WELCOME

to the

ARIAN OPERATING SYSTEM

We at SUPERSOPT already think of ARIAN as a “friend" and
co-worker as well as an integral and indispensable part of
our software development division. It is our sincerest wish
that vou, too, will come to share our feelings. .

In the course of this manual vou will discover the following:

1. How to use ARIAN ...

«.»s as an assembler

eee asS a text editor

ees AaS a microcomputer system executive

«ss and as a general software development tool.
2. Gain an insight into and understanding of ARIAN.
3. How to customize ARIAN for your particular

applications.

We have written the manual in a readable and enijoyvable form
without sacrificing content.

«+s SUPERSOFT, 1978

ERRATA» UPDATESs AND CORRECTIONS

(A NOTE FROM THE DISTRIBUTOR) IT SEEMS LIKE EVERY TIME
YOU GET A FIECE QF SOFTWARE THESE DIAYS THERE ARE FAMILIAR
‘ERRATA’ SHEETS! WELLy LET ME TELL YOUsr OQUR SOFTWARE
DEVELOFMENT DIVISION HAS BEEN S0 RUSY THAT I CAN’T KEEF UF
WITH THEM! CASE IN PFOINT: THE MANUAL THAT YOU ARE
RECIEVING IS THE THIRD (3) RE-WRITE IN AS MANY MONTHS! NOT
RECUASE OF ERRORSy BUT EECUASE OF IMFROVMENTS!

S0+e0e WHAT HAPFENSy I NO. SOONER GET THIS MANUAL
COMPLETEs RUT THE SOFTWARE GUYS BRING ME A ‘NEW, GREAT» YOU
GOT TO INCLULE THIS RIGHT NOW’ IMPROVEMENT. (I JUST HAD TO
SIT DOWN A WHILE.,) I REVIEWED THEIR NEW COMMAND (‘DRVE’)
AND DECIDED THAT THEY WERE RIGHT; HAll TO EE ON ALL DISCS
STARTING YESTERDAY» RUT I REALLY WASN‘T UF TO A FULL
RE-WRITE AND PRINT JOEs SO I HAVE ENCLOSED THIS ‘ERRATA’
SHEET. HOFE YOU DON‘T MIND TOO MUCHy AND HOFE YOU LIKE . THE
NEW COMMAND, .

A NEW COMMAND HAS BEEN ADDED TO YOUR ‘ARIAN-2’ SYSTEM»
THE ‘DRVE’ COMMAND, = THIS COMMAND MAKES IT FOSSIELE FOR YOU
TO USE UF TO THE THREE DRIVES THAT NORTH STAR ALLOWS!
‘ARIAN-27 LEFAULTS TO DRIVE #1, AS IT SHOULD, BUT ONCE YOU
HAVE TURNED ON THE DISC COMMANDS (LEVEL 3) RY USE OF THE
‘CMNDY COMMANDy YOU CAN ‘LOG’ INTO WHAT EVER DRIVE YOU WANT.
YOU SIMPLY TYFE ‘DRVE’. ‘ARIAN-2’ GOES TO DISCy FINDS THE
COMMANDy AND THEN PROMFTLY TELLS YOU WHAT YOUR CURRENT DRIVE
LOG IN IS, AND THEN ASKS YOU FOR A NEW DRIVE LOG IN. AT
THIS FOINT YOU MAY EITHER ‘FASS’ BY HITTING <CR> OR ENTER
THE NUMBER OF THE DRIVE SUCH AS 2. YOU MUST HIT ONLY ONE
REYy ANDN IT MUST BE A NUMBER BETWEEN 1 AND 4. ‘ARIAN-2
THEN LLOGS YOU INTO THAT DRIVE» AND ALL DRIVE ACCESSES ARE TO
DRIVE 2y UNLESS YOU WANT TO GO BACK TO ONE,

THIS FROCESS IS VERY MUCH SIMILIAR TO THE WAY ‘CP/M’
WORKS» YOU LOG IN TO A DRIVE» AND CAN LOG IN TO ANY DRIVE IN
YOU SYSTEM.

——=% BUTY THERE IS A LITTLE TINY THING T0O REMEMEERs YOU
MUST HAVE THE ‘DRVE.CMD’ FILE ON THE DISCS WHICH ARE IN THE
DRIVES YOU MAY LOG IN TO., HERES WHY! LETS SAY THAT YOU ARE
IN DRIVE 1, YOU TYFE ‘DRVE‘ AND LOG INTQ DRIVE 2, TO GET
EACK TO DRIVE 1y YOU MUST TYFE ‘DRVE’ AGAIN», HOWEVERs IF THE
DISC IN DRIVE 2 DOES NOT HAVE THAT COMMAND ON ITs IT WILL
JUST GIVE YOU AND ERRORs AND NO WAY BACK. HENCEs THIS IS
ONE UTILITY THAT SHOULDI BE ON ALL YOU ‘ARIAN-2‘ DISCS!

THE ARILITY TO LOG. INTO THE OTHER DRIVES Is
INDISFENSABLE FOR INSTANT BACK UF ANIl FOR HAVING LOTS OF
TEYT ON | T OTHE WAY. THE MO C-8PEC WILL ASSUNE THE
NEXT FILZ I8 ON THE CURRENTLY LOGGEDN IN DRIVE.

ARIAN-=-2 UFDATES
LEVEL THREE (3) COMMANDS

YOUR DISC HAS OM IT TWO (2) SEFERATE TARTAN
ASSEMELERS. THE ONE NAMED ‘ARIANZ IS THE STANDARD
VERSIONy ANDI DOES EVERY THING ADVERTISED, EBUT YOU ALS0O ARE
RECIEVING (FREE OF CHARGE) THE BRAND NEW UFDATE “ARIAN-27.
ARIAN-2 HAS ‘LEVEL’ THREE COMMANDS! THESE ARE DISC BASED
COMMANDS WHICH WORK MUCH THE SAME AS THE COMMANDS
CONTAINED IN RAM. THE DISC COMES WITH FIVE? MOVE « CMIy
FCPY.CMO» SURS.CMDy LNAM.CMI» AND DNAM.CMD. WITH THESE
COMMANDS YOU CAN MORE EASILY MANIFULATE TEXTs SET UF
SURBROUTINES TO BE AFFENDED AT A LATER DATE, AND JUST
GENERALLY INCREASES THE FOWER OF “ARIAN’. IT MUST ERE
REMEMBERETDy THAT ‘LEVEL’ THREE IS ACCESSARLE ONLY THROUGH
ARIAN-2! ALSO» ARIAN-2 USES MORE MEMORYs AND DOES NOT

. HAVE ‘DEF’ OR ‘EXAM’. HENCE WE HAVE GIVEN YOU ROTH

~ SYSTEMS, IF YOU REGIN TO RUN OUT OF MEMORYs» OR NEED TO

USE “DEF‘ OR ‘EXAM’ THEN USE ‘ARIAN‘» IF YOU WANT TO THE
FULL FOWER OF ‘ARIAN-2’ USE IT.

HOW TO USE THE LEVEL THREE COMMANDS

TO USE LEVEL THREE YOU MUST TYFE ‘CMND’Y WHILE IN
‘ARIAN-2‘ y THIS IS THE DISC COMMAND SWITCH,» IF YOQU TYRE
IT AGAINy YOU WILL TURN THEM OFF. THE REASON FOR THIS
TOGGLE IS THAT ‘ARIAN-2/ WILL ALWAYS GO TO DISC AND LOOK
FOR A COMMAND IF IT IS NOT FOUND IN RaAM» HENCE EVERY
TYFING ERROR (IE? LST FOR LIST ETC) WOULD INITIATE A& DISC
SEARCHy NOTHING RAD WILL HAFFEN» ITS JUST TIME CONSUMMING.

N

ONCE YOU HAVE THE TOGGLE IN THE ON FOSITIONs YOU MAY
ACCESS DISC BASEDR COMMANLG.
' THE DISC COMMANDS

MOVE: THIS MOVES GROUFS OF LINES FROM ONE FLACE TO ANOTHER
WITHIN THE CURRENT FILE. THERE ARE TWO FORMS! MOVE’ AND
‘MOVER’y ROTH FORM ALWAYS HAVE THREE ARGUMENTS. EXAMPLE
‘MOVE 10 30 1007 MOVES LINES 10 THROUGH 30 TO AFTER 100y
WHILE ‘MOVEE 10 40 1007 MOVE THE LINES 10 THROUGH 40 TO
REFORE LINE 100. (REMEMEERy ALWAYS THREE ARGUMENTS)

FORPY S THIS WTL: oney THE CONTEMTS 0
INTO 4 Z (BOTH F U
ARE TWO FORMS: ‘FCPYZ AND ‘FCPYRY

ARTAN-2 UFDATES

wfx CORIES THE FILE <FN» INTO THE COURRENT FILE AFTER
r WHILE “FCPYR «FN>» <4 COFIES THE SFECIFIED FILE
REFORE LINE &l

SURS: (SURSVy SURSR) THIS COMMAND ALLOWS THE SUBSTITUTION OF
ONE WORD, CHARACTER QR PHRASE FOR ANOTHER. THE /SURS’
SUBSTITUTES WITHOUT DISFLAYING THE RESULTSy CBUREY
DISFLAYS THE SUBRSTITUTIONSy AND ‘SUBSQR’ PROMPTS THE USER
ON EACH SUBSTITUTION. THERE CaN BE UF TO THREE
ARGUMMENTS» IF THERE ARE NO ARGUMENTS THE SURSTITUTION IS
DONE OVER THE ENTIRE FILEs IF 1 ARGUMMENT THEN JUST THAT
LINEy IF 2 ARGUMMENTS ARE PRESENT» THEN THE SURBRSTITUTION
TAKES FLLACE OVER THAT RANGE. ’

DNAM» AND LNAMs WORK AS DESCRIRED IN ‘ARIAN’.

) FOR THOSE INTERESTEDy YOU CAN HAVE CUSTOM COMMANDS ON
DISCy THEY MUST FIT IN THE TRANSIENT FROGRAM REGION (3500
TO 4000 HEX)» AN MUST TERMINATE WITH A ‘RET” TO
ARIAN=-27 ALL DISC COMMANDS MUST HAVE THE FORM
FXXXX.CMDZ THE /.CIM’ I8 THE IDENTIFIER FOR ‘ARIAN-27,

ALS0r REMEMBER THAT THE WORK SFACE FOR ‘ARIAN-27 CAN
NOT RE LESS THAT 4000 HEX! ALS0O» A FILE CREATED RY EITHER
FARIANY CAN BE USED RY THE OTHER» THE SYSTEMS . ARE
COMFLETELY COMFATIERLE.

8]

STATEMENT OF WARRANTY

SUFERSOFT DISCLAIMS ALL WARRANTIES WITH REGARD TD THE SOFTWARE
CONTAINED ON DISC OR LISTED IN MANUALy INCLUDING ALL WARRANTIES
OF MERCHANTARILITY AND FITNESS 7 ANDI ANY STATED EXFRESS WARRANTIES
ARE IN LIEU OF ALL ORLIGATIONS OR LIARILITY ON THE FART OF
SUFERSOFT FOR PAMAGES; INCLUDING BUT NOT LIMITED TO SPECIALy
INDIRECT OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION

WITH THE USE OF FERORMANCE OF THE SOFTWARE LICENSED.

TRANSFERARTLITY

SUFERSBOFT SOFTWARE AND MANUALS ARE SOLD ON AN INDIVIDUAL RASIS
ANDN NO RIGHTS FOR DUFLICATION ARE GRANTELD.
TITLE AND OWNERSHIF OF THE SOFTWARE SHALL AT ALL TIMES REMAIN

WITH SUFERSOFT.

IT IS AND HAS ALWAYS BEEN SUFERSOFT’S BELIEF AND INTENTION TO FROVIDE
EXCELLENCE IN RBOTH DESIGN AND SERVICE. IT IS TO THESE ENDS WHICH WE

DEDICATE QURSELVES.

63

The ARIAN Users' Manual SUPERSOFT (Cy 1978

TABLE OF CONTENTS

CHAPTER 1: HOW TO USE ARIAN
How to Execute ARIAN
The ARIAN Input Line Editor
Files in ARIAN
How to Create a Local Pile
How to Assemble and Execute a Proqram
How to Save and Load Programs on Disk
The CUST Command and its Usaqe

CHAPTER 2: CUSTOMIZING ARIAN FOR THE INDIVIDUAL USER

CHAPTER 3: THE ASSEMBLER IN GENERAL
Assembler Pseudo-ops
System Reserved Labels
Operand Evaluation
Assembler Error Messages

CHAPTER 4: THE ARIAN COMMANDS
The ARIAN Commands in Detail

CHAPTER 5: A SAMPLE ARIAN TERMINAL SESSION

oSCwVwooONNUFWW

-

13
16
17
20
21

23
24

42

The ARIAN Users' HManual SUPERSOFT (C) 1978

CHAPTER 1

HOW TO USE ARIAN

Like many other operating systems, one learns how to use
ARIAN by working and plaving with it. This chapter is
desiaqned as an introduction to ARIAN, and, with the aid of
this chapter, this manual, and ARIAN itself, the user should
easily be able to learn how to write and run proqrams on any
microcomputer svstem which supports ARIAN.

How fo‘Execute ARIAN

Since ARIAN is . designed to run using Northstar's
standard DOS for support, execution of ARIAN is very simple.
once the user has booted in D0OS, he need only type 'GO
ARIAN', ARIAN should then be loaded and executed
immediately. ARIAN will print its opening message and give
the user its command prompt ('>').

NOTE: you must have 8K bytes of memory starting at
location 0 in order to run ARIAN.

(note : 7he re—enfr)/ acdedress 3 0004 Hex)

The ARIAN Users' Manual SUPERSOFT (C) 1978

The ARIAN Input Line Editor

One of the first things the user should know about ARIAN
is how to qive it a command. This is done by typing the
command on the user's keyboard. Once ARIAN has given the '>!
rrompt, it is in command mode; ARIAN is readv for the user to
tvyre a command to it. PFor a listing and explanation of the
commands, see Chapter 4.

In almost all cases, tvyping done while in ARIAN is
processed by the ARIAN Input Line Editor. This editor
collects each character as the user types it and allows the
user to correct any typing errors he has made. As each
character is typed, it is checked to see if it is a special
control <character. If it 1is, the function of the control
character is executed: if it is not, the character is saved!
in ARIAN's input 1line buffer and printed on the user's
terminal. When the user has finished typing his line and is
satisfied that it is correct., he may then type a carriage
return, which is a special control character that tells the
line editor to finish inputing the line and to give the line
to ARIAN to interpret and execute,

The following is a list of all the control characters
recoanized by the ARIAN Input Line Editor: :

1. the Escape (<ESC>) key. When typed, <ESC> is
printed on the wuser's terminal as a dollar sign
(*$') followed by a carriage return (<CR>). This:
key tells the editor to delete the line typed in so
far and start over with a new line,

2. the Line Feed (<LF>) kXev. This key echoes as a <CR>
and does not affect the line contained in the input
line buffer. The sole purpose of this function is!
to allow the user to continue typing his line on the
next physical line of his terminal.

3. the Backspace (<BS>) or Ctrl-H kev. This key allows
the user to delete the last character he typed. It
echoes as the cursor backing up to the previous
position on the screen., For example, if the user

The ARIAN Users?! Manual SUPERSOFT (C) 1978

has typed "ABCD<ES>Y", only "ABC" 1is in the input:
line buffer; the "“D" has been deleted. The user
cannot delete bevyond the beqinning of his line; if
he does, an <ESC> is processed, echoing as a '$!' and
<CR>.

4, the Delete () or Rubout kev. This key performs
the same function that <BS> does, but it echoes.
differently. The deleted characters are enclosed in'
backslashes (<KDEL> is for hard-copy terminals). For!
instance, if the user typed "ABCDLKDEL>EY", this would.
be echoed as "ABCD\D\E", indicating that the D was,
deleted and the string in the input buffer is now
"ABCE". If the user types more than one in a
row, all the deleted characters are enclosed in one

. set of backslashes., PFor example, if the user types.
"ABCDEKDEL>ABEKDEL>C", this will appear on:
his terminal as "ABCDENEDC\ABE\EC", indicating that:
"EDC" and then "E" were deleted and the resulting.
string is WABABC", This feature is provided:!
primarily to permit the use of a device that does
not support hardware backspace to be used as a.
principal I/0 device.

5. the Carriage Return (<CR>) key. Again, the <CR> key!
alvays instructs the editor to terminate the input!
of the line and give the line to ARIAN to interpret.

The input line editor is used in every aspect of ARIAN
except for the intra-line editing mode (see the EDIT
command) , and these commands are in effect whenever the user
is typinag something. This editor is an extremely useful |
tool, and with practice it wil soon become very easy and
natural to use.’

Files in ARIAN

ARIAN supports up to ten text files in memory (the local
filesy and 64 files (text, binarv, or other) on disk. |
Whenever the user lists a file, assembles a file, edits a |
line, or wuses any of the file modification commands, he

oy g e s \ P £33
QuEeETA LD On Lo e W BATY O D3O

The ABIAN Users' Manual SUPHRSOFT (C) 1978

The primarvy file is one of the local files in memory.
It is the last file loaded or the last file referenced by the.
FILE command. The FILE command {(discussed later) is used to!
create files and make a specified local file primary. The|

- FILE <filename> command will create a local file if a local

file of the specified name does not already exist or it will
make the specified 1local £file primary. Once a file is
primary, it may be edited and assembled by the user.

Example: If the specified file does not exist, PILE will
create it. The output looks like:

>FILE TEST
TEST 3500 3500
>

no®

Result: The address range specified by ARIAN shows that;
the file contains no data (it exists from 3500 to 3500
hexadecimal). : i ;

Example: If the specified file does exist, FILE will |
make it primarv. The output looks like: i

>FILE TEST2
TEST2 3570 3589
>

Result: Since there is a non-zero range, the user can
see that the specified local file is now primary. |

How to Create a Local File

The most common use of ARIAN is +to write an assembly
lanquage program and execute it. In order to do this, he
must know how to create a file. This is done in a number of
WavSe : |

The first and easiest way is to use the FILE command.
By tvping FILE <filename>, like FILE MYPROG, the user can let

The ARIAN Users' Manual SUPERSOFT (C) 1978

ARIAN create a file for him. In response to this command,
ARIAN will automatically place the file in memory, initialize
the file, and respond with something like

MYPROG 3500 3500

This indicates that ARIAN has initialized the file and set it
to start at location 3500 in memory. Now, to type' his
proqram into this file, the user need only use the APND
command. By tvping APND, the user tells ARIAN that he wants
to add a block of lines to the end of the current primary
file (the file he djust created). ARIAN will then respond
with a "?" prompt and permit the user to type the 1lines of
his program. All text files in ARIAN must be numbered, but
the APND command puts the user in block 1line entry mode,
which automidtically numbers the 1line for the user (line
numbers do not appear while in the mode). At this point, the
.user simply tvpes the program text, and, when he has
finished, tvpes a Control-C followed by a <CR>. ARIAN will
then renumber the file and place the block of lines just
entered into the file.

Example: The following is an example of a short program
entered by the user. FProm now on, underlined phrases or
svmbols in the examples presented indicate that these vwere
typed by ARIAN, and the rest is tyvped by the user.

>FILE TEST

TEST 3500 3500

>APND

2 MVI A1 :

2LOOP OUT OFFH ; OUTPUT TO PORT FF
2 RLC

2 JMP LOOP : DO IT FOREVER

2

0010 MVI A.1
2020 LOOP OUT OFFH ; OUTPUT TO PORT FF

0030 RLC
Q040 JMP LOOP ; DO IT FOREVER
>

Result: The FILE command created the file TEST at
location 3500 and the user then entered lines into this file
using the APND command. Note that he terminated the enterinq

The ARIAN Users' Manual SUPERSOFT (C) 1978

of these lines bv tvping a Control-C (°C) followed by a <CR>
(carriage returns are not shown in the above example). He
then instructed ARIAN to list the file, and it did, showing
the linme numbers it assigned to the lines.of the file. ARIAY

automatically inserts a space between the line number and the
first character typed in each line. :

The FILE command is one method of creating a file, and
the LOAD command is another. The LOAD command simply loads a
file from disk and makes it primary. See the description of

the LOAD command for more details.
How to Assemble and Execute a Program

Now that the program has been written, the user probably
wants to assemble and execute it. This may be done by using
the following commands: (1) ASSM, to assemble the file and
(2) EXEC to execute the obiject code from the assembly. These
commands have a number of forms, but the simplest forms may
be generally used.

ASSM by itself assembles the primary file and places it
in memory at an address selected by the memory manager (if no
CRG statements were in the code}. It is generally a good

. idea not to use ORG statements if the user is simply

debuqging a program since debuqqing time is decreased vwhen
the user doesnft have to worry about where the ob-ject code is
being placed.

EXEC by itself will execute the code starting at the
starting address of the last assembly, or, if an ORG was
present in the program, at the start of the last ORG.

Example: The following is a sample usage of these

" commands.

>ASSH

"ASM PASS 1
ASM PASS 2
6800 6807 0008
>EXEC

The ARIAY Users' HManual SUPEESOFT (C) 1978

Result: The ASSY command assembled the file, and, as
displaved bv the hexadecimal addresses, the file exists from
6800 to 6877 and is eight bytes long. All wvalues are in
hexadecimal. The obiject code 'is then executed by the EXEC
ccmmand .

Hov to Save arnd Load Programs on Disk

saving and loading the text of programs with ARIAN is
exceptionally easy because of ARIAN's dynamic file
capabilities, and it is a very useful feature, especially in
cases when the user is qoing to execute an untested program
which may crash the system. He can save the text for the
program by simply +tvping "SAVE PROGY", assemble and execute
the program, and, if it crashes the system, reboot ARIAN and
type "LOAD PROG" to get the text of the program back. That
way, if the program destrovs ARIAN, he can recover easily.
Also, the user may wish to save his programs when he has
finished with them or he has to go away and shut down his
microcomputer for some reason.

saving, and later loading, programs is done very easily
in ARIAN. In order to save a program, the user may simply
tvype the SAVE <filename> command, like SAVE MYPROG. ARIAN
will then save the primary file, regardless of what its local
name is, on disk under the name specified ("MYPROG"). Later,
when the user returns to the system and ¥ishes to reload his
program, he may simply type the LOAD <filename> command, like
LOAD . MYPROG. The specified file is made primary, and he may
qo on using it as he normally would. :

Example: Saving and loading programs follows.

>SAVE IT

$ FILE SAVED

>LOAD IT

IT 683F 683F
>

Result: In the above example, the primary file, MYPROG,
was saved on disk under the name "IT" and reloaded. Two
files now exist in memory -- IT and MYPROG. Both files are

The ARIAY Users! Manval SUPERSOFT {(C) 1978

10

exactly the same, but IT is the primary file., The addresses

given above indicate the creation of another file wupon the

load. 1f a local file with the name "IT" already existed, !
ARIAN wouid prompt the user with "EEPLACE?'", to which he!
would respond with "Y" to load over the local file and "N" to:

abort the load.

The CUST Command and its Usage

\

The CUST command allows the user to add new commands to
ARIAK, temporarily (until he reboots ARIAN or deletes the
commands). Its basic format is '"CUST <commandname> <address
of command>", where <commandname> contains a 4-letter command
name and <address of command> is the starting address of the
subroutine which executes the desired command. The command
itself is a subroutine (generally). It should not have an
overall affect wupon the stack, and it must do a RET vwhen
done. Aside from these restrictions, the user may make the
conmand do anything he wishes., For instance, he may create a

file., assemble it, and create a customized command which!

executes starting at the starting address of the object code.

later.

The other variations of the CUST command are discussed |

The

ARIAN Users*® danual SUPERSOFT (C) 1978 1

CHAPTER 2

CUSTOMIZING ARIAN FOR THE INDIVIDUAL USER

’

There are several user-defined parameters built into

ARIAN

which the wuser may set to customize ARIAN for his

particular microcomputer system. Briefly, these parameters

are:
1.
2.
3.

4.

5.

6.

turning paging of the display on and off
setting the number of lines to display per page

setting the number of nulls to be output after each
<CR>

setting the end of the user's text workspace

setting the address to be branched to by the EXIT
command

customizing the disk communication utility
(especially for interrupt-driven systems)

Turn paging on and off. At address 030C hexadecimal is

the switch for paging. It is active zero. For CRT
use, paging is usually desired; However, if a long
printout is desired or if the text editor is being
used as a text processor, no pagqing may be desired.
Simply deposit (using the DEP command) a 01
hexadecimal at this address to turn off paging and
a 00 hexadecimal to turn on paging.

Number of lines per page. At address 000B hexadecimal

b el far aattine tho monmher of lines to he

The ARIAN Users' Manual SUPERSOFT ({(C) 1978

displaved per page. Paqge lenqth can be from 1 to
255, Your disk comes with a default of 15 (OF
hexadecimal), and a convenient change for a 24 line
displavy is 17 hexadecimal. It is recommended that
the user set this display for 1 less than the
nunber of lines displavable by his CRT.

Number of nulls., At address O0O0OF hexadecimal is the
switch for setting the number of nulls output by
ARIAN's output driver to the user's terminal. The
value may be from 2 to 255; your disk comes with
this value set at 0. Generally, a CRT should have
a value of 0 and a teletype, like an ASR-33, should
have 2 or 3 nulls.

End of workspvace. At address 000D to O000E hexadecimal
is the switch for setting the end of the text file
voTrkspace. Your disk comes with this set at 3CFF
hexadecimal (assuming you have 16K bytes of memory
from 0 to 3FFP). The workspace is where all text
files reside, and the system sets the start of this
area of memory at 3500 hexadecimal. The assembler
puts the object code it generates starting at the
first bvte after the end of the text workspace if
the user doesn't specify to the assembler where to
put this code, so the user should set this boundary
at 1 to 2K 1less than the top of his block of
continuous memory from 9 (like, if he has memory
from 0 to 6FFF hexadecimal, he should set this
value at 67FF for a 2K assembly area). Byte 000D
is the low-order of this address, usually FPF
hexadecimal, and byte 000E is the high-order ({67 in
the above example).

The EXIT branch address. At address 1DAA to 1DAB
hexadecimal 1s the switch for setting the address
to branch to when the EXIT command is given. 1DAaA
is the low-order part of the address and 1DBB is
the high-order npart. This is set to 2028
hexadecimal (the entry point of DOS) when you
receive ARIAN on disk. 28 is stored at 1DAA and 20
at 1DAB.

Customizing the disk communication return point. At
address 0A2B to 0A33 hexadecimal is the switch for
entering a customized reset into ARIAN. This |is
primarily for systems using interrupt-driven I/0.
Por example, such a user may wish to put an EI
instruction followed by a call to reset I/0 at this
point.

The ARIAN Users'! M¥anual SUPERSOPT (C) 1978

CHAPTER 3

THE ASSEMBLER IN GENERAL

The assembler translates the lines contained in the
primary file into object code.. The second character
following the line number is the first source code character
position. Therefore, the character immediately following the
line number should normally be a space; the APND and INS
cormands place a space bere automatically, and the user need
only be concerned with this restriction if he enters his own
lines using the <lnum> <text> command. Line numbers are not
rrocessed by the assembler; they are merely reproduced in the
listing. The assembler will assemble a source program file
composed of statments, comments, and pseudo operations on
each line. It does this in two passes. During Pass 1, the
assembler allocates all storage necessary for the translated
rrogram and defines the values of all symbols used by
creating a symbol table. The storagqe allocated for the
object code will begin at the byte explicitly or implicitly
specified by the ASSHM command unless an OBG pseudo-op 1is
present in the program. puring Pass 2, all expressions,
symbols, and ASCII constants are evaluated and placed in
allocated memory in the appropriate locations. The listing,
also produced during Pass 2, indicates exactly what data is
in each location of memory. Statements contain either
symbolic ARIAN assembly machine instructions or pseudo-ops.
The structure of such a statement is: (1) name, (2)
operation, (3) operand, and (4) comment.

The name field, if present, must begqin in the first
assembler character position: this is the second character
after the line number. The symbol in the name field can
contain as many characters as the user desires, but only the
first six characters are used in the symbol table to uniquely

13

The ARIAN Users' Hanual SUPERSOFT (C) 1978

define the symbol. All symbols in this field must beqin with
an alphabetic character, and may contain no special
characters. Diqits are allowed.

The operation field contains either a ARIAN assember
operation mnemonic or a system pseudo-op. The ARIAN
assembler operation mnemonics and system pseudo-ops are
described belovw.

The operand field contains parameters pertaining to the
operation in the operation field. If two arqguments are
present, they must be separated by a comma., All fields are
separated and distinquished from one another by one or more
spaces.

The comment field is for explanatory remarks. It is
rerroduced in the listing without processing. Comment lines
must start with either a semicolon or an asterisk; it is
recommended that comments at the end of a statement also
start with one of these characters, but this is not a
restriction.

Symbolic names and addressing are also supported by the
assembler. To assigqn a symbolic name to a statement, the
name is placed in the name field. To leave off the name
field, the wuser skips two or more spaces after the line
number (one or more spaces in block 1line entry mode) and
beqins the operation field. If a name is attached to a
statement, the assembler assigns it the value of the current

. location (program) counter. The program counter holds the

address of the next byvyte to be assembled if the instruction
is a machine instruction or pseudo-op. The EQU pseudo-op,
hovever, assians to its label a value which is defined in the
operand field. Note: do not confuse the location counter of
the assembler with the "$" symbol discussed 1later; this
location counter's value points to the next instruction to be
assembled, while "$" points to the instruction after the
current instruction if the current instruction is a normal
mnemonic or “$" points to the current instruction if it is a
pseudo-op.

Names are defined when they appear in the name, or
label, field. All defined names may be used as symbolic
araguments in the operand field. The reserved system symbols,
however, are defined by the assembler and must not be
redefined by the user; a duplicate label error will result if
this is done. These reserved system symbols are discussed
later. : N

In addition to the user-defined and the system symbols,
tha oot e Faoirpvo Somuolo o vond o usomons T

(.

The ARIAY Usecos' Hanuval SHPERS0FT (C) 1978

registers of the 8080. These svymbols., like the system
reserved symbols, may only be used in the operand field.
These svmbaols are: :)

1. A == the accumulator; value 7

2. B -- the B register; value 0

3. € -- the C register; value 1

4. D -- the D reqister: value 2

5. E ~- the E register; value 3

6. H -- the H reqister; value 4

7+ L =-- the L register; value 5

8. M -- memorvy (pointed to by HEL); value 6

9. P =-- the proqram status word; value 6

10. PS® -- also the program status word

11. S -- the stack pointer; value 6

12. SP =-- also the stack pointer

The assembler also supports relative symbolic

addressinag. If the name of a vparticular location is known, a
nearby location may be specified using the known name and a
numeric offset. 211 defined svymbols, including "$", may be
used in this relative symbolic addressing mode.

Example: LDA $+5

Result: This instruction loads the accumulator with the
value of the byte located five bytes after the beginning of
the next instruction.

Example: SSPD LOC-7

Result: This instruction stores the value of the stack
pointe starting at the byvte located seven bytes in front of

the me ooy Lo Coondintpd ko hw tho gymbol MTOCY.

15

The ARIAN Users' Hanual SUPERSOFT (C) 1978

The assembler permits the user to write positive and
negative numbers directly in a statement. They will be
regarded as integer constants, and their binary values will
ke used appropriately. All unsigned numbpers are considered
to be positive. Decimal constants can be defined using the
suffix "D'" after the numeric value, but this is not required
since the default is decimal. Hence, 19 and 19D define the
constant ten decimal, Hexadecimal constants must start with
a digit and end with a suffix "H4". Examples of hexadecimal
constants are 10H, QAFH, J0012H, and OOBCH.

ASCII constants may be defined by enclosing the ASCII
character within single gquotes, i.e., 'C'. Two charcters may
be enclosed within single quotes for double word constants.

Assembler Pseudo-ops

The following is a 1list and a description of the
pseudo-ops recoqnized by the assembler:

1. ORG <omerand> -- set the oriqin at the specified
address. This instruction also resets the execution
address, the assembly limits, and the location in
memory at which the obiject code is loaded., If an
ORG appears 1in the progqram anywhere but the
beqinning, the 1limits set by the last ORG are
reflected 1in the exection address and assembly
limits.

2. DS <operand> -- define storage., ' This reserves the
specified number of bytes starting at the current
location of the program counter.

3. DB <operand> -- define one byte. This instruction
evaluates the specified operand and loads one 8-bit
value into the location pointed to by the program
counter.

oY

O

g

=

The ARLAN Users'! Hdanual SUPERSOFT (C) 1978

4., D¥ <operand> ~- define one word. This instructio
evaluates the specifed operand, producing a 16-bi
value which it loads into memory (lov order, hig
order) at +the location pointed to by the progra
counter.

5. ASC *<string>' -- ASCII string. This is the same a
DB, but the specified string of ASCII characters i
loaded into memory.

6. <label> EQU <operand> =-- the specified 1label is

assiqned the computed value of the operand. Th
computed value is a 16-bit quantity.

7. END -- end the assembly. This statement 1is no
absolutely reguired; assembly will stop when the en

of the file is reached.

All pseudo-ops mayv be preceeded by a label.

System Reserved Labels

Another feature of ARIAN is its system reserved labels
These labels., which all start with the letter "2" and are a
most four characters long, provide the user with easy acces
to a host of utility subroutines for functions such as I/0
data conversion, and ARIAN entry points and buffers.

The following is a list of the system reserved label
and a description of their usages.

1. ZEOR -- ARIAN executive entrv point. This 1is
return entry point into ARIAN; if the user wishes t
do an immediate return to ARIAN, he may simply hav
the instruction "JMP ZEOR" in his program.

AR

1]

17

1]

(=3

U ot ¢

o

The ARIAN Users' Manual SUPERSQFT (C) 1978

2. ZLIY -- the input line editor subroutine. This i
the input 1line editor used by ARIAN. The user ma
execute this subroutine by placing a "CALL ZLIN
instruction into his program. This subroutine wil
immediately wait for user input from the keyboard
and, as the user types on the kevboard, it wil
place the characters he is typing 1into the inpy
buffer. All editing control characters (<KCR>, <LF>
, <BS>) are effective and will perform theli
functions as thougqh the user were actually in ARIAN
When the user types a <CR>, the subroutine finishe
storing the line and does a simple return. H and
point to the first character typed, and the line 1
the buffer consists of the valid characters afte
editing followed by a <CR> character (0DH). Th
memory location immediately in front of HEL contain:
a count of the number of characters in the buffe

"ofcounting the ending ODH) plus 1. A, H, and L ar
affected by this subroutine.

=<

=~

H .

eH OO0

3. 2IBF -~ this is the address of the first characte
of the input line buffer (same as the value passe
by HEL after a call to ZLIN). It can be wused in
such instructions as "LXI H,ZIBF".

[=2]

4. 2CC =-- this is the Northstar DOS Control-C
subroutine. It is used 1like "CALL 2CC". Upon
return, the zero flag is set 1if a Control-C vas
typed by the user and not set otherwise. Only the A
reqgister is affected.

5, 2ZIN -- this is a system input routine. This routine
waits for a character to be typed on the user'
kevboard and returns the ASCII value of thi
character in the A register. Input 1is route
through the redirectable input driver by thi
subroutine. Only the A register is affected.

6. Z0UT -- system output routine. This routine, whic
routes output through the redirectable outpu
routine if one was specified, outputs the valu
specified in the A register. Only this reqister i
affected. It also does a limited amount o

Ln L IR A a il =

=

e

|

Th

e ARLAN Users! danual SUPERSOFT (C) 1978

7.

9.

10.

11.

19

CCR» as a <CR> <LP> followed by the number of null!

|
|
|
special-character processing in that it outputs j
defined by the corresponding customized parameter. \

ZCR == output a <CR> to the user! terminal. Use
like "CALL ZCR", this :outine is the same as "MV
A,0DH" followed by "CALL ZOUT". Only the A registe
is affected by this subroutine.

subroutine converts the low-order nybble of the
register to its corresponding ASCI
bexadecimal-character equivalent. It then return
this ASCII value in the A register. For example,

A contains a binary 1 before the call to ZCHA,
contains & binary 31 hexadecimal (ASCII 1) after th

1
i
ZCHA =-- convert hexadecimal to ASCII. Th11
call. only the A register is affected.

\

\

9CAH -~ convert ASCII to hexadecimal. This routin
is the reverse of ZCHA. Assuming that the value i
the A register is a valid ASCII character for
hexadecimal digit (i.e., 0-9 or A-F), it convert
this ASCII to its binary equivalent in the
register. If a valid character was not input t
this routine, a <SP> (20 hexadecimal) is outpu
For example., if A contained 41 hexadecimal ('A'
ASCII) before the call, it contained 0A hexadecima
after the call. only the A register is affected. |
\
|
|

the high-order and low-order nybbles of the
reqister. Only the A register is affected.
example, if A contains 35 hexadecimal before th
call, it contains 53 hexadecimal after the call.

ZEN -- exchange nybbles. This subroutine exchanqu

user's terminal. This routine prints tw
hexadecimal digit characters on the user's termina
through the redirectable output driver (see SET

command) . For example, if A contains 12 hexadecima
e a1, WAt gaecTTy o oprinted by thi

|
|
1
ZPA -- print the hexadecimal value in A on thE

The ARIAN Users' Manual SUPERSOFT (C) 1978

12.

13.

14.

15.

subroutine. No reqgisters are affected by this
subroutine.)

through the redirectable output driver (see SE

ZBLK -- print a bplank (<SP>) on the user's terminjl
C
command). Only A is affected by this ‘

ZPRH -- print the character string pointed to by HEL
until a null (binary 0) is encountered. A, H, and L
are affected.

"ZPRR ~-- print the character string pointed to by the

return address until a null is encountered. A4, H,
and L are affected. For example, this subroutine ils
used with the following instruction sequence:

CALL ZPRR
ASC 'THIS IS A TEST'
DB 0

ZPHL -~ print H&L as four hexadecimal digits through
the redirectable output driver, This is like ZPa,
but four digits are printed. Only 3 is affected by
this subroutine. :

Operand Evaluation

Operand evaluation is somewhat limited in ARIAN,
particularly due to the size restrictions of the system.
Parenthesized expressions are not permitted. Only
sixteen-bit addition and subtraction are permitted in infix
(such as A+B) expressions., Single character strings of the

form 'A!

are permitted in expressions and unarily.,

2)

The ARIAN Users' NManual SUPERSOFT (C) 1978

The EXAM command examines the specified block of memory.
The contents of memoryvy between the specified addresses,
inclusive, are displaved on the user's terminal or redirected
1,0 device (see SETC command) in hexadecimal.

LEE DZP <address>

The DEP command allows the user to deposit a string of
values into memory starting at the address specified. ARIAN
responds to this command with a "?" prompt, and the user |is
. to enter his values as 1 or 2 hexadecimal characters; each

value is separated by one or more spaces., Typing a <CR>
continues the wentry on the next physical line of the I/0
device. Entry of values is terminated by a Control-C and
<CR>'

Example: EXAM 0 1FF

Result: The contents of memory from hexadecimal
locations 0 to 1FF are displaved.

Example: DEP 34
Besult: The user deposits a string of values into memory

starting at location 34 hexadecimal. See the sample ARIAN
session to see how the DEP command is actually used.

FILE FILE <filename>
FILE <filename> <address>

The file command allows the user to create a primary
file or make a secondary local file primary. If the file
specified does not already exist, it is <created; otherwvise,
the specified file is made primarv.

If an address is specified, the new primary file |is
located at the given address.

25

e’

The ARIAN Users' Manual SUPERSQFT (C) 1978

EXEC EXEC
EXEC <address>

The EXEC command allows the user to execute the progqram
starting at the specified address., If no address is given,
the default address, set by the last assembly (the first
address printed after the assembly) is used.

CUST CUST <command name> <command address>
CUSTD <command name>
CUSTL
CUSTN <command name>
CUSTSe-

The CUST command controls the customized command table.
CUST by itself <creates the specified customized command to
execute at the specified address. If a command of this name
already exists, the user is prompted with "REPLACE?", to
vhich he must respond with "N" to abort and anything else to
replace the command. Remember: all -commands must consist of

exactly four letters.

CUSTD deletes the specified command; CUSTL lists all the
customized commands currently defined; and CUSTN renames the
specified customized command. In response to the CUSTN
command. ARIAN vprompts the user with "NEW NAME?", to which
the user types the new name or just a <CR> to abort. CUSTS
scratches (deletes) all entries in the customized command
table.

Example: CUST PLAY F000

Result: The newv customized command, PLAY, is created.
Whenever PLAY is tvped the subroutine located at hexadecimal
F000 is executed.

Example: CUSTD PLAY

Result: PLAY is deleted.

26

The ARIAN Users! tanual SUPERSOFT (C) 1978

The RESEt command resets ARIAN. Redirected I1I/0 (see
SETC command) is reset and other initializations occur.

ASSH ASSK¥ (<address> (<address>))
ASSHL (<address> {(<address>))

The primarvy file is assembled by the ASSM command. ASSH
4ust assembles, ASSML assembles and lists. If no address is
specified, the proqram is assembled at one byte beyond the
upper workspace boundary. With one address, it is assembled
at the specified address and with two addresses it |is
assembled to execute at the first address but the object code
is placed in memory starting at the second address.

Example: ASSHML 0 6800
Result: The primary file is assembled to execute at 0
and the obdject code is placed at 6800. The assembly listing

is generated. This technique is used to vprevent damaging
ARIAN by assembling the code on top of it.

SYNT SYNT
SYNTS

The SYMT command displays the user's symbol table after
an assembly. SYMTS displays the system symbol table.

BREK BREK <address?

BREK
BREKD <address>
BREKL
The BREK command controls the user's breakpoints. a
breakpoint in ARIAN is a one~byte instruction (RST 1) which

T ohak o ta ARIAM if executed. Uhonever 2

tranafors cont:

The ARLAN Users' Manual SUPEERSOFT (C) 1978

_breakpoint is encountered, the values in all the registers
are vpresarved, allowing the user to continue program
execution 1f he desires. Also, vwhenever a breakpoint is
encountered, control is returned to ARIAN and the breakpoint
is reset.,

BREK followed bv an address sets a breakpoint at the
specified address: up to 8 breakpoints may be set at any one
time by the user. BREK by itself c¢lears all the breakpoints.
BREKD followed by an address resets the breakpoint which
recsides at the specified address, and BREKL displays the
addresses of all breakpoints currently set. ’

Breakpoints are useful proqram debuqqing tools in ARIAN.
They are wused primarily to determine if a program reaches a
svecified address, and, with the CONT command (discussed
later)’, the user can continue dynamic testing of his
proqrams. .

CONT _ COXNT
CONT <address>

The CONT (continue) command allows the user to proceed
from a breakpoint. The values of all registers are saved
when a breakpoint is encountered, and, after entering ARIAN
and working in ARIAN when a breakpoint was encountered, the
user may continue his program by simply typing CONT. CONT
followed by an address loads the registers with the stored
values and continues at the address specified; CONT by itself
just restores the registers and continues at the breakpoint
{the breakpoint was reset when it was executed).

LIST LIST

LIST (<line or starting line number> (<ending 1line
number>))

LISTF (<line or starting line number> (<ending 1line
number>))

LISTN (<line or starting line number> (<ending line
number>})

The LIST command allows the user to list all or parts of
the vprimary file througn the redirectable I/0 driver (see

28

The ARIAY Users' Manual SUPERSOFT (Cy 1978

file will be listed: if one line number is specified, just

that line is listed: and, if two line numbers are specified,
that range of lines is listed. LIST lists the file exactly
as the us typed it (with line numbers added, of course).
LISTF formats the listing (assuming it 1is an assembly
lanquagqe proaoram) . To format properly, all op code must
start in column 2 if there is no label and each section of
the line {label. op code, operand, comment) must be separated
by ounlv one space. LISTN lists like LIST does, but line
numbers and the extra spacde between the line number and the
text are not included in the listing.

Example: LIST
Result: The entire primary file is listed.
Example: LIST 100 200

Result: Lines 100 to 200, inclusive, of the primary file
are listed.

Example: LIST 130
Result: Only line 100 is listed.
Example: LISTF 300 456

Result: Lines 300 to 456, inclusive, of the primary file
are listed in formatted form.

Example: LISTN 200

Result: Line 200 is listed without its line number and
the space after the line number.

Note that LISTN lends itself to listing straiqht text,
giving ARIAN the added capability of allowing ARIAN to
function as a simple text process, i.e. letter writing and
the Llike! If this is done, it is advised to turn off the
paging so the page prompt will not appear on the user's I/0
device.

DEL DEL <line or start line> (<end line))

The DEL command deletes the lines specified from the
primary file. The first 1line deleted is the first line
number: if there is no line with this number, the Lline

29

The ARIAN Users' Hdanual SUPERSOFT (C) 1978 33

following this 1line number is deleted, At least one line
number must be specified.

Example: DEL 100

Result: Line 100 is deleted from the primary file. If
no line was labelled 100, and, for instance, say the line
around 100 were 90, 95, 101, 105, line 101 would have been
deleted.

Example: DEL 100 200

Result: Lines 100 to 200, inclusive, are deleted. If
lines 101, 120, 145, 135, 199, 201, and 205 were the only
lines in the file around this range, lines 101 to 199 would
be deleted.

" RNOM RNUNM
RNUY (<new first line number> {(<increment>))

The RNUM command renumbers the primary file. If no
arquments are specified with RNUM, the file is numbered
starting at 0010 and incrementing by 10. The first argument
gives the number to start at and the second gives the
increment..

Example: RNUM

Result: The primary file is renumbered, starting at 10
and incrementing by 10. -

Example: RNUM 100

Result: The primary file is renumbered, starting at 102
and incrementing by 10. :) N

Example: RNUM 100 S

Result: The primary file is renumbered, starting at 100
and incrementing by 5 (100, 105, 110, ece)e

Warning: if wraparound occurs during renumbering, i.e.,
the line numbers exceed 9999, the error messaqe "LINE NUMBER
OVERFLOW" will be printed and the user must then renumber the
file with a smaller increment and/or starting line number.
He may destroy his file 1if he +tries +to work with an
imrroperlv-numbered file.

E3

The ARIAN Users' Manual SUPZRSOFT (C) 1978

ABND APND

APND (<line number)>)

The APND command allows the user to append a block of
lines to the end of his file (just APND) or insert a block of
lines after a specified line (APND <line number>). ¥hile in
this block line entry mode, the user need only type the text
of the lines: ARIAN will place a line number and extra space
on the front of each line. The user is prompted with a "2"
at the beginning of each line, and he then types the line.
The input line editor is in effect, and he may use it to
correct typing mistakes. When finished, he simply types a
Control-C immediately followed by a <CR>. If the Control-C
is the first character of a new 1line, the previous 1line
becomes the.. last line of the block to be entered; if the
Control-C is the last character of a text line, the Control-C
is iqgnored and that line without the Control-C is entered as

‘the last line of the block. See the sample ARIAN session to

view an example of entering lines through block line entry
mode with APND.

When block line entry mode is exited, the entire primary
file is renumbered with the default starting line number of
0010 and an increment of 10. If the "LINE NUMBER OVERFLOW"
message is printed, the user must immediately use the BRNUN
command to renumber the file until this message does not
QCccur. URNUM 5 5" is recommended as the command to use
(renumber starting at line 5 and incrementing by 5). '

Example: APND 100

Result: The following block of lines is inserted after
line 100 and before the next line of the file.

Example: APXND

Result: The following block of lines is appended to the
end of the file.

INS INS <line number>

The INS command is exactly the same as APND, but the
block of lines is inserted in front of the specified line.
This command was necessary to allow the user to insert a

ERTIEES Lo sk A F L ek Timoe af trka file, . RYIosY

[Qg

31

The ARIAN Users' Manual SUPERSOFT (C) 1978 32

line entrv mode and renumbering is the same in INS as it is
in APND.

Example: INS 200

Result: The following block of lines typed by"the user
is inserted in front of line 209.

FIND _FIND
FIND <starting line number of search>

The FIND command searches over the primary file €for a
string of characters specifed by the user and prints every
line which this string occurs in. FIND by itself will search
over the entire primary file and FIND <line number> will
search starting at the specified line and continue to the end
cf the file.

In response to the FIND command, ARIAN responds with
"SEARCH STRING?", to which the user mav simply type a <CR> to
abort the command or a string of characters followed by a
<CR> to execute the search. The <CR> is not a part of the
string. See the sample ARIAN session for an example of the
use of the FIND command.

Al

Example: PIND 500

Result: Search for the string specified by the user
starting at line 500 and search to the end of the file.

EDIT EDIT <line number>

The EDIT command invokes the ARIAN intra-line editor.
This editor allows the user to edit a line that has already
been typed without retyping the entire line. If a line
number is not specified, the first line of the file will be
edited: if a line number 1is specified, that 1line, if it
exists, or the 1line that would follow it if it did exist,
will be edited.

The intra-line editor is a dynamic editor which permits
the user to see the effects of his editing commands

-1 Foanaa Rl by o iy 4o 3

immedio ol

T

The ARIAN Users' Manual SUPERSOFT (C) 1978&

is copied into the editor's old 1line buffer and then
displaved to the user. The editor then does a carriage
return and prompts the user with a guestion mark. As the
user edits this line, each character of the new line that is
created is placed into the editor's new line buffer; the
original line in the o0ld 1line buffer is not "affected.
Finally, when editing is finished, the user may tvype a
carriage return to terminate the editing process and replace
the original line in the file with the line as it exists in
the new line buffer.

The intra-line editor responds to a host of subcommands.
The following is a complete list of these commands and their
functions.

1. <sp> -- copy the character pointed to by the old
line vpointer into the character position pointed to
by the new line pointer and advance the old line and
the new line vpointers by one. The space bar,
therefore, will simply copy the next charcter from
the 0ld line buffer into the new line buffer. after
the copvy is done, the copied <character will be
displaved to the user.

2., E -- skip to the end of the line. the rest of the
characters 1in the 0l1d line buffer are copied into
the new line buffer and both pointers are advanced
to point to the non-existent character after the
last character copied. The copied characters are
displaved to the user as they are copied.

3, D -- delete the character pointed to by the old line
pointer (delete the next character in the o0ld line).
The character is deleted by advancing the old line
pointer by one character position and not affecting
the new line pointer. The deletion is displayed to
the user as a backslash ("\") followed by the
deleted character. If the next command typed by the
user 1s another D, the next deleted character is
displaved (without the backslash). This will
continue until the user types some other command, in
which case a closing backslash will be displavyed.
In effect, the deleted characters are enclosed in
backslashes when displayved to the user.

33

The ARIAN Users' Manual SUPERSOFT (C) 1978 34

4., I -- insert a string of characters in front of the
the character currently pointed to by the old line
pointer. In response to the I typed by the |user,
thé editor +tvpes a slash ("/"). The user may then
type anv string of chdracters he wishes except for
an escape oOr a carriage return. These characters
will be copied into the new line buffer, the new
line vpointer will be advanced, and each character
will be echoed to the user as he types it.

The escape and carriage return characters are
special characters to the insert subcommand. <ESC>
instructs the insert subcommand to end the |
insertion. The editor then types another slash to |
indicate that the insertion is finished and allows
the user to continue editing normally.. <CR>
instructs the editor to terminate «c¢reation of the
new line, «copy the new line into the primary file,
and return to ARIAN command mode. The <CR> is
echoed as a slash, a carriage return, and a systenm
prompt (">"), indicating that the user is now in
ARIAN command mode.

5. R -- replace the characters pointed to the old 1line
pointer with the following string. Both pointers
are advanced and the new characters are echoed to
the user. No special character is typed to the user
after he types an R, and the <ESC> and <CR>
characters respond as the user types his string,
each chracter he types replaces the corresponding
character in the o0ld line buffer.

6. S<letter> -- skip to the specified letter., This is
the only two-character command in the editor; it
consists of the letter S followed by a single
character. When this command is typed, both the old
and new line ©pointers are advanced and the
corresponding characters are typed and copied into
the new line buffer until the specified character is
encountered or the end of the line is reached. Once
the specified character is found, the o0ld 1line
pointer will point to it and this character will not
be printed: it will be the next character in the
line. The S and the specified letter are not echoed
to the user when the command is typed. This command

G e IR

The ARIAYN Users' Manual SOUPERSOFT (C) 1978

insert, delete, or replace at a specified character;
he does not have to space over to that character
with this command.

7. -- the delete key backs up the new line
pointer. The characters backed over are enclosed in
n¢n and ">" (like they are enclosed in slashes in
the I command) and deleted from the nev line. Only
the new line pointer is affected by this command.

8. <CR> -- terminate creation of the new line. This
command terminates editing of the line and replaces
the oriqginal line in the primary file with the 1line
that currently exists in the new line buffer. If
<CB> is the first editing character typed, the edit
is aborted and no replacement occurs.

9, A -=- abort the editing of the o0ld line. This
command may be typed vwhenever the editor is ready to
receive a command (i.e., the editor is not in the
middle of an insertion or replacement), and it
terminates the edit and returns control to ARIAN
without affecting the original line.

10, P -~ print the new line and edit it. This command
will terminate the new line at the current position
of the newv line pointer, copy the new line buffer
into the old 1line buffer, print the new line, and
restart the editing sequence with this new line
instead of the original line. The original line as
it exists in the primary file is not affected.

11. X -- exit and reedit the old line. The X command
terminates the editing done so far and restarts the
edit of the original line. If a P command has been
previously tvped, the last line placed into the old
line buffer is reedited.

The editor has three error messages that it may display.
These messadges are:

The AKIAY Users' Manual SUPERSOFT (C)y 1978

1. 27 =- invalid command. 5 double question mark
indicates that an invalid command has heen typed.

2. *%¥ -~ end of edit line. A double asterisk indicates
that the user has tried to o beyond the end of the
original line illeqally while editing. This error
most commonly occurs while using the <SP> command to
copy characters bevond the end of the line.

3. *EOL* -- end of line buffer. The length of the new
line has 1dust reached the limits of the new line
buffer, and the user must reedit the original line.

Example: EDIT 200

Result: Line 200 is printed and the user is prompted
with a w2n, The wuser may now edit 1line 200 using the
intra-line editing commands. One useful aspect of this
command not vet discussed is that line 200 may be copied as
line 201 or any other desired line number by editing only the
line number (such as changing the second zero in 200 to a 1,
and tvyping the E (skip to end of line) command followved by a
<CBRB>. Line 200 in the primary file will be unchanged and
line 201 will be created; line 201 will be a copy of 1line
200.

LDIR DDIR

The DDIR command gives a directory of the files stored
on disk.,. The directorvy 1listing 1is paged, which makes it
easier to read than the normal DOS listing because no entries
go over the top of the page if there are more files on disk
than lines on the user's CRT.

This listing contains from 4 to 5 elements per line,
devending on the tvpe of file is being listed. The name of
the file is given first, followved by the starting disk
address of the file in hexadecimal, a hexadecimal value for
the lenath of the file in 256-byte blocks, the type of the
file (see the DOS manual), and, if the file is binary (type
1Y, the execution address of the binary file. ARIAN will
only work with tvype O (text) and type 1 (binary) files.

36

B

3
]

i

(

The ARIAN Users' HKanual SUPERSOFT (C) 1978
LDIR _ LDIR
The LDIR command gives a directory of the local text
files <currently residing in memory. The primary file 1is
named first, and the secondary text files follow. The name
of the file and the inclusive memory address limits of the
file are given for each local text file. See the sample

ARIAN session for an example.

DNAY DNAM <file name>

o

The DNAMe command allows the user to rename any disk

file. The file name specified in the command is the name of

the disk file as it currently resides on disk, and, in
response to this command, ARIAN prompts the user with "NEW
name2", to which he responds with a <CR> to abort the
renaming ©process or the characters of the new name to do the
actuval renaming. These characters must number from 1 to 8 (8
characters maximum for a file name}) and be followed
immediately by a <CR>.

Example: DNAM TEXT
NEW NAME?MYFILE

Result: The disk file TEXT is renamed MYFILE.

LNAM LNAM <file name>

LNAMe is exactly like DNAM, but the specified local text
file is renamed.

DDEL DDEL <file name>

DDEL deletes the specified disk file. only the disk
directory is affected: no disk file management is done by

PO T
[V IR N

37

The ARIAN Users! Hanual SUPERSOFT (C) 1978

Example: DDEL MYPFILE

Result: The file "MYFILE" is deleted from the disk.

LLCEL LDEL <file named>

LDEL is exactly like DDEL, but it deletes the local text
file specified. Also, the memory manager is invoked after
the deletion and the remaining local files are packed
together. The memory manager alwvays makes sure that the
primary file is ©physically the last file in the file
workspace so the primary file can qrow as the user modifies
it. The memorv manager also monitors the qrowth of the
primary file while it is beinqg modified. '

LSCR LSCR

The LSCR command scratches the 1local file directory.
All file entries are deleted, and there is no primary file
after the command is executed. It effectively clears the
file workspace. The files themselves, however, are not
touched bv this command, .and they may be recovered by the
*RCVR command if the user knows the starting address of the
file he wants to recover. See the RCVR command (following).

FCHK FCHK <file name>

The FCHK command checks the validity of the specified
local file. It performs an error check on the internal
structure of the specified file, and it does not do anything
to alter that file. PCHK is used to check to make sure that
the specified file is intact after a user error may have
affected it., such as a user program running wild.

w

- Eg

add

The ARIAN Users' HJanual SUPERSOFT (C) 1978 39

RCVR rCVR <file name> <starting address>

The RCVR command, as mentioned under LSCR, recovers the
specified file after it has been deleted. This command
starts at the address specified, does an internal format
check on each line of the file, and looks for an end-of-file
mark. If the file checks out as valid, it will make a
directory entrv under the specified name and make the
recovered file primarv.

Example: BCVR LOSTFILE 3500

Result: A recovery is attempted on the data starting at
3500 hexadecimal., and, if the data forms a valid file, the
file LOSTFILE is created in the local file directory and made
primarv. The user may now edit this file like any other
local file.

SAVE SAVE <file name> ‘
SAVEB <file name> <start address> <end address>

The SAVE command saves a file on disk. SAVE <file name>
saves the primarv file on disk under the specified name. If
another file already exists with the specified name, the user
will be prompted with "REPLACE?", to which he responds with
WN" to abort or any other character to do the replacement.
The disk file manager is invoked by this command, and this is
all the user need do to save the primary file on disk. Note
that the response to "REPLACE?" 1is only one character and a
<CR> is not necessarVe

SAVEB saves the specified section of memory on disk
under the specified file name. Again, the disk file manager
is invoked and the "REPLACE2?" option may be given if a file
already exists with the specified name. See the sample ARIAN
session for examples of the SAVE command.

10AD LOAD <file name>

The LOAD command loads the specified file from disk into

iasutahais P 1o ia a2 tevt £ila (tvyne M o it will he

The ARIAN Users' Hanual SUPRESOFT (C) 1978

loaded into memorv at a location chosen by the mémory manager
and it will be made into the primary file, This primary file
will have the same name as the corresponding disk file..

4o

If the file is a binary file (type 1), it will be loaded:
into memory at its execution address only, The user must:

then know what the file's execution address is in order to|

execute it, This can be discovered by using the DDIR command
and reading this address- from the directory entry for the:

loaded binarv file.

SEIC SETC
SETCI <address>
SETCO <address>

The SETC command controls redirectable I/0 in ARIAN. .
SETC bv itself resets I/0 to the I/0 routines in Northstar's:
LOS. SETCI tells ARIAN that all further input is handled by

the subroutine starting at the specified address; SETCO tells

ARIAN that all further output is handled by the subroutine
starting at the specified address. I/0 is set or reset.
immediately after the <CR> is typed on the approriate SETC.

command.

I/0 is alvways reset to the DOS I/0 routines upon initial

entrv into ARIAN and by the RESEt command. The entry point
at location 4 hexadecimal also resets I/0.

The redirectable I/0 drivers written by the user (the

routines addressed by the SETCI and SETCO commands) must

conform to the following rules:

1. No register mav be altered by these routines. It is

recommnended that the user PUSH all registers,
includinag the A register, onto the stack at the

beginning of these routines and POP them at the end.

2. These routines must do a simple (or conditional) RET
when they are finished.

o it g b Y bandl ~3 =y Yy o b oy b b ey nryrr o

)

B3

C

=

The ARIAY Users® Manual SUPLRRSOFT (C) 1978

{carriage return in ASCIIV. The output driver
i -face in ARI2Y alwavs checks for a <CR> and will
alwavs send out <CR> <L7> and the specified number
of nulls in responss to a <CRB>. The ARIAN output
driver outputs all characters it receives exactly as
it receives them -—- except for <CR>». <KCR> is alwvays
output as <CR> <KLF> followed by the required number
of nulls. Hence, "A" (41 hexadecimal) 1s output as
wau (41 hexadecimal): <CR>» (0D hexadecimal) 1is
output as <CR> <KLPF> (0A hexadecimal) and the
regquired number of nulls (0 hexadecimal).

HORK __ WORK
WORK <start address> <end address>

The WORK command allows the user to set and display the
boundaries of the text file workspace in ARIAN. This
workspace is where the memory manager places and plays with
all the 1local text files. The WORK command by itself just
displays the boundaries currently set. WORK followed by the
two addresses reset these boundaries., The starting address
should never be less than 3500 hexadecimal, and the ending
address, as a general rule, should be 1 or 2K less than the
top of contiquous memory. The restriction on the ending
address is made because this area -- to the top of memory --
is used by the assembler to place the object code generated
when the user does not explicitly tell the assembler where to
place this code (the simple ASSM command).

Example: WORK 3500 67FF

Result: The workspace 1is ~set to 3500 to €7FF
hexadecimal. In this example the user has memory from 3500
to 6FFF., and he left 2K for the assembler to place the object
code in.

EXIT EXIT

The EXIT command simply branches to Northstar's DOS
(location 2028 hexadecimal). The user may reset this branch
address if he desires (see the page on customizing ARIAN).

41

The ARIAN Users' danual SUPERSOFT (C) 1978 h2

CHAPTER 5

A SAMPLE ARIAN TERMINAL SESSION

The following is a reproduction of an actual terminal
session with ARIAN. This reproduction was created using the
SETCO command with a redirectable I/0 driver.

D%

D%

>%* THIS IS A SAMPLE ARIAN TERMINAL SESSION

>%* IT IS BEING RECOBDED BY A CYBER-175 COMPUTING SYSTEM

>* - THROUGH REDIRECTABLE 1/0
>%

>* THIS IS AN EXAMPLE OF EXAMINE AND DEPOSIT

>EXAM 0 10 :

0000:00 00 00 03 00 04 0D 00 08 C3 3F 19 OF 00 FF 67
0010:00 : . ‘

>% THIS IS THE USER-DEFINED PARAMETER REGION

>* LET'S CHANGE THE NUMBER OF LINES TO DISPLAY PER PAGE
>DEP 0B

?2167°C

>% WE HAVE CHANGED NUMBER OF LINES PER PAGE TO

> 16 HEXADECIMAL, OR 22 DECIMAL

>DEP 0D

200 80 ~C

>* WE HAVE CHANGED THE END OF THE TEXT FILE AREA TO BE AT
> 8000 HEXADECIMAL (NOTE LOW ORDER, HIGH ORDER); THE TEXT
> FILES NOW RESIDE IN THE 3500 TO 8000 REGION QF HMEMORY
> AND THE AUTOMATIC ADDRESS FOR ASSENBLIES IS 8201

T TN fatad EMte Mo vmo ATT PsY MOT vy T g

The ARIAY Users' NManual SUBERSOFT (C)y 1978 43

20F
@ 200

?FF 67 O

?7C

>% WE HAVE WRITTEN THE ORIGIYAL PARAKETERS BACK INTO <ARIAN,

> DOING A COWTINUOUS DEPOSIT STARTING AT LOCATION 0B HEXADECIJAL.
> NOTE THAT ALL HEXADECIMAL ADDRESSES GIVEN IN THE COMMANDS MUST
> START WITH A DIGIT; IF WE SALD "DEP B" INSTEAD OF "DEP OB,

> AN ERROR MESSAGE WOULD. BE GIVEN.

>FILE TEST

TEST 3500 3500

>% WE HAVE JUST CREATED A FILE NAMED "TESTY

>APND

? CALL ZCR : QUTPUT <CR> <LF>

? MVI C, 10

? MVI A.30 : PRINT CHARS *0O' TO '9?

?LCOR CALL ZOUT : PRINT VALUZE IH A

el 82 3

i

=

18

? INE A : INCR A
? ICR C

? JNZ LOOP

? EET™C

0010 CALL ZCR : OUTPUT <CR> <LF>

0020 MVI C.10

0030 MVI A,30 : PRINT CHARS '0' TO '9!
0040 LOOP CALL ZOUT : PRINT VALUE IN A
0050 INR A ; INCR A

0060 DCR C

0070 JNZ LOOP

0080 BRET
> NOW FOR A FORMATTED LIST
- SLISTF
@ . 0010 CALL ZCR ; OUTPUT <CR> <LF>
. 0920 MVI C, 10
0030 MVI 4,30 : PRINT CHARS '0' TO *'9¢
0040 LOOP CALL ZOUT : PRINT VALUE IN A
€050 INR. - A ;. INCR A
0060 DCR c
0070 JNZ LOOP
0080 RET
>ASSH
ASM PASS 1
ASM PASS 2
6800 680F 2010
>EXEC
tNESTE
>* WHOOPS! SHOULD HAVE BEEN 304, NOT 30 (DECIMAL)
>LIST 10 30

0010 CALL ZCR : OUTPUT <CR> KLF>
s ryTomotn

N Shoy e 6o 4ot

The ARIAN Users' Manual SUPLRSOFT (Cy 1978 L

SEDIT 30 B
2030 MVI A,30 : PRINT CEARS '0°' TO 'S?
20030 4Vl A,30/H/ ; PRINT CHARS '0*' TO '9°'
S>LISTF 30
0030 MVI A,30H ; PRINT CHARS '0' TG '9!
>ASSH
ASM PASS 1
ASM PASS 2
€800 680F 0010
>EXEC

0123456789
>% NOW, LET'S SPACE OUT THE DIGITS
>LISTF 40 70

0040 Loop CALL Z0UT ; PRINT VALUE IN A
0050 INR A ; INCR A

00€0 a. DCR - C

00790 JNZ Loo?

>IRS 50

? PUSH PSW

? CALL ZBLK ; PRINT <SP> BETWEEN EACH DIGIT
? EOP PSH™C

>LISTF

0010 CALL ZCR : OUTPUT <CR> <LF>

3020 MVI c, 10

0030 MVI A,30H : PRINT CHARS '0' TO '9°

0040 LooP CALL ZOUT ; PRINT VALUE IN &

0050 - PUSH PSW

0060 CALL ZBLK : PRINT <SP> BETWEEN EACH DIGIT
0070 POP PSH :
0080 INR A ; INCR A

2090 DCR C

0100 INZ LOOP

0110 RET

>ASSH

ASH PASS 1

ASH PASS 2

6800 6814 0015

>EXEC

01234567839

># LOOKS GOOD!

>* NOW, LET'S RUN THIS AS A CUSTOMIZED COMMAND
>CUST PLAY 6800

>CUSTL

FLAY 6800

>PLAY ,

01234567839

>* LET'S DO THAT AGAIN

>PIAY

N 127 4585 1Tace

R

i

The ARIAN Userst Manual SUPERSOTT (C) 1978

SY¥ILE TESIZ

- TEST2 T4 3614

>LDIR

TEST2 1614 3614

TEST 3500 3613

># NOTE THUE MEMORY MAYAGER
>LIST

>ADPND

CALL %CR : <CR>)
CALL ZPER : PRINT THE PCLLOWING STRING
ASC 'HELLO THERE!®

LB ©

? RET™C

>ASSH 3

WORK

3500 67FF

>ASSM 6C00

ASH PASS 1

ASM PASS 2

6C00 6C13 0014

>CUST MESS 6C00

>CUSTL

PLAY 6800

MESS 6C00

>MESS

HELLO THERE!

SVILIVRCIV REIS S)

TEST2 3614 368A

TEST 3500 3613

>FILE TEST

TEST 3577 368A

>% AGAIN, NOTE MEMORY MANAGER
>LISTS

ASSM 6C80

ASM PASS 1

ASM PASS 2

6C80 6C94 0015

>PIAY

0123 4567829

>MESS

HELLO THERE!

>LDIR

TEST 3577 368A

TEST2 3500 3576

>% NOW FOR A DISK DIRECTORY

>DDIR
FDOS 0004 223A 1 2000
ARIAN 000E 0020 1 0000

CUTERS 002E 00u4C O
SYSIL0G 007a 0003 0O
SgH¥sSOT™ AN 0N0% D

ORI

45

The ARIAU Users' Manval
VDHDISP (387 0335 0
VDMDRVE Gese 0005 0
SYSLOGY 0083 0007 0
TEXT GOr2 GOJ4 0
ARIANS 00n6 0020 1 0000
REDIRI 09C6 2231 9
RELIRO 00C?7 0001 O
2LDIR
TEST 3577 368a
TESTZ2 3500 3576
>FCHK

$ VALID FILE

>FCHK TEST2

$ VALID FILE

>* SAVE PRIMARY FILE ON DISK
>SAVE T1

$ FILE SAVED

DFILE TEST2

TEST2 3614 368a
SLDIR

TEST2 3614 368

TEST 3500 3613

SFILE

TEST2 3614 368a

>SAVE T2

$ PILE SAVED

>DLIR

FDOS 0004 000A 1 2000
ARIAN 000E 0020 1 0000
CUTERS 002E 00G4C 0
SYSLOG ~ 007A 0003 0
SYMSORT 007D 0005 O
FORMAT 0082 0005 0
VDMDISP 0087 0005 0
VDMDRVR 0096 0205 0
SYSLOGV 009B 0007 0

TEXT 00A2 0004 O
ARIANS 00A6 0020 1 0000
REDIRI 00C6 0001 0
FEDIRO 00C7 0931 0

T 00E1 0002 0 MORE?
T2 00E3 0001 0
>LSCR

>LDIR

D% NOTE: DELETED LOCAL FILES
>RCYR FUN1 3500

FUN1 3500 3500

>LDIR .

FUN1 3500 3613

>FILE

Tryar g Eolakat 440

S

sop

™

Jie

SOFT

(<)

1978

46

B2 B

B2

k

5%‘

& _

2

The ARIAN Users' Manual SUPERSOFT (C) 1978
S>FIND
SEARCH STRING? HELLO
>FIND
SEARCH STRING? MVI
0020 MVI C,10
0030 HMVI A,30H ; PRINT CHARS '0' TO '9'
>LISTF
0010 CALL ZCR ; 0UTPUT <CR> <LF>
0020 MYI c, 10
0030 MVI A,304 ; PRINT CHARS *'0' TO '9¢
0040 Loop CALL Z0UT ; PRINT VALUE IN A
00<0 PUSH PS¥®
0060 CALL ZBLK : PRINT <SP> BETWEEN EACH DIGIT
0070 POP PSH
0080 INR A ; INCR A
0090 DCR C
0100 JNZ LoOP
0110 RET
>FIND
SEARCH STRING? <SP> BETWEEN EACH '
0060 CALL ZBLK :; PRINT <SP> BETWEEN EACH DIGIT
>PIND 30
SEARCH STRING? HAVI .
0030 HVI A,.30H : PRINT CHARS '0' TO '9!
>FPIND
SEARCH STRING? MVI
0020 MVI C.10
0030 MVI A,30H :; PRINT CHARS '0' TO '§!
>LSCR
>* NOW FOR A LOAD
>LCcAD T1
T1 3500 3500
>LSTF
$ INVLD CHMND :
>LISTF -
0310 CALL ZCR ; OUTPUT <CR> <LF>
0020 ’ MVI Cc,10
0030 MVI A,30H ; PRINT CHARS '9J' TO '9!
0040 LooP CALL ZOUT ; PRINT VALUE IN A
0050 PUSH PSH
0069 CALL ZBLK : PRINT <SP> BETWEEN EACH DIGIT
0070 PoP PSW
0080 INR A : INCR A
0090 DCR C
0100 JINZ © LooP
0110 RET
>LCAD T2
T2 3614 3614
>LDIR
T2 3614 368A
T IThT T
»L1SE:

47

The ARIAN Users' Manual SUPERSOFT (C) 1978 48

o110 CALL ZCR ; <CB>

29290 CALL ZPRR : PRINT THE FOLLOWING STRING
0030 ASC fHELLO THERE!!

0040 DB]

0050 RET

>FIND

SEARCH STRING? HELLO

0030 ASC 'HELLO THERE!!

>LOAD T3

13 36eB 368B

$ NO SUCH FPILE

>* WHOOPS! WE DON'T HAVE FILE T3 ON DISK, DO°WE?

>LDIR

13 3688 368B

T2 3614 368a

T1 3500 3613

>LLCEL T3

>LDIR

T2 3614 368a

T1 3500 3613

>% MAY AS WELL DELETE T2 AND T1 FROM DISK
>DDEL T1

>DDEL T2

>LLIR

FDOS 0004 000A 1 2000

ARIAN 000= 0020 1 0000
CUTIERS 002E 004cC
SYSLOG 027a 0003
SYMSORT 007D 0005
FORMAT 0082 0005
VDMDISP 0087 0005
VDMDRVRE 0096 0005
SYSLOGV 009B 0007
TEXT 00A2 0004

[o NN oNoloNoNoNo ool

ARIANS 00a6 0920 2030

REDIRI 00Cce6 0001

"REDIRO 00c7 0001

>LDIR)

12 3614 368A

T1 3500 3613

>% NOTE: T1 AND T2 ARE STILL LOCAL
>

>% NOW FOR SOME TEXT PROCESSING
>LSCR

>LDIR

>FILE TEXT1

TEXT1? 3500 3500
>APND

?THIS IS LINE 1

1S LINE 2

¥

The ARLAN Users' Manual SUPERSOFT (Cy) 1978

2LIST

0010 TuXs s LINE 1
0320 THIS IS LINE 2
0030 THIS IS LINE 3
0040 THIS ¥AY B3Z LINE &4

>LISTH

THIS I5 LINE 1
THIS 1S LINE 2
THIS iS5 LIHE 3
THIS ¥AY BE LINE &

>2LISTY

c010 THIS IS LIRE 1
0020 THIS Is LINE 2
0030 THIS Is LINE 3
0040 THIS MAY BE LINE 4
>% YUCK!

>EDIT 20

0020 THIS IS LINE 2
20020 \THIS\/MY LINE/ IS LINE 2
0020 MY LINE IS LINE 2
20020 \MY\/THIS/ LINE IS/ NOT/ LINE 2/2/
>LIST 20
0020 THIS LINE IS NOT LINE 22
>ETIT 20
0020 THEIS LINE IS NOT LINE 22
20020 THIS \LINE \IS \NOT \LINE \2\2
>LIST 20
0020 THIS IS LINE 2
>LISTHN
THIS IS LINE 1
THIS IS LINE 2
THIS IS LINE 3
THIS MAY BE LINE 4
>LIST
0010 THIS IS LINE 1
0020 THIS IS LINE 2
0030 THIS IS LINE 3
0040 THIS MAY BE LINE 4
>RNUM 1020
>LIST
0100 THIS IS LINE 1
0110 THIS IS LINE 2
0120 THIS IS LINE 3
0130 THIS MAY BE LINE 4
DRNUM 100 100
>LIST
0100 THIS IS LINE 1
0200 THIS IS LINE 2
0300 THIS IS LINE 3
0400 THIS MAY BE LINE 4

o

4

The ARIAN Users*' Manual

g1c0
2150
0260
0300
04739
>325
>324
>326

THIS
THLS
THIS
THIS
THIS
TELS
THIS
THIS

>LIST

01230
0150
0200
0300
0324
0325
0326
0400

THIS
THIS
THIS
THIS
THIS
THIS
THIS
THIS

>RNUM 1092
>LIST

0100
0110
0120
0130
0140
0150
0160
0170

>RNUM 1000

THIS
THIS
THIS
THIS
THIS
THIS
THIS
THIS

DLIST

1000

© 1010

1020
1030
1040
1050
1060
1979
>DEL

>LIST

1000
1010
1029
1030
1040
1050
1060
>DEL
>LST

THIS
THIS
THIS
THIS
THEIS
THIS
THIS

THIS:

1070

THIS
THIS
THIS
THIS

THIS

THIS
THIS
1010

IS LINE 1
IS LINE 152
IS LINE 2
Is LINE 3
MAY BE LINE
IS LINE 325
IS LINE 324
IS LINE 326

1S LINE 1
IS LINE 150
IS LINE 2
IS LINE 3
IS LINE 324
IS LINE 325
IS LINE 326
HAY BE LINE

IS LINE 1
IS LINE 150
IS LINE 2
IS LINE 3
IS LINE 324
IS LINE 325
IS LINE 326
MAY BE LINE

MAY BE 'LINE

IS LINE 1
IS LINE 150
IS LINE 2
IS LINE 3
IS LINE 324
IS LINE 325
IS LINE 326
1030

$ INVLD CMND

>LIST

1000

1000
AR

T o

.

I

g TTYT 1

¢

[

SUPERSQFT (C)

1978 -

1352 THIS
10€0 THIS
SRNUM

>LIST

0010 THIS
3320 THIS
0030 THIS
0040 THIS
>* WELL,

¥ S0 LONG,
> S0 LONG,

A% Users' Manual

Is
Is
Is
is
THAT'S IT FOR NOW
FOLKS

FOLKS

SUPERSOFT (C) 1978

LINWE 325
LINE 326

LINE 1

LINE 324
LINE 325
LINE 326

51

The ARIAN Users' Manual SUPERSOFT (C) 1978

All numeric arugqments are assumed to be decimal unless
the suffix "H" is appended to them., Therefore, 100 is 100
decimal and 100H is hexadecimal 132J.

The "$" symbol is used as the value of the program
counter. In normal instructions, "$" points to the first
byte of the next instruction: in pgseudo-ops, "$" points to
the first bvte of the ©pseudo-op. This permits relative
addressing to take the form of "LXI H,LABEL-$" and pseudo-ops

like "STACK EQU 3" to be used.

Finallv, if an expression with a value greater than OF?
hexadecimal is loaded into an eight-bit register, like "yl
A, 1PFH", only the low-order byte of this value is loaded.

Examples of permitted expressions include:

LABEL+3

POINT-'A'+6)D

POINT3-0AFH +6-2
HERE-$-2

Assembler Error Messages

The following is a list of the error messages produced
by the assembler and their meanings:

1. R -- register error. The reqgister name is missing
or invalid.

2. S =-- syntax error. The instruction syntax is
incorrect.
3. U -- undefined svmbol. The referenced symbol is

undafinad,

The

9.

ARIAN Users' Manual SUPERSOFT (C) 1978
VY -- value error. The éomputed value cannot be
represented as a 16-bit integer or the expression
has a syntax error.
% ~- missing label error. A required label is
missing.
A -- arqument error. The instruction's arqument 1is
of the wrong type or generally incorrect.
L -= label error. The label of +this instruction
contains an invalid character.
D -- duplicate label error. The label of this
instruction has been defined elsewhere.
0 -- opcode error. The opcode in this instruction

is invalid.

22

]

=t

S

The ARIAN Users' Manual SUPERSOFT (C) 1978 23

CHAPTER 4

THE ARIAN COMMANDS

This chapter of the users' manual describes all of the
ARIAN commands in detail and how to use them. The following
is a list of these commands (parentheses mean the enclosed
item is optional):

1.

2.

9.
10.

11.

12.

EXAM <address> <address>

DEP <address>

FILE <filename>

EXEC (<address>)

CUST <command name> <address of command>
RESE

ASSM

SYMT

BREK <address>

CONT

LIST (<line or starting line number>) (<ending 1line
number>))

DEL (<line or starting line number>) (<ending 1line
number>)

SNPEYer e a

[N

The ARIAN Users' Xanual SUPERSQFT (C) 1978

4. APWD (<line to append after>)

15. INS (<line to insert in front of>)
1€. FIgD (<line to start search at>)
17. EDIT <line to edit>

18. DDIR

16. LDIR

20. DNAM <filename>

21. LHAM <filename>

22, DDEL <filename>

23. LDEL <filename>

24, LSCR

25. FCHK (<filename>)

26, BRCVR <filename> <starting address of file>
27. SAVE <filename>

28. LOAD <filename>

29. SETC (<address>{

30. WORK <starting address> <ending address>

31. EXIT

The ARIAN Commands in Detail

The most basic of the ARIAN commands is <lnum> <text>.
This command, consisting of a line number, a space, and some
text, enters that line into the primary file at the correct
place. Following are the rest of the commands in detail.

~,

Ty WYL S a A seay addresod

24

