Xitan, Inc.
Disk BASIC Version 1.06

Preliminary Update Documentation

Written by Neil J. Colvin
June 16, 1978

Copyright 1978 by Xitan, Inc.
Princeton, New Jersey

Xitan Disk Basic Version 1.06
Preliminary Update Documentation

1. Program Text Inputting and Editing

A number of changes and additions have been ade to the
facilities provided for the manipulation of he program
text.

addition to the DEL key. The key echos as B ~-SPACE-BS.
This facilitates keyboard input on a video vice which
allows backspacing and overwriting.

1-2, AUTO Command

etter user
d is:

1-1. Keyboard Input

The BACKSPACE key is now recognized as a character delete in
The AUTO command has been enhanced to provide

control and flexibility. The format of the comma

AUTO ([<starting line>[+]][,<increment>]

The only change in this format 1is the + option. |The use of
the + option specifies that the increment is to be added to
the starting line before the first line number is|generated.

If any line number generated by the AUTO command c¢orresponds
to an already existing line in the program, the line number
is preceeded by a "+" when displayed on the terminal. To
avoid overwriting the existing 1line, the entry f JUST the
RETURN key will advance the 1line number to the| next line
without changing the exisitng one.

This automatic skipping of 1line numbers while in AUTO mode
may be used at any time. Previously, the entry of just the
RETURN key terminated the AUTO mode. Because o this new
feature, a new AUTO mode termination has been provided. To
terminate AUTO mode, enter CTL-E. This will immediately
return to command mode, regardless of any other text entered
on the same line.

1~3. The "." Line Number

To facilitate program entry and editing, shorthand
notation for the “current line" is provided. om command
mode (ONLY), a period (“.") may be substltuted anywhere a
line number is normally used. This period represents the
last program line accessed by a program editing or execution
command. For example:

10 A$=MIDS$ (BS,5,6
EDIT .
10

Xitan Disk Basic Version 1.06 Page 2
Preliminary Update Documentation :

Note that the EDIT command references lihe 10, the last line
accessed.) .

After any execution error, the period is set to the line the
error occured on, so that a

LIST .
will list the line in error.

When AUTO mode is terminated by a CTL-E, - the period is set
to the 1last line entered. To resume input with the next
line, the command:

AUTO .+
may be used (see AUTO command, Section 1-2).
1-4., FIND Command

The FIND command allows those lines within the basic program
which contain a specific text string to be easily located.
The format of the command is: .

FIND <delimited text>[,<line range>]

where <delimited text> 1is the desired text string (32
characters maximum) delimited (preceeded and followed) by
any character (except a comma, space, or tab) not contained
within the string, and <line range> is a normal line number
range specification. If <line range> is omitted, the entire
program will be searched. :

All lines within the specified range containing the text
will be located and displayed on the terminal,

For example:
FIND /COS(/, 100-300

will find all lines containing “COS(" between lines 100 and
300 inclusive.

1-5. REPLACE Command

The REPLACE command is an extension of the FIND command
which not only locates the specified text string, but also
replaces it with another string. The format of the command
is:

REPLACE <delimited text 1><delimited text 2>,<line
range>

[

Xitan Disk Basic Version 1.06
Preliminary Update Documentation

Note that the <line range> is NOT optional on this

This command will replace all
1> within the specified range by

line in which a substitution occurs is displayed
form on the console.

If .any replacement would cause the line to
maximum size (254 characters) the command is abor
“String Too Long" error.

For example:
'~ REPLACE /COS(/ \SIN(\, 100-300

will replace all occurences of “COS("
300 inclusive with “SIN(".

" be the same for both strings.
1-6. LOAD Command

The LOAD command has been simpiified. The ALOAD
longer exists. The format of the LOAD command is:

where <file name> is
expression) which contains a
the CP/M file extension (type)
*.BAS".

(constant, Vv
file
it d

a string value
standard CP/M
is omitted,

The specified disk file is located and examined to
if it contains an ASCII or internal format BASI
The appropriate LOAD procedure is then aut
performed. (Note that the internal format of
Version 1.06 programs is significantly diffe
previous internal formats, and completely incomp3
transfer from one to another, ASCII format disk £fi
be used.)

For example:
LOAD "PROGRAM"

loads a program from the disk file "PROGRAM.BAS".

1-7. SAVE Command

The SAVE command has been simplified. The ASAVE

longer exists.

SAVE <file name>[,A]

occurences of <deli
<delimited text

between lin
Note that the delimite

The format for the SAVE command is:

Page 3

command.

mited text
2>. Each
in its new

|lexceed the

ted with a

es 100 and
r need not

command no

ariable
name.
efaults

or
If:
to

determine
C program.
omatically
Disk BASIC
rent from
tible., To
les should

command no

Xitan Disk Basic Version 1.06 . Page 4
Preliminary Update Documentation

where <file name> is as in the LOAD command. The normal
SAVE command (without the “A“ option) saves the current
program on disk in the specified file in internal format.
The use of the “A" option causes the program to.be saved in
ASCII rather than internal format.
For example:

SAVE “PROGRAM" ,A

saves the current program on disk as "PROGRAM.BAS" in ASCII
format.

1-8. RESAVE Command
The RESAVE command has been added to simplify the process of
working with a single program. The format of the RESAVE
command is:

RESAVE <file name>[,A]
where the arguments are the same as in the SAVE command.
The operation of this command is identical to that of the
SAVE command with one exception: the SAVE command gives an
error if the specified file already exists on disk; the
RESAVE command ERASEs the file if it already exists.
1-9. MERGE Command

The MERGE command replaces the AMERGE command. Its format
is:

MERGE <file name>
where <file name> is as in the LOAD and SAVE commands.

The file specified must be in ASCII format. It is merged,
line by line, with the current program.

For example:
MERGE "SUBL1"“

merges the program in the disk file "SUBl.BAS" with "the
current program in memory.

1-10. LOADGO Command

The only change in the LOADGO command is its format. The
new format is:

Xitan Disk Basic Version 1.06
Preliminary Update Documentation

LOADGO <file name>[,<start line>]

Page 5

where <file name> is as in the LOAD and SAVE commands.

The file specified by <file name> must contain a
internal format or a “Syntax Error“ will occur.

1-11. PRIVACY Statement

program in

To provide for the security of the source for a BASIC

program, the PRIVACY statement has been added.
of the statement is:

PRIVACY <password expression>

where <password expression> is any string value
variable or expression).

When this statement is. present in a BASIC p

knowledge of the value of the
expression>. The presence of this statement m

The format

(constant,

rogram, the

._source text of the program may only be accessed and modified
with the

<password
rdifies the

syntax of many of the text editing and inputting commands,
requiring the prefacing of a password .to the command

arguments. The commands affected are: LIST, ED

IT, DELETE,

AUTO, SAVE, RESAVE, COPY, RENUMBER, FIND and REPLACE. 1In

addition, no direct program statement entry
(<line number> <text>) is allowed at all. The pa
string value which must be equal to the decla
<password expression> value. It must be followed
if more arguments are to follow. For example, if
program were:

10 A=5

20 B=6

30 D=A*SQR(B) .
40 PRINT D

50 PRIVACY "“SQUINT"

60 END

then the following command would be required t
entire program:

LIST “SQUINT"

The PRIVACY statement may be anywhere in the p
MUST be the first statement on the line.

br deletion

ssword is a

red PRIVACY
by a comma
the source

o list the

rogram, but

Xitan Disk Basic Version 1.06 Page 6
Preliminary Update Documentation

2, Arithmetic and Logical Operators

The set of availabie arithmetic - and logical operators has
been expanded. The complete set, in priority order (the
order in which they are evaluated) is as follows:
a. Expressions in parentheses " ()"
- (exponentiation)
C. - (unary minus)
d. * and / (multiplication and division)
e. \ (integer division)
£. MOD. (modulus)
g. + and - (addition and subtraction)
h. relational operators
= (equal)
<> (not equal)
< (less than)
> (greater than)
<= and =< (less than or equal to)
>= and => (greater than or equal to)
i. NOT (logical bitwise complement)
J. AND (logical bitwise and)
k. OR (logical bitwise or)
1. XOR (logical bitwise exclusive or)
me. EQV (logical bitwise equivalence)
n. IMP (logical bitwise implication)

All operators listed at the same 1level in the table are
evaluated left to right in an expression.

All logical operations convert their operands to sixteen bit
integer values prior to the operation. These operands must
be.in the range 0 to 65,535 or -32,768 to 32,767. An
“Illegal Function Call" error will result if the operands
are not within this range.

o

Xitan Disk Basic Version 1,06
Preliminary Update Documentation

3. Intrinsic Functions

A number of new mathematical and string functions

added.

3-1. Mathematical Functions

a.
b.
c.

d.

String Functions

a.

Page 7

have been

LOGl0(X) : returns the base ten logrithm of X

FIX(X) : returns the truncated integer g
PI : [no argument] returns the value of

EE : [no argument] returns the value of

art of x
pi

e

RND : [no argument] returns a random number, same

as RND(X) when X>0

TIME : {no argument] returns the
milliseconds since midnight (only on sy
real time clock support, otherwise retur

HEXS$ (X) : returns a string conta
hexedecimal representation of X conve
sixteen bit integer

SPACES$ (X) : returns a string containin
(X must be less than 256)

STRINGS (S$,X) : returns a string cont
string S$ repeated X times (X*LEN(S$) my
than 256)

FIX$(SS$,X) : returns a string that is X
long whose value is S§ either truncated
with spaces to the correct 1length (X muy
than 256)

time in
stems with
ns zero)

ining the
rted to a

g X spaces

aining the
st be less

characters
or padded
st be less

DATES : [no argument] returns a string whose value

is the current date in the form MM/DD/Y
systems with real time <clock support,
returns a string of eight spaces)

TIMES : ([no arguments] returns a st
value is the current time in the for
(only on systems with real time clog
otherwise returns a string of eight spac

Y (only on
otherwise

ring whose
m HH:MM:SS
kK support,
es)

Xitan Disk Basic Version 1.06 Page 8
Preliminary Update Documentation

4., Input/Output Operations

The input/output operations in BASIC are significantly
changed in this version. Prior to detailed descriptiens of
each of the various commands, statements, and functions,
some basic concepts should be understood.

4-1. Unit Numbers

Because the BASIC now supports multiple I/0 devices
(console, list, reader, punch, disk), a method is provided
to direct a particular 1I/0 operation to a specific device.
The mechanism for this is the unit number. Each I/0 device,
and each active file on the disk, is assigned a unique unit
number from 0 to 255. The wunit numbers associated with
specific devices are fixed as follows:
the console device o
the LOAD/SAVE device (normally disk)
the list device

the reader device

the punch device

: reserved for future expansion
0-255 : the disk device

WO o oo oo o0 o

HUSWN-O

Note that these devices correspond to the standard CP/M
supported devices. . . .

All I/0 operations (except LOAD/SAVE) may be directed to any
1/0 device which 1is capable of supporting that operation
(eg. a PRINT cannot be done to the reader device). The
default unit number for all 1I/0 operations (except
SAVE/LOAD) is 0 (the console).

The format for specifying a wunit number is "#<unit>", where
<unit> may be any expression evaluating to a valid unit
number. In intrinsic functions which take unit numbers as
arguments, the "#" is optional. If the unit number is. to be
followed by additional arguments, it must be followed by a
comma. i

For the disk device, any unit number 10 through 255 is
valid. The actual association between a unit number and a
specific disk file is made by the OPEN command described
below.

. 4-2, Random Addresses
For the disk device, an expanded unit specification is

allowed by many of the 1I/0 operations. This specification
includes not only the unit number (specifying a particular

L2

£

Xitan Disk Basic Version 1.06
Preliminary Update Documentation

disk file), but also an optional random address W

disk file. This random address represents the
record within the file at which the I/0 operation
(For more information on records, see
The format of this expanded unit specification is;

#(unié>[@<random address>]

where <random address> is any expression
positive integer value less than 4194304.

If specified, the random address is multiplied by
size to generate a “byte pointer“. This
specifies the particular byte in the
1/0 operation will start (0 is the first byte in
1f not specified, the I/0 operation will

by the previous I/0 operation). The
files OPENed in the Update mode (see the OPEN stat
4-3. OPEN Statement
initializes the 1I/0 device
operation. Each device (and associated unit
its own specific actions and format for the OPEN
The general format of the statement is:

The OPEN statement

OPEN #<unit>,<mode>{,<file name>[,<record siz

where <unit> is as described in Section 4-1, <

evaly

byt
disk file at

normal
from the current byte position (the first byte not
exception g

Page 9

ithin that
particular
will start

the OPEN statement).

ating to a

the record
e pointer
which the
the file).
ly proceed
processed
o this is
ement) .

- for I/0

numbers) has

statement.

e>]}

ode> is a

string value (constant, variable or expression) which
contains the single character I, O, R or U. The arguments
in braces are used for disk wunits only, an will be

described below.

The mode values are as follows:

may |be done on

ations may
for disk

I Input mode. Only input operations
the unit,
o Output mode. Only output operations may be done
on the unit.
R Random mode. Both input and output ope
be done on the wunit, Vvalid onl
units.
U Update mode. Both input and output ope

ations may

be done on the unit. Unless| otherwise
specified however, each output| operation
begins at the same byte address n the file
as the preceeding input operation and each

Xitan Disk Basic Version 1.06 Page 10
Preliminary Update Documentation

input operation begins at the first
unprocessed byte address from the previous
I/0 operation. Valid only for disk units,

4-3-1. Console (Unit 0)

The console unit is always open. An OPEN to the console
unit simply causes a form feed (hex 0C) to be output to the
device, and the unit ' parameters to be reinitialized to the
defaults (see Unit Parameters). .

4-3-2, List (Unit 2)

The list unit is always open. An OPEN to the list unit
(must be mode 0) simply causes a form feed (hex 0C) to be
output to the list device, and the device parameters to be
reinitialized to their default values.

4-3-3, Reader (Unit 3)

The reader unit is always open. An OPEN to the reader unit
simply causes the device parameters to be reinitialized to
their default values.

4-3-4,., Punch (Unit 4)

The punch unit is always open. An OPEN to the punch unit
outputs sixteen bytes of leader (hex FF) to the device and
reinitializes the device parameters to their default values.

4-3-5. Disk (Unit 10-255)

Disk units are dynamically allocated as requested by OPEN
statements. The maximum number of disk units which may be
OPENed simultaneously by the program is determined by the
units parameter to the CLEAR. statement (see the CLEAR
statement below).

Each disk unit is associated with a specific disk file.
This association is established by the <file name> argument
in the OPEN statement., This <file name> is a string value
which contains a standard CP/M disk file name. If omitted,
the extension (type) is assumed to be “.BAS".

The way in which the association is made is determined by
the OPEN <mode> as follows:

I The file is searched for on disk, and if found,
the association is made. If not found, an
"Input File Not Found" error is given,

kD

Xitan Disk Basic Version 1,06 Page 11

Preliminary Update Documentation

4] The file is searched for qn,ﬁisk, and if found, an
“Duplicate Output File" error 1is|given, 1If

not found, the file 1is created and the
association is made.

R The file is searched for on disk, and if found,
the association is made. If not |found, the
file is created and the association is made,

u The file is searched for on disk, and if found,
the association is made. If not| found, an

“Input File Not Found" error is given.

It should be noted that nothing in the above precludes the
same disk file from simultaneously being associated with
multiple disk wunits. 1In fact, this can on occasion be a
usefull technique, as long as care is taken to properly
coordinate accesses to the files.

is set to
ressed I/0

In all modes, the byte'address pointer in the file
zero as a result of the OPEN, so that all unadd

operations will begin with the first byte i the file
(sequential access).
If a disk unit which is already OPENed is OPENed again

without being CLOSEd first, an error does nét occur, and the
‘dynamic unit space for that wunit is reused. However, the
unit is not CLOSEd by this action, and none of the effects
of a CLOSE operation will occur,

-The final optional argument for a disk unit OPEN|is <record
size>. This arqument must be a sixteen bit integer value
between 1 and 32,767. If omitted, it defaults to l. This
value 1is used to set up all randomly addressed 1I/0
operations. This record size is multiplied by the specified
random address to determine the byte address in the file at
which the operation will start. Note that a record size of
one (the default) will cause the random address and byte
address to always be the same. NOTE: This record size only
affects those operations in which a random address is
specified. It has NO affect on unaddressed (sequential)
operations.

4-4, CLOSE Statement

used by a
ions. The

The CLOSE statement release the I/0 device being
unit and performs device dependent clean-up func
format of the CLOSE statement is:

CLOSE [#<unit 1>[,#<unit 2> ...]]

Xitan Disk Basic Version 1.06 Page 12
Preliminary Update Documentation -

where <unit> is an OPENed unit number. If one or more units
are specified in the CLOSE, just those units will be closed.
If no units are specified, ALL disk units which are open
will closed. The specific actions taken for each type of
unit are described below.

4-4-1, Console (Unit 0)

A CLOSE to the console unit only causes the output of a form
feed to the console device. No other action takes place,
and the unit remains open.

4-4-2, List (Unit 2)

A CLOSE to the 1list unit only causes the output of a form
feed to the list device. No other action takes place, and
the unit remains open.

4-4-3, Reader (Unit 3)

A CLOSE to the reader unit has no effect. The unit remains
open. :

4-4-4, Punch (Unit 4)
A CLOSE to the punch unit causes a CTL-Z (hex 1A} followed
by sixteen bytes of 1leader (hex FF) to be output to the

punch device. No other action takes place, and the unit
remains open. '

4-4-5, Disk (Unit 10-255)

A CLOSE to a disk unit causes different actions depending on
the mode in which the unit is open, as follows:

I No specific action takes place.

(o] A CTL-2 (hex 1A) is written at the current byte
address. All memory buffers are updated to
disk, and the disk directory is updated.

R All memory buffers are updated to disk, and the
disk directory is updated.

U All memory buffers are updated to disk, and-the
disk directory is updated.

In all modes, the unit.is disassociated from the disk file,
and the dynamic unit space is released for reuse,

An attempt to CLOSE a unit which 1is not OPEN will result in
a "File Not Open" error.

U S A

Xitan Disk Basic version 1.06
Preliminary Update Documentation

Page 13

4-5, Device Parameters
Each I/0 unit has associated with it a number of modifiable
parameters:
line width : the number of characters output to a line
on that unit before a carriage return/line
feed is sent automatically
null count and character : the number and value of the
characters sent to the device after each

carriage return/line feed sequence

for timing

purposes
quote mode : the character (if any) output to delimit
string values when outputting in ASCII mode
prompt character : the character (if any) output to
prompt the user that an INPUT statement has
been executed
Each of these parameters has a default value for each unit

type, and is overidable by the use of the OPTION

The format of this statement is:
OPTION [#<unit>,]<option>[,<arg 1>[,<arg 2>]}

str
opt

is a
These

<option>
or P.

where <unit> is as above,
containing either W, N, O
different arguments as follows:

W width : <arg 1> is the width of the 1j
(20~253)

N null : <arg 1> is the number of cha
output (0-255) and <arg 2> is the
decimal value (defaults to 0 if omi

(] quote : <arg 1> is the decimal val
character to be used as the output
delimiter (0 means NO delimiter
quote mark)

P prompt : <arg 1> is the decimal wval

character to be output as the INPUT
prompt (0 means no automatic promg
question mark)
Each unit has default parameters as follows:
0 (console) : W([72],N[3,0],0[0],P[63]

.

statement.

value
take

ing
zions

ne desired

racters to
characters
tted)

ue of the
rted string
34 is a

lue of the
 statement
bt, 63 is a

Xitan Disk Basic Version 1.06 Page 14
Preliminary Update Documentation

2 (list) : W[72},N[3,0],0[0]

3 (reader) : not applicable

4 (punch) : W[253],N[0,0],0([34]
10-255 (disk) : w({253],N[0,0],0(34]

Note that the OPTION statement replaces the NULL, WIDTH and
QUOTE statements of previous versions.

4-6. Dynamic Unit Space

Each disk unit (10-255) requires 181 bytes of memory during
the time that it is OPENed. When BASIC 1is started, the
default is to allocate space for no disk units. To change
this default allocation, the CLEAR statement is used, The
format of the new CLEAR statement is: :

CLEAR [<string space>][,<number of units>]

where <string space> is the amount if string area to
allocate, and <number of units> is the number of
simultaneously OPENed disk wunits to allocate. If either
argument is omitted, the corresponding allocation remains
unchanged. The use of the CLEAR statement implicitely
results in the disassociation of all OPENed disk units from
their corresponding disk files WITHOUT any CLOSE actions
being taken.

Note that space is always allocated for the LOAD/SAVE unit
(which is effectively a disk unit).

4-7. Data Input and Output
The format of the data input and output commands ‘is
unchanged except for the addition of the extended unit
specifier option for disk units. The formats are:
INPUT [LINE] [#<unitd>[@<addr>],] [<promptd>;] <i/o list>
PRINT [#<unit>[@<addr>],] [USING <format>;] [<i/o list]
READ #<unit>([@<addr>],<i/o list>
WRITE #<unit)>([@<addr>],<i/o 1list>
MAT READ $#<unit>[@<addr>],<i/o list>

MAT WRITE #<unit>(@<addr>],<i/o list>

Xitan Disk Basic Version 1.06
Preliminary Update Documentation

Note the reversal of INPUT LINE from LINE INPUT 1

versions. Also, MSAVE has become MAT WRITE and
become MAT READ. The remainder of the statements
these cases is unchanged.

Page 15

n previous
MLOAD has
in each of

It is also important to note that binary 1I/0 (READ and
WRITE) operations can only be done to binary devices (not
the console [unit 0]).

4-7-1, OUTBYTE Statement

The OUTBYTE statement has been added to facilitate single

byte output operations to defined units. The for

statement is:

OUTBYTE [#<unit>[@<addr>],] <i/o list>
list> element 1is a numeric value,
0-255, and is output to the specified unit a
eight-bit byte. If the element is a string, each
" of the string is output as a single byte, with no
of any sort. The length of the string is not oy
is with a WRITE statement.

If the <i/o

4-7-2. SETLOC Statement

The SETLOC statement is provided to set the byte
a disk unit, independent of any I/O operation.
the random address to be determined one
program, and all I/0 to be done sequentially
place. The format of the statement is:

a
T

SETLOC #<unit 1>@<addr 1> [,#<unit 2>@<addr 2
where each unit's byte address is set as specified
4-7-3, ON EQF Statement

to allow
opened.

has been expanded
unit currently

The
EOF
is:

ON EOF statement
statement for each

ON EOF [#<unit>] [GOTO [<line number>]]

where <line number> is where execution should cog
an End-of-File is encountered.

If the <unit)> is specified, than the EOF branch ag
to that unit. If no unit is sepcified, than the
applies to all units with no EOF branches specifie
GOTO or the <line number> is omitted, than the EOI
cleared.

plac

mat of the

it must be
s a single
1 character
formatting
itput as it

ddress for
his allows
e in the
in another

> ..l

a seperate
The format

1tinue when

pplies only
EOF branch
ad. If the
* branch is

Xitan Disk Basic Version 1.06 Page 16
Preliminary Update Documentation

An EOF branch may be set for the console unit (0), and will
be taken whenever a CTL~Z (hex 1lA) 1is received from the
console.,

The ON EOF may be executed any number of times, and changed
as desired. :

4-7-4. EOF Statement

In a similar fashion to the above, the EOF statement may
cause a software EOF trap on a specific wunit. The new
format is:

EOF [#<unit>]

If executed, the effect is that of an EOF being encountered
on the specified unit. -

4-7~5, Intrinsic Functions

A number of new intrinsic functions have been added to
increase the flexibility of the 1I/0 system within BASIC.
These are as follows:

a. POS (<unit>) : retufns the number of characters
- output to the current line of the specified
unit (counted in ASCII mode output only)

b. ERR(<unit>) : returns a logical TRUE (~1) is an
I/0 error was encountered during the last I/0
operation on the specified wunit (currently
always FALSE [0])

c. EOF(<unit>) : returns a logical TRUE (-1) if an
EOF was encountered during the last 1I/0
operation on the specified wunit (reset to
FALSE [0] at the start of every 1I1I/0
operation)

d. LOC(<unit>) : returns the byte address of the
specified disk unit, the NEXT byte to be
sequentially processed (this is always
independent of any specified record size)

e. LOF(<unit>) : returns the number of bytes in the
current extant of the disk file associated
with the specified disk unit

£. BYTEPOLL (<unit>) : return a logical TRUE (-1) if a
byte is available from the specified unit
(the only time this will be FALSE [0] is for
the console wunit [0] when no character has

D _

Xitan Disk Basic Version 1.06 Page 17
Preliminary Update Documentation

been entered since the last input operation)
g. BYTE (<unit>) : returns the decimal value of the
next byte read sequentially from the
specified unit : '
h. BYTES (<unit>) : returns a string of 1length one
containing the next byte read sequentially
from the specified unit

In each of these functions, the <unit)> specified must be
OPEN.

4-8., Expanded Capabilities for Other I/O

other commands which perform output have also been enhanced

-to utilize the new extended unit specification. The formats

of these enhanced commands are:

LIST [<password>,] [{#<unit>[@<addr>],]
[<line number range>]

LVAR {[#<unit>[@<addr>]]
TRACE [#<unit>[@<addr>},] <logical value>

Note that the previously provided "L" forms of these
commands are no longer available (LLIST, LTRACE, LLVAR).

Xitan Disk Basic Version 1.06 Page 18
Preliminary Update Documentation

5. Disk File Management

The ERASE and RENAME commands are unchanged, as is the
LOOKUP function, with the following formats:

ERASE <file name>
RENAME <file name 1>,<file name 2>
LOOKUP (<file name>)

In addition, three new file management statements have been
added.

5-1. DIR Command

The DIR command allows the display of the disk directory
from within BASIC. The format of the command is:

DIR [#<unit>[@<addr>],] [<file name>]

where <file name> is a string value (constant, variable or
expression) containing a valid CP/M disk file name (with ?
and * masking if desired). 1If omitted, the name defaults to
“* BAS", and if the extension is omitted, it defaults to
“.BAS". All the files matching the specification are output
to the specified unit.

For example, the following command outputs a list of all of
the files on disk A to the console: i

DIR "A:* #*¥
5-2. PROTECT Statement

The PROTECT command is only applicable to those systems
which have individual disk file protection, on all others it
does nothing. The format of the command is:

PROTECT <file name>,<protection>

where <file name> is a string value containing a (possibly
masked) CP/M file name, and <protection> is an integer value
between 0 and 7 specifying the new protection key.

5-3. RESET Statement

Under CP/M, the changing of a diskette while BASIC (or any
program) is running requires updating the operating systems
tables. The RESET statement causes that to happen. The
format is:

)

Xitan Disk Basic Version 1.06
Preliminary Update Documentation

RESET

This command should not be issued with
files OPEN.

Page 19

any non~-Input mode

Xitan Disk Basic Version 1.06 Page 20
Preliminary Update Documentation

6. Program Controlled Console I/0

———

One of the new I/0 functions provided in this version of
BASIC is BYTEPOLL. This function determines if a byte of
data is ready to be read from an I/0 unit. The only unit
this really applies to is the console. However, the
usefullnes of this function is 1limited by the fact that
BASIC itself constantly tests (and reads) the console input
to determine if a CTL-E or other control function has been
entered. Hence, under normal conditions, BYTEPOLL will
never return a TRUE from the console.

To allow this prgrammed control of console input to work
properly, a special statement has been added to the BASIC,
the INTERRUPT statement. The format of this statement is:

INTERRUPT <interrupt logical®

The function of this statement is to set the internal
console interrupt test to the value of the <interrupt
logical>. 1If that wvalue is TRUE (-1), then BASIC will
continue (or resume) testing for CTL-E and other control
functions. 1If it is FALSE (0), then the internal testing
will stop. THIS MEANS THAT THE PROGRAM MAY NO LONGER BE
STOPPED BY CTL-E. 1If a program logic error occurs in this
mode, and some form of loop takes place, the only method for
stopping the program will be resetting the processor. .

INTERRUPT is automatically set to TRUE whenver BASIC returns
to command mode. .

i st e et il

('.

[Es

Xitan Disk Basic Version 1.06 » Page 21
Preliminary Update Documentation

7. Program Execution Control Statements

——— - —

Two hew execution control statements have been added to
increase program control over the execution environment. 1In
addition, to avoid a keyword conflict, a new statement has
been added. :

7-1. Return to Operating System

To leave BASIC and return to the operating system, the BYE
command is used. The format of the command is:

BYE
The execution of the BYE command is TERMINAL. Make sure
that all output files are CLOSEd prior to issuing this
command, or data may be lost.
This command replaces the EXIT command of previous versions.
7-2. RETURN Statement
The RETURN statement has been enhanced to provide a
“non-standard“ subroutine return capability. The format of
the RETURN command is:

RETURN [<line number>]
or

~ ON <8-bit value> RETURN <line 1>[,<line 2>,...]

where <line number> is the line to RETURN to.
If no line number is specified, the operation of the RETURN
command is unchanged. Specifying a line number causes the
RETURN to terminate the corresponding GOSUB (as would

normally happen), and then continue execution at the
specified statement, NOT the statement following the GOSUB.

10 GOsuB 40
20 PRINT “LINE 20"
30 STOP

40 PRINT “"LINE 40"
50 RETURN 70

60 STOP

70 PRINT “LINE 70"
80 END

Xitan Disk Basic Version 1.06 Page 22
Preliminary Update Documentation

The RUNning of this program would result in the output:

LINE 40
LINE 70

The ON ... RETURN format is provided for those cases where
the non-standard RETURN is to one of a set of lines
depending on some value.

7-3. EXIT Statement

The EXIT statement has been added to allow the correct early
termination of a FOR-NEXT loop. The format of the EXIT
statement is:

EXIT [<line number>]{,][<variable name>]

where <line number> is the line to EXIT to, and <variable
name> is the variable controlling the outermost FOR-NEXT
loop to be terminated. Note that the comma is required only
if both optional arguments are present.

Due to the fact that the BASIC interpreter allows FOR-NEXT
loops to be structured in any fashion (including having the
NEXT preceeding the FOR), a. mechanism must be provided to
specify the point at which the 1loop is to be considered
terminated (as opposed to the normal completion of the loop
at the NEXT statement). The EXIT statement provides this
capability.

The EXIT statement with no arguments simply terminates the
innermost currently active =~ FOR-NEXT loop, leaving the
controlling variable with its current value. The addition
of a line number causes execution to continue at the
specified line after the loop is terminated. This mode of
operation is an exact replacement for a GOTO statement in
the same context, and should be used whenever it is desired
to jump out of a FOR-NEXT loop.

If more than one FOR-NEXT loop is currently active, and it
is desired that other than the innermost one be terminated,
the variable name for the controlling FOR-NEXT may be
specified. In this case, all nested loops within the
specified loop are also terminated. Note that the line
number may be optionally specified along with a variable.

For example:

10 FOR I=1 TO 10

20 IF MX(I)=0 THEN EXIT 60
30 NEXT I

40 PRINT "NO ROOM"

N

Xitan Disk Basic Version 1.06
Preliminary Update Documentation

50 I=0

60 FOR J=1 TO 10

70 FOR I=J TO 10

80 MX(I)=MX(J)

90 IF MX(I)=0 THEN EXIT 140,J

100
110
120
130
140

NEXT I

NEXT J
PRINT “DONE"
STOP

<illustrates the proper use of the EXIT statement.
were used in line 20 rather than an EXIT, a "NE
FOR" error would result at line 110 because the se
statement would establish a new active 1loop 4
level as the previous FOR I, 1losing the FOR J
With the EXIT statements added, the program works

Page 23

If a GOTO
XT without
cond FOR I
t the same

entirely,
properly.

PM-G12014-0300~01

TDL BASIC VERSION 3
USER'S MANUAL

(Manual Revision 0)

First Printing January 1978

Copyright (C) 1978, by Technical Design Labs, Inc.

B

PREFACE

This manual describes the Basic programmin

lanquage,

occupying slightly more than 12k of core, as implemented on

a Z2-80 based microcomputer.

It describes the unique and powerful command

available

in TDL Basic Version 3. Also discussed are the tremendously

powerful I/0 handling capability, relocatability,
and the large measure of hardware independence.

Great care has been taken to eliminate
omissions in this manual. Our technical support
available regarding any problems or question:
encounter. Any effects however, or damages
consequential) caused by reliance on the material
including but not 1limited to typographical, ari
listing errors, shall not be the responsibility o

ROMability

errors and
. staff is
5 you may
(including
presented,
thmetic, or
f T.D.L.

Table of Contents

0.0 Introduction
0.1 what is a microcomputer?

0.2 What is Basic?

CHAPTER 1

1.0 I/0 Handling
1.1 Loading Basic with Zapple
1.2 Zapple Basic version 3 Jump Table

1.3 Error Messages

CHAPTER 2

2.0 Basic Version 3 Command Set

CHAPTER 3

3.0 Detailed Descriptions of Commands/Functions

3.1 Group 1 General Purpose Utility Commands

AUTO,CLEAR,CONTINUE,DELETE,KILL,LOAD,LOADGO
PRECISION,RENUMBER,RUN,SAVE

3.2 Group 2 The EDIT Command

3.3 Group 3 Commands Involving the Console
LIST,LVAR,NULL,POS,PRINT,PRINT USING,SPC,SW]
TAB,TRACE ,WIDTH

3.4 Group 4 Commands Involving the Line Printe

LLIST,LLVAR,LNULL,LPRINT,LPRINT USING,LTRACE
LPOS,SPC,TAB

yNEW,

[TCH,

2L

£,LWIDTH,

Table of Contents Page 2

Group 5 Commands and Functions That Involve the

3.5
Movement of Data from one place to another.
LET(=) ,DIM,DATA,READ ,RESTORE, INPUT,LINE INPUT,INP,
MLOAD,MSAVE,OUT,QUOTE,WAIT,WRITE,PEEK,POKE,COPY,
EXCHANGE
3.6 Group 6 Transfer of Control and Relational Tests
EOF ,GOTO,RETURN,ON EOF GOTO,ON x GOTO,ON x GOSUB,
CALL,(FOR,TO,STEP,NBXT),(IF,THEN,ELSE),VARADR
3.7 Group 7 Trigonometric Functions
_ATN,COS,SIN,TAN
3.8 Group 8 Miscellaneous Functions
ABS,DEF,FN,EXP,FRE, INT,LOG,SGN,SQR,RND,RANDOMIZE
3.9 Group 9 String Related Functions
ASC,CHRS ,LEFTS$,LEN,MID$,RIGHTS,STRS,VAL, INSTR
3.10 Group 10 Miscellaneous Commands
END,REM,REMARK,STOP,USR
3.11 Group 11 Commands to Handle ASCII Text
ASAVE ,ALOAD,ALOAD* ,AMERGE ,AMERGE*
3.12 Group 12 Special Functions & Control - Characters
3.13 Group 13 Operators
3.14 Group 14 BError Handling
ERL,ERR,ERROR,ON ERROR GOTO,RESUME,RESUME NEXT
CHAPTER 4
4.0 TDL Basic Version 3 Capabilities Under CP/M
4.1 CP/M Error Messages

@)

TDL Z80 BASIC VERSION 3 USER'S MANUAL
INTRODUCTION: CHAPTER 1

0.0 INTRODUCTION

0.1 What is a microcomputer?

Microcomputer is a term used to describe a
built around a microprocessor. Recent ad
integrated circuitry have made it possible to
complex functions in a package the size of a d
idea of the microprocessor was to make what am
CPU on a single chip. This chip, used as
process controller, would be replacing large
complex circuitry in all sorts of equipment.

0.2 What is Basic?

Basic is a programming language most cft
with small computers. It is very
a great deal of programming flexability,

originally designed as a beginner's language.

CHAPTER 1
GENERAL INFORMATION

Basic V3 functions
slightly more than 12k

as a BASIC Interprete
of memory, and provides

most advanced software features of any ¢
available Basic. If you have already worked with
8~K Basic, you will appreciate the new command
been added and the extended capabilities of t
commands.

Basic V3 offers many unique features, inc
programmable error handling routines which can

error occurring in the Basic program without a
program; serial input and output of ASCII or

files from the Zapple Monitor defined reader
devices, and the passing of a variable's add

assembly language routine which allows routines

data to the calling progranm.

this manua
Man

are covered in
Basic Programs" manual.

All of the above

NOT a "How to write

ny computer
vances in
put highly
emino. The
unted to a

universal
amounts of

n supplied

easy to learn, yet offers
having been

occupying
ome of the
mmercially
the Zapple
that have
e existing

uding user
rocess any
orting the
inary data
and punch
ess to an
to return

This is
excellent

TDL 280 BASIC VERSION 3 USER'S MANUAL rage 2
INTRODUCTION: CHAPTER 1

texts on this subject have been produced. Your local
Computer Store can recommend many such texts.

-1.0 I/0 HANDLING

Oftentimes the lament of the programmer is the lack of
source documentation for a Basic Interpreter. This |is
usually due to the fact that internal I/0 routines must be
modified to suit the exact configuration of your hardware.
The TDL method of I/0 handling eliminates this problem in
that the source code for the Monitor 1is provided, and once
modified to your hardware configuration, ALL other 'TDL
software automatically interfaces to your system.

Basic V3 has this feature of hardware independence.
All of its I/0 drivers are contained in the Monitor, so
interfacing it to your hardware is simple.

To get the. most out of BASIC, we highly recommend
getting the 2K ZAPPLE MONITOR. :

1.1 LOADING BASIC WITH ZAPPLE

Loading of Basic V3 1is very straight-forward. It is
loaded using the "R" command of either the Zap or Zapple
Monitors. It is provided on paper tape in TDL's relocatable
hex file format. It occupies slightly more than 12K of
core.

Basic V3 has been assembled on TDL's relocating
macro—-assembler. Because of this, Zapple Basic is
completely relocatable. It is not necessary to load and run
this program at one address only. Within limits, which will
be mentioned here, it may be loaded and run at any
convenient address by the user.

The procedure for loading the program is very simple.
Place the tape in the reader device on the nulls between the
serial number and the start of the data. Type on the
console: "R, (x)"(cr): and start the reader.

Example: R,300 (cr)
will load Basic V3 at address 300H. For the exact details

on the operation of the "R" command, see either the Zap or
Zapple Monitor Manuals.

)

TDL Z80 BASIC VERSION 3 USER'S MANUAL . Page 3
INTRODUCTION: CHAPTER 1 1

After loading, Basic V3 will NOf sign on. You must
begin execution at the address given in the relocation
parameter above by typing: G300 (cr). Basic will then ask:
“Highest Memory?* asking the wuser to type in |decimal the
upper limit Basic will be allowed to use. A carﬁiage return
(cr) will assign all available memory to Basic | save for a
small amount at the top which is reserved for | use by the
monitor.

The limits on its prabtical relocatability are governed
by two factors; The buffer storage area required, and the
address at which the monitor will be located. ;

The first factor is that, Basic V3 requires a buffer
space of approximately 512 bytes. Regardless of [the loading
address of Basic, this 512 byte buffer resides from address
100H to 2FFH. Thus, the minimum loading address for Basic
Vv3 is 300H. From this it should be evident tha? this Basic
at no time uses any memory below address l00H, as is the
case of 8-K Basic. ‘

THE MINIMUM LOADING ADDRESS FOR BASIC V3 IS 3UOH4

As to the second factor, the Monitor are also
relocatable, but we do recommend that they be placed up near
the top of memory at F000 (up “out of the way"). Thus the
2K monitor would reside from F000 to F7FF (hex) allowing
F800 to FFFP for monitor extension routines. (Such as a vDM
driver, Tarbell driver. Etc.). Thus, since the Basic V3
occupies slightly more than 12K of core, the maximum
practical loading address is B0OO (hex) .

Basic will normally use the location of the
initialization routine as an input buffer, thus once Basic
signs on, and you type in a program you must reenter Basic
at the recovery point (loading address +3). If, during the
sign on sequence, Basic gets the highest memory address that
is below the beginning of Basic then Basic assumes that it
is running in ROM and does not attempt to modify itself.

1.2 ZAPPLE BASIC VERSION 3 JuMP TABLE

All I/0 handling for Zapple Basic |is done through
either the 2AP (1K) or ZAPPLE (2K) monitors. The 1/0
interfacing is done in the beginning of the Basic V3
Program.

Zapple Basic has in addition, a recovery address, from
which recovery of the program can often be made following a

TDL 280 BASIC VERSION 3 USER'S MANUAL Page 4
INTRODUCTION: CHAPTER 1

“blow~up”.

Zapple Basic V3 also has a "USR" command which allows
one's own assembly language routines to be called as part of
a Basic program. A Jjump vector is provided allowing the
user great latitude in this application.

On Page 5, the source code of the first part of Zapple
Basic V3 is presented. It contains all of the I/0 vectors
which are necessary for ~complete user versatility. Note
that as part of the code, addresses marked with an
apostrophe (') are those addresses which are relocatable.
Those without an apostrophe (') are considered absolute, in
that they are vectoring to addresses outside of Basic, where
they expect to find specific I/0 routines.

The specific I/0 routines in question are those of the
monitor. Although both the Monitor and Zapple Basic are
relocatable, we recommend placing the monitor (either the
Zap or Zapple) as high as possible = usually F000d. Thus
Basic expects to find the monitor at that address. The
source code of these "jumps to the monitor" are presented so
that in the event that you do not wish to, or are not able
to have the monitor reside at this address, you may make the
necessary, although simple modifications to the program.

TDL 280 BASIC VERSION 3 USER'S MANUAL Page 5
INTRODUCTION: CHAPTER 1

Note that the source code below is in TDL's relocating
assembler format, in that address information is presented
in the “High byte first, low byte second"” format. For
example, at address 000C’' there is a jump to ' F006 (hex).
With some assemblers this might be construed to be a jump to
address 06F0. Also note that any modifications you might
make when using the monitor at an address other than F000
would entail changing only the high byte of the stated jump
address. :

0000' C3 XXXX' BASIC: JMP INIT ;"INITIA‘IZB"

ENTRY POINT

0003* C3 XXXX' REST: JMP RECOVER;RECOVBRF ENTRY

POINT
0006* C3 XXXX' USR: JMP ERROR - ;USER D F.
0009* C3 F003 CI: JMpP CIN ;CONSOLE INPUT
000C* C3 F006 RI: JMp RIV ;READER INPUT
QQ0F' C3 F009 CO: JMP CON ;CONSOLE OUTPUT
0012' C3 FOOC PO: JMp WRTV ; PUNCH QUTPUT
0015*' C3 FOOF LO: JMP LISTX ;LIST OUTPUT
0018' C3 FOl12 CSTS: JMP CSTSX ;CONSOLQ

STATUS CHECK
001B* C3 FO15 IOCHK: JMP IOCHX ;I/0 CONFIG.

CHECK
001E*' C3 FO18 IOSET: JMP IOSTX ;I1/0 MODIFCTN.
0021* C3 FO1B MEMSIZ: JMP MEMCK ;MEMORY SIZE CK
0024' C3 FO1E TRAP: JMP TRAPX ;BREAKPQINT ENTRY

°x*s are inserted intc some Jjump notations above
because the values may change in future versions of Basic,
and thus could cause confusion. These addresses are
modified in the course of various applications, jand all that
is needed is the recognition that they lie at the starting
address of basic (where it was loaded), plus tﬁe address at
the beginning of the line. ;

Specifics on making use of the USR commadd portion of
the above are covered in the section of the manual which
deals with the USR command.

TDL 280 BASIC VERSION 3 USER'S MANUAL Page 6
INTRODUCTION: CHAPTER 1

1.3 ERROR MESSAGES

The following is a 1list of error messages returned by
Basic when the particular error has been detected. They are
given here without explanation. Within the context of a
Basic program they indicate clearly what is amiss, and are
of great use in program debugging.

1 NEXT W/0 FOR

2 SYNTAX ERROR

3 RETURN W/0 GOsus

4 QUT OF DATA

5 ILLEGAL FUNCTION

6 ARITHMETIC OVERFLOW

7 ou'r OF MEMORY

8. UNDEFINED STATEMENT

9 SUBSCRIPT OUT OF RANGE
10 RE-DIMENSIONED ARRAY

11 CAN'T /U
12 ILLEGAL DIRECT
13 TYPE MIS-MATCH

14 NO. STRING SPACE

15 STRING TOQ LONG

16 TOO COMPLEX

17 CAN'T CONTINUE

18 UNDEFINED USER CALL

19 FILE NOT FOUND

20 ILLEGAL EOF
21 FILES DIFFERENT

22 RECOVERED .
23 FNRETURN WITHOUT FUNCTION CALL
24 MISSING STATEMENT NUMBER
25 RECORD TOO LARGE

26 UNDEFINED MATRIX

27 INVALID UNIT NUMBER

28 RESUME W/0 ERROR

TDL 280 BASIC VERSION 3 USER'S MANUAL
CHAPTER 2 - BASIC VERSION 3 COMMAND SET

COMMAND

ABS
ALOAD
ALOAD*
AMERGE
AMERGE™
AND
ASAVE
ASC

ATN
AUTO
CALL
CHRS
CLEAR
CONT -

cory

cos
DATA
DEF
DELETE
DIM
EDLT
ELSE
END
EOF

ERL
ERR

ERROR

EXCHANGE

2.0 BASIC VERSION 3 COMMAND SET

GROUP

8
11
11
11
11
(3
i1
9

[* N I R)

ANV EFE®RWULY

T~
PSS

-
-

CHAPTER 2

PURPOSE

Absolute Value Function

Loading of ASCII Source Pr
“ " "

Logical AND operator
Allows punching of ASCII t
Convert character to numer
function '
Arctangent function
Provides automatic generat
numbers while a Basic prog
entered.

Invokes assembly language

Convert numeric value to ¢
function .

Delete all variables and s
space

Continue program execution
breakpoint

Provides method of moving,
duplicating one section of
program into another part
program

Cosine function

Defines constants

Defines User functions

Page 7

ograms
"

"
“

ext.
ic value

ion of line
ram is being

subroutines
haracter

et string
from program
or

a Basic
of the

Deletes range of line numbers

Reserves storage for matri
Invokes the line editor
What to do if relational i
End of program; return to
Causes. a software controll
of the end of file process
Function to return the lin
which an error occurs.
Function to return the lin
error which last occurred.
Allows the use of software
errors in conjunction with
trapping capability.
Exchanges the values of tw
without the use of a third

ces

s not true
command mode
ed initiation
ing.

e number at

e number of

generated
the error

o variables
variable.

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 8
CHAPTER 2 - BASIC VERSION 3 COMMAND SET

COMMAND GROuUP PURPOSE

L+]

EXP Function to return "e” raised to a

power

FN 8 Class of user defined functions

FNEND 8 Multiline functions

FNFAC 8 e "

FNRETURN 8 * w

FOR 6 Sets up a loop

FRE 8 Function to determine amount of unused
memory.

GOsusB. 6 Invokes a subroutine

GOTO 6 Transfer control to another part of the
program -

IF 6 Relational test

INP 5 Input directly from an I/0 port

INPUT 5 Input data from the keyboard

INSTR 9 Searches one string for a specified
substring

INT 8 Function returns the integer portion of

. a number

KILL L Allows unneeded matrix space to be
returned to the system

LEFTS 9 Returns the left portion of a string

"LEN 9 Returns the length of a string

LET 5 Logical Assignment

LINE INPUT 5 Provides increased flexibility in .
handling console input.

LIST 3 Lists the program on the console

LLIST 4 Lists the program on the list device

LLVAR 4 Lists the program variables on the
list device

LNULL 4 Sets the nulls for the printer

LOAD 1 Loads & program from the reader

LOADGO 1 Allows one Basic program to load and
transfer control to another.

LOG g Returns the natural logarithm of a
number

LPOS 4 Function to return the current
position of the list device

LPRINT 4 Outputs on the list device

LVAR 3 Prints the variables on the console

LWIDTH 4 Sets the width of the list device

MIDS 9 Returns the middle of a string

MLOAD 5 High speed input of an entire numeric
matrix at one time, in binary.

MSAVE 5 High speed output of an entire numeric
matrix at one time, in binary.

NEW 1 Clears all program statements and
variables

NEXT 6 Returns to the beginning of a loop

NOT 6 Logical "NOT" operator

TDL 280 BASIC VERSION 3 USER'S MANUAL
CHAPTER 2 - BASIC VERSION 3 COMMAND SET

Page 9

COMMAND GROU?) PURPOSE

NULL 3 Sets the nulls for the console

oN 6 Indexed transfer of .control

ON ECF GOTO 6 Allows the user to detect and process

ON ERROR GOTO 14

OR
our
PEEK

POKE
POS

PRECISION
PRINT

PRINT USING
QUOTE
RANDOMIZE
READ

REM
RENUMBER
RESTURE

RESUME

RESUME NEXT
RETURN
RIGHTS

RND

RUN

SAVE

SGN

SIN

[w [V N

[*] @ uww

14

14

the end of file condition.
Specifies a user error handling
procedure.

Logical "OR" operator

Qutput directly to an I/0 port
Function to return data from a
memory location

insert data into a memory location
Function to return the correct
print head position of the console
Allows the specification of a
default print-out precision of less
than 11 digits

Directs output to console

string and numeric specifications
Provides output which is directly
readable by an INPUT statement.
Changes the seed used by the
pseudo—-random number generator
Move data from a DATA statement

to a variable

Remarks

Renumber the program and change
line number references

Returns pointer to the beginning
of the data statements

Routine to return control to regelar
program execution after error
processing.

Starts execution at statement following
the one causing the error.

Return control back from a
subroutine

Function to return the right
portion of a string

Function to return a pseudo-random
number

Clear variables and start
execution of program

Dump a copy of the program to

the currently assigned punch
device

Function to return the sign of

a variable

Sine function

TDL 280 BASIC VERSION 3 USER'S MANUAL Page 10
CHASTER 2 - BASIC VERSION 3 COMMAND SET

COMMAND GROUP PURPOSE

SPC 3 Used in PRINT statement to print
spaces

SQR 8 Function to return the square
root of a number

STEP 6 Used in FOR statement for
increment of loop control

STOP 10 Used to terminate program
execution

STRS 9 Function to convert a value to a
character string

SWITCH 3 Used to change the console
assignment

TAB 3 Used in a PRINT statement to
tab to a position

TAN T Tangent function

THEN 6 what to do if relational IF
is true

TO 6 Used in FOR statement to specify
limit

TRACE 3 Used to turn ON/OFF line number

. trace

USR 10 May be patched to user provided
routine

VAL B £ Function to return the numeric
value of a string expression

VARADR 6 Function to allow the actual address
that a particular variable resides
at in memory be obtained.

WAIT .5 Used to loop on a status port

WIDTH 3 Set the width of the console

WRITE 5 Binary output statement to write
ta output device.

HEXADECIMAL 9 Constant used directly in the Basic

CONS'TANT program

? 13 Same as PRINT

UP~ARROW 13 Exponentiation operator

- 13 Subtraction operator

* 13 Multiplication operator

/ 13 Division operator

+ 13 Addition operator

< 13 Less than operator

> 13 Greater than operator

= 13 Equals operator

)

NN

TDL Z80 BASIC VERSION 3 USER'S MANUAL

CHAPTER 2 = BASIC VERSION 3 COMMAND SET

COMMAND GROUP PURPOSE

CONTROL U 12 Delete input line :

CONTROL C 12 Abort execution of program

CONTROL X 12 Return to monitor }

CONTROL O 12 Suppress console output

CONTROL R 12 Allows more input to be entr

CONTROL T 12 vrints line number of line
currently being executed |

CONTROL S 12 Temporarily stop execution

CONTROL Q 12 Restart the program |

RUBOUT 12 Delete previous character

» {(comma) 12 Move to next TAB position o

. delimiter |

: 12 Don't move

3 12 Used for multiple statement
per line

NOTE:

\
The control characters and operators li$

end of the COMMAND SET LIST, while not exactly
commands, are included here for your re&
convenience. 1

rage 11

red

ted at the
being BASIC
erence and

TDL 280 BASIC VERSION 3. USER'S MANUAL Page 12
CHAPTER 3: DESCRIPTIONS OF COMMANDS

CHAPTER 3
3.0 DETAILED DESCRIPTIONS OF COMMANDS/FUNCTIONS

All numeric calculations are carried ‘out to twelve
significant digits, and rounded to eleven digits. This
includes all intrinsic functions (eg. TAN, SIN, etc.).

Each statement line may be up to 255 characters long.
The line may be formatted for additional readability with
both tab and space characters, and may be spread over
multiple physical lines to emphasize program structure by
use of the line~feed character. A tab character will cause
the line, when listed, to be spaced to the next multiple of
eight column. A line feed will list as a
carriage-return/line-feed. Tabs, extra spaces, and line
feeds are all ignored during the processing of the
statements.

For example:
100<tab>IF I=23 THEN<line feed><tab>I=0:<line feed><tab>J=l
will list as:

100 IF I=23 THEN
I=0:
J=1

The statements would be executed as if they had been entered
all on the same line.

An error does not cause a loss of program context.
Even if the error causes a program abort, all currently
active function calls, FOR loops, GOSUBS and error traps are
preserved. It 1is then possible to examine or modify
variable values or examine program statements, and to
restart the program through a direct mode GOTO command. Any
modification to the program itself will result in the loss
of all variables and the program context. (See GROUP 14
ERROR HANDLING) .

File number is used where <file number> is O=console,
l=punch, and 2=list device. I/0 1list is used where <I/Q
l1ist> is a list of variables specifying where to get the
data from/or where to put the data.

)

e

‘TDL 280 BASIC VERSION 3 USER'S MANUAL
GROUP 1 - GENERAL PURPOSE UTILITY COMMANDS

3.1 GROUP 1 GENERAL PURPOSE UTILITY CO

AUTO

CLEAR

CONTINUE

DELETE

The AUTO command provides fo
generation of 1line numbers wh
program is being entered. The £
command is:

AUTO [<starting number>] [,<incre

If <starting number>] is omi
assumed, and if <increment> 1is o
assumed. To terminate the
numbering, an empty 1line (just
return) should be entered. If
entered whose generated number i
an existing 1line, the new line
old one.

Deletes all variables in storage.
CLEAR followed by an argument, su
400" will set the string space to

The CLEAR command may be placed i
For example:
15 CLEAR 250

to set the string space to the
needed by that program. If the
omitted, the string space is not

If your program is stopped by typ
C or by executing a stop statem
may resume execution of your prog
CONTINUE OR CONT. Between the

restarting of the program you ma
value of the variables, (See PR
or change the value of the va
LET). However, you may not

program, or continue after an err

Deletes a range of line number
command 1is followed by two

separated by a dash “=". For ex
115-135 would delete from your
line numbers 115 up to and i

Page 13

MANDS

automatic
le a BASIC
rmat of the

ent>]

ted, 10 is
itted, 10 is
automatic

a carriage

a line |is

the same as

replaces the

The command
h as, “CLEAR
that value.

a program,

exact amount
argument is
hanged.

ng a control
nt, then you
am by typing
stopping and
display the
NT and LVAR)
iables, (see
modify the
r.

. The DELETE
ine numbers
mple, DELETE
program the
cluding 135.

TDL 280 BASIC VERSION 3 USER'S MANUAL Page 14
GROUP 1 - GENERAL PURPOSE UTILITY COMMANDS

KILL

LOAD

LOADGO

DELETE 25 would delete only line 25.

The KILL command allows unneeded matrix space
to be returned to the system. The format of
the command is:

KILL <matrix>l (,...,<matrix n>]

Each name specified must be a matrix id with
no subscripts following. Reference to a
matrix which has not been defined is not an
error. LIf the matrix has been defined, all
the space being used by the matrix for
variable storage and for matrix information
will be returned to the system, and the matrix
will be undefined.

Loads a program from the reader device. The
LOAD command is followed by a string
expression which evaluates to a single
character program id. A NEW operation |is
performed (see NEW), then the reader device is
searched for a program under that name, if
found, the program is then loaded. Example:
LOAD “p"

A “"bell" will sound on the console when the
file starts to load. Additionally, a saved
file may be verified by reloading the file
using the following format:

LOAD?"P"
If an error occurs a message will be

generated, otherwise, you will return to the
command mode.

Example: A$="X*"

LOAD AS$
or
LOAD “X*

The LOADGO command is used to allow one Basic
program to load and transfer control to

NG

TDL 280 BASIC VERSION 3 USER'S MANUAL
GROUP 1 - GENERAL PURPOSE UTILITY COMMANDS

NEW

PRECISION

another.
LOADGO <file id>([,<starting line>

The command functions
command. When executed, it
reader device for an internal
whose id is a string
evaluates to a single character
<file id>. If found, the program
and control |is
program either begins at
or if the

similarly ¢t

searches
format program
expression
program id
is loaded,
transferred to 1it.
its first |[statement,
optional argument was given to the

Paée 15

The format of the command | is:

the LOAD
the

which

The new

LOADGO command, at the specified line number.

Example:

LOADGO “P",1000

It is important to note that the LOADGO
command clears the program area before
initiating the £file search. Also, all data

values are cleared prior to the loading of the

new program.

This command deletes
and any stored variables.
clean, so to speak.

all program
The

statements
slate is wiped

Because the added precision of this version of

BASIC sometimes can produce long
results, the PRECISION
specification of a default print-out
of less than 11 digits.

command is:
PRECISION [<digits>]

If <digits> is
precision of 11
Otherwise, the precision is
This precision affects all
specified by a PRINT
internal calculations
the same accuracy (ll digits).
rounded to the desired
display.

zero or omitted,
digits is

The

command allows

precision

fractional

the
precision

The format of the

the normal

restored.

set as specified.
numeric joutput not
USING format.
are still performed to

The

number is
before

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 16
GROUP 1 -~ GENERAL PURPOSE UTILITY COMMANDS

RENUMBER

RUN

SAVE

The RENUMBER command causes the lines of a
program to be renumbered and all the internal
line number references such as 123 GOTO 547 to
be properly adjusted. This command has three
parameters separated by a comma. The first
parameter specifies the starting point for the
line numbers, the second parameter specifies
the increment between numbers. If either
parameter is omitted it defaults to l0. The
third optional argument specifies the current
line number of the first line to be
renumbered. The use of this option allows a
“hole* to be inserted into a program to allow
for the insertion of additional lines.

Format:

RENUMBER [<new number>][,<increment>]
[,<start line>]

Examples RENUMBER
RENUMBER 10
RENUMBER ,10
RENUMBER 10,10

All start at 10 and increment by 10.
RENUMBER 40,10,60

Starting at line 60, change 1line 60 to 40 and
renumber by 10.

RUN. clears all variables and starts the
execution of the program starting with the
first program statement. RUN followed by a
line number will clear all variables and start
execution at that line number.

Exanmple: RUN 105

This command causes a copy of the program to
be output to the punch device using Basic's
internal compressed format. The SAVE command
has one parameter, a string expression which
evaluates to a single character program id.
The program name is used in reloading the
program with the LOAD command. Also the
comment string in the SAVE command may now be
an arbitrary string expression, rather than

TDL Z80 BASIC VERSION 3 USER'S MANUAL
GROUP 1 - GENERAL PURPOSE UTILITY COMMANDS

just a string constant.

Example: SAVE "P","<message>"

saves the program under. the name “P".

Note: Only the 26 uppercase char
valid as program names. All other
will generate a SYNTAX ERROR message

Page 17

acters are

characters

TDL 280 BASIC VERSION 3 USER'S MANUAL Page 18
GROUP 2 - THE EDIT COMMAND

EDIT

3.2 GROUP 2 THE EDIT COMMAND

The EDIT command followed by a line number invokes
the line editor to process that line. The editor
mofes a copy of the line to be edited into its edit
buffer. At the end of the wediting process, the
user has the option of replacing the 1line in the
program with the contents of the edit buffer, or
throwing away the changes (say that you decide that
you really don't want to make those changes).

Examples EDIT 55

The editor will then print the line number and then
wait for single letter commands. ALL commands are
NOT ECHOED. Illegal commands will echo as a bell.
Some commands may be preceeded by a numerical
instruction to repeat itself. These are shown by a
lower case “n* and may range from 1 to 255.

EDIT COMMAND/ FUNCTION

A

nD

E

nFx

nkx

Reload the Edit Buffer from the program line.
This is used after making a mistake.

DELETE "n" characters

END EDIT -~ don't print line and replace
program line with the contents of the edit
buffer.

FIND the “n"th character X in the edit
buffer and stop with the pointer just
before the character.

DELETE everything to the right
of the pointer and go to the insert mode.

INSERT all following characters from the
keyboard, STOP INSERTING on a carriage-return
or Escape.

KILL or DELETE characters from where the
pointer is now to the “n"th character X, but
don't delete that character.

Print the line and return to the beginning
of the line.

TDL 2Z80 BASIC VERSION 3 USER'S MANUAL
GROUP 2 - THE EDIT COMMAND

Q QUIT. Leave the edit mode - without
replacing the program line.

nR REPLACE the “"n" following characters wit

characters from the keyboard.

X MOVE the pointer to the end of the line,
go to the insert mode.

SPACE MOVE the pointer ‘to the right.

RUBOQUT MOVE the pointer to the left.

CARRIAGE

RETURN End Editing, print the line, replace the
program line. This may also be used to
terminate the insert mode.

ESCAPE END insert mode or cancel pending comman

In the following edit examples an exclamation mar

is used to show the position of the console print

cursor. This line:

55 PRINT A,B; “DOLLARS”

will be used in all the examples.

USER TYPES: MACHINE RESPONDS:
EDIT 55 551
TQ LIST OUT THE LINE: (command not echoed!
L 55 PRINT A,B;"DOLLARS"
551
TO MOVE THE POINTER FORWARD:
(space) 55 P!

(space) 55 PR!
10 (space)S55 PRINT A,B;"D!

Page 19

and

k (1)
head or

TDL Z80 BASIC VERSIUN 3 USER'S MANUAL Page 2V
GROUP 2 - THE EDIT COMMAND

'O MOVE THE POINTER BACKWARD, THE SYSTEM ECHOS CHARACTERS
THAT ARE PASSED BY THE POINTER AS IT IS GOING BACKWARDS.

(rubout) 55 PRINT A,B8;"DD!

Z(zubout) 55 PRINT A,B8;"DD";!
55 PRINT A,B;*DD“;; "DOLLARS"
85

Although the example of what happens when using the
rubout command may be confusing when shown as
above, in actual use, the response of the machine
when you type che rubout command is quite easy to
get used to.

TO DELETE A CHARACTER:

D 55 \P\!
L 55 \P\RINT A,B;"“DOLLARS"
55 1 D
L 55 RINT A,B;"DOLLARS" : 1‘
55 1
(space) 55 R! :
2D 55 R\IN\T A,B;“DOLLARS"
L 55 R\IN\T A,B;“DOLLARS"
55 1
L 55 RT A,B;"DOLLARS"
55 1

TO RECOVER FROM A MISTAKE:
At this point we decide we didn't really want to
change the word "PRINT", so we can reload the edit
buffer with the "A" command.
A 55 !

L 55 PRINT A,B;“DOLLARS"™

55 1 D)

‘'DL 280 BASIC VERSION 3 USER'S MANUAL

GROUP

2 - THE EDIT COMMAND

The INSERT command inserts characters into

at the present position of the pointer.

Page 21

the line

‘The INSERT

command is terminated by either an escape character

or a carriage return.

55 PRINT A,B;“DOLLARS*
55 1!

18 (spaces) 55 PRINT A,B;"DOLLARS!

IXX (escape) 55 PRINT A,B;"DOLLARSXX!

L

55 PRINT A,B;“DOLLARSXX"
55 ¢

55 PRINT A,B;“"DOLLARSXX"
S5 1!

The "“X* command moves the pointer to the

line and goes into the insert mode.

XYY (escape) 55 PRINT A,B;"DOLLARSXX"YY!

L

55 PRINT A,B;"DOLLARSXX"YY
55 !

55 PRINT A,B;"DOLLARSXX"YY
55 1

The “H" command deletes all the line

11l (spaces) 55 PRINT A,B;"!

HCENTS" (esc)55 PRINT A,B;"CENTS"!

9

L

55 !

55 PRINT A,B;“CENTS"
55 ¢

end of the

to the right
of the pointer and goes to the insert mode.

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 22
GROUP 3 - COMMANDS INVOLVING THE CONSOLE

LIST

LVAR

NULL

3.3 GROUP 3 COMMANDS INVOLVING THE CONSOLE

Causes the program to be typed on the console
device. As a logical extension of the file
number concept, the output control command
LIST will accept an optional £file number.
List may have one or two parameters separated
by a dash.

Format:
LIST ¥<file number>,[line number=-line number]

An omitted file number will default to the
console (0).

Example: LIST #2,20-30

will print 1lines 20 thru 30 on the list
device. LIST 20 would only print line 20.
LIST 20- lists from 20 to End.

Causes the variable storage area to be typed
on the console. As a logical extension of the
file number concept, the output control
command LVAR will accept an optional file
number as follows:

LVAR #<file number>

An omitted file number will default to the
console (0).

Sets. the number of nulls to output to the
conscle after a carriage return line feed
sequence. This may be used to give additional
time after a carriage return for terminals
which require additional time to return the
print head.

The NULL command may be followed by upto 3
parameters separated by a comma. The first
parameter is an optional file number. The
second specifies the number of nulls to send
after the carriage-return/line-feed sequence
and the third, as a decimal number, specifies

TDL Z80 BASIC VERSION 3 USER'S MANUAL
GROUP 3 - COMMANDS INVOLVING THE CONSOLE

POS

PRINT

what character 'is to be used. (ini
zero or ASCII null).

Format:
NULL ([#<file number>,] <number> [,<

An omitted file number will defa
console (0).

Example: NULL 3,255

sends 3 rubout characters after.
return/line—-feed to be output to th

This function 1is used to return
position of the print head or cur
console device. The first po
considered to be zero (0). The f
accepts an optional file number.

Format:
POS(<file number>)

An omitted file number will defa
console (0).
Example: 40 A=POS(B)
where B=0 for the console or 1 fo
or 2 for the list device. The ex
would take the present position of

head as a number from 0 to 131 and
variable A.

NOTE: LPOS will take a dummy arg
it already implies -the 1line prin
list device.

‘The PRINT command = is used to dir
output to the console device. A
<file number> parameter can be use
output to any of the three devices
l=punch, 2=list device). The defa
console. The PRINT command is fol
list of variables,constants, or lit
printed, separated by commas or

Page 23

tializes to

character>]

ult to the

a carriage-
e console.

the present
sor of the
sition is
unction POS

ult to the

r the punch
ample above
the print
place it in

ument since
ter as the

ect printed
n optional
d to direct
(O=console,
ult 1is the
lowed by a
erals to be
semicolons.

TDL Z80 BASIC

VERSION 3 USER'S MANUAL Page 24

GROUP 3 - COMMANDS INVOLVING THE CONSOLE

PRINT [#<file
(<I/0 list>]

PRINT USING

These are the variables in the <I/0 list>.

Qutput in ASCII mode uses the PRINT and PRINT
USING commands in the following format:

number>,] [USING <format>,] [(#<file number>,]

where <file number> is again an expression
evaluating to a valid file number. It can be
located at either point indicated when the
USING option is used. valid file numbers for
ASCIL output are 0 for the console, 1 for the
punch, and 2 for the 1list device (Note that
file 2 overlaps the Lxxxx commands. The Lxxxx
commands will be removed in a future version
of Basic, so the new format is to Dbe
perferred). <I/0 list> is a list of variables
specifying where to get the data from. The
PRINT command outputs exactly the same format
to any of the three devices.

Example: 40 PRINT #2,123,A,"IS THE ANSWER"

If the separators are commas, then the items
are printed in columns spaced every 14
positions across the list device.

If the separators are semicolons, the items
are printed with 2 spaces in between.
Additionally, if the last item in the print
list is followed by a semicolon, then unless
executing the command would overprint the last
print position on the console, BASIC will not
carriage return but would stack successive
PRINT commands across the console on the same
line.

Example: 10 PRINT A,B8;
20 PRINT C

would print A,B and C across the same line on
the console. There would be 14 spaces between
the beginnings of A and B and 2 spaces between
the end of B and the beginning of C.

The PRINT USING statement has two formats
available:

TOL Z8U BASIC VERSION 3 USER'S MANUAL
GROUP 3 - COMMANDS INVOLVING 1'dE CUNSOLE

PRINY USING [#<file number>,] <line number>(;

PRINT JSING ($<file number>,] <string value>[;

In the first format, the <line num
to a “format 1line* which contains
string. This 1line must start
exclamation point (!) and be foll
format specification. In the sac
the format ’‘specification 1is take
string value specified.

For example:

e A =35
110 PRINT USING 120;A
120 tid.éé

130 PRINT USING “##.##";A

Both lines 11U and 130 would pr
followed by the characters 5.0u

The format specification consists o
combination of the following field

FORMAT SPECILFICATIONS

NUMERIC

#

Numeric fields are specified by use of the
in a field represents one digit position.
will be right justified in the £field, w
spaces added to £fill the fielgd.

vecimal point alignment is specified by th
decimal point. The number will be rounded

specification. A digit before the decimal
always be filled (with a zero if neces
example:

s .44 23,456 => 23.46
#Hé.### -24.5 => -24.500
k¥ E# 12345 => 0.12

A plus sign may be used either at the start
of a numeric specification. It will force
to be printed at that end of the field if t
positive (normally a space would be pri
sign will be printed in that position if th
negative.

rage <o

KL/0 list>]
KL/0 list>]

ber> refers
the format

with an
owed by the
ond format,
n from the

int a space

£ any valid
specifiers:

#. Bach 4
fhe number
ith leading

e use of a
to £it the
point will
sary). for

or the end
the + sign
he value is
nted). A -
e number is

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 26
GROUP 3 - COMMANDS INVOLVING THE CONSOLE

- A minus sign may be used at the end of the numeric
specification to indicate that - sign for a negative
number should be printed at the end, as opposed to the
start, of the number. If the number is positive, a
space is printed.

R Two (or more) asterisks at the start of a numeric
field indicate asterisk “f£ill*®" of the field. Each
asterisk indicates one digit position, and all empty
‘digit positions prior to the decimal point will be
filled with asterisks instead of spaces.

$$ Two (or more) dollar signs at the start of a numeric
field indicate a “floating" dollar sign. This means
that the dollar sign will be placed immediately
adjacent to the first non-zero digit in the number.
Each dollar siqgn indicates one digit position, but one
of these positions is occupied by the dollar sign

itself.

bl This indicates the combination of the two above
features.

’ A couma anywhere to the 1left of the decimal point

indicates that commas are to be inserted every three

digits. BEach comma also indicates one digit position

in the specification.
“~=~ Four up-arrows at the end of a numeric specification
indicate that the number is always to be printed in
exponential notation. Decimal point alignment is
allowed, but the significant digits are left justified
and the exponent 1is printed accordingly (E+nn or
E-nn) .

If any numeric value will not f£it in the field specified, it
will still be printed in its entirety, but will be preceeded
by a percent sign (%).

STRING

string fields are specified by use of the apostrophe ('). A
single apostrophe indicates a single character string field.
Multiple character string fields are specified by following
the apostrophe with one (or more) of the letters C, R, L, or
E. The size of the field is equal to one plus the number of
letters following. The letters have the following meanings.

L The string value 1is left Jjustified in the specified
field. 1If the value 1is longer than the field, extra
characters are lost on the right.

J

LJ

TDL Z80 BASIC VERSION 3 USER'S MANUAL
GROUP 3 - COMMANDS INVOLVING THE CONSOLE

Page 27

R The string value is right justified in the specified

field.

If the value 1is longer than the

characters are lost on the left.

ield, extra

[of The string value is centered in the specified field.
If the value is longer than the field, extra
characters are lost on the right.

E The string value is left justified in the specified
If the value is longer than the field, the
field is Extended to allow the entire string value to
be printed with no lost characters.

field.

Note that the format string will be reused until all values
in the output list have been printed. The printing of the

format string will terminate when a

encountered and the output list is empty. Any
the format specification which is not part of a
string specification will be printed literally o the output
device at the specified position in the string.

SPC

SWITCH

This is a function-like command
to print a number of spaces on

field specification is

haracter in
umeric or a

hat is used
he console.

It is only used in a PRINT or LPRINT statement
and is called function-like because it looks
like a function but CANNOT be used in a LET

statement.

Example: 35 PRINT A;SPC(5);B

may be used to place an additional 5 spaces

between A and B over and above

the two that

would normally be printed due to the semi-

colon.

This command is used to change

the console

assignment. SWITCH used with no variable will
always switch between the teleprinter and the
user console. SWITCH with an argument of 0-3
(zero to three) will assign the «console to

that value. I.E.

0=TTY

1=CRT

2=BATCH MODE
3=USER DEFINED

TDL 280 BASIC VERSION 3 USER'S MANUAL Page 28
GROUP 3 - COMMANDS INVOLVING THE CONSOLE

TAB

TRACE

WIDTH

A value greater than 3 will generate an error
message. These are further discussed 1in the
ZAPPLE Monitor Manual.

TAB is a function-like command that is used
only with a PRINT or LPRINT statement and is
used to tab directly to a particular position.
If the printhead or cursor 1is on or after the
specified TAB position then BASIC will ignore
the- TAB command.

Example: 25 PRINT A;TAB(25);B

This is a one parameter command that turns on
or aff the TRACE function. If the TRACE is
on, then Basic will print the line numbers of
the statements executed enclosed in angle
brackets, e.g. <25>. The parameter may be an
expression and if that expression is evaluated
to be non-zero, then the TRACE 1is turned on.
If the expression is evaluated to be zero,
then the TRACE 1is turned off. (NOTE: The
TRACE and LTRACE are completely independent
functions and may be separately manipulated at
will.) .

Example: 2S5 TRACE A-B

If A-B is equal to 2zero then the TRACE is
turned off, if equal to non-zero then TRACE is
turned on.

Basic keeps track of the number of characters
and spaces printed on the console and will
generate an automatic carriage-
return/line-feed to prevent overprinting at
the end of a line. The WIDTH command may be
used to change the sign-on default of 72
spaces. WIDTH accepts an optional file
number. (0O=console, l=punch, 2=list device)

Format:

WIDTH [#<file number>,] <width>

W

',

TDL 280 BASIC VERSION 3 USER'S MANUAL Page 29
GROUP 3 - COMMANDS INVOLVING THE CONSOLE

Example: WIDTH 80

will cause an automatic carrjiage-return/
line-feed sequence after 80 characters. The
minimum value is 15, and the maximum value is
255.

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 30
GROUP 4 - COMMANDS INVOLVING THE LINE PRINTER

3.4 GROUP 4 CUMMANDS INVOLVING THE LINE PRINTER

Most of the commands of GROU? 3, which affect the
console, have a counterpart in GROUP 4, which affects the
line printer. 'The general rule {s to add the letter L in
front - thus PRINT becomes LPRINT, and LVAR becomes LLVAR,
etc. This section simply 1lists the commands and directs
your attention back to GROUP 3 for information on how the
commands function otherwise. These commands will eventually
be removed in a future version of Basic. The use of the
<file number> which is an expression evaluating to a valid
file number (i.e. 0 for the console, L for the punch and 2
for the 1list device) will take precedence over the Lxxxx
commands.

LLIST see LIST

LLVAR see LVAR

LNULL see NULL

LPRINT see PRINT

LPRINT USING see PRINT USING

LTRACE see TRACE

LWIDTH see WIDTH

LPOS see POS

spC use in LPRINT statement
TAB use in LPRINT statement

DL Z80 BASIC VERSION 3 USER'S MANUAL
GHROUP 5 - COMMANDS INVOLVING MOVEMENT OF DATA

3.5 GROUP 5 COMMANDS AND FUNCTIONS THAT INVOLVE °
MOVEMENT OF DATA FROM ONE PLACE TO ANOTHE

LET (=)

DIm

DATA

READ

this is the assignment command. It

evaluation of an expression on the

of the equals sign (=) and the ass
the resultant value to the wvariab
left side of the equals sign.

Example: 10 LET A=B+2

would cause BASIC to get variable B
it, and place the result in A. 1In
the command LET is optional. For ex
previous statement could also be wri

10 A=B8+2

Reserves storage for matrices. Th
area is first assumed to be zero.
may have from one to 255 dimension
limited by the available remaining
(memory) .

257 vIM A(72),B(4)
258 DIM C(72,66)
259 DIM D(J)

Matrices may also be dimensioned
execution of the program after t
space is calculated, however, rem
the DIM command zeros the storage a
previously dimensioned array may
re-dimensioned.

Specifies constants that may be re
the READ statement.

Example: 10 DATA 5,4,3,2,1.5

Retrieves the ‘constants that are
in the DATA statement. Binary
performed by the use of the READ
commands. Binary data is written i

Page 31l

HE

auses the
ight side
gnment of
e on the

add 2 to
DL Basic,
mple, the
ten as:

storage
Matrices
, but is
workspace

uring the
e storage
mber that
ea, and a

not be

rieved by

specified
I/0 is
and WRITE
internal

TDL 280 BASIC VERSION 3 USER'S MANUAL Page 32
GROUP 5 - COMMANDS INVOLVING MOVEMENT OF DATA

RESTORE

INPUT
LINE INPUT

format, and is only useful to other Basic
programs. The format of the input command is:

READ #<file number> [,<I/0 list>]

This command performs two functions, depending
on whether an I/0 list is present or not. If
no I/0 list is present, the command causes the
input data stream to be searched until a
binary data header is found (seven UFFH
followed by one 00H). The input is positioned
at the Ffirst byte following the header, and
the command is done. If an I/0 list is
present, then sequential bytes are read from
the input device until the I/0 1list is
satisfied. It is important to note that Basic
does no checking on the validity of the
incoming data. It is the users responsibility
to read the data in a way compatible with that
in which it was written.

Example: 20 READ #1l,A

The first time line 20 is executed the value 5
from the previous example will be placed into

‘variable A. If at some later time statement

20 is executed again, or another READ
statement is executed, then the value 4 would
be retrieved etc. DATA statements are
considered to be chained together and appear
to be one big data statement. If at any time
all the data has been read and another READ
statement is executed then the program is
terminated and the message "OUT OF DATA @ LINE
(N)* is printed.

This command restores the internal pointer
back to the beginning of the data so that it
may be read again. It takes an optional line
number as an argument. ILf specified, the DATA
read pointer will be set to the specified line
instead of the start of the program. The
format of the command is:

RESTORE [<line number>]

INPUT allows the operator to type data into

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 33
GROUP 5 — COMMANDS INVOLVING MOVEMENT OF DATA

one or more variables. The ASCII input
command has the following format:

INPUT (#<file number>,] <I/0 list>

where <file number> is the specification of
where the input is coming from. |Currently
defined file numbers for input are |0 for the
console, and 1 for the reader. The file
number may be any arbitrary expression that
evaluates to a valid file number. If the file
number clause is omitted, then the console is
assumed. The <I/0 lise> is a list of
variables specifying where to put |the data.
ASCII input from either device must follow the
normal rules for the specified input type.
This means that input from the reader must be
delimited by commas or carriage regturns, and
strings containing special characters must be
surrounded by quotes.

Example: 35 INPUT A,B

would cause the printing of a questipon mark on
the console as a prompt to the operator to
input two numbers separated by a comma. If
' the operator doesn't type enough | data then
BASIC responds with 2 question marks.

Example: 10 INPUT A,B,C
RUN
25
2?2 7,5
READY

would input the value 5 to the variable "A"
and when the operator typed carria%e return,
Basic wanted more data and so responded with 2
question marks.

The input statement may be written | so that a
descriptive prompt is printed to tell the user
what to type.

Example: 10 INPUT “TYPE A,B,C";A,B,C
RUN
TYPE A,B,C? (ans)5,6,7
READY

This causes the message placed between the
quotes to be typed before the question mark.
Note the semicolon must be placed | after the

TDL 280 BASIC VERSION 3 USER'S MANUAL Page 34
GROUP 5 - COMMANDS INVOLVING MOVEMENT OF DATA

last quote.

The entry of just a carriage return as the
response to an INPUT statement does not return
it to command level. The empty line will
correspond to a single value of =zero if a
numeric variable was being input, or the null
string variable was being input. If more
variables are left in the input 1list,
additional 1input will be requested. To
terminate program execution and return to
command level, a control-C should be entered
just as if the program was running.

The LINE INPUT statement provides increased
flexibility in handling console input. The
format of the statement is:

LINE INPUT (#<file number>,] <I/0 list>

where <file number> is the specification of
where the input is coming from. Currently
defined file numbers for input are 0 for the
console, and 1 for the reader. The £ile
number may be any arbitrary expression that
evaluates to a valid file number. If the file
number clause is omitted, then the console is
assumed. The <I/0 list> is a list of
variables specifying where to put the data.
ASCII input from either device must follow the
normal rules for the specified input type.
This means that input from the reader must be
delimited by commas or carriage returns, and
strings containing special = characters must be
surrounded by quotes.

The statement functions similarly to the
normal INPUT statement. The prompt string, if
present, is output to the console. Each
variable in the input list must be a string
variable and is assigned the value of the
entire input line as typed by the user, with
no formatting. If more than one variable is
present, then additional lines are requested.
An empty line (just a carriage-return) has the
value of the null - string.

PRINT/LPRINT PRINT and LPRINT are the converse of INPUT in
that they print out data on the console and
line printer. For an explanation of these

TDL Z80 BASIC VERSION 3 USER'S MANUAL
GROUP 5 - COMMANDS INVOLVING MOVEMENT OF DATA

INP

MLOAD

MSAVE

commands see GROUPS 3 and 4.

rage 35

Basic has the ability to directly|l read an
input port. The INP function takEs as its

argument the number of the port to

and the result may be assigned to
or printed directly.

Example: 10 A=INP(0)
20 PRINT INP(0)

be read,
variable

would in both cases input from port zero. 1In
line 10 the value input £from the port is
placed in variable "A" and in line 20 it is

directly printed.

The input statement MLOAD is abhiqh speed

input mode for those users who

have only

non~controlled I/0 devices. The format of the

statement is:

MLOAD #<file number>, <matrix 1> [,<matrix 2>...]

The statement inputs an entire numeric matrix

at one time, in binary. Each
preceded by a binary data prompt.

matrix is
The speed

of input is such that an uncontrolled device
can be used. Each matrix must be defined

prior to its use in the
Multi-dimensional arrays are stored

statement.
and loaded

in a sequence with the last subscript varying

most rapidly. There is no require
matrix be read back into the same
it was written from, all correspon
to the user. A binary prompt i
before each array read however.

The output statement MSAVE is a
output mode for those users who
non-controlled I/0 devices. The fo
statement is:

MSAVE $#<file number>,<matrix 1> [,<ma

This statement outputs an entire n
string) matrix at one time, in bi

ent that a
ize matrix
ence is up
required

high speed
have only
mat of the

rix 2>...1}

meric (not
ary. EBEach

matrix is preceded by a data prompt. The
speed of output 1is such that an uncontrolled

TDL 280 BASIC VERSION 3 USER'S MANUAL Page 36
GROUP 5 - COMMANDS INVOLVING MOVEMENT OF DATA

device may be used. EBach matrix must be
defined prior to its use in the statement.
Multi-dimensional arrays are stored and loaded
in a sequence with the last subscript varying
most rapidly. There is no requirement that a
matrix be read back into the same size matrix
it was written from, all correspondence is up
to the user. A binary prompt is required
before each array read however.

ouTr This command causes Basic to output data
directly to any output port. The QUT command
has two parameters separated by a comma. The
first parameter is the port number and the
second parameter is the data to be output.

Example: 10 A=l
20 B=7
30 oUT A,B
RUN

would cause a seven to be output to port one,
and if your console data port is port one the
bell would ring since a 7 is a BELL in ASCIL
code.

QUOTE This statement is wused for ASCII output
devices. The format of this statement is:

QUOTE. [#<file number>,] [<quote character>]

where <quote character> is either zero,
omitted, or the decimal value of an ASCII
character (as in the NULL command). If the
value is zero (or omitted), then the output
from the device will appear the same as in
previous versions of Basic. If the value is
non-zero, then the device will output in
special QUOTE mode. In this mode, which only
affects normal PRINT statements (not USING),
all commas occurring in the 1I/0 list of the
PRINT statement will not cause the standard
TAB function, but will be sent to the output
device. In addition, any string variable
printed will be preceeded and followed by the
specified ASCII character (which 1is usually a
double quote [decimal 34]}). The effect of
this mode 1is to provide output which is

/‘\
4

TDL Z80 BASIC VERSION 3 USER'S MANUAL
GROUP 5 - COMMANDS INVOLVING MOVEMENT OF DATA

WAIT

rvage 37

directly readable by an INPUT state#ent.

Each of the three devices has defaults for

each of the three

characteristics. The

console and 1list (0 and 2) devices have

default widths of 72, null counts
characters of 0, and quote modes

|of 0, null
of 0. The

punch device (1) has a default width of 253,

null count of 0O, null character
quote mode 34 (double quote).

to the console for a purpose such a

paper tape from the teleprinter

Basic itself will interfere with in

data because Basic is looking
keyboard to see if a control-C
abort execution or control-X

If you write a program to INP or OéT directly

return to the Monitor. The WAIT

will place Basic in a 1loop,
specified status port, until

lof 0, and

reading a
pe reader,
utting the
he console
s typed to

typed to

statement
ooking at a
specified

condition occurs. Then and only th n will the

next statement be executed.

(NOTE: Be careful using this because it is
possible to put Basic in a loop wa

condition that will never occur.

ting for a
hould this

happen, your only recourse 1is to| reset the

machine, or examine the memory

Location 3

higher than the address the program was loaded

at, and hit RUN again. Basic

will then

recover without destroying your program.)

Example: 100 WAIT A,B,C
110 D=INP (A+l)

Basic will then input port “A“, EXCLUSIVE OR

the value with “C", and then AND

the result

with B. If a zero result occurs, then the
process is repeated until a non-zero result

occurs. Basic, in this -example,

will input

from the next higher port and place the data

in “D". The fact that at Line
looked at the console port to see
was a control-C would not affect

110 Basic
if the data
the proper

anuttlng of data. In this example the status
port is 0, the data port is 1, the data
available bit is bit 2, and it goes low (0) to

indicate that data is available

on port l.

Then let A=0 for port Zero and One. Let B=4

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 38
GROUP 5 = COMMANDS INVOLVING MOVEMENT OF DATA

to isolate Bit 2, and 1let (=255 so that a
complement of the status occurs to follow the
rule that data available is indicated by a
non-zero result. If parameter C 1is omitted,
then Basic defaults to zero for the value.

WRLTE As in the READ statement, this statement
performs two functions. If no [/0 list is
present, a binary data header is written on
the punch device. If an I/0 list is present,
the data is written as specified on the output
device. All strings include their length as
part of the data written.

The binary output statement has the form:

WRITE #<file number> [,<I/0 list>]

PEEK This function allows the direct retrieval of
data anywhere in memory.

Example: 50 B=PEEK(A)

causes the value of the byte at address "A" to
be assigned to the wvariable “B". Address “A"
may range from 0 to 65535 (decimal).

POKE Has two parameters.
Example: 57 POKE A,B

in which the first parameter specifies an
address in which to insert the data specified
by the second parameter. The address may
range from 0 to 65535 and the data may range
from 0 to 255.

coryY The COPY command provides a method of moving,
or duplicating, one section of a Basic program
into another part of the program. The format
of the command is:

corPY<new line>[,<increment>}=<line range>

K_/

‘DL 280 BASIC VERSION 3 USER'S MANUAL Page 39

GROUP 5 - COMMANDS INVOLVING MOVEMENT OF DATA

EXCHANGE

The command copies the set of lines specified
by <line range>, which is in the same format
as the LIST command to that part| of the
program specified by <new 1line>. [The lines
are renumbered as they are copied,| starting
with <new line> and incrementing by
<increment> (which is 10 if omitted). Before
copying any lines, the new line numbers are
validated to guarantee that they ill not
overlap any existing 1lines, and that the new
lines do not fall with the range of |the lines
being copied. Only the line numbers are
changed, the lines themselves are not
modified. The original 1lines are Jalso not
modified.

To speed sorting‘ operations, the | EXCHANGE
command has been added. The format of the
statement is:

EXCHANGE <variable 1>,<variable 2>

This statement exchanges the values of the two
variables specified. Both variables must be
predefined, and of the same type. A single
matrix element may be used as either of the
variables. For example:

EXCHANGE AS,BS$
EXCHANGE A$(2,3),C8
EXCHANGE C,D(I,J)

This exchange of values is accomplished in the
most rapid way possible (strings just switch
pointers).

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 40
GROUP 6 - TRANSFER OF CONTROL AND RELATIONAL TESTS

3.6 GROUP 6

GOTO

GOosuB

RETURN

ON EOF GOTO

‘PRANSFER OF CONTROL AND RELATIONAL TESTS

User initiated end of file processing. The
EOF statement may be used by itself to cause a
software controlled initiation of the end of
file processing. The format of the statement
is:

EQF

This allows an end of file to be determined
based on some programmed condition as well as
on a hardware detected one.

This statement followed by a valid existing
line number will cause Basic to transfer
control directly to that statement.

Example: 55 GOTO 100

will, if line 100 exists, cause execution of
the program to resume at line 100.

This statement acts in a manner similar to
that of GOTO except that the 1location of the
next statement is saved so that a RETLURN can
be performed to return control.

This statement 1is used to “"return® control
back to the statement £following the most
previous GOSUB that control came from.

End of data file detection. If an end of file
indication s obtained from the Zapple
Monitor, or a ctl-Zz (lAH) is read in ASCII
mode, then the end of the data file has been
reached. If no end of file action is
specified, an error message will be given. To
allow the user to detect and process the end
of file condition, the ON EOF GOTO command is
used. The format of the command is:

D
J

K/"

TDL 280 BASIC VERSION 3 USER'S MANUAL Page 41
GROUP 6 - TRANSFER OF CONTROL AND RELATIONAL TESTS

ON EOF GOTO [<line number>]

If the line number is omitted, then the EOF
processing is disabled. After the|execution
of this statement, any end of file encountered
on a data input statement (INPUT,READ, or
MLOAD) will cause a GOTO to the line
specified. Execution will then continue with
the statement at that 1line. This end of file
processing is not a subroutine type of call,
in that there is no way to “return" to the
input statement causing the condition. Also,
the occurrence of an end of file branch does
not disable the ON EOF, so a subsequent end of
file will again cause the GOTO to be| executed.

ON x GOTO .
ON x GOsus The ON statement causes control to| be trans—
ferred to the "x"“th line number in the list.

Example: 10 ON A GOTO 100,125,150

I£f A was equal to 1, control | would be
transferred to Line 100, -If A=2, |GOTO Line
125, etc. If A is equal to zero, |or larger
than the number of line numbers in the list,
control will be given to the statement after
the ON x GOTO. The value of x may range from
0 to 255.

CALL A greatly improved method of invoking assembly
language subroutines is provided by the CALL
statement. The format of the statement is:

CALL <address>([,<argument 1>[,...,<argument n>]}

The <address> is an expression representing
the machine address of the routine to call.
The statement also allows thel optional
specification of arguments to be passed to the
subroutine. Each argument expression is
evaluated and converted to a 16-bit integer.
These arguments are then pushed | onto the
stack, so the number of arguments |is limited
only by memory. When the subrioutine is
entered, the following information is
available to it:

TDL Z8U BASIC VERSION 3 USER'S MANUAL Page 42
GROUP 6 = TRANSFER OF CONTROL AND RELATIONAL TESTS

sP ->
<argument n>
<argument n-1>

<argument 1>

HL ->
<return address>

BC => # of arguments on stack

The arguments may then be popped off the stack
in reverse order. In addition, note that the
HL registers point to the 1location of the
return address in the stack. If no arguments
are desired, or some error abort is required,
a SPHL followed by a RET will properly clean
up. the stack and return to the «calling
program. The BC. registers contain the count
of the arguments passed to the routine.

FOR,TU,STEP,NEXT
These keywords are used to set—up and control
loops.
Example: 10 FOR A=B TO C STEP D
20 PRINT A
30 NEXT A

If B=0, C=10, and D=2, the statement at line
20 will be executed 6 times. The values of A
that will be printed will be 0,2,4,6,8,10.
“A" represents the name of the index or loop
counter. The value of *B" is the starting
value for the index, the value of "D" is the
value to be added to the index. If D is
omitted then the value defaults to l. The
"NEXT" keyword causes the value of "D" to be
added to. the 1index and then the index is
tested against the value of C, the limit. If
the index is less than or equal to the limit,
control will be transferred back to the
statement after the "FOR" statement. The
index may be omitted from the "NEXT*“
statement, and if omitted the "NEXT" statement
affects the most recent "FOR". This may be of
concern in the case of nested “FOR-NEXT"
statements.

Example: 10 DIM A(3,3)
20 FOR B=1 to 3

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 43
GROUP 6 - TRANSFER OF CONTROL AND RELATIONAL TESTS
30 PRINT “PLEASE TYPE LINE"Y;B
40 FOR C=1 to 3
50 INPUT A(B,C)
60 NEXT C
70 PRINT "THANK YOU.";
80 NEXT B
IF,THEN ,ELSE
The “IF" keyword sets up a conditional test.
Example: 25 IF A=75 THEN 30 ELSE 40
Upon execution of line 25 if A is equal to 75
then control is transferred to line |30. Else
if A is not equal to 75 transfer control to
line 40. The "THEN" clause may be replaced by
a GOTO.
Example: 25 IF A=75 GOTO 30 ELSE 40
The THEN and ELSE clauses may ‘contain
imperative statements.
Example: 30 IF A=75 THEN A=0 ELSE A=A+l
The ELSE clause may be omitted in which case
control passes to the next statement.
Example: 40 IF A=75 THEN A=0
Relational operators used in IF statements:
= EQUAL
<> NOT EQUAL
< LESS THAN
> GREATER THAN
<= LESS THAN OR EQUAL
>= GREATER THAN OR EQUAL
The logical operators may also be used:
NOT Logical Negation
AND Logical And
OR Logical Or
Example: 20 IF(A=0) OR NOT(B=4) THEN C=5
VARADR Variable address references. This| function
allows the actual address that a particular

PDL Z80 BASIC VERSLON 3 USER'S MANUAL Page 44
GROUP 6 - TRANSFER OF CONTROL AND RELATIONAL TESTS

variable resides at in memory to be obtained.
The function format is:

VARADR (<Kvariable>)

where <variable> is either a single variable
or a matrix element reference. This function
returns an integer value which is the address
in memory at which the value of the variable
or matrix element specified resides. This
address may be used directly in the POKE and
CALL statements, and 1in the PEEK function.

~The formats of the variable values are as
follows:

Numbers: 6 bytes per number, least
significant byte first. The first 5 bytes are
the mantissa, with the sign in the 5th byte.
The mantissa is stored 1in a sign/magnitude
overnormalized form (the high order bit is
always assumed to be 1, and is used to hold
the sign bit). A sign bit of 1 is a negative
value. The 6th byte contains the exponent, in
excess 128 notation (the value is always
positive = actual exponent + 128). It 1is a
binary exponent. For example, the hex string
00 00U 00 00 00 80 is. the number .5.

Strings: 6 bytes per dope vector. The first
byte contains the 1length of the string. The
next byte is always zero. The next two bytes
contain the address of the string itself,
least significant byte first. The last two
bytes are unused.

TDL Z80 BASIC VERSION 3 USER'S MANUAL
GROUP 7 - TRIGONOMETRIC FUNCTIONS

ATN

cos

TAN

3.7 GROUP 7 TRIGONOMETRIC FUNCTIONS

Function to return the ARCTANGENT of
The result is expressed in radians.

Example: 10 B=ATN(.45)

returns the ‘angle, expressed in radi

tangent is equal to .45.

Function to return the

expressed in radians.

Example: 20 C=COS(A)

Function to return the

expressed in radians.

Example: 30 D=SIN(A)

Function to return

angle, expressed in radians.

Example: 40 T=TAN (A+B)

COSINE of

Page 45

a value.

ans, whose

an angle,

an angle,

of an

TDL Z80 BASIC VERSION 3 USER'S MANUAL Page 46
GROUP 8 - MISCELLANEQUS FUNCTIONS

DEF,FN

3.8 GROUP 8 MISCELLANEOUS FUNCTIONS

Function to return the absolute value of a
value.

Example: 10 A=ABS (B+C)

If the result of the expression 1is positive
then ABS returns that value. If the result is
less than zero, then ABS returns the positive
equivalent.

These commands allow the user to define his
own functions. A function defined in this way
must have a name that begins with the letters
“FN* followed by a valid variable name. For
example "FNA", or "“FNZ9". The function name
is then followed by one parameter enclosed in
parentheses. This parameter is a dummy
argument and is included in the expression to
the right of the equals sign.

Example: 159 DEF FNQ(X)=X*A

In this case A is a variable within the
program and X 1is an argument that may be
replaced with a constant or another variable
when the function is used.

Example: 15 DEF FNQ(x)=X*A

121 a=3
122 B=4
123 C=FNQ(B)+5

Thus Basic would take the argument B and
multiply it by the value of A, add 5 to the
product and place the result in variable "C".

User defined functions may return both numeric
and string values. Also, functions may have
more than one (or less - zero) parameters, and
the parameters may be either numeric or
string. Secondly, functions may now consist
of more than one statement (multi-line
functions). The format of a multi-statement
function is as follows:

5\ \‘)

\

N\

N

TDL 280 BASIC VERSION 3 USER'S MANUAL
GROUP 8 - MISCELLANEOUS FUNCTIONS

Page 47

DEF FN<function name> [(<Cummy 1>[,<dummy n>])]
<func£1;n body>

FNEND [<function value>]

The first line of the definition 1is the same
as the first part of a single line definition.
The difference is the absence of | the equal
sign following the header information. The
function definition header is <followed by the
actual statements comprising the function
body. The function body may consist of any
valid BASIC statements except another multi-
line function definition (single line defini-
tions are valid). The 1last statement of the
function must be the FNEND statement. This

statement both signals the end of the defini-

tion itself, and, upon execution, returns the
value of the function to the calling expres-
sion. The FNEND statement takes | a single
optional argument which may be any alid BASIC
expression of the same type as the function
itself (string or numeric). The value of the
expression is the returned value of the func-
tion. If no expression is given, the function
returns a zero if numeric, or the null string
if string. \

To allow for the programatic termination of
the function, and for the return of alternate
values, the FNRETURN statement is provided.
This statement has the form.

PNRETURN [<function value>]

The FNRETURN statement, when executed,
functions identically to the FNEND statement.
[t terminates the function and eturns the
specified value. The ~difference s that a
function may have multiple FNRETURN's, and
they may occur wherever a valid BASIC
statement may occur in the function

The following are a few examples of lmulti-line
functions: }

\

\

i

|

TDL 280 BASIC VERSION 3 USER'S MANUAL Page 48

GROUP

EXP

FRE

INT

8 - MISCELLANEOUS FUNCTIONS

CALCULATE A FACTORIAL

100 DEF FNFAC(I)
200 IF I=0 THEN FNRETURN 1 'FAC(0)=1
300 FNEND FNFAC(I-1l)*I 'FAC(L)=FAC(I-l)*I

BUILD A REPETITIVE STRING

100 DEF FNREPS$(IS,I)

200 Jg=vr

300 IF I<=0 THEN FNRETURN J$
400 FOR J=1 TO I

500 JS$=J$+I3

600 NEXT

700 FNEND J$

It should be noted that a multi-line function
may call any other function (including
itself), may do GOSUB's to anywhere 1in the
program, and may modify any program variable.

This function returns the base of the natural
log system "e” or 2.71828 raised to a power.

Example: 20 B=EXP(A)

If A is eqhal to 1 the result is “e" or
2.71828.

This function, when used with a dummy
variable, returns the amount of memory
available for Basic Programs and variables,
but which is currently unused. If FRE is used
with a dummy string variable, it returns the
amount of currently unused string space.

Examples: 30 A=FRE(X)
40 B=FRE (X$)

Returns the integer portion of a number. This
is essentially a ‘“round-down" operation. For
negative arguments the result would be the
next more negative integer.

Example: 50 C=INT (D)

If "D" has a value of ©5.25 then "C" will have
a result of 5.0. If "D“ has a value of -3.4,
then "C" will be set to =-4.0.

N

TDL Z80 BASIC VERSION 3 USER'S MANUAL
GROUP 8 - MISCELLANEOQUS FUNCTIONS

LOG

SQR

RANDOMIZE

Returns the natural logarithm
expression used as an argument.

Example: 60 E=LOG(F+G)

Page 49Y

of the

will return the log to the base "e" of the

expression "F+G".

Will return the value +1 if the argument is
greater than zero, zero if the argument is

zero, and -1 if the argument is
zero.

Example: 70 H=SGN(I)

less than

Returns the square root of the argument& The

argument may not be less than zero.

Example: 80 J=SQR(K)

Returns a pseudo-random number in the range
between 0 and 1. The RND function uses a

dummy argument to perform the

following

functions. An argument less than zero is used

to initialize the
sequence. An argument of zero will

pseudo-random number

return the

previous random number. An argument of more
than zero will return the next pseudo—-random

number in the sequence.

Example: 90 R=RND(1l)

Although this is not

a function, it is

discussed here because of its relation to RND.

The RANDOMIZE command may be used ¢
a truly random starting point for t
random number sequence. (RND)

0 generate
rthe pseudo-

TDL 280 BASIC VERSION 3 USER'S MANUAL Page 50
GROUP 9 - STRING RELATED FUNCTIONS

CHRS$

LEFTS

LEN

3.9 GROUP 9 STRING RELATED FUNCTIONS

Returns the decimal number that represents the
first ASCII character of the string expression
used as an argument.

Example: 10 A=ASC(AS)

The decimal value 65 represents an ASCII "A".
If the character "A* was the 1left-most
character of string "“A$" then wvariable “A"
would be set to 65.

Returns the ASCII character represented by the
decimal value of the argument.

Example: 20 PRINT CHRS$(7)

would ring the bell on the teleprinter
connected to the console. A "7* is an ASCII
bell.

Uses two arguments, the first is the string
expression and the second is the number of
characters to return from the left end of that
string. The second parameter may range from 1
to 255.

Example: 30 B$=LEFTS$(A$,5)

would set BS equal to the first 5 characters
of string "AS$".

The two string functions LEFT$ and RIGHTS$ will
allow a length argument of zero, resulting in
the return of the null string as the function
value.

Returns the length of a string expression in
bytes.

Example: 40 X=LEN(SS)

o/

o

TDL 280 BASIC VERSION 3 USER'S MANUAL 1 Page 51

GROUP 9 ~ STRING RELATED FUNCTIONS

MIDS

would set “X" to the number of bytes |contained
in the string "sS$“.

May have 3 parameters:

1) The string expression.

2) The position to start extracting|
characters.

3) The number of characters to exttjct.

This value defaults to 1 if omitted.

Example: 50 A$=MIDS(B$,5,6) ‘
would take 6 characters starting atithe £ifth
character from the left of string |*B$", and
place that string in AS. i

The MID$ function can appear on the |left~hand
side of an equal sign to specify the insertion
of a sub-string into an already| existing

string variable. The format is: |
|

MIDS (<string variable>,starting char)[,<1ength>ﬂ)=<string

value>

RIGHTS

The <string value> will overlay the Qharacters
in the value of the <string variable) starting
at the specified character (the first
character is number one) for the specified
length. If the length is omitted, the entire
remainder of the string is replaced. If the
string value 1is smaller than the 1length
specified, it 1is padded to the Jspecified
length with trailing blanks. If it is longer,
the extra characters are ignored. |

For éxample:

A$=*123456789" 3

MIDS (A$,3,5)="ABCDE" => A$=“12ABCDE8§"

MIDS (AS$,3,5)="AB" => A$="12AB 8

MIDS (A$,3,5)="ABCDEF"=> A$="12ABCDE8Y"
|

This is significantly faster than ny method
using splitting and reconcatenatio of the
strings. i

See LEFT$ except works on the righé-hand end
of the string. !

TDL 280 BASIC VERSION 3 USER'S MANUAL Page 52
GROUP 9 - STRING RELATED FUNCTIONS.

STRS

VAL

Returns a string whose characters represent
the numeric value of the argument.

Example: 70 AS$=STR$(2.2)

would return the characters "2.2" preceded by
a space as the result.

Opposite of STR$. Returns the numeric value
represented by a character string.

Example: 80 A=VAL("4.5)

would return the numeric result 4.5.

HEXADECIMAL CONSTANT

INSTR

Hexadecimal constants may be directly used in
the BASIC program. Each constant must be
preceeded by an ampersand (&). The constant
must not exceed 65536 (&FFFF) in value. These
constants may be used anywhere a regular
numeric constant (not a line number) may be
used (including as an argument to the VAL
function).

This function searches one string for a
specified substring. The format of the
function call is:

...INSTR(<string value>,<string value>[,<start
char>[,<length>]])...

In the basic function call, the first <string
value> is searched to see if it contains t'e
second <string value>. If so, the value of
the function is the character position of the
first character of the matched string. If no
match is found, the value is zero. The two
optional arguments correspond exactly to the
application of the MIDS function to the first
<string value> prior to the search. If a
match is found however, the resulting value is
still relative to the first character of the
string. For example:

INSTR("123456789","456") => 4
INSTR("123456789","654") => 0
INSTR("1234512345","34") => 3
INSTR("1234512345","34",6) => 8
INSTR("1234512345","34",6,2) => 0

TDL 280 BASIC VERSION 3 USER'S MANUAL Page 53
GROU® 10 - MISCELLANEQUS COMMANDS

3.1% GROUP 10 MISCELLANEOUS COMMAND

END Stops the execution of the program. The ENvV
command may be placed anywhere in the program.

REM

+ (REMARK)

STOP

USR

Example: 65520 END

Denotes that this line is a remar
processed.

Example: 10 REM This is a remark.

Basic allows every statement to
by a remark. The remark is indi
use of an apostrophe (') preceedin
terminated by either a colon (:) o
the line. For example:

100 I=1' INIT I:J=8*3'3 WORDS/ENTR
'SETUP INFO

A statement consisting of Jjust
valid.

Similar to the END command exc
message BREAK @ LINE (x) is printe
is the line number of the STOP com

The USR command allows Basic to ex
provided assembly language routine
value, and return with the result.

In use, Basic must be told where t
assembly language routine. Whe
function is referenced, Basic wi
USR transfer vector. Normally,

points to an error routine withi

you must patch the address (sta
+6H) with a jump to your assem
routine.

order to link to an assembly languF
r

and is not

be followed
ated by the
it, and is
the end of

:GOsuB 234

remark is

pt that the

, where “x"
and.

it to a user
, evaluate a

o go for the
n
11 call the
this vector
n Basic. 1In

the USR

ge routine,
t of Basic

bly language

¢DL Z80 BASIC VERSION 3 JSmR'S MANUAL
GROUP 10 - ML{SCELLANEQUS COMMANDS

In your assembly language routine, in
call 0027'd (

get the passed value,
Basic +27H). Basic w

ill

r

eturn Ww

passed value in registers D & E.

To return the result back

low byte of information in register B,

high byte in register

A,

(start of Basic plus 2AH).

To give control back to Basic,

instruction.

Having done the above,

the

your routine can be made to

by use of the USR funct

Example: 10 X=USR(Y)
20 PRINT X

will pass the value

ion.

wy

a

nd call

Page 54

order to
start of
ith the

to Basic, place the

and the
0U2A'H

execute a RET

Basic program and
interact at will

to

your

assembly

language routine. The returned value would be

assigned to “X“, and
console.

then

printed

on the

TDL 280 BASIC VERSION 3 USER'S MANUAL Page 55
GROUP 11 - COMMANDS TO HANDLE ASCII TEXT

ASAVE

3.11 GROUP 11 COMMANDS TO HANDLE ASCII TEXT

The ASAVE command allows the punching of the
ASCII text of a BASIC program. The format of
the command is:

ASAVE
The command takes the entire current BASIC

program and punches it in ASCII on the current
punch device.

ALOAD ,ALOAD*,AMERGE ,AMERGE*

Pour commands are used to allow the locading of
ASCII source programs. These are ALOAD,
ALOAD*, AMERGE, and AMERGE*. These commands
all read ASCII text from the current reader
device. Each incoming line must start with a
line number, and terminate with a
carriage-return. A line-feed immediately
following the carriage~return is ignored, as
are rubouts and nulls. Completely blank line
(carriage return only) are also ignored. The
input operation is terminated by either a
control=Z in the text or by an EOF indication
from the reader device. The two ALOAD
commands clear the program storage area before
starting, while the two MERGE commands merge
the incoming lines with the existing program
on a line number basic.

The difference between the Axxx commands and
the Axxx* commands 1is the way in which they
handle the reader device. The Axxx* commands
assume a controlled reader, and stop after
each line is read to convert the ASCII into
internal format. The Axxx commands assume a
non-controlled reader of any speed, and do not
stop reading until the EOF is detected. These
commands save the entire incoming ASCII text
in memory prior to conversion to internal
format, and hence require more memory for a
given source than the Axxx* commands.

The format of the command is:

Axxx [*]

TDL Z8U BASIC VERSION 3 USER'S MANUAL Page 56
GHOUP 12 - SPECIAL FUNCTIONS & CONTROL-CHARACTERS

3.12 GROUP 12 SPECIAL FUNCTIONS & CONTROL-CHARACTERS

COMMA
SEMI-COLON
COLON

RUBOUT

, Move to next TAB position or delimiter

: 2 spaces between numbers
: Used for multiple statements per line

‘fhe RUBOUT (DELETE) function echos the
deleted characters bracketed by backslashes
().

CONTROL-S ,CONTROL-Q,CONTROL~C

CONTROL-U
CONTROL-X
CONTROL-0

CONTROL-R

During the execution of a BASIC program, the
CfL-S and CTL-Q keys may be used to
temporarily stop and then restart the program.
The CTL-S key will stop the program, but will
not echo or in any way affect any printed
output. The CTL-Q key may then be used to
resume the execution. A CTL-C may also be
entered if it is desired to abort the
execution and return to command level. Only
CTL~-Q and CTL-C will be recognized after a
CTL-S.

Delete input line.
Return to the Monitor.
Suppress the console output.

A control=-R entered whenever BASIC is
accepting input (either while entering a
program or entering data into a running
program) will cause the current input buffer,
with all rubouts and control-U's processed, to
be typed out, and the input position to be
left at the end of the 1line so more input may
be entered. For example:

100 IFT\T\I-2\2-\=23 THEN GOSU\US\TO
123\32\32"°R

would respond:
100 IF I=23 THEN GOTO 132

and leave the input pointer after the 132.

TDL Z80 BASIC VERSION 3 USER'S MANUAL
GROQUP 12 - SPECIAL FUNCTIONS & CONTROL~CHARACTERS

CONTROL-T

while a program is running, a control
entered on the console. This will

the line number of the line curren
executed, being printed on the cons
program execution is unaffected by t
this command.

Page 57

-T may be
result in
tly being
ole. The
he use of

THL 280 BASIC VERSION 3 USER'S MANUAL Page 58
GROUP 13 - OPERATORS

3.13 GROuP 13
evaluation)

A)

B8)

C)

D)

E)

F)

G)

H)

1)
J)

K)

QPERATORS (listed in the order of

Any expression enclosed in parentheses is
evaluated from the innermost parenthesis
first to the outermost parenthesis last.

~ Exponentiation
(=) Negation. I.E. A minus sign placed so
as to NOT indicate subtraction. For
example:
A==-8 or C=~(2%D)
* Symbol for multiplication. Used
in the form 2*2(cr) yields an answer
by Basic of "“4".

/ Symbol for division. Used in same
manner as multiplication symbol.

+ Symbol for addition. Example:
A%B (add B to A)
- Symbol for substraction. Example:
A-B (substract 8 from A)
RELATIONAL OPERATORS:
= EQUALS
<> NOT EQUAL
< LESS THAN
> GREATER THAN
<= LESS THAN OR EQUAL TO
>= GREATER THAN OR EQUAL TO
NOT Logical negation, such as A=NOT B
AND Logical AND

OR Logical Or

Nt

TDL Z80 BASIC

VERSION 3 USER'S MANUAL

GROUP 14 - ERROR HANDLING

ERL

ERR

ERROR

ON ERROR GOTO

3.14 GROUP 14 ERROR HANDLING

Function used in error routine which
to process the error. This functio
no arguments (and hence no parenthe
ERL function returns the line numbe
the error occurred. A 1line number
indicates that the error occurred i
mode statement.

Function also used ‘'in error rout
allows it to process the error. Thi
requires no arguments (and

parentheses). The ERR function re
number of the error which last oc
list of all defined error numbers i
in Chapter 1, Section 1.3 of this ma

Software error generation. The ERR
is provided to allow the use of
generated errors in conjunction with
trapping capability. The format

command is:

ERROR <error number>

where <error number> is any
evaluating to an integer between 0
When this command is executed,
occurs, and the value is stored as
number. - This number can either be
assigned error numbers (see list
arbitrary user defined number.
command s executed, and no u
procedure is enabled (ON ERROR), the
program abort occurs. If the error
defined, then the normal error messa
given. If not, the "UNKNOWN ERRO
will be given.

User error handling. The ON E
command is provided to specify a
handling procedure. The command for

ON ERROR GOTO [<line number>]

Page 59

allows it
n| requires
ses). The
r| at which
of 65535
nl a direct

ine which
s| function
hence no
turns the
curred. A
s| provided
npal.

OR command
software
the error
of the

expression
and 255.
an error
the error
one of the
)l or an
%3 this
ser error
n a normal
number is
ge will be
R" message

RROR GOTO
user error
mat is:

fDL 280 BASIC VERSION 3 USER'S MANUAL Page 60
GROUP 14 - ERROR HANDLING

where <line number> is the 1line number of the
error handling routine. If the line number is
omitted, then all user error trapping is
disabled. After this statement is executed,
any error occurring during the programs
execution will cause a trap to the specified
statement. ‘This error routine has available
two new functions, ERR and ERL, which allow it
to process the error. See the descriptions of
these functions under GROUP 1l4.

RESUME After processing an error as required, the
error routine returns to the regqular program
execution throught the RESUME statement. ‘lhe
format of this statement is:

RESUME {<line number>]

This statement 1is similar to the RETURN
statement after a GOSUB, and in fact is nested
in the same way. Every error trapping routine
must eventually execute a RESUME statement.
The RESUME statement with no line number
re-executes the statement originally causing
the error. 'The RESUME statement with a line
number resumes execution at the specified
line.

Since all error traps are nested in the same
way as GOSUBS and function calls, it 1is
possible for an error routine to begin with
another ON ERROR statement, with its own error
routine. 1In this case, each error routine
must end by the execution of a RESUME
statement.

It should be noted then when an error trap
occurs, the effect of the ON ERROR statement
which enabled the trap is disabled, and
another error occurring prior to the execution
of another ON ERROR statement will abort the
program.

RESUME NEXT This statement resumes execution at the
statement (not the 1line) following the one
causing the error. The format is: RESUME NEXT

./

TDL 280 BASIC VERSION 3 USER'S MANUAL Page 61
CHAPTER 4 - TDL BASIC FERSION 3 UNDER ce/M

CHAPTER 4
4.0 TDL BASIC VERSION 3 CAPABILITIES UNDER CP/M

A. Non-functional differences from Zapple version. The
CP/M version of TDL Basic Version 3 works slightly
different from the Zapple version due to the
idiosyncracies of CP/M. For instance, CP/M always echos
characters read from the console, which 1limits the
interaction capabilities of programs. Specific
differences are as follows:

1. The EDIT function always echos its commands. This
may look slightly sloppy, but cannot be helped.

' 2. The rubout (DEL) function while typing in does not
enclose the deleted input in backslashe (\), it
merely echos the deleted characters.

3. The program break character is ctl-E rather than
ctl-C. CP/M traps the ctl-C and exit to the
operating system.

4. Basic V3 is loaded and .executed by the command
BASICKcr>. A carriage return response to the
“Memory Size?" message will properly assign
available memory.

5. The ctl-X function is not available since there is
no resident monitor in CP/M.

B. I/0 differences.. The CP/M version substitutes disk
files for the Zapple reader/punch devices. All
operations which could be performed to the reader or
punch can. now be performed to or £from a currently
assigned disk file. Only one input and one output disk
file may be used at a time however.

c. Disk file assignment. Disk files may be dynamically
assigned and deassigned to the input or output (reader
or punch) function. This is done through the |*OPEN" and

“CLOSE" commands. The assignment is done through the
following command:

OPEN #<file number>,<direction>,<file name>
For example:

OPEN #1,"I","PGM"

TDL 280 BASIC VERSION 3 USER'S MANUAL Page 62
CHAPTER 4 - TDL BASIC FERSION 3 UNDER CP/M

would open for reading a CP/M disk file called PGM.BAS.

In this, as in all following commands, the <file number>
‘must be an expression which evaluates to 1, the anly
valid disk file number in this version. The <direction>
must be a string expression which evaluates to either I
or O {(input or output), and the <file name> must be a
string expression which evaluates to a standard CP/M
file identifier with optional disk name and file
extension. The disk name defaults to the logged in
disk, and the file extension defaults to “BAS". This
command assigns the input or output function to the
.specified disk file. It is an error to assign the input
function to a non-existant disk file, or the output
function to an existing one.

To deassign a file, the statement is:

CLOSE #<file number>,<direction>

Example:

CLOSE #1,"GC"

For the input function, this merely breaks the
file/function association. For the output function, all
remaining memory buffers are emptied, and the file is
closed, permanently establishing it on disk. If Basic
V3.is aborted before an output £file is closed, the file
may be lost.

Disk file utilities. A number of additional facilities
are available to maintain disk files in the CP/M version
of Basic V3.

To determine if a particular file is on disk, the
function "LOOKUP" is used. 1Its format is:

LOOKUP (<file name>)
Example:
LOOKUP "PGM.BAS"

The function returns a true (-1) if the file exists, and
a false (0) if it does not.

The statement:

ERASE <file name>

TDL 280 BASIC VERSION 3 USER'S MANUAL
CHAPTER 4 - TDL BASIC FERSION 3 UNDER CP/M

E.

Example:

ERASE "PGM.BAS"

erases the specified file from disk.
The statement:

RENAME <file name 1>,_<file name 2>
Example:

RENAME “OLD.BAS" ,“NEW.BAS"

renames f£ilel to file2.

Returning to CP/M. The command:
EXIT

closes any open files, and exits back to

Cp/M.

Page 63

TDL Z80 BASIC VERSION 3 USER'S MANUAL
CHAPTER 4 - CP/M Version Errors

29
30
31
32
33
34
25
36
37
38

4.1 CP/M ERROR MESSAGES

DIRECTORY FULL
EXTENSION ERROR

NO DISK SPACE

INPUT FILE NOT FOUND
NO INPUT FILE

NO OUTPUT FILE
DUPLICATE OQUTPUT FILE
OUTPUT CLOSE ERROR
INVALID OPEN TYPE
INVALID fILE ID

Page 64

N

READER'S COMMENTS : :
ZAPPLE (tm) BASIC VERSION 3 USER

In a constant effort to improve the qu
usefulness of its publications, Technical Design
provides this page for |user feedback. Your
evaluations of this document is our only effectiv
determining its serviceability. Please give spe
and line references where applicable.

ERRORS NOTED IN THIS PUBLICATION:

TDL
S MANUAL

ality and
Labs, Inc.
critical
e means of
cific page

SUGGESTIONS FOR IMPROVING THIS PUBLICATION: (i.e.
otganization,convenience,accuracy,legibility.

clarity,
)

MISSING DOCUMENTATION: (i.e. completeness.)

Name Date
Street -
City State Zip Code

All comments and suggestions become the property of

TDL. Send to Technical Design Labs, Inc.
Dept. of Product Improvements
1101 State Road
Princeton, N. J. 08540

please indicate in the space below if you wish a reply.

TDL Z-TEL: 280 Text Editing Language
User's Manual

(Revision 1)

November 8, 1977

Written by

Evelyn J. Tate and Randall B. Enger

Copyright 1977 by Technical Design Labs, Inb.

TDL Z-TEL: 280 Text Editing Language
Table of Contents

Table of Contents

Chapter I - Introduction

Chapter II - Overview of Z-TEL operation

A. Deleting characters
B. Moving the pointer
C. Inserting characters
D. Searching

E. Lines

F. Files and paging

G. Basic syntax

H. Iteration

I. Value registers

J. Text registers

K. Macros

L. Input and output

M. Getting started

Chapter III - Some basic examples

Chapter IV - Detailed description of commands
A. Basic commands
B. Extended commands

C. Special-character commands
D. Text and value registers

Appendix A - Error messages
Appendix B - Advanced examples

Appendix C - "Quick=-glance" command reference guide

TDL Z~TEL: 280 Text Editing Language

Chapter I - Introduction

Chapter I

Introduction to 2Z-TEL

Z-TEL is a TDL wutility program designed to provide a
powerful set of techniques for editing text files. 1In
addition to providing standard text editing features such as
adding text, deleting text, searching, and changing text,
Z-TEL offers ways for moving blocks of text, for command
iteration, for expression arguments to commands, for forward
and backward searching, and for invoking command macros.

Not only does it contain these powerful editing features,
2-TEL is easy to use because it includes detailed error
detection and a number of options for tailoring the program
to the user's individual needs.

This manual has four chapters and several appendices.
This is Chapter One. Chapter Two is provided as a|guide to
the first-time user, and explains the concepts upon which
Z-TEL is based. This is NOT a complete description of the
entire editor. Chapter Three elaborates on Chapter Two by
examining a typical 2Z-TEL editing session 1in| detail.
Chapter Four is a reference guide for the experienced user;
it contains a detailed description of all Z-TEL commands and
their effects.

Error messages are given in Appendix A, and some more
advanced examples are given in Appendix B. Appendix C
contains a short summary of all 2-TEL commands; it|is meant
to be a "gquick-glance" guide to 32-TEL. Additional
appendices will be included for special versions which
become available.

TDL Z~TEL: 280 Text Editing Language Page 2

Chapter II - Overview of Z-TEL operation

Chapter II

Overview of Z-TEL Operation

The model for much of Z2~-TEL is paper tape: the file being
edited is viewed as a string of individual characters.
Conceptually, a pointer exists pointing somewhere into this
string or at one of the ends, and almost all of the editor
commands act relative to this pointer. The pointer |is
always before or after a character. The characters to the
RIGHT of the pointer are thought of as being in the
"positive" direction, and the characters to the LEFT of the
pointer are thought of as being in the "negative" direction.

A. Deleting characters

For example, to delete the character immediately to the
right of the pointer one enters "1D" (or just “D", since in
the absence of an argument, the wvalue "1" is generally
assumed); to delete the character immediately to the left of
the pointer, one enters "-1D" (or just "=-D").

The commands "D and "-D" are instances of the “delete
characters" command, which takes a numeric argument and
deletes that many characters from the pointer position.
Again, negative numbers refer to characters before the
pointer and positive numbers refer to characters after the
pointer.

B. Moving the pointer

The "C" c¢ommand behaves similarly, but instead of
deleting characters, this command moves the pointer
position. The “C* command takes one numeric argument -
positive or negative - and moves the pointer to the RIGHT if
the argument is positive and to the LEFT if the argument is
negative. For example, the command "-5C" will wove the
pointer position to the LEFT 5 places.

Another way to move the pointer is with the "J" or "jump"
command. “J", like "C", takes one argument, but instead of
interpreting this argument as a relative offset from the
current pointer, the argument is treated as an absolute
position in the file. Thus, "0J" will put the pointer at
the beginning of the file, and "100J" will put the pointer
after the 100th character in the file.

The pointer will not go past the end of the buffer in
either direction, so it doesn't hurt to use an argument toc
big. This is true in general for all commands in Z-TEL: the

TDL Z-TEL: 280 Text Editing Language Page 3
Chapter II - Overview of Z~TEL operation

two ends of the file behave as infinite sources of
characters (for character oriented commands) and infinite
sources of lines (for line oriented commands). :

C. Inserting characters

Characters can be inserted at the current pointer
position. The characters are inserted between the character
to the left of the pointer and the character to the right of
the pointer. For example, the command "ihi there" when the
pointer is between the “well " and “George" of the string
"well George" will result in the new string
"well hi there George". By convention, the pointer is left
after the last character inserted, so that the two commands
"ihi " and “ithere" (in the order given) are equivalent to
the one command “ihi there".

D. Searching

A character string can be searched for using the "s*
command. The "s" is followed by a string, which is compared
to the characters in the file starting at the current
pointer position. "S" also takes a numeric argument, the
sign of which is the direction to search. If this number is
positive (remember that the absence of an argument is the
same as "+l") the editor compares the string to the
characters to the right of the pointer locking for the
specified occurrence of the string, and if this number is
negative, characters to the left of the pointer are
searched. Again by convention, the pointer 1is positioned
after the rightmost character of the matched string -- if
the search was successful. If the string couldn't be found,
then the pointer isn't moved.

E. Lines

Although the file is treated as a string of characters,
the notion of a "line" has been added for convenience. A
“line" is merely the string of characters between two
linefeed characters, not including the 1left 1linefeed but
including the right one.

Some editor commands are line oriented. For instance, the
"L" command moves the pointer a number of lines, positioning
it always at the start of a line ~- just after the previous
line's 1linefeed <character. The command "“3L" moves the
pointer to the right past three linefeed characters, or
“down 3 lines". The ends of the file are treated as
linefeeds when a line oriented command is looking for more
linefeeds than exist. The command “3L" given when only one
line exists in a file will position the pointer at the end
of the file. No matter how hard you try, you can't move the
pointer further than just past the ends of the file.

TDL Z-TEL: 280 Text Editing Language Page 4
Chapter II - Overview of Z-TEL operation

F. Files and paging

A "file" to the editor is an arbitrarily long string of
ASCII characters that is presented to it through the reader
device. The beginning of a file 1is the first character
presented to the editor through the reader; the end of the
file is whenever a <control-z> is encountered in the input
stream or when the monitor returns the carry flag set after
a call on the reader device. The carry flag is returned by
the monitor when the reader runs out of tape or otherwise
stops for a fixed time period. A flag is set by the editor
upon encountering one of these conditions; it can be reset
by the user and more text can be read 1in if necessary, for
example, in the case of spurious <control-z>'s in a file.
(See the description of value register “E" in Chapter Ffour,
Section D.)

The editing process generally consists of reading a file,
making changes to it, and writing out a new file. All
changes are made in the editor's file buffer kept in main
memory. The <control-z> character is not considered part of
the file itself. When one is read, the editor sets the "“end
of file" flag and stops reading. When the writing out of a
file is finished, a <control-z> is appended to the new file
by the editor so that end of file may be found when the file
is read in again.

The editor can handle files much larger than the amount
of main memory available to it for the file buffer. When
this is the case, part of the file must be brought in,
changed, and then written out so the next section can be
read in. This process 1is loosely referred to as “paging"
through the file. A "page" has no fixed 1length and is not
delimited by any special character. Rather, what can fit in
the file buffer, or what is currently in the file buffer at
any given time is called a page. Paging through the file is
a one-way proposition: once a page has been written out, it
can be accessed again only by re-editing the file. (See the
“EA" command described in Chapter Pour.)

Some commands perform an action with respect to a “page"“,
the same way some commands perform an action relative to
“lines" (e.g. L, K) or relative to individual characters
(e.g. C, D). The "yank" ("EY") command, for example,
deletes the current page and reads in a new page. The
looseness of the term “page" can cause problems if this
command is used carelessly. The detailed descriptions in
Chapter Four will describe which commands use "pages”.

G. Basic syntax

The basic command structure 1is the same for all Z-TEL
commands. In the following, sguare brackets denote an
optional field, and angle brackets denote a class of similar
items or numbers. All commands (with minor exceptions) fall
into the following form:

TDL Z-TEL: 280 Text Editing Language
Chapter II - Overview of 2-TEL operation

(<n>[,<m>]][:]1[@] [£]<command> [<reg~spec>] [<stri

where <n> and <m> are expressions and <command>, <re
and <string> denote the class of commands, register
discussed immediately), and strings, respectively.
command takes all of the optional arguments, es
since <reg-spec> and <string> are mutually exclusi
following is an explanation of each part of the synt

<command> -—- one of the many commands desc
Chapter Four. Most commands are single
some consist of two letters, the first of
always “E“.

<n> or <m> -- an expression. Expressions c¢o
numbers, variables, parentheses, and the f

Page 5

ng>]

g-spec>,
s (to be

No one
pecially
ve. The
ax:

ribed in
letters;
which is

nsist of
ollowing

five operators: plus (+), minus (-), times (*),

divide (/), and unary minus (=). The ex
is evaluated using the *“standard" pr
rules: “*" and */" take precedence over
“="; unary minus has higher precedence
and "*/". Operators of equal precede
evaluated left to right. Parentheses can
to alter the standard precedence, and ne
parentheses is provided but is limited to
-due to stack requirements. Variables
registers -- can be used in expression
same way numbers are. See Chapter Th
examples of the use of expressions.

pression
ecedence
“*+" and

than “#*"
nce are
be used

sting of
about 10
value

s in the
ree for

<string> ~-=- a string that either starts immediately

after the command and terminates with t
escape character encountered, or 'starts a
first character after the command and te
with the second occurrence of the first ch
The "@" option invokes the alternate
specification. For example, the “s"

command will find (if one's there) th
accurrence to the right of the pointer
string “abc” in each of the following ca
"sabes$", (2) “@s/abec/", and (3) b@seabce".

{reg—-spec> -- a single letter or number denotin
a text register or a value registe
registers hold text and are denoted by the
“0" through *9". Value registers hold
between =-65,535 and +65,535 and are de
numbers or letters., Some of the value r
have predefined meanings, and some of t
"read only" variables. Chapter Four
these in depth. See also sections I and J

The "f* option -- signals that this command
string arguments following. For
"fsabcdef" 1is the search command W
two=-string option in effect. Most comma
take two strings search for the first and
it with the second. The above comman

he first
fter the
rminates
racter.
string
(search)
e first
of the
ses: (1)

g either
r. Text
numbers
numbers
noted by
egisters
hese are
explains
below.

has two
example,
ith the
nds that
replace
d £finds

TDL Z~TEL: Z80 Text Editing Language Page 6
Chapter II -~ Overview of Z-TEL operation

“abc", deletes it, and inserts "def" in its place.
There is no requirement that the two strings be of
equal length.

The ":" option ~- means something different for each
command, but usually indicates that something is
to be deleted. An example is the "P" command,
which puts text into a text register: if the ":*
option is present, the text 1is deleted from the
file buffer after it is copied into the text
register, whereas if the ":" is absent, the text
exists in both places after the command. See the
detailed descriptions in Chapter Four for the
effect that the ":" option has on each command.

Any number of commands may be strung together to form a
“command string” -- a list of commands that are to be
executed in order until the end is reached or an error is
encountered. A command string is not executed until two
consecutive escapes are typed at the console, but the
escapes are not considered part of the command string and
are ignored during command execution.

H. Iteration

A command string can be executed repeatedly by enclosing
it in angle brackets ("<" and "“>"). The character "<" is a
command .that optionally takes a numeric argument (which must
be positive) as the number of times the enclosed command
string is to be executed. For example, the command string
“20<I-$>" will insert the character “~-" 20 times.

Angle brackets nest Jjust as parentheses do, so command
strings like the following are possible:

"20<I-$5<CI.$>QTT>"

which will (insert a dash followed by five (skipping one
character and then inserting a dot) and then display the
line without moving the pointer) all 20 times. WNesting
depth is limited to five due to stack requirements.

With no argument to the "<", the editor assumes an
argument of infinity (which really means 65,535). The
command string “<IHI$>" will insert the string "“HI" until
the file buffer is full. Also, a minus argument or a zero
argument is treated the same as no argument.

This is not as useless as it might seem at first glance,
because certain situations terminate the iteration before
the count goes to zero. A failed search, upon the execution
of the closing ">", will cause the 1iteration to stop. For
example, the command string “J<Sabc$0TT>" will print out
every occurrence 1in the file buffer of the string "abc".
When the "“>" 1is executed after the search fails, the
iteration will stop even though the command string was not
executed 65,535 times. Notice that the “0TT* will De

S

TDL Z-TEL: 280 Text Editing Language Page 7
Chapter II - Overview of Z-TEL operation

executed whether the search succeeds or fails, prdduc1ng a
situation where the current line will always be printed once
before the iteration terminates. The semicolon command is
available to provide a more graceful stop.

The semicolon ";“ command is closely related to angle
brackets, and, in fact, it can't be used outside of an
iteration. The semicolon command, when encountered in a
command string, checks the result of the last search command
in the iteration. If this search was successful, then the
semicolon command does nothing. If the search | failed,
however, then the semicolon command terminates the
iteration. Perhaps the most common use of this ¢ mmand is
in a case like the following:

"<Sxxx$;CIyyysoTT>"

which will find all occurrences of "xxx" and insert the’

string "yyy" one character after the last "x", and then
print the line. If the semicolon were NOT included, the
same action would take place UNTIL no more of the string
"xxx" were found. Then, instead of stopping, an additional
“yyy" would be inserted and the line printed. Then the
iteration would stop, because - as mentioned |above -
iterations stop on failed searches. The semicolon command,
then, acts as a kind of "guard" for the rest of the string.

I. Value registé-:s

Value registers hold numeric values in the rangq -65,53S
to. +65,535. These registers can be set using {the "W*®
command: for instance, "1W0" loads into value register 0 the
value l. Value registers can also be used as arguments to
commands by using “V* to pull the value out. For unstance,
"S5W5™ followed by “V5*3<I*$>“ will insert the character wen
165 times.

Some value registers are used by the system fom storing
information about the file or the environment. The
end-of-file status is always stored in value register "E"
where 0 means no end-of-file and 1 means end-of-file (other
values for "E" are undefined). Another example ig the "X"
value register, which contains the “eXtent” of the matched
string after a successful search. Therefore, the command
string "Sabc$~VXD" will delete the first occurrende of the
string "abec". Section D of Chapter Four describes all the
value registers.

J. Text registers

Text registers hold text. The amount of text they can
hold is limited only by the size of available memqry The
"P" command ("Put") is wused to put text into a text
register. It has two forms, cne will put a number of lines
into a text register (e.g., "“SP3" will copy 5 lines starting
at the current pointer position into text register 3), and

TDL Z~TEL: 280 Text Editing Language Page 8
Chapter II - Overview of Z-TEL operation

the other will put a number of characters into a text
register (e.g., "0,9P2" will copy the first nine characters
of the file into text register 2).

The "P" command, when the colen option is present, will
delete from the file buffer those characters that have been
“put” into the text register. For instance, "SP3" copies S
lines into text register 3 and leaves them in the file
buffer, whereas the command “S:P3* puts S5 lines into text
register 3 and then deletes them from the file buffer.

The "G" command does the inverse of "P": “G" "gets" text
from a text register. This command takes only the text
register argument, which means only the whole text register
can be “gotten". The text from the text register is copied
into the file buffer at the current pointer position, and
the pointer is moved to the right by the number of
characters inserted, leaving it after the last character
inserted.

The "G" command understands the colon, when present, to
mean a request to delete the contents of the text register
after the contents are copied into the file buffer.

K. Macros

The contents of a text register will be interpreted as a
command string when the “M" command is used. “M" takes a
text register and causes the text in that text register to
be interpreted as editor commands. For example, if text
register 1 contains the text "Sabc$20<I*$>0TTL" and the
command “Ml" is entered, then the above text string will be
executed as if it had been entered from the console.

Macros are made even more useful by the "*" command
which, when entered as the first character after the
editor's prompt, copies the previous command into a text
register. Using this command is an easy way of saving the
retyping of a command. This sequence:

{command-string>
*{text-register>
M<{text-register>

will cause the <command-string> to be executed again.

L. Input and output

Input and output are accomplished through the two

commands "append lines" ("A") and “output lines" ("O").
Each takes a numeric argument, which is interpreted to be
the number of lines to be input (for "A") or output (for
uou) .

For example, the command "“S50A* will append to the end of
the file buffer fifty 1lines from the reader device, unless

TDL Z-TEL: 280 Text Editing Language
Chapter II - Overview of Z-TEL operation

either there's not room for £ifty 1lines or th
fifty lines left 1in the file. The pointer posi
the append command is unchanged.

For output, the "0* command will take the

number of lines from the top of the file buffer
them to the punch device. The pointer position
the beginning of the buffer after the output comma

Some commands will cause
the environment. Examples of

I/0 to take place de
these commands ar

"EN" (which are the "non-stop search® commands:
in more text if the string is not in the cu
buffer), the "EX" command (which terminates ¢t
session), the “¥" command (which "yanks" in a
among others.
M. Getting started

Z-TEL 1is a relocatable, “rom-able"” progr
requires about 200-hex bytes of working storage s
absolute 100-hex. The minimum 1loading address

(i.e. When loading, type R,300) After the program
a "G300" to ZAPPLE will start the program. The pr
ask for the low and high addresses that it's to u
file buffer. If no addresses are given, then Z-TE
the larger of the space between its lower end and
so (where the fixed working storage ends) and
bound and the highest address available (as ZA
it). If addresses for the £file buffer are given
must be in DECIMAL), then Z-TEL will use these
this buffer area doesn't overlap the program code.
is the user's responsibility to ensure that the £
resides in write-able main memory. The editor
display the size of the £file buffer and issu
character ("*"). At this time, the editor Iis
accept commands. :

A note on the ‘“escape" <character should be
here. For teletype-type devices which have no E
the ALTmode key should be used. 3Z-TEL will
ALTmode character like an ESCape, but only if the
flag is set. So, on teletype~type devices, we
that the first command to 2-TEL always be "1WU";
to be terminated by 2 ESCapes, which are "contro
characters. After this, the ALTmode key will wor
ESCape key.

Page 9

re aren't
tion after

specified
and output
is left at
nd.

pending on
e "N" and
these read
rrent file
he editing
new page),

am, which
tarting at

is 300.
is loaded,
ogram will
se for its
L will use
200-hex or
its upper
PPLE tells
(and they
as long as

Alsao, it
ile buffer
will then

a prompt

ready to

mentioned

SCape key,

treat the
upper case
recommend
this needs
l-shift-n"
k like the

TDL 2~-TEL: 280 Text Editing Language Page 10
Chapter III - Some Basic Examples

Chapter III

Some Basic Examples

This section shows how some of the basic Z-TEL commands
might be used in an editing session. Our short source file
contains poetry which needs some revision.

In the following examples, user~-typed commands (in
upper-case only) are preceded by the Z~-TEL prompt character
(an asterisk); the dollar-sign symbol represents an escage
character.

We start the file edit process by loading Z-TEL and then
loading the file with the “A" ("append”) command. 2-TEL
starts at address 300-hex, so the ZAPPLE command "G300"
starts the editor. Z-TEL signs on and issues a prompt. The
file can then be loaded using the “append" ("A") command.

When the first page of the file has been read in, Z-TEL
will respond with another prompt. Here we might want to
find out what's in the file buffer. The command "HT", which

is equivalent to "0,2T", prints out the entire buffer -- it-

types all characters from the first to the last.

*HTSS

To be or knot 2 B:

Whether 'tis nobler 'tis the mind to suffer

Or to take arms against a sea of troubles,

Alas! poor Yorick. I knew him, Horatio;

A fellow of the bows and arrows of outraged Eortune
etc.

etc.

etc.

The text pointer is initially at position =zero -~ that
is, before the first character of the buffer. The first
error which we will tackle is the “knot" in the first line
(which is the current line).

*Sk$-DOTTSS

This command string does the following: searches for the
character "k" (the pointer 1is left after the "k"), deletes
the preceding character (which is the "k"), and types the
entire line without moving the pointer (the "OT" types the
line up to the pointer, and the "T" types the part of the
line which is after the pointer). At the end of the command
string the pointer is left right before the string "not".

To be or not 2 B:
*32$-D2DIto beS$SO0TSS

T

TDL Z-TEL: 280 Text Editing Language Page 11
Chapter III - Some Basic Examples

This command string finds the character "2" on the line,
deletes it and the following two characters (which are™ B"),
inserts the string "to be", and leaves the pointer directly
after the inserted string. Note that the "0T" types only
that part of the text 1line which is before the pointer;
since the line so far doesn't include a carriage return and
line feed, the Z-TEL prompt is displayed on the same line as
the typed text.

To be or not to be*CI that is the question:$OLTSS

This command string (typed directly after the prompt
character) moves the pointer forward one character to space
over the colon in the text, and then inserts more text on
the same line. The "OLT" moves the pointer to the beginning
of the line and types out the entire line.

To be or not to be: that is the question:

We now tackle the next 1line. The second occurrence of
the word "'tis" is a mistake.

*LTSS
Whether ‘'tis nobler 'tis the mind to suffer
*2FS'tisinO0LTSS

The “2FS" command £finds the second occurrence of the
first argument string ("'tis") and replaces it with the
second string (“in").

Whether 'tis nobler in the mind to suffer

The next line is in fine shape, but the ones after that
have some problems.

*4TS$

Whether 'tis nobler in the mind to suffer

Or to take arms against a sea of troubles,

Alas! poor Yorick. I knew him, Horatio;

A fellow of the bows and arrows of outraged fortune
*2LSof the$VO,.-3KYSS

This command string moves the pointer down two lines, to
point to the line beginning with “Alas“. It searches for a
string which marks the end of the text we wish to remove.
The search leaves the pointer right after the word "the"
(which we don't want to remove). Value register "O“
contains the pointer position before the search (see chapter
IV}, and "." is the pointer position after the search. The
command "VO,.-3K" deletes all characters from the old
pointer position up to three characters before the new
pointer position, thus sparing the word “the". The command
“Y" is equivalent to "-TT", and types the preceding line and
the now-current one.

Or to take arms against a sea of troubles,
the bows and arrows of outraged fortune

TDL 2Z-TEL: 280 Text Editing Language Page 12
Chapter III - Some Basic Examples

The "bows and arrows" line contains a few mistakes. Here
we correct them and print out the results of what we've done
so far.

*DIT$§FSbows$slings$Soutraged$-DIouss$0,.TTSS

This changes lower-case "t" to upper—-case "T", "bows" to
*slings" and “outraged® to "outrageous". The command "0,.T"
is an example of the "T" command with two arguments; it
means "type out everything between character position 0 (the
beginning of the text buffer) and character position '.'
(the current pointer position)". The second "T" command,
with a default argument of +1, types out the remainder of
the current line.

To be or not to be: that is the guestion:
Whether 'tis nobler in the mind to suffer
Or to take arms against a sea of troubles,
The slings and arrows of outrageous fortune,

The fourth line should be the third, and vice versa.
Rather than deleting a line and retyping it, we can move it
elsewhere by using a text register.

*QL:P2~LG2HTASS

This command string moves the pointer to the beginning of
the current line (the one we want to move), "puts” one line
(the default) into text register 2 (any other would do as
well), moves the pointer back up a 1line, "gets" the text
from the text register, and types out the entire buffer.

To be or not to be: that is the guestion:
Whether ‘tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
etc.

etc.

etc.

We have yet to clean up the end of this.

*Setc.$0L.,2KIAnd by opposing end them?
§-2T$S

This command string £finds the first "etc.", deletes all
text from the beginning of that line to the end of the text
buffer (which is the three *"etc."'s), inserts the correct
phrase to complete the sentence (notice that we have
included a carriage return and line feed in the inserted
text string), and types out the last two lines of the file.

Or to take arms against a sea of troubles,
And by opposing end them?

One more change which we might want to make to our text
is to double-space it rather than single-space it. This is
easy to do with the iteration feature.

(@

[S

TDL Z-TEL: 280 Text Editing Language
Chapter III - Some Basic Examples

*QJ<S
$;1
$>HTSS

Page 13

This command string does the following. The pointer is

H

positioned at the start of the text buffer. The
searched for a carriage return; when one is found,

text is
a second

carriage return is inserted after it. When the search fails
because there are no more carriage returns in the text, the
iteration is ended and the entire text buffer is typed.

To be or not to be: that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
And by opposing end them?

To save our corrected file, we use the “EX"
which writes out the contents of the text buf
now-edited file) back to the punch device, and
control to the monitor.

*EXSS

command,
Ffer (our
i returns

TDL Z-TEL: 280 Text Editing Language Page 14
Chapter IV - Detailed Command Descriptions

Chapter IV

Detailed Description of Commands

A. Basic commands

A

[<n>] A

The "append” command inputs <n> lines from the reader
device and stores them at the end of the file buffer.
The pointer position is unchanged. If there isn't
enough room in the buffer for <n> more lines, as many
characters as will £fit are read 1in. A <control-z> in
the input marks an end-of-file, and appending will
stop. The <control-z> is not stored in the file
buffer.

If <n> is =zero, then the "A" command will read text
until either the buffer is three-—quarters full or an
end-of-file situation is encountered. Negative
arguments are not meaningful to the "A" command. If
<n> is omitted, then a value of 1 is assumed.

B8 <string>

Upon execution of the “branch” command, control is
transferred to the first label (defined by "!" -- see
the "!" command) in the <current command string that
matches the <string> argument to "B".

The "current command string” is defined to be the
buffer or text register from which commands are
currently being executed. This means that branching
into or out of a macro can't happen, since only the
labels in the "current command string"” are searched.

[<n>] C

This command moves the pointer <n> characters from the
current position. If <n> is negative the pointer is
moved backwards. If <n> 1is zero the pointer position
is unchanged. If no argument 1is specified, n=1 is
assumed (“-c¢" means "-lc"“).

[<n>] D

This command deletes characters from the file buffer.
If <n> 1is ©positive, the <n> characters immediataly
following the pointer ©position are deleted; 1if <n> is

L/’

TDL Z-TEL: 280 Text Editing Language Page 15
Chapter IV - Detailed Command Descriptions

x

negative, the <n> characters preceding the
position are deleted. If <n> is zero, nothing
if <n> is omitted, "1" is assumed ("~3d" means !

(not a command by itself)

pointer
happens;
-1d4").

This is used to create an "extended" command set; e.g.,
"BR", "EW". For specifics see the "extended commands”

section.

(not a command by itself)

This is used to modify the "S" (search) |and *“N"
(non-stop search) commands. For specifics refer to
those commands.

[:] G <text-register>

This command gets the contents of the text|register

indicated by <text-register> (where <text-regi
a number from the set 0 - 9) and copies the
into the file buffer immediately following the
pointer position. The pointer position is ch
the amount of text inserted, so the pointe
after the last “gotten" character. When mod
“:", the command causes the contents of ¢
register to be deleted after the get.

(not a command)

This is not a command; it is the egquivalent
and is used with commands which can take two ar
E.g., "HT" is equivalent to *“0,ZT" and will
all characters between the first and the last ¢
positions in the file buffer.

(@] IKstring>

This command inserts <string> into the file b
the current pointer position. Normally, the
character signals the end of the string to be i
When "@" is used, an alternate string delimite
than escape) is used; this provides for the i
of a single escape in the text. (Since a doubl
always indicates the end of a command string,
commands are required to insert two con
escapes.) The alternate string delimiter is Y
character following the “i" and can be any ¢
not used in <string> (including <space>). E
command strings “"ihello$", "@i/hello/", and "@i
all do the same thing.

ster> is
contents
current
anged by
r points
ified by
he text

of "“0,2"
guments.
type out
haracter

ESCape
nserted.
r (other
nsertion
e escape

two “I"
secutive
he first
haracter
.g., the
ihelloi”

uffer at.

TDL Z2-TEL: 280 Text Editing Language Page 16
Chapter IV - Detailed Command Descriptions

J

[<n>] J

The “jump” command puts the pointer after character
position <n>, for positive <n>. If <n> is zero, the
pointer will be put before the first character in the
buffer. If <n> is negative, it is treated as a
positive number with wvalue (0 - <nd>); e.g., “-1J“ is
equivalent to "lJ". Note that J without an argument
means "0J“, not “1J".

[<n> [,<m>]] K

If only one argument is supplied, <n> 1lines from the
current pointer position will be "killed". When <n> is
positive, “<n>K"™ will delete all characters from the
current pointer position up to and including the <n>th
following line feed character. When <n> is negative,
"<n>K" will delete all characters from the character
preceding the pointer position back to the beginning of
the current line, plus the <n> preceding entire lines.
“0K" will delete all characters on the current line
which precede the current pointer position. When two
arquments <n> and <m> are supplied, all characters
following position <n> and up to and including position
<m> will be deleted; the pointer will be left
following position <n>. PFor example, "1,2K" will
delete one character (which was in character position
2) and leave the pointer at position 1. If arguments
are omitted, "“1lK" is assumed.

[<n>] L

This command moves the pointer position by <n> lines.
If <n> is positive, the pointer will be positioned
after the <n>th following line feed. If <n> is zero,
the pointer is moved to the beginning of the current
line. If <n> is negative, the pointer is moved to the
beginning of the <n>th previous line. If <n> is
omitted, "1lL" is assumed.

M <text-register>

This is a macro invocation. The text in text register
<text-register> is treated as a command string and
executed. The contents of the text register are not
changed. The following restrictions apply: a) any
iterations or other commands must be wholly contained
within the macro; likewise, 1iterations cannot start
outside and finish inside a macro; b) no command can be
executed in a macro which affects the contents of the
text register in which the macro is stored.

[<n>] (@] [£] N<string> [;]

<,)

TDL Z~TEL: %80 Text Editing Language
Chapter IV - Detailed Command Descriptions

This is a non-stop search. It is similar ¢
command (g.v.) But if the <string> 1is not fou
current buffer, the contents of the buffer ar
out and another page is read in and searched.
fail only when the 1last page has been read i
<string> still hasn't been found. When “N“ £
pointer is left following the 1last charact
page currently in the buffer (which is the las
the file).

When the “f" modifier is present, the "N comm
a second string which will replace the strin
after a successful search. Thus, the comma
“<FNhi$hello$>" will replace all occurrence
string "hi* with the string “hello" throu
entire file (starting at the current pointer
of course.)

The "N" command takes one numeric argument wh
the numeric argument to the “S“ command,
occurrence for which to search. Unlike
command, however, the "N" command does no
negative arguments. i

0 [<n>] ©

This command outputs <n> lines from the beg
the file buffer to the punch device and dele
If the file buffer contains fewer than <n> 1
entire file buffer is written out and deleted
is omitted, 1 is assumed. The pointer is le
top of the file buffer after the deletion of ¢t
lines has occurred.

P (<n> [,<m>]] ([:] P <text-register>

This command puts text from the file buffer
text register specified by <text-register>.
used, the text is deleted from the buffer aft
been copied into the text register. Use of
is the same as for the “k" command (g.v.); "<i
put the number of lines specified by <n>, wh
<m> p* will put characters as specified by <n>
If the text register contained text at the ti
put, its previous contents are deleted and the
copied 1in. The command "0,0P<text-register
delete the contents of register <text-regis
leave it empty.

Q (not defined)

R (not implemented)

Page 17

the Ils!l
d in the
written
"N" will
and the
ils, the
r of the
page of

nd takes
found -
d string
of the
hout the
osition,

ich, like

is the
the “s*
handle

inning of

es them.
nes, the

If <n>
t at the
e output

into the
£ ":" is
r it has
rguments
>p" will
le "<n>,
and <m>.
e of the
new text
> will
ter> and

TDL Z~TEL: 280 Text Editing Language Page 18
Chapter IV - Detailed Command Descriptions

]

[<n>] [@] [£f] S<string> [:]

This command searches the file buffer, to the right if
<n> is positive and to the left if <n> is negative, for
the <n>th occurrence of <string>. <N> must be a
positive number; if it is omitted, 1 is assumed. If
the <n>th occurrence of <string> 1is found, the pointer
is left immediately following the last character in the
<n>th occurrence of <string>. If the <n>th occurrence
isn't found, the pointer 1is left after the last
character in the 1last occurrence which was found (if
the absolute value of n > 1) or at the same position as
at the beginning of the search (if |nl = 1, or if Inl >
1 but no occurrences were found). “@" can be used to
specify an alternate delimiter (other than the normal
escape) to be wused for <string>; use of "“@" 1is
described in the "“I" command (g.v.). A semicolon can
follow the search command only in an iteration; it
means, “If found, continue with the command string,
else jump outside the scope of the current iteration”.
E.g., the command string

“<28hello$;Igeorges> HT"

would insert the string “george" after every other
occurrence of "hello" and print out the entire buffer
when done. (Note: the semicolon need not immediately
follow the "s" command, and, indeed, is a command in
its own right. See “special character . commands"”
section.)

When the "f£" modifier is present, the "S" command takes
a second string. After a successful search, the editor
will replace the first string (the one found) with the
second string. Por example, “FSbad$worse$" will change
the first occurrence in the file buffer of the string
"bad" to the string "worse".

[<n> [,<m>]] T

This command types <n> lines if one argument is
specified, or all characters between positions <n> and
<m> if two arguments are given. If <n> is negative,
the previous <n> 1lines and all characters on the
current line which precede the pointer position are
typed. Tf <n> is zero, all characters on the current
line which precede the pointer position are typed. If
<n> is omitted, "1T" is assumed.

(not defined)

V <value-register>

TDL Z-TEL: 280 Text Editing Language
Chapter IV - Detailed Command Descriptions

This command pulls the value out of the specifi

register. Valid value register names are 0

2. Certain registers are read-only, containin
variables; these can be interrogated, but not

the "W" command. A list of predefined val
is given in section D of this chapter.

W <n> W <value=-register>

This command puts the value <n> into the g

value register if the specified value regis
read~-only register. An error occurs i
read-only register. (See Section D be
complete list of the value registers.)

X (@] X <string>

This command displays <string> on the <o
when executed in a command string. Thi
especially in macros. "@" can be used to
alternate string delimiter (other than
character).

b4 [<ﬁ>] Y

This command is shorthand for “=-<n>T<n>T"
negative the sign is discarded.

2 (not a command)

This represents the number of characters
buffer. It is a value, not a command.
positions the pointer after the last char
buffer and prints out the preceding full
partial line.

-9

ue r

ter
£ 1
low

nsol
s i

sp
the

. I

in
E.g.
acte
line

Page 19

ed value
and a -
g system
set by
egisters

pecified
is not a
t is a

for a

e device
s useful
ecify an
escape

£ <n> is

the file
’ nlzJ_Tu
r in the
and any

TDL 2-TEL: 280 Text Editing Language Page 20
Chapter IV - Detailed Command Descriptions

B. Extended Command Set
.EA EA

The "edit again" command terminates the editing of the
current file, just like "EX", but does not exit back to
the monitor. 1Instead, after the file 1is completely
written out another prompt 1is given. At this point,
all text registers and value registers are intact. If,
when editing a large file, it 1is desired to move a
large piece of code back to a page that has been
written out already, then use "EA" instead of "EX".
Follow this with the appropriate sequence of "append”
commands to load the first part of the file and then
with the “get" command to include the new text.

EC [:] EC <value-register>

The “extract character"” command puts the number
corresponding to the ASCII value of the character to
the right of the current pointer position into the
value register specified. If the colon option is
invoked, the character is deleted from the buffer. If
the pointer is at the bottom of the file buffer (i.e.,
“." = "Z"), then an error occurs.

EE EE <text register>

The "EE" command displays the entire contents of a text
register onto the console device.

EF EF

The “end file" command closes the «current output file
by writing out a <control-z>, does any regquired name
changing, and returns control to the -editor for
continued editing.

EI <n> EI

The "extended insert" command inserts the character
whose ASCII representation is the number <n> into the
file buffer at the current pointer position. “The
pointer is moved past the character inserted. <N> must
be a number between 0 and 127 inclusive.

EK [:] EK <value-register>

The "keyboard" command provides a means for interactive
command strings and macros. Upon execution of the “EK"
command, Z-TEL will wait for one <character from the
console input device. When the character appears, its

TDL Z-TEL: 280 Text Editing Language
Chapter IV -~ Detailed Command Descriptions

EL

EN

EQ

ES

ET

a piece of a file.

Page 21

ASCII representation is put into the speciflied value

register.

The optional <colon controls the echoing

of the

character. If the colon is present, the echoing is

inhibited; without the colon, the character is

{(<n>[,<m>]] EL
The "print to list device” command function

like the “T" command except that the output go
list device instead of to the console device.

(<n>] (@] (£] EN <string>

The “extended non-stop search“ command is much

echoed.

exactly
s to the

like the

“N* command, but instead of writing out the current
page of text, the command deletes the current page
before reading the next page. This can be useful for
splitting a file into several pieces or for extracting

A specific occurrence of the <string> can be sought by
including a numeric argument <n>. This number must be

positive.

EQ

The “quit editing” command traps back to the monitor

without writing out any more of the file.

-

{<n>] ES <text-register>

The “"extended search" command performs the same search
operation as the "S" command, except the string to
search for is in the specified text register instead of

the input string. The same value registers
here as are in the "“S" command (i.e., the O, S
registers).

<n> ET

The "extended typeout” command displays the ¢
whose ASCII representation is the decimal numbe

EV <text-register>

The “extended value of" command is much like "V
value of the register is returned, except with
command the value is represented by the string
to be decimal, optionally prefixed by a "-")
the specified text register.

are used
X value

haracter
r <n>.

/* == the
the "EV"
(assumed
found in

TDL Z-TEL: 280 Text Editing Language Page 22
Chapter IV - Detailed Command Descriptions

EX

EY

EX

The "exit" command is the normal method used to end an
editing session. The input file (if any) is copied
after the file buffer to the output file. When the
file has been completely written out, control is passed
back to the monitor.

EY

The “yank" command brings a new page into the file
buffer after deleting the one already there. As
mentioned in Chapter Two, "“a page" 1is loosely used
throughout this text, and is roughly eguivalent to
whatever is in the file buffer (i.e. main memory) or --
when doing I/0 -- about half the total capacity of the
file buffer.

TDL Z-TEL: 280 Text Editing Language Page 23
Chapter IV - Detailed Command Descriptions

C. Special~-character Commands

<n>[,<m>] [:]=

The "=" command displays the number <n> on the console
device. If a second argument <m> is present, then it
is interpreted as a field 1length in which the number
<n> is to be displayed right justified. For example,
"VF,6=" would display something 1like * 2431". This
feature is wuseful for outputting columns of numbers.
If the number to be displayed (<n>) won't Ffit in the
field specified, the number will be prefixed by the
character "!" to indicate overflow. The colon is used
to inhibit the output of the carriage return, linefaed
sequence that normally follows the number. <m>, if
present, must be between 0 and 256 exclusive.

<> [,<m>] [\

The “\" command is much like the “=" command, the main
difference being that the number is inserted into the
file buffer at the current pointer position instead of
being displayed on the console device. As above, the
second argument, <m>, denotes the size of the field in
which the number will appear - again, right justified.
If present, <m> must be between 0 and 256 exclusive.
If the first number won't f£it in the field as specified
by the second number, then the first number will be
prefixed by the character “!". The colon option for
"\" is the inverse of the colon option for “=": if
present with "\", the “:" causes a carriage return,
linefeed sequence to be inserted after the number.

{<n>]%<value-register>

The "%" command adds the number <n> to the contents of
the specified value register and both stores the sum
back into the value register and returns it to the next
command. If <n> is missing, the value 1 is assumed (as
with most commands). Negative values of <n> are
permissible. For example, if value register one
contains the number 55, then the command string "%l="
will add 1 (the default) to 55, storing the sum back
into value register 1 and passing the sum (56) to the
“=" command to be displayed on the console device.

5
H4

The "?" command starts a command-by-command trace of
the editor. (A further description of the trace
feature will be forthcoming soon.)

TDL Z~TEL: 280 Text Editing Language Page 24
Chapter IV - Detailed Command Descriptions

#

#

The “#" command resets the trace feature.

The “." ("dot") command is equivalent to the number of
characters to the left of the current pointer position
-- that 1is, it 4is the numeric representation of the
current pointer position. For example, after a
successful search, the command "VS,.K" will delete the
string that was just matched.

[<n>)}< ... >

The "<" command signals the start of an iteration. The
“>" command. signals the <c¢lose thereof. The command
string enclosed by the "<", “>* pair 1is repeatedly
executed -~ <n> times 1if <n> is present, or “forever"
if <n> is not. ("Forever" is defined to be 65,535.) The
exception to this rule is when a search is included
within the “<", ">" pair. For example, "35<%l\i. Hi
there$>" will insert 35 numbered "Hi there"s into the
file buffer. Searches, when failing, will cause the
iteration to stop, when either a “;" or a ">" is
reached. (See the discussion under the ";" command for
more detail.) Iterations can be nested up to 5 levels.
The pair "<", ">" must be wholly contained in a macro
or outside a macro; splitting across a macro boundary
is not recognized.

’

The ";" command changes the flow of control inside an
iteration. This command checks the result of the most
recent search command; if the search was successful,
the ";" command does nothing. If the search wasn't
successful, control is transferred to the matching ">"
and the iteration 1s terminated. The ";" need not
follow the search command immediately -~ anytime later
within the iteration will do.

*<{text-register>

When used as the first character of console input, the
character "*" is interpreted as a command which puts
the previous command string as text into the specified
text register. The "*" character normally signifies
the multiplication operator, and 1is interpreted as a
command only when it is the first character in the
input buffer when the input string 1is completed. If
another character was typed, <rubout> or <control=-u> or
<control-e> can be used (see the description of these
commands) to erase 1it; this special use of “*" can
still be invoked. In fact, up to nine characters can

TDL Z-TEL: 280 Text Editing Language
Chapter IV - Detailed Command Descriptions

be typed and rubbed-out, as 1long as the *
first character in the buffer when th
completes. Commands after the "*" in this
string are ignored.

r

The "," command is used to separate two argum
causes no overt action to take place. "<n>,<
example, is the means to pass two arguments t
command.

<linefeed>

A linefeed character as the first character
the console device after a prompt is interpret
string "LT<escape><escape>". It is echoed as
and is executed immediately. It is includ
shorthand notation for a commonly used command

<backspace>

A backspace character (control-h) as t
character typed on the console device after t
is interpreted as the string "~LT<escape><esca
is echoed as the string "-LT$$", and is
immediately.

{@] i<string>

The "!" command does nothing, but it is used b
command to find where in the command string

to. The "B" command will search the comma
from the beginning looking for a matchin
prefixed by a "!*". When found, the next
executed will be the command following the "1"
Note that the "!" command provides a convenie
document long macros, since the <string> is no
any way by the editor. As usual, the "@°
provides an alternate way to specify the <stri

Note that the "“B" command will not look ou
current command string. In other words, i
command is executed inside a macro, then on
(the "!" commands) INSIDE the macro body are s

<n>"<branch condition>

The """ command is a conditional branch comm
argument <n> is compared according to the

<branch condition> and, if not safisfied, ¢
passed to the matching “'" character to the ri
different <branch condition> codes are as foll

Page 25

“ is the
string
command

nts, and
>T*, for
the !ITN

typed on
d as the

“LTSS*,
d as a

e first
e prompt
e>", It
executed

the "B"
o branch
d string

string
command
command.
t way to
used in
option
g>.

side the
a “ B"

¥ labels

arched.

nd. The
pecified
ntrol is
ht. The
WS

TDL Z-TEL: 280 Text Editing Language Page 26
Chapter IV - Detailed Command Descriptions

branch unless <n>
branch unless <n>
branch unless <n>
branch unless <n>
branch unless <n> is (in ASCII) a digit
branch unless <n> is (in ASCII) alphabetic
branch unless <n> is (in ASCII) lower case
alphabetic

branch unless <n> is (in ASCII) upper case
alphabetic

[I T |
VAR
cooco

s <Sroaczm
[2 I I |

The "'" command 1is the <c¢losing character for the """
command. When a condition is not satisfied for the "“""
command, then the editor searches for the matching “'".
When found, control is passed to the command past the
“'"_. The "'" command does nothing by itself; it merely
marks a place in the command string. Notice that """
and "'" nest the same way "“<" and "“>" do, and matching
requires being at the same level lexicographically.

<control-e>

The <control-e> character has two meanings: it can be
used during the typing of a command string when it is
desired to erase the entire string typed 'since the
prompt, and it can be used when the editor is executing
a command string, and it is desired to cause a break in
the execution. This break occurs the next time a
command is about to be executed. In either case, a
prompt is given and the editor waits for the next input
string from the console device. The current command
string execution is terminated.

<control-£>

The <control-f> character causes the entire input
string typed since the prompt to be retyped. The
<control-£> is not inserted into the input buffer
unless it is preceded by a <control-r> (see the
description of this command). This is useful when many
corrections have been made using <rubout> and
<control-u> (again, see the description of these
commands) .

<control-o>

The <control-o> character stops output to the console
without stopping the execution of a command string. A
second <control-o> removes this inhibition. The
inhibition is always removed when the editor is waiting
for console input. This character is useful for
leapfrogging through a long typeout: by hitting pairs

4

TDL 2-TEL: 280 Text Editing Language Page 27
Chapter IV - Detailed Command Descriptions

of <control-o>'s, one can skip over the displaying of
groups of characters.

<control-r>

The <control-r> character causes the next character
(with the exception of <control-x>) to be inserted into
the command string input buffer without c¢ny special
effects of the next character occurring (e.g.
<control-£>). A <control=-r> itself may be |inserted
into the command string by prefixing it with another
<control-r>.

<econtrol-s>

(not yet inplemented)

<control-t>

The <control-t> character is much like the <control=-f>
character, but instead of causing the entire input
string to be retyped, only the current line is retyped
-- with any local corrections made, as above. The
<control-t> is not inserted into the input buffer
unless it is preceded by a <control-r>, in which case
the <control-t> is treated as a normal character.

{control-u>

the <control-u> character is to the <cantrol=-e>
character what the <control-t> character is to the
<control-f> character. That is, <control-u> erases the
current line of input. The <control-u> character is
not inserted into the buffer unless it is precedded by a
<control-r>, in which case the <control-u> is treated
as a normal character.

{control-x>

The <control-x> character causes control to be passed
back to the ZAPPLE monitor. As long as no registers
and no memory locations are disturbed, editing can be
resumed with a simple "G" command to ZAPPLE. | This is
useful when it is desired to’'assign a device for input
or output (the ZAPPLE "A" command), for instancle.

<{rubout>

The <rubout> character causes the previous charlacter in
the input buffer to be echoed on the consolle device
(unless the console device is a CRT =-- coverled next)
and then deleted from the buffer. The Krubout>

TDL Z-TEL: 280 Text Editing Language Page 28
Chapter IV - Detailed Command Descriptions

»

character is not itself inserted into the input string.
If the console device is a CRT, then the cursor is
moved back one space, unless it is at the leftmost
edge. The "T" wvalue register controls whether the
editor considers the console device to be a CRT or not.
(See the section “Text and Value Registers”, below.)

(not a command by itself)

The ":" modifier is a general purpose command modifier,
and is usually used to indicate that something should
be deleted. For instance, "SPl" means “"copy 5 lines
into text register 1" and “S5:Pl" means "copy 5 lines to
text register 1, and then delete them from the file
buffer”. See the individual command descriptions for
the specific actions taken in each case.

(not a command by itself)

The “@" modifier can be used with commands that take
strings to change the string delimiter from <escape> to
anything else. For example, the command "@s/abc/0tt*
will do the same thing as “sabc$0tt”. The string
delimiter in all cases is the first character after the
command, and the string is closed by the second
occurrence - of that character.

TDL Z~TEL: 280 Text Editing Language ‘Page 29
Chapter IV - Detailed Command Descriptions

D. Text and Value Registers

There are 36 value registers and 10 text registers.
The value registers are denoted by “0" through "9" and
“A" through “Z"; text registers are denote by "0*
through "9". Some of the value registers have
predefined meanings -- values that are set by Z-TEL and
sometimes by the user that affect the behavior of the
editor or return interesting information. For | example,
the value register "L" is used by the 'system to control
the number of characters displayed on a line. Thus
"VL=" displays the current setting (it defaults to 72)
and “80WL" sets it to 80.

Currently no text registers have predefined meanings.

The following describes all the predefined value
registers.

A conversion inhibit flag

When value register “A" contains 0 (the default value),
control characters encountered during cutput are
converted by the editor into printable representations
-— a """ followed by a letter. When value register "A"
has been set by the user to a non-zero value, this
conversion is inhibited and characters re sent
untranslated to the conscle device.

B cursor positioning

A special meaning has been attached to the 18" value
register. This value register contains the| current
column that Z-TEL thinks the cursor or typing head is
in. Since this value register is setable, one likely
use for it 1is with graphics terminals, where certain
characters are used to effect special features Saving
and restoring the "B" value register is a way to move
the cursor and keep Z-TEL from a confused state.

c carriage-return enable flag

When value register "C" contains 0 (the default value),
a double escape ends a command string. WHen value
register “C" has been set by the user to a |non-zero
value, a carriage return is equivalent to doublle escape
as a command string terminator. This may e useful
with a terminal on which use of the escape is
inconvenient. When carriage return enable is on, a
carriage return character may be inserted into the text
by preceding it with <control=-r> in the command string.
The linefeed character must be added explicitly in this

TDL Z-TEL: 280 Text Editing Language Page 30
Chapter IV - Detailed Command Descriptions

case. (Note: carriage return enable does not disable
double escape as a command terminator. Double escape
always acts as a command terminator.)

D duplex flag

When value register "D" contains 0 (the default value),
the editor treats the console device as a full-duplex
terminal. This can be changed by the user to a
non-zero value, which indicates half- duplex. Note:
this feature is not yet implemented.

E end-of-file flag

This is set to 1 by the editor when a <control-z>
character has been encountered on reading characters
from the reader device. This normally indicates end of
the input file. When value register "E" is set to 1,
the “A" (append) command does nothing. The user can
reset this flag to 0 (for example, if he knows that the
end of file condition was spurious, caused by garbage
in the input file) so that further "A" commands can be
done.

F free space

Value register "F" is a read-only value register which
always contains the amount of free space left in the
text buffer (in bytes); it is updated by the editor
whenever characters are inserted or deleted. To
inguire about the amount of empty file buffer space
left, the command “VF=" can be used. This value,
however, reflects a changing internal state, and it is
consistently accurate for this purpose at the beginning
of the execution of a command string only.

I iteration depth

Value register "I" is a read-only register which
contains the current iteration depth. This will be
zero outside an iteration and will be incremented by
one for every "<" executed and decremented by one for
every ">" executed.

L line length

Value register "L" is used to control the number of
characters on a line; it defaults to 72. This can be
changed by the wuser (for example, to accommcdate a
terminal with a shorter or longer line length) by using
the "W" command.

TDL Z-TEL: 280 Text Editing Language

Chapter IV - Detailed Command Descriptions

N

3

nulls required after a carriage return

Value register "N" is used to provide a dela
physical carriage return when a carriag
character is sent to the console device. Th
value is 3; increasing this will provide
delay for the carriage to return, and decre
will shorten this delay.

old “dot" after a successful search

Value register "O" is a read-only value regis
contains, after a successful search ("s",
command, the pointer position prior to th
(Remember that the pointer is 1left after th
string on a successful search.)

lines read from the reader device

|[Page 31

for the

return
default
a longer
sing "N"

er which
", etc.)
search.
matched

Value register "R" contains the number of Llines read

from the reader device from start of editi
value register is a read-only register.
string start position after a successful searc

Value register "S* 1is a read-only regist
contains, after a successful search, the

g. This

r which
pointer

position of the start of the matched string. For

example, "VS,.T" will print out the matched
done immediately after a successful search.

teletype/crt flag

Value register "T" contains the flag used by t
to control the handling of <rubout>'s. The s
this value register is done during initializ
depends on the monitor's setting for the
device: "“T" is set to 0 for no assignment (
assumed to be a teletype) or 1 for a CRT. In *“
mode", the editor echoes the rubbed~out c¢h
When set to 1, the editor will move the cursor
position using the <backspace> character, e
character just typed by printing a <space>,
back up (since the <space> just moved the
again).

upper case/upper-lower case flag

Value register "U" contains the flag used by tn
to control the handling of the output of 1lo
letters. If this register is 0 -- which it def
-~ then no special provision is made for 1lo
letters. If this register contains a 1, then a

tring if

e editor
tting of
tion and
console

which is
teletype
aracter.
back one
rase the
and then
cursor

e editor
wer case
aults to
wer case
11 lower

TDL 2-TEL: 280 Text Editing Languagé Page 32
Chapter IV - Detailed Command Descriptions

case letters (the ASCII range 61lH to 7AH) are converted
to upper case for console output. Lower case letters
inserted into the file are not affected by this flag.
Also, the non-zero setting provides a way to use the
“"altmode" key in the same fashion as the “escape" key.
The escape character =~- for those terminals with only
an "altmode" key -- can be entered by typing
“control-shift-K". This provides the means to set
value register "U".

W lines written to the punch device

Value register "“W" contains the number of lines written
to the punch device from the start of editing. The "W"
value register is a read-only register.

X extent of matched string after a successful search

Value register "X" contains, after a successful search,
the length of the string that was just matched. The
two command strings “.-VS=" and "VX=" are equivalent,
so this register is merely a convenience. Value
register “X" is a read-only register.

Y character to display for "Y“ command

Value register "Y" -- when not zero -- is interpreted
as the character to display between the two halves of
the "Y¥" command. The "“Y" command 1is ‘defined to
"=<n>T<n>T", but if value register “Y" is non-zero,
then the “Y" command is defined to be "—-<n>TVYET<n>T".
(See the "V" and "“ET" commands for more detail.) This
can be used to insert a visual "marker" into the output
of the "Y" command at the current pointer position.

2 total size of workspace

Value register "2" is a read-only value register which
contains the total size of the "in-core" file buffer.
This is set up at editor initialization time and
remains unchanged during the editing session. Users of
the standard version will note that the limits provided
for the file buffer will not equal the total size as
shown in value register "2". This is because part of
that area is used for the editor's stack.

TDL Z-TEL: Z80 Text Editing Language
Appendix A - Error Messages

Most error
This appendix explains all these numbers

save room.

Error #

19

30

31
32

33

34

35

36

38

39

Appéndix A

Error Messages

messages display only a number in

meaning

No room for insert. This can happe
insert ("I") command as well as an
“*, and others.

Expression error. An error was det
the evaluation of an arithmetic exp
This can be caused by mismatched pare
incomplete expressions, as well as
of other things.

Expression error. Same as 30.

Missing value specifier. The edito
ran out of input or found a character
couldn't use for the value
specifier. Value registers are den
the digits "0" through "9" and the
"A" through "2".

Literal too big. Numbers are restr
the range =-65,535 to +65,535.

Page 33

order to

.

n on an
“FS", a

ected in
ression.
ntheses,
a number

r either
that it
register
oted by
letters

icted to

Too many arguments. No command takes three

arguments.
Too many arguments for this comman

arguments extant. For example, "HL

d. This

(which

command doesn't understand the nurber of
s

is equivalent to “0,ZL") is not under

Missing argument. This command insis
argument and won't take a default 1
other commands.

Unexpected end of input. The editor
of input during the parsing of a comm
argument with no command will cau
error.

Missing operand. An operator wa
"dangling" during the evaluation

tood.

ts on an
ike most

ran out

Fnd. An
se this

S left
of an

TDL 2-TEL: Z80 Text BEditing Language Page 34
Appendix A - Error Messages

40

41

42

43

51

52

53

54

55

56

expression.

Missing operator. An operand was left
"dangling” during the evaluation of an
expression. For example, the command string
“55V5=" will cause this error message.

Missing string delimiter. A character to
match the first character after a string
command used with the "@" option was not
found.

Unknown “E" command. This command is
undefined.

Unrecognized use of “F". Only a subset of
the commands that take string arguments take
an extra one. This command wasn't one of
them.

Unknown command. This command is not in the
editor's set.

Missing left angle bracket. A right angle
bracket (“>") was used without the editor
seeing a matching 1left angle bracket ("<")
first.

Iteration nested too deeply. Due to stack
requirements of iteration, the nesting of
angle brackets is limited to five.

Semicolon used outside an iteration. The
semicolon (";") command has a meaning inside
iterations only.

Macro calls nested too deeply. Due to the
stack requirements of macro processing, the
nesting of macro calls is limited to about
five. This restriction includes recursive
calls.

Missing right angle bracket. An iteration
was started with a left angle bracket ("<")
but the editor ran out of input without
finding a matching right angle bracket (“>").
Note that the command string will be executed
once; the editor does not have a look—-ahead
feature.

Missing label. The editor tried to execute a
branch command ("B") but couldn't find the
appropriate label in the current environment.

Unknown conditional. The letter after the
“conditional branch command* (the " command)
was not in the set of known conditions.

TDL Z2-TEL: 280 Text Editing Language Page 35
Appendix A - Error Messages

59

61

101

11s

116

118

122

123

Missing "'“. A conditional branch was
attempted, but no matching single quote could
be found.

Negative argument to “0". The "output lines"
command insists on positive arguments.

Bad value register specifier. 'The character
given for the value register was | not “0*
through “9" nor “A" through “2".

Protection error. This command attempted to
change’a read-only value register. ead~-only
registers are usually used internally by the
editor and show up in the value register list
because of the information they| convey.
Changing them is prevented because some
untold side effects could occur.

Second argument too small. It turns |out that
almost all commands that take two arguments
require the second one to be larger than =--
or at least egqual to =-- the first. This
error indicates that the command engountered
a situation where the first was larger than
the second.

Text registers in use by macros are ''sacred".
If a macro is executing from a particular
text register, then that text register can't
be deleted. This means a ":G" command and
"P" command are disallowed for this text
register.

No room for "put". The free space was
smaller than the size of the text requested
to be put into a text register.

No room for "put" or "get". This indicates a
limitation of the current version| in the
handling of the case of ":P" and ":GY.

No room for “get"., There's not rogm enough
in the work area for the size of text to be
gotten.

Field length too big. The size ield 1in
which the number 1is to be positioned (right
justified) is greater than 255. This is an
arbitrary cut off point, but it was felt that
a number larger than this 1is probably a
typing mistake. This applies to the "=" and
“\" commands.

Field length zero. The size field |in which
the number 1is to be positioned 1is zero.
While provisions are made for |handling
overflow (the number is prefixed by 1y, a

TDL Z-TEL: 7280 Text Editing Language Page 36
Appendix A - Error Messages

field length of zero is probably a mistake.

131 Bad text register specifier. The character
used to specify the text register was not in
the range "0" to "9".

137 Negative argument to a non-stop search. A
backward search was requested of "“N" or “EN".
These two commands only work in the forward
direction, mainly because paging itself works
only in the forward direction.

139 Previous command not available. The special
form of the "*"* command was used when the
previous command was overwritten prior to the
entering of the "*" command. This can happen
in several situations: more than nine
characters were typed before the "*" was
entered, or the space was needed by an
insertion of text, or the buffer is so full
that there's just no room.

171 Non-numeric text. The text 1in the specified
text register can't be converted into a
number because it's not all numbers. This
error message only occurs when the "“EV"
command is used.

173 Non-ASCII character. The numeric argument to
this command- does not represent any ASCII
character. This message only occurs when the
"EI" command is used.

174 End of buffer reached. The "EC* command
attempted to look at the next character in
the buffer but found that the end of buffer
had been reached, that there were no more
characters.

Some error messages are textual and usually
self-explanatory. They are included here for completeness.

“BUFFER ERROR"

The location specified during initialization for the
file buffer overlaps the editor code space or the fixed
location variables that start at location 100-hex.

“CAN'T FIND 'XXx' *
The specified string was not found.
"FOUND ONLY NN OF 'XXx' "
This message occurs when the string searched for was

found, but not in the gquantity requested. The command
"4Sabc" when only 2 copies of the string are to the right of

TDL Z-TEL: Z80 Text Editing Language Page 37
Appendix A - Error Messages

the pointer will respond with “FOUND ONLY 2 OF| 'abc' *.
Note that the pointer will be left at the right of| the last
occurrence of the string that was found.

TDL Z-TEL: 280 Text Editing Language Page 38
Appendix B ~ Advanced Examples

Appendix B

Advanced Examples

This appendix contains several examples of the
lesser-used commands in 32Z-TEL. These examples, which use
some of the more powerful commands, demonstrate why Z-TEL is
indeed a "language" instead of just a text editor.

The first command string counts the lines in the buffer
and to the current pointer position. Then, these values are
displayed on the console.

OW10W2.W0 @!/zero counters, and save "dot"/
0J y @!/start at beginning of file buffer/

<es

/1%1> @!/count all CR'LF strings/

voJ @!/jump back to o0ld “dot"/

<@s/

/%2> @!/count lines from “dot"” to end/

voJ

@!/display the counts:/
@X/LINE COUNT = /Vl1:= @!/"vl" has total/
@!/then the current if there are any lines/
V1“N@X/, CURRENT LINE = /vl-v2+l='

This next command string reverses the lines in the file
buffer. The algorithm is as follows. The last line in the
file buffer is put 1into a text register. This register is
then unloaded at the top of the file, and the pointer
position is recorded. Note that the pointer is left AFTER
the last character gotten from the text register. At this
point, if there are no more lines after the one we just got,
we stop. Otherwise, we go get the (new) last 1line in the
file buffer and continue.

0J é!/start at beginning/
@1/LO0P/ @!/declare a label/
z-."E@B/OUT/’

@!/when “dot" = "2", we branch out/
@!/otherwise .../

WO @!/put pointer into valreg 0/

2J-L:P9 @!/put last line into textreg 9/

voJ @!/go back to end of previously moved line/

G9 @!/get this line/

@Bs/LooP/

ar/out/

0J @!/and leave the pointer at 0/

This next command string converts all upper case
characters in the file buffer to lower case letters. This
takes advantage of the ASCII collating segquence in which all

TDL Z-TEL: 280 Text Editing Language
Appendix B - Advanced Examples

lower case letters are 20-hex (or 32 decimal) higher than

the corresponding upper case letters.

@!/LOOP/ @!/declare a label/
z-."E@B/0UT/"®
" @l/we're done when we're out of chars

sEC4 @!/get ASCII of next char and delete i

V4w @!/if it's upper case then ..n/
V4+32W4' @!/we add 32 to make it lower/
V4EI @
@!/just do one line for the example/
@!/that is, stop on a CR (=13 decimal)
V4-13"N@B/LOOR/'

@t/our/

Many enhancements could be made to this basic comman
to make it “smarter” in its translation. One migh
following.

The next command string also converts upper case
to lower case letters, but it will leave the fir
case character after a period as an upper case ¢
instead of translating everything. We do this as
When a period comes along (ASCII representation
decimal), we record this fact by setting value regis
1. And just before translating a character from
lower case, we check this value register, and we by
translation if the value is 1.

lwo @!/don't convert first char/
@!/Loop/ :
@!/test for being done/
Z-."E@B/0UT/!
:EC4 @!/get a char (and delete it)/
@!/test for "."/
V4-46"E1WQ"'
@!/now, is it upper case?/
V4w @!/do this if so/
@!/first testing the bypass flag in 0
VO"EV4+32W4"
@!/don't translate if bypass flag is o
owo' @!/reset it in any case/
V4EI @!/insert the char, changed or not/
V4-13"N@B/LOOP/'
@!{/and stop on a carriage return/
gi/out/

The next example demonstrates the interactive fea
Z-TEL. The command string accepts a string of
digits and outputs the number in its hex
representation.

Assuming text register 2 has the following comman
(which will be invoked as a macro below):

V3-9"G @!/non-decimal ?/
V3+55ET @l/display corresponding hex/
@s/ouT/!

Page 39

t/

{/and insert it, whether changed or not/

/

d string
t be the

letters
st upper
haracter
follows.

is 46
ter 0 to
upper to
pass the

tures of
decimal
adecimal

d string

TDL Z-TEL: 280 Text Editing Language Page 40
Appendix B - Advanced Examples

V3+48ET @!/otherwise just print the number/
at/out/

then the following command string will do this conversion.

@!/START/

OW} @!/register 1 accumulates number in/
@x

->/ @!/display a prompt/

@!/Loop/

EK4 @l/get a character from console/

@!/rubout gives another chance/
V4~-127"E@X/<RUBOUT>/@B/START/'

@!/evaluate on a CR/
V4-13"E@B/EVAL/'

@!/if a digit, add it in/
V4"D10*V1IWlV4~-48+V1IN1@B/LOCR/"

@!/no good otherwise/
@X/ ?2/@B/START/
@!/BVAL/ @!/start of hex display routine/
ax/

/
V1/4096W3
. @!/print first hex digit if non=-zero/
V3I"NM2' @!/textreg 2 does printing/
@!/now shrink Vv1/
V1-((V1/4096)*4096)Wl

Vw2 @!/save as zero-suppression flag/
@!/and print second hex digit/

V1/256W3

V2+V3“NM2'

V3+V2W2

@!/shrink it again/
V1-((V1/256) *256)W1
V1/16W3

@!/and print third hex digit/
V2+V3I"NM2V3+V2W2'

@!/and once more .../
Vi-((V1/16)*16)W3
M2 @!/print the last one/
@x/h
/

TDL Z~-TEL: Z80 Text Editing Language
Appendix C - "Quick=-Glance" Reference Guide

NRKXECHLWOWOZIDRGUHETIQEMOOTP» P

Appendix C

"Quick-Glance" Reference Guide

Basic Commands

“Append lines" {<n>] A
“Branch" 8 <string>
“move pointer by Character" ([<n>] C
"Delete character" [<n>] D

(not a command by itself; see section B)
(not a command by itself)

“Get text from register™ [:] G <text=-regis
(not a command; “H" is equivalent to "0,Z")
“Insert string" [@] I<string>
“Jump" [<n>]1 J

“Kill lines or text" {<n> [,<m>]]) K
“"move pointer by Lines” [<n>) L

“invoke Macro" M <tr>

"Non~stop search" [<n>] (@] [£f] N<st
"Output lines"” [<n>] ©

“Put text into register® (<n> [,<m>]] [:]}
(not defined)) .
(not implemented)

"Search" [<n>] [@] [£]sS<stri
"Type text" [<n> [,<m>]] T
(not defined)

“"Value of" V <value-reg>
"set value" <n> W <value-reg>
"display string" [@] X <string>
"display context" <n> ¥

(not a command)

. Page 41

ter>

ring>

P <tr>

ng>(;]

;]

TDL Z-TEL: 280 Text Editing Language

Appendix C -~ "Quick-Glance" Reference Guide

B. Extended Commands

EA
EC
EE
EF
EI
ES
ET
EV
EX
EY

"Bdit Again"
"value of Character"

EA
[:] EC <value-reg>

"display contents of text register" EE<text register>

“End output File"

“Extended InsertWxZpD:£fiYha2v
“"Extended Search"

"Extended Type-out”
"Extended Value of"

“Exit to Monitor"

“Yank"

EF

[<n>] ES <text register>
<n> ET

EV <text register>

EX

EY

Page 42

TOL Z-TEL: 280 Text Editing Language

Appendix C - "Quick=Glance" Reference Guide

C. Special-character Commands

“display value"
“insert value"
"increment register"

<n>([,<m>] [:]=
<n>(,<m>] (: 1\

set trace
reset trace
lldotll
iteration

[<n>]%<value~reg>
?

#

¥~e A Fdod N

argument separator ’

2linefeed> “LT*

<backspace>

! “define label"”
conditional branch

if first character
*=LT" if first character

E - branch unless <n> = 0

N - branch unless <n> # 0

L - branch unless*'<n> < 0

G - branch unless <n> > 0

D - branch unless <n> 1is (in ASCII)

A - branch unless <n> 1is (in ASCII)

V - branch unless <n> 1is (in ASCII)
alphabetic

W -~ branch unless <n> 1is (in ASCII)
alphabetic

! end of conditional branch '

<control-e>
<control-£>
{control-o>
<control-r>
<control-t>
<control-u>
<control-x>

erase entire input; break execution

retype full input string
inhibit output
take next character as is
retype current input line
erase current input line
trap to ZAPPLE

<rubout> erase previous character

: (not a
Q (not a

command by itself)
command by itself)

<n>1< ... >
exit iteration on failed search H

“save previous command” *<text-register>

[@] i<string>
<n> "<branch cond>

a digit
alphabetic
lower case

upper case

Page 43

TDL Z2-TEL: 280 Text Editing Language Page 44
Appendix C - "Quick-Glance" Reference Guide

D. Value Registers with Predefined Meanings

conversion inhibit flag

¢contains- the cursor position

carriage-return enable flag

duplex flag

end-of~file flag

free space

iteration depth

line length

nulls required after a carriage return

0ld "dot“ after a successful search

lines read from the reader device

string start position after a successful search
teletype/crt flag

upper case/upper-lower case flag

lines written to the punch device

extent of matched string after a successful search
marker character for "Y" command

total size of workspace

NKXEICHVDOZHTIMODNO D P

TDL Z~TEL: Z80 Text Editing Language
Appendix D - Additions for a CP/M Version of Z-~TEL

b

Appendix D

Additions for a CP/M Version of Z-TEL

e s et i oy v -

To take advantage of the features offered by

Page 45

the CP/M

operating system, several changes were made to Z-TEL. These
changes include some new commands, Some new error messages,

and some minor changes to the existing command
improve its capabilities in a disk environmen
appendix documents all these.

Under CP/M, Z-TEL is started by typing eithey
or "“Z-TEL <filename>". The second form will @
automatic "EB<filename>" followed by a "“0A", bae
initial prompt is given.

During initialization, Z-TEL looks on the 1
disk for a file with the special name of "INIT.TEL
file by this name is - - -+ present, 2-TEL will read ¢t
put it into text register zero, and execute it as
before prompting the user. This feature offers a wa
flags and values, or do whatever else 1is required
editing session. The file is expected to be just
of normal 2Z-TEL commands. The exact sequence
initialization is as follows:

1. If *INIT.TEL" is .on disk, then read its
into text register 0.

2. If a file was specified to CP/M (i.e.,

<file>") then an "EB" and "OA" are done.

3. The contents of text register 0 are execy
macro.

4. A prompt is displayed.

A. New or modified commands

EB EB <disk string>

The "edit with backup" command opens the specif
for editing and opens a temporary output f
closing (e.g. “"EA™ or "EX"), the input file is
to ".BAK" and the temporary output file 1is re
the input file name. An "ER" or "EW" command
"E3" is permissible, but will cause the name
here to be bypassed during closing.

set to
t. This

*Z-TEL"
ause an
fore the

ogged-in
“. If a
he file,
a macro
y to set
for an
a string
“during

contents

“Z-TEL

ted as a

ied file
ile. On
renamed
named to
after an
changing

TDL Z-TEL: Z80 Text Editing Language Page 46
Appendix D - Additions for a CP/M Version of Z-TEL

ED

EF

EQ

EQ

ER

Note: <disk string> ::=
{<devl>:] <file name> [.<File ext>] [<dev2>:]
where <devl> is the input device (if absent, the logged

in device 1is assumed); where <dev2> 1is the output
device (if absent, the input device name is assumed).

.<Dev2> is wused only for the "EB" command; <devl> is

used for the output device in the "EW" command.

ED <disk string>

The “file delete” command deletes the specified file.
This is useful when the disk is full and a file must be
removed for editing to continue. (Alternatively, one
can end the current file with the "EF" command and
establish a new file on a different disk with the "EW"
command.} Caution is wurged with the use of this
command. (Note: the syntax and description of <disk
string> can be found under the “EB" command.)

EP

The "EF" command 1is changed slightly for the CP/M
version of Z-TEL. The file is closed and a <control=-z>
is written out, as in the standard version. Then,
before returning to the editor, any necessary name
changing is done: the temporary file is changed from
".$88" to the requested name after the previous file
(if any) is renamed. See the description under "EX"
below.

EQ

The “edit over" command does everything the "EA"
command does, with the addition of doing an "EB" on the
new file -- if an "EB* was used before. If the “EB"
command wasn't used, "EO" is the same as "EA". (Note:
"EO" is currently implemented to be the "EA" command.)

EQ

The "EQ" command hasn't changed for the CP/M version.
It should be noted, however, that a temporary file
(with the extension ".$$$") 1is left on disk after the
command is executed.

ER <disk string>

The "edit read" command opens the specified file for
input. (See note under the "EB" command for the syntax
and description of <disk string>.) The “ER" command
does not cause any data to be transferred into the text

TDL Z-TEL: %280 Text Editing Language Page 47
Appendix D - Additions for a CP/M Version of Z-TEL

EW

EX

buffera the "A" (append) command must be used. The
“ER" command also resets value register "R" to zero.

EW <disk string>

The "edit write” command opens the specifiedifile for
output. (See note under the "EB" command for details
of <disk string>). The first device specified is used,
not the second device specifier. The “EW" command
resets value register "W" to zero.

EX !

|
The “"exit" command is the normal method used &o end an

editing session. If “EB" (as opposed to "ER"
was used to open the disk £file, the previo
file (if any) is deleted, the input file is r
“.BAK", and the temporary output file is renam
name of the original input file. A situation
where a file is found on disk with the same na
one about to be used for the new output fi
situation arises when the output disk is diffe
the input disk for the “EB" command or when t
passed to the "EW" command represents a file a

disk. (Note that the "EW" command will not do |

or "EW")
s backup
named to
d to the
an arise
e as the
e. This
ent from
e string
ready on
anything

with backup files.) The old file on the outpuf disk is

been "updated" and isn't a backup copy of the
edited. When all the name changing (if any)
control is returned to the monitor.

renamed to “.PRV" rather than ".BAK" since %

B. New value register descriptions

Value register "R" contains the number of lines 1
the reader device. This meaning isn't changed by C
the register is reset to zero whenever an “ER
command is executed. This is still a read-only regi

Value register “W" contains the number of lines
to the punch device from either the last "“EB"
command. The “W" value register is a read only regi

C. New error messages

161 No file for input. The "A" ("append") rou
called but no file had been opened. (Files are open
the "ER" and "EB" commands.)

162 No file for output . An "O" command

lines") or an "EX" command was issued (among a few
without an output file having been opened first.
files are opened with the “EW" and "EB" commands.

t hasn't
ile just
is done,

ead from
P/M, but
or “EB®
ster.

written
or IIEWDI
ster.

tine was
ed using

("output
others)
Output

TDL Z-TEL: 280 Text Editing Language Page 48
Appendix D - Additions for a CP/M Version of 2-TEL

163 File not found. The file requested (by an "ER"
command) was mot on the specified disk.

“DIRECTORY FULL"

The specified disk has no room for the directory éntry
for this file.

“FILE EXTENSION ERROR"

The file name extension was unacceptable to CP/M.

“DISK FULL"

The output disk has no more room for the file. When this
message appears during an editing session, the file should
be closed (using the "EF" command) and a new output file
should be opened on a different drive (using "EW") or a file
on the output disk should be deleted using the "ED" command.

“FILE NOT FQUND"-

The requested file is not on the specified disk.

“CLOSE ERROR"

This error shouldn't occur. If it does, either the
editor made a mistake somewhere or the disk or drive was not
write-enabled.

" [NEW FILE]™

This message means that the reguested file was not found
and a new file has been opened for output. This message
will appear when the “"EB" command is used to open a new file
(including the implicit "EB" when starting up the editor
from CP/M by typing "2Z-TEL <filename>".)

“FILE NAME ERROR"

The file name specified was unacceptable to CP/M.

“"REMEMBER: YOU HAVE ANOTHER 'XXX' *

If an "EW" command is wused with a name for which a file
already exists, this message will appear. On closing, the
old file will be renamed to "<file>.PRV" to reflect its
status as a previous copy. Since it's not a backup copy,
it's not renamed to “<file>.BAK". The new file will then be
renamed to the specified name.

O

(

READER'S COMMENTS TDL
Z~TEL USER'S MANUAL

In a constant effort to improve the quality and
usefulness of its publications, Technical Design Labs, Inc.-
provides this page for user feedback. Your critical
evaluations of this document is our only effective means of
determining its serviceability. Please give specific page
and line references where applicable.

ERRORS NOTED IN THIS PUBLICATION:

SUGGESTIONS FOR IMPROVING THIS PUBLICATION: (i.e. clarity,
organization,convenience,accuracy,legibility.)

MISSING DOCUMENTATION: (i.e. completeness.)

Name Date
Street -
City State Zip Code=—mmmm====m

All comments and suggestions become the property of
TDL. Send to Technical Design Labs, Inc. ;
Dept. of Product Improvements
1101 State Road
Princeton, N. J. 08540

Please indicate in the space below if you wish:'a reply.

TDL Z80 Text Output Processor

User's Manual

Revision 1.0

?eb:uary 14, 1977

Written by Neil J. Colvin

Copyright 1968, 1972, 1977 by Neil J. Colvin

bl
T™e 780 !ext autput srocesso: ﬁser’s Manual Page 2

Introduction

C Introduction

Files to be processed by the TDL Text Output Processor
are prepared by using the TDL Text Editor. The Processor
accepts the prepared file from the reader device and

produces a formatted document on the list device.

Bach line read from the £file is inspected for a|first
character of "." (period), which identifies a format
control word. Format control words are not printed, but
are interpreted to specify changes in the current output
format. Control wotdé may b; entered in either upper or
lower case, and should be separated from their operands,

if any, by one or more blanks.

L Control words may appear at the beginning of any line in
the file, with any changes in format taking place |below
the point at which they occur. No input data should be
” included on 1lines containing control words, since this
data could in some cases be lost or interpreted |as an

operand of the control word.

TDL 280 Text Qutput Processor User's Manual

Control Words

Control Words:

The control words are listed below.

Control

- -

.BL
.BM
«BR
.BK
.CE
.CM
.CO
.CP
.DS
.EN
.FO
.HE
HM
.IG
.IB
<IN
JuU
.LL
.NB

.NC

NF
NJ
.NS
.0f
.PA
.PL
+PW
.PI
.S8
.SC
.SP
.SH
.ITB
.IM
.ON

Meaning

- o o

Blank Line
Bottom Margin
Break

Break Mode
Center

Comment
Concatenate
Conditional Page
Double Space
End

Format

Heading
Beading Margin
Ignore

Ignore Break
Indent
Justify

Line Length

No Break

No Concatenate
No Format

No Justify

No Space
Offset

Page

Page Length
Page Width

Permanent Indentation

Single Space
Space Character
Space Line
Subheading

Tab Settings
Top Margin
Undent

Page 3

Default Values for Control Words
When processing a file, many variables, such as|line
length and page length, are assumed to have certain
values ("default" values) until specified by a control
word. This fact can simplify the formatting of files;
many control words need not be used. The following| is a
list of control words having default wvalues which are
assumed to be in every file.

.PW 60

.LL 60

.PL 66

.TM 35

.B4 3

AM 1

.PI 15

.TB 5 10 15 20 25 30 35 40 45 S50 S5 60 65 70 75
PO (.CO and .J0U)
.S8

.BK

.SC

Errors
The processor prints all errors encountered in| the
specified file with self~-descriptive error messages, and
with an exact image of the line at fault. Processing

continues with the next input line.
Notes on Certain Uses

1. Top-0f-Page Format
Setting up the top of a processed page is not compligcated
once you understand the rules.

"Top Margin" is the number of lines between the top of

TDL 280 Text Qutput Processor Use:;s Manual Page 5
Notes
the page and the £first line of text. It includes the
heading 1line, the subheading 1line, and the heading
margin.
A heading line and a subheading line are always printed,
even if they are blank.
"Heading Margin" is the number of lines between the
subheading line (even if it is not visible) and the first
line of text.
For example, given the two control words
'.tm 7
.hm 3
the following top-of-page format would be printed:
lst line: Top margin blank line
2nd line: Top margin blank line
3rd line: Heading blank line with Page <number>
4th line: Subheading blank line
S5th line: Heading margin blank line
6th line: i . " "
7th line: . " " " -
8th line: First line of text
Given the default top margin (5S) and the default heading
margin (1) and the heading:
.he User's Manual
the following format would be produced:
lst line: Top margin blank line
2nd line: Top margin blank line
3rd line: User's Manual Page 92
4th line: Subheading blank line
Sth line: Beading margin blank line
6th line: First line of text
2. Space Character
A space indicates where 1line breaks (the end of a line)
and justification (the insertion of spaces to make an

even right margin) can occur. Sometimes it is desirable -

that a space be printed, but that a line end or extra

ﬂ)h 435y e u [53 rocessaor ser’'s anual Page]
Notes
space insertion does not occur at this point. This
‘“non-space" space is provided by the use of the
“space-character"”. Normally, this character is the "_"
(but may be changed by the ".SC" command.) When
encountered by the processor, it is treated as a
non~-blank character, but is printed as a space. For
example:
".IN_O"
This phrase will appear as ".IN 0"; it will not be split

across two lines, and no extra spaces will be inserted

between the N and the 0.

3. Tabulation
Tabulation is also provided through the use of a special
character <HT> (Control-I). When encountered in the
input, the tab character causes a “typewriter type"
tabulation to the next “"tab stop”. Th; default is a tab
stop every five spaces, but gan bg set to any value by
the “.TB" control word. If the output poinéer is
currently at a tab stop, it will be moved tc the next one

(as with a typewriter).

It should be noted that a tab character or a space:as the
first character of an input 1line normally causes a
"break", but this can be suppressed by the .NB and .18

controls.

TDL 280 Text Output Processor User's Manual Page 7
Example

Text OQutput Processor Example

.tm 10

.fo

.ce

Text Qutput Processor Example

.8p 2

.ds

This example will demonstrate some of the capabilities of
the Text Output Processor. The next two pages will
appear first as they would in a file with the control
words visible; then the same file will appear as it
would if processed. .

This paragraph was double-spaced with the .DS control.
.SS

.Sp

No Break was needed here, since the .SS (Single-~space)
control acts as a break. Although this is in Format
mode, tabular information can be included:

.sp
SPACE .SP .sp
SINGLE SPACE .SS .88
DOUBLE SPACE .DS .ds

.Sp .

The blanks beginning each line caused a Break each time,

and the lines were not concatenated.

.Sp ‘

Use of the Line Length control allows space to be left
within a page for figures or drawings. It may take some
experimentation to find how many lines will fit alongside
a figure.

.11 30

.Sp

The new line length must take effect at a paragraph,
since it acts as a Break. The switch back to standard
line length (60) is-also a Break, and usually ends a
paragraph.

.11 60

.nf

By switching out of Format Mode CAPTION

and doing some justification

by eye, other effects can be obtained. This also takes
some practice and experimentation. .
.Sp

.fo

PARAGRAPHS

.br

If no space follows a paragraph heading, and if the

© paragraphs are not indented, a Break is necessary in
Format Mode to keep the heading line from being
justified.

A few leading blanks are the easiest way to force a
break and separate paragraphs, as this one was done.
.Sp

Example

The Center control is handy for small figures
included in the text. A .CE in front of each line of
the figure is necessary. Note that leading blanks
count as characters when the line is centered.

© .8p
.ce

.ce
{ FORMAT | EXAMPLE n !
.ce
! { B t
.ce

.ce
Pigure A

TDL 280 Text Output Processor User's Manual Page 9
- Example

Text Qutput Processor Bxamplé

This example will demonstrate some of the capabilities of
the Text Output Processor. The next two pages will
appear first as they would in a file with the control
words visible; then the same file 'will appear as it
would if output by the Text Output Processor. This
paragraph was double-spaced with the .DS control.

No Break was needed here, since the .SS (Single Space)

control acts as a break. Although this is in Format
mode, tabular information can be included:

SPACE’ .SP .sp
SINGLE SPACE .SS .ss
DOUBLE SPACE .DS .ds

The leading blanks caused a Break each time, and the
lines were not concatenated.

Use of the Line Length control allows space to be left
within a page for figures or drawings. It may take some
experimentation to find how many lines will fit alongside
a figure.

The new line "length must

take effect at a paragraph,

since it acts as a Break.

The switch back to standard

line length (60) 1is also a

Break, and usually ends a

paragraph.

By switching out of Format Mode CAPTION
and doing some justification

by eye, other effects can be obtained. This also takes
some practice and experimentation.

PARAGRAPHS
If no space follows a paragraph heading, and 1if the
paragraphs are not indented, a Break is necessary in
Format Mode to keep the heading line from being
justified.

A few leading blanks are the easiest way to force a
break and separate paragraphs, as this one was done.

—

U

p

TDL 280 Text Output Processor User's Manual Pagé 10
Example 1

The Center control is handy for small figures
included in the text. A .CE in front of each line of the
figure is necessary. Note that leading blanks count as
characters when the line is centered.

! FORMAT ! EXAMPLE n !
11 ! E {

Figure A

TDL 280 Text Output Processor User's Manual Page 11
Blank Line Control

BLANK LINE Control

Purpose:
The BLANK LINE control word generates a specified

number of blank lines before the next printed line.

Format:
.BL <n>
<n> specifies the number of blank lines to
be inserted in the output. If omitted,
1l is assumed.
Usage:
The BLANK LINE control word may be used anywhere in ' :)

the file to generate blank lines. If the end of the
page is reached during a BLANK LINE operation, the
operation is terminated and a new page is started.
If, after the specified number of blank lines are
inserted in the output, there are 1less than two
printable lines remaining on that current page, a new

page is started.

Notes:

This control word acts as a BREAK.

The printing of blank lines is indepéndent of the

current spaciag.

TDL 280 5ext Qutput Processor User's Manual Page 12
Blank Line Control

~
Examples:

.BL 3
Three blank lines are inserted in the output before

the next printed line.

.BL

A single blank line is inserted in the output.

TDL Z80 Text Output Processor User's Manual Page 13
Bottom Margin Control

BOTTOM MARGIN Control

Purpose:
The BOTTOM MARGIN control word specifies the number
of lines to be skipped at the bottom of output pages,

overriding the standard value of three.

Format:
.BM <n>
<n> specifies the number of 1lines to be
skipped at the bottom of output pages.
If omitted, 1 is assumed.
Usage:

This control overrides the standard boftom margin
size of three lines, and need not be included in the
file if that wvalue 1is satisfactory. It may be
included anywhere in the file, and the most recent

value set applies on any page.

Note:

The BOTTOM MARGIN control word also acts as a BREAK.

TDL 280 Text Output Processor User's Manual Page 14

Bottom Margin Control “a

Example:
.BM 10
Ten lines will be left blank at
current page, if possible, and

pages.

the bottom of the

on all subsequent

TDL 280 Text Qutput Processor User's Manual
Break Control

BREAK Control

- o

Purpose:

Page 15

When CONCATENATE is in effect, BREAK causes the

previous line to be typed without filling

from the next line.

Format:

.BR

Usage:

in words

BREAK is used to prevent concatenation of lines such

as paragraph headings or the last line of a

paragraph. It causes the preceding 1line to be typed

as a short line; the next line will be ptinted on a

new line.

Notes:

Many of the other control words have the effect of a

BREAK. No BREAK is necessary when one of

present.

these is

A leading blank or tab character on a line has the

effect of a BREAK.

Example:
Heading:
.BR

First line of the paragraph . . .

S

TDL 780 Text OQutput Processor User's Manual Page 16
Break Control

»
This part of a file will be printed by SCRIPT as:
Heading:

First line of the paragraph . . .

_If the BREAK control word were not included, it would
be typed:

Heading: FPirst line of the paragraph . . .

TDL 280 Text Outpdt Processor User's Manual
Break Mode Control

BREAK MODE Control

Purpose:

The BREAK MODE control reestablishes

Page 17

the

BREAK

function of the tab and space characters when they

are the first on a line.

Format:

«BK

Usage:
This command is provided to reestablish

BREAK function initiated by the occurrence

the normal

of a tab

or space character at the start of an input line.

This would only be necessary if a ;NB command had

been given previously.

[

TDL Z80 Text Output Processor User's Manual

Center Control

CENTER Control

Purpose:

b

Page 18

The line following the CENTER control word will be

centered over the specified column.

Format:

.CE <n>

<n>

Usage:

specifies the column

over which. the

following 1line will be centered. If

omitted, the line length divided-bj two

is assumed. -

The line to be centered is entered on the line

following the CENTER control word.

left margin,
part of its

is to be centered is

It starts at the

and leading blanks will be considered

length. The column over

which the line

independent of any currently in

effect controls (e.g. indent, undent, etc.).

Notes:

The CENTER control acts as a BREAK.

If the line to be centered exceeds

length value, it is truncated.

the current line

TDL Z80 Text Output Processor User's Manual Page 19
Center Control ’
.
Examples:
.CE

Other Methods

"Other Methods" will be centered over the c¢olumn
whose number is equal to the current line length

divided by two.

.CE 27

Column Title

When this line of the file 1is typed, the title
"Column Title" will be centered over column 27 of the

output.

TDL 280 Text OQutput Processor User's Manual Page 20
Comment Control i

COMMENT Control

Purpose:
The COMMENT control word causes the remainder of the
line to be ignored, allowing comments which are not

printed when' the file is processed.

Format:

.CM <comments>

Usage:
The .CM control word allows comments to be stored in
a file for future reference. These comments can jbe
seen when editing the file or when the file is
listed. The comments may also be used to store
unique identification that can be useful when
attempting to locate a specific region of the file

during editing.

Example:
.CM Remember to change the date.
The line above will be seen when examining an
unformatted listing of the file and remind the user

to update the date used in the text.

TDL 280 Text Output Processor User's Manual Page 21
Concatenate Control

CONCATENATE Control

Purpose:
CONCATENATE cancels a previous NO CONCATENATE control
word, cgusinq output lines to be formed by
concatenating input 1lines and truncating at the

nearest word to the specified line length.

Format:

.CO

Usage:
The CONCATENATE control specifies that output lines
are to be formed by shifting words to or from the
next input line. The resulting line will be as close
to the specified 1line length as possible without
exceeding it or splitting a word. This resembles
normal typing output. This 1is the normal mode of
operation for the processor. CONCATENATE is only
included to cancel a previous NO CONCATENATE control

word.

Note:

This control word acts as a BREAK.

Example:
.CO
Qutput from this point on in the file will be formed

to approach the right margin without exceeding it.

\\./"

TDL 280 Text Qutput Processor User's Manual Page 22
Conditional Page Control

CONDITIONAL PAGE Control

Purpose:
The CONDITIONAL PAGE control word causes a new page
to be started if space for less than the specified

number of lines remain on the current page.

Format:
.CP <n>
<> specifies the number of lines that must
remain on the current page for
additional lines to be printed on it.
Usage:

The .CP control word will cause printing to begin on
a new page if "n" lines do not remain on the current
page. This request is especially meaningful '@ (1)
before an .SP control word to guarantee ﬁhat
sufficient space remains on the current page for the
number of spaces requested along with any titles, and
(2) preceding a section heading to eliminate! the
possibility of a heading occurring as the last line

of a page.

Note:
If no operand is specified with the .CP request, the

request will be ignored.

TDL Z80 Text Output Processor User's Manual Page 23
Conditional Page Control
Example:
.Cp 10
If less than 10 lines remain on the current page,
printing will begin on a new page. If 10 or more

lines remain, printout will continue on the current

page.

L/

TDL 780 Text Qutput Processor User's Manual Page 24
Double Space Control

DOUBLE SPACE Control

Purpose:
The DOUBLE SPACE control word causes a line to be

skipped between each line of printed output.

Format:

.DS

Usage:
DOUBLE SPACE may be included anywhere in the file to

force double spaced output.

Notes:
This control word has the effect of a BREAK.

It affects all control words but BLANK LINE (.BL).

Example:
.DS
Blank lines will be inserted between output lines

below this point in the file.

TDL
End

END

%80 Text Output Processor User's Manual Page 25
Control

Control
Purpose
The END contgol word is used to mark the end of the

source file to the processor.

Format:

.EN

Usage:
The END control word must be the last line in the
source file. When encountered, the output’'is spaced
to the top of the next page, and the processor

returns to the monitor.

Note:

This control word acts as a BREAK.

TDL %80 Text Output Processor User's Manual Page 26
Format Control

FORMAT Control
Purpose:
The FORMAT control word cancels a previous NO FORMAT
control word (or NO CONCATENATE and/or NO JUSTIFY
control word), causing concatenation and right

justification of output lines to resume.

Format:

.FO

Usage:
The FORMAT control word is a shorthand way to specify
the two control words: CONCATENATE and JUSTIFY. This
control specifies that 1lines are to be formed by
shifting words to or from the next line (concatenate)
and padded with extra blanks to produce an even right
margin (justify). Since this is the normal mode of
operation for the proceséor, FORMAT is only included

to cancel a previous NO FORMAT control word.

Notes:

This control word acts as a BREAK.

If a line without any blanks exceeds the current line

length, it is truncated.

Example:

.FO

TDL 280 Text Output Processor User's Manual Page 27
Pormat Control .

Qutput from this point on in the file will be formed

to produce an even right margin on the output page.

Lo

TDL %80 Text Output Processor User's Manual Page 28
Heading Control

HEADING Control

Purpose:
The HEADING control word specifies a heading line to

be printed at the top of subsequent output pages.

Pormat:
.HE <line>
<line> specifies the heading to be printed at
the top of subsequent pages.
Usage:

All of the line following the first blank after the
HEADING control word is printed at the top of pages
starting after the control word is encountered. No
heading is printed on the first page of an output
file. The heading is printed at the 1left margin.
Its length must be at least 10 1less than the output
page width, to allow for a page number at the right
margin. Leading blanks may be used to center the
heading. The heading is printed in the " line
specified by the heading margin and top margin
control words. Additional .HE control words may be
included at any point in the £file to <change the

heading on subsequent pages.

Note:

If a new heading is to be placed on a page forced

TDL 280 Text Qutput Processor User's Manual Page 29
Heading Control
with the PAGE control word the HEADING control must

precede the PAGE control.

Examples:
.HE ON-LINE EDITING SYSTEM
The characters "“ON-LINE EDITING SYSTEM" will be
printed at the 1left in the second-last line of the
top margin on all pages started after this point in

the file:

ON-LINE EDITING SYSTEM PAGE 7
. .HE EDL

The heading blanks are considered part of the

heading, so the characters "EDL" will be centered in

the heading line:

EDL PAGE 8

TDL 280 Text Output Processor User's Manual Page 30
Heading Margin Control

HEADING MARGIN Control

Purpose:
The HEADING MARGIN control word specifies the number
of lines to be skipped between the two heading lines
and the first line of text, overriding the standard

value of one.

Format:
JHM <n>
<n> specifies the number of lines to be
" skipped after the heading lines.
Usage:

The heading lines will be placed a specified number
of lines above the first line of text. If no HEADING
MARGIN control word is included in the €file, the
default value is one. The HEADING MARGIN specified
must always be less than or equal to the curremt TOP

MARGIN minus the two heading lines.

Note:

This control word acts as a BREAK.

Examples:
JHEM 3
Three lines will be left between the heading lines

and the first 1line of text. If the default top

TDL 280 Text Output Processor User's Manual Page 31
Heading Margin Control

matgin of 5 is in effect, the headings will occur at
the top of the paper followed by three more blank

lines (the heading margin) and then the text.

.EM 1

The standard heading.-margin of one is set.

\;?

TDL 280 Text Output Processor User's Manual Page 32
Ignore ‘Control

IGNORE Control

Purpose:
The IGNORE control word allows a line beginning with

a period (.) to be printed.

Format:

.IG

Usage:
The .IG control word specifies that the following
line of the input is to be treated as text even if it

- begins with a period.

Note:
This control has no other effect than the above. It

is not a BREAK.

Example:
.IG

« + +» « and so forth.

The second line will be treated just as if it did not

begin with a period.

P T

TDL 280 Text OQutput Processor User's Manual Page 33
Ignore Break Control)

IGNORE -.BREAK Control

Purpose:

IGNORE BREAK causes the next break initiated by a2

leading blank or tab character to be ignored.

Format:

.IB

Usage:

A line beginning with a. space or a tab character
causes a break; the line is printed on a new line.
when the first character of a line is a space or a
tab character, IGNORE BREAK causes the break to be
ignored. The two-line string ‘of characters (the
p:eceed;ng and the current lines tcééthe:) is printed

as one line.

Note:

Ignore Break control will affect the next space~ or
tab character-initiated break; it need not be placed

vimmediately before it.

In

TDL 280 Text Qutput Processor User's Manual Page 34
Indent Control

INDENT Control
Purpose:
The INDENT control word allows the left side of the

printout to be indented.

Pormat:
.IN <n>
<n> specifies the number of spaces to be
indented. If omitted, indentation will
- revert to the absolute margin.
Usage:
> The .IN control word causes printout to be indented

"n" spaces from the absolute left margin. This
indentation remains in effect for all following
C lines, including new paragraphs and pages, until
another .IN control word is encountered. “.IN Q0"
will cancel the indentation, and printout will

continue at the absolute left margin.

Notes:

A) The .IN request acts as a BREAK.

B) The .IN request will reset the effective left
margin, causing any .OF setting to be cleared. The
.OF request may be used alone or in conjunction with

.IN. When the latter is the case, .IN settings will

TDL 280 Text Output Processor User's Manual Page 35
Indent Control

take precedence.

Exampleé:
LIN S
All lines printed after this request will be'indented
5 spaces from the absolute left margin. This
indentation will continue until another .IN control

word is encountered.

LIN O
The effect of any current indentation will be
canceled and printout will continue at the absolute

left margin.

TDL 280 Text Output Processor User's Manual Page 36
Justify Control

JUSTIFY Control

Purpose:
The JUSTIFY control word cancels a previous NO
JUSTIFY control word (or part of a NO FORMAT control
word) , causing right justification of output lines to

resume.

Format:

.JU

Usage:
This control word specifies that 1lines are to be
justified (printed evenly on the right margin) by
padding with extra blanks. If concatenate mode is in
effect, the concatenation process occurs before
justification. Since this 1is the normal mode of
operation for the processor, JUSTIFY is only included
to cancel a previous NO JUSTIFY control word or the

NO JUSTIFY part of a NO FORMAT control word.

Notes:

A) This control acts as a BREAK.

B) If a line exceeds the current 1line length and
CONCATENATE mode is not in effect, the line |is

printed as is.

TDL 280 Text OQutput Processor User's Manual
Justify Control
C) This control word is seldom
CONCATENATE mode. FORMAT should be
both JUSTIFY and CONCATENATE modes.

Example:

JU

Page 37

used without

used to enter

OQutput from this point on in the file will be padded

to produce an even right margin on the output page as

long as the input 1lines do not

length.

exceed the line

\,,/‘i: R

TDL 280 Text Output Processor User's Manual Page 38
Line length Control

LINE LENGTH Control

Purpose:

The LINE LENGTH control word specifies a line length
that is to override the standard line length of 60

characters.

Format:
+LL <n>
<n> specifies output line length not greater
than 132 characters.
Usage:

The LINE LENGTH control sets the length for output’

lines until the next LINE LENGTH control word is
ancountered. If no LINE LENGTH control is included
in a file, the standard line length of 60 characters
is used. In the JUSTIFY/NO CONCATENATE mode, lines
shorter than line length are justified to length by
blank padding. In the CONCATENATE mode, lines longer
than line length are spilled into the following line.
Shorter lines get words from previous or following

lines to approach line length.

Note:

This control acts as a BREAK.

ke

TDL 280 Text Output Processor User's Manual Page 39
Line length Control
Example:
.LL 50
Succeeding lines will be no more than 50 characters

in length.

TDL %80 Text Output Processor User's Manual Page 40
No Break Control

NQ BREAK Control
Purpose:
NO BREAK causes all subsequent spacé— or tab

character-initiated breaks to be ignored.

Format:

.NB

Usage:
After the No Break control word, all breaks caused by
a space or tab character as the first character on a
line are ignored. Such 1lines will be printed where

the previous line stopped.

Note:
NO BREAK will remain in effect until counteracted by

.BK, Break Mode.

TDL 280 Text Output Processor User's Manual Page 41
No Concatenate Control

NO CONCATENATE Control

Purpose:

The NO CONCATENATE control stops words from shifting

to or from the next line.

Format:

.NC

Usage:

The NO CONCATENATE control word stops words from

shifting to and from the next line to even out the

line length. The printed 1lines will appear as they

do in the source file. It is useful for sections of

files containing tabular information or other special-

formats.

Note:

This control acts as a BREAK.

Example:

.NC
Concatenation will be completed for the preceding
line or lines, but following lines will be printed

without words being moved to and from lines.

l\qnz/

TDL 280 Text Output Processor User's Manual Page 42
No Format Control

NO FORMAT Control -,
Purpose:
The NO FORMAT control stops the CONCATENATE and
JUSTIFY mode, causing lines to be printed just as

they appear in the file.

Format:

.NF

Usage:
The NO FORMAT control is a short-~hand way to specify
the two control words: NO CONCATENATE and NO JUSTIFY.
This stops line justification and concatenation until
a FORMAT, JUSTIFY, or CONCATENATE control word is
encountered. It is useful for sections of £files:
containing tabular information or other special

formats.

Note:

This control acts as a BREAK.

Example:
.NF
Justification and concatenation will be completed for
the preceding line or lines, but following lines will

be printed exactly as they appear in the file.

TDL 280 Text Qutput Processor User's Manual Page 43
No Justify Control

NO JUSTIFY Control

Purpose:
The NO JUSTIFPY control stops padding lines to cause

right justification of output lines.

Format:

NJ

Usage:
The NO JUSTIFY control word stops the padding of
lines with additional blanks to form even right
margins. If CONCATENATE mode is in effect, lines
will be formed that approach the current line length
but will not be. forced to the exact length. The
resulting lines resemble the output usually produced

by a typist.

Note:

This control acts as a BREAK.

Example:
.NJ -
Justification will be completed for the preceding
line or lines, but following lines will be printed

without additional blanks inserted to pad the line.

TDL 280 Text Output Processor User's Manual Page 44
No Space Control

NO SPACE Control
- mmame —eo——— LS
Purpose:
The NO SPACE control withholds the printing of a

space after the last word on a line.

Format:

NS

Usage:

. A space is normally printed after the last character
on a line as it appears in the source file. The NO
SPACE control causes the next line of text to be
printed without this last space. It is wused in

creating longer lines when this space is not wanted.

Note:
NO SPACE will affect the next line of text; it need
not be placed immediately before it. It affects only

that line-.

TDL %80 Text Output Processor User's Manual Page 45
Offset Control

QFFSET Control
Purpose:
The OFFSET control word provides a technique for

indenting all but the first line of a section.

Format:
.OF <n>
<n> specifies the number of spaces to be
indented after the next line is printed.
Usage:

The .OF control word may be used to indent the left
side of the printout. Its effect does not take place
until after next line is printed, and the indentation
will remain in effect ﬁntil a break or until another
.OF word is encountered. The .OF control may be used
within a section which is also indented with the .IN
control. Note that .IN éettings take precedence over
.OF, however, and any .IN request will cause a
previous offset to be cleared. If is desired to
start a new section with the same offset as the
previous section; it is necessary to repeat the

",0F n" request.

Notes:

A) This control acts as a BREAK.

TDL 280 Text Output Processor User's Manual Page 46
Offset Control

B) Two OEFSEg.control words without an intervening

text line is considered an error condition.

Examples:

.OF 10
The line immediately following the .OF control word
‘will be printed at the current left margin. All
lines thereafter (until the next break or .OF
request) will be indented 10 spaces from the current

margin setting.

.OF
The effect of any previous .OF request will be
canceled, and all printout after the next line will

continue at the current left margin setting.

TDL 280 Text OQutput Processor User's Manual
Page Control

PAGE Control

————— -

Purpose:

PAGE causes a new page to be started.

Page 47

‘Format:
+PA <n>
<n> specifies the page number of the next
page. If “n" is not specified,
sequential page numbering is assumed.
Usage:

Whenever a PAGE control word is encountered, the rest

of the current page is skipped.

The paper 1is

advanced to the next page, the heading and page

number are typed, and output resumes with the line

following the PAGE control word.

Notes:

a) ?his control acts as a BREAK.

B) If the heading, 1line 1length, or

parameters are to be different on the

other format

new page, the

appropriate control words must appear before the PAGE

word.

Examples:

.PA

R

R Bl
TDL 280 Text Qutput Processor User's Manual Page 48

Page Control
The rest of the current page will be skipped. The
heading and page number will be printed in the top

margin of the next page, and output will resume.

.PA S

Regardless of the number of the current page, the
rest of that page will be skipped, the heading and
page number 5 will be printed in the top margin of

the next page, and output will resume.

TDL Z80 Text Output Processor User s Manual Page 49
Page Length Control

PAGE LENGTH Control

Purpose:
The PAGE LENGTH control word specifies the length of
output pages in lines. The value specified overrides

the standard page length of 66 lines.

Format:
.PL <n>
<n> specifies the length of output pages in
lines.
Usage:

The PAGE LENGTH control word allows varying paper
sizes to be used for output. It should not be used
to print additional 1lines on a page. Use the .BM
coﬁt:ol word. If no PAGE LENGTH control word is
included in a file, 66 is the default value. This is
the correct size of standard typewriter paper (at six
lines per inch). Page length may be changed anywhere
in a file, with the change effective on the current

page if possible.

Note:

This control word acts as a BREAK.

Example:
.PL 51

Page length is set to 51 lines.

TDL 280 Text OQutput Processor User's Manual | Page 50
Page Width Control

PAGE WIDTH Control

Purpose:
The PAGE WIDTH control specifies the width of the
output page in characters. The value specified

overrides the standard page width of 60 characters.

Format:

PW <n>

<n> i specifies the width of the output page

in characters .

The PAGE WIDTH control word allows varying paper
sizes to be used for output. It should not be used
to control the length of the iine printed on the
page. Use the .LL control word. If no PAGE WIDTH
control word is included in a file, 60 is the default
value. This is the correct size of standard
typewriter paper (at ten characters per inch) leaving
a one and one-half inch margin at the left, and a one
inch margin at the right. Page width may be changed
anywhere in the file, with the change effective on

the current page if possible.

Note:

This control word acts as a BREAK.

TDL 280 Text Output Processor User's Manual
Page Width Control
Example:
.PW 50

The page width is set to 50 characters.

Page 51

S

TDL 280 Text Output Processor User's Manual Page 52
Permanent Indentation Control

PERMANENT INDENTATION Control

Purpose:
The PERMANENT INDENTATION control specifies the
location of the left margin on the output page. The
value specified overrides the standard margin of 15

characters (one and one-half inch).

Format:
.PI <n>
<n> specifies the size of the left margin in
cha;acters
Usage:

The PERMANENT INDENTATION cbntrol allows a fixed
amount of space to be left at the left margin of the
output pége. If no PERMANENT INDENTATION control
word is included in the file, a default value of 15
characters (one and one-half inch) is used. This is
the normal margin for typewriter paper when the

printer start at the extreme left of the paper.

Note:

This control word acts as a BREAK.

Example:
.PI 10
Permanent Indentation is set to 10 characters (one

inch).

TDL 280 Text Output Processor User's Manual Page 53

Single Space Control

SINGLE SPACE Control

Purpose:

The SINGLE SPACE control word cancels a previous

DOUBLE SPACE control word, and causes output to be

single-spaced.

Format:

.88

Usage:

Output following the SINGLE SPACE control word is

single~spaced. Since this is the normal

output

format, SINGLE SPACE 1is only included in a file to

cancel a previous DOUBLE SPACE control word.

Note:

This control word acts as a BREAK.

Example:
.SS
Single-spacing will resume below this point

file.

in the

L

TDL 280 Text Output Processor User's Manual Page 54
Space Character Control

SPACE CHARACTER Control

Purpose:
Space Character control enables the user to change

the space character from “_" to any other character.

Pormat:

.SC <character>

<character> specifies the next "space character”.

Usage:
The Space Character control 1is used to change the
space character “_" to any other character. This
would be done when “_" should appear in the text.
The space character is treated like a character in
joining two words which the user wants printed on the

same line, but it is printed as a space.

Example:
.8C !
This allows “_" to be printed out. “!" will be

printed as a space.

LWl 4OV

4€XT VUTPUT pIOCeSSOr usSer 's manual rage 232

Space Line Control

SPACE LINE Control

Purpose: : .

The SPACE LINE control word generates a specified

number of blank print lines before the next printed

line.
Format:
«SP <n>
<n> specifies the number of blank print
lines to be inserted in the output. If
omitted, 1 is assumed.
Usage:

The SPACE LINE control word may be used anywhere in
the file to generate blank print 1lines. 1If the end
of the page is reached during a SPACE LINE operation,
the operation is terminated and a new page is
started. If after the specified number of blank
printed lines are inserted in the output there are
less than two printable 1lines remaining on that

current page, a new page is started.

Notes:

A) This control acts as a BREAK.

B) The printing of blank lines 1is controlled by the
current spacing, either single or double. In

doublespace mode, ".5P" generated blank lines

./

v
TDL %80 Text Output Processor User's Manual Page 56
Space Line Control

alternate with ".DS" generated blank lines.

Examples:
.SP 3
Three blank print lines are inserted in the output

before the next printed line.

.S5P

A single blank print line is inserted 'in the output.

TDL 280 Text Qutput Processor User's Manual " Page 57
Subheading Control

SUBHEADING Control

Purpose:
The SUBHEADING control word specifies a subheading
line to be printed under the heading line on the top

of subsequent output pages.

Format:
.SH <line>
<line> specifies the subheading to be printed
under the heading line at the top of
subsequent pages.
Usage:

All of the line following the first blank after the
SUBHEADING control word is printed under the heading
line of pages starting after the control word is
encountered. No subheading is printed on the first
page of an output f£ile. The Subheading is printed at
the left margin. Leading blanks may be used to
center the heading. The subheading is printed on the
line specified by the heading margin and top margin
control words. If no subheading is specified, a line
of blanks is printed in its place. Additiocnal .SH
control words may be included at any point 1in the

file to change the subheading on subsequent pages.

Note:

If a new subheading is to be placed on a page forced

‘:J

TDL 280 Text Output Processor User's Manual Page 58
Subheading Control
with the PAGE control word, the SUBHEADING control

must proceed the PAGE control.

Example:
.SH LINE EDITING COMMANDS
The characters “LINE EDITING COMMANDS" will be
printed at the 1left margin underneath the heading
line on the top of all pages started after this point

in the file:

ON-LINE EDITING SYSTEM PAGE 7
LINE EDITING COMMANDS

sl

TDL 280 Text Output Processor User's Manual Page 59
Tab Setting Control

. TAB SETTING Control

Purpose:
The TAB SETTING control word specifies the tab stops
to be assumed for the following lines when converting
the TAB character into the appropriate number of

spaces.

Format:

.TB <n(l) n(2) n(3) n{(4) n(S)>

<n(i)> specifies the column 1location of the
(i)th tab stop; the sequence must
consist of values separated by one or

more spaces.

Usage:
TAB characters entered into the file during EDIT file
creation are expanded by the processor into one or
more blanks to simulate the effect of a logical tab
stop. The TAB SETTING control word specifies the
locations of the 1logical tab stops. This overrides
the default tab stops of 5, 10, 15, 20, 25, 30, 35,
40, 45, 50, 55, 60, 65, 70, 75. A TAB SETTING
control word without any tab stops specified, results
in reversion to the default tab settings. This
control word is useful for indenting the beginning of
a paragraph (remember a TAB causes a paragraph BREAK)

or for tabular information and diagrams.

TDL 280 Text Output Processor User's Manual
Tab Setting Control
Note:

This control word acts as a BREAK.

Examples:
.TB 10 20 30 40
Tab stops are interpreted as columns 10, 20,

40.

.TB
Tab stops will revert to default values of 3,

etc.

Page 60

30, and

10, 15,

TDL 280 Text Output Processor User's Manual Page 61
Top Margin Control

TOP MARGIN Control

Purpose:
The TOP MARGIN control word specifies the number of
lines between the text and the top of the page. This

includes the heading 1line, the subheading line, and

the heading margin.

Pormat:
.TM <n>
<n> specifies the number of 1lines to be
skipped at the top of output pages. n
must be two or greater.
»
Usage:

The specified number of lines will be left at the top
of succeeding output pages before the first line of
text. The page number and heading, if any, are
placed within the top margin by the .HM control. If
no TOP MARGIN control word is included 1in the file,
the default value is five. The top margin specified
must always be egqual to or greater than the current

heading margin plus two lines £for the heading and

subheading.

Notes:
To determine a top margin, -

a) select a heading margin

o) add two lines (for the heading and subheading)

TDL 280 Text Output Processor User'sqﬁanual Page 62
Top Margin Control :

c) add the number of lines to be left blank above

the heading line. ‘

FPor example:

a) .hm 4

b) +2

¢) +6 blank lines (1 inch)

= .tm 12
This control word acts as a BREAK.

Example:
.TM 3
Three lines will be left at the top of pages started
after the current page. The heading and page number
will be printed on the £first line and the subheading

on the second line under the default heading margin.

TDL 280 Text Ouéﬁut Processor User's Manual ‘ Page 63

Undent Control

UNDENT Control

Purpose:

The OUNDENT control word forces the immediétely

following 1line to start further 1left than the
position indicated by the current indent.
Format:
.ON <n>
<n> specifies the number of spaces to be
“undented" (negative indent) for the
next line only; it must Dbe less than or
equal to the amount of indent currently
in effect.
Usage:

The UNDENT control word serves the same purpose as

the OFFSET control word but in a different manner.

It is usually used to make the first 1line

of a

paragraph or section extend further to the left than

the body of the paragraph. The choice between using

UNDENT and OFFSET is usually a matter of personal

preference. In general, UNDENT is more convenient

once one becomes familiar with its usage.

Note:

This control acts as a BREAK.

{

TDL 280 Text OQutput Processor User's Manual Page 64
Undent Control

Examples:

' .UN 10
» If an indentation of 10 is in effect, the next line
will start at the left margin; all following lines
will occur at normal indent‘ position, 10 spaces from

the left margin.

TDL 280 Text Output Pfdéesso: User's Manual Page 65
Appendix I - Text Qutout Processor Operation

Appendix I
Text Output Processor Operation

The TDL Text Output Processor requires: 4K 6f memory, a TDL
system monitor (either ZAP, ZAPPLE, or SMB), a reader device
and a liét device for proper operation. The reader MUST be
under software control.

After loading the Output Processor by using the R command of
the monitor, the previously prepared source file is readied
in the reader device. The Processor is started by issuing
the G command to the monitor. The Output Processor will
sign on on the console, and then wait. At this time, adjust
the paper in the output device so that printing will begin
on the first line of the page. A CR (carriage return) is

then entered to start the output.

" Upon completion of the output, the Processor will TRAP to
the monitor. If additional source is to be processed, the
Processor may be restarted by simply issuing another G

command to the monitor.

During oéeration, the output may be temporarily stopped by
entering a Control-S on the console (provided it is not
being used as the reader device). A Control-Q is entered to
continue cutput. A Control-C will abort the Processor and
TRAP Dback to the monitor. To resume output, use the

monitor's G command.

|

READER'S COMMENTS TDL
TEXT OUTPUT PROCESSOR'S MANUAL

In a constant effort to improve the quality and
usefulness of its publications, Technical Design Labs, Inc.
provides this page for user feedback. Your critical
evaluations of this document is our only effective means of
determining its serviceability. Please give specific page
and line references where applicable.

ERRORS NOTED IN THIS PUBLICATION:

SUGGESTIONS POR IMPROVING THIS PUBLICATION: (i.e. clarity,
organization,convenience,accuracy,legibility.)

MISSING DOCUMENTATION: (i.e. completeness.)

Name Date
Street
City State Z2ip Code=—==—v ———

All comments and suggestions become the property of
TDL. Send to Technical Design Labs, Inc.
Dept. of Product Improvements
1101 State Road
Princeton, N. J. 08540

Please indicate in the space below if you wish a reply.

M

Z-80 RELOCATING [LINKING

USER’'S MANUAL

Xitaz, I=c.

sesea~ch dazk, 3.4g. E.

1101 Sea=s Rcad -
d=incecon, N.J5. 08340

e

TDL 280 Relocating/Linking Assembler

User's Manual

Revision 2.2

October 15, 1977

Written by Neil J. Colvin

Copyright 1976, 1977 by Technical Design Labs, Inc.

TDL Z80 Relocating/Linking Assembler User's Manual
Chapter 1l: Introduction

éhapter 1

Introduction

The TDL 280 Relocating/Linking Assembler is the symbolic
assembly program for the 280. It is a two-pass assembler
(requiring the source program to be read twice to complete
the assembly process) designed to run under the TDL system
monitor. It 1is therefore device independent, allowing
complete user flexibility in the selection of standard input
and output device options.

The assembler performs many functions, making machine
language programming easier, faster, and more efficient.
Basically, the assembler processes the 280 programmer's
source program statements by translating mnemonic operation
codes to the binary codes needed in machine instructions,
relating symbols to numeric values, assigning relocatable or
absolute memory addresses for program instructions and data,
and preparing an output 1listing of the program which
includes any errors encountered during the assembly.

The TDL 280 Assembler also contains a powerful macro
capability which allows the programmer to create new
language elements, thus expanding and adapting the assembler
to perform specialized functions for each programming job.

In addition, the TDL Assembler provides the facilities
required to specify program module linkages, allowing the
TDL Linkage Editor to link independently assembled program
modules together into a single executable program. This
allows for the modular and systematic development of large
programs, and for easy sharing of common program modules
among different programs.

Statements

Assembler programs are usually prepared on a terminal,
with the aid of a text editing program. A program consists
of a sequence of statements in the assembly language. Each
statement is normally written on one line, and terminated by
a carriage return/line feed sequence. TDL assembler
statements are free-format. This means that the various
statement elements are not placed at a specific numbered
column on the line.

There are four elements in an assembler statement (three
of which are optional), separated from each other by
specific characters. These elements are identified by their
order of appearance in the statement, and by the separating
(or delimiting) character which follows or precedes the
elements.

TDL 280 Relocating/Linking Assembler User's Manual Page 2
Chapter 1: Introduction

Statements are written in the general form:
label: operator operand,operand ;comment <CR-LF>

The assembler converts statements written in this form into
the binary machine instructions.

Instruction Formats

The 280 uses.a variable length instruction format. A
given machine instruction may be one, two, three, or four
bytes long depending on the specific machine code and on the
addressing mode specified. The TDL assembler automatically
produces the correct number of machine code bytes for the
particular operation specified. Appendix A specifies the
various machine code mnemonics accepted by the assembler and
the format of the operands required.

Statement Format

As previously described, assembler statements consist of
a combination of a label, an operator, one or more operands,
and a comment; the particular combination depends on the
statement usage and operator requirements.

The assembler interprets and processes these statements,
generating one or more binary instructions or data bytes, or
performing some assembly control process. A statement must
contain at least one of these elements, and may contain all
four. Some statements have no operands, while others may
have many. -

Statement labels, operators, and operands may be
represented numerically or symbolically. The assembler
interprets all symbols and replaces them with a numeric
(binary) value.

Symbols

The programmer may create symbols to use as statement
labels, as operators, and as operands. A symbol may consist
of any combination of from one to six characters from the
following set:

The 26 letters: A-Z

Ten digits: 0-9

Three special characters:
$ (Dollar Sign)
% (Percent)
. (Period)

These characters constitute the Radix-40 character set (so
named because it contains only 40 characters). Any
statement character which is not in the Radix-40 set is

ot

Nt

L 9

TDL 280 Relocating/Linking Assembler User's Manual Page 3
Chapter l: Introduction

treated as a symbol delimiter when encountered by the
assembler.

The first character of a symbol must not be numeric.
Symbols may also not contain embedded spaces. A symbol may
contain more than six characters, but only the first six are
used by the assembler.

The TDL assembler will accept programs written using
both upper and lower case letters and symbols. Lower case
letters are treated as upper case in symbols. Additional
special characters and lower case letters elsewhere are
taken unchanged.

Labels

A label is the symbolic name created by the programmer
to identify a statement. If present, the 1label is written
as the first item in a statement, and is terminated by a
colon (:). A statement may contain more than one label, in
which case all identify the same statement. Each label must
be followed by a colon, however. A statement may consist of
just a label (or 1labels), in which case the label(s)
identifies the following statement.

When a symbol is used as a label, it specifies a
symbolic address. Such symbols are said to be defined (have
a value). A defined symbol can reference an instruction or
data byte at any point in the program.

A label can be defined with only one value. If an
attempt is made to redefine a label with a different value,
the second value is ignored, and an error is indicated.

The following are legal labels:

$SUM:
ABC:
B123:
WHERES:

The following are illegal:

30QRT: (First character must not be a digit)
AB CD: (Cannot contain embedded space)

If too many characters are used in a label, only the
first six are used. For example the label ZYXWVUTSR: is
recognized by the assembler to be the same as ZYXWVUABC:.

Operators

An operator may be one of the mnemonic machine
instruction codes, a pseudo-operation code which directs the
assembly process, or a user defined code (either pseudo-op
or macro). The assembler pseudo-op codes are described in
Chapter 3 and summarized in Appendix B.

TDL %280 Relocating/Linking Assembler User's Manual Page 4
Chapter 1l: Introduction

The operator element of a statement is terminated by any
character not in the Radix-40 set (usually a space or a
tab). If a statement has no label, the operator must appear
first in the statement.

A symbol used as an operator must be predefined by the
assembler or the programmer before its first appearance as
an operator in a statement.

Operands

Operands are usually the symbolic addresses of the data
to be accessed when an instruction is executed, the names of
processor registers to be wused in the operation, or the
input data or arguments to a pseudo-op or macro instruction.
In each case, the precise interpretation of the operand(s)
is dependent on the specific statement operator being
processed. Operands are separated by commas, and are
terminated by a semicolon (;) or a carriage return/line
feed.

Symbols used as operands must have a value predefined by
the dssembler or defined by the programmer. These may be
symbolic references to previously defined 1labels where the
arguments used by this instruction are to be found, or the
symbols may represent constant values or character strings.

Comments

The programmer may add a comment to a statement by.

preceding it with a semicolon (;). Comments are ignored by
the assembler but are useful for documentation and later
program debugging. The comment is terminated by the
carriage return/line feed at the end of the statement. In
certain cases (e.g. conditional assembly and macro
definitions), the use of the 1left and right square brackets
([]1) should be avoided in a comment as it could affect the
assembly process.

An assembler statement may consist of just a comment,
but each such statement must begin with a semicolon.

Statement Processing

The assembler maintains several internal symbol tables
for recording the names and values of symbols used during
the assembly. These tables are:

1. Macro Table - This table <contains all macros. It is
initially empty, and grows as the programmer defines
macros.

2. Op-Code Table - This table contains all of the machine
operation mnemonics (op—-codes) , the assembler
pseudo-operations (pseudo=-ops), and user defined

N 4

TDL 780 Relocating/Linking Assembler User's Manual Page 5
Chapter l: Introduction

operators (.OPSYNs). It initially contains the basic
op-codes and pseudo—~ops, and grows as the programmer
provides additional definitions.

3. Symbol Table - This table contains all
programmer—defined symbols other than those described
above. It initially contains the standard register
names, and then grows as new symbols are defined.

Internally, all of these tables occupy the same space, so
that all of the available space can be used as required.

Order of Symbol Evaluation

The following table shows the order in which the
assembler searches the tables for a symbol appearing in eac
of the statement fields: .

Label Field:
1. Symbol followed by a colon. If no colon is found,
no label is present.

Operator Field:
1. Macro
2. Machine operator
3. Assembler operator
4. Symbol

Operand Field:
1. Number
2. Macro
3. Symbol
4, Machine operator

Because of the different table searching orders for each
field, the same symbol could be used as a 1label, an
operator, and a macro, with no ambiguity.

Programmer~Defined Symbols

There are two types of programmer-defined symbols:
labels and assignments. As previously described, labels are
generated by entering a symbol followed by a colon (e.g.
LABEL:). Symbols used as labels cannot be redefined with a
different value once they have been defined. The value of a
label is the value of the location counter at the time the
label is defined.

Assignments are used to represent, symbolically,
numbers, bit patterns, or character strings. Assignments
simplify the program development task by allowing a single
source program modification (the assignment statement) to
change all uses of that number or bit pattern throughout the

TDL 280 Relocating/Linking Assembler User's Manual Page 6
Chapter 1l: Introduction

program. Symbols given values in an assignment statement
may have new values assigned in subsequent statements. The
current value of an assigned symbol is the last one given to
it.

A symbol may be entered into the symbol table with its
assigned value by using a direct assignment statement of the
form:

symbol = value {; or CR-LF}

where the value may be any valid numeric value or
expression.

The value assigned to the symbol may subsequently be
changed by another direct assignment statement.

The following are valid assignment statements:

VALUELl = 23
SIZE = 4*36
ZETA = SIZE

If it is desired’ to f£ix the value assigned to a symbol
so that it cannot subsequently be redefined, the direct
fixed assignment statement should be used. This statement
is the same as the direct assignment statement except that
the symbol is followed by two equal signs instead of one.
For example:

FIXED == 46
NEWVAL == SIZE

Assembly~Time Assignments

It is often desirable to defer the assignment of a value
to a symbol wuntil the assembly is actually underway (i.e.
not specify the value as part of the source program). This
is especially wuseful 1in setting program origin, buffer
sizes, and in specifying parameter values which will be used
to control conditional assembly pseudo-ops.

The TDL Assembler provides the ability to specify
symbols with values to be determined at assembly time, and
the mechanism by which the values may be interactively
defined. To specify an assembly~time assignment, the
following format is used:

symbol =\ [dtextd]

where the dtextd in brackets indicates the optional
specification of a message to be output on the console
device at assembly time before requesting the symbol's
value. The d represents a text delimiter, and may be any
character (other than a space or tab) which is not contained
in the text itself. The text may contain carriage

TDL 280 Relocating/Linking Assembler User's Manual Page 7
Chapter 1l: Introduction

return/line feed sequences, which would result in a
multi-line message on the console.

After the optional message 1is output on the console, a
colon (:) 1is output to indicate that the assembler is
waiting for the desired value to be entered. The value
which is to be assigned to the symbol is then input on the
console device and the assembly continues with the symbol
having the specified value. This interaction only occurs
during the first assembly pass. The symbol's value remains
unchanged during subsequent passes.

Only numeric values may be entered through the console
in this fashion. The number which 1is input must conform to
the same rules as any other number used in the assembly
source program, and may be followed by an optional radix
modifier (see the section on Numbers below). The number is
assumed to be decimal unless followed by a radix modifier.

The value being input is not processed until a carriage
return is entered. Aany mistyped character may be deleted by
the use of the DELETE (or RUBOUT) key (which will echo the
deleted character), and the entire number may be deleted by
entering CTL~U (simultaneous use of the CTRL and the U key).
Any character which is input but is not valid as part of a
number will not be echoed and will be ignored.

The following are examples of assembly-time assignment
statements: '

BUFSIZz =\ "BUFFER SIZE (50 TO 500 CHARACTERS)"
DISK =\ "VERSION (0-PAPER TAPE 1-DISK)"

Assembly~time assignment statements are similar to
direct fixed assignments (==) in not allowing the symbol to
be redefined elsewhere in the program.

Local and Global Symbols

When assembling a large program, it 1is sometimes
difficult to keep track of the symbols used for local data
references and branching. To facilitate modular
programming, the TDL assembler provides for both global and
local symbols within a single program. All symbols which
start with two periods are defined as being local, and all
other symbols are global. For example, the following are
valid local symbols:

. .ABCD:
..1234:

A particular occurrence of a local symbol 1is only defined
within the boundaries of its enclosing global symbols. For
example, in the following segquence of label definitions, the
symbol ..SYM1l is only defined (and can only be referenced)

TDL 280 Relocating/Linking Assembler User's Manual Page 8
Chapter 1l: Introduction

within the program between the definition of GLOBl and
GLOB2:

GLOBl:

..SYM1:
GLOB2:

This localization of symbol definitions allows the same
symbol to be used unambiguously more than once in the
program. It also simplifies program understandability by
immediately differentiating between local and global
symbols. :

In addition to 1labels, any other programmer-defined
symbol may be specified as local (e.g. macros) in the same
manner. Because of the 1local usage of these symbols, they
do not appear in the symbol table listing or in the symbol
table optionally punched on the object tape.

External, Internal, and Entry Symbols

Programmer-defined symbols may also be used as external,
internal, and entry point symbols in addition to their
appearance as labels or in assignment statements.

Symbols which fall into one of these three groups are
different from other symbols in the program because they can
be referenced by other, separately assembled, program
modules. The manner in which they are used depends on where
they are located: in the program 1in which they are defined,
or in the program in which they are a reference to a symbol
defined elsewhere.

If the symbol appears in a program in which it is
defined, it must be declared as being available to other
programs by the use of the pseudo-ops .INTERN or .ENTRY, or
through the use of the delimiters "::", "=:", "==:", or
"a\:" in their definition statements. These special
delimiters are exactly equivalent to the sequence:

.INTERN symbol
symbol <delimiter without colon (:)>

In each case, the delimiter 1is the normal symbol definition
operator (:, =, ==, =\) with an additional colon (:) added
to indicate an internal symbol definition.

If the symbol is located 1in a program in which it is a
reference to a symbol defined in another program, it must be
declared as external by the use of the .EXTERN pseudo=-op, or
through the use of the "#" symbol modifier. This special
symbol modifier is appended to the end of any symbol to

TDL 280 Relocating/Linking Assembler User's Manual Page 9
Chapter 1l: Introduction

declare it external. For example, the statement:
LXI €,SYMBOL#
is exactly equivalent to:

.EXTERNAL SYMBOL
LXI H,SYMBOL

Numbers

Numbers used in a program are interpreted by the
assembler according to a radix (number base) specified by
the programmer, where the radix may be 2 (binary), 8
(octal), 10 (decimal), or 16 (hexadecimal). The programmer
uses the .RADIX pseudo~op to set the radix for all numbers
which follow. If the .RADIX statement 1is not used, the
assembler assumes a radix of 10 (decimal).

The radix may be changed for a single number by
appending a radix modifier to the end of the number. These
modifiers are B for binary, O or Q for octal, D or .
(period) for decimal, and H for hexadecimal. To specify the
hexadecimal digits, the letters A through F are used for the
values 10 through 15 decimal. All numbers, however, must
begin with a numeral. For example, the following are valid
numbers:

10 10 in current radix

10. 10 decimal

10B 10 binary (2 decimal)

OFFH FF hexadecimal (255 decimal)

The following are invalid numbers:

14B 4 is not a binary digit
FFH the number must start with a numeral

Arithmetic and Logical Operations

Numbers and defined symbols may be combined using
arithmetic and logical operators. The following operators
are available:

Add (or unary plus)

Subtract (or unary minus)

Multiply

Integer division (remainder discarded)
Integer remainder (gquotient discarded)
Logical AND

Logical inclusive OR

Logical exclusive OR (or unary radix change)
Logical unary NOT

re- @ * |+

=

TDL 280 Relocating/Linking Assembler User's Manual Page 10
Chapter 1l: Introduction

< Left binary shift
oD Right binary shift

The assembler computes the 16-bit value of a series of
numbers and defined symbols c¢onnected by these operators.
All results are truncated to the left, if necessary. Two's
complement arithmetic is used, with the meaning of the sign
bit (the most significant bit) being left to the programmer.
This means that a numeric value may be either between 0 and
65,535 or between =-32,768 and 32,767, depending on whether
it is signed or unsigned.

These combinations of number and defined symbols with
arithmetic and 1logical operators are called expressions.
When evaluating an expression, the assembler performs the
specified operations in a particular order, as follows:

1. Unary minus or plus (- +)

Unary radix change ("B "0 "Q "D “H)
Left and right binary shift (< >)
Logical operators (& ! ~ #)
Multiply/Divide (* /)

Remainder (@)

Add/Subtract (+ =)

ST WN

o s s e e &

Within each of the above groups, the operations are
performed from left . to right. For example, in the
expression:

-ALPHA+3*BETA/DELTA& "HS55

the unary minus of ALPHA is done first, then DELTA is ANDed
with a hexadecimal 55, then BETA is multiplied by 3, the
result of which 1is divided by the result of the AND, and
finally, that result is added to the negated ALPHA.

To change the order in which the opverations are
performed, parentheses may be used to delimit expressions
and to specify the desired order of computation. Each
expression within parentheses is considered to be a single
numeric value, and is completely evaluated before it is used
to compute any further wvalues. For example, 1in the
expression:

4* (ALPHA+BETA)

the addition of ALPHA to BETA is peformed before the
multiplication.

Radix Change Operator

=

The radix change operator is used to temporarily change
the radix in which a following number or expression is to be
interpreted. It is written as an up-arrow (°) followed by

TDL 280 Relocating/Linking Assembler User's Manual Page 1l
Chapter l: Introduction

the radix modifier of the desired radix. These modifiers
are the same as those used to specify the radix of a single
number (B-binary, o] or Q-octal, D-decimal, and
H-hexadecimal). The radix change only affects the
immediately following number or parenthesized numeric
expression. For example, all of the following are valid
representations of the decimal number 33:

33.

33D

D33

“D(10#%3+3)

"D (10*THREE+THREE)
"D10*"D3+7D3

but the following is not a representation of decimal 33 if
the prevailing radix is not decimal:

“D3*10+3

because the radix change only affects the value immediately
following it, in this case 3.

Binary Shifting

The binary shift operators (< left, > right) are used to .

logically shift a 1l6-bit value to the 1left or right. The
number of places to be shifted is specified by the value
following the shift operator. If that value 1is negative,
the direction of the shift is reversed. For example, all of
the following expressions have a value of 4 decimal:

8>1
1<2
2>=-1

One-byte Values

All of the above discussion has been based on the
computation of 1l6~bit (two byte) numeric values. Many of
the 280 operations require an 8-bit (one byte) value. Since
all computations are done as a l6-bit value, an operation
calling for only eight bits will discard the high order
eight bits (the most significant byte) of the value. If the
byte discarded is not either =zero or minus one:(all one
bits), a warning will be given on the assembly listing.

Character Values

To generate a binary value egquivalent to the ASCII
representation of a character string, the single (') or
double (") guotation mark is wused. The character string is

TDL 280 Relocating/Linking Assembler User's Manual Page 12
Chapter 1l: Introduction

enclosed in a pair of the quotation marks. For example, all
of the following are valid character values:

WAI
lBl
“AR"
chl

Note that whichever gquotation mark is used to initiate the
character string it must also be used to terminate it. If
the string is longer than two bytes, it is truncated to the
left. Each 7-bit ASCII character 1is stored in an 8-bit
byte, with the high-order bit set to zero.

A character string of this type may be used wherever a
numeric value is allowed.

A single gquote may be used inside a string delimited by
double guotes, and vice-versa. If it is necessary to use a
single quote within a string delimited by single quotes, two
single quotes must be used. The same is true for a double
guote in a string delimited by double quotes.

Location Counter Reference

The location counter may be referenced as a numeric
l6~bit value by the use of the symbol . (period). The value
represented by . is always the location counter value at the
start of the current assembly language statement. For
example:

JMP .

is an effective error trap, jumping to itself continuously.

TDL 280 Relocating/Linking Assémbler User's Manual Page 13
Chapter 2: Addressing and Relocation

Chapter 2

Addressing and Relocation

Address Assignment

As source statements are processed by the assembler,
consecutive memory addresses are assigned to the instruction
and data bytes of the object program. This is done by
incrementing an internal program counter each time a memory
byte 1is assigned. Some statements may increment this
internal counter by only one, while others could increase it
by a large amount. Certain pseudo-ops and direct assignment
statements have no effect on the counter at all.

In the program 1listing generated by the assembler, the
address assigned to every statement is shown.

Relocation

The TDL %280 Assembler will create a relocatable object
program. This program may be loaded into any part of memory
as a function of what has been previously loaded. To
accomplish this, certain 16-bit values which represent
addresses within the program must have a relocation constant
added to them. This relocation constant, added when the
program is loaded into memory, is the difference between the
memory location an instruction (or piece of data) is
actually loaded into, and the 1location it was assembled at.
If an instruction had been assembled at location 100
(decimal), and was loaded into location 1100 (decimal), then
the relocation constant would be 1000 (decimal).

Not all 16-bit gquantities must be modified by the
relocation constant. For example, the instruction:

LXI #,00FFH

references a 1l6-bit gquantity (00FFH) which does not need
relocation. However, the set of instructions:

JZ DONE

DONE:

does reference a l6-bit quantity (the address of DONE) which
must be relocated, since the physical location of DONE
changes depending on where the program 1is loaded into
memory.

To accomplish this relocation, the l6-bit value forming

TDL %80 Relocating/Linking Assembler User's Manual Page 14
Chapter 2: Addressing and Relocation

an address reference 1is marked by the assembler for later
modification by the 1loader or 1linkage editor. Whether a
particular 1l6=-bit wvalue is so marked depends on the
evaluation of the arithmetic expression from which it is
obtained. A constant value (integer) 1is absolute (not
relocatable), and never modified. Point references (.) are
relocatable (assuming relocatable code 1is being generated),
and are always modified by the 1loader or 1linkage editor.
Symbolic references may be either absolute or relocatable.

If a symbol is defined by a direct assignment statement,
it may be absolute or relocatable depending on the
expression following the equal sign (=). If the symbol is a
label (and relocatable code 1is being generated) then it is
relocatable.

To evaluate the relocatability of an expression,
consider what happens at 1load or linkage edit time. A
relocation constant, r, must be added to each relocatable
element, and the expression evaluated. For example, in the
expression:

2 = YH2*KX-3*W+V

where V, W, X, and ¥ are relocatable. Assume that r is the
relocation constant. Adding this constant to each
relocatable term, the expression becomes:

Z(r) = (Y+r)+2%(X+r)=3% (W+r)+(V+r)

By rearranging the expression, the following is obtained:
Z(r) = Y+2*X-3*W+V + r

This expression .is suitable for relocation because it
contains only a single addition of the relocation constant
r. In general, if the -expression can be rearranged to
result in the addition of either of the following, it is
legal:

O*r absolute expression
1*r relocatable expression

If the rearrangement results in the following, it |is
illegal: .

n*r where n is not 0 or 1

Also, if the expression 1involves r to any power other than
1, it is illegal. This leads to the following rules:

1. Only two values of relocatability for a complete
expression are allowed (ie. n*r where n = 0 or 1).
2. Division by a relocatable value is illegal.

A

TDL 280 Relocating/Linking Assembler User's Manual Page 15
Chapter 2: Addressing and Relocation

3. Two relocatable values may not be multiplied together.

4. Relocatable values may not be combined by 1logical
operators.

S. A relocatable value may not be logically shifted.

If any of these rules is broken, the expression is illegal
and an error message is given.
If X, ¥, and Z are relocatable symbols, then:

X+Y~2 is relocatable
X-2 is absolute
X+7 is relocatable

3*X-¥-Z 1is relocatable
45X-2 is illegal

Only 1l6-bit quantities may be relocated. All 8-bit
values must be absolute or an error will be given.

Relocation Bases

One of the unique capabilities of the TDL Z80 Assembler
is its ability to handle symbolic references to separately
located areas of memory, where the mapping of symbols to
physical addresses occurs at linkage edit time. The
symbolic names for independently located memory areas are
called "relocation bases". These relocation bases may
represent ROM vs. RAM, shared COMMON areas, special memory
areas such as video refresh, memory mapped I/0O, etc. Within
each subprogram, each of these memory areas is referenced by
a unigue name, with the actual allocation deferred to the
link edit and load process. All memory references within
the assembled program are relative to one of these
relocation bases.

As each relocation base is assigned a name in the
program (through the use of the .EXTERN pseudo-op), it is
implicitly assigned a sequential identifying number. This
number appears in the listing as part of any address
relative to that base.

Four of these relocation bases (0-3) have predefined
names and meanings, and are treated differently at linkage
edit time than the remainder of the bases. Base 0
represents absolute memory locations (i.e. it always has the
value of 0). Base 1l has the name .PROG. and represents the
program area (maybe PROM or ROM). Most program code (and
data in non-rommed programs) is generated relative to this
relocation base. Base 2 has the name .DATA. and represents
the local data area for each module. Most local data is
defined relative to this base. Base 3 has the name .BLNK.
and represents the . global “blank common". This relocation
base is always assigned the value of the first free byte in
memory after the local data storage (.DATA.) and other data
relocation segments by the linkage editor. Because it is

TDL 780 Relocating/Linking Assembler User's Manual Page 16
Chapter 2: Addressing and Relocation

always the last allocated, modules referencing this area can
be included in any order, regardless of the amount of the
area they use.

Relocation segments relative to bases 1 and 2 (.PROG.
and .DATA.) are always allocated additively (i.e. after each
module is allocated, the value of the relocation base is
increased by the size of the segment). All other relocation
bases are normally assumed to have constant values during
the allocation process (usually assigned by the linkage
editor).

Each symbol defined during the assembly has a relocation
base associated with it. There are no 1limitations on
inter-base references (i.e. code relative to .PROG. can
freely reference data relative to .DATA.). Expressions
containing symbols must evaluate to a value relative to a
single relocation base, but may contain references to
multiple relocation bases. All relocation base references
except for the final result must be part of sub-expressions
which evaluate to absolute values. For example, if T and U
are symbols relative to base 1, V and W relative to base 2,
and X and Y relative to base 3, then the following are valid
expressions:

T+ (V-W) {note the parentheses to make V-W
a subexpression)

X+3

T= (V-W) *U+ (X~-Y)

and the following are invalid:

T+U (within a relocation base, the
normal relocation rules apply)
T+V-W (T+V is the first subexpression,

and it is mixed relocation bases)

It should be noted that conceptually, normal external
symbols are simply relocation bases with a size of zero (0),
and the assembler treats them that way. An assignment of
the form:

N==P+5

where P is an external symbol, makes N a symbol whose
address is relative to P, even though P has no size. Hence,
expressions of the form:

S* (P=N)

where P and N have the same relocation base, are in fact
valid.

‘\",

TDL %80 Relocating/Linking Assembler User's Manual Page 17
Chapter 3: Pseudo-Operations

Chapter 3

Pseudo-Operations

Pseudo-operations (pseudo-ops) are directions to the
assembler to perform certain operations for the programmer,
as opposed to machine operations which are instructions to
. the computer. Pseudo-ops perform such functions as listing
control, data conversion, or storage allocation.

Address Mode and Origin

The TDL Z80 Assembler normally assembles programs in
relocatable mode, so that the resultant program can be
loaded anywhere in memory for execution. Therefore, all
programs are assembled assuming their first byte is at
address zero (0), because they can be relocated anywhere.
When desired, however, the assembler will generate absolute
object code, either for the entire program, or just selected
portions. The assembler will also locate the assembled code
at any address desired. The two pseudo-ops which control
address mode, relocation base and address origin are .LOC
and .RELOC,

.LOC n

This statement sets the location counter to the value n,
which may be any valid expression. If n 1is an absolute
value, then the assembler will assign absolute addresses to
all of the instructions and data which follow. 1If n is
relocatable, then relocatable addresses will be assigned,
relative to the relocation base of the expression.

The program is assumed to start with an implicit .LOC to
relocatable address zero (0) of the relocation base named
.PROG. (the default relocation base for normal programs).
A program can contain more than one .LOC, each controls the
assignment of addresses to the statements following it.

’ To reset the program counter to its value prior to the
last .LOC, the statement:

.RELOC

is used. This statement restores both the wvalue, the
relocation base and the addressing mode which were in effect
before the immediately preceding .LOC. If no .LOC has been
done, then a .RELOC is equivalent to a:

.LOC 0

TDL 7280 Relocating/Linking Assembler User'‘'s Manual Page 18
Chapter 3: Pseudo-Operations

When in relocatable addressing mode, the assembler will
determine whether each 1l6-bit value is absolute or
relocatable as described in Chapter 2.

Data Definition

The TDL Z80 Assembler provides a number of different
pseudo-ops for describing and entering data to be used by
the program. ‘

.RADIX
When the assembler encounters a number in a
statement, it converts it to a 16-bit binary value
according to the radix indicated by the programmer. The
statement:

.RADIX n

where n is 2, 8, 10, or 16, sets the radix to n for all
numbers which follow, unless another .RADIX statement is
encountered, or the radix is modified by the “r operator
or a suffix radix modifier.

The statement:

.RADIX 10

implicitly begins each assembly program, setting the
initial radix to decimal.

.BYTE
To enter one (or more) 8-bit (one byte) data values
into the program, the statement:

.BYTEn {, n ...}

where n is any expression with a valid 8-bit value is
used. More than one byte can be defined at a time by
separating it from the preceding value with a comma.
All of the bytes defined in a single .BYTE statement are
assigned consecutive memory locations. For example:

.BYTE 23,4*"HOFF,BETA-ALPHA
defines three sequential bytes of data.
.WORD
To enter a 1l6~bit (two byte) wvalue into the
program, the statement:

.WORD nn {, nn ...}

TDL 280 Relocating/Linking Assembler User's Manual Page 19
Chapter 3: Pseudo-Operations

where nn is any expression with a valid 16-bit value, is
used. Multiple 16-bit values may be defined with one
.WORD statement by separating each from the preceding
one with a comma.

All 16-bit values defined by the .WORD pseudo-op
are stored in standard z280 word format, least
significant byte first.

For example, the following statement:

.WORD ALPHA,234*BETA, "HOEEFF

defines three sequential 16-bit values, or a total of
six bytes of data.

.ASCII, .ASCIZ, and .ASCIS
To enter strings of text characters into the
program, one of the statements:

.ASCII dtextd | [n]
.ASCIZ dtextd | [n]
.ASCIS dtextd | [n]

is used. The d represents a text delimiter, and may be
any character (other than space or tab) not contained in
the text itself. Each character in the text |is
converted to its 7-bit ASCII representation (with the
eighth bit =2zero), and stored in sequential memory
locations. When the delimiter character is again
encountered, the text 1is considered terminated (the
delimiter is not stored with the string). The delimited
string may be followed by another delimiter, and another
string, and this may be repeated as desired.

If it is necessary to include values 1in the text
string for which no character exists, then the second
option shown above may be used. If in place of a string
delimiter, the assembler finds a 1left square bracket
([), then the numeric expression enclosed within it and
a matching right square bracket (]) is evaluated as an
8-bit value and stored as the next byte of the string.
These 8-bit values may be intermixed with delimited
strings as required. :

It is important to note that tab, carriage return,
and 1line feed are all valid characters within a
delimited text string. It is therefore possible that a
.ASCIx statement will encompass more than one line in
the source program.

The difference between the three pseudo-ops
described above is in their treatment of the last byte
generated by the statement. The .ASCII statement just
stores the byte. The .ASCIZ statement stores one
additional byte after the last one, a null (zero) byte
to mark the end of the string in memory. The .ASCIS

TDL 280 Relocating/Linking Assembler User's Manual Page 20
Chapter 3: Pseudo-Operations

pseudo~op sets the high-order (eighth) bit of the last
byte to one to flag the last byte.
The following are all valid .ASCIx statements:

.ASCII /This is a string/

.ASCIZ /This is two/ ' strings in one place’
.ASCIS ["HOD] [("HOA] "Message on new line"
LASCII \

Message on new line\

.RAD40)

The Radix—~40 character set for symbols was chosen
because it allows a six character symbol to be stored in
only four bytes of memory. To allow the program to
define data bytes in this character set, the statement:

.RAD40 symboll {, symbol2 ...}

is used. The symbol must conform to all the rules
specified for assembler symbols, and 1is converted into
the Radix~-40 notation and stored in four sequential
bytes of memory. If multiple symbols are to be
converted and stored, each must be separated from the
preceding one by a comma.

Storage Allocation

The TDL 280 Assembler allows the programmer to reserve
single locations, or blocks of many locations, £for use
during the execution of the program. The two pseudo-ops
used for this purpose are .BLKB and .BLKW. The format of
the statement using these pseudo-ops is:

.BLKx n

where n is the number of storage locations to be reserved.

For the .BLKB pseudo—-op, each storage location consists
of one byte, so the above statement will reserve n
contiguous bytes of memory, starting at the current location
counter. The .BLKW pseudo-op uses a word (two bytes) as its
storage unit, so the above statement would reserve n words,
or two times n bytes of contiguous memory.

For example, each of the following statements reserves
24 (decimal) bytes of storage:

.BLKB 24.
.BLKW "D12
.BLKB 2*12.

TDL %280 Relocating/Linking Assembler User's Manual Page 21
Chapter 3: Pseudo-Operations

Program Termination

Every program must be terminated by a .END pseudo-op.
The format of this statement is:

.END start

where start is an optional starting address for the program.
The starting address is normally only necessary for the main
program. Subprograms, which are called from the main
program, need no starting address.

When the assembler encounters the .END pseudo-op during
pass 1 of the assembly, it returns to the initialization
point to await further instructions (see Appendix C). On a
listing pass, the .END pseudo-op initiates the printing of
the symbol table (if not suppressed by a prior .XSYM
pseudo-op). On a punching pass, the .END pseudo-op punches
the EOF record on the object tape.

Subprogram Linkage

Programs usually consist of a main program and numerous
subroutines which communicate with each other through
parameter linkages and through reference to symbols defined
elsewhere in the program. Since the TDL 280 Assembler
provides the means for the various program components to be
assembled separately from each other, the linkage editor
(which finally puts the pieces together) must be able to
identify those symbols which are references (or referenced)
external to the current program. For a given subprogram,
these "“linkage" symbols are either symbols defined
internally which must be available to other programs to
reference, or symbols used internally but defined externally
to the program. Symbols defined within the program but
available to other subprograms are called “internal"
symbols. Symbols used internally but defined elsewhere are
called “external” symbols.

To set up these linkages between subprograms, four
pseudo-ops are provided: .IDENT, .EXTERN, .INTERN, and
‘.ENTRY.

The .IDENT statement has the format:

.IDENT symbol

where symbol is the relocatable module name. This name is
used by the linkage editor to 1identify the module on memory
allocation maps, and to allow the selective loading of the
module if it is part of a subprogram library. If the .IDENT
statement does not appear in a program, the name ".MAIN." is
assumed. The .IDENT name appears at the top of every
listing page, and is displayed on the console at the start
of the second assembly pass of that module.

TDL 280 Relocating/Linking Assembler User's Manual Page 22
Chapter 3: Pseudo~Operations

All three remaining statements have the same format:

.EXTERN symboll {, symbol2 ...}
_.INTERN symboll {, symbol2 ...}
.ENTRY symboll {, symbol2 ...}

where symboll is the symbol being declared as external,
internal, or as an entry point. Multiple symbols may be
declared in the same statement by separating each from the
preceding one with a comma. ’

The .EXTERN statement identifies symbols which are
defined elsewhere. External symbols must not be defined
within the current subprogram. The external symbols may
only be used as addresses, or in expressions that are to be
used as addresses. External symbols may be used in the same
manner as any other relocatable symbol, with the following
restrictions:

l. The use of more than one external symbol in a single
expression is illegal. Thus X+Y where X and Y are both
external is illegal.

2. Externals may only be additive. Therefore the following
expressions are illegal (where X is an external symbol):

-X
2*X
SQR-X
2*X-X

Symbols declared as external by the .EXTERN pseudo-op
may also be used as relocation bases. This is done by using
an external symbol as the argument to a .LOC pseudo-op. All
memory allocated by the assembler after the .LOC will be
addressed relative to the specified relocation base. The
most common use of this capability is the declaration of
COMMON blocks for the sharing of data between assembler and
FORTRAN subprograms. All named COMMON blocks are in fact
just different relocation bases. Symbols used as relocation
bases have unique values during the assembly of the program
module. At any point in time, the current value of the
relocation base symbol is the number of bytes which have
been allocated to that base so far. This means that
subsequent .LOC pseudo-ops referencing the same external
symbol will start the memory allocation at the next
available byte in that relocation base, not at relative
location zero (0).

There are three predefined relocation base symbols:
.PROG., .DATA. and .BLNK.. These relocation bases are used
for the program code, separately located data (in a ROM/RAi{
environment), and blank (unnamed) common respectively.

The .INTERN pseudo-op identifies those symbols within
the current subprogram which are to be made accessible to

s

TDL 280 Relocating/Linking Assembler User's Manual Page 23
Chapter 3: Pseudo-Operations)

other programs as external symbols. This statement has no
effect on the assembly process for the current program, but
merely records the name and value of the identified symbols
on the object tape for later use by the linkage editor. An
internal symbol must be defined within the current program
as a label, or in a direct assignment statement.

The .ENTRY pseudo-op functions identically to the
.INTERN pseudo-op, with one addition. It is sometimes
desirable to put many subroutines with common usage into one
"library", and to allow the 1linkage editor to select only
those programs from the 1library which are called by the
program being linkage edited.

The .ENTRY statement, in addition to functioning as a
.INTERN statement, also flags the specified symbols as
program entry points. If the subprogram is later put into a
library, this will specify to the linkage editor that this
program is to be included only if one of its entry points is
referenced as an external symbol by an already included
program.

Since these entry points are external to the program
referencing them, they must be listed in a .EXTERN statement
in the calling program.

Listing Control

Program listings are printed on the 1list device during
pass 2 and 4 (see Appendix C) of the assembly. The listing
is printed as the source program statements are processed
during the pass. The standard listing contains (from left
to right):

1. Error flags (if present).

2. Location counter for the first byte generated by this
statement.

3. Instruction or data in hexadecimal (maximum of five
bytes per line printed).

4. Exact image of the input statement.

The standard 1listing displays all 16-bit gquantities in
16~bit (two byte), most significant byte first, format.
These quantities are properly reversed in the object code as
required by the 280. A 16-bit relocatable address relative
to the .PROG. relocation base 1is flagged with an apostrophe
('), one relative to the .DATA, relocation base is flagged
with an asterisk (*), and all others are followed by the
assigned number of their relocation base.

Within a macro expansion, only the macro call and those
statements which generate actual object code are normally
listed.

If a single statement generates more than the maximum of
five bytes that can be 1listed on a single 1line, the
remaining bytes are properly generated, but not normally

TDL 280 Relocating/Linking Assembler User's Manual Page 24
Chapter 3: Pseudo-Operations

listed.

A listing always begins at the top line of the page, and
60 lines are printed per page, with a two line margin at the
top, and a two line margin at the bottom. A page is assumed
to be 72 (or 79) columns wide (depending on the list device
selected - see Appendix C). Each page is numbered, and can
have an optional title and sub-title.

The standard listing options can be changed and expanded
by the use of the following pseudo-operations:

.PAGE

XLIST

.LIST

.LALL

.XALL

.SALL

. XSYM

.LSYM

.LADDR

. XADDR -

This statement causes the assembler to skip to
the top of the next page (by counting lines).
A form feed character in the input text will
have the same effect.

This statement causes the assembler to stop
listing the assembled program at this point.

This statement is normally used following a
.XLIST to resume program listing.

' This statement causes the assembler to list

everything which ' is processed. This includes
all text, macro expansions, and all other
statements normally suppressed in the standard
listing.

This statement is normally used following a
.LALL to resume the normal listing.

This statement causes the suppression of all
macro expansions and their text. It can be
reset by a subsequent .LALL or .XALL.

This statement suppresses the symbol table
listing normally performed upon encountering
the .END statement.

Normally not used, this statement enables the
listing of the symbol table previously
suppressed by the .XSYM pseudo-op.

This statement causes the assembler to list
all 16-bit quantities in the same order it
generates them in the object code (least
significant byte first).

Normally used following a .LADDR statement,
this statement resumes the normal listing of
l6-bit quantities in non-swapped format.

TDL 280 Relocating/Linking Assembler User's Manual Page 25
Chapter 3: Pseudo-Operations

.LIMAGE

- XIMAGE

.LCTL

.XCTL

.SLIST

.RLIST

.TITLE

.SBTTL

This statement causes the assembler to list

every byte generated, even if more than one
line (at five bytes per line) is required. 1In
this mode, the assembler will attempt to split
the input source statement to indicate which
part of the statement is generating which
bytes. '

Normally used following a .LIMAGE statement,
this statement resumes the normal 1listing of
only five bytes of generated data per
statement.

This statement causes all " subsequent listing
control statements (e.g. .XLIST) to be listed
themselves. Normally, no listing control
statement is itself listed. The .XCTL
pseudo-op is used to reset this option.

Normally used following a .LCTL statement,
this statement resumes the default suppression
of the listing of listing control statements.

This statement causes the current listing
control flags to be saved on a four element
push-down stack. The current flag settings
remain unchanged. These settings may later be
restored with the .RLIST pseudo~op. This
pseudo-op may be £followed on the same line
with another listing control pseudo-op, which
will take effect prior to the 1listing of the
.SLIST statement.

This statement restores the 1listing control
flags from the top element of the .SLIST
push-down stack. These new flags take effect
with the statement following the .RLIST.

dtextd This statement defines the delimited

string text to be the title to be printed at
the top of every page of the listing. The
text must be delimited in the same manner as
in the .ASCII pseudo-op, and must be no longer
than 72 characters. If the .TITLE pseudo op
is the first statement on a page, then the new
title will be printed at the top of that page.

dtextd This statement defines the delimited

string text to be the sub-title to be printed
at the top of every page of the listing. It
follows the same rules as the .TITLE
pseudo-op.

TDL Z80 Relocating/Linking Assembler User's Manual Page 26
Chapter 3: Pseudo-Operations

.REMARK dtextd This statement inserts a remark into the
listing. The delimited text can be any number
of lines 1long, being terminated only by the
matching delimiter.

.PRNTX dtextd This statement, when encountered, causes
the delimited text string to be typed on the
console. This statement is frequently used to
print out conditional information, and to
report the progress through pass 1 on very
long assemblies.

Punch Control

The TDL %280 Assembler normally produces an object tape
in the TDL Standard Relocatable Format (see Appendix E).
However, the assembler can produce an object tape compatible
with the "INTEL Standard" hex tape. To control which format
is being produced, the two pseudo~ops .PREL and .PABS are
used. The .PABS pseudo—op causes the assembler to produce
an INTEL compatible tape for all following generated code.
The .PREL causes the assembler to return to producing TDL
Standard Object Tape.

Every program starts with an implicit .PREL pseudo-op.

In addition, the assembler can punch the output tape in
both binary and ASCII. To control which type of output is
being produced, the two pseudo-ops .PBIN and .PHEX are used.
The .PBIN pseudo-op causes the assembler to produce a binary
tape in the current format. The .PHEX pseudo-op calses the
output of an ASCII tape. Every program starts with an
implicit .PHEX pseudo-op.

To control the generation of linkable object modules,
two pseudo-ops are provided. The .LINK pseudo-op indicates
that linkage information is to be 1included in the object
file produced. The <XLINK pseudo-op inhibits this
information from being output. Every program starts with an
implicit .XLINK pseudo-op.

The TDL 280 Assembler provides one additional facility
to assist the TDL 280 Debugging System. At the programmers
option, the assembler will punch all of the global
{(non-local) symbols in the program module onto the end of
the object tape. For each symbol, the assembler also
punches its relocation base and its value relative to that
base. Two pseudo—-ops are provided to control this symbol
table punching. The .PSYM pseudo-op enables the punching,
and the .XPSYM pseudo-op disables it. The default is to not
punch the symbol table (.XPSYM).

TDL 280 Relocating/Linking Assembler User's Manual Page 27
Chapter 3: Pseudo-Operations

Conditional Assembly

Parts of a program may be assembled on a conditonal
basis depending on the results of certain tests specified to
the assembler through the use of the .IFx pseudo-op.

The general form of the pseudo-op is:

.IFx arg,{true text] ... {[false text]}

where the text within the first square brackets is assembled
only if the specified test on the argument is TRUE, and the
optional text within the second set of brackets is assembled
if the condition 1is false. Any number of spaces or blank
lines (or lines with only comments) may separate the true
and false texts.

The square brackets around the true text may be omitted
if there is no false text, and the entire true text is
contained on the same line as the .IFx pseudo-op.

The first set of conditions which can be tested are the
numeric value of the argument. These pseudo-ops are listed
below: : :

IFE n,[...] TRUE if n=0 or n=blank
JIFN n,[...] TRUE if n<0 or n>0
JIFG n,l...] TRUE if n>0

LIFGE n,[...] TRUE if n>0 or n=0
IFL n,{...] TRUE if n<o0

LIFLE n,(...] TRUE if n<0 or n=0

The following .IF pseudo-ops test £for whether the
assembler is processing pass 1 or not:

JIFL L [L..) TRUE if it is pass 1
JIF2 L, [...] TRUE if it is not pass 1

The next set of conditionals tests for whether a symbol
has been defined yet or not:

.IFDEF symbol,[...] TRUE if the symbol is defined
.IFNDEF symbol,[...] TRUE if the symbol is undefined

The next set of .IF pseudo-ops tests to see whether its
argument is blank or not. These pseudo-ops reqguire that the
argument be enclosed in square brackets ([]). The format is
as follows:

LIFB [...],[...] TRUE if blank
JIFNB [...],[...] TRUE if not blank

The quantity enclosed in the brackets 1is blank if it is
empty, or consists only of spaces and tabs. Optional;y(the
argument being tested may be enclosed in paired delimiters

TDL 280 Relocating/Linking Assembler User's Manual Page 28
Chapter 3: Pseudo-Operations

in the same manner as the .ASCIx pseudo-ops. If the first
non-blank, non-tab, character after the pseudo-op is a left
square bracket ([), the bracket method is used, otherwise,
the delimiter method. For example:

JIFB /.../,[...]

The last pair of conditionals operate on character
strings. They take two arguments which are interpreted as
7-bit ASCII character strings, and make a character by
character comparison of the two strings to determine if the
condition is met. Each of the strings may either be
enclosed in sgquare brackets or delimited by a character, as
in the .IFB/.IFNB pseudo-ops above. The same method need
not be used for both strings. The format of these
conditionals is as follows:

JIPIDN [...] [...],[...] TRUE if identical
LIFDIF [...] [...1,[...] TRUE if different

The maximum length of the strings to be compared is 255
characters. In making the comparison, all trailing blanks
and tabs are ignored in the two arguments.

Synonyms

————— o e

of programming, to define new names for already existing
symbols. The TDL 280 Assembler has four pseudo-ops which
allow the definition of synonyms for already defined
symbols. The format of these pseudo-ops is:

.XXSYN symboll,symbol2

The four pseudo-ops are .S¥YN, .OPSYN, .SYSYN, and .MASYN.
The only difference between the four 1is that the latter
three limit the type of symbol €for which the synonym is
being defined.

The statement above defines the second operand as being
synonymous with the first operand. In the case of the .SYN
pseudo-op, the symbol tables are searched for the first
operand in the order: programmer defined symbol, macro,
operation. The .OPSYN pseudo-op limits the search to
operations, the .SYSYN to programmer defined symbols, and
the .MASYN to macros. The second operand is defined to be
identical to the first operand at the time the synonym is
defined. Later changes to the first operand will not affect
the second.

The following are valid synonym definitions:

.OPSYN .BYTE,DB
.SYN .WORD,DW

,

TDL 280 Relocating/Linking Assembler User's Manual Page 29
Chapter 3: Pseudo-Operations

.SYSYN ALPHA,BETA
.S¥YN A,R1

Object Machine Validation

Although the TDL Macro Assembler will run only on a 280
processor, it can obviously be used to generate object code
for any of the 8080 compatible micro-processors. To
facilitate the use of the assembler for this purpose, two
additional pseudo-ops are available: .I8080 and .280.

The .I8080 pseudo-op causes all subsequent uses of
machine operations which are unique to the 280 (and hence
unavailable on the 8080) to be flagged with a 2 warning
message. Such uses will be properly assembled however.

The .Z280 pseudo~op ~ (which is the default) disables the
feature so that no further 2 warnings will be given.

TDL 280 Relocating/Linking Assembler User's Manual Page 30
Chapter 4: Macros

Chapter 4

Macros

A common characteristic of assembly language programs is
that many coding sequences are repeated over and over with
only a change in one or two of the operands. It Iis
convenient, therefore, to provide a mechanism by which the
repeated sequences can be generated by a single statement.
The TDL 280 Assembler provides the capability to do so by
allowing the repeated sequences to be written, with dummy
values for the changed operands, as a macro. A single
statement, referring to the macro by name and providing
values for the dummy operands, can then denerate the
repeated sequence.

Macro Definition

A macro is defined by use of the .DEFINE pseudo-op.
This is followed by the symbolic name of the macro. The
macro name must follow the rules for the construction of
symbols. The name may be followed by a 1list of dummy
arguments enclosed in square brackets. The dummy arguments
are separated by commas, and may be any symbol which is
convenient. Following the macro name and optional dummy
arguments must be an egual sign (=). The following are
examples of the heading part of a macro definition:

.DEFINE MACRO =
.DEFINE MOVE[A,B] =
.DEFINE BIGMAC [ARGl,ARGZ,ARG3,3ARGS] =

Following the macro definition header comes the body of
the macro. It need not start on the same line as the
definition header. The body of the macro is delimited by a

matched pair of 1left and right square brackets ([]). For
example:

.DEFINE MOVE([A,B]=

[LDA A

STA B}

Macro Calls

A macro may be called by any statement. A macro call
consists of the macro name followed (optionally) by a list
of arguments. The arguments are separated by commas, and
may optionally be enclosed in left and right square brackets
([1). If the brackets are used (the first non-blank/non-tab
character after the macro name 1is a left square bracket),

-t

TDL Z80 Relocating/Linking Assembler User's Manual Page 31
Chapter 4: Macros

then the arguments are terminated by a right square bracket.
If there are n dummy arguments in the macro definition, then
all arguments after the first n are ignored (although they
do take space and time to process). If the brackets are
omitted, the argument string ends when a carriage return or
semicolon is encountered.

The arguments must be written in the order in which they
are to be substituted for the dummy arguments. The first
argument is substituted for each appearance of the first
dummy argument, the second for the second, etc. The actual
arguments are substituted as character strings for the dummy
arguments, no evaluation of the arguments takes place until
the macro is processed.

Referring to the definition of MOVE above, the
occurrence of the statement:

MOVE ALPHA,BETA

will cause the substitution of ALPHA for A and BETA for B in
the macro.

Statements which contain macro calls may be labelled and
have comments like any other statement.

Macro arguments are terminated only by comma, carriage
return, semicolon, or right square bracket (when started by
left square bracket). These characters may not be used in
the arguments unless the argument is enclosed in
parentheses. Each time an argument is passed to a macro,
one set of matched parentheses is removed, but all of the
characters within the parentheses are substituted £for the
dummy argument in the macro. Note that spaces and tabs do
not terminate arguments, but are considered to be part of
them.

Macros do not need to have arguments. The macro name
(and arguments if any) may appear anywhere in a statement
where a symbol would normally appear, and the text of the
macro exactly replaces the macro name and its arguments in
that statement.

Comments

Comments may be included within a macro definition.
Storing the comments with the macro (so that they will
appear when the macro is expanded) takes space however. If
the comment within the macro definition is preceded by two
semicolons (instead of the normal one), the comment will be
ignored during the definition of the macro, and will not be
stored as part of the definition. This will eliminate the
appearance of the comment every time the macro expansion is
listed, however. '

TDL 280 Relocating/Linking Assembler User's Manual Page 32
Chapter 4: Macros

Created Symbols

When a macro is called, it is often useful to generate
symbols without explicitly stating them in the call. A good
example of this is labels within the macro body. It is
usually not necessary to refer to these label externally to
the macro expansion, therefore there 1is no reason why the
programmer should be concerned as to what those labels are.
The same with temporary data areas. To avoid conflicts,
however, it is necessary that a different symbol be used
each time the macro is called (even with local symbols, the
macro could be called more than once between two global
symbols). Created symbols are used for this purpose.

Each time a macro that requires a created symbol is
called, a symbol is generated and inserted into the macro.
These symbols are of the form ..nnnn (two periods followed
by four digits). It should be noted that this makes these
symbols local symbols (start with two periods). The
programmer is advised not to use symbols of this form. The
four digits start at 0000 and are incremented by one each
time a symbol is created.

A created symbol is specified in the macro definition by
preceding a dummy argument by a percent sign (%). When the
macro is called, all dummy arguments of the form %symbol are
replaced by created symbols (each with a different one).
If, however, the position of the dummy argument in the
argument list corresponds to an actual argument provided in

the call, then the actual argument is used in place of the _

created one.

An actual argument can in fact be empty (signified by
two consecutive commas in the argument list). An argument
of this kind (a "null" argument) is considered to be defined
as having a value of the empty string (no characters), and
will prevent the generation of a c¢reated symbol for its
corresponding dummy argument. i

For example:

.DEFINE PRINT[A,3%B]=
[CALL LINPRT

JMP 3B

.ASCIS \A\

%B:]

This macro prints a message on the printer. The first
argument to the macro is the text string to be printed.
LINPRT is a line printer routine. Labelling the location
following the text is necessary because of the indeterminate
length of the message. The use of a created symbol here is
useful since there would normally be no reason to reference
the label. Calling the macro by:

Y,

TDL 280 Relocating/Linking Assembler User's Manual Page 33
Chapter 4: Macros

PRINT This is the message

would result in printing “This is the message" when the
assembled macro was executed. If it had been called:

PRINT This is the message,MAIN

the message would have been printed, but control would be
transferred to the label MAIN, which substituted for %B
instead of a created symbol.

Concatenation

The apostrophe or single gquote (') is defined within a
macro definition as the concatenation operator. This allows
a macro argument to be only part of a symbol or expression,
with the character string which is substituted for the dummy
argument being joined with other character strings that are
part of the macro definition to form a complete symbol or
expression. This joining is called concatenation.
Concatenation is performed by the assembler when an
apostrophe is used between the strings to be joined (one or
both of which must be a dummy macro argument). For example:

.DEFINE BR([A,B]=
[JR'A B]

defines a conditional branch statement. When called, the
argument A is appended to the JR to form a single symbol.
If the call were:

BR Z,LOQP

then the generated code would be:

JRZ LOOP

Default Arguments

Normally, missing arguments in a macro are replaced by
nulls. For example, in the macro:

.DEFINE BYTES[Al,A2,A3,A4,A5,A6]=
{.BYTE Al,A2,A3,34,A5,A6]

a call of BYTES([1l,2] would generate an error because of the
missing arguments to the pseudo-op .BYTE.

To remedy this, the assembler provides the programmer
with the means to supply default arguments to be used when
no argument 1is provided in the macro «call. Default
arguments are defined as part of the macro definition by
enclosing them in parentheses and inserting them immediately

TDL Z80 Relocating/Linking Assembler User's Manual Page 34
Chapter 4: Macros

after the dummy argument to which they refer. To solve the
above problem, the definition would be written as:

.DEFINE BYTES[Al(Q0),A2(0),A3(0),A4(0),A5(0),A6(0)]=
[.BYTE Al,A2,A3,A4,A5,A5]

which would always generate six bytes of data, regardless of
how many arguments were provided in the call.

ASCII Interpretation of Numeric Arguments

If the reverse slash (\) preceeds the first character of
an argument in a macro call, the value of the expression
following the reverse slash is converted to an ASCII string.
This string is then used as the argument to the call. The
value is considered to be a 1l6-bit positive value, and the
conversion is done in the current radix. Leading zeros are
suppressed unless the value is zero.

For example:

A=S5

B =258

MACRO \A+B, \A*B
is the same as:
MACRO 11, 30

if the current radix is 10.

Macro Expansion Termination

Under normal conditions, a macro expansion terminates at
the end of the macro definition. It is sometimes desirable
to terminate the macro expansion prior to the end of the
definition. This is usually done as part of some
conditional assembly within the macro. A special pseudo-~-op
is provided for this purpose:

.EXIT

When processed by the assembler, the .EXIT pseudo-op
immediately terminates the macro expansion, just as if the
end of the macro had been encountered. Only the current
expansion is terminated if multiple macro expansions are
being nested.

User Defined Macro Errors

It is sometimes desirable to have a macro cause an
assembly error. This might be done when invalid parameters
are passed to the macro, or if parameters are missing. A

TDL 280 Relocating/Linking Assembler User's Manual Page 35
Chapter 4: Macros

special pseudo-op is provided to allow this:
.ERROR dtextd

This pseudo-op will cause an asterisk (*) to be listed as
the error code, the error count to be incremented by one,
and the line to be listed as an error. The delimited text
is treated exactly as in a .REMARK pseudo-op, and can be
used to provide information about the nature of the error.

Nesting

Macros may be nested. This means that macros may be both
called and defined within other macros. A macro that is
defined within another macro may not be called until the
defining macro has been called. At that time, the new macro
is available to be called by any statement.

The only limit to how many levels deep macro calls and
definitions may be nested is the amount of memory available.

TDL Z80 Relocating/Linking Assembler User's Manual Page 36
Appendix A: Summary of Machine Operation Mnemonics

Appendix A

Summary of Machine Operation Mnemonics

The following section presents a summary of the 280
machine operations and their assembler mnemonics. The
appendix is arranged by type of instruction for ease of
reference. For further information on the machine
operations, refer to the "ZILOG 280-CPU Technical Manual".

To make the information presented more readily usable, a
shorthand notation is wused for describing the assembler
format of the instruction and its actual operation. All
capital letters and special charcters in the mnemonic
description are required. The lower case letters indicate a
class of values which can be inserted in the instruction at
that point. A single 1lower case letter indicates an 8-bit
guanity or register, while a double lower case letter
indicates a l6-bit quantity or register. A symbol enclosed
in parentheses in the machine operation section indicates
that the value whose address 1is specified is used. The
following is a summary of the notation used; exceptions will
be noted where appropriate in the following sections.

r one of the 8-bit registers A, B, ¢, D, E, H, L

n any 8-bit absolute value

ii an index register reference, either X or Y

a an 8-bit index displacement where -128 < d < 127

2z B for the BC register pair, D for the DE pair

nn any l6-bit value, absolute or relocatable

rr B for the BC register pair, D for the DE pair, H for the
HL pair, SP for the stack pointer

gg B for the BC register pair, D for the DE pair, H for the
HL pair, PSW for the A/Flag pair

s any of r (defined above), M, or d4(ii)

IFF interupt flip—flop

CY carry flip-flop

ZF zero flag

tt B for the BC reqgister pair, D for the DE pair, SP for
the stack pointer, X for index register IX

uu B for the BC register pair, D for the DE pair, SP for
the stack pointer, Y for index register IY

b a bit position in an 8-bit byte, where the bits are
numbered from right to left 0 to 7

PC program counter

v([n] bit n of the 8-bit value or register v

v[n-m] bits n through m of the 8-bit value or register v

vv\H the most significant byte of the 16-bit wvalue or
register vv

vv\L the least significant byte of the 1l6-bit value or
register vv)

./

TDL 280 Relocating/Linking Assembler User's Manual Page 37
Appendix A: Summary of Machine Operation Mnemonics

Iv an input operation on port v

Ov an output operation on port v

wl=v the value of w is replaced by the value of v
w<=>v the value of w is exchanged with the value of v

TDL 280 Relocating/Linking Assembler User's Manual Page 38
Appendix A: Summary of Machine Operation Mnemonics

LY

8-Bit Load Group

Mnemonic Operation $# of Bytes
MOV r,c' r <~ r' 1
MOV r,M r <~ (HL) 1
MOV r,d(ii) r <= (ii+d) 3
MOV M,r (HL) <= 1
MoV d(ii),r (ii+d) <~ « 3
MVI r,n r <- n 2
MVI M,n (HL) <- n 2
MVI d(ii),n (ii+d) <~ n 4
LDA nn A <~ (nn) 3
STA nn (nn) <- A 3
LDAX 22 A <~ (2z2) 1
STAX 22 (22) <- A 1
LDAI A <K=-1I 2
LDAR A <~ R 2
STAI I <-A 2
STAR R <= A 2

e

TDL 280 Relocating/Linking Assembler User's Manual Page 39
Appendix A: Summary of Machine Operation Mnemonics

Mnemonic
LXI rr,nn
LXI ii,nn
LBCD nn
LDED nn
LHLD nn
LIXD nn
LIYD nn
LSPD nn
SBCD nn
SDED nn
SHLD nn
© SIXD nn
SIYD nn
SSPD nn
SPHL
SPIX
SPIY
PUSH qg
PUSH ii
POP qg
POP ii

16-Bit Load Group

Operation

rr <- nn
ii <~ nn
B <~ (nn+l)

C <~ (nn)

D <~ (nn+l)

E <~ (nn)

H <~ (nn+l)

L <~ (nn)

IX\H <~ (nn+l)
IX\L <~ (nn)
IY\H <~ (nn+l)
IY\L <~ (nn)
SP\H <- (nn+1)
SP\L <~ (an)
(nn+l) <- B
(nn) <~ C
(nn+l) <~ D
(nn) <~ E
{(nn+l) <~ #
(nn) <~ L
(nn+l) <= IX\H
(nn) <~ IX\L
(nn+l) <- IY\H
(nn) <= IY\L
(nn+l) <~ SP\H
(nn) <~ SP\L
SP <~ HL

SP <~ IX

SP K- IY
(SP-1) <= gg\H
(SP-2) <- gq\L
SP <~ SP ~ 2
(SP-1) <~ ii\H
(SP=2) <= ii\L
SP <~ SP - 2
gg\H <- (SP+1)
qg\L <- (SP)
SP <- SP + 2
ii\H <- (SP+l)
ii\L <~ (SP)
SP <~ 8P + 2

of Bytes

L ¥ R . T N - S S)

o ->

TDL 280 Relocating/Linking Assembler User's Manual Page 40
Appendix A: Summary of Machine Operation Mnemonics

Exchange and Block Transfer and Search Group

Mnemonic Operation # of bytes

XCHG HL <-> DE 1

EXAF PSW <-> PSW' 1

EXX BCDEHL <~> BCDEHL' 1

XTHL H <=> (SP+l1) 1
L <=> (SP)

XTIX IX\H <~> {SP+1) 2
IX\L <=> (SP)

XTIY IY\H <=> (SP+1l) 2
IY\L <~> (8P)

LDI (DE) <~ (HL) 2

DE <~ DE + 1
HL <- HL + 1
BC <- BC -1

LDIR repeat LDI until BC=0 2
LDD (DE) <~ (HL) 2
DE <~ DE ~ 1
HL <- HL - 1

BC <= 8C -1 .
LDDR repeat LDD until BC=0 2
CCI A -~ (HL) 2
HL <- HL + 1
BC <~ BC -1
CCIR repeat CCI until A=(HL) 2
or BC=0
CCD A - (HL) 2

HL <- HL - 1
BC <- BC -1
CCDR repeat CCD until A=(HL) 2
or BC=0

TDL 280 Relocating/Linking Assembler User's Manual Page 41
Appendix A: Summary of Machine Operation Mnemonics

M3 nsSnNINnoulNnIuosuslIEn

—
[
[S
~

8-Bit Arithmetic and Logical Group

Operation

- st e e s e

oo PP P P PP PP

(7]

=
=
-
<=
=

L A A -

4+t

(HL)
(ii+d)

s + CY

‘s - CY

$# of Bytes

TDL 280 Relocating/Linking Assembler User's Manual Page 42
Appendix A: Summary of Machine Operation Mnemonics

General Purpose Arithmetic and Control Group

Mnemonic Operation # of Bytes

- — e e o s s s i s 2 i o s e

DAA convert A to packed BCD 1
after an add or
subtract of packed BCD

operands
CMA A <- $A 1
NEG A <~ -A 2
cMC CY <- #CY 1
STC CY <- 1 1
NOP no operation 1
HLT halt 1
DI IFF - 0 1
EI IFF <~ 1 1
IM0 interrupt mode 0 2
IM1 interrupt mode 1 2
M2 interrupt mode 2 2

TDL 280 Relocating/Linking Assembler User's Manual Page 43
Appendix A: Summary of Machine Operation Mnemonics

Mnemonic

DAD rr
DADC rr
DSBC rr
DADX tt
DADY uu
INX rr
INX ii
DCX rr
DCX ii

16~-Bit Arithmetic Group

Operation

HL <~ HL
HL <- HL
HL <- HL
IX <- IX
1Y <~ IY
rr <= rr
ii <= ii
rr <= rr
ii <= ii

L+ +4++ 1+ +

[SE R SRR ST SR NENE

TDL %80 Relocating/Linking Assembler User's Manual Page 44
Appendix A: Summary of Machine Operation Mnemonics

Hnemonic
RLC
RAL
RRC
RAR
RLCR s
RALR s
RRCR s
RARR s
SLAR s
SRAR S
SRLR s
RLD
RRD

Rotate and Shift Group

Operation

Aln+l] <- A[n]
A[0] <- A[7]
CY <= A[7]
A[n+l] <= A[n]
Af0] - CY

CY <= A[7]
Afn] <= A[n+l]
A[7] <- A[0]
CY <= A[0]
A[n] <= A[n+l]
A[7] <= CY

CY <- A[0Q]
s[n+l] <~ s[n]
s{0] <~ s([7]}
CY <~ s{71]
s[n+l] <~ s[nl
s(0] <~ CY

CY <~ s{7]
s[n] <~ s[n+l]
s{7] <= s(0]
CY <~ s{0]
s[n] <~ s[n+l]
s[7] <~ CY

CY <- s(0]
s[n+l] <- s[n]
s[0] <~ 0

CY <~ s[7]
s{n] <- s[n+l]
s[7)] <~ s(7]
CY <~ s[0]}
s{n] <= s(n+l]
s{7] <= 0

CY <~ s[0]

A[0-3] <~ (HL) [4-T7]
(HL) [4-7] <- (HL) [0-3]
(8L) [0-3] <- A[0-3]
(HL) [0-3] <~ (HL) [4-7]
(HL) [4=7] <= A[0-3]
A[0-3] <~ (HL)[0-3]

of Bytes

2 (or 4)

TDL 280 Relocating/Linking Assembler User's Manual Page 45
Appendix A: Summary of Machine Operation Mnemonics

Mnemonic

BIT b,r
BIT b,M
BIT b,d(ii)
SET b,s
RES b,s

Bit Set, Reset, and Test Group

Operation

ZF <~ #r[b]

2F <~ #(HL) [b]
ZF <= #(ii+d) [b]
s[b] <~ 1

s[b] <=0

of Bytes

2
2
4

TDL 280 Relocating/Linking Assembler User's Manual Page 46
Appendix A: Summary of Machine Operation Mnemonics

Mnemonic
JMP nn
J2 nn
JINZ nn
Jc nn
JNC nn
JPO nn
JPE nn
JP nn
JIM nn
Jo nn
JNO nn
JMPR nn
JR2Z nn
JRNZ nn
JRC nn
JRNC nn
DINZ nn
PCHL

PCIX

PCIY

Jump Group

e i o o e e e

Operation

PC <- nn

if zero, then JMP
else continue

if not zero

if carry

if not carry

if parity odd

if parity even

if sign positive

if sign negative

if overflow

if not overflow

PC <= nn
where =126 < nn=PC < 129

if zero, then JMPR
else continue

if not zero

if carry

if not carry

B<-B -1
if B=0 then continue
else JMPR

PC <- HL

PC <=~ IX

PC K- IY

of Bytes

LS SIS N N [N NDWWLWWWWWWW ww

[SR SR o

TDL 280 Relocating/Linking Assembler User's Manual Page 47
Appendix A: Summary of Machine Operation Mnemonics

Mnemonic

CALL nn
C2 nn
CNZ nn
cc nn
CNC nn
CPO nn
CPE nn
cp nn
cM nn
co nn
CNO nn
RET

RZ

RNZ

RC

RNC

RPO

RPE

RP

RM

RO

RNO

RETI

RETN

RST n

Call and Return Group

Operation

o e e e s e e

(SP-1) <~ PC\H
(SP-2) <~ PC\L
SP <= SP ~ 2
PC <~ nn

if zero, then CALL

else continue
if not zero
if carry
if not carry
if parity odd
if parity even
if sign positive
if sign negative
if overflow
if not overflow

PC\H <~ (SP+l)

PC\L <~ (SP)

SP <~ SP + 2
if zero, then RET

else continue
if not zero
if carry
if not carry
if parity odd
if parity even
if sign positive
if sign negative
if overflow
if no overflow

return from interrupt
return from non-maskable

interrupt
(SP-1) <~ PC\H
(SP~2) <~ PC\L
PC <- 8 * n

where 0 <= n < 8

FLwWwWwWwWwwwww w

RN S S S O e i

—

TDL Z80 Relocating/Linking Assembler User's Manual Page 48
Appendix A: Summary of Machine Operation Mnemonics

Mnemonic

IN
INP
INI

INIR
IND

INDR
ouT

ouTe
0uTI

OUTIR
QUTD

OQUTDR

n
r

Input and Output Group

Operation

- s o i st s

A <- In

r <= I(C)

(BL) <= I(C)

B<k=-B8 -1

HL <= HL + 1

repeat INI until B=0
(BL) <= I(C)

B<-B -1

HL <- HL - 1

repeat IND until B=0
On <- A

0(C) <-r
O (C) <~ (HL)
B<-8-1

HL <= BL + 1

repeat OUTI until B=0
0(C) <~ (HL)
B<-8B-1

HL <~ HL - 1

repeat OUTD until B=0

NN

[(SH SN SN S

-

TDL 280 Relocating/Linking Assembler User's Manual Page 49
Appendix B: Summary of Pseudo-Operation Mnemonics

Appendix B

Summary of Pseudo~-Operation Mnemonics

.ASCII dtextd | [n] ...

The .ASCII pseudo-op enters 7-bit ASCII characters into
the program. The text is either entered between two
delimiters, or as a numeric value enclosed in square
brackets ([]), and the two forms may be intermixed and
repeated as desired.

.ASCIS dtextd | [n] ...

The .ASCIS pseudo-op enters 7-bit ASCII characters into
the program, and flags the 1last character by setting
its high-order bit on. The format of the text is the
same as for the .ASCII pseudo-op.

.ASCIZ dtextd | [n] ...

The .ASCIZ pseudo-op enters T7-bit ASCII characters into
the program, and flags the end of the characters by
inserting an additional null byte. The format of the
text is the same as for the .ASCII pseudo-op.

.BLKB nn

The .BLKB pseudo-op reserves a block of contiguous
storage nn bytes long.

.BLKW nn

The .BLKW pseudo-op reserves a block of contiguous
storage nn words long (nn x 2 bytes).

BYPEn {, n ...}

The .BYTE pseudo-op enters single byte values into the
program. Multiple values may be entered by separating
them with a comma.

.DEFINE symbol{argl,arg2,...]={text]

The .DEFINE pseudo-op defines a macro with the name
symbol. argl through argn are optional dummy
arguments. The body of the macro is represented by
text.

TDL 280 Relocating/Linking Assembler User's Manual Page 50
Appendix B: Summary of Pseudo-Operation Mnemonics

.END nn

The .END pseudo-op signals the end of the assembly.
When encountered during PASS 1, it simply returns to
the initialization section. During a 1listing pass, it
initiates the 1listing of the symbol table (if not
previously suppressed by the .XSYM pseudo-op). During
a punch pass, it generates an EOF record on the hex
tape containing the value nn as the starting address of
the object program.

.ENTRY symboll {, symbol2 ...}

The .ENTRY pseudo-op identifies the internally defined
symbols which are subroutine 1library entry points to
this program. Multiple symbols may be identified by
separating them with commas.

.ERROR dtextd

The .ERROR pseudo-op causes an "*" error to occur,
forcing the listing of the current line, and an error
notification. The delimited text 1is treated as a
.REMARK.

.EXIT

The .EXIT pseudo-op causes an immediate exit from the
current macro expansion to occur.

L.EXTERN symboll {, symbol2 ...}

The .EXTERN pseudo-op defines those symbols which are
referenced in this program but are defined in another,
separately assembled, program. Multiple symbols can be
defined by separating them with commas.

.18080
The .I18080 pseudo-op enables the 2 warning message.
This warning will be given whenever a machine operation
unique to the 280 is encountered.

.IDENT symbol

The .IDENT pseudo-op gives the module a name for later
use by the linkage editor.

TDL 280 Relocating/Linking Assembler User's Manual Page 51
Appendix B: Summary of Pseudo-Operation Mnemonics

.INTERN symboll {, symbol2 ...}

The .INTERN pseudo-op identifies those symbols which
are defined in this program and which will be
referenced as external symbols by some separately
assembled program. Multiple symbols may be identified
by separating them with commas.

. LADDR

The .LADDR pseudo-op changes the 1listing mode from
displaying 1l6-bit quantities to displaying the 280
image with the least significant byte first.

.LALL

The .LALL pseudo-op causes the assembler to list every
text character processed, including those suppressed in
the normal listing.

.LCTL

The .LCTL pseudo-op causes the assembler to 1list all
listing control statements.

- LINK

The .LINK pseudo-op causes the assembler to output
linkage information to the object file.

.LIST

The .LIST pseudo-op resumes a listing which has been
stopped by the .XLIST pseudo-op.

.LIMAGE

The .LIMAGE pseudo-op changes the 1listing mode to
display every byte of object code generated rather than
the normal mode of a maximum of five bytes per
statement.

.LOC nn

The .LOC pseudo-op changes the value of the assembler's
program counter to nn. If nn 1is relocatable, then all
labels will be assigned relocatable values. If it is
absolute, then absolute values will be assigned.

TDL Z80 Relocating/Linking Assembler User's Manual Page 52
Appendix B: Summary of Pseudo-Operation Mnemonics

.LSYM

The .LSYM pseudo-op reenables the listing of the symbol
table during the .END pseudo-op processing after it has
been disabled by the .XSYM pseudo-op. The .LS¥M
pseudo-op must occur prior to the .END pseudo-op to be
effective.

.MASYN symboll,symbol2

The .MASYN pseudo-op allows the definition of a new
macro to be the same as a previously defined one.
Symbol2 is defined to be a macro identical to the one
defined as symboll.

.OPSYN symboll,symbol2

The .OPSYN pseudo-op allows the definition of a new op
code mnemonic as a synonym of an already existing one.
The symboll must be a defined machine:or pseudo op code
(or one previously defined using .OPSYN), symbol2 will
be defined to be the same operation.

.PABS

The .PABS pseudo—op signals that the hex object tape
produced from this point on in the assembly is to be in
absolute (INTEL compatable) format.

.PAGE

The .PAGE pseudo-op causes a skip to the top of the
next page during a listing pass.

.PBIN

The .PBIN pseudo~op specifies that the object tape is
to be produced in binary.

.PHEX)

The .PHEX pseudo-op specifies that the object tape is
to be produced in ASCII.

.PREL
The .PREL pseudo-op signals that the hex object tape

produced from this point on in the assembly is to be in
relocatable (TDL standard) format.

4 TDL 280 Relocating/Linking Assembler User's Manual Page 53
Appendix B: Summary of Pseudo-Operation Mnemonics

.PRNTX dtextd

The .PRNTX pseudo-op will cause its text string to be
printed on the console whenever it is encountered in
the assembly process.

.PSYM

The .PSYM pseudo-op signals that the entire symbol
table from the assembly is to be punched at the end of

~ the object tape. The .PSYM pseudo-op must appear prior
to the .END pseudo—-op to be effective.

r .RADIX n

The .RADIX pseudo-op changes the default base in which
a numeric constant 1is interpreted during the assembly
to n. The valid values for n are 2, 8, 10, or 16. The
value is always interpreted as a decimal number.

.RAD40 symbol

The .RAD40 pseudo-op generates a unique 4 byte value in
radix-40 notation for the symbol given. The symbol
must conform to the rules for any symbol in the

r assembly. This pseudo-op is used mostly for developing
system software utilizing symbol tables.

.RELOC

The .RELOC pseudo-op restores the value of the
r assembler's program counter to whatever it was before
the immediately preceding .LOC pseudo-op.

.REMARK dtextd

The .REMARK pseudo-op allows the entry of multiple line
comments into the source program. All of the text
between the delimiters is listed but is ignored. The
text may contain carriage return/line feeds.

.RLIST

The .RLIST pseudo-op restores the listing control flags
from the top element of the .SLIST push-down stack.

.SALL
The .SALL pseudo-op suppresses all macro expansions on

the assembly 1listing (normally all 1lines generating
code are listed).

TDL 280 Relocating/Linking Assembler User's Manual Page 54
Appendix B: Summary of Pseudo-Operation Mnemonics

.SBTTL dtextd

The .SBTTL pseudo-op sets the sub-title for the
assembly listing to the specified text string (which
must be less than 72 characters in length). If the
.SBTTL pseudo~-op is the first operation after a .PAGE,
the sub-title will appear on the new page.

.SLIST

.SYN

The .SLIST pseudo-op saves the current listing control
flags on the top of a four element push—down stack.

symboll,symbol2

The .SYN pseudo-op makes any two symbols synonymous.
The symbol tables are searched for symboll in the
normal operand field order (label/symbol, macro,
opcode), and symbol2 is defined to have the same value
as symboll.

.SYSYN symboll,symbol2

The .SYSYN pseudo-op makes one symbol the synonym of an
already defined symbol/label. The value of a
symbol/label symboll is obtained, and symbol2 is
defined to be the same type and value.

.TITLE dtextd

The .TITLE pseudo-op sets the title for the assembly
listing to the specified text string (which must be
less than 72 characters in length). The title is put
at the top of every page during a listing. If the
.TITLE pseudo-op is the first operation after a .PAGE
pseudo~op, the title will be listed on the new page.

.WORD nn {, nn ...}

The .WORD pseudo-op enters 2-byte values into the
program in proper %Z80 format (least significant byte
first). Multiple values may by entered by separating
them with a comma.

. XADDR

The .XADDR pseudo-op 1is used after a .LADDR pseudo-op
to return to the standard format of listing 16-bit
values.

TDL 280 Relocating/Linking Assembler User's Manual Page 55
Appendix B: Summary of Pseudo-Operation Mnemonics

<XALL

The .XALL pseudo-op 1is used after a .LALL or .SALL
pseudo-op to return to the standard listing mode.

.XCTL

The .XCTL pseuod-op is used after a .LCTL pseudo-op to
return the standard mode of suppressing the listing of
listing control statements.

«XIMAGE

The .XIMAGE pseudo-op is used after a .LIMAGE pseudo-op
to return to the standard listing mode of only five
object bytes per statement. '

. XLINK

The .XLINK pseudo-op is used after a .LINK pseudo-op to
suppress the inclusion of 1linkage information 1in the
object file.

.XLIST

The .XLIST pseudo-op suppresses ‘the 1listing of all
following statements (until a .LIST pseudo-op 1is
encountered) .

.XPSYM

. XS¥M

.280

The .XPSYM pseudo-op disables the punching of the
symbol table at the end of the object tape after it has
been enabled by the .PSYM pseudo-op. The .XPSYM
pseudo-op must occur prior to the .END pseudo-op to be
effective.

The .XSYM pseudo-op disables the 1listing of the symbol
table by the .END pseudo-op (unless reenabled by the
.LSYM pseudo-op). The .XSYM pseudo~op must appear
before the .END pseudo-op to be effective.

The .Z80 pseudo-op is used to disable the effect of a
previous .I8080 pseudo-op. This inhibits the Z warning
message on machine operations unique to the Z80.

TDL 280 Relocating/Linking Assembler User's Manual Page 56
Appendix B: Summary of Pseudo-Operation Mnemonics

.IFx

arg,[true text] ... {[false text]}

The .IFx pseudo-op will assemble the true text
specified only if the particular condition being tested
for is true, The optional false text is assembled if
the condition is false. The .IFx pseudo-ops and their
conditions are as follows:

.IFl: assembling pass 1
.IF2: not assembling pass 1
.IFB: blank

.IFDEF: defined

.IFDIF: different

.IFE: zero or blank
.IFG: positive

.IFGE: zero or positive
.IFIDN: identical

.IFL: negative

.IPLE: zero or negative
.JFN: not zero

.IFNB: not blank
.IFNDEF: not defined

N\

TDL %280 Relocating/Linking Assembler User's Manual Page 57
Appendix C: Operation of the Assembler with a TDL Monitor

Appendix C

Operation of the Assembler with a TDL Monitor

———— =t A it FREn ——— - o W e N e

The TDL Z80 Relocating Assembler 1is designed to operate
with a TDL System Monitor. It relies upon the Monitor for
all I/O and memory management functions. (For further
information on the TDL Monitors, consult the appropriate
monitor reference manual.) When operating, the assembler
will use all available memory for its various tables (all
memory between the end of the assembler and the highest
available memory location). No memory location below the
assembler is changed by its operation.

The first step in using the assembler is to load it into
the desired memory location using the monitor "R" command.
After the load has been completed, if the monitor 1is not
located at the standard memory address (F000 hex), it will
be necessary to change the assembler's monitor transfer
vector to point to the monitor. This transfer vector
consists of nine (9) JMP instructions located beginning at
relative address six (6 hex) 1in the program. The addresses
of these instructions should be modified to point to the
correct locations.

After the assembler is loaded and ready to operate, the
appropriate monitor commands should be used to designate the
reader, punch, and 1list devices as desired. The console
device is also used during the assembly. After readying the
source program in the reader, a "G" command should be used
to start the assembler.

It is important to note that the assembler reguires a
"controlled" reader device (a device which provides
characters on demand, at whatever rate the program wants
them). In the same manner in which the assembler “"waits"
for the next character from the reader, the reader must be
capable of "waiting" for the next demand from the assembler.
(For further information on «converting a non-controlled
reader to a controlled one, see one of the TDL System
Monitor reference manuals.)

When first started (and whenever an assembly pass is
completed), the assembler asks “PASS=" on the console.
Valid responses to this are only the numbers from 0 to 3. A
response of 0 will return to the monitor, but in a manner
which will allow resumption of the assembly by reentering
the "G" command. The wvalues 1 through 4 signify which
assembler pass is desired, as follows:

1 signifies the first assembly pass. The source is read,
and all necessary tables are built.

TDL Z80 Relocating/Linking Assembler User's Manual Page 58
Appendix C: Operation of the Assembler with a TDL Monitor

2 signifies the listing only pass. The source is re-read,
and a listing of the assembled program is produced on
the list device.

3 signifies the punch only pass. The source is re-read,
and an object tape of the assembled program is produced
on the punch device.

4 signifies the combination of passes 2 and 3.

The values of 5 through 8 provide the same options as 1
through 4, but do not reinitialize the assembler in any way
before proceeding. This allows the assembly of a program
residing on more than one source tape. Each of the pieces
must, however, be terminated by its own .END pseudo-op.

During the first assembly pass (pass 1), it is possible
that some error messages will be output on the list device.
These errors will be those uniquely determined during the
pass. .

During the punch only pass (pass 3), no error messages
will be listed, but an errors indication will be given on
the console at the end of the assembly.

While an assembly is taking place, a number of console
control options are available. A control-C will always trap
back to the monitor after the completion of the current
statement. The assembly may be resumed (if no registers
have been changed) by wusing the monitor "G" command. A
control-C will, however, result in monitor output on the
console device, which could spoil a listing if the console
is the list device. To avoid this, the use of a control-S
will temporarily halt the assembly (e.g. to put more paper
in the teletype), but will not return to the monitor or
cause any spurious output on the console device. A
control-Q will resume the assembly. If a control-C is
entered after the control-S, a trap to the monitor will
occur as above. In addition, a control-T may be used to
stop the assembly at the top of the next output page of the
listing. When the control-T 1is entered on the keyboard,
nothing will happen until the top-of-page is reached, at
which time the assembler will act as if a control-S had been
entered (see above). All of the above features will,
however, be disabled if the reader device 1is specified as
the Teletype.

When starting a 1listing pass, the paper in the list
device should be positioned at the top line of a page. The
assembler will count lines and put a page number and heading
at the top of every page. The page width is determined by
the assigned 1list device. If the 1list device 1is the
teletype (AL=T), then the page is assumed to be 72
characters wide. If not, then it is assumed to be 80
characters wide. In either case, it is assumed to be 66
lines long, and a two line margin is left at the top and the

TDL %80 Relocating/Linking Assembler User's Manual Page 59
Appendix D: Error Codes

bottom of the page.

TDL 280 Relocating/Linking Assembler User's Manual Page 60
Appendix D: Error Codes

Appendix D

Error Codes

- - -

Errors in the source program encountered during the
assembly process are indicated on the listing by a single
letter code at the left of the statement in error. Although
the assembler may detect more than two errors per statement,
only the first two codes are given. As an added aid to
locating the error in the statement, a gquestion mark is
printed to the right of .the character which triggered the
error. All errors generate a gquestion mark, even if they
are not one of the first two per statement.

The following is a list of the error codes and their
meanings:

A Argument error. This is a broad class of errors which
may be caused by many different things.

B Bad macro error. Either an error in a macro definition
or a call on a bad macro.

D Duplicate symbol reference error. The symbol flagged is
multiply-defined. The first value given to the symbol
is used in the assembly.

E External symbol error. An external symbol is improperly
used in the statement.

I Internal symbol error. An internal symbol is improperly
used in the statement.

L Label error. An invalidbcharacter has been found in the
label field of the statement.

M Multiply-defined symbol error. A symbol is defined more
than once. This error is given mostly during Pass 1.
During the other passes, it usually will appear as a
phase error (P).

o} Operation error. The symbol 1in the operation field is
not a valid machine operation code, macro name, or
symbol.

P Phase error. A label is assigned a value during Pass 2
(or 3 or 4) which is different than that assigned during
Pass 1.

Q Questionable error. This is a broad class of warnings
which the assembler gives when it finds ambiguous

L/

TDL 280 Relocating/Linking Assembler User's Manual Page 61
appendix D: Error Codes

statements. Q errors may or may not generate correct
code. The assembler will attempt to do what the
programmer intended.

R Relocation error. A relocatable symbol or expression is
incorrectly used (eg. in a .BLKB pseudo-op).

T Table overflow. One of the Assembler's internal tables
has overflowed. The Assembler will attempt to continue,
but no new labels or macros will be defined.

1] Undefined 1label/symbol error. A symbolic reference
which was never defined is used in the statement.

X Index error. Aanother character appears in a statement
at a point where only an index register reference is
allowed (X or Y).

Z %280 error. A 280 machine operation has been encountered
while in 8080 mode (.I8080). This is only a warning and
the opcode will be properly assembled.

* User defined macro error. A .ERROR pseudo-op was
encountered.

TDL 280 Relocating/Linking Assembler User's Manual Page 62
Appendix E: Object Tape Formats

Appendix E

Object Tape Formats

The TDL Assembler produces two different object tape formats
depending on the use of the .PABS and the .PREL pseudo-ops.
It also punches the two formats two different ways, binary
(.PBIN) and ASCII (.PHEX). Each of the two formats will be
described separately, and where differences between binary
and ASCII exist, they will be noted. In addition, the
.XLINK option allows the suppression of some of the
information in the relocatable format to allow the direct
production of a relocatable core image module instead of a
relocatable object module.

TDL Object Module Format Definition

The use of the .PREL pseudo-op (which is default if neither
is specified) causes the generation of the TDL Object Module
Format. This format allows for simple relocation of
complete programs by the TDL System Monitors, and for
complex relocation and linking of modules by the TDL Linkage
Editor. .

The default object module format is an ‘extension of the
INTEL "hex file" format, but is not compatible with that
format. The module consists of a sequential file of ASCII
characters representing the binary data, symbol, and control
information required to construct a final program from the
module. All binary bytes within this structure are
represented as two ASCII <characters corresponding to the
hexadecimal value of the byte (e.g. 11001001 -> C9). All
ASCII values are represented by the corresponding ASCII
character (e.g. A => A). In the binary punch mode, the
format is basically the same, but all binary bytes are
represented by themselves, not as two ASCII characters.

Each of the different records within the module is indicated
by the use of a prompt character as the first character of
the record (in the INTEL format, this 1is the ":"). The
valid prompt characters are:

-> module identification record

-> entry point record

-> internal symbol record

-> external symbol/relocation base record
-> symbol table record

-> data/program/end-of-file record

~ D -

TDL %80 Relocating/Linking Assembler User's Manual Page 63
Appendix E: Object Tape Formats

(Note that only the records prompted by a ; are output if
the .XLINK mode is in effect.)

Every record in the module 1is terminated by a one byte
binary checksum of all of the preceeding bytes in the record
except for the prompt character. The checksum is the two's
complement of the sum of the preceeding bytes. Any output
format (two character binary, one character ASCII or one
byte binary) still counts as only one byte in the checksum
(i.e. before conversion for output).

In addition, each record in the ASCII punch mode is
preceeded by a carriage return/line feed sequence to
facilitate listing the module on an external device. It is
not present in the binary punch mode.

The following descriptions are specified assuming ASCII
punch mode. With the above noted exception of the carriage
return/line feed preceeding each record, the binary format
is identical, with each binary byte being left unexpanded.
ASCII characters are left as they are in either mode.

Module Identification Record (!)

Byte 1-2 CR/LF
3 Exclamation point (!) prompt.
4-9 ASCII module name.
10-11 Checksum.

Entry Point Record (@)

Byte 1-2 CR/LF
3 At-sign (@) prompt.
4-5 Number of entry points in this record.
6-2? ASCII names of entry points, 6 bytes per name.
The names are left justified and blank filled.
?? Checksum

Internal Symbol Record (%)

Byte 1-2 CR/LF
3 Pound sign (#) prompt.
4-5 Number of internal symbols in this record.
6-11 ASCII name of internal symbol, left justified
and blank filled.
12-13 Relocation base for symbol. The value of this

TDL 280 Relocating/Linking Assembler User's Manual Page 64

Appendix E:

14-17

sece

??

Object Tape Formats

symbol 1is relative to the relocation base
specified.

Symbol value (16 bit).

The above three fields are repeated for each
internal symbol in the record.

Checksum.

External Symbol/Relocation Base Record (\)

Byte 1-2
3
4-5
6-11
12-13

14-17

————

CR/LF

Back-slash (\) prompt.

Number of external/relocation symbols in this
record.

ASCII name of the symbol, 1left Jjustified and
blank filled.

Relocation number = assigned to this symbol in
this module. This number is unique for each
symbol. It starts with one and increases
sequentially for each subsequent
external/relocation base symbol.

Relocation segment size/external reference flag.
If this value is zero, it represents a reference
to a symbol defined externally to this module
(usually a subroutine or global data item). If
it is non-zero, then the value is the size of
the relocation segment as defined in this object
module. This segment can contain either code or
data, and may be located anywhere 1in memory by
the linkage editor, independent of any other
segnment.

The above three fields are repeated for each
symbol contained in this record.

Checksum.

Symbol Table Record (&)

Byte 1-2
3

4-2?

CR/LF

Ampersand (&) prompt.

The remainder of this record is identical to the
internal symbol record. All symbols defined in
this module are contained in these records.

Data/Program Record (;)

Byte 1-2
3

CR/LF
Semicolon (;) prompt

[

TDL 280 Relocating/Linking Assembler User's Manual Page 65
Appendix E: Object Tape Formats

End-of~-fFile

4-5

6

10-11

12-13

14-29
30-22

?

-9

?

Number of binary data bytes in this record. The
maximum is 32 binary bytes (64 bytes of ASCII
representation). If this value is zero, this
record is a end-of-file record, described below.
Load address of the data relative to the
specified relocation base.

Relocation base for all relocation in this
record. All relocatable values in this record
are added to the current value of the specified
relocation base before being put into memory.
(If .XLINK is in effect, the only allowable
relocation bases are 0 and 1.)

Relocation control byte. This byte controls the
relocation of the next eight bytes in the record
(if that many remain according to the count
field). The bits are used from left to right.
The bits have the following meanings:

0: a single absolute byte -> load
unmodified.

10: a two byte relocatable value, least
significant byte first -> add the 16
bit value to the current relocation
base, and load the result least
significant byte first. (If .XLINK is
in effect, and the current relocation
base is 0, then the 16 bit wvalue is
added to relocation base 1.)

110: a three byte reference to a different
relocation base. The first byte 1is
the relocation base number, and the
two after that are the 16 bit value,
least significant byte first => add
the specified relocation base to the
16 bit wvalue, and load the result
least significant byte first. (In
.XLINK mode, this control pattern is
not generated.)

Note that a two or three byte combination is
never broken across a record boundary.

Data bytes controlled as above.

The above control/data byte combinations are
repeated as specified by the count.

Checksum.

Record (;)

CR/LF

Semicolon (;) prompt.

Zero to indicate end-of-file record.

Starting address for module relative to the

TDL 280 Relocating/Linking Assembler User's Manual Page 66
Appendix E: Object Tape Formats

specified relocation base. This address is
optionally generated by the . language processor,
and may be zero.

10-11 Relocation base for starting address. (In
.XLINK mode may be only 0 or 1l.)

12~13 Checksum.

INTEL Object Format

The use of the .PABS pseudo—-op causes an INTEL "hex" object
module to be produced. This object tape can also be loaded
by the TDL System Monitors, but provides no relocatability.

All of the above comments concerning byte formats and
checksums apply to this format as well.

Byte 1-2 CR/LF
3 Colon (:) prompt.
4-5 Number of binary data bytes in this record. The

maximum number is 32 binary bytes (64 bytes of
ASCII representation). If this value is zero,
this record is an end-of-file record, and the
: load address is the program starting address.
6~9 Load address of the data in this record.
10-11 Unused.
12-?? Data bytes.
?2? Checksum.

o

-

TDL Z80 Relocating/Linking Assembler User's Manual Page 67
Appendix F: Additional Capabilities under CP/M

Appendix F

Additional Capabilities under CP/M

Library Pile Generation

It is often desirable to maintain a related set of
independent object modules as a single source and object
file for later use with the library search facility of the
TDL Linkage Editor. To facilitate this the .PRGEND
pseudo—-op can be used. The format is:

.PRGEND

This pseudo-op functions identically to the .END pseudo-op,
except that, after completing the assembly of the current
module, the assembler continues with another module
following. Multiple modules assembled in this manner from a
single source file produce a single object file which can be
linked in library search mode, and a single listing. Each
module assembly is completely independent however. The last
module in the source file must be terminated by a .END
pseudo-op, not a .PRGEND.

Libréry Source File Usage

It is often convenient to be able to wutilize the same
section of assembler source code in a number of different
assemblies. The .INSERT pseudo-op allows this to be done
easily. The format is:

.INSERT {d:}file{.ext}

where d is the optional CP/M disk specifier (defaulting to
the source file disk), file is the desired file name, and
ext is the optional file extension (defaulting to ASM).

This pseudo-op causes the specified file to be copied
into the assembly in its entirety, and to be treated exactly
as if it were part of the original source file. All
inserted source is flagged with an "@" on the listing. Only
one level of .INSERT is allowed, they cannot be nested.

This pseudo-op will generate an “"F" error if the file is
not found, incorrectly specified, or if an .INSERT is
already in progress.

TDL 280 Relocating/Linking Assembler User's Manual Page 68
Appendix G: Assembler Operation with CP/M

Appendix G

Assembler Operation with CP/M

The TDL %80 Relocating/Linking Assembler is initiated by
‘the CP/M command:

ASM {sd:}file{.ext} {dd:}{switches}
where

sd is the optionai CP/M disk specification for the
source file (defaults to the logged in disk)

file is the source file name

ext 1is the optional source file extension (defaults to
ASM) ’

dd is the optional CP/M disk specification for the
output files (defaults to the same as the source
file) .

switches are the optional assembly control switches,
each of which is a single letter and which may
appear in any order (with no intervening spaces)

The object file created by the assembly will have the same
name as the source file, with an extension of .HEX if the
.PABS option was used, and .REL if the .PREL option was used
(;he default).

Switches
.LALL
listing to both disk and list device
.LCTL
listing to disk (file name same as source with extension
of PRN)
.PHEX (CP/M default is' .PBIN)
. LIMAGE '
.XLINK (CP/M default is .LINK)
listing only -~ no object file generated
object only - no listing generated
.PSYM
.SALL
.XLIST
. XSYM

KXWNYOrT KX UOI’DH"

Note that all switches with pseudo-op equivalents will be
overridden by contrary pseudo-ops within the source program.

W,

s

TDL 280 Relocating/Linking Assembler User's Manual Page 69
Appendix G: Assembler Operation with CP/M

Assembly Time Control

All of the assembly time control options (ctl-C, ctl-S,
¢ctl-T) and page width options described in Appendix C also
apply to the CP/M based version.

XITAN ZBUG : 280 Debugger

User's Manual

June 12, 1978

Written by

Sidney R. Maxwell III

Copyright 1978 by Xitan, Inc.

S e =

XITAN 280 ZBUG Debugger User
Table of Contents

Table

‘s Manual

of Contents

1 Introduction to

2 Overview of ZBUG
2.1 Data For

2.1.1

2.1.2

ZBUG

mat

Data MODE

Data RADIX

2.1.2.1 Data Display
2.1.2.2 Data Type—-in
2.1.2.3 Address Display

2.2 Examining and Modifying Data

2.2.1

Memory Data

2.2.1.1 Display Data
2.2.1.2 Replace Data
2.2.1.3 Examine/Modify Data
2.2.1.4 Search for Data

2.2.2 Registers and Flags
2.3 Program Execution and Breakpoints
2.3.1 Executing a Progranm
2.3.2 Breakpoint During Execution
2.4 Tracing and Traps
2.4.1 Tracing a Program
2.4.2 Traps During Tracing
3 Starting Out
3.1 Z8UG's Operating Environment
3.2 Executing 2ZBUG

3.3 A Sample Session

RITAN 28Q 2ZBUG Debugger User's Manual
Table of Contents

4 The Commands - A Detailed Description
4.1 C = Calculate
4.2 D - Display
4.3 E = Examine
4.4 F - Fill
4.5 G - Goto
4.6 I - Instruction Interpret
4.7 L - List ASCII
4.8 M -~ Mode .
4.9 0 - Open File
. 4.10 P - Put String
4.11 Q - Quit
4.12 R - Radix
4.13 S - Set Trap/Conditional Display/Wait-
4.1¢4 T - Trace
4.15 X - BExamine Register/Flag
¢.16 ¥ — Search
4.17 Z - Zap CP/M fcb's
5 Going Beyond the Basics
S.L The ZBUG Expression
S.l.1 _ Qperater
§.1.2 -+, -, !, and 7 Operators
$.1.3 *, /, &, &, <, and > QOperators
5.1.4 ?EQ, ?2NE, ?2LT, ?LE,
2GT, and ?GE Qperators
S 1.5 e =, #‘r @‘r \r Tr
- and ! Unary Operators
S.I.6 “Symbols™
5.1.7 "“Constants”*
S.1.7.1L Numbers
5.1.7.2 Strings
$.1.7.3 Registers and Flags
5.1.7.4 Instructions
5.2 Advanced Ideas
Appendixes
A A Quick Reference to the Commands
B Error Messages

[@)

L

XITAN 280 ZBUG Debugger User's Manual

Section 1 - Introduction to ZBUG

Section 1

Introduction to ZBUG

ZBUG is XITAN's dynamic debugging utility, designed to
facilitate assembly language programming. 2BUG, when used
with XITAN's Macro Assembler, provides a powerful and
versatile set of techniques for developing assembly language
programs.

ZBUG provides standard dehugging tools including memory
and register examination/modification and program execution
with breakpoints. However, ZBUG extends these common tools
considerably with user-controlled data formatting, powerful
expression evaluation for user-entered data, and extremely
flexible trap capability with tracing.

This manual is intended as a guide for the user of ZBUG,
beginning and experienced. For this reason, the sections of
the manual are organized for general ease of access to basic
and specific information.

Section 2 is provided as a guide to the first-time user,
describing the basic features of ZBUG in a very general
manner. It is not 1intended as a complete description, by
any means, but is intended to give the flavor of ZBUG's
possibilities. :

Section 3 helps to demonstrate the use of ZBUG,
indicating how to start execution of ZBUG, and giving a
sample session to show the use of some of the basic
commands. This section is intended to show the user how to
begin using ZBUG as a useful tool.

Section 4 is a reference guide to the commands available
in 2BUG, offering a complete description of each command's
use and operation.

Section 5 is primarily concerned with giving the more
experienced user an idea of the flexibility of the ZBUG
command set. Included is a detailed discussion of the
arithmetic expression capabilities of ZBUG for data type-in,
and an advanced “"session" with ZBUG to demonstrate 2BUG's
- muscle in handling different debugging situations. It is
hoped that this section will lead to a more intimate
understanding of ZBUG's abilities.

Finally, twec appendixes are provided: a quick reference
guide to the 2Z3UG command set, and a list of 2BUG's error
messages.

XITAN 280 ZBUG Debugger User's Manual Page 2
Section 1 - Introduction teo ZBUG

This manual also documents UZBUG, a subset of 2ZBUG which
occupies less memory. Notes throughout the manual define
the ZBUG features not available in UZBUG.

Please note that this manual assumes that the ZBUG user
is familiar with the 2ileg 280 CPU's register and flag
organization, the 280 instruction set, the Xitan Macro
Assembler (the 280 instruction mnemonics), and the Digital
Research CP/M Disk Operating System. References are made to
the following publications:

»280-CPU Technical Manual"
Zilog :

170 State Street

Los Altos, California 94022

“An Intreduction to CP/M Features and Facilities®
“Cp/M Interface Guide™

Digital Research

Post Qffice Box 579

Pacific Grove, California 933850

. »z-80 Relocating/Linking Assembler User's Manual®
Xitan, Inc.
Research Park, Bldg. B
1101 State Road
Princeton, New Jersey 08540

i

o |

XITAN Z80 ZBUG Debugger User's Manual Page 3

Section 2 - Qverview of ZBUG

Section 2

Qverview of 2BUG

The following is a discussion of the main features of
ZBUG's operation. It is intended ° to be a general
introduction to the capabilities of ZBUG and a description
of its use, For a complete description of each command

available, please refer to Section 4.

The description of ZBUG is broken up into four general
categories: data format, data examination and modification,
execution and breakpoints, and tracing ‘and traps. Each
section mentions the commands offered in the particular
category, and makes reference to the appropriate
sub-section(s) of Section 4.

2.1 Data Format

Data can be interpreted in many ways. The length of the
data (in 8 bit bytes for the z8Q), its numeric
represantation, and whether considered as instructions or
not are each important to the proper interpretation of data.
2ZBUG provides means for the user to interpret or specify
data in different ways.

2.1.1 Data MODE

In ZBUG, memory data can be considered as a list of
*cells" of a fixed length of one to four bytes, or as a list
of 280 instructions, each of varying length of one to four
bytes.

In order to specify the manner or MODE memory data is to
be displayed or accepted by 2BUG, the user employs the "M
command (see Section 4.8). This command sets the mode in
which memory data is to be displayed/accepted, until
overridden (see Sections 4.8 and 5.2) temporarily or the "M"
command is used again to change the mode to another
“default®.

The modes that may be specified by the "M" command are
byte, word (two byte), three byte, double word (four byte),
and instruction. With all but instruction mede, data
displayed and accepted is numeric, while 1in instruction
mode, it is in XITAN 280 instruction mnemonics (refer to the
XITAN"Z80 Relocating/Linking Assembler User's Manual) with
numeric operands as applicable.

e

XITAN 280 ZBUG Debugger User's Manual Page 4
Section 2 - QOverview of ZBUG

Note that MODE and the “M" command are associated only
with memory data. As registers and flags are of a fixed
length, they may be considered as having a fixed mode - byte
or word (two byte) for registers, and bit for flags.

2.1.2 Data RADIX

Numeric data, regardless of the mode in which it is
considered, must have an understood RADIX in order to be
interpreted properly. 2ZBUG provides the means. to specify
the radix for three different types of data - contents of
memery “cells™ or registers displayed by 2ZBUG, any numeric
data typed by the user, and addresses of memory “cells" as
displayed by ZBUG. The radix of each type of data may be
geparately specified by the user via the "R" command (see
Secticn 4.12) and may be ASCII (with the exception of the
.address type), binary, decimal, hexadecimal, octal, split
octal (3 digits per byte), and relative (signed) decimal.

The radixes specified by the “R™ command determine the
“default" used by ZBUG regarding the specific data types,
and remain in effect until overridden (see Sections 4.12 and
5.2) temporarily or reset by another use of the "R" command.

UZBUG displays all data in hexadecimal, and therefore
does net provide the "R" command. Data type-in may be in
hexadecimal or ASCII (see Section S5.1).

2.1.2.1 Data Display

All numeric memory data (such as the contents of a
“cell" 1in modes 1 (byte) through 4 (four byte), an
instruction operand in mode instruction, or the contents of
a register) are displayed by ZBUG in the radix set by the
“RD* variation of the "R™ command (see Section 4.12). This
radix may be temporarily overridden in certain cases by a
special application of the “R" command (see Sections 4.3,
4.12, 4.15, and 5.2), but always reverts to the radix last
set by the "RD" command.

2.1.2.2 Data Type~in

All numeric data typed by the user is assumed to use the
default radix set by the "RT" wvariation of the “R"™ command.
This radix may be temporarily overridden with the use of the
radix operator and/or modifier (see Sections 5.1, 5.2, and
the XITAN "Z80 Relocating/Linking Assembler User's Manual),
but always reverts tao the radix last set by the "RT"
command.

2.1.2.3 Address Display

gach address displayed by ZBUG, whether the address of a
“cell", an instruction, or the address operand of an
instruction, is displayed 1in the radix set by the "RA"
variation of the "R" command. This radix may only be
changed by the application of the "RA" command.

o)

()

XITAN Z80 ZBUG Debugger User's Manual Page 5
Section 2 = Qverview of ZBUG

Addresses displayed by 2BUG are in one of two basic
froms: absolute (the address displayed represents an actual
physical address), and relative (the address displayed is a
displacement relative to some absolute address).

ZBUG provides two pairs of “relocation registers” (see
Sections 4.15 and 5.2) which are used by 2BUG to calculate
relative addresses. The addresses contained in these
registers (the RR - 'RR and DR =~ 'DR pairs) may be set to
the beginning and ending addresses of any area of memory.
If an address value lies between the beginning and ending
addresses found in either pair of relocation registers,
ZBUG will subtract the beginning address from the address to
be displayed, forming a relative offset. This offset is
then displayed, followed by a single quote (') if the offset
is relative tao the RR = 'RR pair, or a double quote (") if
relative toc the DR - 'DR pair.

Lf an address cannot be relocated to either base pair,
or if ZBUG 1is commanded not to display relative addresses
(via the "RA“ command), the address is displayed as an
absolute value.

UZBUG will always display addresses as absolute, and
does not feature the RR or DR relocation register pairs.

If ZBUG finds that an address to be displayed lies
between its own bounds, the address will be displayed as an
offset relative to itself, followed by a pound sign (#).

2.2 Bxamininq‘and Modifying Data

With the ability to specify.the mode and radix data is
to be displayed and accepted, the standard facilities of
data examinatiom and modification are greatly enhanced.
2BUG provides several commands facilitating manipulation of
memory and register data.

2.2.1 Memory Data

ZBUG has six different commands for the manipulation of
memory data - two for displaying data, two for replacing
data, one for examination/modification of data, and one for
searching faor data. ‘

2.2.1.1 Display Data

The “D* command (see Section 4.2) 1is used to display
sequential “cells" (or instructions) in the current mode (as
set by the "M" command) and radix (the “RD" command) along
with their addresses (in the radix set by the "RA" command).

UZBUG displays both the data and their addresses in
hexadecimal only.

XITAN 280 ZBUG Debugger User's Manual Page 6§
Section 2 - Qverview of ZBUG

The "L* command (see Section 4.7) is used to display
ASCII printable data only, along with the associated
address. :

2.2.1.2 Replace Data

Using the “F* command (see Section 4.4), an area of

memory may be £illed with a numeric constant in the mode set
by the “M" command (except for instruction mode - in this
case, byte mode is used).

The "P“ command (see Section 4.10) makes it easy to
enter an ASCII string anywhere into memory.

The "0* command is used to load a CP/M format "COM" or
"HEX"™ file (refer to Digital Research "An Introduction to
CP/M Features and Facilities”) or a XITAN “HEX" or “REL"
file (refer to XITAN "“Z80 Relocating/Linking Assembler
User's Manual) for debugging purposes.

The "Z* command is used to reproduce the effects of

entering a command string at the CP/M command Llevel (see

Section 4.17, and the Digital Research “CP/M Interface
Guide*). With the aid of this command, the CP/M fcb's TFCB
and TFCB+16, and the ‘buffer TBUFF are set (or cleared) as
defined in the “CP/M Interfacer Guide*. This command is not
avaiable in UZBUG.

2.2.1.3 Examine/Modify Data

One of the most powerful commands. in ZBUG's repertoire
is the *“B" command (see Section 4.3), which provides the
means to examine and optionally modify memory. The *“cell®
is displayed, and modifying data accepted, in the current
moder and data display radix, either of which may be
overridden (see Sections 4.3, S.1, and 5.2) temporarily.
With this command, the "cell" currently under examination or
opened may optianally be changed (merely by typing a
replacement value ar instruction), re-examined in a
different maode/radix, or closed. Closing a "cell” can be
followed the opening of the next sequential one, the last
sequential one, a "“called" one, a “returned from" one, or
none - all with one keystroke (see Sections 4.3 and 5.2).
with this command, a single memory cell or many may be
examined and changed, a single instruction or & number of
instructions examined and/or entered.

UZBUG will display both the data and addresses in
hexadecimal always. A cell may be re~-examined in a
different mode, but not a different radix.

2.2.1.4 Search for Data

with the “Y" command (see Sectionm 4.16), a string of
"cells" or instructions (depending on the mode set by the
“M"* command) may be searched for in memory. ZBUG displays
the addresses of each occurrence of the string found.

O

LG

XITAN 280 ZBUG Debugger User's Manual Page 7
Section 2 - Qverview of ZBUG

2.2.2 Reqistgrs and Flags

The “X* command (see Section 4.15) 1is provided to
examine and optionally modify the contents of a machine
register or flag (see Section 4.15, and the Zilog "Z80-CPU
Tecnhical Manual*) or a ZBUG psuedo register (see Sections
4.15, S.1, and 5.2). The contents of a register are
displayed in the radix set by the “RD* command, which can be
overridden (see Sections 4.15 and 5.2) temporarily by
special application of the “R* command. Flag values are
always displayed as a 0 or 1.

UZBUG displays register values in hexadecimal, and the
special application of the "R" command does not apply.

2.3 Program Execution and Breakpeints

ZBUG implements the standard “goto with breakpoints® in
the form of the "G* command (see Section 4.5).

2.3.1 Executing a Program

With the “G" command, complete transfer of control from
ZBUG to the address specified is made - i.e., the machine is
ne longer under ZBUG's supervision. Until a breakpoint is
reached, the user's program has complete control at normal
axecution speed. :

2.3.2. Breakpoints During Execution

The use of the "“G* command includes the setting of up to
seven individual software breakpoints by ZBUG before tranfer
of control to the user program is aeffected. These
breakpeints take the form of a "restart 6" instruction (RST
6 - or OF8 hex), and ZBUG assumes the user program does not
use this instruction and does not modify locations 030-032
hex in memory.

2.4 Tracing and Traps

Perhaps the most useful and powerful features of ZBUG
are its tracing and trap capabilities.

2.4.1 Tracing a Program

Utilizing the “T* command (see Section 4.14), it is
possible to execute a program while under 2ZBUG's full
supervision. The user may specify the number of
instructions to be traced. Unless interrupted (by a trap
condition, invalid instruction, or |user intervention), ZBUG
will execute the program, simulating actual exacution at a

XITAN 280 ZBUG Debugger User's Manual Page 8
Section 2 - Querview of ZBUG

speed of 250~-2500 times slower (depending on various
conditions).

While tracing, ZBUG may be instructed to display the
instructions executing, and the values of certain machine
registers modified by those instructions.

U2BUG will always display the executing instructions and
madified machine registars.

2.4.2 Traps During Tracing

The “S* command (see Section 4.13),.in combination with
the trace capability of ZBUG, provides the ability to trace
a program until any one of four arbitrary conditions occurs.
With the *S* command, up to four boolean expressions (see
Sections S.1 and 5.2) may be saved. Each of the saved
expressions are evaluated after each instruction traced. If
any one of the evaluated expressions returns a non-zero
value, ZBUG halts tracing, notifying the user of the trap.

As traps are determined and controlled by arbitrary
boolean expressions, traps may be set to monitor
register/flag/memory value compared to a constant or other
register/flag/memory value(s). A register or £lag may be
compared to its oewn value prior to the last instruction
execution, in order to monitar a change in value. It is
possible to trap when a register/flag/memory value reaches a
certain value (or range of. values), or when a specific
instruction is about to be executed.

The potential of this feature is limited only by the
user's understanding and use of the conditional expressions
that may be devised.

UZBUG does not provide the trap features found in ZBUG,
and tracing interruption 1is left tao user intervention or
invalid instructions.

©

XITAN Z80 ZBUG Debugger User's Manual Page 9
Section 3 - Starting Out

Section 3

Starting OQut

This section is provided to introduce the user to ZBUG.
Included in the discussion following is a description of the
environment under which 2BUG runs, how to execute ZBUG in
order to debug an . existing program, and basic debugging
operations using a few simple commands. }

3.1 ZBUG's Operating Environment

ZBUG is designed to operate under the Digital Research
CP/M Operating System. The files DEBUG.COM and ZBUG.REL
must be present on the currently logged-on drive (or drive
A) in order to run ZBUG.

The program DEBUG.COM is initiated at the CP/M command
level (refer to the Digital Research “An Introduction to
CP/M Features and Facilities“), which loads ZBUG from the
ZBUG.REL file., 2BUG is 1loaded, following CP/M conventien,
as high in memory as allowed by the . operating system,
leaving any low memory free to contain the program to be
debugged.

All ZBUG disk and console I/0 is performed using CP/M
Interface Guide").

ZBUG currently occupies approximately 13.25 K bytes,
including all data areas.

UZBUG cperates in the same manner as ZBUG, with the
files UDEBUG.COM and UZBUG.REL replacing DEBUG.COM and
ZBUG.REL of ZBUG.

UZBUG occupies approximately 9.25 K bytes.

XITAN Z80 ZBUG Debugger User's Manual Page 10
Section 3 - Starting Qut

3.2 Executing ZBUG
There are two methads of invoking ZBUG....

while at the CP/M command level, the command (in lower
case) ¢

A> debug <cr>

will cause the file DEBUG.COM to be loaded and executed.
DEBUG will display ZBUG's current size (in bytes) and load
address (which indicates the size of free memory), in hex.
DEBUG then will load the 2ZBUG.REL file, relocating it to the
highest available memory address. If ZBUG.REL is not
located on the currently logged-in drive, DEBUG will look
for it on drive A. DEBUG will finally pass control to Z3UG,
which will display a sign-on message and prompt, after which
the user may begin entering commands te ZBUG.

The alternate method of executing 28BUG is as follows.
Again at the CP/M command level, the command:

A> debug <name> <cr>

will cause DEBUG to load the file <name>.COM at location 100
hex (after signaling a successful load of ZBUG), and display
the size (in bytes), the load address, and the end address,
before passing control to: ZBUG. This action is the same as
executing ZBUG in the previous manner, and immediately
entering the following command to ZBUG: .

* g <name> <cr>

Please note that in the examples above, <name> is a CP/M
£ilename (i.e., [device ¢ | name [. extension]). With the
ZBUG “0* command, a file with the extension “COM"™, "“HEX", or
“REL" may be locaded, as described in Section 4.9. IE DEBUG
loads the file, however, only files with the "COM" extension
are loaded. DEBUG ignores any extension entered at the CP/M
command level, changing it to “COM“.

If DEBUG encounters an error while loading either ZBUG
or the optionally specified "“coM" file, a short error
message will be - displayed, and control returned to the
operating system.

O

()

XITAN 280 ZBUG Debugger User's Manual Page 11
Section 3 - Starting Qut

3.3 A Sample Session

This following is a sample workout with ZBUG. A few
basic commands will be explored, with the idea of presenting
ZBUG's usefulness without getting bogged down with the more
involved features.

For this session, assume that the follewing is a listing
of an assembled program which exists on the logged-in drive
as the “COM* f£ile PRINT.COM:

A program to list the 10 bytes
starting at location 80 hex on the
consale in hex

np v Ne Ny~

.pabs

.phex
0100 .loc ZH100
0100 21 0080 print: 1xi h,"H80 ;start at TH80
0103 (Q60A mvi b,10 ; and list 10 bytes
0105 7% loop: mov a,m ;jget a byte
0106 CD OlOF call hex H and list in hex
0109 23 inx h ;bump to next byte
010A 10F9 djnz loop ; and loop if more
0loCc €3 0000 jmp 0 ;leave when done
0l0F FS hex: . push psw ;save byte
0lig 1lF’ rarc ;rotate
0111 1LF rar : to get
0112 1F rar : high
0113 1F rar : nibble
0l14 CD 0QllFf call nibble ;print high nibble
0117 Fl pop psw ;restore byte and
0118 CD OllF call nibble ; print low nibble
0llB 3E20 mvi a,' ' ;print a space
0l1lD 1804 jmpr output ; and return
0llF E&QF nibble: ani THOF ;mask out nibble
0121 C630 adi ‘Q’ H and add ASCII zero
0123 ¢S output: push b ;save <BC
0l24 ES push h ; and <HL
0125 SF mov e,a ;CP/M convention
0126 O0OE02 . mvi c,2 : to print character
0128 CD 000S call S ;P on console
0128 El pop h jrestore <HL
0r2¢ Cl pop b ; and <BC
012D C¢ ret ;return

0100 .end print

XITAN 280 ZBUG Debugger User's Manual Page 12
Section 3 - Starting Qut

The following 1is a verbatim 1listing of a terminal

session., The user's input is in lower case alphabetics, the

computer's response in uppercase. Comments of the related
user and computer actions are enclosed in curly brackets ("“{

ce o

are

O

}*). The constructions "<cr>" and "<1£>“ in the session
user-typed carriage return and line feed, respectively.

{ starting at the CP/M command level, we'll try

executing PRINT, to see what happens.... }

the

A>print <cr> :
00. 00 42 55 47 2= 34 20 20 44
A>

{ Obviously, something appears to be wrong =~ where did
“2="™ come from 2 }

A>debug print <cr> .

ZBUG's length - THQ3IS1F and
load address - JHO3AEL

ZBUG is locaded....

loading COM file....
THO0200 bytes loaded -- (from TH00l00 to "HQQ2FF)

XITAN 280 CP/M DYNAMIC DEBUGGER VERSION 1.04Q S8

»*

{ First, let's take a look at location 80 hex to see the

10 bytes we're supposed to be listing.... }

* a 80 <cr>

0080: 10 <1£>
008l: D8 <1£>
0082: C3 <1g>
0083 2A <1e>
0084: as. . <LE>
008S: CD <1lf>
0086+ 41 <16>
0087: 00 <IE>
0088: CA <1£>
0089+ 2a <1E>
008A: 05 <cr>

{ Okay, now let's execute it to see the results, but

with a breakpoint at the jump back to CP/M }

* g 100, l0c <cr>

10

0000

hex

=8 <3 2: 05 <= 41 00 <: 2: *** BREAK (0) --~> 010C: JMP

{ Yes, folks - something 1is definately amiss. For each
digit greater than 9 (as near as we can tell so far), we

have a garbage character - ":" for A, "<" for C, and "=" for

XITAN 280 2ZBUG Debugger User's Manual Page 13
Section 3 -~ Starting Out

D. Let's start it up again, stopping after getting the
second byte (the first with a problem) from memory. }

* g 100, 10f <cr>
#% BREAK (0) =-=-> QlOF: PUSH PSW

{ That was the first, loop for the second.... }

* g, 10f <cr>
10 *** BREAK (0) =--> OlOF: PUSH PSW

{ Okay, now look at that byte, in the A register }

* xa &cr)
D8 Ler>

{ Yes, it's the right byte, alright. Now qd until we've
isalated the top nibble - the one with the problems... }

* g, 11£ <cr>
##** BREAK (0) =—=> OllF: ANI oF

{ «.. and lock again. }

* xa <cr>
oD Lcr>

{ Right - the nibble in set up properly. So, we'll go
ahead and mask it and add the '0'...

* g, 123 <er>
#%* BREAK (0) =-=-> 0123: PUSH B

{ ve. and look at the result - in ASCII since we're
ready to print out what's left. Note that in UZBUG we can't
do this - we'd have to stay in hex }

* xa <cr>
3D ;ra <erd>
=t <ecr>

{ There's the problem. We now remember that a 0D hex
added te a '0' (30 hex) is not the 'D' (44 hex) we wanted.
All we have to do is add a check to see if the character
we're going to print is greater than a '%' (39 hex), and add
enough to get the proper character. We'll need to know what
that extra value is so....

* ¢ 'D'-3d <er>
07

{ We see that to get a 'D' instead of a '=', we have to
add a 7. Now, we'll modify the program to include the check
and add. First, we should take advantage of ZBUG's
assembler/disassembler capabilities, and get into
instruction mode. }

XITAN 280 ZBUG Debugger User's Manual Page 14
Section 3 - Starting Out

* mi <cr>

MODE: INSTRUCTION] -
{ Now, let's change that "nibble" routine.... } =
* e 11£ <cr>

QllFs ANT QF <1£>

0l21: ADI k(o] <1£>

{ Wwe'll put the check right on top of where the “output®
routine is, making it garbage.... }

0123: PUSH B cpi o9+l KIS
0125: MoV E,A jre .4 <1£>
0127: STAX B adi 7 <186>

{ Now we must relocate the "output” routine.... }

0129: DCR B push b <1&>
0l12A: NOP push h <1£>
0128: POP B mov e,a <1£6>
glac: popP B mvi c,2 <1£>
0l2E: JRNZ 0150 call 5 <1£>
0l31l: MoV B,H pop h <18&>
0l32: MOV D,H pop b <1£>

0133: JRNZ 0188 ret <cr>
*

)]

{ Okay, now to fix up the relative jump to “output™... }

s
* e 114 <cr>
0llD: JMPR 0123 jmpr 129 <cr>
{ ... and try it out, stopping again before running off
to CP/M.
* g 100, 10c <cr>
10 D8 C3 2A G5 CD 41 00 CA 2A *** BREAK (0) =--> Ql0C: JMP
0000 :
o
{ Pine, all's well. We'll leave ZBUG... }
* q <cr>
A>
{ ... and save it. }
A>save 2 print.com <cr>
a>
{ One last time.... }
A>print
Q0 00 42 55 47 2D 34 20 20 44

{ All fixed ! }

XITAN Z80 2ZBUG Debugger User's Manual Page 15
Section 4 - The Commands -~ A Detailed Description
Section 4

The Commands ~ A Detailed Description

The following is a 1listing of the commands ZBUG
provides, with a detailed description of the use and
aperation of each. This section is intended for wuse as a
detailed reference guide to ZBUG.

The format of each command is as follows:

Command character - Command name
Command format

Description

Example

The folleowing symbols are used to describe the format to
the various ZBUG commands:

<CR> repraesents a carriage return,
<LF> a line feed,

{BS> a backspace (control-H),
<ESC> anvescape (or altmode)

<FF> a form feed (control-L)

{ «.«.] means contents are optional,

{ ... |} means contents are mandatory,

eee | oe. means “or™ - i.e., a choice can be made
ees]+ =0C= ...}+ means one or more

ees]* =or- ,...}* means zero or more

Please note that 2ZBUG is only blank (' ') sensitive
where expressly stated. Nermally, blanks may be used
freely during type—-in to facilitate easier reading. Note
also that more than one command may be typed on the same
line, separated by semicolons (';') and terminated by a
<CR>. 2BUG will attempt to execute each command in order of
appearance, unless a) an error occurs, or b) an "E", "X", or
vy* command has been executed, after which any remaining
commands will be ignored. :

Unless explicitly defined otherwise, all constructions
of the form "< ... >" in the command descriptions (such as
<expression>, <address>, <countd>, etc.) are properly formed
ZBUG expressions (see Section 5.1).

In each of the command examples, the ZBUG prompt ("*")
is followed by the wuser input (in lower case alphabetics),
and then by any ZBUG response. Unless otherwise stated, the
mode is byte and the radixes (address display, deta display,
and default type-in) are hexadecimal.

XITAN 280 ZBUG Debugger User's Manual Page 16
Section 4 - The Commands - A Detailed Description

4.1 C - Calculate
C <expression> ‘

Calculate the value of <expression> and display in the
current mode and data display radix.

The <expression> is evaluated and its value displayed in
the current mode and data display radix. If the
<expression> is omitted,-'no value is displayed.

UZBUG will display the resulting value in hexadecimal.

{ calculate 1+2 }

* ¢ l+2 <cIr>

03

=

{ calculate 3%*5 }

* ¢ 3*S <Lcrd>
QF
*

4.2 D - - pisplay
D { <address>] [, <count>]

Display memory in the current mode and data display
radix.

Starting at <address>, display <count> sequential cell
addresses (in the current address display radix) and cell
contents (in the current mode and data display radix). If
<address> is omitted, the default is 0. If <count> is
omitted, the default is 1. ZBUG formats the display,
placing an address and one, two, four, or eight values per
line (depending on mode and data display radix).

UZBUG will display both the data and addresses Iin
hexadecimal. :

{ display cell at ¢ }

* @ <cr>

0000: F8

3

{ display 5 cells starting at 100 }
* 4 100, 5 <cr>

0100: 37 23 40 F7 EA

*

{ set instruction mode (see Section 4.8), then
display 4 cells (instructions) starting at 200 }

O

()

(.

XITAN 280 ZBUG Debugger User's Manual Page 17
Section 4 - The Commands - A Detailed Description

* mi <cr>
MODE: INSTRUCTION
* 4 200, 4 <cr>

0200: ANI 04
0202: JRNZ 2010
0204: POP PSwW
0205: RET
*

4.3 E - Examine

E [<address>]
Open celf at <address> for examination and modification.

Open the cell at <address>, displaying <address> in the
current address radix, and the contents of the cell in the
current mode and data display radix. Accept from the user
an optional replacement value - assumed to be in the current
mode -~ followed by a wvalid closing character. Note that if
the current mode is instruction, the user may type an
instruction (mnemonic/operand(s) sequence). When accepting
an instruction as a replacement value, 2BUG is blank
sensitive, as a blank or tab MUST separate a mnemonic from
any operand(s) required by the particular instruction.

UZBUG will display both the ceil data and address in
hexadecimal.

After the replacement value has been typed, or instead
of it, the user must close the location to continue on. To
close the location, he/she may do one of the follawing:

type a <CR> to close and exit the E command,
type a <LF> to close and open the next sequential cell,

type a comma (',') to close and open the next sequential
cell on the same line (not valid in instruction mode, as a
', separates instruction operands),

type a <BS> to close and open the last sequential cell
(in instruction mode, the mode is first
changed to byte (see * Note)),

type a <ESC> to close and open the cell pointed to by
the last value (or address, if instruction mode) typed or
displayed, pushing the “return® address of the next
sequential cell on the “call" stack,

type a <FF> to close, popping the “return" address from
the “"call" stack and opening that cell,

type a semicolon (";") followed opticnally by “Mn" (see
Section 4.8) and/or "Rn" (see Section 4.12), followed by a
<CR>, to coptionally change the current mode and/or data
display radix temporarily (see * Note) and reopen the cell.

XITAN Z80 ZBUG Debugger User's Manual Page 18
Section 4 - The Commands ~ A Detailed Description

(Note that the “Rn" option is not available in UZBUG)

Note that, for each newly opened cell, ZBUG goes to a
new line, displays the cell's address (in the current
address display radix) and the cell's contents (in the
current mode and data display radix).

* Note: The changing of the mode and/or data display
radix as indicated above changes same only until a) it is
changed again in the same manner or b) a cell is closed with
a2 <CR>, exiting the E command and restoring the mode/radix
of before. Note also that the radix cannot be changed in
UZBUG.

Note that the special value "." (*here") always conéains
the address of the cell currently open, and on exit from the
E command, contains the address of the last cell opened.
For more information regarding “.™, refer to Sectiom S.1.

{ examine cell at 100 }

* e 100 <cr>

0la0: Cc3 <er>

* .

{ examine and modify cells... }

* o 100 <cr>

Qlo0: c3 <I1E>
Qlol: qa 05 <LE>
glo2« 34 <ce>

e .

{ set instruction mode, and try a few things... }

* mi <cr>

MODE: INSTRUCTION

* & 100 <cr>

glQ0= JIMP 3408 <1£>
0103 CALL. 2156 <1£>
0106: JRNZ gll3 {esc>

0ll3: CPL 41 ;ra <cr>

0113: CPL Al <1£>

0115: JRZ. 0134 <EE>

0108: ANI “TAY ;rh <er>

0108+ ANT 0l ANI 02 r <cr>
0108: ANI 02 <cr>

*

Please refer ta Section 5.2 for more discussion.

)

XITAN 280 ZBUG Debugger User's Manual Page 19
Section 4 - The Commands - A Detailed Description

4.4 F - i1l

F [<address>] , [<caunt> 1 , <value>

Fill cells with constant.

Starting with <address>, £ill <count> sequential cells
in the current mode (if instruction mode, assume byte) with
the value <value>. If <address> is omitted, default to 0.
If <count> is omitted, default to 1. :

{ £ill starting at 100 with 4 '!'‘s }

* £100, 4, '!" <er> N
*
{ put a 0 in cell 100 }

» £ 100, , 0 <cr>

4.5 G - Goto
G ([¢<start> T [, <break>]*]
Goto: <start> with breakpoints at <break>.

Clear any previcusly set breakpoints. FPFor each <break>
address (ZBUG provides up to seven) indicated, set a
software breakpoint. Begin execution (complete transfer of
control) at the address <start>. I[f a breakpoint Is
encountered, interrupt execution and notify the user of the
break, indicating which trap occurred (0 - 7) and displaying
the address and associated instruction. If no breakpoints
were specified, do net set any. If <start> was omitted,
default to the address in the program counter (register
<PC) .

ZBUG utilizes a “restart 6" (RST 6 =-or— OQF8 hex)
instruction for software breakpeints, which require that
ZBUG place a jump instruction at locations 0030 to 0032 hex
for proper operation of breakpoints. This implies that the
user program must NOT use this instruction or modify these
locations, or undefined actions may result.

when a break has been encountered and the user notified,
ZBUG places the address of the break (kept in the program
counter - register <PC) in the special value ".". For more
information, refer to Section S5.l.

{ start execution at 100 }

* g 100 <cr>

{ start execution at the address in the program counter,
with a breakpoint at 340 }

XITAN Z80 ZBUG Debugger User's Manual Page 20
Section 4 - The Commands - A Detailed Description

* g, 340 <cr>
*%% BREAK (0) --> 0340: CALL 2351
**

4.6 I L - Instruction Interpret
I <instruction>
Interpretively execute the <instruction>.

After *™assembling® the <instruction>, interpretively
execute it. .

This command provides the capability of executing an
arbitrary instruction, in order to effect the actions
determined by the particular instruction. Unless the
instruction performs a transfer of control (i.e., jumps,
calls, returns, restarts, or indirect register jumps), the
program counter will not be changed.

ZBUG effectively traces the one instruction and returns
to the user.

Note that if the <instruction> is a call or restart
instruction, the associated return address pushed on the
stack will be within ZBUG which, when transfered to by a
matching return (or any other means), will cause ZBUG to
notify a breakpeoint, and return tao the user.

This command is not available im UZBUG.

{ execute an increment register A instruction checking

the contents before and after }

* x a <cr>

03 <er>
* i inr a <eco>
* x a <cr>

Q4 Ler>
*

{ execute a push register pair H&L instruction and check
the stack pointer }

* x sp <cr>
0546 <er>

* i push h <er>
* x sp <cr>
0544 {cr>

*

)

-~

XITAN Z80 ZBUG Debugger User's Manual Page 21
Section 4 - The Commands - A Detailed Description

4.7 L - List ASCII

L ([<address>] [, <count>]

Starting at <address>, list <count> ASCII characters.

Starting at <address>, display <count> sequential
printable ASCII charaters (if nonprinting, print a "."),
preceding each group of up to 32 characters with the address
(in the current address display radix) associated. If
<address> is omitted, default to 0. If <count> is omitted,
default to 1.

"ZBUG formats the display, so that for every .line
displayed contains one address and up to 32 AsCII
characters.

UZBUG will display the address in hexadecimal.
{ list the 23 characters starting at 100 }

* 1 100, 23. <cr>

0l00: cecA .+ @, ..%0Aa%:

»

{ list the character at 0 }

* 1 <cr>
0000 -
L
4.8 M - Mode:

M [<modifier>]
where <modifier> is { B | W [L | L1 2131 4}
Set current mode.

Set the current mode to byte ("B* or *“1"), word or
double byte (*“W" or “2"), triple byte ("3"), double word or
four byte (“4"), or instruction (“I"), and display a message
reflecting the change. If the mode modifier 1is omitted,
display the current setting.

A special application of this command is available
during the execution of the “E* (examine) command. In place
of the replacement value accepted by ZBUG (or immediately
following it), the user may type: *;Mn“, where "n* is one of
the modifiers described above. This c¢hanges the current
mode for the remainder of the execution of the command,
unless changed by another application of this feature.

When ZBUG is first executed, the mode is set to byte.

{ change mode to instruction }

XITAN Z80 ZBUG Debugger User's Manual Page 22
Section 4 - The Commands - A Detailed Description

*m i <er>

MODE: INSTRUCTION
*

{ change mode to word (two byte) }

*m 2 <cr>
MODE: WORD
*

{ display the current mode setting }

* m {cr>

MODE: BYTE
*

4.9 0 - Open File
O <filename> { , <bias>] [, <relocation>]
oOpen <filename> for debugging.

Load CP/M disk file <filename> into memory, with
optiocnal bias of <bias> and relocation (if a XITAN ".REL"
file) of <relacation>. If <bias> is omitted, default to 0.
If <relocation> is omitted, default to 100 hex.

<{filename> is a CP/M filename of the forms
{ <drive> :] <name> [. <extension>]

where the extension is “COM* for a binary image file, "HEX"
for an Intel-compatible "hex" object file (whether binary or
ASCII), and “REL" or a XITAN relocatable object file (binary
or ASCII). If the extension is omitted or not "COM", "HEX",
or "REL", a "COM" type file is assumed. .

Files are locaded to the actual physical addresses found
as follows:

CoM files: The <bias> (defaulting to 0 if omitted)
plus 100 hex.

HEX files: The <bias> (defaulting to 0 if ocmitted)
plus the load address supplied in the
HEX format.

REL files: - The <bias> (defaulting to 0 if omitted)
plus the <relocation> (defaulting to
100 hex if omitted).

If the file <filename> cannot be found, or if an error
has occurred while reading 1it, or the file attempts to be
loaded within ZBUG's bounds, an error will result, and ZBUG
will discontinue loading.

L)

Y.

™

&

S}

-~
[

AN

~

XITAN 280 ZBUG Debugqer User's Manual Page 23

Section 4 - The Commands -~ A Detailed Description

During the 1loading, 2ZBUG displays the starting load
address and the ending 1load address. If an error |is
encountered in a “HEX" or “REL" file's format while loading,
the address of the last byte loaded will be displayed.

Note that ZBUG is blank sensitive within a filename,
assuming any blank encountered terminates the filename.

{ cpen COM file TEST, loading it starting at 100 }
* g test <er>

Qlo0: LOAD ADDR

0SFF: END ADDR
»

{ open file TEST.REL, loading and relocating it at 200 }
* o test.rel, , 200 <cr>

0200 LOAD ADDR .

0342: END ADDR

E

{ open COM file FILE from drive A& }

* o a:file <cr>

0100: LOAD ADDR
037F: END ADDR

*
4.10 P - Put String

P [<address> |

Put an ASCII string into memory starting at <address>

After displaying the <address> in the current address
display radix, accept ASCII charaters from the user, storing
them in sequential memory bytes starting at <address>, until
a control-D is typed. 1If <address> is omitted, default to
Q.

UZBUG will display the address in hexadecimal.

{ put a string at 100 }

* p 100 <cr>

0l00: this is a string <control-D>

-

{ put a string at 0 }

* p <cr>
0000: example <control-D>
-

XITAN Z80 ZBUG Debugger User's Manual Page 24
Section 4 - The Commands - A Detailed Description
4.11 Q - Quit

Q .

Exit ZBUG, returning to CP/M.
{ quit and go to CP/M }

* g <ecr>
a>

4.12 R - Radix
R [<type> [<modifier>]]

where <type> is { Al DI T}
and <modifier> is (A | B I DI B I QG| R/} S}

Set current address display, data display, default
type~-in radix.

Set the current address display (<type> “A"), data
display (<type> “D"), or default type-—in (<type> “T") radix
to: either ASCII (“A"*), binary (*8"), decimal ("D"),
hexadecimal ("H"), octal (“0"), relative or signed decimal
(*R*), or split octal (“sS"), and display a message
reflecting the change. If the radix modifier is omitted,
display the current setting for the radix type <type>. . If
the radix type is omitted, display the current settings of
‘each radix type.

A special application of this command is available
during the execution of the E (examine) and X (examine
register/flag) commands (see Sections 4.3 and 4.15). In
place of the replacement value accepted by ZBUG (or
immediately following it), the user may type: “;Rn", where
n is one of the radix modifiers described above. This
changes the data display radix for the remainder of the
execution of the command, unless changed by another
application of this feature.

Note that the ASCII (“A") radix is not valid for the
address display radix type. .

An additional f£lexibility is provided for the address
radix application. If the radix is being modified, and the
command 1is followed by am “A" (i.e., "“RAHRA"), 2BUG
recognizes that addresses will be displayed as absolute
values, and not relocated (see Sections 2.1.2.3, 4.15, and
5.2).

When 2ZBUG is first executed, each of the radix types are
set to hexadecimal, and relative addresses are permitted
(i.e., the "a* option for the address radix is not in
effect).

SN

(J

R

XITAN Z80Q0 ZBUG Debugger User's Manual Page 25
Section 4 - The Commands - A Detailed Description

This command, and all its variations, are not available
in UZBUG.

{ change data display radix to hexadecimal }

* r dh <er>

DATA DISPLAY RADIX : HEXADECIMAL

»

{ display the current address display radix setting }

* r a <em

ADDRESS DISPLAY RADIX : BINARY

phe

{ set the address radix to hexadecimal, specifying
absolute addresses only }

* r aha <cr>
ADDRESS DISPLAY RADIX : (ABSOLUTE) HEXADECIMAL
’ .

{ display the current settings of each of the radix
types }

* r <cr>

ADDRESS DISPLAY RADIX : BINARY

DATA DISPLAY RADIX : HEXADECIMAL
DEFAULT TYPE-IN RADIX : DECIMAL
* .

4.13 s - Set Trap/Conditional-Display

SICDJ] [*] [<id> [, <expression>]]

where <id> is { ¢ I 1 | 2 | 3}

Set trap/conditional display.

This command performs several different functions,
depending on the options used. Each is described separately
below.

S [<id> [, <expression>]]

Set trap <id> to boolean expression <expression>. If
the <expression> is omitted, display the expression set
currently for trap <id>. If <id> 1is omitted, display the
expressions currently set for each trap.

s* [<id>]

Reset trap <id>, removing 1its currently set expression,

and effectively clearing the trap. If <id> s omitted,
display the id's of. each cleared trap.

XITAN 2Z80 ZBUG Debugger User's Manual . Page 26
Section 4 - The Commands - A Detailed Description

sD [<id> [, <expression>]]

Set conditional-display <id> to. boolean expression
<expression>. If the <expression> is omitted, display the
expression saved currently for conditional-display <id>. If
<id> is omitted, display the expressions currently set for
each conditicnal-display.

Sp* [<id> |~

Reset conditional-display <id>, removing its currently
set expression, and effectively clearing the

conditiocnal-display. If <id> is omitted, display the id's

of each cleared conditional-display.

For each trap or conditional-display set, ZBUG saves the
<expression> specified, after surrounding ie with
parentheses and preceding the resulting expression with a
unary radix change operator for the current default type-in
radix. This is to insure the user that the expression will
be evaluated during tracing in the default radix active when
the expression was originally entered, regardless of any
subsequent later changes with the R command. Each
expression entered, whether trap or conditicnal-display,
must be no more than 59 characters long, including any
spaces or tabs contained within.

During tracing (see Section 4.14), each expression saved
is evaluated after every instruction traced. The effects of
and uses of both types of expression (trap and
conditional-display) are described further in Section 4.14
and S5.2. :

This cammand, and alI.its variations, is not available
in UZBUG.

{ set trap 0 to fire when register A changes }

* 30 <& 7ne <la <cr>

4

{ set trap 3 to fire whem the next 1instruction to be
traced is a pop register pair D&E }

* g3, 1. ?eq [pop d] <ecr>
t g

{ display all currently set traps }

* s <cr>

(Q) TH(KA ?NE <!A)

(3) TH(t. ?EQ ([POP DI)
*

{ display all currently cleared trap id's }

* g* <crd>
12
*

»

.

(%

XITAN Z80 ZBUG Debugger User's Manual Page 27
Section ¢ - The Commands - A Detailed Description

{ set conditional-display 0 to display if the program
counter is between 1000 and 1296 }

* gd0, (<pc ?ge 1000) & (<pc ?le 1296) <cr>

-

i{ display currently set conditional-displays }
* sd <cr>

(0) JH((KPC ?GE 1000) & (<PC ?LE 1296))
»

{ display currently cleared conditional-displays }

* sd <cr>
123
»*
4.13.1 SwW - Set Wait

SW [<count>]

Set a delay time of <count> * 10 msec (at 2 MHZ) for
tracing.

Set tracing delay time of <count> (default type-in radix
is alway decimal for this command) centi-seconds. If
<count> is omitted, display the current setting in decimal
centi-saconds.

During tracing, ZBUG will wait for the count set by this
command after displaying an instruction and before executing
it. This gives the user time to see what is about to be
executed, and interrupt ZBUG before anything happens if
desired. The count is considered by 2ZBUG to be between 0
and 255 centi-seconds, giving the user up to just over 2.5
seconds to make the decision to interrupt, or enough time to
follow the trace with a listing.

{ set delay to maximum }

* sw 255 <cr>
>

{ display setting }

* sw <cr>
288
*

XITAN Z80 2ZBUG Debugger User's Manual Page 28
Section 4 - The Commands - A Detailed Description

4.14 T - Trace
T [<address>] [, <count>] [, {0) C}1]
Trace <count> instructions starting at <address>.

Starting at <address>, trace up to <countd> instructions.
If <count> is omitted, default to 1l. If <address> is
omitted, start at the address in the program counter.

If the “0" or “C" options are omitted, the automatic
display is in effect. This implies that before the
execution of each instruction, 2ZBUG will display the address
of the next instruction to be executed (in the current
address display radix) and the instruction (with any
operands. in the appropriate current address or data display
radix). 2BUG will not go to a new line (the cursor will
remain on the same line as the instruction) until the
instruction displayed is executed.

After the instruction has been executed, display the
contents of the SP, IX, ¥, AF, BC, DE, and/or HL registers

if they were modified by the instruction, and then display-

the next instructiocn.
If the "0“ optiem is used, turn off automatic display.

TE£ the “C™ optiom is used, turn off automatic display
only when tracing & subroutine (code entered by a call
instruction and left by a matching return instruction) in &
deeper level (up to 128 . calls deep). With this option, the
<count> refers only to instructions that are displayed.

- Before executing each instruction, evaluate each
currently set conditional-~-display expression. If & nom zero
value is found, display the id (of the expression causing
it) and the instruction te be executed. If no expression
value is non-zers, display without an id iIf the automatic
display is in effect, otherwise do not display.

If the current instruction has been displayed (by the
automatic display and/or a conditional-display), wait for
the time specified by the SW command before executing it and
going to a new line. The pause before new-line gives the
user time to interrupt tracing by the use of a control-E.

Before executing each instruction, save the present
value of all machine registers and flags as the next “old"
values.

After executing each instruction, set the special value
. “." ("here" - see Section 5.l1) equal to the value in the
program counter.

After executing each instruction, evaluate each
currently set trap expression., 1If any non-zero values are
found, display the related id's and expressions, the next
instruction, and stop tracing.

C

XITAN Z80 ZBUG Debugger User's Manual Page 29
Section 4 - The Commands ~ A Detailed Description

If, during tracing, the user types a control-g, or a
halt (HLT) instruction or invalid instruction is
encountered, halt tracing at the current location.

If, during tracing, the user types a control-T, display
the current instuction being traced.

Note that the <count> specified by the wuser in this
command is treated by ZBUG to be a positive l6-bit value,
with a default of 1. If 1t is desired that ZBUG trace
indefinitely, a count of 0 will result in an infinite trace.

UZBUG does not provide the “0" or "C" options, traps,
conditional display, or the control-T features available in
ZBUG. .

{ trace the next instruction }
* £ <er>
0238 INR A - AF (1501)

»

{ assuming the trap and conditional-display settings of
the S command examples of Section 4.13, begin an “infinite”
trace to see what happens }

* £ 100, 0 <er>

0100: ORA A - AF (1500)
0lol: JNZ 1200
(0)- 1200: MVI B,21 - BC (2100)
(9) 1202: LXI H,0000 ~ HL (0000)
(9 1205: CCIR - AF (0012) - BC (0000)
- HL (2100)
(9) 1207+ JNZ 1450
1450« PUSH D - SP (0s0C)
145L: MoV x,B - AF (0012)
%%* TRAP (0) =-=> ZH(KA 2NE <!A)
1452: ORA A
»

{ «.. and going on from there... }

* £, 0 <c>

1452: ORA A - AF (0044)
1454: JRZ 146A

**% TRAP (3) -=> ZH(!. ?EQ (POP D])

146A: POP D

*

{ now, do it all again, but this time, turn off the
automatic display off }

* £ 100, 0, o <cr>
(0) 1200: MVT B,21 - BC (2100)
(0) 1202: LXI H,0000 - HL (Q000)
(Q) 120S: CCIR - AF (0012) - BC (0000)
- HL (2100)
(Q) 1207: JINZ 1450

XITAN 280 ZBUG Debugger User's Manual Page 30
Section 4 - The Commands - A Detailed Description

%%* TRAP (0) -—> CH(<A ?NE <lA)
1452 QRA A
*

{ start a trace, assuming trap 0 is set to fire when the
pregram counter is between 145 and 14E }

* £ 100, 0
0100: MVI A,0L - AF_(0100)
0102: LXI D,0000 - DE (0000)
0105: CALL 1230 - SP (0SFO)
1230: PUSH H - SP (OSEE)
1231: DBUSH B - SP (0SEC)
1232: MOV B,A - BC (010E)
1233: - XCHG - DE (1257) - HL (0000)
1234: MVI M,0
1236: DJNZ 1234 = BC (00OE)
123a: poP B - SP (0SEE) - BC (1537)
1239: POP ' - SP (05F0) - HL (0012)
123a: RET - SP (05F2)
Ql08: JMP 0r40
0140z LXI §,0000 - HL (0000)
0143: LXI 8,FEFF - BC (FFEF)
#** TRAP (0) —> -H((<PC ?GE 145) & (<PC ?LE 14E))
0146: XRA A
*

{ now, do the same, but with the C option }

* £ 100, 0, ¢

0100:= MVT A,QL - AF (0QL00)
Ql02: LXI D,0000 - DE (0000).
0105+ CALL 1230 - SP (05F2)
0108 = JMP 0l4a
0140 LXT #,0000 - HL. (0000)
Ql43: LXT B,FFFF - BC (FFFF)
®% TRAP (Q) =-=> "H((KPC 2GE 145) & (<BC ?LE 14E))
0l46: XRA A
*
4.15 X - gxamine Register/Flag

X [{ <] <register-name> | > <flag-name>]
where <register-name> is:

te1 ¢ { AF | BC | DE | HL |
pc | IX | Iy |

SP |
IR | RD | WR | RR |
DR |
aAlFlBlcliDI
gelaicLiziRrRI
M}

and <flag-name> is:

-t

XITAN 280 ZBUG Debugger User's Manual Page 31
Section 4 - The Commands - A Detailed Description

{ri1 ¢l {cltetNniplslivlz}
Open register/flag for examination and modification.

Open the specified register or flag, displaying its
contents in the current data display radix (or a 0 or 1 if
display a flag). Accept £from the user an optional
replacement value followed by a valid closing character.

After the replacement value has been typed, or instead
of it, the user must close the register or £flag, by doing
one of the following:

type a <CR> to close the register or f£lag and exit the X
command;

type a semicolon (";*) followed optionally by "Rn" (see
Section 4.12), followed by a <CR>, to optionally change the
current data display radix temporarily (see * Note) and
reopen the register (note that this does not work (£
examining a flag).

* Note: The change of data display radix as indicated
above is in effect only until a) it is changed again in the
same manner as above or b) the register is closed with a
<CR>, exiting the X command and restoring the previous mode.

If no register or flag name is specified, display the
contents of all the machine registers, the pseudo registers,
the top four word values on the stack, and the instruction
peinted to by the program counter.

The register names. defined above are further described
below:

The l6~bit registers:

AF - The Z80 register pair commonly known as PSW
BC - The 280 register pair B&C
DE - The Z80 register pair D&E
HL - The Z80 register pair H&L
SP - The Z80 stack pointer
PC - The Z80 program counter
IX - The 280 index register X
Iy — The 280 index register Y
IR - The 280 register "pair™ made of the combining
- of the interrupt register and the refresh
- register
RD - The 2BUG pseudo register containing the
- address of the last traced memory read
- access
WR - The 2ZBUG pseudo register containing the
- address of the last traced memory write
- access
RR - The 2ZBUG pseudo register containing the
- user defined “code" relocation address
DR - The 2ZBUG pseudo register containing the

user defined “data" relocation address

XITAN 280 ZBUG Debugger User's Manual Page 32
Section 4 - The Commands - A Detailed Description

The 8-bit reisters:

The 280 register A (accumulator)
The 780 flag "register"
The 280 general register
The 280 general register
The 280 general register
The 280 general register
The 280 general register
The Z80 general register
The Z80 interrupt register I

-The 280 refresh register R

The 280 “register* M (byte pointed
to by register pair H&L

ZOHCREMOOE g
[aF oo ReK:

The flag names described above are further defined
below:

The 2Z8Q carry flag

The 280 half-carry flag

The 280 add/subtract flag
The 280 parity/overflow flag
The 280 sign flag

- The 28Q parity/overflow flag
The 280 zera £flag

NSOwzEmN
Per ey

For a complete ~ description of the 280 registers and
flags, please refer to the Zilog “280-CPU Tecnhical Manual™.

The optional “f* is used to access: the “old™ value of a

machine register or flag - the value of the register/flag

before the last instruction traced. As ZBUG does not save

the “old™ values of the pseudo registers (RD, WR, RR, or

) Dﬁ), the *1* will have no affect If used to to refer to
them.. '

The opticnal “*™ used to refer to a register generally
means to consider the 280 auxiliary register of the same
name. This refers te the A, P, 8, C, D, E, H, L, M, AF, BC,
DE, and HL machine registers, and all of the flags. 1In the
case of the other machine registers, the "'* has no affect.

) The *'* does have significance with the three ZBUG
pseudo registers, and each are described below.

The ZBUG pseudo registers RD and 'RD are set during
tracing. Each instructionm that accesses memory for a read
sets these registers as follows: The RD register is set to
the address of the lowest byte accessed by the instruction,
and the 'RD register is set to the highest. An instruction
that does not access memory for a read will not disturb the
contents of either register (the access by the program
counter to get the instruction is not considered a read
access by 2ZBUG). For example, 1f the instruction being
traced is a “MOV A,M“, both register RD and 'RD will be set
to the address contained 1in the register pair H&L. If the
instruction is a “RET", the RD register will be set to equal
the address contained in the stack pointer, and the 'RD will

XITAN Z80 ZBUG Debugger User's Manual Page 33
Section 4 -~ The Commands - A Detailed Description

be set to that address plus one. If the instruction is an
“LDIR“, the RD register will be set to the address contained
in the register pair H&L, and the 'RD will be set to that
address plus the contents of register pair B&C minus one.
Finally, if the instruction is an "“LHELD 0100", the RD
register will be set to 0100, and the 'RD set to 0lOl.

The 2BUG pseudo registers WR and 'WR act like the RD and
‘RD registers, but are set for memory write accesses.

The RD, 'RD, WR, and ‘'WR registers facilitate the
monitoring of memory read and write accesses.

The ZBUG pseudo registers RR, 'RR, DR, and 'DR are
registers utilized by the user and ZBUG to facilitate access
to memory with “relocatable" addresses. For example, if a
user wishes to debug code in a certain sub-set of a program
(such as a single module of the program), he sets register
RR (or DR) via the X command to the address of the start of
the sub-set or module. The *'RR (or 'DR) register is then
set to the end of the module. ZBUG will then always display
any addresses which lie between these two values as being a
relative positive offset from the contents of register RR
(or DR). Any addresses 1lying outside this range will be
displayed as absclute. 2ZBUG signals the difference by
following any relocated addresses with a single quote if
relative te RR, or a double quote if relative to DR.
Absolute address are not flagged in this manner. To any
address (or any expression, for that matter) that the user-
types with a following single or double quote, ZBUG will add
the contents of the RR or DR register, resulting in an
absolute address.

If the register RR (or DR) is equal to 0 (its default
value), ZBUG will not relocate any addresses displayed, and
any typed by the user with the "'" signal for relocation
will be taken as absolute values (offset plus a base address
of 0}.

This feature of ZBUG makes debugging & module with a
listing showing only relative addresses a simple matter of
typing a relocatable address instead of an offset plus a
constant. By using the RR pair to refer to the code of a
module, and the DR pair for a separate data module,
following a listing is easier. For £further discussien,
refer to Section S.l.

When ZBUG is first executed, all registers are
initialized. The SP, RD, 'RD, WR, and 'WR are set to peoint
to the bottom of ZBUG - the highest memory address that a
debugging program may used. The PC is set to 100 hex. The
other registers are set to 0.

UZBUG does not provide the RR, DR, RD, or WR register
pairs, or the re-examine ("Rn") feature found in Z3UG.

{ examine the A register }

XITAN Z80Q ZBUG Debugger User®s Manual Page 34
Section 4 - The Commands — A Detailed Description

* x a <cr>

00 {er>

*

{ examine and modify the register pair H&L }

* x hl <cx>
Q001 ¢ <cr>
o

{ examine the B register in various radixes }

* x <b
ao ;ra <cp>
rne ;rd <cr>
[+ rre Lcr>
+Q <cr>
L

{ examine and modify the carry flag }

* x > <cr>
Qo (<a + 1) > 8 <er>

»
{ examine all }

* x Lcr> .
AF (0G0O0F) BC (000l) DE (1253) HL (0000) FLAGS:UNC
AF'"(0QFQ) BC"(0000) DE*(0000) HL"(0000) FLAGS: SZ.H....
IX (0000) I¥ (00QG0) IR (000Q) -~ INTERRUPTABLE.

RR (01Q00) RR"(Q0Q0) DR (0000) DR’ (0000)
RD (3900) RD'(3900) WR (3900) WR'"(3900)

'~ SP (0000%) -—> 0oc3 c370 5734 11F3
PC (000Q') ==> MOV a,M
*»
4.16 Y - Search

¥ [<stare>] [, <end>.]
Search memory from <start> to <end> for string.

Following this command by up to 32 bytes of data cells
in the current mode, separated by semicolons (";") and
terminated by a <CR>, search memory within the range <start>
to <end>, displaying the addresses (in the current address
display radix) of each occurrence. If <end> 1is omitted,
assume OFFFF hex. If <start> is omitted, assume Q.

UZBUG will display the addresses in hexadecimal.
{ search for 1,2,3,4 throughout all of memory }

* y <gr>
1; 2; 3; 4 <er>

O

()

XITAN 280 ZBUG Debugger User's Manual Page 35
Section 4 - The Commands - A Detailed Description

100F
3451
AQQ3
FF45
*

{ assuming instruction mode, look for all calls to
location S5 between 100 and 1000 } :

* y 100, 1000
call 5 <cr>

0134
0562
*
4.17 z - Zap CP/M fcb's
z <string>

Set up CP/M input as if <string> were part of command at
CP/M command level:

A> <proqfam> <string> <cr>

Set up CP/M‘s TFCB, TFCB+16, and TBUFF with <string>, as
defined by the Digital Research “CP/M Interface Guide”. If
{string> is omitted, clear TFCB, TFCB+l6, and TSUFF as also
defined.

Note that 2ZBUG 1is sensitive to blanks in parsing
filenames from <string> - any encountered are assumed to be
terminators.

UZBUG does not provide this command.

{ set up a filename }

* z file.asm <cr>
»

{ set up a string }

* 2z 3/24/78 10:15:00 <er>
>

XITAN 280 ZBUG Debugger User's Manual Page 36
Section 5 - Gaing Beyond the Basics
Section 5§

Going Beyond the Basics

Although ZBUG can be used after getting to know how to
use a few commands, much can be gained by becoming familiar
and comfortable with 2ZBUG's most £flexible, and therefore
most consequential, feature - the expression.

The majority of this section will be used to discuss the
ZBUG expression (5.l1). The remainder will be wused to
dramatize the ZBUG's potential capabilities by giving
specific examples of commands utilizing expressions as
arguments, along with suggestions and hints to help utilize
ZBUG to it fullest. :

Py

J

LAl
\

XITAN 280 2ZBUG Debugger User's Manual Page 37
Section § - Going Beyond the Basics

S.1 The ZBUG Expression
ZBUG expressions follow a relatively small set of
recursive rules. To help visualize these rules, the

following is the syntax or structure of all expressions in
BNF (Backus Naur Form).

{sub-exp> [<c-op> <sub-exp>]*

<exp> =
{sub-exp> ::= <term> [<t=op> <term>]*
<{term> ::= <bool> [<b-op> <bool>]*
<bool> ::= <factar> [<f-op> <factor>]*
<factor> ::= { <con> | <sym> | (<exp>) } ['I*} |
: <u-op> <factor>
<con> = <reg> | <flag> | <num>
{reg> 1= < <register-name>
<flag> ::= > <flag=-name>
<num> 1= <string> |
<number> |
<instruction>
{g=0op> ::= -
<t=op> s:= +]l -tttz
<b=op> ::= *l/1tel &l <|>
{f=ap> ::= ?EQ | ?NE | ?LT | ?LE | 2GT | ?GE
<u=o0p> s:= +l=-1&1 @l N] 71!

The symbols <sym>, {register-name>, <flag-name>,
<string>, <number>, and <instruction> will all be defined in
the discussion following.

UZBUG provides for a very restricted expression, defined
in the following BNF:

<exp>

= <factor> [+ | =] <factor>
<factor> ::

= <con> | <sym> | (<exp>) |
{ @1 \] <factor>

<con> sim <reg> | <£flag> | <num>

<reg> 1= < <register-named>

<flag> ::= > <flag=-name>

<num> = Kstring> | <hex>

Note that the + and - operators are define in Section

5.1.2, the @ and \ in Section 5.1.5, and <hex> s a
hexadecimal number as defined in 5.1.7.1.

XITAN 280 ZBUG Debugger User's Manual Page 38
Section 5 ~ Going Beyond the Basics

5.1.1 <exp> and the “_" Qperator
As defined earlier, an <exp> (expression) is:
<sub-exp> [<c=op> <sub-exp> 1*¥
-or-

" a subexpression followed by zero or more occurrences of
a *_" followed by a subexpression

The *_ * operator is defined as the CONCATENATE operator
in 2BUG. It is dyadic, meaning that it requires two
arguments. It operates by concatenating its two arguments
in the following manner: Argument #1 (the left one) is
shifted right by the length of argument #2. Argument #2
(the right one) is masked to its length (always an integer
number of bytes from L to 4), low order bytes being masked
first. The twe resulting values are then or'‘ed together,
forming one value.

Nermally, the default length of an arbitrary argument is
4 bytes, the largest value ZBUG can manipulate. Certain
values have an implied length, however - such as a register
(one or two bytes), or the result of the @, \, 7, and !
unary operators described later. ’

The concatenate operator has the lowest precedence of
all the operators - unless overridden by parentheses, any
concatenate operations will performed last, from left to
right.

Note that this operator is not available in UZBUG.
Examples....

<A~__<BC‘ -+«. COncatenate the current value of
«ee the X register with that of the
e« B&C register pair
\10Q _ elol -~ concatenate the byte at location
i «ee 100 with the word at 101

s

5.1.2 <sub-exp>‘andvthe.+, -, L, and T Operators
As defined earlier, a <sub-exp> (subexpression) is:
<term> [<t-op> <term>]*

-or=-

a term followed by zero or more occurrences of a +, -,
1, or 7 followed by a term

The +, -, t, and _ operators are defined as the ADD,
SUBTRACT, INCLUSIVE OR, and EXCULSIVE OR operators,
respectively. They are each dyadic, requiring two
arguments. The cperations they perform are two's complement

)

-

XITAN 280 ZBUG Debugger User's Manual Page 39
Section 5 - Going Beyond the Basics

add and subtract, logical inculsive and exclusive or,
respectively. Both arguments are considered to be 4 byte
values, with no overflow or underflow indication ~ the sign
bit interpretation is left to the user.

The +, =, !, and [operaters have the 2nd lowest
precedence, and are executed £from left to right before any
concatenate operators (unless overridden by the use of
parentheses, of course).

Note that the ! and 7 operators are not available in
UZBUG. ’

Examples....

1+ 2 ese @8d@ 1 to 2

35 - 28 «ee Subtract 28 from 35

63 ¢ 128 ees inclusive or 63 and 128
63 7 128 ... @xculsive or 63 and 128

S.1.3 <term> and the *, /, @, &, <, and > Operators
As previously defined, a <term> is: '
<boel> [<b-op> <bool>]*
~ar—

a boolean expression followed by = zero or more
occurrences of a *, /, @, &, <, or > and a boolean
expression

The *», /, 8, &, <, and > operators are defined as
MULTIPLY, DIVIDE, MOD, LOGICAL AND, LEFT SHIFT, and RIGHT
SHIFT, respectively. They perform an integer multiply,
integer divide, integer modulo, logical and, 1left logical
shift, and right logical shift, respectively. They are
dyadic, requiring twe arguments, each considered to be 4
byte values, except for the < and > coperators, which use
only the low order S bits of the 2nd argument to determine
the number of bits to shift the lst argument.

The *, /, @, &, <, and > operators have 3rd precedence,

being performed from left to right before the +, -, !, or [
operations (unless overridden by parentheses).

Note that the *, /, @&, &, <, and > qperators are not
available in UZBUG.

Examples....

4 * 2 ... multiply 4 and 2
4 / 2 .eo divide ¢4 by 2

4 @ 3 ... modulo 4 by 3

l &S5 ... and 1 and S

5 <1 ... shift 5 by 1 bit
6§ > 1 ... shift 6 by 1 bit

XITAN Z80 ZBUG Debugger User's Manual Page 40
Section 5 - Going Beyond the Basics

S.1.4 <boal> and the 7EQ, ?NE, 2LT, ?LE,
2GT, and 7GE Operators

Earlier, the <bool> was defined as:
<factor> [<f-op> <factor> |*
-or-

a factor followed by zero or more occurrences of 2EQ,
INE, ?LT, ?LE, ?GT, or ?GE followed by a factor

The ?EQ, ?NE, 2LT, °2?LE, 2GT, and 2GE operators are the
EQUAL, NOT EQUAL, LESS THAN, LESS THAN OR EQUAL, GREATER
THEN, and GREATER THAN OR EQUAL operators, respectively.
They are dyadic, requiring two arguments, each considered to
be a 4 byte value. Each performs an arithmetic compare of
the two arguments (signs are significant), and return a zero
if the condition is false and a -1 if true.

These operators have 4th precedence - the highest of the

dyadic coperators, meaning that - unless overridden by-

parentheses, these operations will be the first dyadic ones
performed.

Note that the ?EQ, ?NE, ?2LT, 2LE, 2GT, and 2GE operators
are not available in UZBUG.

Examples...

<R 7EQ L ve. does.register A equal 1 ?

2 2LT 3 eee~ 15 2 less than 3 ?

-3 ?GE 78 ee- LS =3 greater than or equal to 78 ?
5.1.5 <factor> and the +, -, #, &, \, 7, and !

Operators

Previously, the <factor> was described as:

{ <con> | <sym> | (<exp>) } [* | * 11
<u=-op> <factor>

-0r=

a constant or & symbol or am expression in parentheses
(optionally followed by a * or "), or a +, -, %, & \, 7, or
| followed by a factar

This is a recursive definition - describing a factoer in
terms of an expression or a factor. Later we will discuss
constants and symbols and the optional *'", but ndw to the
unary operators, etc.

The +, -, #, @, \, -, and | operators are defined as
PLUS, MINUS, NOT, WORD INDIRECT, BYTE INDIRECT, EXPLICIT
LENGTH or RADIX CHANGE, and INSTRUCTION INDIRECT,
respectively. These operators are monadic, requiring only

AR

XITAN 280 ZBUG Debugger Uset‘é Manual ~ Page 41
Section S5 - Going Beyond the Basics

one argument. .

The +, -, and § operators consider their arguments to be
4 bytes values, performing a arithmetic plus, arithmetic
minus (two's complement), and a logical not (one's
complement), respectively.

The @, \, and ! operators use only the low order 2 bytes
of their argument, treating the 16~bit value as an address
and returning the word, byte, and instruction value pointed
to by the address. These three operators also return an

glied length of their results (for use by the concatenate
operator) - 2 bytes for @, 1 byte for \, and 1-4 bytes for !
depending on the instruction located by the argument.

The [operator is further refined by following it with a
modifier.

If the 7 is followed by a “1*, *2%, *"3*, or "4%, it is
an explicit length operator, which means that its argument
will be considered to be 1, 2, 3, or 4 bytes long for the
concatenate operator (the only operator which uses length).

If the 7 is followed by a *“B", “D*, “H“, “0*, "R", or
g, it is a radix change operator, which means that its
argument will use binary, d&ecimal, hex, octal, relative
decimal, or split octal as the default type-in radix instead
of that defined by the use of the RT command of ZBUG.

The unary operators have the highest precedence or all
the operators (unless overridden by parentheses), and are
performed first.

Note that the +, -, #, 7, and ! operators, and the ' and
* modifiers are not available in UZBUG.

Examples....

+1 . eee« Caturn a plus one (no real
ee. effect)

-1 ~+e return a negative 1l

#L s+ return the one's complement
ees OF “not* of 1

@1a0 ... get the word pointed to by
e«e 100 (the word at location 100)

\<HL ... get the byte pointed teo by

e register pair H&L (actually
... another way of saying <M,
ess OF contents of register M)

I1<PC ... return the instruction
ees pointed to by the program
«.. Counter

Z1(<HL + <A) ees Calculate the value of
... register pair H&L added to
«s» register A and specify a
... length of one byte

TD(123 + 32) s+ Calculate 123 decimal plus
eeos 32 decimal

-1 .. return a minus minus 1 (or 1)

XITAN 280 ZBUG Debugger User's Manual Page 42
Section 5 - Going Beyond the Basics

5.1.6 “Symbols"®

Although ZBUG does not recognize symbols per se, several
permanent symbols are defined by ZBUG to . facilitate
instruction operand encoeding by the user. These “symbols"
are register names commonly used in 280 assembler language,
and are as follows:

»

o

w
=
"NERERERERRRE,
PRAMAVEWNHON

KXUOIPEMEMON®

Although these "symbols™ may be used as a constant value
in any 2BUG expression, their usefulness is probably
confined to use in instruction operands typed by the user.

The special symbol *.* refers normally to the current
location. When using the E command, . contains the address
of the currently open cell. When a: breakpoint is
encountered from the use of the G command,. . conntains the
address of the break. When tracing via the T command, .
contains the adress of the next instruction (identical to
the <PC) .

5.1.7 *Constants”

ZBUG pravides for a wide variety of constants, inéluding
numbers (im the conventional sense), strings, register and
flag contents, and even instructions. Each is described
below:

5.1.7.1 Numbers:

Numbers in 2BUG are one or more digits, followed
optionally by a radix modifier ("“B*, “D“, "H™, "O0", "R", or
“s* representing binary, decimal, hex, octal, relative
decimal, and split octal, respectively). If the modifier is
not present, the number 1is assumed to be in the current
default type-in radix (unless overridden by the wuse of the
radix change operator "7"). In certain cases, a radix
modifier typed by the user might be interpreted by ZBUG to
be a digit. For wexample, If the current default type-in
radix is hex, and the user types "“108" intending the number
10 binary (2 decimal), 2BUG will read it as 108 hex. The
same is true for the "D" modifier. 1In order to overcome
this misinterpretation, the use of the radix change operator
will suffice - i,e., *7B10. As an added aid, ZBUG provides
the "." as an additional decimal radix modifier.

O

XITAN Z80 ZBUG Debugger User's Manual © Page 43
Section 5 - Going Beyond the Basics

If digits found in a number do not correspond to the
radix assumed, an error will result. Valid digits are:

Binary: 0,1

Decimal: 0,.,2,3,4,5,6,7,8,9
Hex: 0,+,2,3,4,5,6,7,8,9,A,8,C,D,E,F
(number must start with 0-9)
Octal: o0,1,2,3,4,5,6,7
Relative Decimal: same as decimal
Split Octal: same as octal (however, the number is

checked to conform to 3 digits per byte,
with the 3rd being 0,1,2, or 3)

Note that only hexadecimal numbers are acceptable to
UzZBuG.

Examples - assuming default type~in radix of hex....

- 10 ees 10 hex .
10. eee OA hex (10 decimal)
345s <o+ OES hex (345 split octal)
3450 ees QBES hex (345 octal)

Improper Numbers....

opl2a «ee "A" is not a decimal digit
34568 ..+ the “4" is not proper in the
«ee 3rd place of a group of 3
) eie (f.e., 456 is not 1 byte value)
A0l «es does not start with 0~-9

S.1.7.2 Strings

ZBUG provides the capability of using ASCII character
strings as constants. These are a string of characters (not
including a <CR>) bracketed by a pair of matched single or
double quotes. Strings may be of arbitrary length, but the
last four characters are the only ones used.

Examples....

this is a string” «es only got “ring-
‘A . «ee got a 41 hex value
'AB' eee. and a 4142 hex

Improper Strings....

*oops' ... Qquotes are not matched
"bad one ... missing quote
5.1.7.3 Registers and Flags

Since the 280 machine registers and flags, and the ZBUG
pseudo registers contain values, it stands to reason that
the user should be able to access their wvalues in
expressions easily. 2BUG provides this useful capability.

XITAN 280 2BUG Debugger User's Manual Page 44
Section 5 - Going Beyond the Basics

The general form to access a register value is:
< [t1 ['] <register-name>

where <register-name> is as described in Section
4,15

The general form to access a flag value is:
>[I [* 1] <flag~name>
where <flag-name> is as described in Section 4.15

The optional *!* specifies to ZBUG to return the value
of the register or flag before the last instruction trace.
ZBUG saves all 280 machine registers and £flags before
tracing an instruction to provide access to the previous and
current values. This £facilitates checking to see 1if a
register/flag value changed during the last instruction
traced. For example, the expression ">!C ?2NE >C* would
return & -1 if the carry flag had changed. The “!" option
has no effect if used to access a ZBUG pseudo register, as
these registers are not saved during tracing.

The “'* option specifies the auxiliary register set of
the 280, as described in Section 4.15.

The register values. have an implicit length associated
with them - one or two bytes, depending on the register
specified.. '

Examples....

<A eee Ceturn the byte value of
wew. Cegister A
<AF ... return the word value of

~e. register pair AF (also
e« known as the PSW)

>2 «ees return the bit value of
.+~ the zeroc flag

5.1.7.4 Instructions

As an instruction certainly has a numeric value, ZBUG
provides the means to use an arbitrary instruction as a
numeric constant.

The form is a "[" followed by the instruction and any
operands (separated from the mnemonic by a space (" “) or
tab (control-I)) and terminated by a “]". If the "]" is not
immediately following the instruction, or if the instruction
is not properly formed, an error will result, See the XITAN
Macro Assembler User's Manual for the correct formats of
instructions.

Note that instructions as numeric values are not
available in UZBUG.

XITAN Z80 ZBUG Debugger User's Manual Page 45
Section 5 - Going Beyond the Basics

Examples....

{MOV A,B] <. Feturn a 78 hex

{caLL 5] .os return a 0005CD hex
{(MvI B,1] ... return a 0106 hex

Improper Instructions....

[MQV A,B) .ses need that *]* !
{INR 2] eees wWhat's & 2 ?

XITAN 280 ZBUG Debugger User's Manual - Page 46
Section 5 - Going Beyond the Basics

5.2 Advanced Ideas

Learning to use 2ZBUG should be a growing process. After
learning and using a few commands, such as those
demonstrated in the example of Section 3.3, more advanced
features of ZBUG can be incorporated in the user's repetoire
of well-used capabilities.

The following is an informal discussion, intended to
give the user an idea of how to get the most out of ZBUG,
After becoming familiar with 2BUG's sophistication, less
time will be spent “fighting with the debugger than the
debuggee™. Please note that these suggestions are no more
than quidelines....

When first entering ZBUG, use the “"M" (mode) and/or "R"
(radix) command to set up the mode/radix environment you're
most comfartable in or will- be working in mest. For
debugging a program with a listing, instruction mode and hex
radix are usual. Then, if it becomes convienient later to
look at some wvalue in a different mode/radix, the temporary
settings available with the “E“ (examine) and “X" (examine
register) commands will usually be sufficient.

with the “E“ command, it is possible to change the mode
and radix together.

{ this is a demonstration of the mode/radix changing
within the “E* command }

* & 100 <cr>

0lo0: Q1 smi rd <cr>

0100: LXI B, 0 ;m4 rb <cr>

0l00: 0010111100000000000000000000000L ;ro <cr>
0100: 05700000001 ;m2 <cr>

0100: 000001 ;rr <er>

0100: +1 <cr>

*

{ radix changing within the "X" command }

* x hl <cr>

1234 jra <Ler>
P4’ ;es <cr>
022:064 ;rb <er>

0001001000110100C <er>
- .

The more comfortable you are with expressions, and what
they're capable of, the less you'll have to type to get the
job done, and the more you'll be able to accomplish. For
example, remembering that "<BC" means "the value in register
pair B&C", whenever you want to see the value pointed to by
the address in B&C, you can use "<BC" as the address for an
application of the “E" command. This way you save yourself
the trouble of examining the contents of the B&C register,
and then typing that value. This of course applies for any
address, data, count, etc. value expected by any command,

()

XITAN 280 ZBUG Debugger User's Manual . Page 47
Section 5 - Going Beyond the Baslics

for any register or flag value, and for instructions and
byte or word memory values. In a sense then, these special
values may be thought 6f - and used instead of - numbers.

{ examine the instruction pointed to by the program
counter }

* e <pc {cr>
0105: ANI GF {er>

{ using the "L" comﬁand, list the ASCII string, whose
starting address is in the word pointed to by register Hs&L,
and whose lenth is in the byte follawing the address word }

* 1 @ <hl, \ (<hl + 1) <er>
4DAZ: 100.PRINT X
-

The *S" command expects a boclean expression in order to
set a trap or conditional display. This may actually be ANY
expression - ZBUG evaluates it and traps or displays if the
result is . non-zero. Due to the flexibility of the
expressions recognized, the trap/conditional display
capability is extremely powerful and versatile.

{ set a trap to fire when the next instruction to be
executad is a PCHL and the address in register H&L is 0 }

* 30,(!. ?2eq [pchl]l) & (<hl Z?eq Q) <cr>
*

{ set a trap to fire if the last instruction wrote in
the area of 0 to OFF ~ note that we'll only use the low byte
register of the write access pair, and we can't be certain
that an LDIR or LDDR instruction wrote here due to those
instructions' “wildness® }

* 30, (<wr ?ge 0) & (<wr ?le OFF) <cr>
»

{ set a trap to fire whenever the carry flag is set (not
0) } :

¥ %

sG, >¢c Lecr>

{ set a trap to fire whenever the zero flag changes }

* 50, >!'z ?ne >z <cr>
*

If you're going to be debugging a single module of a
large program, for which vyou've got a 1listing with only
relative addresses, the relocation registers can save you a
lot of time and trouble. All that is necessary is to know
the absolute address of the start of the module (from a
linkage editer load map), and set the RR register (or the
DR) to that address via the "X“ command. If the ending

XITAN. 280 ZBUG Debugger User's Manual Page 48
Section S - Going Beyond the Basics

address (or start address plus length) of the module is
known, set the 'RR (or 'DR) to it. From then on, if ZBUG
displays an address that is in the module, it will be
displayed as a relative offset from the start, followed by a
* (or *). To access an address within the module, you only
have to enter the relative offset, followed by a ' (or ").
This alleviates a common frustration of trying to figure out
the absolute address. In addition, any addresses outside
the module will be displayed as absolute. .

Since it is possible to have more than one relocation
base (refer to XITAN *“Z80 Relocating/Linking Assembler
User's Manual") for a module, such as a code base and a
separate data base, the RR-'RR pair can be used for one
(code ?) and the DR-'DR pair for another (data ?).

{ knowing the absolute address, examine a routine to see
it with absolute addresses }

* @ 1fed <cr>

lFED: PUSH PSW <1f>
IFEE: LXT B,1 <1E>
lEFFle RAR <1f£>

LFF2: JRNC 1FF8 <1E>
1FF4: LBCD 0455 <1E>
1FF8: LXT ®,Q <1E>
1FFB=: RAR <1f>
1FFC: JRNC 2001 <lE>
1FFE: LHLD 0459 <1E£>
2001 POP pPSw <1E>
2002: RET ¢ Ler>

*

{ okay, now set up RR and 'RR }

* xrr <crd>

0000 1fed <cr>

* x'rr <cr>

0000 2002+1 <cr>
E 3

{ now look at the routine, remembering that addresses
refered to inside the routine will be relative offsets to
register RR, and those refered to outside will be absolute }

* e 0' <cr>

0000': PUSH PSW <1£>
0001': LXI B,1 <1lf>
0004': RAR <1lfE>

000S5': JRNC 0008’ <1£>
0007': LBCD 0455 <1E>
000B': LXI H,0 CRLE>
00QE': RAR <1E>
000F': JRNC 0014* <1£>
00l1': LHLD 0459 <1E>
0014': POP PSW <1E>
Q0ls5': RET <¢r>
*

O

(1

L

[N

XITAN 280 ZBUG Debugger User's Manual Page 49
Section 5 - Geing Beyond the Basics

Remember the current type-in radix that you're operating
under - it is easy sometimes to enter a number thinking it
is one value, while ZBUG calculates another. FPor example,
the sequence "10B* alway means 108 hex if the current
type—-in radix is hex, and not 10 binary with a “B" modifier.
The same goes for “10D“ - it's not 10 decimal.

To alleviate this confusion, use the radix-change
operator.... -BlL0 for 10 binary, -DLO (or 10.) for 10
decimal, etec.. Since the radix-change operator s a unary
operator, you can follow it with an expression in
parentheses to include more than one number.

ZBUG uses this, in fact, to enclose each trap and
conditional display expression entered. This insures the
user that the expressions will be evaluated using the
type-in radix in effect when the expression was originally
;ntered, in case the user decides to change the defualt

ater.

Although the use of carriage return and line feed are
fairly standard for examining memory (such as Digital
Equipment Corporation's DDT), additional £lexibility may be
gained with the escape (“call®) and form feed (“return®)
methods of closing 'a currently open cell and moving on.
They are especially useful when examining a section of code
with a jump or call instruction - facilitating examining the
code at the jump or call address with one keystroke, and
returning to the instruction following the jump or call with
another. i

XITAN Z80 2ZBUG Debugger User's Manual Page 50
Appendix A - A Quick Reference to the Commands

Appendix A ~
. A Quick Reference to the Commands
The following is a quick reference to the ZBUG command
set and special characters.

C <expression> - “Calculate"
D <address> ,<count> - “"Display*
E <address>. - “Examine"
F <address>,<count>,<value> - "Pill®
G <address> [,<break>]* - "Goto"™
I <instruction> - “Execute"
L <address>,<count> - *List"
M <{mode> - “Mode™
Q <name>,<bias>,<rel> - “Open"
P <address> - "put string"
Q - *Quit"
R <type><radix> - "™Set radix™
S <id>,<expression> - “Set trap"
s* <id> - "Clear trap" .
SD <id>,<expression> - "Set cond. disp." ;-5
SD* <id> - “Clear cond. disp." et
SW <time> . - "Set wait*
T <address> ,<count>,<op> - “Trage* '
X <reg/flag> - “Examine reg/flag"
'Y <address> ,<address> - "Search”
Z <string> -~ "Zap: CP/M fcb's™
control-D - "end ASCII string"”
control-E - "halt trace"
control-T - "show current trace location*
<CR> - command terminator, close cell

- and close reg/flag
<LF> - apen sequential cell
<BS> -~ open last sequential cell
<ESC> - open “called" cell
<FF> - open “returned"” cell
H - command separator, re—apen current

cell

Note that the urn’ "R", nSu' us*n' uSDn' "SD*", and uzu
commands, and the control-T feature are not available in
uzsuG.

L

v

XITAN Z80 ZBUG Debugger User's Manual Page S1
Appendix B - Error Messages

Appendix B8

Error Messages

The following is a list of various ZBUG error messages.

All errors encountered are flagged by ZBUG with "***
ERROR :* followed by a two - digit error code. An
explaination of each error code is follows:

00: “Unknown Command Name"' - An unidentified command
character was encountered

02: “Can't use byte addr* - While in E command and currently
in byte mode, an <ESC> was used to <close the
open cell. 2ZBUG will not permit this operation.

03: “Bad mode* - While in E command and using ';' to close
the cell, an inproperly formed 'Mn' was found.

04: “Missing arg™ - 2BUG expected an argument for the
command that was omitted.’

05: “Bad cmnd mocd™ - An improper modifier for the command
was encountered.

06: "Missing *',", ';', or <CR>" =~ ZBUG expeéted to £ind a
separator or command terminator.

07: “Expr too long” — The specified expression for the S or
SD command exceeds 59 characters.

09: *Bad reg™ - Unknown register name in X command.

10: *Bad radix* - While in E or X commands using ';Rn' to
¢lose, an improperly formed 'Rn' was found.

11: “Bad flag” - Unknown £flag name in X command.

12: “Bad mnemonic delimiter” = An improper character was
found delimiting an instruction mnemeonic.

13: “Bad mnemonic” - An unknown instruction mnemonic was
found.

14: "Bad 'hlt'" - The sequence "mov m,m" and related indexed
instructions are not premitted.

15: “"Can't use 2 index regs" -~ An instruction may not use
more than one index register.

XITAN Z80 ZBUG Debugger User's Manual Page 52
Appendix B - Error Messages

16:
17:

23:

24:
25:

26:

27:
28:

29:

30:
31:
32:

98:

Bad rel addr - The relative branch is out of reach.

“Bad reg / disp (index) " - The register or
displacement(index) operand is improperly
formed..

“Too many args“ - Too many arguments were encountered.

“Bad file name/ext™ - The file name/extension specified
in the 0 command is improperly formed.

“Can't open file" - The £file specified in the 0 command
doesn't exist.

“Read error” - A read error has occurred while reading
the file specified in the 0 command. .

“Record error* - An improperly formed .HEX or .REL
racord was found while loading the file
specified in the 0 command. Try re-assembling
the program..

“program too large* - The program being loaded with the
O command has attempted to load within ZBUG's
bounds.

“Improper Relational Operator™ - ZBUG found a relational
operator ('?XX') that was improperly formed.

“Missing *)'" — ZBUG found a '(' that was not matched by
a')'.

“Improper or Missing Unary Operator™ - 2ZBUG found an
improperly formed radix change/explicit length
operator, or expected a unary operator and
didn't find it.

*Improper Register Name™ -~ 2BUG found a register
reference with an unknown register name.

“Improper Flag Name" — ZBUG found a flag reference with
an unknown flag name.

"Missing String Terminator* - 2BUG . could not find a
matching °"string terminator before finding a
{CR>.

"Improperly Formed Number“ - 2ZBUG found an improper
digit for the assumed radix.

"Unidentified Symbol® - General catch all for
unrecognizable constructions.

"Missing 'l1'" - ZBUG couldn't find a '}]' while
processing an instruction “number”.

“Operand Stack Underflow* - 2BUG system error. If this
error happens repeatedly, please gather any

I

O

¥ -

XITAN 280 ZBUG Debugger User's Manual Page 53
Appendix B - Error Messages

1
pertinent information (command executing, user
entered information, ZBUG generated results,
etc. resulting in ' the error) and notify Xitan,
Inc., attention Manager of Tecnhical Services.

99: “Operand Stack Overflow” =~ The expression ZBUG is
evaluating is too complicated -~ parentheses are
nested too deeply or too many operations are
pending. :

‘4

)

TDL 280 LINKER

User's Manual

(Manual Revision 0)
March 24, 1978

Written by David S. Hirschman

rAanvriaht 1978 bv Technical Design Labs Inc.

- S—— - e N S— S ——— SN - Jo— — Sp— e TR P T 5 T T T g 3 T —

TDL 280 LINKER User's Manual
Table of Contents

Table of Contents

1 INtrodUCEiON.eceseeeccsoascscsoscnssavessassnccsose 2

2 Overview of LINKER OperatioN.ceccescescscccacsanss 3

3 LINKER INDUE FOCMAC.ccccovecervovcscavsssscscccese 4

3.1 Command SYNtaX..cecescessosscsscsccscances O

3.2 0Utput File.ceeeseccecsncocccanssocroonces 7

3.3 INPut PileS..eseceveccecoccsccscvnsasooons 7

3.4 /MAIN OPtiON.ceccsceceesvencscassacacsasves 8

3.5 /MAP OptiON.cesccervrceoscccsasoccannsanone 8

3.6 /SEARCH OPLiON.ccceccssscccccecoscssscsssns 9

3.7 /DEPINE OptiOfNececesecsacecccansssasosoosas 9

3.8 /LOCATE OPtiON.ceccececcecocccsasssscssocssld

3.9 /ACTUAL OPtiONececessscesvessssassscascessll

Appendix
Appendix
Appendix
Appendix
Appendix

Appendix

A
B

o4
D
E
F

LINKER Error MesSsageS....ccececesonsessll
Pre-Defined SYmMBOlS..ccesseccaccsansseslf
Syntax SUMMALY.ccosacssossonscsossnssnsld
Program FOLMAL.ccsocsooresoncasscseansesld
LINKER Examples........................21

Using LINKER with 280 AssembleC.....e..22

TDL 280 LINKER User's Manual : Page 2
Introduction

1 Introduction

LINKER is a TDL utility program that can bind together
individually compiled modules of a program into a single
file that may be loaded and executed by the CP/M * operating
system.

There are many advantages to the practice of linking
togetner separately compiled modules instead of working with
a single, large program. A large program may be decomposed
into small modules which may be edited and compiled more
gquickly. For example, to correct a bug, the programmer need
only re-compile the affected modules and re-link the
program, instead of re-compiling the entire program.
Generally, the linking process is faster than compilation.

It often happens that a routine is used in several
programs, a special I/0 routine or COSINE function, for
example. Instead of copying the source code for this
routine into each program, it may be compiled once and then
linked in wherever it may be required. Furthermore, using
LINKER, coutines written in different languages may be
combined into a single program.

The Z80 Macro Assembler and FORTRAN: IV can produce
#libraries®, or files containing more than one separately
compiled module. LINKER offers methods for including all or
only some of the modules in a library into the program.

The remainder of this guide describes how to use LINKER.
An overview of LINKER concepts and operation is offered in
section 2. The input format to LINKER is defined in section
3.

* CP/M as it appears in this manual is a Registered
Trademark of Digital Research.

T

TDL 2680 LINKER User's Manual Page 3
Overview

2 Overview of LINKER Operation
LINKER takes as input, FPILEsS which contain one or more

separately compiled MODULEs. Files containing many modules
concatenated together are referred to as LIBRARYs.

Each module nas a name. In 280 Assembler, the .IDENT

pseudo operation is used to declare the module name. Its
use is highly recommended, as the default module name is
» MAIN.”, and duplicate module names in a program are not
allowed. The other translators assign a module name
automatically.

Bach module is made up of SEGMENTs (also called
srelocation bases”). Segments are the basic units of code
and/or data involved in the linking process. After LINKER
is aware of what modules are to be included in the program,
it assigns an absolute memory address to each segment in
each module. Any code in each segment is relocated so that
it will execute at the address to which it is assigned.

Several kinds of segments may be contained in a module.
The main code segment, usually containing all of the
executable code in the module, has the same name as the
module itself. The main data segment of each module also
nas the same name as the module, preceded by a gquote (9.
Por example, a module named ARCTAN would contain a code
segment named “ARCTAN" and a data segment named "'ARCTAN".

All of the other segments in each module are common
areas, usually containing only data, which may be shared by
other modules. One of these segments is named ".3LNK.", and
is referred to -as the "unlabeled common”. This is the
common block that will be created by FORTRAN when the
programmer doesn’'t supply a specific name for a common
Block. All of the other common blocks have names specified
by the programmer.

One of the major features of the LINKING process is that
each separately compiled module may access code and data
defined in other modules. An INTERNAL symbol is one whose
address is available to modules other than the one in which
it is defined. Symbols which are not INTERNAL are invisible
to other modules. An EXTERNAL symbol is one which is used
in a module, but is actually an INTERNAL symbol in another
module. All EXTERNAL references must be satisfied by
INTERNAL declarations in another module, with two
exceptions: symbols may be explicitly defined using the
/DEFINE option (section 3.7), and some symbols are
pre-defined by LINKER (see Appendix B)

An ENTRY point is an INTERNAL symbol which comes into
play in library search mode. In this mode of operation only
those library modules having ENTRY points which are
referenced as EXTERNAL symbols by one or more already linked
modules are included in the program (see section 3.6).

TDL 280 LINKER User's Manual " Page 4
LINKER Input Format

3 LINKER Input Format

MODULE, SEGMENT, and SYMBOL identifiers

An identifier is a string of characters from the
following set: .

a-z, 0-9, BSR*L ' 2+=\""{]} 1.2 []-

Normally, an identifier consists of no more than six
characters. Bowever, an identifier for a .DATA. segment of
a module {(as discussed in the previous section) is preceded
by a quote (').

Identifiers may not contain blanks. Lower case letters,
when used, are automatically translated into upper case.
The first character of an identifier may not be a number 0 -
9. The following are examples of valid identifiers:

PRCGSA
SORT-3
'SORT=-3 (a .DATA. segment name)
FOOSSS

The following are not valid identifiers:

34ABC - an identifier may not begin with a number
CHECKERS - too many characters
NIM A - contains a space

ried vamE '

- v et s

A file name has the following format (with brackets []
indicating optional portions):

[device:]name[.extension]

The “device:" indicates on what disk drive the file
resides. If present, it must be one of "A" through "p*. If
omitted, the logged-in disk is assumed. If LINKER can't
locate an input file on the specified disk, it will try
drive A.

The file "“name" is required, and must consist of no more
than eight characters from the character set given above for
identifiers, except that the characters <>.:[]_ may not be
used.’

The ".extension” indicates what the type of the file is.
It may consist of no more than 3 characters, from the same
set of characters allowable in the file ™"name". The
defaults for ".extension" are defined on page 7.

TDL 280 LINKER User's Manual page 5
LINKER Input Format

"16 BIT VALUE

- o s > > o

A 16 bit value may be expressed as a literal or as a
number. A literal is one or two characters enclosed in
quotes, for example: “V1“.

A number may be expressed in several different bases, as
shown in the table below. A radix character immediately
Eoléowing the number indicates which number system is being
used:

Bdase Radix valid Digits Valid Range

hex B 0-9 , A-F 0 -~ OFFFF
decimal . -9 0 - 65535
octal o] Q-7 0 - 177777
binary B 0 and L 16 digits

1f the trailing radix character is omitted, *“g" (hex) is
assumed. All numbers must begin with a numeric digit (0-9).
A preceding minus sign indicates a negative number. In this
case, a two's complement representation is used.

The following are examples of 16 bit values:

14170 - an octal number

0Cl1Bs - a hex number

-55. - a negative decimal number
*A" - a one character literal

The following are not valid 16 bit values:

100000. - decimal number too large
960 - invalid octal digit

“AB - missing closing guote

Clc2 - does not begin with a digit

INITIATING LINKER

LINKER may be used interactively, or input may be given
as it is executed:

LINKER <commands> <cz>
This means that LINKER may used in a SUBMIT file.
To use LINKER in the interactive mode, simply enter
LINKER <cr>

on the console. LINKER will read commands from the conscle,
prompting with an asterisk wxw aAll input -is stored
uninspected until a carriage return is typed. The standard
line editing features of CP/M * (rubout, CTL-U, CTL~C,
CTL-£, etc.) are available. If a CTL-T is £found on any
line, the entire command being entered is aborted.

TDL 280 LINKER User's Manual page 6
LINKER Input Fformat

A disk file containing all or only part of a command may
be inserted into the input at any point by preceding the
disk file name with an "@". The default file extension is
* LNK". These disk files may not contain £further "@"
specifications. The most common use of this featuré-is to
prepare a file containing a complete command; then,

LINRER @<file name> <cr>

links tne program. Usually, these ".LNK" files may be
prepared once for a given program and used over and over
again, greatly simplifying the whole process.

All LINKER commands have the same format, regardless of
whether the interactive mode is ugsed. Commands arce
separated by a semi-colon ";". LINKER terminates when it
receives the "Q" command (quit). For example,

<command> ; <command> ; <command> ; Q

LINKER alse terminates when input provided with its
execution is exhausted.

If an error is found, the current input line is echoed
with two question marks inserted after the point at which
the error was detected. This is followed by an error
message (see Appendix A). The command must then be
re-entered. .

) . all input is free format. Blank lines are ignored, and

a command may extend to any number of lines. All lower case
letters are automatically translated to upper case.
Comments may be included with input from any source by using
an asterisk “**. When an asterisk is encountered, all
remaining characters on the same line are ignored.

If a CTL-C is typed while LINKER is running, it will
quit and return to the monitor. If CTL-E is typed, the
current command is aborted, and LINKER will prompt for more
input if it is being used interactively.

3.1 Command Syntax

Each command to LINKER links one program, and is of the
format:

[<output f£ile> =]
<input file 1>, <input file 2>, ... , <input file m>
/<option 1> /<option 2> ... /<option n>

LINKER links together appropriate modules from the input
files to create the output £file, under control of any
options present. If the program is linked successfully, its
name is printed on the console, along with the address of
the nighest byte used in the program and the program size
rounded up to the nearest K (1K = 1024 bytes).

TDL 280 LINKER User's Manual Page 7
LINKER Input Format

3.2 Output File

The output file is the file which will contain the
linked program. The file extension indicates what kind of
file is to be produced. If given, it must be one of the
following:

COM - Absolute binary core—~image file, ready to be
loaded and executed by the operating system.

HEX - INTEL *"hex" format file (see Appendix I of the
280 Relocating Macro Assembler User's Manual).

If the .<extension> is not given, ".COM" is assumed. The
output file replaces any existing file of the same name.

Examples:
B:PROGL - A .COM file for PROGl is placed
on disk B. i _
PROGZ.HEX - An INTEL “hex" file for PROG2

is placed on the
currently logged-in disk.

The output file and equal sign £ollowing it may be
omitted; then, the name of the first input file is used, and
an extension of .COM is assumed.

3.3 Input Piles

Bach <input file> may contain either & single compiled
module, or may be a library containing many compiled
modules. Normally, all modules contained in each <input
file> will be included inm the output file, but this default
action may be overriddemr as explained below. The <input

 file>s must contaim all modules that are to be included in

the output file, unless the /SEARCE option is used (see
section 3.6)}.

If the file extension is not given, *“.REL" is assumed.
Of course, all files must contain only compiled, relocatable
object modules, in either ascii or binary format.

A module selection clause may optionally be added
immediately after each input file name, to indicate that
only some of the modules within the file are to be linked.
It has two possible formats:

(INCLUDE <module 1>, <module 2>, ... <module n>)

which causes only the named <module>s to be included in the
output file, and

(EXCLUDE <module 1>, <module 2>, ... <module nb>)

which causes all modules in the library EXCEPT tne listed
ones to be included in the output file.

TDL 280 LINKER User's Manual ' Page 8
LINKER Input Format

3.4 /MAIN Option

This option specifies the main module of the program.
Its format is:

/MAIN <module name>

The main module must have a defined starting address. This

is done in 280 Assembler by supplying a label with the
« . END* pseudo op. The other translators automatically
supply a starting address. Execution of the program will
begin at this address.

If the /MAIN option is omitted, LINKER looks for a
global symbol named .MAIN. and uses this for the starting
address if found. If not, the first module encountered in
the input files which has a defined starting address is
assumed to be the main module of the program.

3.5 /MAP Option

The /MAP Option may be used to obtaim a printout of the
memory map on the list device. Reports can be selected that
show the memory addresses assigned by LINKER to the segments
and symbols in the linked program, or that describe the
modules. that were linked.

The format of the /MAP option is:
" JMAP- <flag 1> <flag 2> ... <flag m>

The <flag>s control what items will be included in the
memory map report, as follows:

G - Global symbols (i.e. all internal symbols of all
loaded modules). The symbols are listed in
alphabetical order, with their assigned addresses.
The address shown is the address that will be used
for all references to this symbol. This may not
be the same as the address where the symbol is
loaded, if the /ACTUAL option is used.

S - Segments. All of the program segments are listed
in alphabetical order, and the assigned address
and size is given for each. 1If the segment is to
be relocated so that it will execute at an address
different from its assigned one, via the /ACTUAL
option, this address is given also.

A - All. This option combines the information given
by the S and G £lags. All segments are listed, in
order of ascending memory address. Each segment
is followed by all of the global symbols contained
within that segment, again listed by ascending
memory address. Absolute symbols are listed under
a dummy segment named .GLOB.

RN

TDL 280 LINKER User's Manual Page 9
LINKER Input Format

M - Modules. Each module is listed, along with its ID
number, version and revision number, and date and
time assembled (older versions of the 280
Assembler do not output the information needed to
generate this report. The .PROGID pseudo op is
used to create this information for each module).

If no <flag>s are given, /MAP A is assumed.
3.6 /SEARCE Option

This option causes library files to be searched in order
to satisfy external references which remain unresolved after
all modules contained in the input files have been linked.
The format of the option is: ’

/SEARCH <library 1>, <libracy 2>, ... <library n>

Each <library> has the same syntax as the input £iles of
section 3.3. INCLUDE and EXCLUDE clauses may be used.

A module in a library is loaded when one or more of its
ENTRY points (see section 2) are referred to by other
modules, but have not yet been defined anywhere. As long as
undefined symbols exist, all specified libraries are
gearched iteratively in the order given, until a complete
pass over the libraries yields no new modules to be loaded.
That is, if loading a library mcdule creates new unresolved
symbols, all of the Llibraries may be searched again in an
attempt to find it.

When FORTRAN IV modules are included in a program, the
FORTRAN library "LISRARYS.REL" is automatically added to the
end of the list of libraries to be searched. It must be
present on the logged-in disk or on drive A. This library
is designed to be searched in a single pass, and error #3l
(see Appendix A) may result if an additional pass must be
made over it. Therefore, it may necessary to design any
other libraries that are - to be searched so that only 2
single pass is required to pick up all needed modules.

3.7 /DEFINE Option |
This coption may be used to give values ta symbols which
are not defined by any module in the program. These defined
symbols are then used to resolve EXTERNAL references made by
the program modules.
The syntax of this optionm is:
/DEFINE <symbol 1> = <value 1>,
<symbol 2> = <value 2>,
<symbol n> = <value n>

Each symbol is given a 16 bit value. This value could
represent a constant, or an absolute address.

T

<

TDL 280 LINKER User's Manual ' Page 11
LINKER Input Format .

The format is:

/ACTUAL <segment~1> = <address-1>,
<segment-2> = <address-2>,

<segment-n> = <address-n>

Each segment, which will be loaded wherever it would
normally be loaded, will be relocated to execute at the
given address. All references from other segments into them

will also be relocated.

TDL. 280 LINKER User's Manual Page 12
Error messages

APPENDIX A - LINKER Error Messages

A few LINKER error conditions are indicated by a short

message which should be self-explanatory. For the rest, an
error number is given which may be looked up in the table
pelow. In the case of a syntax error, the input line
containing the error is echoed, with two question marks "?2?"
following the point where the error was detected. Other
errors may be flagged as occurring in PASS 1 or PASS 2.

Many of the error messages involve a problem with a disk
file. In this case, the name of the disk file is given, as
well as a byte offset (in hex) indicating the position in
the file where the error was detected.

any error codes. not appearing in this table are
diagnostic errors indicating a bug in LINKER. Try running
LINKER again. If the error persists, please collect the
ralevant information (error message, LINRER version date,
input files, etc.) and notify the Technical Assistance
Manager at Technical Design Labs.

Error Codes

=)
'

Expecting equal sign.

2 - Expecting */™ or ";". The command parser has reached
the end of the input files, and is trying to read the
options.

3 - Bad option name. See sections 3.4 and following.

4 - Option not implemented. The version of LINKER you are
using does not contain this option yet.

5 - Expecting identifier. See Section 3 for an explanation
of correct identifier format.

7 - Wrong digits in number. Which digits are valid
depends, of course, on the radix vyou are using. See
Section 3.

8§ - Number or literal too large. All numbers and literals
must be able to fit into 16 bits. See section 3.

9 - Token too large. The string of characters you entered
at this point 1is too long to possibly be any kind of
valid input.

10 - Expecting "device:" or "file" name. A proper file name
should appear in the input at this point (see section
3, file name format).

(

TDL 280 LINKER User's Manual Page 13
Error messages

11
12
13

14

15

17

20

31

34

40
41
42

43

45

Invalid "device:" specifier. Valid device specifiers
are "A:" through “P:*.

Invalid file name. A file name must consist of no more
than eight characters from the proper character set
(see section 3, file name format).

Invalid file extension. A file extension must consist
of no more than three characters. An output file may
only have extensions *“.HEX" or “.COM".

Expecting 16-bit value. A number or literal must
appear in the input at this point.

Incorrect INCLUDE or BSXCLUDE format. Either you did
not give one of the key words INCLUDE or EXCLUDE, or
there is an incorrect module ID, or the closing rigat
parenthesis *)* is missing.

@ inside @ file. Disk £files containing commands and
used via anm "@* may not contain further "@*
specifications.

Insufficient memory. There was not enough free memory
available for LINKER to use for its symbol and segment
tables. Therefore, the program could not be linked.

Duplicate segment. The indicated segment appears more
than once in the input modules. Did you remember to
use the .IDENT pseudo op in 280 Assembler programs?
Another way this error can occur is if PORTRAN IV is
being used and multiple /SEARCH passes are made over
LIBRARYS.REL. See section 3.6.

Undefined segment. A segment which you referred to in
the /LOCATE or /ACTUAL options was never encountered in
the input £iles.

Can't close output file. Is the disk write protected?
Error in extending file.

No space for output file. There is not enough space on
the disk to hold the output file.

No directory space. The disk upon which the output
file is to be placed doesn't have enough room in the
disk directory.

Can't open output file. This error may be caused by a
full directory, or by a protection failure.

TOL Z30 LINKER User's Manual Page 14
Error messages

46

S0
51
53
54

55

56
57
58

60
64
63

66

70

Loading below 1004 in .COd file. A .COM file |is
organized so that the beginning of the file corresponds
to memory address 100H, since the operating system
always loads a .COM file at this address (see Appendix
D). Thus, nothing may be loaded below this address.
This error may be caused by a /LOCATE to an address
below 100H.

Expecting module record. The input file was supposed
to contain a module record at this point, but did not.
This error often occurs when there is trash at the end
of the previous module in a library file.

Invalid record type. The input file contained an
incorrect .REL record type at the indicated offset.

Undefined symbols exist. All of the Llisted symbols
will have to either be made INTERNAL symbols of some
module or defined via the /DEPINE option.

Missing starting address. You did not use the /HAIN
option, symbol .MAIN. did not exist, and none of the
program modules had a defined starting address.

The main module (as given by the /MAIN option) has no

defined starting address. Be sure to give a starting
address with the .END pseudo op in 280 Assembler
programs.

The maim module (as given by the /MAIN. aption) was
never encountered in the input £files; therefore, no
starting address could be determined.

Can't recognize module. There is garbage in the input
file at this point. Are you sure this file is a wvalid
.REL file? If all else fails, try re-compiling.

Can't process FORIRAN. The version of LINKER you are
using can't link FORTRAN modules.

Duplicate input file. Each input or library file can
appear only once in a command.

FORTRAN symbol number out of range. This and the
following two errors usually indicate a smashed FORTRAN
.REL file. Try re-compiling.

Bad FORTRAN relocation base type.

Bad FORTRAN op code.

Duplicate symbol. The indicated global symbol is
defined in more than one module.

J

U

[P

TDL 280 LINKER User's Manual Page 15
Brror messages

79 -

80 -

8l -

83 -

85 -

87 -

Program won't fit into memory. This program won't fit
into the address space of a 1l6-bit micro-computer.
Either it 1is simply too large, or you created large
wasted areas of memory by using the /LOCATE option.

Expecting carriage return. The indicated input file

was supposed to have a carriage return at the given
location, but did not. Are you sure this is a valid
ER$§ file? Try re-compiling the program if all else
ails.

Bxpecting line-feed in input file.

Expecting ASCII character. The input file did@d not
contain a valid ASCII character where it was supposed
to.

Bad Checksum. 280 Assembler *.REL* files contain
checksum bytes after each record which are used to
validate the data that is read from them. A checksum
error usually indicates a file that 1is corrupted with
errors: try re~compiling.

End of input file. The end of the indicated file was
reached unexpectedly. :

Empty input file. The indicated input file was. totally
empty, except perhaps for some filler characters.

TDL 280 LINRER User's Manual page 16
Pre-Defined Symbols .

Appendix B - Pre-Defined Symbols

There are a few global symbols which are
pre-defined by LINKER before the 1linking process
-begins. They are listed below. The user should not
attempt to define these symbols himself, as a duplicate

- symbol error (code #70) will result. Future versions
of .LINKER may have more of these symbols. They will be
of the form .XXXX., so the use of symbols of this form
should be avoided.

pre-Defined Symbols

.FREE. - This symbol points to a word which contains
the address of the first £free byte in memory
above the program. It is useful when the
programmer wishes to make use of free memory
at execution time. When a "“/LOCATE .DATA. =
<addr>" is done (i.e. data segments are
assigned to a separate memory location) .,
.PREE. points to the £first free byte above
the data area. i

If FORTRAN IV modules are included in the program, many
other symbols will be defined via modules brought in from
LIBRARYS.REL. The reader is referred to the TDL PORTRAN IV
User's Manual for details.

\J

el

TDL %80 LINKER User's Manual ' - Page 17
Syntax Summary :

Appendix C -.Syntax Summary

Below is a brief summary of LINKER input syntax, in a
modified BNF format. The symbol "::=* should be read as
*is defined to be". Angle brackets o delimit
meta-linguistic objects, which are themselves defined in 2
following line. Sguare brackets "([]* indicate optional
input. Curly braces *“{}" indicate input which may be
omitted or repeated as many times as desired. A vertical
bar *|" indicates a choice - the form preceding or following
may be used.

<LINKER input> ::= <command> {;<command>} ;Q
{command> s:= [<output £ile> =] <input file>
{,<input filed>}
{/<option>}
<output file> ::= <file name>

(the extension, if included,
" must be .COM or .HEX)

<input file> ::= <file name> [<modﬁlé selection>]
<file name> ::= [<device>:] <name> [.<extension>]
<device> ¢2= “A" through "P®

<name> ::» a string of no more than 8 characters

from <fset>, beginning with one of
A™ though "Z2".

<extension> ::= a string of no more than 3 characters
from <fset>, beginning with one of
"A" though "“2".

(INCLUDE <module> {,<module>})
(EXCLUDE <module> {,<module>})

<module selection>

o
o
— '

<optian> c:w <maind> | <map> | <search> | <define>
| <locate> | <actual>

<main> s:= MAIN <module>

<map> o= MAPR [A] [S] [G] (M]

<search> ::= SEARCH <input file>

{,<input f£iled>}

<define> ::= DEFINE <symbol> = <value>
{,<symbol> = <value>}

<locate> ::= LOCATE <segment> = <value>
{,<segment> = <value>}

<actual> ::= ACTUAL <segment> = <value>
{,<segment> = <value>}

TDL 280 LINKER User's Manual Page 18

Syntax Summary
<module>
. {symbol>
<segment>

<id>

<fset>
<{nset>
<value>
<literal>

<number>

o

v

o

.

”

«

o

e

<id>
<ia>
[r1<id>
a string of no more than 6 characters
from <nset>, which does not begin
with a number.
A-%, 0-9, #$3*&'?2+-\""{|}!
<fset> and <Ourll_
<number> | <literal>
“<any one or two characters>"”
{=-] 0 - OPFEF [H]
] 8 - 65535.

| 0 - 1777770
| 6 = 11111111111111118B

O

TDL %80 LINKER User's Manual : Page 22
280 Assembler Hints

Appendix P - Using LINKER with %280 Assembler

This appendix is a list of hints which may be of help in
setting up 280 Assembler modules for use with LINKER.

SYMBOLS

Internal and External symbols are created by using the
.INTERN and .EXTERN pseudo operations. .ENTRY is used to
create entry-point symbols.

SWITCHES

When assembling a module for use with LINKER, do not use
the .BABS or .XLINK switches. Do use the .PREL and .LINK
switches (these are defaults). You may use the .PHEX switch
to get an ASCII .REL £ile, but using .PBIN (the- default)
will result in a savings of disk space.

MODULE NAME

" . i

Always use the .IDENT operation to give each module a
unique name. If you don't, the module will have name .MAIN.
Bach module in a program must have a unique name.

STARTING ADDRESS

A label should be supplied with the .END pseudo op to
define the starting address of the main module of the
program. Then use the /MAIN option of LINKER to indicate
the main module. Alternatively, make the ' starting address
.MAIN., and declare .MAIN. as .INTERN (FORTRAN does this
automatically) .

LIBRARIES

Libraries may be created by using the .PRGEND switch.
This results in the creationm of & new module starting at
that point. PIP may be used to create libraries as well,
but use the O (object) switch £for binary .REL files, and do
not use this switch for ascii .REL files. FORTRAN and 280
ssembler modules, and binary and ascii modules may be mixed
together in a library.

MEMORY MAP

If the M report of the memory map is wanted, use the

.BROGID pseudoc op to define the program name, version
number, and revision number.

COMMON BLOCKS

To make a common block, declare the common block name to
be an .EXTERN in each module that must reference it. The
common should not be declared .INTERN by any module. Then,
use .LOC to define the common. For example,

(Y

TpL 280 LINKER User's Manual Page 23
280 Assembler Hints

.EXTERN TABLE

.LOC TABL

Az .WORD 5 .

32 .BLKB 10

Cs .ASCII “ABCDEFG"
-RELOC

declares a common named TABLE consisting of A, a word, B, 10
bytes long, and C, an ascii string. Remember that FORTRAN
will name a common .BLNK. if the programmer does not give it
a name.

DATA AREA

Objects are placed into the data segment of a module by
preceding them with a .LOC .DATA. The programmer may .LOC
"DATA. over and over again in the program: each definition
is added on to the end of the previocus ones. For example:

.LOC .DATA.

FQO: .WORD 0
BAR: .BYTE 558
.RELOC

-

.LOC .DATA.

PTR: .WORD TABLE
TABLE: .BLERW 100
.RELOC

reserves space for four variables in the data segment.
LINKER can be instructed to 1load the data segments and
common blocks in a separate area of memory using the /LOCATE
option.

J

READER'S COMMENTS TDL
TDL Z80 LINKER USER'S MANUAL

In a constant effort to improve the quality and
usefulness of its publications, Technical Design Labs, Inc.
provides this page for user feedback. Your critical
evaluations of this document is our only effective means of
determining its serviceability. Please give specific page
and line references where applicable.

ERRORS NQTED IN THIS PUBLICATION:

SUGGESTIONS FOR IMPROVING THIS PUBLICATION: (i.e. clarity,
organization,convenience,accuracy,legibility.)

MISSING DOCUMENTATION: (i.e. completeness.)

Name Date
Street

Cicy State Zip Code————————m=m—

All comments and suggestions become the property of
TDL. Send to Technical Design Labs, Inc.
’ Dept. of Product Improvements
1101 State Road
Princeton, N. J. 08540

Please indicate in the space below if you wish a reply.

u

