SOFTWARE LICENSE INFORMATION

The purchase of this software package including
documentation and data entails the right to use these
materials for the purchaser's own use only. Actual
ownership of the software and control of its use
remains the exclusive right of XI COMPUTER PRODUCTS.

No purchaser/user of this software is authorized
to rent, copy, duplicate, assign, or otherwise distribute
its contents unless specifically authorized by XLCP in
writing. Persons desiring to do so should contact
XLCP in writing for details on how this may be arranged.

The purchase and receipt of this package constitute
an act of acceptance of the conditions and restrictions
specified herein.

LIMITED WARRANTY

XL COMPUTER PRODUCTS guarantees each diskette to
be free from physical defects for a period of 30 days
after original purchase, providing reasonable care has
been taken of the diskette. Replacement of the diskette,
exclusive of postage, will be made provided the original
package and all of its contents are returned with the
sales receipt and postmarked within 30 days of purchase.

XLCP is in no way liable for costs or damages
incurred through the use of this software.

COPYRIGHT © 1978, XL COMPUTER PRODUCTS

INTRODUCTION

The XL-7Z80 software system was designed by staff
members of XL Computer Products and intended for use on
the NORTH STAR MICRO DISK SYSTEM. Version 2.1 includes
a powerful combination of Editor/monitor, Assembler,
and Disassembler. All three programs use the existing
user I/0 routines for the Worth Star DOS. The user
should place his own DOS in the reserved area on disk
(under file name "USERDOS") prior to running the system.

The editor includes such features as free format
command entry, automatic memory nanagement, line numbering
and resequencing, string search and replacement, and mualti-
disk interface of file storage.

The Assembler's features include multiple statement
per line ability, multiple file processing, free-format
ASCII strings, multi-length label storage, and alpha-
betical symbol table listing. In addition, the Assembler
provides a variety of list and storage options that
allow development of programs exceeding the size of RAM
available in the user's system.

The Disassembler processes binary files directly
from disk and creates, if desired, ASCII files on disk
in standard format for later processing by the Editor or
Assembler. An optional listing is provided that displays
the ASCII equivalent of the disassembled product allowing
the user to search for string buffer areas. The Disassembler
allows the user to relocate programs or retrieve lost '
source listings.

Locations 2A07 and 2A08 (in all 3 programs) contain
values that define the user's console and printer device
numbers. They are defined as 0 and 1l respectively and
should be changed if they differ from these defined values.

The remainder of this manual describes in detail
the operation of these three programs, with appendices
further explaining their operation and interface of this
package to meet your needs. With the XL-Z80 and North
Star combination, you are on your way toward developing
a powerful machine language library!

XL-Z280 Editor

The XL-Z80 Editor resides in RAM starting at
2A00 Hex. 1Its purpose is to create and modify
source listings to be later processed by the Assembler.
Each line is entered in the program by providing a line
number from O through 65535. There are sixteen additional
commands that allow the user to easily modify the file
or RAM (memory) areas. These commands are: ’

COMS Lists all of the optional commands
provided by the Editor

ENTR Enters hexadecimal data into memory
DUMP Prints contents of memory in hex format
JUMP Jumps to a specified RAM location

FILE Assigns and creates a new source file

in RAM. If already present, shows
parameters of the file

LOAD Loads a source file from disk to file area
SAVE Stores the current file on diskette

ASEQ Provides automatic line numbers for file
RSEQ Renumbers the current file with new values
LIST Lists portions of the source file. Lists

contents of current diskette, if specified

SCAN Prints each line of a file where a specified
string appears. Replaces with new string

DELT

EXIT

MOVE

CONV

ASSM

Deletes lines from the source file

Returns control to the DOS

Transfers 256 bytes of memory to a new
location

Displays the difference of any two
values in hex, octal, and decimal

Loads and executes Assembler from disk

In addition, a line editor acts upon the last line entered
or listed and provides most of the features found in

the North Star Basic line editor. This provides rapid

text editing capability to the user. If a file line other
than the last line entered must be edited, simply LIST

the line to be edited. The following commands are available:

CONTROL-A
CONTROL-D
CONTROL-G
CONTRbL—N

or §
CONTROL~-Q

or RUB
CONTROL-Y

CONTROL~Z

CONTROL-C

CONTROL-I

Copies one character from old line

Copies up to a specified character

Copies remainder of old line

Re-edits old line from beginning

Backs up one character in both lines

Inserts characters until next Control-Y

Erases one character from old line

Aborts any operation and returns to 2A04H
(the Editor reentry point)

TAB function. Advances print head to next
8-character wide column. Useful for formatting.

EXPLANATION OF COMMANDS

A detailed explanation of each command will now follow.
To understand the description of each operation, the
following information is provided:

*To execute a command or place the entered/edited
line into the file, a carriage return is typed.

*FILENAME refers to any Type 10 disk file up to 8
characters long and consisting of all printable
ASCII characters and no embedded blanks. All files
must be created using the DOS and the maximum size
of any file is 255 disk blocks (65535 bytes).

*Drive # refers to a numbered disk drive (1-3). If
Drive ¥ is not specified, the default drive is 1.

*Words contained in parenthesis are optional and
are not reguired to be entered, but if entered
will provide some additional feature.

*Command (non-numbered) lines separate all parameters
with one comma or any number of spaces. A space
following the command is not required.

*All values, addresses, and line numbers entered in
command lines are interpreted as positive decimal
values, unless followed by "H" (Hexadecimal) or
"Q" (Octal).

*To terminate List or Dump operations, a Control-C
may be typed. Output will resume following the
printing of a "BREAK", provided the carriage return
key is pressed. Additionally, typing "R" will
return to start of program, or "D" will return to
the DOS.

*Control-P is used to place user's printer on (or
off) line. All subsequent console output is echoed
to the printer device.

This command prints a listing of the 15 remaining
commands:
ENTR DUMP JUMP
FILE LOAD SAVE
ASEQ RSEQ LIST
SCAN DELT EXIT
MOVE CONV ASSM

ENTR ADDR1Q}

Will place values in memory starting at memory
address ADDR1. Lines of hexadecimal values are processed
only after entire line is entered. A colon ":'" prompts
each line, indicating that the ENTR mode is in effect.
Conversion will continue until a "/" is encountered, or
an illegal hex value was encountered. Control-C will
also exit this mode. Data will not be allowed to over-
write any protion of the DOS, Editor, or current file.

ENTR5000H }

2A 3B F2 6 A 77 / 3 will enter data from
5000H to 5005H.

ENTR 1200Q 2
:2A 3B F20 A 774) only valid data from 1200Q
I DON'T UNDERSTAND to 1201Q was accepted.

DUMP ADDR1 (ADDR2) P

Lists contents of memory in hexadecimal format from
memory location ADDR1 to ADDR2. If ADDR2 is not specified,
then only contents of ADDR1 is provided. CONTROL-C will
suspend listing until Carriage Return is pressed.

DUMP 64,71

0040 01 02 03 45 F7 9A 3B 88

Hex Address Contents

JUMP ADDR1

This command exits the Editor and resumes execution
at ADDR1. The specified address cannot be anywhere within
the DOS, Editor, or current file areas. :

FILE FILENAME 2

Creates a file named "FILENAME" and assigns it to
a RAM location following the Editor. File parameters are
then displayed.

FILE 2

Displays parameters of current file to include beginning
and ending hexadecimal addresses, number of blocks on disk
required to store it, and the maximum line number contained
in the file.

Example:
FILE @
STARTREK 388C 5B77 (35 Blocks on Disk) MAXLN=2060
FILE FINANCE
FINANCE 388C 388C (1 Blocks on Disk) MAXLN=0

LOAD FILENAME, DRIVE ¢ 2

Reads in a Type 10 source file from specified disk,
examines the loaded file for proper format, and displays
the parameters of the file. The file in memory prior to
the command is erased, whether the new load was successful
or not:

FILE

FINANCE 388C 388C (1 Blocks on Disk) MAXLN=0
LOAD STARTREX,3 2

STARTREK 388C 5B77 (35 Blocks on Disk) MAXLN=2060
LOAD FINANCE D

MISSING FILE ERROR file not saved previously
FILE

MISSING FILE ERROR

SAVE (FILENAME), DRIVE # 2

Saves the current file on specified diskette under
the current file name or, if specified, the optional
FILENAME. The file must have been previously created or
a MISSING FILE ERROR will occur:

LOAD STARTREK Q

STARTREK 388C 5B77 (35 Blocks on Disk) MAXLN=2060
10 MESSAGE: "SPOCK, ARM THE PHASERS!"\\DEFB CR
SAVE,2) saves as "STARTREK" on drive 2
READY

SAVE STARWARS saves as "STARWARS" on drive 1
READY

FILE

STARTREK 388C 5B99 (35 Blocks on Disk) MAXLN=2060

** Note: The Editor will indicate when the disk file
addressed is missing or when the current file is too large
to store in the disk file. If this occurs, exit the
Editor, create your larger file on disk, and jump to

2804 (the reentry point). If Editor is reentered at 2A00,
the file will be erased. Do not use the DOS COmpact
command while using the DOS.

ASEQ VALUE 2

Provides automatic line numbers for each file line
to be entered in increments of 1, starting at the first
line number VALUE until an illegal line is entered or
a Control-C is pressed. The line number is printed and
print head stops at column one of the line, reserved
for labels.

ASEQ 121

1217 LABEL2: LD HL, MESSAGE 2

122 CALL DRINT \ INC HL \ CALL PRINT 2
123 SUB_E NCP D\ JR NZ,LABEL2 @

124 (Control-C)

READY

RSEQ VALUEl, (VALUE2))

Renumbers the entire current file from VALUEl in
increments of 10 or VALUE2, if specified. If the maximum
line value of 65535 is exceeded, then an error message
is printed and the file is renumbered starting at line
value 1 in increments of 1.

FILE

STARTREK 388C 5B99 (35 Blocks on Disk) MAXLN=2060
RSEQ 65000,10000)

T DON'T UNDERSTAND

FILE

STARTREK 388C 5B99 (35 Blocks on Disk) MAXLN=207
RSEQ 10

FILE

STARTREK 388C 5B99 (35 Blocks on Disk) MAXLN=2070

LIST (LINEl) (LINE2) D

Lists lines from the current file from LINEl to LINE2
(if specified). 1If LINEl is not specified, then the entire
file is listed. Listing is suspended by typing CONTROL-C
and continued with CARRIAGE RETURN. The line-editor
operates on the last line listed when listing is terminated.

LIST10 2
10 MESSAGE: "SPOCK, ARM THE PHASERS!"\\DEFB CR

LIST,DRIVE# 2

Lists the directory of the specified disk drive.

SCAN "STRING 1" ("STRING 2")

This command scan through every line of the file and
prints each line where the first character string is found.
If the optional second string is entered, it will replace
every occurence of the string in the program. The resulting
line must be equal to or less than 80 characters in length
or the operation will not be allowed.

SCAN "MESSAGE")

1020 CALL MESSAGE

2030 CALL OUTPUT \LD HL, MESSAGE \CALL PRINT\ RET
3650 MESSAGE: LD A, (DE) \CP CR\RET zZ\ LD B,A
3660 CALL OUTPUT \INC DE\ JP MESSAGE
SCAN "MESSAGE" "PRINT"

1020 CALL PRINT

2030 CALL oUTPUT\ LD HL,PRINT\ CALL PRINT\ RET
3650 PRINT: LD A,(DE)\CP CR\RET z\LD B,A

3660 CALL OUTPUT \INC DE \JP PRINT

** Note: This powerful command is especially useful in
renaming labels produced by the system Disassembler.

Once a routine has been identified, the assigned label
may be replaced with a logical name to help the programmer
follow the program.

** CAUTION: Be sure to completely identify the string you
wish to replace and remember that every occurrence of the
string will be replaced.

DELT LINEl (LINE2)) :
Deletes lines from the current file from LINEl to an

optional LINE2 and compacts the file so that no wasted
memory exists in the file.

FILE 2

STARTREK 388C 5B99 (35 Blocks on Disk) MAXLN=2070
LIST 2070 2

2070 LNK STRTRK2 END OF PART ONE

DELT 2070

FILE

STARTREK 388C 5B8Z (35 Blocks on Disk) MAXLN=2060

EXIT 2
Returns program control to DOS for creating files on
diskette. Return to Editor is made to 2A00H or to 2A04

(to retain the file.)

MOVE ADDR1 ADDR2

Transfers 256 bytes of data in memory from address
ADDR1 to ADDR2. Command will not allow data to over-—
write any portion of the DOS, Editor, or current file.

MOVE 2000H, 65000 Q
MOVE 2000,2A00H)
PROGRAM OVERWRITE ERROR

CONV VALUELl (VALUE2))

Displays the difference between VALUEl and VALUE2
by subtracting the latter from VALUEL. If VALUE2 is
not entered, then only the converted value of VALUEl is
computed. The result is printed in hexadecimal, octal,
and decimal:

CONV_100000Q

8000 HEX 100000 OCTAL 32768 DECIMAL
CONV_8000H, 33000)

FFI8 HEX 177430 OCTAL -232 DECIMAL

ASSM (FILENAME) ,DRIVE# 3

This command loads in the Assembler, passes on
the name of the current source file (or optional
FILENAME) to the Assembler, and executes assembly
operation. The Assembler must be stored on disk as
ASSMZ80. If no file is current in the Editor, and no
FILENAME is entered, the Assembler is loaded and started
from the beginning. The specified drive contains the
first source listing to be processed:

FILE 2
STARWARS 388C 5B77 (35 Blocks on Disk) MAXLN=2060
SAVE STARTREK 2

READY
ASSM STARTREK,Z & **needed to specify
ENTER YOUR OUTPUT LIST OPTION: STARTREK as file to be
1. PRINT ONLY ERRORS assembled since STARWARS

2. OUTPUT A COMPLETE LISTING is current file.

10

XL-7280 ASSEMBLER

After the XL-Z80 Assembler is given control by the
Editor, or loaded in separately and run, it will translate
Type 10 source listings into Z80 machine language code.

The Assembler processes source code written in Zilog format
and has such outstanding features as:

1. Multiple statement lines allow more than one
instruction per line to be processed, reducing file
storage requirements.

2. Symbolic and relative addressing allows complex
addressing relative to the program location counter
or to any pre-defined symbol name.

3. Unlimited number and variable length symbols
allows efficient storage of symbols and labels 1n
memory. Holds as many labels as user's memory can
store.

4. Predefined symbols include all 780 registers.

5. ASCII String generation provides fast, simple,
conversion of ASCII strings and messages.

6. Automatic Binary Code storage optionally stores
generated code in memory or on diskette, tracks

the size and disk space needed, and number of
assembler errors detected.

7. Multiple file processing allows large programs
to be "daisy chained" together, thus processing
programs normally too large to be stored in memory
at one time.

8. Multi-Disk capability allows user to process
source and binary files on different disk drives.

THEQORY OF OPERATION

After determining the listing and storage options,
the Assembler performs two passes on the source file stored
on diskette. During Pass 1, the values of all symbols and

labels found in the program are evaluated and stored

in a symbol table located in memory immediately following
the Assembler. The program generates object code (if
desired) during Pass 2 and places the object code directly
in memory following the symbol table. For storing large
programs, the Assembler will store the code on diskette as
it is processed. The largest single file capable of being
read from or written to is 255 blocks (65280 bytes). Of
course, several source listings that large may be linked
together.

After completion of Pass 2, the Assembler will compute
and print the size of the program generated (exclusive of
any buffers found at the end of the program), the number
of blocks on disk required for its storage, and number
of errors found. An optional symbol table listing is then
offered that will print in alphabetical order the entire
symbol table. Return is then made to the DOS.

USE OF THE XL-7Z80 ASSEMBLER

Each instruction processed is divided into four
possible '"fields'" as follows:

The optional label field identifies in the symbol
table the value of the program counter at that given
line. If present, it must begin in the second
character position following the line number. The
first character position is always occupied by a
space. The label may consist of up to ten alpha-
numeric characters, followed by a blank or optional
colon (:). The entire label is stored in the symbol
table with its associated value. For processing
large programs with limited memory available, the
user should minimize the number and length of labels
used. The first character of the label must be a
value from A through Z.

The opcode field may contain any legal Z80 opcode
in Zilog format or pseudo operation instruction, including
ASCII strings of any length.

11

12

line

The operand field contains the values associated
with the opcode. If two registers are used in the
operand field, then a comma must follow the first
argument.

All characters following the operand field define
the comment field. If the entire line is to be
used as a comment, an asterisk (*) or semi colon (;)
must be placed in the label field.

Where more than one opcode is to be entered on one
of source file listing, the comment field is replaced

or followed by a backslash (\) that indicates a multiple

line

is being read. The Assembler treats each multiple

instruction as a separate line and echoes the orginal

line number on the Assembler listing.
Assume the following subroutine was created using
the Editor:
005 OUTPUT EQU 200DH
100 MESSAGE: LD A,(DE)\ CP 1 \RET Z RETURN IF DONE
105 LD B,A \ CALL OUTPUT \INC DE\JP MESSAGE
110 skokskokkok okok ok ok ok ok ok sk ok ok 3ok ok ok ok s Kok Kook ok ok ok ok ok sk ok sk ok oK ok oK K K ok ok ok
111 * THIS ROUTINE MULTIPLIES (HL) BY 5 *
112k kskokook ok sk ok ok ok okok ok ok o oK 3k sk ok ok ok 3k ok ok o K K ok ok ok ok sk ok K ok sk 3k koK oK oK ok oK ok K ok
115 MULT5 PUSH HL \POP DE COPY HL TO DE
120 ADD HL,HL \ ADD HL,HL MULTIPLY BY 4
125 ADD HL,DE 4+1=5
130 RET
Then the Assembler-generated listing would be:
0000 1A 100 MESSAGE: LD A, (DE)
0001 FE 01 100 Cp 1
0003 C8 100 RET Z RETURN IF DONE
0004 47 105 LD B,A
0005 CD OD 20 105 CALL OUTPUT
0008 13 105 INC DE
0009 C3 00 00 105 JP MESSAGE
000C 110 ok ok ok kok ook ok ok ok K ok o ok ok ok K ok o ook skok ok ok
000C 111 * THIS ROUTINE MULTIPLIES (
000C 112 sokokokok okok sk s ok ok 3 ok ok ok ok ok ok ok ok o ok skok ok k
000C E5 115 MULT5 PUSH HL
000D D1 115 POP DE COPY HL TO DE
000E 29 120 ADD HL,HL
O00F 29 120 ADD HL,HL. MULTIPLY BY 4
0010 19 125 ADD HL,DE 4+1=5
0011 C9 130 RET

After Pass 1 is completed, the symbol table will
contain the following symbols and their associated values:

MESSAGE=0000 MULT5=000C OUTPUT=200D

Note that MESSAGE and MULT5 were evaluated by the Assembler,
while OUTPUT had to be declared by the user since the
routine occurs outside the program. There are several
variable names already defined by the Assembler and these
may not be reassigned values by the user. They are:

A, B,C,D, E, H, L, I, R, IX, IY, HL, BC, DE, SP, AF

Relative Addressing

In larger programs where the user has insufficient
memory to store all symbols or labels that would normally
be used, relative addressing will significantly reduce the
storage area required. A relative jump from any label,
numeric value, or present position may be assigned by
using the + or - numeric operators. The dollar sign ($)
is used to denote the program location counter address
immediately following the current instruction.

JP C,OUTPUT-6 will cause program to jump to a location
six bytes before address OUTPUT and resume operation.

CALL 2010H+3 will call subroutine located at 2013H.

XOR ANDEC ANJR N7,$-3 will set register A to zero,
then loop 256 times before continuing.

INFLOOP: JR Z,INFLOOP will cause an infinite loop if
the status flag Z was set. In the original Zilog format,
the above instruction was written as "JR Z, INFLOOP-$".
XLZ80, however, does not require the "-$" to be typed.

Constants & Numeric Expressions

The Assembler will process positive or negative
decimal, octal, or hexadecimal values. All values are
assumed to be decimal unless followed by "Q" or "H"
for octal or hexadecimal values. Constants are evaluated
as 16-bit values and will cause an assembler error if
exceeded. To distinguish between symbols and numeric
values, all numeric values must be preceded by a numeric
value.

13

Example:

LEGAL CONSTANTS:

ILLEGAL CONSTANTS:

256H,256Q,256
OPCODE+A-LOCATION-10000Q
-0D7H, 176213Q, -VALUE

67000, B7H, 239Q, 3*4
7F62,-0FFQ, VALUE/56

Assembler Directives (Pseudo-0Ops)

The Assembler contains several directives which
will cause certain operations to be performed. These
"pseudo-ops' are placed in the normal opcode field:

ORG 2A00H

LABEL EQU 3
THREE EQU LABEL

M1: "SPOCK, YOU FOOL!"
LD HL, n{gn
LD A,"?"

BUFFER DEFS 1024

DEFB ODH

14

Sets program pointer to specified
value. All instructions processed
following this command will be
computed from origin 2A00H. If
ORG is not specified, assembly will
begin at location 0000 by default.

Associates value of 3 with symbols
"LABEL" and "THREE'" in the symbol
table. A symbol may be equated

or evaluated only once, or else

a duplicate error will occur.

Strings contained in double quotes
are processed and placed directly

in memory if they appear in the
opcode field. Two-byte operands

are evaluated with the first
character in the high-order register,
and second in the low-order register.

Defines a storage area in memory and
causes Assembler to skip past the
specified number of bytes when assigning
code to memory.

Fills one byte (8-bit word) of
memory with the associated value.

DEFW 30760Q Fills two bytes (l6-bits) with
the associated value in the operand

LNK PART?2 Locates next source listing "PART2"
on disk and continues assembly with
all previously stored symbols

USING THE XL-Z80 ASSEMBLER

The XL-2Z80 Assembler was designed to make the assembly
process as simple and painless as possible for the user.
The Assembler will direct a series of questions and commands
to the user before and after the assembly to provide him
with his desired output.

First, the name of the source file is requested. Enter
in the name of the Type 10 source file on disk that you wish
to assemble. If a multiple source file is to be processed,
enter the name of the first file in the series. If the source
file is on other than drive one, specify the drive after the
title (separated by a comma). A CONTROL-C will return control to
the DOS.

Next, select the desired list option. Only keyboard inputs
1l or 2 will be accepted. An error-only listing will cause
the Assembler to print only lines with assembler detected
errors. Option #2 will produce a complete listing of the
assembly including errors.

Finally, tell the Assembler where you would like the
generated object code to be stored. If the disk storage
option is selected, the Type 1 file should have been reserved
prior to running the Assembler using the DOS. As a rule, this
option is used after most errors have been eliminated and
the user knows how large to make his file. If the memory
storage option is used, the Assembler places the binary code
in memory after the last symbol in the symbol table in order
to use RAM as efficiently as possible.

The Assembler will now begin a two pass scan of the
source listing(s). To suspend the assembly at any point,
the previously mentioned "BREAK" feature may be used, however
the Assembler cannot be reentered if exited other than at
2A00H. Pressing Control-P on the keyboard at any time the
Assembler is waiting for an input will place the printer on
(or off) line.

15

XL~-Z80 DISASSEMBLER

The XL-Z80 Disassembler examines Type 1 object files
stored on disk and produces a source listing of the file.
Depending upon the option selected, the program will auto-
matically fill Type 10 files on disk with the source listing.
In addition, the user may select a complete listing of the
disassembled file to be output on the terminal. To detect
stored messages within the file, this listing includes a
periodic scan of the object code interpreted as printable
ASCII characters.

The purpose of this program is to allow the user
to retreve lost source listings or to relocate existing
programs to different addresses. It is not intended to
be used to copy or modify licensed and copyrighted programs
or materials. The Disassembler will not, therefore, properly
decode XL-Z80 software.

USING THE XL-Z80 DISASSEMBLER

Like the Assembler, the Disassembler provides a simple
and direct series of commands that allow the user to select
the desired disassembled product.

First, determine how large the object file is and how
large the source file will be. For each block (256 bytes)
of object code processed, about 8 blocks of ASCII source
listing is usually generated. Thus a 10-block Type 1 object
file would require approximately 80 disk blocks to store the
listing.

Next, determine how large of a file your XL-Z80 Editor
will be able to load (since you will probably need to modify
the listing) and use the DOS to create the number of files
needed. A 16K system will accommodate 40 blocks of Type 10
listing, a 32K up to 104 blocks, etc. The exact value may
be found using the CONV command and finding the difference
between your end of RAM and the first assigned file area used
by the Editor,

Create your Type 1 object file using the DOS. The

Disassembler will use the "Go Address'" that you specify as
the origin for the disassembly.

16

Now run the Disassembler with the desired options
selected. For large programs, a listing is essential for
later debugging in order to identify embedded buffer areas.

Once a source file is filled on diskette, the program
will ask for the name of the next succeeding source listing
file. Enter the name of the next source file previously
reserved. The program will insert a '"Link" statement and
close the previous file after the new name is entered. A
new name must be entered to close the file properly. if
the next file name is not found, a message will be printed
and the user instructed to place the proper diskette into
the drive. At this point, a CONTROL-C will terminate the
disassembly and jump to the DOS. The disassembly process
is not complete until the program has typed:

END OF DISASSEMBLY.
*

You now have a complete listing(s) of the object
code file on diskette. The source file can be assembled
to reproduce the object code. To relocate the program,
simply load in the first source file using the Editor and
change the "ORG" of the program to your desired address
before assembling.

¥ Note: the Disassembler assigns names to labels in the
file by compiling a symbol table in Pass 1. It forms
a label name by preceding the address with the letter "L':

PRINT: LD A,(DE) appears as L2A15: LD A,(DE)
CP ODH CP ODH
RET Z RET Z
LD B,A LD B,A
CALL OUTPUT CALL L200D
INC DE INC DE
JP PRINT JP L2A15

The Editor SCAN command is useful in renaming each occurance

of a label throughout the entire file (see Page 8).

An inherent problem with any disassembler is determining
which memory locations contain data and which contain machine

17

18

language instructions. Most well-written software will
separate the data and ASCII buffers from the rest of the
program. This not only provides a central location

for examining stored values when debugging programs, but
requires less memory for actual program storage since data
buffers generally do not operate correctly, the user
should search the program listing to determine where a
disassembler error may have occurred. The problem occurs
where a data buffer ends and a series of instructions
begins. In this case, the last data byte in the buffer
may be translated as a 2 or 3-byte opcode and overwrite
the first few bytes of actual instructions. The XL-Z80
Assembler will detect this error most often as a missing
label error, since labels are only assigned on the M1
processor state by the Disassembler.

Appendix l: Error Message Explanation

The Editor, Assembler,

and Disassembler contain a

variety of error messages that aid the programmer debugging

source listings.
self-

While the Disassembler's messages are

explanatory, the Editor and Assembler require some
additional remarks.

Editor Error Messages

when

The following messages will be returned by the Editor
the following conditions have occurred:

FILETYPE ERROR

I DON'T UNDERSTAND

MISSING FILE ERROR

PROGRAM OVERFLOW ERROR

NUMERIC VALUE ERROR

FORMAT ERROR AT ADDRI1

PROGRAM OVERWRITE ERROR

FILE NOT SAVED

LINE OVERFLOW ERROR

A disk SAVE or LOAD attempted
to access a file other than
a Type 10 file.

An illegal command was entered

Disk file not found during a
LCOAD or SAVE command; Operation
on a non-existing file attempted

A file line, if entered, would
have resulted in overflow of
available RAM in system; Program
too large to SAVE in disk file

An illegal hex, octal or decimal
value was entered.

Before a file operation, the file
was checked for proper format

and an error detected. Usually
results from insufficient RAM

or a defective RAM location. No
further operations allowed.

An ENTR, JUMP, or MOVE command
would have overwritten the DOS,
Editor, or file areas.

Attempted to assemble a file before
saving it on disk.

Use of the SCAN command would

have generated a line exceeding
80 characters in length.

19

20

Assembler Error Messages

each

The following error symbols are generated during
assembly as they are detected:

Argument Error-an illegal operand entered
Duplicate Label Error-same symbol defined twice
End of RAM-insufficient RAM for symbol table
Label Error-improper format found for label
Missing Label on EQUate

Opcode Error-an illegal opcode detected

Range Error-out of range for relative jump
Syntax Error

Undefined Symbol not found in symbol table
Value Error-8 bit operand too large or small

<chTOoO=Et=HU»

If the code storage on disk option is selected, the following
error messages may also be produced:

MEMORY FULL: CODE STORAGE ON DISK ABORTED.

DISK

A RAM buffer following the last symbol in the symbol
table is needed to store code until it is output to
disk. The required 1280 bytes were not available. The
number and length of labels in the symbol table should
be shortened, or more RAM added.

FILE TOO SMALL: CODE STORAGE ON DISK ABORTED.

The Type 1 file created on disk by the user is not
large enough to store all of the code generated by
the Assembler, and needs to be made larger.

Appendix 2: Interfacing Source Files

The XL-Z80 will process only source files stored
on disk in Type 10 format. To process source files from
paper tape, cassette, or other storage media it will
be necessary to write a conversion routine that will
convert the file to XL format.

Description of Type 10 Format

Each line of the source file contains four additional
characters that describe the parameters of the line. An
end-of-file marker follows the last line in the file:

(rn LIH|X|X lX X |X IX IX IX IX IX ICRI 1 J

n Line Size-contains the number of characters
in the line, including the four extra symbols

L,H Line Number-low and high order of line in binary
XXX... Instruction-the label,opcode,operand,and comments
CR Carriage Return-contains value ODH
1 End of File Marker-contains value of 1

Example:

Assume the following program has been entered:

200 DELAY: LD HL,1000

300 DEC HL LD A,H\OR A\JP NZ,DELAY+3
400 LD A,INOR A\JP NZ,DELAY+3
500 END RET

The program is stored in memory and on disk as:

16H,C8H,0,DELAY: LD HL,1000,0DH,25H,2CH,1,
DEC HL LD A H\OR A\JP NZ,DELAY+3,0DH,25H,90H,1,

LD A,I\OR A\JP NZ, DELAY+3,O0DH,OFH,F4H,1,
END RET, ODH, 1

Converting to Type 10 Format

The following steps should be taken to create a Type 10
source file from an existing source file:

21

1. Write a short routine that will convert your
existing source file into Type 10 format. The
Type 10 format requires less RAM than most other
formats. Load in the original file, convert it,
and store the new file anywhere in RAM other than
at 2000H to 29FFH (the DOS area).

2. CReate a Type 10 file in the Directory using the
DOS after determining the approximate size of the
new file. If unsure of the exact size, make the
file on disk as large as your entire RAM. Use the
SF command to store the new file on disk.

3. Load in the Editor. Use the LOAD command to
load in the new Type 10 file from diskette. If your
conversion routine improperly converted the original
file, the Editor will give a FORMAT ERROR and the
address in RAM where the error occurred. The Editor
will attempt to load the file starting at location
36E1H. If the load is successful, the Editor will
print the parameters of the file, including the
number of disk blocks required to store it.

4. Renumber the source listing and SAVE the file
on disk. Then, using the DOS, the file may be
renamed and made as large or small as needed.

**Note: When the Editor checks for proper file format,
it only checks to see that each carriage return (ODH) is
where it should be and that the end-of-file marker is
present. It is not necessary to have the conversion
routine insert line numbers provided the Editor RSEQ
command is used to insert line numbers after the program
is loaded.

22

into logic groups.

Appendix 3: The Z-80 Instruction Set

Following is a list of Z-80 instructions divided

The description of each of these

operations may be found in the Z80 Technical Manual
provided with your Z80 processor board.

Eight-Bit Load Group

ID r

LD r, (IY+d)

LD (
LD A
LD I
LD (

T

HL) ,n
, (DE)
A

nn) ,A

ID r,n

LD (HL),r
LD (IX+d),n
LD A,(nn)
LD R,A

Sixteen-Bit Load Group

LD d
LD d

LD (nn),dd

LD S
PUSH

Exchange Group

d,nn
d, (nn)

P,IX
1Y

LD IX,nn
LD IX,(nn)
LD (nn),IX
LD SP,IY
POP qq

LD r,(HL)
LD (IX+d),r
LD (IY+d),n
LD A,I

LD (BC),A

LD IY,nn
LD IY,(nn)
LD (nn),IY
PUSH qq
POP IX

LD HL, (nn)
LD (nn),HL
1D SP,HL
PUSH IX
POP 1Y

and Block Transter & Search Group

EX D

EX (SP),IY

LDDR
CPDR

E,HL

EX AF,AF'
LDI

CPI

EX (SP),HL

EXX
LDIR
CPIR

Eight-Bit Arithmetic And Logical Group

ADD
ADD
AND
INC
DEC

r
(IY+d)
s
r
r

ADD n
ADC s
OR s

INC (HL)
DEC (HL)

ADD (HL)
SUB s

XOR s

INC (IX+d)
DEC (IX+d)

Generai Purpose Arithmetic & CPU Control

EX (SP),IX
LDD
CPD

ADD (IX+d)
SBC s

CP s

INC (IY+d)
DEC (IY+d)

Groups

DAA
SCY
EI

CPL
NOP
IM O

NEG
HALT
IM1

CCF
DI
IM 2

23

24

Sixteen-Bit Arithmetic Group

ADD HL, ss ADC HL,ss
ADD IY,rr INC ss
DEC ss DEC IX

Rotate and Shift Group

RLCA RLA

RILC r RLC (HL)
RL s RRC s
SRA s SRL s

Bit Set, Reset and Test Group

BIT b,r BIT b, (HL)
SET b,r SET b, (HL)
RES b,r RES b, (HL)
Jump Group

JP nn JP cc,nn
JR NC,e JR Z,e

JP (IX) JP (1Y)

Call and Return Group

CALL nn
RETI

CALL cc,nn
RETN

Input and Output Group

IN A,(n) IN r,(C)
IND INDR
OUTI OTIR

Abbreviations defined:

SBC HL,ss
INC IX
DEC IY

RRCA
RLC (IX+d)
RR s
RLD

BIT b, (IX+d)
SET b, (IX+d)
RES b, (IX+d)

JR e
JR NZ,e
DJINZ e

RET
RST p

INI
OUT (n),A
OUTD

ADD IX,pp
INC IY

RRA

RLC (IY+d)
SLA s

RRD

BIT b, (IY+d)
SET b, (IY+d)
RES b, (IY+d)

JR C,e
JP (HL)

RET cc

INIR
ouT (C),r
OTDR

r,r' = B, C, D, E, H, L, A

P = OOH,08H,10H,18H,20H,28H,30H, 38H
dd,ss = BC, DE, HL, SP

pp = BC, DE, IX, SP

qq = BC, DE, HL, AF

rr = BC, DE, IY, SP

n,nn = 8-bit,16-bit values respectively
b o 0,1,2,3,4,5,6,7

s = r,n, (HL), (IX+d), or (IY+d)

cc = Conditions: NZ,%Z,NC,C,PO,PE,P,or M
d = r, (HL), (IX+d), or (IY+d)

any address

1l

e

within 128-byte range

