and large computers (e.g., IBM
1130). New MPUs, such as the Texas Instrument 9900 and Zilog Z-80, have the
power of many minicomputers. The future promises MPUs with power compara-
ble to minicomputers. Thus MPUs will be even easier to program and will be far
more versatile.




12.

Introduction
to Programming

A computer is a useless machine until provided with a program. The
computer does only two things. It fetches an instruction from memory, or some
storage medium, and then executes that instruction. The program is the group of
instructions which the machine fetches and executes to achieve some desired
objective. Programs operate on data. The computer program transforms the data
from one form to another.

Writing a program involves designing a specialized instruction sequence
that the computer follows. The instructions must be exact and unambiguous so
that the computer has only one way of interpreting and therefore executing the
program.

Writing a program begins by specifying precisely the task and how it is to
be accomplished. This is called an algorithm. Flowcharts are most often used to
graphically present the structure of the program. The flowchart uses differently
shaped boxes for each function, with word descriptions inside and interconnec-
tions called flowlines. Figure 12-1 shows the standard flowchart symbols. Figure
12-2 shows the flowchart for a subroutine to get 4 character from a Teletype.
After the data is transferred, control is returned to the main program.

The routine is called Get char and begins by checking the status port to see
if the data-available bit has been set to 1. If it has, then the data word at the data
port is transferred to the MPU accumulator and returns to the point, in the
program, from which it left off. If the data-available bit has not been set, the
MPU loops back and checks the status bit again.

WHICH LANGUAGE TO USE

After designing the program it must be coded into a computer language. It
can be written in assembly language code or in a high-level language such as
BASIC (see Chapter 13). If you understand the computer’s architecture, as
discussed in the preceding chapters, you will not find assembly language pro-
grams difficult to write.

159
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SYMBOLS EXAMPLES
PROGRAM FLOW. ARROWS INDICATE
————————»= SEQUENCE THAT THE PROGRAM
FOLLOWS.

PROCESS. THE FUNCTION SPECIFIED IN A-AX2
THE RECTANGLE IS T0 BE PERFORMED,
e.g. AIS TO BE MULTIPLIED BY 2.

PRE-DEFINED PROCESS. THE EXTERNAL '

ECTANGLE IS T0 BE ]NV(}KED TU CALLTTI
PERFORM TS FUNCTIL

ROUTINE DEFINED BY THE NAME m IS
TO PERFORM A FUNCTION

-]

Q YES
A=A+t
NO

DECISION. THE FLOW OF THE PROGRAY

WILL BE BASED ON THE CONDITION A=hs2
SPECIFIED INSlDE THE DIAMOND. e.g. IFA “
=2, ADD 1. OTHERWISE ADD 2.

L

1/0 OPERATION. THE INPUT OR OUTPUT
OPERATION \NDICATED INTHE PARALLEL
OGRAM IS TO BE PERFORMED, eq. THE
VALUE OF THE VARIABLE A" IS 10 BE
SENT TO AN OUTPUT DEVICE.

TERMINAL OR INTERRUPT. THE OVAL
INDICATES THE BEGINNING OR END OF A
PROGRAM OR AN INTERRUPT OPERATION,
e.g. ENTRY POINT FOR ROUTINE “TTI".

CONNECTORS. WHEN FLOW MUST PROCEED TO ANOTHER
PAGE OR ANOTHER PLACE ON THE SAME PAGE. USE A
CONNECTOR IF IT IS AWKWARD TO USE AN ARROW.

SUD

Fig. 12-1. Standard flowchart symbols. (Courtesy
Electronic Design magazine)

Fig. 12-2. Flowchart for “get character” subroutine.

GET CHAR

READ DATA
AVAILABLE
BIT

INPUT

DATA TO
ACCUMULATOR

RETURN
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Most high-level language processors produce one and one-half to two
times as much machine code as programs written directly in assembly language.
This means one and one-half to two times as much program storage memory is
required. Also, the language processors for most high-level languages are much
larger than assembler processors. Hence, as much as four to five times as much
memory may be required to handle high-level language programs. Furthermore,
high-level programs, being longer, take longer to execute. On the other hand,
development time is less with a high-level language because you can write and
debug programs much faster.

If the program you are writing is to be placed in ROM, assembly language
programming is recommended, to economize on program size.

WRITING ASSEMBLY LEVEL PROGRAMS

Assembly level programs can be done by a hand assembly or machine
assembly technique. Most experienced programmers will hand assemble pro-
grams of 100 steps or less and for larger program development use editor/
assembler programs.

Hand assembly means that the programmer looks up the mnemonic instruc-
tions (see Chapter 11) and their corresponding hex codes and writes the program
on paper. The program is then loaded into the CPU’s memory using a monitor/
debug program and run. For example, here is the program subroutine shown in
Fig. 12-2 written in 8080/8085 mnemonic source code.

Instruction Comments
Cl IN  TTYS Input TTY status byte to accumulator
L ANl TTYDA Mask off DA (data available) bit
JNZ CI if B,=0 jump back to input again
IN TTYD Input data byte to accumulator
RET Return to main program

The program would then be assembled into machine (object) code by
looking up the hex code (see Appendix A) for the corresponding Op Codes,
assigning memory, and port addresses. The assembled program would then look
like this.

MA Object Code (hex) Instruction
Cl

2E48 DB 00 IN  TTYS
2E4A E6 01 ANl TTYDA
2E4C C2 48 2E JINZ CI
2E4F IN 01 IN TTYD

2E51 C9 RET
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The hex code could now be loaded into the indicated memory addresses of
the CPU and used to load characters from a TTY. All that is necessary for this
hand assembly is a small monitor-debug program. These programs range from
256 bytes to 2K bytes. The longer monitors having more features.

THE EDITOR/ASSEMBLER

Short routines and programs, such as the previous example, are easily hand
assembled and debugged. However, a longer program of a few hundred or a few
thousand steps is another matter. These require the use of editor and assembler
software.

The programmer loads the editor program into the CPU and enters the
program in mnemonic form. He would use a descriptive label to indicate a
subroutine, all Op Codes, operands, and some helpful comments. Here is an
example:

Label Op Code Operand Comment
; GET CHARACTER FROM TTY:
Cl: IN TTYS ; INPUT STATUS
ANI TTYDA ; CHECK DA BIT
JNZ Ci ; IF=0 DO AGAIN
IN TTYD ; INPUT DATA

RET

; PRINT CHARACTER ON TTY:

CO: IN TTYS ; INPUT STATUS
ANI TTYBE ; CHECK BE BIT
JINZ co ; IF=0 DO AGAIN
MOV AC ; MOVE DATATO A
ouT TTYO ; OUTPUT DATA

RET

; TYPE CARRIAGE RETURN-LINE FEED:

CRLF: MVl C,'CR ; MOVE'CR'TO C
CALL Cco ; CALL PRINT ROUTINE
Mvi C,'LF ; MOVE'LF'TOC
CALL co ; CALL PRINT ROUTINE
ORA A ; CLEAR A

Rz ; IF A CLEAR RETURN

In addition, the programmer would have to define I/O ports, status words,
and the starting address for the program in memory. This is done as follows:
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TTYD EQU 1
TTYO EQU 1
TTYS EQU 0
TIYDA EQU 0O1H
TTYBE EQU 80H
CR EQU ODH
LF EQU 0AH
ORG BASE  2E48

The source program created via the editor is now stored on magnetic or
paper tape or on disc. The assembler program is now loaded and the source
program is subsequently processed through the assembler. Of course, if the
editor and assembler programs are coresident in memory the loading is not
necessary.

The assembler now translates the MPU instruction mnemonics in the Op-
Code field into machine code. The symbolic operand field is also translated into
hex code. For example, in the CRLF subroutine MVI C, ‘CR’ instruction (move
the ASCII character CR to register C) causes the translation of OE (MVI C) and
0D (ASCII hex code for CR).

In the first pass through the assembler the user-created subroutine labels
are identified and given memory addresses. The assembler thus builds a symbol,
orlabel, table. A second pass is now made. The assembler matches up all entries
in the symbol table with labels in the operand field and assigns the proper
memory addresses.

The assembler selects the starting address from the pseudo Op-Code ORG
(origin) and, hence, starts the program at MA 2E48. Also EQU (equivalence)
directs the assembler to give a value to the symbol. For example TTYD (TTY
input port) is assigned the value O1.

SOURCE
PROGRAM
LISTING
SYMBOLIC
ASSEMBLER
EDITOR f—=| gglé%%af‘ODE | PROGRAM
MACHINE LOADED INTO
LANGUAGE ~ |—s= MEMORY FOR
0BJECT CODE EXECUTION

Fig. 12-3. Operation steps of an assembler program.

The assembler (Fig. 12-3) now can generate either an object code tape or a
source listing. A typical source listing would appear as shown on the following

page:
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MACHINE ASSEMBLY
LANGUAGE LANGUAGE
rLocatrbn Ob/ecrj | Label Op Operancj‘ Comments
Code Code
. GET CHARACTER FROM TTY:
2E48 DB 00 Cl: IN TTYS ; INPUT STATUS
2E4A E6 01 ANI TTYDA ; CHECK DA BIT
2E4C C2 48 2E JINZ Cl ; IF=0 DO AGAIN
2E4F DB 01 IN TTYD ; INPUT DATA
2E51 c9 RET
; PRINT CHARACTER ON TTY:
2E52 D8 00 CO: iIN TTYS ; INPUT STATUS
2E54 E6 80 ANI TTYBE ; CHECK BE BIT
2E56 C2 52 2E JNZ co ; IF=0 DO AGAIN
2E59 79 MOV AC ; MOVE DATATO A
2E5A D3 01 out TTYO ; OUTPUT DATA
2E5C Cc9 RET
. TYPE CARRIAGE RETURN-LINE FEED:
2E5D OE 0D CRLF: MVI C, ‘CR' ; MOVE'CR'TOC
2E5F CD 52 2E CALL co ; CALL PRINT ROUTINE
2E62 OE 0A Mvi C,'LF ; MOVE'LF'TOC
2E64 CD 52 2E CALL co ; CALL PRINT ROUTINE
2E67 B7 ORA A ; CLEAR A
2E68 cB RZ ; IF A CLEAR RETURN
END

The assembler also prints a label table, as follows:

CO 252 TIYD 0001 TTIYDA 0001
cl 2E48 TIYO 0001 TIYBE 0080
CRLF  2E5D TTYS 0000 CR 000D
LF 000A

MACROASSEMBLERS

Macroassemblers are available for many MPU systems. They are more
powerful than nonmacro-type assemblers and greatly simplify program develop-
ment. They permit the user to give a sequence of instructions a name which,
when given in a program, causes the macroassembler to replace the name with
the proper instruction sequence. Macros are thus used to define common se-
quences of code that are often used.
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DEBUGGING

The assembler will detect syntax errors. For example, if a symbol appears
in the symbol field but not in the operand field (and is thus undefined), an error
message will be given. Likewise, if the assembler encounters a symbol more than
once in the label field, it will put out an error message. Also, the assembler will
detect illegal forms for symbols (for example, use of an Op-Code mnemonic for
a symbol).

The programmer must now return to the editor and correct the program and
reassemble it again. If only a small number of errors exist they can be easily
corrected in the monitor phase to follow. When all errors have been removed the
program can be saved on paper or magnetic tape or disc. It can then be loaded
into the CPU via the monitor for running.

PROGRAM EXAMPLES
Here are some examples of short assembler level programs.
Program #1: This program clears memory from MA 0000y to 1000y. It

resides in the last 4K block of RAM and checks that each MA is cleared. The
flowchart is shown in Fig. 12-4.

SET START
MA=0000,

INCREMENT
MA

Fig. 12-4. Flowchart for clear memory program.
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|

MA (hex)  Hex Code Labels Mnemonic Code i

1FE9 21 00 00 LXI H-L }

1FEC 3E 00 LOOP CLR  MVIA |

1FEF BE CMP-M !

1FFO C2 EC 1F JNZ LOOP CLR

1FF3 7C MOV A H

1FF4 FE 10 CPI 10

1FF6 CA FD 1F JZ LOOP END

1FF9 2C INCR L

1FFA C3 EC 1F JMP LOOP CLR

1FFD C3 FD 1F LOOP-END  LOOP END

Program #2: This program sorts data in locations 50y up to MA-1 of
last location of data. It sorts the data in increasing order. Figure 12-5 is the
flowchart for the program.

SORT

NO

SET
COUNTER (C)
=MA—-|

ri

SET
STARTING
ADDRESS

(H-L

i

SWITCH
DATA

FETCH
M—A

i

INCREMENT
H—L BY I
(MA+1)

@ YES

NO

DECREMENT
COUNTER

@

YES

Fig. 12-5. Flowchart for sort program.
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MA (hex)  Hex Code Labels Mnemonic Code
0000 OE MA-1 MVI-C MA — 1
0002 21 50 00 START LXI-H 0050H
0004 7E SORT MOV AM
0005 A7 ANA-A

0006 23 INX-H

0007 BE CMP M

0008 DA 12 00 JC TEMP
000B @D DCR-C

000C C2 04 00 JINZ SORT
000F C3 1B 00 JMP END
0012 56 TEMP MOV B.M

0013 2B DCX-H

0014 7E MOV AM
0015 70 MOV M,B
0016 23 INX-H

0017 77 MOV M,A
0018 C3 02 00 JMP START !
001B 76 END HLT

Recommended Further Reading

1. Donald E. Knuth, The Art of Computer Programming, Vols. 1 and 2, Addison-
Wesley, Reading, Mass., 1969.

2. 6502 Programming Manual, MOS Technology, Norristown, Pa., 1975.

3. Robert Findley, Scelbi’s ‘8080° Software Gourmet Guide and Cook Book, Scelbi
Computer Consulting, Inc., Milford, Conn., 1976.

4. Adam Osborne, 8080 Programming For Logic Design, Adam Osborne & Assoc.,
Inc., Berkeley, Calif., 1976.

5. Adam Osborne, 6800 Programming For Logic Design, Adam Osbormne & Assoc.,
Inc., Berkeley, Calif., 1977.
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Programming
with BASIC

BASIC stands for Beginner’s All-purpose Symbolic /nstruction Code. It is
the most widely used high-level language. Programs written in BASIC will run
on most computers with little or no change. This is not the case with the assem-
bler level programs studied in the previous chapter. An 8080 program will not
run on CPUs using other MPUs.

BASIC is also much easier to learn. In fact it is one of the easiest
computer languages to learn. Hence, it is considered a *‘beginners’” language.
But do not be fooled; it is a full-fledged language suitable for most applications.

There are numerous versions of BASIC available: Business BASIC,
Extended BASIC, Super BASIC, and even Tiny BASIC to run on CPUs with a
‘“tiny’’ memory. All versions have much in common and the following
discussion applies to most of them.

THE BASIC PROGRAM

A BASIC program consists of a series of lines, each beginning with a line
number (integers only) followed by a command. Unless directed otherwise the
computer then executes the commands one at a time by order of the ascending
line number. Each line, or statement, is thus made up of a line number, capital
letters, numbers, and a few special characters. Line numbers are usually assigned
in multiples of ten to permit adding statements should the need arise.

Let's look at a simple program to solve the expression E = I X R. Thisis a
very fundamental formula in electronics that says that voltage is the product of
current (amperes) and resistance (ohms). Here is the program as written in
BASIC:

10 PRINT *“WHAT IS CURRENT AND RESISTANCE?”
20 INPUT LR

30 LET E=I*R

40 PRINT ‘“VOLTAGE="";E

50 END

168
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Every statement begins with a key word, which specifies the action de-
sired. Line 10 specifies PRINT, telling the terminal to print the character string
within the quotation marks. Line 20 tells the CPU to INPUT two pieces of data
from the terminal (the values for I and R). The LET statement indicates the value
on the right is to be assigned the value on the left of the equals sign. The asterisk
indicates multiplication. Line 40 specifies the printing of a character string
(within the quotes) and the value of E (computed in line 30). The key word END
tells the computer to stop processing statements.

Note that the BASIC language program also contains an editor program
that lets you add, delete, or change lines by number.

To execute the program the user types RUN and hits CR (Carriage Return)
on the terminal. The program’s execution is as follows (note that underlining
indicates user-typed characters):

RUN (CR)

WHAT IS CURRENT AND RESISTANCE?
72,50

VOLTAGE=100

To correct a program, type the line number of the line to be changed and
type in the new statement. This automatically erases the old statement. To delete
a line (e.g., line 20) type:

DELETE 20

If while typing in a line you discover an error, backspace to the error and
begin typing again. This replaces the old characters with the new characters.

SOME BASIC FUNDAMENTALS

Constants and variables are represented with a letter which closely sym-
bolizes the quantity to be represented, i.e., E, I, and R. We can also follow the
letter with a digit for multiple variables, i.e., V1, V2, V3, etc.

Quantities may be integers or real quantities. The following are formats
accepted by BASIC.

50 2.6789 0.0000123
10.5 456.7 +1234.567
—8.07 0.1234 1.2E12

Notice that commas are not used to mark off thousands, etc. A **+°’
symbol, if not used, is assumed. Minus signs must precede the number to
indicate a negative quantity. Scientific notation is represented by the letter E; for
example, 1.2 X 102 is typed as 1.2E12. The exponent must be an integer and
can be either positive or negative.
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Character strings (alpha-numeric text) are indicated by enclosing them in
quotation marks. The final quotation mark must be on the same line as the
beginning mark.

BASIC OPERATORS

BASIC has six comparative operators. They are:

Symbol Example Significance !
= B=A B equal to A
< B<A B less than A
> B>A B greater than A
<= B<=A B less than or equal to A &
>= B>=A B more than or equal to A :
<> B<>A B not equal to A

BASIC has six mathematical operators. They are (shown with hierarchy of
operations in descending order):

Symbol Example Significance
() 8/(2:2)=2 Subexpression !
1 312=9 Exponentiate
* 3+2=6 Multiply
/ 3/2=1.5 Divide
+ 3+2=5 Add i
- 3-2=1 Subtract !

BASIC FUNCTIONS

Most BASICs have a predefined set of functions. They are:

Mathematical

Function Notation Description

ABS(x) x| Absolute value of x

SIN(x) sin x Sine of x(radians)

COS(x} COS X Cosine of x(radians)

TAN(x) tan x Tangent of x(radians}) i
ATN(x) tan~x Arctangent of x(radians) |
EXP(x) ex Natural exponential of x |
LOG({x) In x Natural log of x |
INT(x) [x] Integer part of x

SQR(x) VX Square root of x

RAND(x) Random number (between O and 1)




Programming with BASIC 171

BASIC STATEMENTS

Most BASICs have the following eleven statements. One statement does
not cause any program execution. All the rest do. This one statement is the REM
statement. It is used to insert remarks in the program. It is recommended that
remarks be used liberally to explain the program’s operation. This way other
users will be better able to work with it and the originator can even use them as
an aid to debugging, particularly after time has passed. The REM statements will
be printed out during the listing of the program and will have no effect on the
program’s execution.

The LET statement causes the entire arithmetic expression to the right of
the ‘*="’ sign to be evaluated and then assigns the value to the named
variable(s). Hence, the variable on the left of the ‘="’ sign may also appear on
the right. Here are some examples of LET statements.

10 LET A=0

20 LET A=B+A

30 LET A2=(B+C)/D

40 LET D4=25+SIN(C)—D4
50 LET A$="'BOY”

Note that a variable followed by the symbol *‘$’” denotes a character string
variable.

The PRINT statement is used to print out the results of an arithmetic
expression, print out a character string, or print out a constant. More than one
element may be printed. This is indicated by commas or semicolons between the
elements. The comma tells the computer to move to the next printing zone
(usually 15 character positions in a printing zone) to print the next element. The
semicolon tells the computer to print the element without skipping spaces. Here
are some examples of PRINT statements.

10 PRINT A

20 PRINT A—1.2

30 PRINT A$

40 PRINT ‘“THE RESULT=""A
50 PRINT A,B,C

The INPUT statement is used for inputting data or character strings into the
program. The INPUT statement may input one or more variables (denoted by
commas between the variables). When running the program the INPUT state-
ment causes a prompting ‘‘?” i be typed for each piece of data to be inputted.

The STOP and END statements are used to terminate execution of the
program. The STOP statement may be located anywhere in the program while
the END statement must be at the end of the program.
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The GO TO statement causes an unconditional jump to a given statement
number. For example:

100 GO TO 50

causes execution to return to line 50 and execute from that point onward.

The IF ... THEN statement causes a conditional jump if a specific condi-
tion is met. If the condition is not met the program continues to the next state-
ment. Here are some IF ... THEN statements.

10 IF A>B THEN 150
20 IF A$=‘'BOY’’ THEN 150
30 IF A<>B THEN 120

The FOR and NEXT statements permit easy programming of loops. The
FOR statement defines the beginning of the loop and identifies the controlling
parameters. For example:

10 FOR N=1 TO 5 STEP1
[20 PRINT N,N+N
+—30 NEXTN

40 END

Line 10 establishes the variable N and initializes it = 1. It also defines the
end-test value (5) for the loop and step size (1). The program will start with N =
1 and print N and N + N (line 20). Line 30 will loop back to line 10, test N to see
if it is =5, and if not, increments it by 1. If no step is specified, the computer
assumes a step value of 1. The output will look like this:

RUN
1 2
2 4
3 6
4 8
5 10

A negative step may be used. Note when using multiple loops that they
must be nested one within the other.

The GOSUB statement permits the calling of a subroutine. Program control
returns to the line after the GO SUB statement when referenced by a RETURN
statement at the end of the subroutine. For example:

90 GOSUB 210
directs the computer to jump to line 210, the first line of the subroutine, and
350 RETURN

tells the computer to go back to the first line number greater than 90 and to
continue the program from there.
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The READ and DATA statements assign to the listed variables values
obtained from the DATA statement. Neither statement is used without the other.
A READ statement causes the variables listed to be given, in order, the next
available quantity in the collection of DATA statements. The computer takes all
of the DATA statements, in the order in which they appear, and creates a large
data block. Each time a READ statement is encountered anywhere in the pro-
gram, the data block supplies the next available number or numbers. If the data
block runs out of data, with a READ statement still asking for more, the program
is assumed to be done. Here is an example which uses these statements:

10 READ A,B,D.E

15 LET G=A*E—B*D
20 IF G=0 THEN 65

30 READ CF

37 LET X=(C*E—B*F)/G
42 LET Y=(A*F—C*D)/G
55 PRINT X,Y

60 GO TO 30

65 PRINT ““NO UNIQUE SOLUTION"’
70 DATA 1,2,4,2

80 DATA —7,5

85 DATA 1,3,4,—7

90 END
When this program is processed it produces the following output:
RUN
4 -5.5
666667 166667
—3.66667 3.83333

OUT OF DATA IN 30

Note that the first time through the program the following values were
assigned to the variables: A=1, B=2, D=4, E=2, C=-7, and F=5. The
second time around the computer found no values supplied for C and F and
hence, stopped execution and printed the error message OUT OF DATA IN 30.

LISTS, TABLES, AND ARRAYS

We can enter a list (single dimension array) A(0),A(1). .. A(10) into a
program very simply by the lines:

10 FOR I=0to 10

20 READ A(D)

30 NEXT1

40 DATA 2,3,-5,7,2.2,4,—9,123,4,—4,3
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We need no special instruction to the computer if no subscript greater than
10 occurs. However, if we want larger subscripts, we must use a DIM (dimen-
sion) statement to define the space required for the list. When in doubt, indicate a
larger dimension than you expect to use. Here is an example of a program to set
up a 3 X 5 array (matrix).

10 DIM I(3), X(5), B(3,5)
15 FORI=1TO 3

20 FORJ=1TO5

30 READ B(L,J)

40 NEXTJ

50 NEXTI

60 DATA 2,3,—5,—9,2

70 DATA 4, —-7,3,4,-2 p 3 X 5 array
80 DATA 3,-3,5,7,8

FUN WITH BASIC

BASIC is a highly interactive language and hence, it can give the computer
human characteristics. Here is a program segment which makes the computer

seem human:
10 PRINT ‘“WHAT IS YOUR NAME?"’
20 INPUT N$
30 PRINT ““HELLO’;N$;*“.’;**  ;“HOW ARE YOU?”
40 PRINT ‘‘GOOD, BAD, OR FAIR?”’
50 INPUT M$

60 IF M$="GOOD’’ THEN 110 |
70 IF M$="‘BAD”’ THEN 130 z
80 IF M$=+FAIR’* THEN 150

90 PRINT “‘I DO NOT UNDERSTAND YOU’’;N$
100 GOTO 40

110 PRINT ““I AM GOOD TOO'";N$

120 GOTO 160

130 PRINT ‘‘SORRY TO HEAR IT"’;N$

140 GOTO 160

150 PRINT “‘ME TOO!”’

160 PRINT ‘SO LONG NOW."”’

170 END ;

Here is what the program’s execution will look like:

RUN
WHAT IS YOUR NAME?
? CHARLEY
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HELLO CHARLEY. HOW ARE YOU?
GOOD, BAD, OR FAIR?

780 SO

1 DO NOT UNDERSTAND YOU CHARLEY
GOOD, BAD, OR FAIR?

7FAIR

ME TOO!

SO LONG NOW.

BASIC is also very popular for playing games. Here is a version of the

popular program called Lunar Lander. Note that many statements have been
condensed to one or two letters, e.g., PR for PRINT and L for LET. This is
permitted on most BASICs and in fact saves memory space.

5 REM LUNAR LIFEBOAT
6 REM BY DAVID KRAUSS AND TOM MARTIN
7 REM MAR. 10, 1977

10
11
12
14
15
16
17
18
19
20
21
23
24
25
26
27
30
31
34
35
40
41
42
43
44
45
46
47
55
60
61
65
66
67
69
70
71

PR*DO YOU DESIRE INSTRUCTIONS? TYPE ‘Y’ FOR YES, ‘N’ FOR NO.”
INPUT Z

IF Z=N GOTO 30

REM INSTRUCTION BLOCK FROM LINE 15 TO LINE 29

PR*“WHILE FLYING A LOW ORBIT MAPPING MISSION ON THE MOON,"
PR*YOUR CRAFT HAS HIT A FLYING WOMBAT! (AN AVIAN MAMMAL"
PR*“NATIVE TO THE AREA) YOU ARE SAFE INSIDE YOUR EJECTED"
PR**SURVIVAL CAPSULE WHEN YOU DISCOVER THAT YOUR AUTOMATIC"
PR*‘DESCENT COMPUTER IS JAMMED FULL OF WOMBAT FEATHERS”
PR**AND HAS FAILED. YOUR MAIN THRUST UNIT IS FALTERING BUT"
PR*“MAY YET GET YOU DOWN SAFELY.”

PR*“TO SAVE THE CAPSULE YOU MUST LAND AT LESS THAN 2 FT/SEC.”
PR*TO SURVIVE YOU MUST LAND AT LESS THAN 5 FT/SEC.”
PR*“CAPSULE INSTRUMENTATION IS OK AND WILL TELL YOU WHERE YOU ARE.”
PR“REMEMBER, GRAVITY WILL ADD 5 FT/SEC. TO YOUR DESCENT."
PR*“GOOD LUCK!"

REM L=LIMIT OF BURN

L=RND(10)+25

PR

PR*‘YOUR ENGINES ARE CAPABLE OF A MAX. BURN OF *;L;""FT/SEC.”
REM INITIALIZE DATA: T=TIME, H=HEIGHT, V=VELOCITY, F=FUEL LEFT
T=1

V=RND(75)~75

H=RND(300)+200

F=120

PR

PR*‘MANUAL DESCENT MODE ENGAGED"

PR

PR*TIME HEIGHT VELOCITY FUEL BURN"

PR*SEC. (FEET) (FT/SEC) LEFT”

PR ";T,H,VF,

INPUT B

IF B>L THEN B=L

REM L=LIMIT OF BURN

IF F<=0 THEN B=0

IF B+ 100<=100 THEN B=0

F=F-B
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72
73
75
76
77
78
79
80
81
82
83
91
92
93
94

REM B=BURN

T=T+1

V=V-5+B

H=H+V

E=RND(12)

IF E<9 IF E >6 GOSUB 170

REM VARIABLE ‘E’ DETERMINES THRUST FAILURE

IF F<=0 GOTO 100

IF H<=0 THEN IF V+100<=95 GOTO 150

IF H<=0 THEN IF V+100<=98 GOTO 140

IF H>0 GOTO 61

PR**CONGRATULATIONS! YOU HAVE LANDED SAFELY."
PR*YOUR VELOCITY AT TOUCHDOWN WAS **;V;”’ FT/SEC.”
PR*WITH **;F;"” UNITS OF FUEL REMAINING’’

GOTO 160

100 PR*“!'OUT OF FUEL!!!”

101 IF H>0 THEN GOTO 61

105 GOTO 150

140 PR*'YOU HAVE MADE A CONTROLLED CRASH! YOU ARE ALIVE"

14] PR“BUT THE LANDER IS DAMAGED AND YOU ARE STRANDED!"

142 GOTO 92

150 PR'CRUNCH! YOU HAVE JUST BECOME THE MOON’S NEWEST CRATER"’
151 PR"YOUR FLIGHT PAY WILL BE FORWARDED TO YOUR WIDOW.”

142 GOTO 92

150 PR"“CRUNCH! YOU HAVE JUST BECOME THE MOON'S

NEWEST CRATER™"

151 PR“YOUR FLIGHT PAY WILL BE FORWARDED TO YOUR

WIDOW.”

152 GOTO 92

160 PR

161 PR"LIKE TO TRY AGAIN? (Y/N)'";

162 INPUT Z

163 IF Z=Y GOTO 30

165 END

169 REM DERIVE LEVEL OF THRUST FAILURE

170 L=L—(RND(10)+1)

172 IF L+100<<=100 THEN GOTO 195

180 PR'‘DETERIORATION IN MAIN THRUST UNIT"
190 PR"“YOUR MAX. BURN IS NOW ““;L;"* FT/SEC.”
191 RETURN

195 PR*YOUR THRUST UNITS HAVE FAILED COMPLETELY!”
196 L=0

200 RETURN

Recommended Further Reading

. James S. Coan, Basic BASIC, Second Edition, Hayden Book Co., Inc., Rochelle

Park, N.J., 1978.

. Robert E. Smith, Discovering BASIC, Hayden Book Co., Inc., Rochelle Park, N.J.,

1970.

. James S. Coan, Advanced BASIC, Hayden Book Co., Inc., Rochelle Park, N.J.,

1976.

. Byron S. Gottfried, Programming with BASIC, McGraw-Hill Book Co., New York,

N.Y., 1975.




14.
Applications

Personal computer systems are used by individuals for a wide range of
applications. It is not possible to cover all the applications, particularly since
new ones are being created all the time. The purpose of this chapter is to
pin-point the more common applications and give a general overview of each.
Where possible, some references are given, to guide the reader to more in-depth
material.

GAME PLAYING

There is no doubt that more time is spent playing games on computers than
is spent on any other personal computer activity. This is because computers have
brought a new level of sophistication to game playing. Games can be played with
the computer as an opponent, and different levels of skill can be selected, as for
example, in playing chess with the computer.

Computer games have been created which depend on the computer’s
ability to store considerable amounts of data and do complex calculations
quickly. The most popular of these games is Star Trek (after the TV series), a
computer game which places the operator in the role of Captain Kirk and has him
piloting the starship ‘‘Enterprise’’ through galaxies and entering into combat
with the infamous * ‘Klingons.”” This game can go on for hours and calls for skill
on the part of the user. A very impressive version of Star Trek is shown in Fig.
14-1. Here, three CRT displays are mounted in a simulated space-ship cockpit.
The large center screen displays the universe while the small two side CRTs
display status information. Information on building the unit can be obtained
from: 2005 AD, Inc., 2005 Nandain Street, Philadelphia, Pa., 19146.

Most of these games are written in BASIC and, hence, require a BASIC
interpreter in the system, and some mass storage device (e.g., cassette tape or
disc) and typically 12-20K of memory. A CRT type terminal is preferred over a
hardcopy terminal.

177
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Fig. 14-1. A Star-Trek game display built into a simulated cabin by 2005 AD,
Inc. Lance Strickler, one of the builders, dressed in a space suit, is
seated next to the unit.

The following are some of the best source materials on computer games.

. David Ahl, 101 Games in BASIC, Digital Equipment Corp., Maynard,

Mass.

. What To Do After You Hit Return, Peoples Computer Co., Menlo Park,

Calif.

. Donald D. Spencer, Game Playing with Computers, Second Edition,

Hayden Book Co., Inc., Rochelle Park, N.J. 1976.

. Nat Wadsworth and Robert Findley, Scelbi’s First Book of Computer

Games for the ‘8008/8080’, Scelbi Computer Consulting, Inc., Milford,
Conn., 1976.

. Robert Findley, Scelbi’s Galaxy Game for the ‘8008/8080°, Scelbi

Computer Consulting, Inc., Milford, Conn., 1976.

. Peter Jennings, Microchess, Peter Jennings, 1612-43 Thorncliffe Park

Drive, Toronto, Ontario, Canada, M4H 1J4.

. Donald D. Spencer, Game Playing with BASIC, Hayden Book Co., Inc.,

Rochelle Park, N.J., 1977.

. Metagaming Concepts, Box 15346, Austin, Texas 78761.
. Simulation & Gaming News, Box 3039, University Station, Moscow,

Idaho 83843.
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In addition, the following individuals can be contacted.

1. Gerald H. Herd, 3781 Whispering Pines Drive, Pensacola, Florida 32504.
Information on Star Trek games.

2. Dr. Monroe Newborn, School of Computer Science, McGill University,
Montreal, Quebec, Canada, H3C 3Gl. Information on chess games.

3. Dr. Robert Suding, Box 6528, Denver, Colorado 80206. Information on
educational games.

WORD PROCESSING

Word processing, also called text editing, is really the adding of intelli-
gence to a typewriter. For example, it permits the typing of letters, correction of
mistakes, and rearranging of sentences and paragraphs with just a few key
strokes. When the composition of the letters is satisfactory the computer is told to
type the letters. If desired, the computer will even justify the text (even right-
hand margins). As many originals can be generated as desired, with headings
changed on each letter.

Businesses have been using word processing machines for years, at a cost
of $10K to $30K per machine. But now it is possible to do this at a small fraction
of the cost.

The hardware is not difficult. In fact a 6-IC CPU for the system is fully
described in the January 18, 1977, issue of Electronic Design magazine with full
description of the hardware and software involved. The CPU can be easily built
for under $100.

A standard general purpose CPU, such as most of the CPU kits on the
market, can also be used. Usually 4K of RAM is adequate for a minimal system,
but 8K and even 16K of RAM is desirable for more elaborate program and buffer
text storage.

An upper/lower case type keyboard with a shift-lock key is required for
input. The keyboard should have an ASCII output. Although Teletypes may be
used for printing, they offer only upper-case letters and do not provide the best
quality print. Selectric typewriters can be converted to interface to a CPU, but the
conversion is not easy and the conversion kits presently available are expensive.
The best machines are those that use Diablo or Queme printers and similar units
that use “‘daisy wheel’’ printer heads. These units are becoming available on the
used-equipment market.

Although the final output must be typed on a printer, it is more desirable to
compose the text on a CRT type terminal or TV display. It is much faster and
quieter than the printer. Insertions, deletions, movement of words, lines, para-
graphs, etc., occur with virtually no delay. The best display to use generates the
display from directly addressable computer RAM (e.g., the Processor Technol-
ogy VDM-1 or Polymorphic Systems Video interface). In this type unit, as bytes
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are moved around in RAM, they also move around on the display. The TV
typewriter is not suited to this application since changes in text require retrans-
mission of the whole displayed page.

A mass storage device is desirable. Without it you are limited to editing
only the text available in RAM. This is all right for one page letters and reports.
For longer text a mass storage device allows editing and updating. Furthermore,
the text can be saved for reuse or updating at a later time.

Although one cassette recorder may be used for storage, a two-cassette
system, employing high speed CPU controlled cassette decks, is preferable.
Where it is anticipated that there will be frequent insertions, deletions, and
updates, floppy discs are recommended.

Although a standard editor program, such as is used when writing pro-
grams, can be used as the editing software, it is far preferable to use a word
processor text editor specifically designed for text editing. At this writing, Tech-
nical Design Labs, Princeton, N.J., offers a powerful word processor program
(Z-80 based). Those wishing to write their own text editor program should read
“Text Editing,”” by Hal Chamberlin, Popular Electronics, January 1977. A
simple text editor, written in BASIC, can be found in ‘‘Computerized
Typesetting’’ by Lee Wilkinson, Kilobaud, June 1977.

For those considering constructing their own word processing system, it
would be wise to contact: Robert H. Edmonds, Box 464, Estudillo Station, San
Leandro, Calif., 94577. Bob is very active in coordinating and stimulating
homebrew word processing units. Also active in this area is Ward Christensen,
688 East 154 Street, Dolton, Illinois 60419.

COMPUTER MUSIC

This application of microcomputers is just starting to be explored. Already
there have been demonstrations of simple computer music generated by reading a
table in RAM to generate a square-wave frequency at bit B position of a parallel
port. This technique can play simple melodies. Another simple technique in-
volves picking up the switching signals of the CPU (Steve Dompier, ‘‘Music of
a Sort,”” Dr. Dobbs Journal, February 1976) on a neartby AM radio. This
technique produces surprisingly good simple music with no interface required.

An improvement on the table technique was developed by Malcom Wright
(People’s Computer Company Magazine, January 1976; see his text, Alpha-
Numeric Music With Amplitude Control, P.C.C., 1976). The music is encoded
as ASCII characters. Hence, to play middle C, just type “*4C”’; for a sixteenth
note of B flat, one octave above middle C, type ‘‘SSB’’. In this way the melody
is loaded into memory. The user can program volume, tempo, time, rests,
repeats, and even create envelopes (attack) over a six-octave range.

More elaborate systems, which provide multivoicing and precise tonal
control, have been developed using a Fourier Synthesizing technique (Hal
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Fig. 14-2. A music synthesizer board for the S-100 bus. (Courtesy Newtech
Computer Systems)

Chamberlin, ‘‘Fourier Series Waveform Generator,”” Electronotes Magazine,
May 1974).

Many companies are developing music synthesizer kits which either plug
directly into the S-100 bus or interface very easily to most microcomputers. A
typical music synthesizer board is shown in Fig. 14-2. Along with this is the
development of software which enables a composer to write and edit pieces of
music for multivoices and then to play the music instantly after completion on his
computer.

Also, some companies are developing computer control hardware devices
for musical instruments. Dr. Prentis Knowlton demonstrated a pipe organ con-
trolled by a PDP-8 minicomputer on his LP record ‘‘Unplayed By Human
Hands’’ (available from Computer Humanities, 2310 El Moreno St., La Cres-
centa, Calif., 91214).

For more information on computer music, the reader is referred to the
following magazines:

1. Electronotes
2. Journal of the Audio Engineering Society
3. Journal of the Audio Society of America
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4. Gravesono Review
5. IEEE Transactions on Audio and Electroacoustics
6. Computer Music Journal

Also recommended are the following books:

1. J. W. Beauchamp and H. Von Foerster, Eds., Music Computer, Wiley,
New York, N.Y., 1969.

2. H. L. F. Helmholtz, On the Sensations of Tone As a Physiological Basis
for the Theory of Music, translation (originally written in German in 1863)
and additions by A. J. Ellis, Dover, N.Y., 1954.

3. D. Bohn, Ed., Audio Handbook, National Semiconductor Corp., Santa
Clara, Calif., 1976.

4. H. Chamberlin, Musical Applications of Microprocessors, Hayden Book
Co., Inc., Rochelle Park, N.J., in press.

AMATEUR RADIO

Amateur radio operators are veteran experimenters and seize upon each
new electronic device to aid them in their hobby. So it should come as no surprise
to find that amateur radio operators are big users of MPUs. AMSAT is presently
orbiting a satellite built by amateurs for radio relay work that contains a
microcomputer. Similarly, amateurs on the ground are using microcomputers to
track the satellite and calculate its position.

~ However, the widest application is in control of morse code reception and
transmission. The microcomputer is an ideal unit for converting morse code to
ASCII code, automatically tracking varying received code and displaying it on
either a printer or CRT/TVT display. A typical system is shown in Fig. 14-3. On
the other hand, it makes transmission simpler and faster by permitting the

amateur to use a standard keyboard, putting out ASCII code to convert it au- -

tomatically to morse code for transmission. An excellent set of articles on these
applications can be found in the October 1976 issue of Byte magazine.

The reader is also referred to the following amateur radio magazines which
have carried numerous articles on the application of MPUs in amateur radio:
QST, CQ, Amateur Radio, and 73.

The following nonprofit amateur radio organization is devoted primarily to
the application of microprocessors and other new devices in amateur radio appli-
cations. They publish a newsletter and maintain a RTTY repeater station
(WR4APC, 147.81-MHz input and 147.21-MHz output) and hold regular meet-
ings and training sessions.

Amateur Radio Research & Development Corp. (AMRAD)
1524 Springvale Ave.
McLean, Va., 22101
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Fig. 14-3. Using a microcomputer to transmit and receive Morse code.

BUSINESS APPLICATIONS

It used to be that a business had to be grossing one million dollars a year or
more to justify the purchase of even a minicomputer. After all, even small
business-oriented minicomputer systems started at $75K and cost a fortune to
operate. But the microcomputer, less expensive peripherals, and easy to use
software have changed that radically. Microprocessor-based systems can now be
assembled by the user and even serviced, to a great degree, by the user. Gone is
that complete dependence on IBM.

Microcomputers are just what the small business user needs—a system
scaled down to his needs. The applications are endless. Here are some of the
more widely used applications: payroll, cost accounting, accounts payable, ac-
counts receivable, general ledger, sales analysis, investment return, interest cal-
culations, depreciation calculations, loan calculations, inventory control, prep-
aration of financial reports (Balance sheets and Profit and Loss statements), and
mailing list maintenance.

All of the foregoing applications are readily programmed in BASIC. In
fact, there are several software packages already available for the applications
listed. Two of the firms currently supplying such software are:

1. Scientific Research Inst., Box 3692, Crofton, Md., 21114
2. Osborne & Associates, Inc., Box 2036, Berkeley, Calif., 94702.
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The following individuals can be contacted for information:

1. Farm record keeping: Frank H. Oemig, 501 Oak Park Avenue, Water-
town, Wisconsin 53094.

2. Stock Market Analysis: Charles Pack, 25470 Elena Road, Los Altos Hills,
California 94022.

The hardware necessary to run this software usually includes:

—

. CPU with 16-32K of memory, including operating system in ROM and
preferably the BASIC interpreter in ROM (particularly if a disc system is
not used). Interfaces to the following peripherals should be included in the |
CPU. |

2. CRT terminal

3. High-speed character printer or more preferably a line printer. i

4. Dual cassette tape program/data storage system using high speed control- |

lable cassette decks. More preferable is a dual floppy disc system. Either

system should be provided with a suitable OS software for the applications

for which they will be used.

ROBOTICS |

The robots are coming. There are already an estimated 10,000 robots being
used in manufacturing plants in this country. They are doing jobs which are
either too difficult, too dangerous, or are otherwise undesirable for humans.

Amateur robotics is just beginning. At present there are only a few
pioneers experimenting with robotic devices and even building a complete robot.
An amateur-built robot is shown in Fig. 14-4. A robot is a vehicle system capable
of interacting with its environment in a rational way and managing its own
survival. It is a highly sophisticated system combining electronics, mechanics,
computer design, computer programming, and artificial intelligence.

Articles describing amateur-built robots have appeared in the following
publications:

1. Tod Loofbourrow, ‘A Computer-Controlled Robot,” Interface Age
Magazine, April 1977. Includes complete schematic diagrams and
software for a basic robot controlled by a KIM-1 CPU (6502 MPU).

2. Ralph Hollis, ‘‘Newt: A Mobile Cognitive Robot,”” Byte, June 1977.
Includes basic, but not complete schematic diagrams and design philos-
ophy for an 8080 MPU controlled robot (still in an early design stage). |

An interesting book on the subject is also available:

Tod Loofbourrow, How to Build a Computer-Controlled Robot, Hayden
Book Co., Inc., Rochelle Park, N.J., 1978.
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Fig. 14-4. A home-built robot designed and constructed by Tod Loofbourrow.

Although most present robots are programmed to perform a given series of
tasks, some are equipped with a few low level sensors.

The future of robotics will probably change radically and quickly. It is
expected that very soon robots will be constructed which have considerable
ability to interpret sensory information and make decisions accordingly. They
will be equipped with vision, including a ranging device, and a set of tactile
(force, torque) sensors. They will be able to modify their tasks by making
decisions based on information collected from their environment. The likelihood
is that the robot will have a main central CPU to handle task planning and other
local MPUs to attend to control of and interpretation of sensor functions.

For further information on robotics contact:

United States Robotics Society
Box 26484
Albuquerque, N. Mex. 87102

AUTOMATIC CONTROL

One of the things that computers do very well is controlling repetitive
complex processes. Each day more and more of these applications are being
introduced in consumer products. We are already acquainted with microproces-
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sors in automobiles to optimize gas economy and reduce pollution, and even in
microwave ovens to control the cooking cycles. !

Here is an example of the automatic sequential control of a chemical !
production process using an 8080/8085 based CPU. The process is as follows: (1)
two liquids are added to a mixing tank, (2) the solution is heated and stirred to
allow the reaction to occur, and finally, (3) the tank contents are drained. The
following devices are controlled by the CPU via relays:

Device Codes

On Off |
Power switch 00 01 |
Water valve 02 03 !
Chemical vaive 04 05 i
Drain valve 06 07 |
Water pump 08 09 i
Chemical pump 0A 0B |
Stirrer oc oD |
Heater OE OF |

The devices must be sequenced for specific periods of time, as indicated by
the following control program. Note that a delay subroutine (Wait 01) is used to
generate a 1-second time delay and is called to generate the desired sequential
time periods.

i

|

|
LXi SP, PGMEND+7 Initialize stack address !
ouT 00 Apply power at t=0 sec |
CALL WAIT 01 Wait 1 sec :
out 02 Open water valve at t=1 sec |
CALL WAIT 01 Wait 1 sec i
ouT 08 Start water pump at t=2 sec i
MVI-D 10 Set D up for18-sec interval !
CALL DELAYD Wait 18 sec b
ouTt 09 Stop water pump at t=20 sec 1
CALL WAIT 01 Wait 1 sec |
ouT 03 Close water valve at t=21 sec i
CALL WAIT 01 Wait 1 sec |
ouT 04 Open chemical valve at t=23 sec ;
MVI-D 06 Set up D for 7-sec interval |
CALL DELAYD Wait 7 sec |
ouT 0B Stop chemical pump at t=30 sec |
CALL WAIT 01 Wait 1 sec |
out 05 Close chemical valve at t=31 sec |
CALL WAIT 01 Wait 1 sec !
out 05 Close chemical valuve at t=31 sec !
CALL WAIT 01 Wait 1 sec l
out OE Start heater at t=32 sec :
MVi-D 14 Set up D for 21-sec interval

CALL DELAYD Wait 21 sec
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out oC Start stirrer
MVI-D 18 Set up D for 25 sec interval
CALL DELAYD Wait 25 sec
ouT oD Stop stirrer at t=78 sec
CALL WAIT 01 Wait 1 sec
outT oF Stop heater at t=79 sec
CALL WAIT 01 Wait 1 sec
ouT 06 Open drain valve at t=80 sec
MVI-D 27 Set up D for 40-sec interval
CALL DELAYD Wait 40 sec
ouT 07 Close drain valve at t=120 sec
CALL WAIT 01 Wait 1 sec
ouT 0t Shut off power at t=121 sec
HLT End

DELAY D CALL WAIT 01 Time delay routine WAIT-01 delays
DCR-D 1-sec-DELAY-D delays number in
JNZ DELAYD Register D + 1 sec

WAIT 01 LXI-B 00 71 B=113 decimal; C=00y;

NEXT CALL RETURN WAIT-01 delays 1.0000035 sec
CALL RETURN DELAY-D delays [(1.0000035)(D+1)
DCR-C (1.6x107%)] sec
JINZ NEXT
CMA
CMA
CMA
CMA
CMA
DCR-B
JINZ NEXT

RETURN RET

Two excellent examples of automatic control in the home will be found in
the following two articles:

1. Robert W. Ulrickson, ‘‘The Design of a Home Security System,”
Electronic Design, April 26, 1977.
2. Hal Chamberlin, *“Try Solar Energy,”” Kilobaud, June 1977.




Appendix A
Hex— ASCII Table

Control Numeric ~ Uppercase  Lowercase Special
00  Null 30 0 41 A 61a 20 Space
01 Start of Heading 311 42 8B 62b 21 1
02 Start of Text 32 2 43C 63 ¢ 22 "
03 End of Text 33 3 44D 64 d 23 #
04 End of Transmission 34 4 45E 65 e 24 %
05  Enquiry 355 46 F 66 f 25 %
06 Acknowledge 36 6 47 G 67 g 26 &
07 Bell 377 48 H 68 h 27 ¢
08 Backspace 38 8 491 69i 28 (
09 Horizontal Tabulation 39 9 4A J 6A j 29 )
0A Line Feed 4BK 6B k 2A *
0B Vertical Tabulation 4C L 6C | 2B +
0C Form Feed 4D M 6D m 2C ,
0D Carriage Return 4EN 6En 2D -
OE  Shift Out 4F O 6F o 2E .
OF  Shift In 50 P 70p 2F /
10 Data Link Escape 51Q 71q 3A
11 X-on 52 R 72r 3B ;
12 Tape 538 73s 3C <
13 X-off 54T 74t 3D =
14 Device Control 4 55U 75u 3E >
15 Negative Acknowledge 56 V 76 v 3F ?
16  Synchronous Idle 57 W 77w 40 @
17 End of Transmission Block 58 X 78 x 5B
18 Cancel 59 Y 79y 5C \
19  End of Medium 5AZ 7A z 5D ]
1A Substitute 5E Aort
1B Escape 5F __ore
1C File Separator 60
1D Group Separator 7B {
1E  Record Separator 7C |
1F  Unit Separator 70 }
7F  Rub Out or Delete 7E ~
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Appendix B
8080 Instruction Codes

JUMP cALL RETURN RESTART
3 JMP 0 CALL €9 RET C7 RST ©
c2 JNZ ch CNZ C0 RNZ CF RST 1
A Iz cc cz €8 RZ D7 RST 2
D2 JNC Dk CNC DO RNC DF RST 3
DA JC ) Adr DC CC YAdr D8 RC E7 RST L
E2 JPO E4 CPO EO RPO EF RST 5
EA JPE EC CPE E8 RPE F7 RST 6
F2 JP F4 cp FO RP FF RST 7
FA M FC CM F8 RM
E9  PCHL
MOVE Acc LOAD
IMMEDI ATE IMMED| ATE IMMED | ATE STACK OPS
06 W1 B €6 ADI o1 Lxt 8 C5 PUSH B
0E MVI C CE ACI 1 LXI Dy D5 PUSHD
16 M1 D D6 sUl 21 X1 H E5 PUSH H
1E M1 E( o DE SBIYpg 31 Lxl SP F5 PUSH PSW
26 MV H E6 ANI
2E MY L EE XRI c1 POP B
36 MYl M F6 ORI Dl POP D
3E MYIOA FE cPI DOUBLE ADD* £l POP H
e

09 oAD B FI POP PSW

19 0AD D E3  XTHL

29 DAD H A ;
I NCREMENT 30 DECREMENT 0 39 DAD SP s i
o4 INR B 05 DCR B !
oC INR € oD DCR C SPECIALS
4 INR 15 DCR D
e :NR 2 R E LOAD/STORE EB  XCHG
24 INN H 25 DCR H OA LDAX B 27 c”m*
26 INR L 20 DR L 1A LDAX D AN
34 INR M 35 OCR M 24 LHLD Adr LA
3¢ INR A 30 DCR A 37 LDA Adr 3
03 INX B 0B DCX B 02 STAX B
13 INX D 1B DCX D 12 STAX D INPUT/OUTPUT
23 INX H 28 DCX K 22 SHLD Adr D3 OUT D8
33 INX SP 38 DCX SP 32 STA Adr DB IN D8
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ROTATE* MOVE (cont) ACCUMULATOR*

07 RLC 58 Mov E,B 80 ADD B A8 XRA

OF RRC 59 Mov E,C 81 ADD C A9 XRA

17 RAL 5A MOV E,D 82 ADD D AR XRA

IF RAR 58 MOV ELE 83 ADD E AB  XRA
5C MoV E,H 84 ADD H AC  XRA
5D MOV E,L 85 ADD L AD XRA
5E MOV E,M 86 ADD M AE  XRA

CONTROL 5F MoV E,A 87 ADD A AF  XRA

00 NOP 60 MOV H,B 88 ADC B BO ORA

76 HLT 61 Mov H,C 89 ADC C Bl ORA

F3 DI 62 MOV H,D 8A ADC D B2 ORA

FB EI 63 MOV H,E 88 ADC E B3 ORA
64 MOV H,H 8C ADC H BL ORA
65 MOV H,L 8D ADC L B5 ORA
66 MOV H,M 8E ADC M B6 ORA

MOVE 67 MOV H,A 8F ADC A B7 ORA

40 Mov B,B 68 MoV L,B 90 suB B B8 CMP

41 Mov B,C 69 Mov L,C 91 suB C B9 CMP

L2 MOV B,D 6A MOV L,D 92 SsUB D BA CMP

43 MoV B,E 68 MoV L,E 93 suB E BB CMP

44 MoV B,H 6C MOV L,H 94k SUB H BC CMP

45 Mov B,L 6D MoV L,L 95 sSUB L BD CMP

46 MOV B,M 6E MOV L,M 96 SuUB M BE CMP

47 MoV B,A 6F MOV L,A 97 SUB A BF CMP

48 MoV C,B 70 MOV M,B 98 SsBB B

49 Mov C,C 71 MOV M,C 99 SBB C

LA MOV C,D 72 MOV M,D 9A SBB D

4B MoV C,E 73 MOV M,E 98 SBB E

4C Mov C,H 74 MOV M,H 9C SBB H

4D MoV C,L 75 MOV M,L 9 SBB L

LE MOV C,M ceeseee 9E SBB M

4F MoV C,A 77 MOV M,A 9F sBB A

50 MOV D,B 78 MOV A,B A0 ANA B

51 Mov D,C 79 Mov A,C Al ANF C

52 MoV D,D 7A MOV A,D A2 ANA D

53 MoV D,E 7B MOV A,E A3 ANA E

54 MOV D,H 7C MOV A,H Ak ANA H

55 MoV D,L 70 MOV A,L A5 ANA L

56 MOV D,M 7E MOV A,M A6 ANA M

57 MOV D,A 7F MOV A,A A7 ANA A

D8 = constant or logical arithmetic expression that evaluates

to an 8-bit data quantity

D16 = constant or logical arithmetic expression that evaluates

to a 16-bit data quantity
16=bit address

only CARRY affected

all Flags (C,2,5,P,) affected

.,
bnnan

242

affect no Flags)

all Flags except CARRY affected (exception, INX and DCX

PETrImMooOow PXrImoow

PXTrImMmoow




Appendix C
8080 Codes— Numerical Order

HEX _OCT _MNEM HEX__OCT _MNEM HEX__OCT__MNEM

00 000 NOP 25 045 DCR H LA 112 MOV C,D
01 001 LXI B 26 046 MVI H 4B 113 MOV C,E
02 002 STAX B 27 047 DAA 4C 114 MOV C,H
03 003 INX B 28 050 Unimpl 4D 114 Mov C,L
ok 004 INR B 29 051 DAD H LE 115 MOV C,M
05 005 DCR B 2A 052 LHLD 4F 117 MOV C,ACC
06 006 MVl B 2B 053 DCX H 50 120 Mov D,B
07 007 RLC 2C 054 INR L 51 121 Mov D,C
08 010 Unimpl 2D 055 DCR L 52 122 Mov D,D
09 011 DAD B 2E 056 MVI L 53 123 MoV D,E
0A 012 LDAX B 2F 057 CMA sh 124 MoV D,H
0B 013 DCX B 30 060 Unimpl 55 125 MoV D,L
ocC 014 INRC 31 061 LXI SP 56 126 MOV D,M
0D 015 DCR C 32 062 STA 57 127 MOV D,ACC
OE 016 MVI C 33 063 INX SP 58 130 MoV E,B
OF 017 RRC 34 064 INRM 59 131 MoV E,C
10 020 Unimpl 35 065 DCR M 5A 132 MoV E,D
11021 LXI D 36 066 MVI M 58 133 MOV E,E
12 022 STAX D 37 067 STC 5C 134 MOV E,H
13023 INX D 38 070 Unimpl 5D 135 MoV E,L
4 024 INRD 39 071 DAD SP 5E 136 MOV E,M
15 025 DCR D 3A 072 LDA 5F 137 MOV E,ACC
16 026 MVI D 38 073 DCX SP 60 140 MOV H,B
17 027 RAL 3¢ 074 INR ACC 61 141 MOV H,C
18 030 Unimpl 3D 075 DCR ACC 62 142 MOV H,D
19 031 DAD D 3E 076 MV ACC 63 143 MOV H,E
1A 032 LDAX D 3F 077 CMC 64  14h MOV H,H
1B 033 DCX D Lo 100 MoV B,B 65 145 MOV H,L
1T 034 INRE 41 101 Mov B,C 66 146 MOV H,M
1D 035 DCR E 42 102 MoV B,D 67 147 MOV H,ACC
1E 036 MVI E 43 103 MOV B,E 68 150 Mov L,B
1F 037 RAR 44 104 MOV B,H 69 151 MoV L,C
20 040 Unimpl 45 105 MOV B,L 6A 152 MOV L,D
21 041 LXI H 46 106 MOV B,M 6B 153 MOV L,E
22 042 SHLD 47 107 MoV B,ACC 6C 154 MOV L,H
23  O43 INX H 48 110 MoV C,B 6D 155 MOV L,L
24 obb INR H 49 111 Mov C,C 6E 156 MOV L,M
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HEX__OCT__MNEM HEX__ OCT _ MNEM HEX _OCT _MNEM |

6F 157 MOV L,ACC A0 240 ANA B V0 320 RNC |

70 160 MOV M,B Al 241 ANAC Dl 321 POP D |

71 161 MoV M,C A2 242 ANA D D2 322 JUNC 1

72 162 MOV M,D A3 243 ANA E D3 323 OUT i

73 163 MOV M,E Ay 244 ANA H Db 324 CNC i

74 164 MoV M,H A5 2h45 ANA L D5 325 PUSH D |

75 165 MOV M,L A6 246 ANA M 06 326 SUI i

76 166 HLT A7 247 ANA ACC D7 327 RST 2 |

77 167 MOV M,ACC A8 250 XRA B D8 330 RC w

78 170 Mov ACC,B A9 251 XRA C D9 331 Unimpl

79 171 MoV AcC,C AA 252 XRA D DA 332 JC

7A 172 MOV ACC,D AB 253 XRA E DB 333 IN

78 173 MOV ACC,E AC 254 XRA H pDC 334 cC

7C 174 MOV ACC,H AD 255 XRA L DD 335 Unimpl ‘

7D 175 MOV ACC,L AE 256 XRA M DE 336 SBI

7E 176 MoV ACC,M AF 257 XRA ACC JF 337 RST 3

7F 177 MOV ACC,A BO 260 ORA B EO 340 RPO

80 200 ADD B Bl 261 ORAC El 341 POPH

81 201 ADDC B2 262 ORA D E2 342 JPO

82 202 ADD D B3 263 ORA E E3 343 XTHL

83 203 ADD E B4 264 ORA H E4 34k CcPO

84 204 ADD H B5 265 ORA L E5 345 PUSH H

85 205 ADD L B6 266 ORA M E6 346 AN}

86 206 ADD M B7 267 ORA ACC E7 347 RST &4

87 207 ADD ACC B8 270 CMP B E8 350 RPE

88 210 ADC B B9 271 CMP C E9 351 PCHL

89 211 ADC C BA 272 CMP D EA 352 JPE

8A 212 ADC D BB 273 CMP E EB 353 XCHG

88 213 ADC E BC 274 CMP H EC 354 CPE

8C 214 ADC H BD 275 CMP L ED 355 Unimpl

80 215 ADC L BE 276 CMP M EE 356 XRI

8E 216 ADC M BF 277 CMP ACC EF 357 RST 5

8F 217 ADC ACC CO 300 RNZ FO 360 RP

90 220 SUB B Cl 301 POP B F1 361 POP PSW

91 221 SsuB C €2 302 JNZ F2 362 JP

92 222 SUB D €3 303 JMP F3 363 DI

93 223 SUB E ch 304 CNZ Fh 364 CP

94 224 SUB H C5 305 PUSH B F5 365 PUSH PSW

95 225 SUB L €6 306 ADI F6 366 ORI

96 226 SUB M C7 307 RST O F7 367 RST 6

97 227 SuB ACC c8 310 Rz F8 370 RM

98 230 $88 B €9 311 RET F9 371 SPHL

99 231 SBB C CA 312 Jz FA 372 JM

9A 232 SBB D CB 313 Unimpl FB 373 EI

98 233 SBB E cC 314 ¢z FC 374 CM !

9C 234 SBB H Cb 315 CALL FD 375 Unimpl ;

9D 235 SBB L CE 316 ACI FE 376 CPI i

9E 236 SBB M CF 317 RST 1 FF 377 RST 7 :

9F 237 SBB ACC 1
i

i
I8!
I
{



Appendix D
Personal Computer Magazines

The following is a listing of some of the magazines referred to in this book.
Additional and current information on the topics discussed in this book will be
found in them. Note that Electronic Design and EDN magazines are sent free-

of-charge to qualified readers.

Byte
70 Main St.
Peterborough NH 03458

Dr. Dobb’s Journal
Box 310
Menlo Park, CA 94025

Electronic Design

Hayden Publishing Co., Inc.
50 Essex St.

Rochelle Park, NJ 07662

Kilobaud
1001001 Inc.
Peterborough, NH 03458

Personal Computing
Benwill Publishing Corp.
167 Corey Rd.
Brookline, MA 02146

Radio Electronics
‘Gernsback Publications, Inc.
200 Park Ave. So.

New York, NY 10003

Creative Computing
Box 789-M
Morristown, NJ 07960

EDN
Cahners Publishing Co.
Denver, CO 80206

Interface Age

McPheters, Wolfe & Jones
13913 Artesia Blvd.
Cerritos, CA 90701

People’s Computer Co.
Box 310
Menlo Park, CA 94025

Popular Electronics
1 Park Ave.
New York, NY 10016

ROM
Route 97
Hampton, CT 06247
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Accumulator (A), 47
ACIA, 96-97
Acoustical coupler, 101
ADC, 109-112
Adder, 22
Address bus, 45, 49
Addressing
modes, 151-153
RAM, 54-57
Algorithm, 142, 159
Altair 8800, 39-40, 87-91
ALU, 45,70
Amateur radio, 182-183

Analog-to-digital conversion, see ADC

AND gate, 14-15

Answer modem, 101

APL, 146

Architecture, 66-71, 148-150
Arithmetic, binary, 10-11
Arrays, 173-174

Assembler, 143-158, 161-167
Assembly language, 50
ASR, TTY, 129

Automatic control, 185-187

BASIC, 51, 145, 146, 168-176
Baud rate, 92, 100
BCD code, 11, 131
Binary

arithmetic, 10

code, 6

computer, 7
Binary-to-decimal conversion, 8
Bit, 8
Borrow, 155
Buffer

gates, 28, 40

storage, 42
Bubble, 17
Bubble memory, 126
Bus, 28

address, 45

data, 45

S-100, 87-91

tri-state, 91
Business applications, 183-184
Byte, 8, 53

Index
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Cali instruction, 68
Carry, 10, 155
Cassette tape, 117-122
Central processor unit, 44
Character string, 169-170
Checksum, 126-127
Clock
pulse, 33
circuits, 39
Clocked logic, 33
CMOS, 26-28
COBOL, 146
Codes, 6-12
ASCH, 10, 61-62, 188
binary, 6
correspondence, 131
decimal, 6
1BM, 131
hex, 8
octal, 8
Comparators, 19
Compiler, 145
Complement, 10-11
Conversion
analog-to-digital, 109-112
binary-to-decimal, 8
binary-to-hex, 9
binary-to-octal, 9
decimal-to-binary, 8
digital-to-analog, 109-112
hex-to-octal, 10
octal-to-binary, 9
octal-to-hex, 10
Correspondence code, 131
Counters, 31, 40-41
CPU, 44
CRC, 124,127
Cross-assembler, 147
CRT terminals, 137-140

DAA, 101

DAC, 109-112
Daisy wheel, 141
Data bus, 115
Debug, 64, 147, 165
Debounce, 31
Decade counter, 41
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Decimal code, 6
Decoding, 24-27
DeMorgan’s theorems, 23
Demultiplexing, 92
D-Flip-flop, 33-34

Digital-to-analog conversion, see DAC

Disassembler, 147
DMA, 101
Don't care, 25

Edge triggering, 36
Editor, 143, 162-167
Encoding, 24

Equality detector, 121
Equivalency of gates, 24
Eprom, 61

Error checks, 126-127
Even parity, 21
Exclusive NOR gate, 19
Exclusive OR gate, 19
Executive, 147

FDOS, 124

Flag register, 47, 68-70
Flip-flops, 30-37
Floppy discs, 122-125
Flowcharts, 169
FOCAL, 146
FORTRAN, 146
Free-running clock, 39
FSK, 101, 117

Full adder, 21

Full duplex, 100

Games, 174,176, 177-179
Gates, 14

Half-adder, 22
Half-carry, 47
Half-duplex, 100
Handshaking, 92
Hardware, 50
Hex code, 8
High level, 13
Hold, 73

IBM-370, 51
IBM code, 131
iC, 13
|EEE Std-488, 109
Indeterminate condition, 33
Index register, 68
tnequality detector, 19
Input, 44, 49, 72
Instruction

cycle, 71

decoder, 45

fetch, 71

set, 50, 150-159

Computer Systems Handbook

Integrated circuit, 13
INTEL 8080/8085, 73-77
Interfacing serial, 73-77
Interpreter, 145
Interrupt, 49, 70
Inverter, 17
1/0, 45
driver, 147
addressing, 152-153

J-K Flip-flop, 35

Jump instruction, 68

Kansas City standard, 119-121
Keyboard, 24, 134-135

KSR, TTY, 129

Labels, 144, 163
Language, 142

Latch, 34

Least significant bit, 8
Line printers, 140-141
Listing, 144

Lists, 173-174

Logic, 13

Logic levels, 13

Low level, 13

Machine programming, 142-143
Macro, 144
Macroassembler, 144, 164
Magazines, 193

Mass storage, 113-127
Mark, 98

Mask, 156

Master-slave flip-flop, 35-36
Memory, 45, 53

Memory addressing, 54-57
Memory protect, 90
Memory read/write, 72
Microprocessor, 45
Microcomputer, 51
Mikbug/minibug, 64
Mnemonic code, 143-144
Modem, 100-103

Monitor, 64, 147

Monitor, TiM, 81

MOS, 38

Most significant bit, 8

MOS technology 6502, 80-82
Motorota 6800, 77-80

MPU, 45

Multiplexing, 92
Multiplication, 11

Music, 180-182

NAND gate, 18-19
National multiplex, 117
N-Key rollover, 135
Non-volatile memory, 53
NOR gate, 18-19

NOT gate, 17




Object code, 51

Object program, 145, 163
Octal code, 8

0Odd parity, 21

One shots, 37

Op codes, 70, 150-157, 162
Open-collector gates, 28
Operand, 167

Operating systems, 147
Opto-coupler, 98

OR gate, 16-17

Originate modem, 101
Output, 44, 49

Paper tape, 113-117
Parallel adder, 22

Parallel interfacing, 103-108
Parity bit, 21, 126
Pennywhistie modem, 101
PIA, 108

Port, 103-108

Printers, 132-134

Program counter (PC), 47, 67-68
Programmer, 50
Programming, 159-176
Prom, 61-63
Pseudo-op-codes, 163
Puli-down resistor, 30
Pull-up resistor, 30

RAM, 45, 48, 53

dynamic, 60-61

static, 60-61
Random access memory, 45, 48
Read-only memory, 45, 48
Refresh, memory, 61
Register, shift, 41
Registers, 45-48, 66-71
Reset state, 30
Resident assembler, 147
Robotics, 184-185
ROM, 45, 48, 53, 61
RO, TTY, 129
RS-232, 97-98
R-S flip-flop, 31

8-100 bus, 87-91
Schottky, TTL, 27
Selectric, 131, 180
Serial interfacing, 92-100
Set state, 31

Shift register, 41
Simulator, 147

Software, 50, 142-167

Index
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Source code, 50, 163
Space, 98

Stack, 49, 68

Stack pointer(SP), 48, 67-68
Statements, 168, 171-173
Static RAM, 60-61

Status bits, 68-70

Status register, 48, 68-70
String, 169-170

Strobe, 135

Storage, 44

Subroutine, 68

Subtraction, 10

Successive approximation ADC, 112
Supervisor, 147

Symbol table, 163
Synchronous logic, 33

Table, symbol, 163

Tables, 173-174

Tarbeil cassette interface, 117, 121
Teletype (TTY), 49, 99-100, 128-131
Teletypewriters, 131-132
Terminals, 128-141

T Flip-flop, 31-35

Timer, 38

Timing, 71

TIM monitor, 81

Toggle, 31

Trailing edge, 36
Transistor-to-transistor logic, 26
Tri-state logic, 91

Tri-state gates, 28

Truth tables, 14

TTL, 26-27

TTY, see Teletype

TVT, 135-137

Two’s complement, 10

UART, 95-99

VDM, 135-137
Volatile memory, 53

Wait, 70
Wait states, 72
Word processing, 179-180

X-OR gate, 19
X-NOR gate, 19

Zilog Z-80, 84










